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Resumo

Devido ao aumento dos preços da energia e a uma sociedade cada vez mais consciente do am-
biente, tem havido um esforço para reduzir o consumo de energia em todos os aspectos da vida,
mesmo no desenvolvimento de software. Um desses esforços é melhorar a eficiência energética
nos centros de dados, sistemas cujo consumo total de energia deverá atingir 4,5% de todo o con-
sumo de energia a nível mundial até 2025 [33]. Este enorme consumo de energia deve-se à quan-
tidade de dados processados diariamente e os programadores de software têm de encontrar formas
de o reduzir nestes sistemas e no seu desenvolvimento diário.

Uma área com potencial para melhorar o consumo de energia dos programadores é a forma
como um compilador/interpretador influencia o consumo de energia dos programas que produz.
Dada a sua importância na vida quotidiana dos programadores e no desenvolvimento dos progra-
mas, seria de esperar que fossem feitos alguns esforços para otimizar o desempenho energético
dos compiladores/intérpretes. No entanto, será que isso é verdade? Será que as linguagens de pro-
gramação são construídas a pensar na eficiência energética e melhoram a sua eficiência energética
a cada atualização? Esta dissertação pretende responder a esta questão avaliando a progressão do
consumo de energia em várias versões do mesmo compilador/interpretador para um determinado
conjunto de linguagens de programação, C, C++, Java e Python, utilizando dez programas de teste
do projeto Computer Language Benchmark Game (CLBG).

A eficiência energética das linguagens de programação não é um novo objeto de estudo, mas a
forma como o consumo de energia evoluiu em várias versões do mesmo compilador/interpretador,
sim. Além disso, a informação mais próxima que recolhi sobre este tema estava relacionada com a
evolução das características de uma linguagem de programação [30] e a comparação do consumo
de energia entre vários compiladores C++ [26].

Para colmatar a ausência de informação relacionada com a versão do compilador, a compara-
ção entre eles é o principal objetivo desta dissertação. Também fornecerá mais informações sobre
a evolução do consumo de energia dos referidos compiladores.

Para que qualquer conclusão sobre a evolução dos compiladores/interpretadores possa ser ver-
ificada, esta dissertação define uma metodologia para a seleção das linguagens de programação,
dos compiladores e versões para essas linguagens, dos programas utilizados para os testes, das
ferramentas utilizadas para a recolha e tratamento dos dados e dos testes estatísticos utilizados
para esse tratamento.

A partir dos dados recolhidos das experiências efectuadas, foi possível verificar as versões
mais eficientes em termos energéticos para cada uma das linguagens estudadas, através de um sis-
tema de classificação baseado no desempenho de cada versão nos programas de teste do CLBG.
Encontrámos também uma tendência discreta para a diminuição do consumo de energia. No
entanto, há demasiada oscilação nestes resultados dos programas para confirmar que os progra-
madores de compiladores/intérpretes consideram a eficiência energética quando desenvolvem ac-
tualizações e o performance das versões após a melhor aparentam deteriorar.
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Abstract

Due to the increasing energy prices and an increasingly environmentally conscious society, there
has been an effort to reduce energy consumption in all aspects of life, even in software develop-
ment. One such effort is to improve energy efficiency in Data Centers, systems whose total energy
consumption is expected to reach 4.5% of all energy consumption worldwide by 2025 [33]. This
massive energy consumption is due to the amount of data processed daily, and software developers
must find ways to reduce it in these power-hungry systems and their daily development.

One area with the potential to improve developers’ energy consumption is how a compiler/in-
terpreter influences the energy consumption of the programs it produces. Given the importance
of it in developers’ daily lives and programs’ development, we would expect some efforts to be
made in optimizing the energy performance of compilers/interpreters. However, is this true? Are
programming languages built with energy efficiency in mind and improving their energy efficiency
in each update? This dissertation aims to answer this question by evaluating the progression of
energy consumption across multiple versions of the same compiler/interpreter for a given set of
programming languages, C, C++, Java, and Python, using ten benchmark programs from the Com-
puter Language Benchmark Game(CLBG) project.

Energy efficiency across programming languages is not a new subject of study, but how energy
consumption evolved across multiple versions of the same compiler/interpreter is. In addition, the
closest information gathered on this topic was related to the evolution of features in a programming
language [30] and the comparison of energy consumption between multiple C++ compilers [26].

In order to fill the absence of information related to the compiler version, the comparison
between them is the main focus of this dissertation. It will also provide further insight into the
evolution of energy consumption of said compilers.

So that any conclusion on the evolution of compilers/interpreters reached can be verified, this
dissertation defines a methodology used to select the programming languages, the compilers and
versions for said languages, the programs used for testing, and the tools used to gather and process
data as well as statistical tests used for said processing.

From the gathered data of the experiments performed, we could verify the most energy-
efficient versions for each of the studied languages using a ranking system based on the perfor-
mance of each version on the test programs of CLBG. We also found a discrete trend for energy
consumption to decrease. However, there is too much oscillation in these results of the programs to
confirm that compiler/interpreter developers consider energy efficiency when developing updates
and that the performance after the best versions seems to deteriorate.
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“You should be glad that bridge fell down.
I was planning to build thirteen more to that same design”

Isambard Kingdom Brunel
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Chapter 1

Introduction

1.1 Introduction

Recently, due to the increasing energy prices and an increasingly environmentally conscious soci-

ety, there has been an effort to reduce energy consumption in all aspects of life, even in software

development. One such effort is improving energy efficiency in Data Centers[42] [29] [28], that

in 2017 were responsible for 3% of all energy consumption and, by 2025, are expected to hit 4.5%

of global energy consumption[33]. However, to improve even further optimization efforts for data

centers, they should also consider the program generated by the compiler/interpreter, as the result-

ing programs perform various tasks such as communication and storage. In addition, the resulting

programs could consume more energy than intended due to their compiler/interpreter optimization,

and it is necessary to understand the full effects of these optimizations on energy consumption not

only for reducing the energy consumption of data centers but also all other programs.

For any developer, the mentioned Compilers/Interpreters are essential tools in software devel-

opment, as they are the tools that allow the execution of written code, whether through creating a

set of machine-readable instructions that can be executed for the given program or by interpreting

the source code and executing it. These tools also implement optimizations and quality-of-life

features to improve the execution of programs, such as execution speed and ensure that program-

mers’ development is easier and faster. However, there needs to be more information on how these

quality-of-life improvements and optimizations impact the energy consumption of the programs.

Some studies try to document the said impacts by examining varied programming languages to

understand the factors influencing energy consumption, as evidenced by the studies "Ranking Pro-

gramming Languages by Energy Efficiency"[39], "Finding Significant Differences in the Energy

Consumption when Comparing Programming Languages and Programs"[32], and "Energy Effi-

ciency Across Programming Languages."[38].The main objective of these studies was to create

a programming language ranking by energy consumption and to establish a connection between

energy consumption and a set of different factors, such as execution time, total memory usage,

and peak memory usage.
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Introduction 2

Nevertheless, as extensive and detailed as the studies mentioned above were, one area is in-

cluded in future work: the evolution of energy consumption across every iteration of the compil-

ers/interpreters. As mentioned by colleagues, comparing programming languages is exceptionally

complex[38]. This complexity is due to various factors, such as implementing the compiler/inter-

preter, CPU temperatures, total memory usage, and the programs used to test themselves.

With this in mind, this dissertation will describe a rigorous methodology to evaluate a set

of 4 Programming Languages, C, C++, Java, and Python, considering the previously mentioned

factors. It will also provide insight and in-depth analysis of the state of research on this topic and

related topics. For this purpose, we will be able to gather data from a collection of 9 programs from

CLBG(The Computer Language Benchmark Game) [18] and answer the following questions:

• RQ1: How can we compare the different versions of the same compiler?

• RQ2: How has the energy consumption, execution speed, and peak memory usage evolved

for the compilers?

• RQ3: How do all these metrics relate to one another?

• RQ4: How can we rank the versions for each programming language according to the gath-

ered data? Moreover, if so, what are the results?

These questions will allow us to evaluate the current evolution of energy consumption for these

selected programming languages and, hopefully, inspire the people that maintain the current com-

pilers/interpreters to analyze and implement changes in case the languages show upward energy

consumption.

With this said, anyone interested in reducing their energy footprint, selecting a language to

use in a device with a limited battery, or even in Data Centers can use this dissertation to make an

informed decision on what language they should use and the version of said language.

1.2 Dissertation Structure

In the current version of this Dissertation:

• The second chapter is an overview of the current state of research on this topic, as well as

highlighting some of the studies that are used as inspiration.

• The third chapter describes the planned methodology to be used for testing the hypothesis

presented in this dissertation.

• Finally, the last chapter details the expected results to obtain after testing as well as the

potential impact this dissertation could have.



Chapter 2

State of the Art

Research on ranking programming languages according to energy consumption is quite limited,

and some aspects still need to be discovered. One such area is how energy consumption varies

between compiler/interpreter versions, which will be this dissertation’s primary focus.

When researching, I found a few studies on this topic. However, in this section, I will only

talk about the ones I found to be the most interesting, thorough, and relevant to my dissertation.

These studies are:

• "Energy Efficiency Across Programming Languages." [38]

• "Ranking Programming Languages by Energy Efficiency" [39]

• "Finding Significant Differences in the Energy Consumption when Comparing Program-

ming Languages and Programs" [32]

These are the most current and thorough studies I could find when researching this topic and

are the theoretical and practical foundations for developing this dissertation.

The first study’s primary focus is to bring attention to energy consumption across programming

languages by analyzing the relationship between execution time, memory usage, and energy con-

sumption. To measure information about run time, memory usage, and energy consumption, they

used a software-based approach using existing and proven tools to make these measures: RAPL

(Running Average Power Limit)[6] and Time (Unix Memory Usage and Execution Time Measure

Tool)[17]. The analysis of these measurements employs the Pareto Optimization Algorithm[24]

for the relation between time, energy, and memory and the Shapiro-Wilk Test[41] for the normal-

ity between peak memory usage and DRAM energy consumption. Some of the findings in this

study were that a fast language might not be energy efficient, there is no relation between DRAM

energy consumption and memory usage, and no programming language could be the best in all

aspects.

The second study is a continuation of the first study by the same authors, with some differences

in the types of programs used to test the various factors, the methods to group and analyze the col-

lected data, and the analysis of an extra element which was the total memory usage. Firstly, like the

3
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first study, the programs used to test the energy consumption were from CLBG (Computer Lan-

guage Benchmark Game). Still, in this second study, there was a focus on seeing the performance

of programs with non-optimal performance in mind to mimic more realistic usage conditions and

to give a perspective other than the CLBG programs. To achieve this, the researchers also used

programs from an open-source educational repository for programming problems called Rosetta

Code. Secondly, a clustering method was used to represent how close every language was in terms

of energy consumption, execution speed, peak memory usage, and total memory usage. Addi-

tionally, the researchers used the Shapiro[41] and Anderson-Darling[37] methods to verify if the

data was parametric and to apply the Spearman method[34]. Lastly, this study reached the same

conclusions as the previous and also found that the performance of the results obtained from the

Rosetta Code was comparable to the ones of the CLBG.

Finally, in the third study, although written by other researchers than the first two, the mo-

tivations for their research were very similar. Still, their approaches to the topic were very dif-

ferent. Instead of taking the software approach to measuring energy consumption, in this study,

the researchers use a hardware-based approach to measuring energy consumption due to equip-

ment availability and also due to the accuracy of the equipment. Researchers selected the test

programs from CLBG because the programs follow the same algorithm across all programming

languages implementations of the problem. For some of the compiled languages, they had to run

the programs twice to verify the energy impact of the program with and without compilation flags,

meaning that in the latter, they did not use any optimization flags unless necessary. Finally, they

ended the study by concluding similar things to the other studies, such as that a faster language

doesn’t imply that energy efficiency will be better. However, they also state that looking only for

the most rapid solutions might give an incomplete view of the energy consumption of a language.

As mentioned, these studies have significantly impacted how we perceive energy consump-

tion in programming languages, each with contributions due to their thorough methodology and

research. These works serve as an inspiration and cautionary to this topic’s intricacies. I want to

reiterate that by no means are these the only studies on the subject. Still, these studies distinguish

themselves for their thoroughness and for addressing most issues related to the need for knowledge

of energy consumption in programming languages.

Other relevant works used for research during the development of this study are the following:

• Analyzing Programming Languages’ Energy Consumption: An Empirical Study [25]: The

objective of this study was to see how energy consumption differed for small and indepen-

dent tasks implemented in multiple programming languages.

• E-Debitum: Managing Software Energy Debt [35]: The objective of this study was to en-

ergetically catalog code smells for Android and present and validate an open-source tool to

calculate the energy debt of apps

• Android App Energy Efficiency: The Impact of Language Runtime Compiler and Imple-

mentation [22]: The main goals of this study were to see how energy consumption and
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runtime compare if C/C++ was used to develop apps instead of Java. In addition, they ver-

ify if using the smartphones multicores could save energy consumption and how recursion

and iteration, with and without optimization flags, compare in terms of energy consumption.

• Program Energy Efficiency: The impact of language compiler and implementation choices

[20]: With this study, they try to see what sort of impact data structures, libraries, and

optimization flags of multiple programming languages have on the energy efficiency of pro-

grams.

• Performance exploration of various C/C++ compilers for AMD EPYC processors in numer-

ical modeling of solidification [26]: The goal of this study is quite self-explanatory as they

try to evaluate the state of the art for C/C++ Compilers available for the AMD EPYC Rome

and Milan and compare the various optimizations made by the multiple compilers subject

of study.

• A Comparative Study of Programming Languages in Rosetta Code [36]: This last study tries

to evaluate which programming languages are the most concise, the most memory, runtime,

and space efficient, and to find which languages are the most prone to failure.



Chapter 3

Methodology

To address the topic of comparing compiler versions by energy efficiency, we must first estab-

lish the methods and rules for this experiment. With this in mind, this section of the Dissertation

discusses the selected Programming Languages, Compiler Versions, Test Programs, Tools and

Collected Data, the Test Framework, Data Processing, and Work Plan. These points will allow us

to establish a comprehensive framework for testing the programming languages and their respec-

tive compiler/interpreter versions and answer the first investigation question, RQ1: How can we
compare the different versions of the same compiler?.

3.1 Programming Languages

First, when selecting the number of languages to study, there was a need to limit the number of

versions of compilers/interpreters in the study due to the test machine storage space, as some of

these compilers can occupy a few Gigabytes of space, and the difficulty of managing the depen-

dencies and issues of the multiple languages. Hence, the number of languages selected for this

study is four.

Secondly, at least one language selected needs to use an interpreter to execute code, another

uses a virtual machine to compile and execute code, and another that compiles the code and creates

a binary executable.

Finally, the language object of study must be popular and currently used. To this effect, we

use a popularity ranking website for programming languages called TIOBE [9] to select the study

languages: C, C++, Python, and Java.

Four languages were selected instead of three because C and C++ could use the same compilers

for compiling programs. Also, the compiler selected for analyzing C/C++ is Clang instead of

GCC due to compilation issues regarding older versions of GCC, and overall, the number of older

working versions of Clang was greater than GCC versions.

6



3.2 Compiler Versions 7

3.2 Compiler Versions

As for the versions selected to test the programs, we started by looking at all releases from 2011

for each language, and from those, we selected the most recent version of each major release since

then. The versions that are studied are the following:

Table 3.1: Compiler Versions

Java Versions Clang Versions Python Versions
Jdk-6u45 Clang 3.4.2 Python-2.6.9
Jdk-7u80 Clang 3.5.2 Python-2.7.18
Jdk-8u202 Clang 3.6.2 Python-3.0.1
Jdk-8u351 Clang 3.7.1 Python-3.4.10
Jdk-9.0.4 Clang 3.8.1 Python-3.5.10
Jdk-10.0.2 Clang 4.0.0 Python-3.6.15
Jdk-11.0.17 Clang 5.0.2 Python-3.7.16
Jdk-12.0.2 Clang 6.0.1 Python-3.8.16
Jdk 13.0.2 Clang 7.0.1 Python-3.9.16
Jdk-14.0.2 Clang 8.0.0 Python-3.10.10
Jdk-15.0.2 Clang 10.0.0 Python-3.11.2
Jdk-16.0.2 Clang 11.1.0
Jdk-17.0.6 Clang 12.0.1
Jdk-18.0.2.1 Clang 13.0.1
Jdk-19.0.2 Clang 14.0.0
Jdk-20.0.1 Clang 15.0.6

It is also worth mentioning that some compiler/interpreter versions have been updated between

the time of installation and the time of writing. However, the realization of the study did not

consider these newer versions.

Finally, we use the same flags used in CLBG to compile and execute the benchmark programs,

specifically languages like C/C++. We use these optimization flags to make sure that the programs

are being executed in the same way as in CLBG but also to guarantee that all versions of the same

compilers are on the same playing field. Also, since this project aims to compare the performance

between versions of the same compiler and not between languages, we use these optimization

flags even if it would give them an edge over the other languages. The impact of these flags could

be a subject for a continuation of this study.

3.3 Test Programs

To test the energy efficiency of the compilers/interpreters, we need a set of programs equivalent

to all programming languages studied in this dissertation. To this effect, we use a set of programs

with the same algorithm and complexity obtained from CLBG (Computer Language Benchmark

Game) [18] for testing purposes.
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The CLBG Initiative mentioned above has developed a framework for testing and comparison

of multiple programming languages using a collection of general programming problems. The

framework developed by the CLBG Initiative measures various metrics during the execution of

the abovementioned problems, allowing for a comparison of execution speed and memory con-

sumption, for example.

Due to the unavailability of some programs, such as the Simple and Too Simple problems

for C++, we use only ten problems for testing out of all the programs available on CLBG. These

programs are in table 3.2, along with a short description of the problem and input size used for

testing.

Table 3.2: Test Programs

Name Description Data Size
binary-trees Allocate and deallocate many many binary trees 21
fannkuch-redux Indexed-access to tiny integer-sequence 12
fasta Generate and write random DNA sequences 25.000.000
k-nucleotide Hashtable update and k-nucleotide strings 25.000.000
mandelbrot Generates a Mandelbrot set 16.000
n-body Double-precision N-body simulation 50.000.000
pi-digits Calculates all digits in pi till the nth position 10.000
regex-redux Match DNA 8-mers and substitute magic patterns 5.000.000
reverse-complement Converts a DNA sequence into it’s reverse-complement 25.000.000
spectral-norm Eigenvalue using the power method 5.500

As expected, not all programs can be compiled or executed by all versions of the compilers/in-

terpreters. So before any tests, we made an effort to maximize the number of compiler/interpreter

versions that could compile and execute the selected programs, by changing the versions of the

benchmark programs. In order to do this, we created a set of rules to select the versions of the

programs, rules which are the following:

• If all the versions of the compiler/interpreter can compile and execute it, then there is no

need no maximize it.

• If an older program version has more compiler/interpreter versions that can compile and

execute it, it becomes the test program for all versions.

• In case all older program versions have the same number of working compiler/interpreter

versions currently selected version, the fastest version, according to CLBG, becomes the

test program.

Following this set of rules, the versions of the selected program, as numbered in CLBG, are

the ones present in table 3.3.

Even though all the programs used for benchmarking are functionally identical, they should

not be used to compare programming languages as there are more efficient versions of some bench-

marks, which could induce false statements about which programming languages are better when
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Table 3.3: Program Versions

Programs Java C C++ Python
binary-trees 7 5 8 5
fannkuch-redux 3 5 7 4
fasta 6 9 6 3
k-nucleotide 6 1 8 8
mandelbrot 6 9 9 7
n-body 5 9 7 2
pi-digits 1 2 5 4
regex-redux 6 5 6 1
reverse-complement 6 8 6 4
spectral-norm 3 8 1 8

the objective is to compare the different versions between compilers of said programming lan-

guages.

After some preliminary testing and using the program versions that maximized the number of

working compiler/interpreter versions, the resulting compilation and execution tables are shown if

Fig. 3.1 for Java, Fig.3.2 for C, Fig.3.3 for C++ and Fig.3.4 for Python.

In the previously mentioned tables, we have two columns for each benchmark. The first col-

umn details if the corresponding version can compile or not the benchmark using either T for True

and F for False, while the second details if the version can execute it or not using the same system

as the first column. For added visibility, if a cell has F in it, it is then colored with red, and if the

cell has T in it, it is colored with green.

Figure 3.1: Java Compilation and Execution

Figure 3.2: C Compilation and Execution
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Figure 3.3: C++ Compilation and Execution

Figure 3.4: Python Compilation and Execution

Most of the versions of the compilers can indeed compile and generate a working executable

of the selected programs and translate the source code successfully without issues in the case of

interpreters. However, for the C++ program of K-nucleotide, compilation and execution were not

achieved due to an issue finding the file "assoc_container.hpp" in libstdc++. Even after adding

the flags to include it in the compilation, it would still be unsuccessful due to the said missing

file. Initially, there was also an attempt to study the Clang v9.0.1 version alongside the others.

However, every compilation attempt of a program would cause a segmentation fault, and thus it

was removed from the study altogether.

The other programs that failed to compile/run were due to missing functionalities of that pro-

gram version or unsupported syntax in the program’s code.

3.4 Tools and Collected Data

This section discusses why data related to execution time, peak memory usage, and energy con-

sumption is collected, the tools used, and the reason for using the selected tools to reach any

conclusion related to the evolution of the mentioned languages and versions.

First, there are two ways of collecting data related to energy consumption: measuring the

power consumption from the hardware directly or using software to estimate the energy consump-

tion. Due to the lack of equipment for measuring hardware energy consumption, there was a

decision made to use the software tool provided by Intel: RAPL(Running Average Power Limit),

which has been tested and proven to be an accurate measuring tool for energy consumption [31].

For measuring the execution time of the test programs, there was a choice between measuring

the CPU time for the task or the wall-clock time (aka.: real elapsed time). Since CPU time depends

on the architecture, the run-time factors, and is actively measured only when the CPU is working,

it made sense not to use this time measurement because the CPU time might be higher or lower
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than the program’s elapsed time. Hence time measurements will be done using the time function

in Unix systems, as they provide a reliable to measure the elapsed time for execution and can also

be used to collect data related to peak memory usage.

3.5 Test Framework

To automate the testing of the multiple versions of the compilers, we developed a framework in

Python. In this section of the dissertation, we will discuss some of the development decisions and

the overall structure of the framework.

The framework’s structure is relatively simple, containing a few Python scripts that do most of

the heavy lifting of the testing. However, there are a few things that need addressing relatively to

the folder structure, makefiles, execution of the programs, CPU Temperature and data collection

and saving

For the folder structure of this project, each language has its folder, and inside this folder, they

contain sub-folders related to each of the test programs. To allow simplicity and modularity, each

of these subfolders contain a makefile that has the following methods:

• Compile: creates subfolders for the compiler/interpreter versions specified in the makefile,

compiles the test program with each version, and copies the executable/binary into the cor-

rect folder. As for Python, it only creates the subfolders and copies the program into said

folder.

• Run: Runs the executable without any measures

• Measure: This runs the executable through "main.py" and measures execution speed, pack-

age energy consumption, dram energy consumption, and peak memory usage.

This file structure and makefile templates allow future users to add more languages for further

testing and more test programs. Nevertheless, this framework can still be improved, especially

when creating new makefiles, which are laborious and need more automation.

In order to measure the performance of the programs, the framework has implemented two

methods that allow the collection of data, these methods being "collect_single" and "collect_multiple,"

which refer to whether data collection is at the start and end of the execution of the program or

along the execution of the program with the help of an extra thread.

1 def collect_multiple(self):

2 ...

3 self.meter.begin()

4 exec = Thread(target=self.execute_command)

5 exec.start()

6

7 while exec.is_alive():

8 #For small duration programs freq should be very low or it wont measure

many time
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9 time.sleep(self.freq)

10 self.meter.end()

11 ...

12

13 ...

14

15 def collect_single(self):

16

17 ...

18

19 self.meter.begin()

20

21 process = self.execute_command()

22

23 self.meter.end()

24

25 ...

For this experiment, we use the single-threaded collection as some preliminary testing of the

multi-threaded showed that the single-threaded method had better performance in all metrics. In

some preliminary tests where run execution was lower than a second, we could see a significant

increase in execution time and energy consumption,as present in table 3.4, thus being excluded.

Table 3.4: C N-Body Single-Thread vs Multi-Thread

- Duration(µs) Package (µJ) Dram (µJ) Peak RSS (kB)
Single Threaded 2121,7042 30285,4 1135,4 1717,2
Multi Threaded 10502,2386 76946,8 7446,2 1717,6
Comparison 394,99% 154,07% 555,82% 0,02%

To even further reduce the energy consumption of the entire system, only the essential services

of the OS were kept running, these being the ones on table 3.5.

Aside from keeping these services alive during the execution, we also turn off any Wifi and

Bluetooth connections the test machine might have.

As for the CPU temperature, because tests are automated, there was the need to implement

a system that would allow the CPU to heat up and cool down its temperature in between tests,

as CPU temperature impacts the package energy consumption made by RAPL [31]. In order to

heat the CPU, the framework spawns as many threads as there are cores and proceeds to execute

a round-robin on each of these threads until the CPU reaches its minimum threshold temperature.

Contrarily, to cool down the CPU, the framework sleeps for a set amount of time until the CPU

temperature goes below the maximum temperature threshold. In these experiments, the tempera-

ture threshold was between 40ºC and 45ºC, and the interval used for the sleep was 0.01 seconds.

Also, we keep the previous temperature measure to ensure that the temperature reached was not

just a temperature spike.
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Table 3.5: Services kept alive and reasoning

Service Reasoning
acpid "is designed to notify user-space programs of ACPI events." [1]
apparmor "is a Linux Security Module implementation of name-based mandatory access

controls." [14]
apport intercepts Program crashes, collects debugging information about the crash

and the operating system environment, and sends it to bug trackers in a stan-
dardized form. [15]

cron is a job scheduler on Unix-like operating systems. [10]
dbus "a library that provides one-to-one communication between any two applica-

tions" [11]
gdm is a display manager (a graphical login manager) for the windowing systems.

[12]
irqbalance "is to distribute hardware interrupts across processors on a multiprocessor sys-

tem in order to increase performance." [13]
kerneloops is a program that collects kernel crash information and then submits the ex-

tracted signature to the kerneloops.org website for statistical analysis and pre-
sentation to the Linux kernel developers. [3]

kmod "is a multi-call binary which implements the programs used to control Linux
Kernel modules." [4]

plymouth-log "is considered to be the "owner" of the console device (/dev/console) so no
application should attempt to modify terminal attributes for this device at boot
or shutdown." [16]

procps report a snapshot of the current processes. [16]
udev "provides a dynamic device directory containing only the files for actually

present devices." [5]

Finally, the DataRAPL class, responsible for saving the data, creates CSV with all pertinent

information such as duration, package energy consumption, dram energy consumption, peak mem-

ory usage (RSS), and initial and final temperatures.

For more information about the source code of the the developed Framework, see the following

github link[8].

3.6 Data Aggregation and Cleaning

With the data collected from the experiments, we first perform three normality tests, the Shapiro-

Wilk test[27], the Anderson-Darling test[40], and the D’Agostino-Pearson test[23], for each metric

to confirm whether the data we are working with is parametric. For accuracy, we only consider

data normally distributed when all three tests pass, which is essential to perform the Pearson

Correlation Coefficient test between two normally distributed variables.

With said normality tests performed, we then perform the Spearman Correlation Coefficient

and Pearson Correlation Coefficient tests[19] for each set of two metrics. We performed these

tests to find the correlation between execution speed, package energy consumption, DRAM energy

https://github.com/bernas670/resource-probe
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consumption, and peak memory usage. However, for the Pearson test, we also need to verify the

homoscedasticity between the variables we are trying to establish a correlation, an assumption

verified using the Bartlett test[2] for Homogeneity of Variances.

Contrary to the Pearson test, the Spearman can be directly applied as it only assumes a mono-

tonic relationship between variables, and data needs to be continuous or ordinal.

As for creating a ranking of the compiler/interpreter versions for each programing language

and each benchmark, we rank the various metrics according to the versions that could execute said

benchmarks. Using the ranks obtained for each test program and language, we then proceed to

create a global ranking for each language using the following formula:

Score = 200− (
n

∑
i=1

rank(i,v))

, where n is the number of benchmarks, and v the version to rank

Using this formula, we can accurately reward and punish according to the performance of each

benchmark. However, not all benchmarks and versions are used for the ranking, as not all versions

can run specific benchmarks, and as such, if we were to use said benchmarks and versions, we

could negatively impact the accuracy of the ranking. With this in mind, we select the versions and

benchmark for the ranking by maximizing the product between the number of working versions

and the number of benchmarks. For each language, the used benchmarks for the ranking were the

following 3.6:

Table 3.6: Benchmarks used for ranking by language

Language Benchmarks
Java Binary Trees, Fannkuch Redux, Fasta, K-Nucleotide, Mandelbrot, N-Body, Pi-Digits
C All benchmarks were used
C++ Fannkuch Redux, Fasta, Mandelbrot, Pi-Digits, Rev-Comp, Spectral-Norm
Python All benchmarks with the exception of binary trees
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Results

4.1 Presentation of Results

In this section, we present the obtained values of the experiments for the Binary Trees, Fannkuch

Redux, and Fasta, as well as the general ranking of the versions for each language. We only display

the first three benchmark programs due to the project’s sheer amount of data.

The full results and data can be accessed through the following Google Sheets Page [7] and is

the primary resource used to establish any conclusions. In this sheet, you can see the results for

the remaining benchmarks, the rankings for each metric by benchmark and a general ranking, and

the results for the Spearman and Pearson Correlation Coefficients.

Also, to reduce the amount of data even further, the presented graphs use the total energy used

instead of the energy consumed by the package and the energy consumed by the DRAM separated.

For each benchmark, we present two simple line graphs, the first one displaying the evolution

of runtime and the total energy consumed and a separate graph displaying the evolution of the

peak memory consumption. Then for each Programming Language, we also display two line

graphs, the first displays each version of the compiler/interpreter and their rank in terms of runtime,

package energy consumption, DRAM energy consumption, and total energy consumption, while

the second one display each version of the compiler/interpreter and their rank in terms of peak

memory consumption. This separation was mostly done to improve the visibility of the graphs and

also because, when compared to duration and all energy metrics, we could see different behavior.

In some general rankings, such as 4.7, 4.23,and 4.31, we can see that one line is missing. This

missing line is not a mistake because the Package Energy Consumption rank overlaps with the

Total Energy Consumption Rank.

4.1.1 Java Results

For Java, the individual benchmark results obtained are present in the graphs for Binary Trees(4.1,

4.2), Fannkuch-Redux(4.3, 4.4), and Fasta(4.5, 4.6) and the general rankings are present in these

4.7,4.8.

15
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Figure 4.1: Java Results Binary Trees

Figure 4.2: Java Peak RSS Performance Binary Trees
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Figure 4.3: Java Results Fannkuch Redux

Figure 4.4: Java Peak RSS Performance Fannkuch Redux
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Figure 4.5: Java Results Fasta

Figure 4.6: Java Peak RSS Performance Fasta
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Figure 4.7: Java General Rank

Figure 4.8: Java Peak RSS Rank
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4.1.2 C Results

For C, the individual benchmark results obtained are present in the graphs for Binary Trees(4.9,

4.10), Fannkuch-Redux(4.11, 4.12), and Fasta(4.13, 4.14) and the general rankings are present in

these 4.15,4.16.

Figure 4.9: C Results Binary Trees

Figure 4.10: C Peak RSS Performance Binary Trees
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Figure 4.11: C Results Fannkuch Redux

Figure 4.12: C Peak RSS Performance Fannkuch Redux
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Figure 4.13: C Results Fasta

Figure 4.14: C Peak RSS Performance Fasta
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Figure 4.15: C General Rank

Figure 4.16: C Peak RSS Rank
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4.1.3 C++ Results

For C++, the individual benchmark results obtained are present in the graphs for Binary Trees(4.17,

4.18), Fannkuch-Redux(4.19, 4.20), and Fasta(4.21, 4.22) and the general rankings are present in

these 4.23,4.24.

Figure 4.17: C++ Results Binary Trees

Figure 4.18: C++ Peak RSS Performance Binary Trees
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Figure 4.19: C++ Results Fannkuch Redux

Figure 4.20: C++ Peak RSS Performance Fannkuch Redux
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Figure 4.21: C++ Results Fasta

Figure 4.22: C++ Peak RSS Performance Fasta



4.1 Presentation of Results 27

Figure 4.23: C++ General Rank

Figure 4.24: C++ Peak RSS Rank
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4.1.4 Python Results

For Python, the individual benchmark results obtained are present in the graphs for Binary Trees(4.25,

4.26), Fannkuch-Redux(4.27, 4.28), and Fasta(4.29, 4.30) and the general rankings are present in

these 4.31,4.32.

Figure 4.25: Python Results Binary Trees

Figure 4.26: Python Peak RSS Performance Binary Trees
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Figure 4.27: Python Results Fannkuch Redux

Figure 4.28: Python Peak RSS Performance Fannkuch Redux
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Figure 4.29: Python Results Fasta

Figure 4.30: Python Peak RSS Performance Fasta
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Figure 4.31: Python General Rank

Figure 4.32: Python Peak RSS Rank
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Before discussing the results, we would like to reiterate that this project aims to compare the

performance between versions of the same compiler and not between programming languages.

Some benchmark results showed that Java could outperform both C and C++, binary trees, for

example. Even though it was proved that C/C++ has overall better performance than Java [39],

results like these are perfectly normal, which can be confirmed by comparing these results with the

ones presented on the CLBG website. If we compare the results of both, most relations between

programming languages stay the same, even if the metrics are not, meaning if, for one CLBG

benchmark, the performance from best to worst goes Java, C, C++, and Python, we can see a

mirror of these results in the ones collected. The only exceptions to these were the k-nucleotide and

mandelbrot benchmarks. However, this can be explained by the difference in software, hardware,

operating system, and environmental conditions used for this project and the ones for the CLBG

website as well as the fact that these programs were developed with a specific compiler version

in mind. The above arguments can also explain the difference in metrics between the CLBG

and the obtained results. In conclusion, the results obtained are more than valid to establish any

conclusions, mainly because we are not comparing the performance between the languages but

between the versions of the same compiler and because most relations between programming

languages mirror the ones from CLBG, even if the collected metrics differ from the ones in CLBG.
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4.2 Discussion of Results

In this section of the dissertation, we will discuss the results obtained and try to answer the pro-

posed investigation questions. Starting with:

RQ2 and RQ3: How has the energy consumption, execution speed, and peak memory
usage evolved for the compilers? How do all these metrics relate to one another?

From the individual benchmarks, we suspect that energy efficiency is not one of the top pri-

orities for compiler/interpreter developers, as the benchmark performance can vary from version

to version, not following a specific trend. However, if we consider the general ranking, we can

notice a gradual decrease, with some spikes in some versions, in energy consumption and runtime

speed, except for C, which is understandable due to the maturity of the language, which can cause

seemingly random ranks in their general ranking.

Overall, C is the language that changes the least according to the individual benchmarks, with

little to no change in energy consumption or runtime performance, with some exceptions, such

as the results from Fannkuch Redux, which see the values vary a bit through all versions, and

Mandelbrot, who we can see a decrease in energy consumption and program runtime along the

versions.

Another possible conclusion from the general rankings and the individual benchmarks is that

execution time is directly tied to the package energy consumption, which would make sense due

to the formula for energy consumption E = P∗δ t, where E is energy consumed, P is Power and δ t

the period of time. Nevertheless, we can not make this statement with 100% confidence due to the

results of the Pearson and Spearman Correlation Coefficient tests which showed p-values close to

1 as well as close to 0 for the relationship between runtime and package energy consumption for

the same version and different benchmarks. An inverse relationship between runtime and energy

consumption can reinforce the abovementioned uncertainty due to some cases, such as version 3.7

of C++ in the Fasta Benchmark, where runtime increases, but the energy consumption decreases.

As for the other relationships between the gathered metrics, something similar to the above-

mentioned connections can be observed, with p-values varying wildly for the same version and

different benchmarks. Except for DRAM energy consumption and runtime, which suggests there

isn’t a correlation between these two metrics, but once again, we can not be 100% confident when

stating this for C and Java due to the existence of quite a few outliers, like the results obtained in

the Spearman test in K-Nucleotide for Java, Binary Trees for C. For Python and C++, we can say

it with more confidence as there are substantially fewer significant outliers than the other two.

Another interesting point is that the peak memory usage throughout all versions of C and C++

remains relatively unchanged, only changing by insignificant amounts. The same can not be said

for Java and Python, as the former seems to use less memory on the older versions than the most

recent ones, and the latter appears to be more random in terms of evolution as, in some cases

appear to be increasing the peak memory usage, others decreasing and others stabilizing.

With the previous behavior for peak memory usage, it is challenging to see if any correlation

exists between it, energy consumption, and runtime. Regardless, the correlation tests show a solid
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relationship between these metrics in many cases, and in others, it seems insignificant. Hence, we

can not make any conclusions regarding these correlations.

As we can observe, reaching any conclusion related to the correlation between any metric

seems nigh impossible, as both correlation tests can give wildly different values for the same

version but for other benchmarks. These diversified results could have multiple causes, such as

issues with the compiler or program causing performance issues, faulty libraries, issues with the

test machine, or even issues when performing the correlation coefficient tests. For instance, the

Pearson test has trouble with repeating values as it violates its principle of independent variables

[21]. The reality is that a project like this has many variables we can not control, and managing

multiple versions of the same compilers/interpreters is no easy feat requiring hours to set up and

test them without the guarantee that everything is working as intended. Therefore, no conclusion

can be made about the relationships between these metrics.

Regarding RQ4: How can we rank the versions for each programming language accord-
ing to the gathered data? Moreover, if so, what are the results?, as previously mentioned,

we used the ranking function to attribute a score and rank according to the performance of each

benchmark used. These general rankings show that only Java shows unmistakable energy, and run-

time performance increases with each release. As for the other languages, we can see that energy

and runtime performance sway from version to version but still performs better in the most recent

versions. For each language, the best version according to both runtime and energy efficiency of

these metrics is present in the table 4.1.

Table 4.1: Best version of each language in terms of energy efficiency and runtime

Language Best Version
Java 19.0.2
C 13.0.1
C++ 12.0.1
Python 3.11.2

In addition to the previous observations, we also observe that the versions following the best

have worse performance than said version, except for Python, which could imply that the perfor-

mance of the languages is deteriorating and could require more updates and optimizations. As for

the potential causes of the abovementioned oscillations, these could be due to language maturity,

experimental features, or less support by the developers for specific versions due to popularity or

even adoption of said version. However, there is no particular way to know for sure what these

reasons are.

As for how the peak memory usage evolves according to each version, there seems to be no

pattern except for Python, whose peak memory usage increases with each iteration. There could

be a lot of factors influencing this, but once again, it would be pure speculation as to why this

happens. Still, the best versions for peak memory usage of each language are in the following

table 4.2.
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Table 4.2: Best version of each language in terms of peak energy usage

Language Best Version
Java 8u202
C 4.0.0
C++ 11.1.0
Python 3.4.10

In conclusion, we suspect that energy efficiency is not the priority of compiler/interpreter

developers when developing new updates and releases for the compilers/interpreters. A correlation

between runtime and energy consumption also seems to exist, even though correlation tests do not

prove it. Most languages are decreasing their energy consumption. However, their performance

sways a bit from version to version as well as versions after the best version seems to have worse

performance. Finally, we also show each language’s best versions in terms of time and energy

efficiency and the best versions for peak memory consumption.
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Conclusion

The theme of this dissertation is energy efficiency, so we began by evaluating the current state of

compiler/interpreter version classification by energy efficiency. After said research, we present a

methodology that allows us to pick the test programs, the programming languages, the respective

versions of the compilers/interpreters, the tools used for data collection, how data is aggregated

and cleaned, and a framework developed for this project.

With the methodology defined, we performed rigorous tests using the languages, versions,

and benchmarks selected to gather the necessary information to formulate a conclusion about the

current state and evolution of C, C++, Java, and Python.

We demonstrated the most energy-efficient versions for each of the languages studied, using a

ranking system based on the performance of each version in the CLBG test programs.

We found a slight tendency towards lower energy consumption from the results. However,

the most recent versions after the best usually have a worse performance which could imply a

deteriorating performance. We also suspect that compiler/interpreter programmers do not consider

energy efficiency when developing updates due to the existence of oscillation in the results of the

programs.

Finally, we also tried to map the potential causes of decreases and increases in energy effi-

ciency, but it was impossible to reach a meaningful conclusion with 100% confidence.

Despite the difficulties in finding the causes of increases and decreases in energy consumption,

it is possible to make any current or future project more energy-efficient by using this dissertation

as a guide to select the most appropriate language to develop a project, as well as the best compil-

er/interpreter version to achieve the lowest power consumption.

This dissertation is thus of great value in terms of sustainability.

As for possible future work, we could expand the number of languages to test and include

total memory usage in the metrics collected. For clarification, this dissertation did not collect total

memory usage due to time constraints, as the data collection took more than one week for only

three benchmark programs.

36
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