
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Weighted coupled cell networks and
invariant synchrony patterns

Pedro Manuel Nunes Sequeira

Doctoral Program in Electrical and Computer Engineering (PDEEC)

Supervisor: António Pedro Rodrigues Aguiar

Co-Supervisor: João Pedro Hespanha

20 June 2023

Weighted coupled cell networks and invariant synchrony
patterns

Pedro Manuel Nunes Sequeira

Doctoral Program in Electrical and Computer Engineering (PDEEC)

20 June 2023

Resumo

A primeira grande contribuição desta tese é o desenvolvimento de um formalismo baseado em
monóides comutativos para o estudo de redes de células acopladas ponderadas. Este formalismo
generaliza o anterior de forma a lidar com arestas ponderadas arbitrárias, e desenvolve o conceito
de componente oráculo, que é um objecto matemático que descreve como as células de um deter-
minado tipo respondem a vizinhanças finitas arbitrárias. Isto separa completamente a modelação
do comportamento das células, da rede particular onde as células de interesse se inserem. Para
além disso, permite construir funções admissíveis, que podem ser usadas para modelar a dinâmica
de uma rede, ou alguma função de medição. Mostramos também que este formalismo pode ser
trivialmente estendido para redes com inputs exógenos e células com parâmetros internos.
A segunda grande contribuição é a prova matemática que os resultados conhecidos sobre partições
balanceadas e as suas respectivas latices também se aplicam nesta situação mais geral. Para além
disso, muitos destes resultados podem ser estendidos para padrões de sincronismo gerais (basea-
dos em igualdades).
Além disso, o algoritmo coarsest invariant refinement (CIR) para encontrar partições balanceadas
é generalizado para redes ponderadas e a sua performance é melhorada.
A terceira grande contribuição é o estudo da influência da estrutura da rede no comportamento
qualitativo de conjuntos de sincronismo invariante, em particular, em relação aos diferentes tipos
de in-vizinhanças (cumulativas) e conjuntos in-alcançáveis. Isto motiva a classificação das par-
tições nas categorias de strong, rooted e weak, de acordo com sua relação com a estrutura de
conectividade da rede.
Por fim, a quarta principal contribuição foi tornar explícitos os graus de liberdade envolvidos no
projeto de uma componente oráculo.

i

ii

Abstract

The first major contribution of this thesis is the development of a framework based on commutative
monoids for analyzing weighted coupled cell networks. This framework generalizes a previous
formalism in order to deal with arbitrary weighted edges. Furthermore, it develops the concept of
oracle component, which is a mathematical object that describes how cells of a given type respond
to arbitrary finite in-neighborhoods, and it completely separates the modeling of the behavior of
cells from the particular network on which the cells of interest are inserted. This allows us to
construct admissible functions, which can be used to model the dynamics of a network, or some
measurement function. We also show how this formalism can be trivially extended to networks
with exogenous inputs and cells with internal parameters.
The second major contribution is to show that the known results about balanced partitions and
their respective lattices also apply to this more general setup. Furthermore, many of these results
can be extended to general (equality-based) invariant synchrony patterns.
Additionally, the coarsest invariant refinement (CIR) algorithm to find balanced partitions is gen-
eralized for weighted networks and its performance is improved.
The third major contribution is the analysis of the influence of the structure of the network in the
qualitative behavior of invariant synchrony sets, in particular, with respect to the different types
of (cumulative) in-neighborhoods and the in-reachability sets. This motivates the classification
of the partitions into the categories of strong, rooted and weak, according to their relation to the
connectivity structure of the network.
Finally, the forth main contribution is to make explicit the degrees of freedom involved in the
design of an oracle component.

iii

iv

Acknowledgments

I would firstly like to thank my supervisors António Pedro Aguiar and João Pedro Hespanha for
their guidance.
I am also thankful to the University of California, Santa Barbara for allowing me to be a visitor
during part of my program.
Lastly, I am grateful to the many amazing tools that available in my age. In particular, to Wikipedia
and to “The On-Line Encyclopedia of Integer Sequences” (OEIS). Also, the Youtube channels
“Numberphile”, “3Blue1Brown” and “The Bright Side of Mathematics” are partly responsible for
my mathematical growth and keeping my brain sharp.

This work was supported by a Ph.D. Scholarship, grant SFRH/BD/119835/2016 from Fundação
para a Ciência e a Tecnologia (FCT), Portugal (POCH program).

Pedro Sequeira

v

vi

“There is nothing more practical than a good theory.”

Kurt Lewin

vii

viii

Contents

1 Introduction 1
1.1 Outline and main contributions . 4

2 Weighted CCN formalism 5
2.1 Commutative monoids . 7
2.2 Multi-indexes . 10
2.3 Weighted coupled cell networks . 10
2.4 Admissibility . 11
2.5 Extension for exogenous inputs and inner cell parameters 18

3 Equality-based synchronism 21
3.1 Partitions and their representations . 21
3.2 Lattices of partitions . 25
3.3 Lattice quotients . 29
3.4 Polydiagonals . 31
3.5 Invariance of polydiagonals . 33
3.6 Balanced partitions . 35
3.7 Quotient networks . 40
3.8 CIR algorithm for balanced partitions . 45

3.8.1 Method . 45
3.8.2 Efficient implementation and cost analysis 46

4 In-reachability based classification of synchrony partitions 51
4.1 Network connectivity . 51

4.1.1 Neighborhoods and reachability . 51
4.1.2 Dynamics from in-neighborhoods . 53
4.1.3 Strongly connected components and root dependency 55

4.2 Strong, rooted and weak partitions . 56
4.3 Neighborhood color matching . 60
4.4 Neighborhood color invariance . 64

5 Output vector spaces 73
5.1 Admissible vector spaces and related results . 73
5.2 Decomposition into coupling components . 77
5.3 Decomposition into basis components . 93

5.3.1 Multiplicity notation . 93
5.3.2 Stirling numbers . 94
5.3.3 Finite coupling order . 95

ix

x CONTENTS

5.3.4 Infinite coupling order . 109
5.4 Extension for exogenous inputs and inner cell parameters 111

6 Conclusion 113

References 115

A Intermediate results 117
A.1 Intermediate results used in Theorem 5.3.5 . 117
A.2 Intermediate results used in Theorem 5.3.24 . 127

List of Figures

2.1 A weighted coupled cell network. 5
2.2 Logical gates. 6
2.3 Example of a cell in a discrete-time system. 6
2.4 Example of a continuous-time network. 7
2.5 Edge merging. 11
2.6 Simple network with admissible functions that have the structure given by Equa-

tions (2.7) to (2.9). 15
2.7 Network with inner cell parameters and exogenous inputs. 18

3.1 Partially ordered sets L,S such that L is a lattice and S is not a lattice. 26
3.2 Illustration of a cirL function over a suitable lattice of partitions L. 28
3.3 Illustration of a lattice L and its quotient lattice L/A. 31
3.4 Networks with equivalent input sets. 38
3.5 Color-coded network of Figure 2.6 and its quotient over the balanced partition

{{1,2},{3}}. 42
3.6 Chain CCN. 43
3.7 Unbalanced coloring. 43
3.8 Network of Example 3.8.6 illustrating the CIR algorithm. 47

4.1 Simple chain of 4 cells. 52
4.2 Decomposition of a network into its strongly connected components. 56
4.3 A network and its lattice of balanced partitions. 60
4.4 Partition that is not N−-matched but is V−-matched. 62
4.5 Partition that is not V−-matched but isR−-matched. 62
4.6 A network and its lattice of balanced partitions. 64
4.7 Example of a spurious (not N−-invariant) partition. 67
4.8 Example of a partition that is neither N−-invariant nor N−-matched. 68
4.9 Example of a partition that is not N−-invariant but is V−-invariant. 68
4.10 Example of a partition that is not V−-invariant but isR−-invariant. 69
4.11 Example of a quotient over a partition that is notR−-invariant. 70
4.12 Example of a quotient over a partition that is notR−-invariant. 70
4.13 Lattices of balanced partitions of a network and its quotients. 71

5.1 Simple input sets. 77

xi

xii LIST OF FIGURES

List of Tables

4.1 Join table for general partitions. 59
4.2 Join table when rooted partitions areR−-matched. 64
4.3 Relation between partitions and their quotients over aR−-invariant partition. . . 69

xiii

xiv LIST OF TABLES

Abbreviations and Symbols

CCN Coupled Cell Network
CIR Coarsest Invariant Refinement
SCC Strongly Connected Component
RDC Root Dependency Component

xv

Chapter 1

Introduction

Networks are structures that describe systems with multiple components, called cells. These cells

can be pairwise connected through edges, which encode how one cell affects another. In general,

these edges can be directed or undirected and they can have weights in order to parameterize their

interaction.

These are ubiquitous structures, both in the natural world and in engineering applications. Some

examples are for instance the brain, the internet, the electric grid and electronic circuits in general,

food webs and the spread of a virus in a pandemic.

In order to study these types of systems, the theory of coupled cell networks (CCN) was first

developed in Stewart et al. (2003); Golubitsky et al. (2005); Golubitsky and Stewart (2006). The

formalism used in their work is based on groupoids of bijections between in-neighborhoods of

cells.

In the theory of CCNs, the concept of admissibility is defined such that a function f is admissible

in some network, if it satisfies certain minimal properties that allow it to be a plausible modeling

of some dynamical system x+/ẋ = f (x) or measurement function y = f (x) on that network.

These functions have to be “first-order”, in the sense that we are modeling something that, when

evaluated at a cell, depends on the state of that cell and its in-neighbors. This does not mean that

everything on a network has to (or can) be defined by such a function. For instance, the second

derivative or the two-step evolution of the aforementioned dynamical systems will not be of this

form. Those functions will be “second-order” in the sense that they are dependent on their first

and second in-neighborhoods (neighbor of neighbor). They are, however, fully defined from the

original first-order functions.

This line of work also introduced the notion of quotient network, which is a smaller network that

describes the behavior of the original network when the state of a system is in an (equality-based)

invariant synchrony pattern. This means that some cells are sharing the same state and will

continue doing so. Important limitations arose from the fact that this formalism assumed only

single edges between each ordered pair of cells. For instance, a quotient network might not satisfy

this assumption even if the original network of interest does. This issue was solved by the “mul-

tiarrow formalism” developed in Golubitsky et al. (2005), which allows the existence of multiple

1

2 Introduction

edges between the same pair of cells and self-loops. This extended the formalism to the simplest

weighted case, which consists of integer weights that are used to represent a number of identical

“unitary” edges in parallel. This was then further extended in Aguiar et al. (2017), in order to

allow for edges that are parameterized by real values, however, only admissible functions with an

additive in the weights structure were considered.

In Sequeira et al. (2021), we introduced a formalism for general weighted CCNs, which is a proper

generalization of the groupoid formalism. Our formalism uses the algebraic structure of the com-

mutative monoid to deal with arbitrary edge sets. This is the minimal structure, with the necessary

symmetry properties, that is able to encode finite edges in parallel.

Much more important than the extension to general weights, is the development of the concept of

oracle components. An oracle component is a mathematical object that describes how cells of a

given type respond to arbitrary finite in-neighborhoods. It completely separates the modeling of

cell behavior from the particular network on which the cells are inserted.

This approach is very general in the sense that we only impose the same type of equality con-

straints used in the original CCN formalism. That is, if two cells of the same type are in the

same state and have equivalent in-neighborhoods, then at that instant, they should behave in the

same manner. We found it more convenient to specify the notion of in-neighborhood equivalence

through items 1 to 3 of Definition 2.4.1, which act as generators of this set of equalities instead of

working with a pullback map on a groupoid of bijections, which would be the generated object.

Then, to specify an admissible function on a CCN, which models its dynamics (or an output func-

tion in general), we just need to choose a tuple of oracle components (one for each cell type),

which is called an oracle function. The admissible function is then obtained by evaluating on

each cell, together with its corresponding in-neighborhood, the appropriate oracle component.

Note that the oracle component is a much preferable mathematical object to work with than the

admissible function. That is, in order to study a function, we would rather know it completely than

just knowing its value when evaluated at some points. In particular, despite the fact that in most

applications we might not have to deal with cells that have arbitrarily large in-neighborhoods, it

proves essential for the oracle components to be properly defined in such cases.

In dynamical systems on networks, the study of synchrony between the different cells is often of

the utmost importance Strogatz and Stewart (1993). Some examples are the cardiac pacemaker

cells responsible for our heartbeat, the flashing of a swarm of fireflies, the consensus problem in

control theory and the different gaits in animal locomotion generated by “central pattern genera-

tors” (CPG). There are, however, situations in which too much synchronism is actually undesir-

able, such as in epileptic seizures in the brain.

One of the most predominant models in the study of synchrony of oscillators is the Kuramoto

model, which consists on a large set (N→ ∞) of simple oscillators that are weakly coupled in an

all-to-all fashion. Some reviews on the Kuramoto and its variants can be found in Arenas et al.

(2008); Dörfler and Bullo (2014); Rodrigues et al. (2016). Although there are many variants,

many important models are usually given by dynamical functions with very simple structure, such

as being “additive in the edges/weights” or being “weakly coupled”. Nevertheless, the importance

Introduction 3

of studying systems with higher order couplings has been recognized Battiston et al. (2021), as

reviewed in Bick et al. (2021); Battiston et al. (2020).

We refer the reader to Memmesheimer and Timme (2012), where it is experimentally observed

that changing additive coupling dynamics to non-additive can enable persistent synchrony, with

this phenomenon appearing even in random networks, with no pre-constructed graph structure

that would justify the existence of synchronism. The inability of the additive coupling system to

exhibit such a feature might mean that such a system is, in some sense, degenerate.

This has lead to many works that extend the concept of network, such as hypernetworks Aguiar

et al. (2022) and simplicial complexes Nijholt and DeVille (2022).

This generalization of networks into more complex, higher dimensional structures is motivated by

the objective of constructing admissible functions that have non-pairwise terms. In this work, we

show that despite being simpler structures, standard networks are also capable of having higher

order, non-pairwise terms, although they are constrained in a very particular way.

There have been some extensions of the Kuramoto model to higher coupling orders Aguiar and

Dias (2018); Ashwin and Rodrigues (2016); Bick et al. (2016). While these functions certainty are

invariant to permutations (item 1 of Definition 2.4.1) and dependent only on the cell of reference

and its in-neighbors (item 3 of Definition 2.4.1), it is not clear whenever they follow the edge-

merging principle (item 2 of Definition 2.4.1), which is a very strong constraint. Note that this

last condition was already present in the original groupoid formalism and it is essential in order to

properly define quotient networks. The weighted formalism used here only makes it more explicit.

In this work, we study general equality-based invariant synchrony patterns, which are represented

through partitions on the set of cells of a network. Much work has been done regarding balanced
partitions, which represent patterns of synchrony that are invariant under any admissible function

on the network of interest. Although balanced partitions represent a very important subclass of

invariant synchrony patterns with strong properties, such as implying the existence of quotient

networks, it is possible for other invariant patterns to be present in a network.

Consider for instance the subset of admissible functions such that a cell becomes insensitive to

cells that are on the same state. Note that such a system is, consequently, always insensitive to

self-loops. This happens, for instance, in the Kuramoto model. This property leads to the study of

exo-balanced partitions Aguiar and Dias (2018); Neuberger et al. (2020); Aguiar and Dias (2021),

which is a larger class of partitions than the balanced ones.

For this reason, we consider arbitrary subsets of admissible functions F and show that the set of

partitions LF that describe (equality-based) synchrony patterns that are invariant under F always

form lattices. Furthermore, we show that these lattices have similar properties to the lattices of

balanced partitions ΛG Stewart (2007). In particular, these lattices share the same join operation ∨
and have a cirF function associated with them.

The coarsest invariant refinement (cir), was first developed in Aldis (2008) as a polynomial-time

algorithm that finds the maximal element of the lattice of balanced partitions. In Neuberger et al.

(2020) it was noted that this algorithm does more that just finding the maximal balanced partition.

In fact, given any input partition, it produces the greatest balanced partition that is finer (≤) than

4 Introduction

the input one.

We improved and generalized this algorithm for arbitrary weights in Sequeira et al. (2021), which

has a worst-case time complexity of O(|C|3) instead of O((|E|+ |C|)4) as in Aldis (2008), where

C and E denote the sets of cells and edges, respectively.

In Sequeira et al. (2023b), we show that the concept of cir, as a function, is not specific to balanced

partitions and that every F-invariant lattice LF has an associated cirF function. Furthermore, we

explore how the connectivity structure of a CCN affects an admissible dynamical system in that

network. In particular, we focus on the different types of (cumulative) in-neighborhoods and the

in-reachability sets. We show that differences in this structure can lead to qualitatively different

behaviors of general equality-based invariant synchrony patterns.

The oracle components are defined through a set of equality constraints to itself. This is a high-

level description in the sense that it is not clear how one could construct such an object. In Sequeira

et al. (2023a), we dissected these mathematical objects by making explicit their degrees of free-

dom. For this purpose, we define the concept of coupling components and basis components.

1.1 Outline and main contributions

In Chapter 2 we introduce the commutative monoid formalism, for general weighted CCNs, which

we developed in Sequeira et al. (2021) and then simplified in Sequeira et al. (2023a). This for-

malism allows us to extend the previous known results about CCNs to networks with weighted

connections, with arbitrary amount of edges and edge types. Furthermore, we develop the con-

cept of oracle functions, which allows us to construct the admissible functions associated with any

network in a systematic and self-consistent manner. Finally, we show how to easily extend this

formalism to networks that allow exogenous inputs and cells with internal parameters.

In Chapter 3 we use the new and more general definitions of admissibility to extend the previous

known results about equality-based invariant synchrony patterns. We go beyond the well-known

balanced partitions and respective lattice by extending these concepts to the lattices induced by

subsets of admissible functions. Furthermore, we show the existence of a cir function for these

general lattices and we present our improvement of the CIR algorithm for balanced partitions.

In Chapter 4 we clarify how the connectivity structure of a network affects its dynamics. This mo-

tivates the study of the network according to its in-reachability sets, which leads to the definition

of a classification scheme of partitions of invariant synchrony into strong, rooted and weak types.

In Chapter 5, we focus on the particular case where the output set of the admissible functions

is a vector space. Here, we provide results in terms of local robustness that apply for this type

of spaces. Furthermore, we introduce two decompositions which make explicit the degrees of

freedom involved in the design of oracle components.

Chapter 2

Weighted CCN formalism

In this chapter we describe the formalism for general networks with arbitrary, weighted connec-

tions. Furthermore, we show that previous known results about CCNs can be extended to these

more general networks. The schematic in Figure 2.1 illustrates the object of study. It represents a

a b

c

wab1

wab2

wbc

wcbwca

wbb

Figure 2.1: A weighted coupled cell network.

network containing three cells C = {a,b,c}. Furthermore, cells a and c are both represented with

a circle, meaning that they are objects of the same type, while cell b is of a different type. We

usually index the set of cell types with integers, such as T = {1,2} (e.g., identify “circle” with 1

and “square” with 2). Our goal is to study the global dynamical system associated with a network

in which its cells are also dynamical systems in their own right. This means that for each cell type

i ∈ T we have an associated state set Xi and output set Yi, which we use to build the domains and

co-domains of the associated dynamical systems. A cell can influence the dynamical evolution of

other cells in the network, which we represent by a directed edge, where the receiving cell is the

affected one. Each interaction can be arbitrarily parameterized by associating a weight/label on

the corresponding directed edge. It is possible for a cell to affect another in multiple ways, as seen

in Figure 2.1, where cell b affects cell a through an interaction parameterized by wab1 and another

one parameterized by wab2. Using the algebraic structure of the commutative monoid described in

the following section, we can represent this by a single interaction parameterized by wab1‖wab2,

which is a common notation used in electrical circuit theory. We now present an example of a

possible cell in some digital circuit.

Example 2.0.1. Consider the system illustrated in Figure 2.3, which is composed by the logical

gates described in Figure 2.2. The logical gates have bits as inputs, that is, elements of {0,1} and

5

6 Weighted CCN formalism

and 0 1
0 0 0
1 0 1

(a) AND logical gate.

or 0 1
0 0 1
1 1 1

(b) OR logical gate.

xor 0 1
0 0 1
1 1 0

(c) XOR logical gate.

Figure 2.2: Logical gates.

FF
xn+1 xn

b1b2b3

b4b5b6b7

(a) Cell implementation.

xn

wand
wand
wand
wor
wor
wor
wor

b1
b2
b3
b4
b5
b6
b7

(b) Cell seen from the outside.

Figure 2.3: Example of a cell in a discrete-time system.

they output another bit. Note that these objects can be extended for arbitrary finite inputs in the

natural way. In particular, the AND and OR gates behave as their corresponding logical operators

by identifying 0 and 1 with false and true, respectively. The XOR gate (meaning eXclusive OR)

simply acts as a sum modulo 2. Finally, the box labeled FF (meaning flip-flop) is a memory

unit, which we consider to update its value periodically. Then, the dashed rectangle in Figure 2.3

represents a possible cell in a network with Xi = Yi = {0,1}, where i ∈ T represents its cell type.

This particular cell has inputs {b1, . . . ,b7}, which are bits that can come from other cells in the

underlying network. The dynamics of this particular cell is then given by

xn+1 = xor(and(b1,b2,b3),or(b4,b5,b6,b7)).

Note that the set of inputs {b1, . . . ,b3} plays a different role than {b4, . . . ,b7} in this cell. Such

distinction cannot be seen physically since all inputs affect the cell through similar-looking wires.

This is solved by appropriately labeling the wires, in this case with wand and wor. Note that these

labels fully describe how a bit through a given wire affects the corresponding cell. This means that

as long as the edges (wires) are appropriately labeled and everything is connected accordingly,

then, the relative positions of the wires in Figure 2.3b are not important. In summary, if the relative

positions were still important that would just mean that the current weights/labels do not provide

us with a complete description of how that edge affects the cell. �

We now illustrate how a very simple electric circuit can be represented with this formalism.

Example 2.0.2. Consider the circuit in Figure 2.4a, with two cells a and b, each consisting of

a capacitor C. The state of each cell corresponds to the potential xa and xb in the indicated

terminals. Here we have Xi = Yi = R, where i ∈ T is the cell type under consideration. These

cells are connected to each other through two resistors R1 and R2, or according to the usual

2.1 Commutative monoids 7

C

xa

R1

R2

C

xb

(a) Electric circuit.

a b
R1‖R2

R1‖R2

(b) CCN representation.

Figure 2.4: Example of a continuous-time network.

notation, through R1‖R2, which is read as “R1 in parallel with R2”. This circuit is represented

by the network in Figure 2.4b, where we note that from the fact that resistors are fundamentally

bidirectional, each cell has an edge of weight R1‖R2 coming from the other cell. The dynamics of

this particular network are given by

ẋa =
1
C

1
R1‖R2

(xb− xa),

ẋb =
1
C

1
R1‖R2

(xa− xb),

with R1‖R2 =
R1R2

R1+R2
. �

In the following section we describe the appropriate algebraic structure used in order to encode

the connectivity between cells.

2.1 Commutative monoids

The commutative monoid is a set equipped with a binary operation (usually denoted +) such that

it is commutative and associative. Furthermore, it has one identity element (usually denoted 0).

This is the simplest algebraic structure that can be used to describe arbitrary finite parallels of

edges. Note that commutativity and associativity, together, are equivalent to the invariance to per-

mutations property. This reflects the fact that, for any given set of edges in parallel, it is irrelevant

the order in which we enumerate the individual edges.

In this work, we denote the monoid “sum” operation by ‖, due to the context in which it is used,

with the meaning of “adding in parallel”. Nevertheless, it is convenient to think of this as a sum.

Likewise, the notation ∑ is used to describe parallels of multiple edges. In this context, the zero

element of a monoid should be interpreted as “no edge”.

Note that we do not require the existence of inverse elements. That is, given an edge, there does

not need to exist another one such that the two in parallel act as “no edge”. This is the reason for

the use of monoids instead of the algebraic structure of groups.

We now show how a commutative monoid can be explicitly constructed using what is called a

presentation.

The first step is to create a free commutative monoid. Given a set W, that describes elemental

8 Weighted CCN formalism

edges, the free commutative monoid on W is W = (W∗,‖ f), where W∗ is the set of all finite

multisets of the elements of W, which represents all possible finite parallels of edges. Here, ‖ f

encodes the multiset sum (free sum) and the element 0W is the empty multiset. Note that the set

W itself does not need to be finite, or even countable.

At this point, the structure is certainly a commutative monoid. However, it is not yet capable of

describing an arbitrary one. In particular, it is blind to the possibility of different sets of edges in

parallel being equivalent (with regard to the application at hand). For instance, if we are work-

ing with resistors in parallel, we would like to be able to encode into the structure the fact that

30‖15 = 20‖20, from basic circuit theory.

In order to generalize this, the second step of the procedure is to quotient the free commutative

monoid W over a congruence relation R. A congruence relation on an algebraic structure is

an equivalence relation that is compatible with that structure. In our case, this means that we re-

quire R to be such, that the quotient M =W/R is a commutative monoid. Here, we think of

the equivalence relation R as a function in W∗→M such that its level sets are the corresponding

equivalence classes.

In order to satisfy the compatibility condition, we require that ifR(a1) =R(a2) = A andR(b1) =

R(b2) = B thenR(a1‖ f b1) =R(a2‖ f b2) = A‖B, for any such a1,a2,b1,b2 ∈W∗. That is, for any

equivalence classes, we can choose any of its elements as a representative, and when operating

them (‖ f) the result should be exactly the same, which defines a consistent operation ‖ on the

equivalence classes.

Note that any commutative monoid has a presentation. Given a commutative monoid M =

(M,‖), we can create the free monoidW = (M∗,‖ f). To this end, define the congruence relation

R : M∗→M such that for any element w=w1‖ f . . .‖ f wk, with w∈M∗ and wi ∈M, i∈ {1, . . . ,k},
we haveR(w) = w1‖ . . .‖wk. Then, we have thatM=W/R.

We can also construct our commutative monoid of interestM using the set that describes the el-

emental edges W and defining the congruence relation R implicitly using a set of equations E.

This can be written asM= 〈W|E〉. In the particular case of a free monoid, we writeM= 〈W|〉.
We illustrate these concepts with the following examples.

Example 2.1.1. Consider the commutative monoid generated by finite sets of resistors in parallel.

In this case, one hasM= 〈W|E〉, with

W= R+
0 ∪{∞}

and

E =

w1‖w2 = w1w2/(w1 +w2) ∀w1,w2 ∈ R+

0 : w1 +w2 6= 0,

w1‖∞ = w1 ∀w1 ∈W,

0‖0 = 0.

This allows us to verify that indeed 30‖15 = 20‖20. In particular, those parallels are equivalent to

2.1 Commutative monoids 9

an elemental edge of value 10. For the case of resistors, any set of parallel edges can be simplified

into a single edge in W. This is not true in general for an arbitrary commutative monoid.

The identity of this monoid is 0M = ∞. Note that there is no element inM, except for the identity

0M that has an inverse. That is, if there is a finite resistor w between two nodes, there is no resistor

w−1 that we can add in parallel that will cancel it, that is w‖w−1 = 0M = ∞. �

Remark 2.1.2. Note that this formalism is extremely general. It allows us to parameterize indi-

vidual edges with anything we might want, such as complex numbers, vectors, matrices, functions

or any data structure as abstract as necessary. �

In Example 2.1.1 it can be seen that the zero-valued resistor, which is not the “zero” of the

monoid (0M), is an annihilator. That is, an element a ∈M such that w‖a = a for all w ∈M.

Not every monoid has an annihilator, but if it exists, it is unique.

Example 2.1.3. Consider the commutative monoidM= (N, ·), that is, the positive integers under

the usual product, which has 0M = 1. Define now the free monoid N = (P∗,‖ f), where P is the

set of prime numbers. We conveniently denote the empty multiset in P∗, which corresponds to

0N , by 1. Then, the fundamental theorem of arithmetic says that these monoids are two different

ways of describing the exact same object. They are called isomorphic. This means that there is

a bijective mapping f : P∗→ N that preserves the monoid structure (isomorphism). In particular,

f (p1‖ f p2) = f (p1) · f (p2) for all p1, p2 ∈ ({1}∪P) and f (0N) = 0M. We can find such an f

by defining f
(
∑

k
i=1 pi

)
= ∏

k
i=1 pi, in which ∑ is with regard to the multiset sum ‖ f . This satisfies

f (1) = 1 and the bijectivity comes from the uniqueness of prime factorization. �

Remark 2.1.4. Note that for the monoid N in Example 2.1.3, in opposition to the resistor case

(Example 2.1.1), two elemental edges in parallel are almost never equivalent to another elemental

edge. In fact, the only exception is the parallel with identity elements, for which this is inevitable.

�

Example 2.1.5. The set of generalized functions together with the convolution operation forms a

commutative monoid. Its identity is δ (·), the Dirac delta distribution. �

Example 2.1.6. Consider a network with two types of elemental edges, each with its own commu-

tative monoid structure. For instance,M1 = (R,+) andM2 = (R→ [−1,1] , ·).
We can merge them into a single commutative monoid by doing a direct productM=M1×M2.

An element m ∈M is an ordered pair (m1,m2) such that m1 ∈ R and m2 ∈ R→ [−1,1].

The operation ‖ of the new monoid is then given by

w‖v = (w1,w2)‖(v1,v2) = (w1 + v1,w2 · v2),

that is, the concatenation of applying the respective monoid operations to each component. The

identity element of the new monoid is 0M = (0M1 ,0M2) = (0,1). �

10 Weighted CCN formalism

This approach of constructing a commutative monoid M by merging smaller monoids that

represent different edge-types, allows us to use a single monoid structure to fully describe the pos-

sible multiedge, multiedge-type connectivity between two cells.

Note that for each particular pair of cell types i, j ∈ T , we could have different monoid structures,

which we denote asMi j, with respect to directed edges from cells of type j into cells of type i.

The connectivity of the network can then be described by a single matrix whose entries are ele-

ments of the appropriate monoid.

2.2 Multi-indexes

A multi-index is an ordered n-tuple of non-negative integers (indexes). That is, an element of Nn
0.

Two particularly important multi-indexes are 0n and 1n, which represent the tuple of n zeros and

the tuple of n ones, respectively. Furthermore, we denote by e j the tuple such that its jth entry is 1

and all the others are zero.

We denote the multi-indexes with the same notation we use for vectors, using bold, as in k =

[k1,kn]
>. Their norm is defined as |k| := ∑

n
i=1 ki.

The elements (of the same tupleness n) can be multiplied by non-negative integers and added

together freely, although subtraction and division are not always well-defined. For instance,

k = 213 +3e2 =

2

5

2

 .
The multi-indexes (of the same tupleness n) form a partial order in the straightforward way, that

is, k1 ≥ k2 if and only if k1
i ≥ k2

i for every entry 1≤ i≤ n. Note that for n > 1 the order is partial

since neither k1 ≥ k2 nor k1 ≤ k2 are required. This happens when there are 1≤ i, j ≤ n such that

k1
i > k2

i and k1
j < k2

j . In this case we say that the pair (k1,k2) is non-comparable.

We often specify the tupleness n of a multi-index k indirectly, by using k≥ 0n in order to denote

k ∈ Nn
0, or k≥ 1n to denote k ∈ Nn.

2.3 Weighted coupled cell networks

A general weighted coupled cell network is given by the following definition.

Definition 2.3.1. A network G consists of a set of cells CG , where each cell has a type, given by

a set T according to TG : CG → T and has an |CG |× |CG | in-adjacency matrix MG . The entries of

MG are elements of a family of commutative monoids {Mi j}i, j∈T such that [MG]cd = mcd ∈Mi j,

for any cells c,d ∈ CG with types i = TG(c), j = TG(d). �

We often have the set of cell types be of the form T = {1, . . . , |T |} so that it is simple to index.

For each commutative monoid Mi j we denote its “zero” element as 0i j. The entries of mcd are

2.4 Admissibility 11

able to encode the complete connectivity (multiedge, multiedge-type) of the directed edges from

d to c thanks to the algebraic structure of the commutative monoid.

Remark 2.3.2. The subscripts G are omitted when the network of interest is clear from context. �

2.4 Admissibility

In this section, we describe the minimal properties that we require for a function f : X→ Y to

satisfy in order to be a plausible modeling of the dynamics ẋ/x+ = f (x) or some measurement

function y = f (x) on the network. We call such a function admissible on the network of interest.

In particular, such a function describes some first-order property of the network. That is, it mod-

els something that, when evaluated at cell, depends on the state of that cell and its in-neighbors.

This does not mean that everything on a network has to (or can) be defined by such a function.

For instance, the second derivative or the two-step evolution of a dynamical system on a network

will not be of this form. Those functions will be “second-order” in the sense that, when evaluated

on a cell, they depend on the states of that cell, together with the states of the cells in its first and

second in-neighborhoods (neighbor of neighbor). Such second-order functions are, however, fully

defined from the original first-order functions.

We construct admissible functions through the use of mathematical objects called oracle com-
ponents, first introduced in Sequeira et al. (2021) and then simplified in Sequeira et al. (2023a).

An oracle component is a mathematical object that describes how cells of a given type respond

to arbitrary finite in-neighborhoods. It completely separates the modeling of the behavior of cells

from the particular network on which the cells of interest are inserted.

Consider the simple network of Figure 2.5a, (which could be part of a larger network) consisting

of cell c and its in-neighborhood. We have cell types T = {1,2} which represent “circle” and

xa xb

xc

wa wb

(a) Original.

xa = xb

xc

wa‖wb

(b) Merged.

Figure 2.5: Edge merging.

“square” cells, respectively. In order to define functions on the cells we associate with them the

state sets X1,X2 and the output sets Y1,Y2 according to their respective type.

We consider that the input received by a cell is independent of how we draw the network, that is,

from the point of view of cell c, there would be no difference if cell b was at the left of cell a.

12 Weighted CCN formalism

Then, for a function f̂1 acting on cells of type 1, we would expect that

f̂1

(
xc;

[
wa

wb

]
,

[
xa

xb

])
= f̂1

(
xc;

[
wb

wa

]
,

[
xb

xa

])
,

for xc ∈X1, xa,xb ∈X2 and wa,wb ∈M12. Moreover, since cells a and b are of the same cell type

(square) (T(a) = T(b) = 2), we expect that when they are in the same state (xa = xb = xab), the

total input received by cell c at that instant, is the same as if both edges originated from a single

“square” cell with that state, as in Figure 2.5b. That is,

f̂1

(
xc;

[
wa

wb

]
,

[
xab

xab

])
= f̂1 (xc;wa‖wb,xab) .

Although this might look inconsistent since the domains look mismatched, the following definition

formalizes it in a rigorous way. Finally, when f̂1 is evaluated at a cell it should only depend on the

in-neighborhood of that cell. Therefore, if wa = 012, cell c should not be directly influenced by

cell a. That is,

f̂1

(
xc;

[
012

wb

]
,

[
xa

xb

])
= f̂1 (xc;wb,xb) .

These ideas are now formalized in the following definition.

Definition 2.4.1. Consider a given set of cell types T , and some related sets {X j,Y j} j∈T together

with a family of commutative monoids {Mi j} j∈T , for a given fixed i∈ T . Take a function f̂i defined

on

f̂i : Xi×
◦⋃

k≥0|T |

(
Mk

i ×Xk)→ Yi, (2.1)

where
◦⋃

denotes the disjoint union and for multi-index k we define Xk := Xk1
1 × . . .×Xk|T |

|T | and

Mk
i :=Mk1

i1 × . . .×Mk|T |
i|T |.

The function f̂i is called an oracle component of type i, if it has the following properties:

1. If σ is a permutation matrix (of appropriate dimension), then

f̂i(x;w,x) = f̂i(x;σw,σx), (2.2)

where we assume, without loss of generality, that one can keep track of the cell types of each

element of σw and σx.

2.4 Admissibility 13

2. If the indexes j1, j2 and j12 denote cells of type j ∈ T , then

f̂i

(
x;

[
w j1‖w j2

w

]
,

[
x j12

x

])
= f̂i

x;

w j1

w j2

w

 ,
x j12

x j12

x

 . (2.3)

3. If the index j denotes a cell of type j ∈ T , then

f̂i

(
x;

[
0i j

w

]
,

[
x j

x

])
= f̂i (x;w,x) . (2.4)

�

The disjoint union allows us to distinguish neighborhoods of different types. That is, even in

the particular case of X1 =X2 andMi1 =Mi2, we are able to differentiate the part of the domain

associated with M2
i1×X2

1 from the one associated with Mi1×Mi2×X1×X2. A non-disjoint

union, on the other hand, would merge these sets together.

Remark 2.4.2. As stated in item 1 of Definition 2.4.1, it is always assumed that given any weight

wc or state xc, we always know the cell type of the corresponding cell c. Note that one can

always do enough bookkeeping in order to ensure this. For instance, one can extend f̂i(x;w,x)
into f̂i(x; t,w,x), where t would be a vector that encodes the cell types associated with w,x. Then,

we would have f̂i(x; t,w,x) = f̂i(x;σ t,σw,σx) instead.

Our implicit bookkeeping means that we do not have to constrain σ to preserve cell typing. That

is, if we assume some canonical order of the cell types in the part of the domain Mk
i ×Xk in

Equation (2.1), then we know the correct k≥ 0|T | and can reorder the rows of w and x in f̂i(x;w,x)
appropriately.

Note that by considering invariance under general permutations, and not having to worry about

preserving cell types or respecting some canonical ordering of cell types, we are always able to

shift the cells of major interest to the top of the vectors, as in Equations (2.3) and (2.4), regardless

of the types of other cells. �

We consider the function K such that for a set of cells s, we have that k = K(s) is the |T |-
tuple such that ki is the number of cells in s that are of type i ∈ T . This allows us to pick the

proper k ≥ 0|T | in Equation (2.1) when we want to evaluate oracle components at a cell and its

in-neighbors.

The oracle set is the set of all |T |-tuples of oracle components, such that each element of the tuple

represents one of the types in T . It is denoted as

F̂T = ∏
i∈T
F̂i,

where F̂i is the set of all oracle components of type i. We are always implicitly assuming sets

{Xi,Yi}i∈T and commutative monoids {Mi j}i, j∈T . Note that modeling some aspect of a network

14 Weighted CCN formalism

that follows our assumptions is effectively choosing one of the elements of F̂T , which we call

oracle functions.

Example 2.4.3. Consider again Example 2.0.1, where we present in Figure 2.3 an instance of a

discrete-time cell. This particular cell has three bits coming from edges wand and four bits coming

from edges wor, which means that its associated dynamics are given by

xn+1 = xor(and(b1,b2,b3),or(b4,b5,b6,b7)).

In general, we can write the dynamics of a cell of this type for the case where we have arbitrary

(finite) inputs of each edge type {wand ,wor}. That is, the corresponding oracle component. In

particular, the dynamics associated with this cell is, in the general case, given by

xn+1 =

1 if

(#(wand ,0) = 0 and #(wor,1) = 0)

or

(#(wand ,0)> 0 and #(wor,1)> 0) ,

0 otherwise,

where #(w,b) denotes the cardinality of edges with weight w that have the bit b as input. �

Example 2.4.4. Consider again Example 2.0.2, where we present in Figure 2.4 an instance of a

continuous-time network with two cells. The oracle component corresponding to cells of this type

is such that for an arbitrary cell c on a network with this type of cells, with neighbors s, we have

that

ẋc = f̂i (xc;ws,xs) =
1
C ∑

d∈s

1
wd

(xd− xc).

Note that the dynamics of this particular network, which are given by

ẋa =
1
C

1
R1‖R2

(xb− xa),

ẋb =
1
C

1
R1‖R2

(xa− xb),

are directly obtained by evaluating the oracle component to each cell of the network according to

its particular in-neighborhood. �

Definition 2.4.5. Consider a network G on a cell set C with cell types in T according to the cell

type partition T, and an in-adjacency matrix M. Assume without loss of generality that the cells

are ordered according to the cell types such that we can associate with the network a state X :=Xk

and output Y := Yk sets, with k =K(C).
A function f : X→ Y, given as

f = (fc)c∈C , with fc : X→ Yi, i = T(c),

2.4 Admissibility 15

is said to be G-admissible if there is some oracle function f̂ ∈ F̂T , f̂ = (f̂i)i∈T such that

fc(x) = f̂i

(
xc;m>c ,x

)
, (2.5)

for x ∈ X, where xc is the cth coordinate of x and mc is the cth row of matrix M. In this case we

write f = f̂ |G . �

The set of all G-admissible functions is denoted as FG . It can be thought of as the result of

evaluating F̂T at G, which can be written as F̂T |G . Note that process of evaluating oracle functions

at a network is not necessarily injective. There might be oracle functions f̂ , ĝ ∈ F̂T with f̂ 6= ĝ

such that f̂ |G = ĝ|G .

The next example makes explicit the relation between the connectivity graph of a network and

how that constrains any possible admissible function that acts on it.

Example 2.4.6. Figure 2.6 shows an example of a CCN of three cells. We have cell types T =

{1,2} which represent “circle” and “square” cells, respectively. This CCN can be described by

1 2

3

Figure 2.6: Simple network with admissible functions that have the structure given by Equa-
tions (2.7) to (2.9).

the in-adjacency matrix M

M =

1 0 1

1 0 1

1 1 1

 , (2.6)

together with the cell type partition T = {{1,2},{3}}. This means that a suitable f ∈ FG should

have the following structure

f1(x) = f̂1(x1;
[
1 0 1

]>
,x), (2.7)

f2(x) = f̂1(x2;
[
1 0 1

]>
,x), (2.8)

f3(x) = f̂2(x3;
[
1 1 1

]>
,x), (2.9)

for some f̂ ∈ F̂T . �

To make more explicit the importance of a rigorous definition for admissibility, the follow-

ing example presents a case that might look reasonable at a first glance but ends up not being

admissible.

16 Weighted CCN formalism

Example 2.4.7. Consider the simple network in Figure 2.5 that was used to illustrate the edge

merging concept. We will propose a function on the original network Figure 2.5a and verify if it

satisfies our assumptions.

We consider that the cells have associated state and output sets given by X1 =X2 =Y1 =R, such

that T = {1,2} identify the cell types “circle” and “square” respectively.

The directed edges from “square” into “circle” are in M12. Given functions g : R→ R and

p : M12→ R, with p(012) = 0, it is tempting to think that a function fc, could be modeled by

fc(x) = g(xc)+ p(wa)xa + p(wb)xb + p(wa)p(wb)xaxb. (2.10)

After all, if we simultaneously switch wa↔wb and xa↔ xb, fc would still look the same. Consider,

wa = w, xa = x and wb = 012. Then, if cell c only had one neighbor (of type square), fc would be

given by

fc(x) = g(x3)+ p(w)x.

If we have xa = xb = xab, from the edge-merging principle, we should be in the situation of Fig-

ure 2.5b. We would have

fc(x) = g(xc)+ p(wa‖wb)xab.

However, from direct substitution on Equation (2.10) we obtain

fc(x) = g(xc)+(p(wa)+ p(wb)+ p(wa)p(wb)xab)xab,

which means that this is not admissible, except for the trivial case p = 0, since

p(wa‖wb) = p(wa)+ p(wb)+ p(wa)p(wb)xab

goes against the assumption that p depends only on the edge weights.

Consider that fc was modeled instead as

fc(x) = g(xc)+ p(wa)xa + p(wb)xb + p(wa)p(wb)
xa + xb

2
. (2.11)

Following the exact same approach this requires

p(wa‖wb) = p(wa)+ p(wb)+ p(wa)p(wb), (2.12)

which is a valid constraint. It only depends on its inputs and is compatible with a commutative

2.4 Admissibility 17

monoid structure, that is,

p(w‖012) = p(w),

p(w1‖w2) = p(w2‖w1),

p((w1‖w2)‖w3) = p(w1‖(w2‖w3)).

Note that for each of the three equalities, the inputs for both members are the same element of

M12. The same input of a function has to output the same value.

Note that Equation (2.12) is only a necessary condition, not a sufficient one. In order to be

systematic, we need to show that there is one underlying oracle component f̂1 that models how

cells of type “circle” behave under arbitrary neighborhoods. Conjecture the candidate oracle

component

f̂1 (x;ws,xs) = g(x)+∑
c∈s

p(wc)xc + ∑
{c,d}⊆s

c 6=d

p(wc)p(wd)
xc + xd

2
, (2.13)

dependent only on its “square” neighbors and itself. Note that, when evaluated at a neighborhood

of two “square” cells, this maps into Equation (2.11). We need to verify if Equation (2.13) is a

valid oracle component. Items 1 and 3 of Definition 2.4.1 are immediate to verify (with p(012)= 0).

We now verify item 2 of Definition 2.4.1, that is

f̂i

(
x;

[
w j1‖w j2

ws

]
,

[
x j12

xs

])
= f̂i

x;

w j1

w j2

ws

 ,
x j12

x j12

xs

 .

Expanding according to Equation (2.13) and canceling common terms get us that

p(w j1‖w j2)x j12 +∑
c∈s

p(w j1‖w j2)p(wc)
x j12 + xc

2

is equal to

[p(w j1)+ p(w j2)+ p(w j1)p(w j2)]x j12 +∑
c∈s

[p(w j1)+ p(w j2)] p(wc)
x j12 + xc

2
.

Using the constrain in Equation (2.12) that we found previously, this means that

p(w j1)p(w j2)∑
c∈s

p(wc)
x j12 + xc

2
= 0.

This is only satisfied for every possible combination of weights and states if we are again in the

trivial case p = 0.

This underlines the importance of the concept of oracle components. Even though Equation (2.11)

looks suitable when we test it in neighborhoods of zero, one and two cells, which might even be the

only ones present in our particular network of interest, there has to exist some underlying function

18 Weighted CCN formalism

that describes how the cell interacts under other types of neighborhoods. Since the behavior of

a cell under different neighborhoods is not independent, even neighborhoods that we do not care

about impose constraints on the ones that we do care about.

We verified that Equation (2.13) does not define (for a non-trivial p) a valid oracle component.

This does not prove yet that Equation (2.11) is impossible, there might still be some more compli-

cated oracle component that maps into Equation (2.11).

In summary, it is essential to define a valid oracle function in order to model an admissible func-

tion on a network. It is not enough to define admissible functions for the neighborhoods we are

interested in and verifying if those are cross-compatible. �

At this point it is still not clear what exactly are our degrees of freedom in order to construct a

valid oracle component. This is explored in Sections 5.2 and 5.3.

2.5 Extension for exogenous inputs and inner cell parameters

This formalism can easily be generalized so that it allows for inner cell parameters and can deal

with exogenous inputs on the cells. By exogenous we mean that they are external from the point

of view of the network. On the other hand, we think of the influence that a neighbor of a cell has

on it as endogenous.

Consider the simple network in Figure 2.7a, where we illustrate a cell c and its in-neighborhood.

We denote on each cell their inner cell parameters pa, pb, pc and their exogenous inputs ua, ub,

uc. We assume that the inner cell parameters pa, pb and the exogenous inputs ua, ub of cells a, b

do not affect cell c directly. Instead, they affect cell c indirectly by affecting the state evolution of

xa, xb on which c depends. In summary, we assume that at any given time, the cell c only “sees”

the part of the network illustrated in Figure 2.7b. This means, that we adapt the concept of oracle

xa, pa xb, pb

xc, pc

ua ub

uc

wa wb

(a) Input set of cell c.

xa xb

xc, pcuc

wa wb

(b) Equivalent neighborhood from the
point of view of cell c.

Figure 2.7: Network with inner cell parameters and exogenous inputs.

functions such that a suitable admissible function on c, has the following structure

fc(x) = f̂1

(
xc, pc,uc;

[
wa

wb

]
,

[
xa

xb

])
, (2.14)

2.5 Extension for exogenous inputs and inner cell parameters 19

for some f̂ ∈ F̂T .

We can extend Definition 2.4.1 such that oracle components are instead defined on

f̂i : Xi×Pi×Ui×
◦⋃

k≥0|T |

(
Mk

i ×Xk)→ Yi, (2.15)

where Pi is the set of possible inner parameters of a cell and Ui denotes the set of possible ex-

ogenous inputs. Since we assume these characteristics to only affect directly the cell it refers

to, the extension is trivial. All the basic properties and definitions are basically unchanged. The

only things that change are the parts before the semicolon, which change from f̂i(x;w,x) into

f̂i(x, p,u;w,x).

20 Weighted CCN formalism

Chapter 3

Equality-based synchronism

In this chapter, we concern ourselves with patterns of synchronism defined by equalities between

the states of cells. Such a set of equalities establishes an equivalence relation, which we encode

through the use of partitions on the set of cells.

We generalize the known results in Stewart (2007) regarding lattices of balanced partitions ΛG

for the case where we are interested about invariance under some subset of admissible functions

F ⊆FG . In particular, we show that the set of partitions LF that are invariant under F always form

lattices. Furthermore, these lattices share with ΛG the very special properties of always containing

the trivial partition (⊥) and being closed under the standard partition join (∨). For general lattice

theory refer to Davey and Priestley (2002).

We study with some detail the very particular case of lattices L such that ∨L = ∨ and ⊥L =⊥ and

then show that all the lattices regarding invariant synchrony patterns are of this type. Furthermore,

such lattices always have an associated cirL function. We show that the know results regarding

balanced partitions and quotient networks Stewart et al. (2003); Golubitsky et al. (2005); Golubit-

sky and Stewart (2006) generalize to the weighted framework. Here, ΛG being closed under the

join ∨ is proved in a novel, algebraic way, instead of the usual duality argument between balanced

partitions and invariant subspaces. Finally, we improve the CIR algorithm for finding balanced

partitions in a manner that works for the weighted case.

3.1 Partitions and their representations

A partition A on a set of cells C is a set of non-empty subsets of C such that they are pairwise

disjoint and their union is equal to C. We often refer to each element of a given partition (corre-

sponding to a subset of cells) by the term color. The number of colors in a partition is called its

rank.

We construct the quotient set C/A by taking the elements of C and merging them together ac-

cording to A, such that each color of A is associated with an element of C/A. We can now think

of A as a function from C to C/A, which we illustrate in the following example.

21

22 Equality-based synchronism

Example 3.1.1. Consider the set of cells C = {a,b,c,d,e}. Then, A = {{a,b},{c},{d,e}} is a

partition on C with three colors (rank(A) = 3). We denote the quotient set as C/A= {ab,c,de},
which contains three elements. Then,A acts as function in C →C/A, and we writeA(a)=A(b)=
ab, A(c) = c and A(d) =A(e) = de. �

Remark 3.1.2. In the example above it might look more canonical to think of the elements of C/A
as ab := {a,b}, c := {c} and de := {d,e}. That is, each of its elements is a color according to

partition A. However, using this notation, A and C/A would look indistinguishable. We want to

think of these objects as semantically different. While we think of a partition A as a set of sets of

elements (cells), we think of C/A as just a set of elements, (which are colors, and therefore end up

being sets themselves). In order to make this clear we use this shorthand notation. This becomes

more important when we compose partitions (e.g., we apply a partition on the set C/A) and define

the concept of partition quotients. �

Interpreting partitions as functions allows us to say that two cells c,d ∈ C are of the same

color, according to A, if and only if A(c) =A(d). Furthermore, they are surjective functions by

construction and each color is given by the preimage of each element of C/A. Conversely, note

that every surjective function establishes a partition on its domain through its level sets.

Given two partitions A, B on a set of cells C, we say that A is finer than B, denoted as A≤ B, if

A(c) =A(d) =⇒ B(c) = B(d) (3.1)

for all c,d ∈ C. Conversely, B is said to be coarser than A. Roughly speaking, Equation (3.1)

means that if any pair of cells have the same color according to partition A, then they also have

the same color according to B. In other words, if we merge some of the colors of A together, we

can obtain B. Conversely, we can obtain A by starting with B and splitting some of its colors into

smaller ones. The trivial partition, in which each color consists of a single cell, is the finest and

its rank is |C|. We now show that if A≤ B we can define a quotient partition B/A.

Lemma 3.1.3. Consider a set of cells C and the partitions A : C → C/A and B : C → C/B. Then,

A≤ B if and only if there is some B/A : C/A→ C/B such that B/A◦A= B. �

Proof. Note that B/A◦A= B means that B/A(A(c)) = B(c) for all c ∈ C. This means that B/A
is the function that maps A(c) ∈ C/A into B(c) ∈ C/B for all c ∈ C. Note that this is enough to

define B/A on its whole domain since A is surjective. That is, for every element k ∈ C/A there is

some c ∈ C such that A(c) = k. Finally, B/A exists if and only if such a function is well-defined.

That is, for every k ∈ C/A, the mapping of k =A(c) into B(c) has to be completely independent

of the particular choice of c ∈ C, which is equivalent to A≤ B. �

In particular, if A ≤ B, the partition B/A describes how to merge the colors of A into the

colors of B. Furthermore, note that B/A is uniquely defined and is also surjective. If we consider

the particular case B =A, then we have that A/A : C/A→ C/A is such that A/A◦A=A. That

is, A/A acts as the identity map in the set C/A and it is the trivial partition in that set.

3.1 Partitions and their representations 23

Example 3.1.4. Consider the set of cells C = {a,b,c,d,e} on which we define the partitions

A= {{a,b},{c},{d,e}} B= {{a,b},{c,d,e}}. We denote the quotient sets as C/A= {ab,c,de}
and C/B = {ab,cde}. Consider that the mappings A : C → C/A and B : C → C/B are defined in

the expected way. Then, since we have A ≤ B, the quotient partition B/A : C/A→ C/B is such

that B/A(ab) = ab and B/A(c) = B/A(de) = cde.

Using the set of colors notation, we can write B/A = {{ab},{c,de}}. Finally, note that

rank(B/A) = rank(B) = 2. �

It should be clear that rank(B/A) = rank(B) is true in general, since it always corresponds to

the size of their common image set C/B.

Lemma 3.1.5. The partition quotient preserves the partial order relation ≤. That is, for all

partitionsA,B1,B2 on C such thatA≤B1,B2, we have that B1 ≤B2 if and only if B1/A≤B2/A.

�

Proof. Firstly, note thatB1/A andB2/A are both partitions on the set C/A, therefore the statement

B1/A≤ B2/A is meaningful.

Since we have that A ≤ B1,B2 from assumption, we can, using Lemma 3.1.3, write B1 ≤ B2 as

B1/A(A(c)) = B1/A(A(d)) =⇒ B2/A(A(c)) = B2/A(A(d)) for all c,d ∈ C.

We have to show that this is equivalent to B1/A(k) = B1/A(l) =⇒ B2/A(k) = B2/A(l) for

all k, l ∈ C/A. The forward direction comes from the fact that A is surjective. That is, for all

k, l ∈ C/A there are some c,d ∈ C such that A(c) = k and A(d) = l. The backwards direction is

immediate from the fact that for all c,d ∈ C, we have that A(c),A(d) ∈ C/A. �

Lemma 3.1.6. Consider partitions A,B1,B2 on C such that A ≤ B1 ≤ B2. Then,

(B2/A)/(B1/A) = B2/B1. �

Proof. From Lemma 3.1.5, it is clear that B1/A ≤ B2/A. Therefore, (B2/A)/(B1/A) is well-

defined.

Furthermore, from Lemma 3.1.3, it can easily been seen that (B2/A)/(B1/A) and B2/B1 are both

mappings in C/B1→C/B2. We now show that

(B2/A)/(B1/A)(k) = B2/B1(k)

for all k ∈ C/B1. Note that k ∈ C/B1 if and only if there is some c ∈ C such that B1(c) = k. Since

A≤ B1, we have that k = B1/A(A(c)). Then,

(B2/A)/(B1/A)(k) = (B2/A)/(B1/A)◦B1/A(A(c))

= B2/A◦A(c)

= B2(c).

24 Equality-based synchronism

Since B1 ≤ B2, we have that B2 = B2/B1 ◦B1. Then,

B2(c) = B2/B1 ◦B1(c)

= B2/B1(k),

which concludes the proof. �

It is often convenient to establish an order on a set of cells. That is, to associate with each cell

a distinct integer from 1 to n, where n is the size of that set. We now see that this allows us to

represent partitions using matrices.

Consider we identify C with {1, . . . , |C|} and C/A with {1, . . . , |C/A|}. Then, we can repre-

sent a partition A : C → C/A through a partition matrix (also called characteristic matrix) P ∈
{0,1}|C|×|C/A|, such that [P]ck = 1 if A(c) = k and [P]ck = 0 otherwise. That is, rows corresponds

to the cells and columns correspond to the colors, with 1 encoding that the cell of that row maps

into the color associated with that column. This is illustrated in the following example.

Example 3.1.7. Consider the same sets of cells and partitions as in Example 3.1.4. For C we use

the indexing (a,b,c,d,e) = (1,2,3,4,5), for C/A we index (ab,c,de) = (1,2,3), and we index

C/B according to (ab,cde) = (2,1). Note that we indexed ab differently as a member of C/A than

as a member of C/B. This is not an issue since an ordering is a property within a given set, not

something intrinsic to an element. Using the mentioned indexing, the partitions A,B,B/A are

represented through the partition matrices PA,PA,PB/A, which are given by

PA =

1 0 0

1 0 0

0 1 0

0 0 1

0 0 1

 , PB =

0 1

0 1

1 0

1 0

1 0

 , PB/A =

0 1

1 0

1 0

 .

Using the same indexing, we can also equivalently represent these partitions through the column

vectors

vA =

1

1

2

3

3

 , vB =

2

2

1

1

1

 , vB/A =

2

1

1

 .

Note that the column vector representation acts as the original partition but with respect to the

underlying set orderings. For instance, A(d) = de is equivalent to vA(4) = 3, where we have that

d is indexed by 4 in C and de is indexed by 3 in C/A. Furthermore, note that the PA, vA are

related such that the cth element of vA indicates the position of the 1 in the cth row of PA. �

3.2 Lattices of partitions 25

Note that these matrices are related by PAPB/A = PB. This is equivalent to B/A◦A= B. It is

more clear that these formulas are analogous if we consider the transposed version P>B/AP>A = P>B .

In this work, we considered it more useful to define partition matrices the way we did instead of

the transposed alternative.

Note that given a partition A, we can index its related sets C and C/A in different ways. This

means that A can be represented by multiple partition matrices that are related to each other by

a reordering of rows and columns. This is not an issue as long as we keep things consistent by

always using the same assigned ordering when constructing other partition matrices that also in-

volve C and C/A.

We will often use the partition and its matrix interchangeably, that is, PA ≤B or PA ≤ PB to mean

A≤ B.

Note that given partition matrices PA,PB such that PA ≤ PB, we have, from assumption, already

assigned an ordering on all the relevant sets C, C/A and C/B. Therefore, there exists an unique

partition matrix PAB, representing B/A such that PAPB/A = PB.

The trivial partition can be represented by any |C|× |C| permutation matrix, one of which is the

identity.

The rank of a partition corresponds to the rank of any of its matrix representations. That is,

rank(A) = rank(PA).

Note that given some matrix M of appropriate dimensions, PM is always well-defined as an ex-

pansion of M, where its rows get replicated. In the case of MP, we require the ability of summing

elements of M. In our context, the sum operations will be the previously mentioned monoid sum

operations ‖.

3.2 Lattices of partitions

A lattice L is a partially ordered set such that given any two elements a,b ∈ L, there exists in L a

least upper bound or join denoted by a∨L b. Similarly, there is in L a greatest lower bound or

meet denoted by a∧L b.

Example 3.2.1. Consider Figure 3.1, where we represent two partially ordered sets L and S. We

connect two different elements if and only if one is larger than the other (according to its assigned

partial order≤) and they have no other element in-between. Furthermore, we present graphically

the larger elements above the smaller terms. For instance, in Figure 3.1b, we have that e≤L b and

b≤L a so we connect them. However, we do not connect e−a despite e≤L a since b is in-between

them. Note that L is a lattice since ∨L and ∧L are well-defined for every pair of elements (e.g.,

b∨L d = a and b∧L d = f). On the other hand, S does not have this property. Note that the set

of elements larger than l and m is {i, j,k}. Out of these, j,k are both smaller than i, however,

neither j ≤ k nor k ≤ j. That is, they are non-comparable. Since {i, j,k} does not have a smallest

element, l∨S m is not defined, which means that S is not a lattice. �

26 Equality-based synchronism

h

e f g

b c d

a

(a) Lattice L.

n

l m

j k

i

(b) Non-lattice S.

Figure 3.1: Partially ordered sets L,S such that L is a lattice and S is not a lattice.

In this work, we are only interested in lattices of partitions, partially ordered according to the

finer (≤) relation, described in Equation (3.1).

The set of all partitions on a finite set of cells C, partially ordered by the finer (≤) relation, forms

a lattice LC . In this set, the join (∨) and meet (∧) operations can be calculated according to

Lemmas 3.2.2 and 3.2.3 respectively.

Lemma 3.2.2. The partition given by A=A1∨A2 is such that A(c) =A(d) if and only if there

is a chain of cells c = c1, . . . ,ck = d such that, for each ci,ci+1, with 1 ≤ i < k, we have either

A1(ci) =A1(ci+1) or A2(ci) =A2(ci+1). �

Proof. Any partition A that is simultaneous coarser than A1 and A2 has to obey (from Equa-

tion (3.1))
A1(c) =A1(d)

or

A2(c) =A2(d)

=⇒ A(c) =A(d).

For such partition, any chain of cells c = c1, . . . ,ck = d such that, for each ci,ci+1, with 1 ≤ i <

k, either A1(ci) = A1(ci+1) or A2(ci) = A2(ci+1), implies that A(c) = A(d). The finest such

partition A is the one such that A(c) = A(d) if and only if there is such a chain. Note that the

existence of such chains induces an equivalence relation on the set of cells. Therefore, this defines

a valid partition. �

Lemma 3.2.3. The partition given byA=A1∧A2 is such thatA(c)=A(d) if and only ifA1(c)=

A1(d) and A2(c) =A2(d). �

Proof. Any partitionA that is simultaneous finer thanA1 andA2 has to obey (from Equation (3.1))

A(c) =A(d) =⇒

A1(c) =A1(d),

A2(c) =A2(d).

3.2 Lattices of partitions 27

The coarsest such partition is created by making the implication into an equivalence. This induces

an equivalence relation on the set of cells. Therefore, it defines a valid partition. �

Not every subset of partitions forms a lattice. Furthermore, subsets of lattices that are them-

selves lattices might not be sublattices of the original lattice. That is, their join and meet opera-

tions might be different. With regard to lattices of partitions, either the join will be coarser that in

Lemma 3.2.2 or the meet will be finer than in Lemma 3.2.3 (or both).

Denote by LT the subset of LC consisting on the partitions of C that are finer than T. Note that LT

remains closed under the same join (∨) and meet (∧) operations. Therefore, LT is a sublattice of

LC .

All the lattices in this work are bounded, which means that they have a (maximum/greatest ele-
ment/top), denoted by > and a (minimum/least element/bottom), denoted by ⊥. In particular,

the top partitions of LC and LT are >C = {C} and >T = T, respectively. The bottom elements

⊥C =⊥T are given by the trivial partition.

We now show that the existence of a minimal element together with a join operation is enough to

guarantee that a finite set forms a lattice.

Lemma 3.2.4. Consider a finite partially ordered (≤L) set L such that there is a minimal element

⊥L ∈ L and for every pair A1,A2 ∈ L, there exists an element denoted A1 ∨LA2 which is their

least upper bond in L. Then, L is a lattice. �

Proof. Consider any pair of elements A1,A2 ∈ L. Call S the subset of L of the elements that are

simultaneously smaller (≤L) thanA1 andA2. That is, S := {P ∈ L : P ≤L A1,A2}. Note that S is

finite. Furthermore, it is not empty since⊥L ∈ S. Then, to obtain the largest element of S we apply

the join (∨L) operation over the whole set, obtaining B =
∨L

P∈SP . From assumption, the result

is in L. Furthermore, since all the elements of S are smaller than A1 and A2, then B is smaller as

well. Therefore, B ∈ S. By construction, B is larger than every other element of S, therefore, it is

an upper bound of S. That is, B ∈ S is the greatest lower bound of A1,A2 in L, which we denote

by A1∧LA2, which means that L is a lattice. �

In this work, we have particular interest in lattices of partitions L in which the bottom partition

is the trivial one (⊥L =⊥) and the join is given according to Lemma 3.2.2 (∨L = ∨).

Lemma 3.2.5. Consider a lattice of partitions L⊆ LT such that ⊥L =⊥ and ∨L = ∨. Then, given

any partition A ∈ LT , there is a partition B ∈ L that is the coarsest one in L such that B ≤A. �

Proof. Call S the subset of L of the elements that are finer (≤) thanA. That is, S := {P ∈ L : P ≤A}.
Note that S is finite. Furthermore, it is not empty since⊥∈ S. Then, to obtain the coarsest element

of S we apply the join (∨L =∨) operation over the whole set, obtaining B=
∨

P∈SP . Then, B ∈ L.

Furthermore, due to the fact that L ⊆ LT and ∨L = ∨, we know that all the elements of S being

finer than A implies that B is finer as well. Therefore, B ∈ S. By construction, B is coarser than

every other element of S, therefore it is an upper bound of S. That is, B ∈ S is the greatest lower

bound of A in L. �

28 Equality-based synchronism

Remark 3.2.6. Note that Lemma 3.2.5 only holds because we have that ⊥L = ⊥ and ∨L = ∨. If

⊥L 6= ⊥, then it would not work for any A < ⊥L (or non-comparable). Furthermore, note that

A1,A2 ≤A only impliesA1∨LA2 ≤A if those partitions are all in the lattice associated with ∨L.

The fact that ∨L = ∨ is what allows us to apply this implication with respect to the lattice LT . �

The correspondence between partitions A ∈ LT and B ∈ L described in Lemma 3.2.5 estab-

lishes a function in LT → L, which we denote by cirL.

We know from Lemma 3.2.4 that a set L with a minimal partition ⊥L and a join ∨L is automati-

cally a lattice, therefore, it has a meet operation ∧L. Furthermore, in the case that L is a lattice of

partitions such that ⊥L =⊥ and ∨L = ∨, it is not guaranteed that ∧L = ∧. We know, however, that

A1∧LA2 ≤A1∧A2. Then, using cirL, it is clear how to write ∧L as a function of ∧.

Corollary 3.2.7. Consider a lattice of partitions L ⊆ LT such that ⊥L = ⊥ and ∨L = ∨. Then,

given partitions A1,A2 ∈ L, we have that A1∧LA2 = cirL(A1∧A2). �

Note that the meet operation ∧L is only meaningful when applied to elements of L while cirL

can be applied to any element of LT .

We now illustrate the cirL operation in the following example.

Example 3.2.8. In Figure 3.2a we have the lattice of all partitions finer than T= {{1,2,3},{4,5}}
and in Figure 3.2b we have some lattice L, which contains the trivial partition ⊥ and is closed

under the partition join ∨. We present the partitions in a simplified manner such that singletons

do not appear, which correspond to cells that are not synchronized with any other cell (e.g., the

partition {{1,2},{3},{4,5}} is simply represented as 12/45). The lattices are colored such that

each element of LT is of the same color of the element of L that cirL maps to. �

⊥

12 13 23 45

123 12/45 13/45 23/45

123/45

(a) Lattice LT .

⊥

12 45

12/45

(b) Lattice L.

Figure 3.2: Illustration of a cirL function over a suitable lattice of partitions L.

3.3 Lattice quotients 29

3.3 Lattice quotients

In this section, we define the quotient operation on sets of partitions. In particular, we show that

for lattices of partitions L with the properties we are interested in (∨L = ∨ and ⊥L =⊥), all these

properties are preserved under the quotient operation.

Definition 3.3.1. Consider a set of partitions L on some set of cells C. Then, for some A ∈ L, we

define the quotient L/A as the set of elements of the form B/A, for all B ∈ L such that A≤ B. �

Remark 3.3.2. Note that L/A, which is a set of partitions defined on C/A, always contains the

trivial partition on that set (consider B =A). �

We now show that if L is a lattice, then the quotient L/A is also a lattice in its own right and

its join and meet operations are induced from the join and meet of the original lattice L.

Lemma 3.3.3. Consider a lattice of partitions L and some partition A ∈ L. Then, L/A is also a

lattice and its join (∨L/A) and meet (∧L/A) operations are given by

(B1/A)∨L/A (B2/A) = (B1∨LB2)/A, (3.2)

(B1/A)∧L/A (B2/A) = (B1∧LB2)/A, (3.3)

for any B1,B2 ∈ L such that A ≤ B1,B2, or equivalently, for any B1/A,B2/A ∈ L/A. Further-

more, its top (>L/A) and bottom (⊥L/A) partitions are given by

>L/A =>L/A, (3.4)

⊥L/A =A/A. (3.5)

�

Proof. Consider any partition P/A ∈ L/A such that P/A ≥ B1/A and P/A ≥ B2/A. From

Lemma 3.1.5, this is equivalent to saying that P ≥ B1 and P ≥ B2. Since P,B1,B2 ∈ L, this is

equivalent to P ≥ B1∨L B2. Once again from Lemma 3.1.5, this is equivalent to P/A ≥ (B1∨L

B2)/A. Note that (B1 ∨L B2)/A ∈ L/A. Furthermore, (B1 ∨L B2)/A is coarser than B1/A and

B2/A and any partition that is coarser than them has to also be coarser than (B1∨LB2)/A. Then,

(B1 ∨L B2)/A is the finest such partition, which means that it corresponds to the join (∨L/A) of

L/A, which proves Equation (3.2). Equation (3.3) is proven in a completely analogous way.

Consider any partition P/A ∈ L/A. Then, we have that P ∈ L is such that A ≤ P ≤ >L. Then,

from Lemma 3.1.5, we have that A/A≤ P/A≤>L/A, which proves Equations (3.4) and (3.5).

�

Lemma 3.3.4. Consider partitions A,B1,B2 such that A≤ B1,B2. Then,

(B1/A)∨ (B2/A) = (B1∨B2)/A. (3.6)

�

30 Equality-based synchronism

Proof. Firstly, note that both sides describe partitions on the same set. Assume A,B1,B2 are

partitions on a set of cells C. Then, B1/A and B2/A are partitions on C/A, and so is their join.

Therefore, the left hand side describes a partition on C/A. It is clear that the right hand side is also

a partition on C/A.

In order to prove that the two partitions are the same, we show that two cells are of the same color

in the partition of left hand side if and only if they are also of the same color in the partition of the

right hand side. That is,

(B1/A)∨ (B2/A)(k) = (B1/A)∨ (B2/A)(l) ⇐⇒

(B1∨B2)/A(k) = (B1∨B2)/A(l)

for all l,k ∈ C/A. From Lemma 3.2.2, (B1/A)∨ (B2/A)(k) = (B1/A)∨ (B2/A)(l) is equivalent

to the existence of a chain of cells k = k1, . . . ,kn = l in C/A such that, for each ki,ki+1, with 1≤ i<

n, we have either (B1/A)(ki) = (B1/A)(ki+1) or (B2/A)(ki) = (B2/A)(ki+1). Note that k ∈ C/A
if and only if there is some c ∈ C such that A(c) = k. Then, under some cell correspondence

A(ci) = ki, what we have is equivalent to saying that there is some chain of cells c = c1, . . . ,cn = d

in C such that, for each ci,ci+1, with 1≤ i < n, we have either (B1/A)(A(ci)) = (B1/A)(A(ci+1)

or (B2/A)(A(ci))= (B2/A)(A(ci+1)). This simplifies into having that eitherB1(ci)=B1(ci+1) or

B2(ci) = B2(ci+1). Then, from Lemma 3.2.2 again, this is equivalent to B1∨B2(c) = B1∨B2(d).

SinceA≤B1,B2 from assumption, it is always true thatA≤B1∨B2. Therefore, what we have is

equivalent to (B1∨B2)/A(A(c)) = (B1∨B2)/A(A(d)). This simplifies into (B1∨B2)/A(k) =
(B1∨B2)/A(l), which completes the proof. �

The following is now immediate from Lemmas 3.3.3 and 3.3.4.

Corollary 3.3.5. Consider a lattice of partitions L, some partition A ∈ L and its respective quo-

tient lattice L/A. Then, for the joins of those lattices, we have that∨L =∨with regard to partitions

coarser than A, if and only if ∨L/A = ∨. �

In this work we have a particular interest in lattices of partitions that contain the trivial partition

and whose join is determined by the partition join of Lemma 3.2.2. We have shown that these

properties are preserved under the lattice quotient operation. That is,

Theorem 3.3.6. Consider a lattice of partitions L on a set of cells C, such that ⊥L = ⊥C and

∨L = ∨. Then, given any partition A1 ∈ L, we have that L/A is a lattice on the set C/A such that

⊥L/A =⊥C/A and ∨L/A = ∨. �

We know from Lemma 3.2.5 that lattices with these properties have cir functions associated

to them. We now show how these functions are related.

Lemma 3.3.7. Consider a lattice of partitions L such that ⊥L =⊥ and ∨L = ∨. Then, given some

partition A ∈ L, the lattice L/A has a cirL/A : LT/A → L/A function, which is related to the

3.4 Polydiagonals 31

cirL : LT → L of the original lattice L. In particular, for every B/A ∈ LT/A, we have that

cirL/A(B/A) = cirL(B)/A. (3.7)

�

Proof. Firstly, note that since we consider elements B/A ∈ LT/A, we have that A ≤ B from as-

sumption.

Note that from definition, cirL(B) is the maximal element of the set S := {P ∈ L : P ≤ B} (which

we know exists from Lemma 3.2.5). Then, since A ∈ S, we have that cirL(B) ≥ A. Therefore,

cirL(B)/A ∈ L/A exists and it corresponds to the maximal element of S/A.

On the other hand, cirL/A(B/A) is by definition the maximal term of {P/A ∈ L/A : P/A≤ B/A},
which is again the set S/A, concluding the proof. �

Example 3.3.8. In Figure 3.3a we have a lattice of partitions L, on a set of cells C = {1,2,3,4},
such that ⊥L =⊥C and ∨L = ∨. Consider the partition A= {{1},{2,4},{3}}, which is in L. We

denote the elements of the quotient set C/A= {1,24,3} and illustrate the quotient lattice L/A in

Figure 3.3b. Note that L/A is also such that ⊥L/A =⊥C/A and ∨L/A = ∨. �

⊥C

12 24 23

124 123 234

1234

(a) Lattice L.

⊥C/A

1(24) (24)3

1(24)3

(b) Quotient lattice L/A.

Figure 3.3: Illustration of a lattice L and its quotient lattice L/A.

3.4 Polydiagonals

We now relate a partition that encodes an equality-based synchrony pattern to its corresponding

subset of the state set in the network.

Definition 3.4.1. Given a partition A ∈ LT , we call the subset of X

∆
X
A := {x ∈ X : A(c) =A(d) =⇒ xc = xd}, (3.8)

the polydiagonal of A in X. �

32 Equality-based synchronism

This means that any x ∈ ∆X
A can be given by x = Px for some x, where P is a partition matrix

of A. Consider for instance A = {{1,2},{3}}, represented by P =

1 0

1 0

0 1

. Then, x = Px with

x =

[
x12

x3

]
gives us x =

x12

x12

x3

.

Remark 3.4.2. Note that if the state sets {Xi}i∈T only have one element, then it is irrelevant to talk

about synchronism in the first place. For this reason, we assume that the state sets are non-empty

and non-singleton. That is, we can always choose xc 6= xd with xc,xd ∈ Xi for i = T(c) = T(d). �

The partial order relationship between partitions (≤) induces the following inclusion partial

order (⊆) between polydiagonals.

Lemma 3.4.3. Consider partitions A,B ∈ LT and their respective polydiagonals ∆X
A,∆

X
B. Then,

A≤ B⇐⇒ ∆
X
A ⊇ ∆

X
B. (3.9)

�

Proof. The forward direction is direct from Equation (3.1) together with Definition 3.4.1. The

backwards direction is proved by showing its contrapositive, that is, ¬(A≤B) =⇒ ¬(∆X
A ⊇ ∆X

B).

If ¬(A ≤ B), then there are c,d ∈ C such that A(c) = A(d) and B(c) 6= B(d). Then, under the

assumption that the state sets are non-singleton, there is x ∈ ∆X
B such that xc 6= xd , that is, x /∈ ∆X

A,

which proves the contrapositive. �

Moreover, the intersection of two polydiagonals is itself a polydiagonal. In particular, it is

related to the join (∨) operation as follows.

Lemma 3.4.4. Given partitions A1,A2 ∈ LT , we have that ∆X
A1∨A2

= ∆X
A1
∩∆X

A2
. �

Proof. SinceA1∨A2 is coarser than bothA1 andA2, we know from Lemma 3.4.3 that ∆X
A1∨A2

⊆
∆X
A1

and ∆X
A1∨A2

⊆ ∆X
A2

. Therefore, ∆X
A1∨A2

⊆ ∆X
A1
∩∆X

A2
.

We now prove the converse. Assume x∈ ∆X
A1
∩∆X

A2
. Then, x∈ ∆X

A1
and x∈ ∆X

A2
. This implies that

for every chain of cells c= c1, . . . ,ck = d such that eitherA1(ci) =A1(ci+1) orA2(ci) =A2(ci+1),

we have that xc = xd . From Lemma 3.2.2, we have that x ∈ ∆X
A1∨A2

. Therefore, ∆X
A1
∩∆X

A2
⊆

∆X
A1∨A2

. �

The union of polydiagonals does not necessarily give us another polydiagonal. There exists,

however, the smallest polydiagonal that contains the union of two polydiagnals. Note that these

properties are analogous to the intersection and union of vector subspaces.

Lemma 3.4.5. Given partitions A1,A2 ∈ LT , we have that ∆X
A ⊇ ∆X

A1
∪∆X

A2
if and only if A ≤

A1∧A2. �

3.5 Invariance of polydiagonals 33

Proof. Consider a partition A ∈ LT such that ∆X
A ⊇ ∆X

A1
∪∆X

A2
. Then, ∆X

A ⊇ ∆X
A1

and ∆X
A ⊇ ∆X

A2
.

From Lemma 3.4.3, this means that A≤A1 and A≤A2, therefore A≤A1∧A2.

We now prove the converse. It is enough to show that A1 ∧A2 satisfies the inclusion condition

since from Lemma 3.4.3, any partition finer than it would also satisfy it. Since A1 ∧A2 is finer

than both A1 and A2, we know that ∆X
A1∧A2

⊇ ∆X
A1

and ∆X
A1∧A2

⊇ ∆X
A2

. Therefore, ∆X
A1∧A2

⊇
∆X
A1
∪∆X

A2
. �

3.5 Invariance of polydiagonals

We now investigate the properties of a function that preserves equality-based synchrony patterns.

Definition 3.5.1. If for a G-admissible function f : X→ Y and a partition A ∈ LT we have

f
(

∆
X
A

)
⊆ ∆

Y
A, (3.10)

then A is f -invariant.
Furthermore, if for F ⊆ FG , A is f -invariant for every f ∈ F, then we say that A is F-invariant.

�

Note that if A is f -invariant, then for every x ∈ X such that x = Px, with P representing A,

there is y such that f (Px) = Py. This means that there is a function f : X→ Y with sets X := Xk

and Y := Yk, for an appropriate k≥ 0|T |, such that

f (Px) = P f (x). (3.11)

Consider again A= {{1,2},{3}}, represented by P =

1 0

1 0

0 1

.

Then, A is f -invariant if f

x12

x12

x3

=

y12

y12

y3

. That is, f

(
P

[
x12

x3

])
= P

[
y12

y3

]
.

This means that f induces a related function f

([
x12

x3

])
=

[
y12

y3

]
.

Consider a discrete-time system x+ = f (x) that evolves according to an G-admissible map f : X→
X. If A is f -invariant, then

xn0 ∈ ∆
X
A =⇒ xn ∈ ∆

X
A ∀n ∈ N : n≥ n0. (3.12)

Similarly, for a continuous-time system ẋ = f (x) that evolves according to an G-admissible vector

field f (x) : X→ TxX where f is Lipschitz, X is a smooth manifold and TxX its tangent space at x.

If A is f -invariant, then

x(t0) ∈ ∆
X
A =⇒ x(t) ∈ ∆

X
A ∀t ∈ R. (3.13)

34 Equality-based synchronism

Note that in both cases the polydiagonals ∆X
A are invariant with respect to the dynamics. Moreover,

the evolution of x is fully determined by x, which in turn evolves according to

x+/ẋ = f (x). (3.14)

Corollary 3.5.2. The trivial partition ⊥ is always FG-invariant. �

Lemma 3.5.3. Consider partitionsA1,A2 ∈ LT and f ∈FG such thatA1,A2 are both f -invariant.

Then, A1∨A2 is also f -invariant. �

Proof. Take any x ∈ ∆X
A1∨A2

= ∆X
A1
∩∆X

A2
. Then, x ∈ ∆X

A1
and x ∈ ∆X

A2
. From assumption, we

have f (x) ∈ ∆Y
A1

and f (x) ∈ ∆Y
A2

, that is, f (x) ∈ ∆Y
A1
∩∆Y

A2
= ∆Y

A1∨A2
. Therefore, A1 ∨A2 is

f -invariant. �

Corollary 3.5.4. Consider partitionsA1,A2 ∈LT and F ⊆FG such thatA1,A2 are both F-invariant.

Then, A1∨A2 is also F-invariant. �

Proof. From definition,A1,A2 being F-invariant implies that they are f -invariant for every f ∈ F .

Then, from Lemma 3.5.3, A1 ∨A2 is also f -invariant for every f ∈ F . That is, A1 ∨A2 is F-

invariant. �

Remark 3.5.5. Note that only being interested in a particular subset of admissible functions

F ⊆ FG is quite natural. In particular, the definition of FG does not include any type of smooth-

ness assumption. In general, we could be interested in admissible functions that are constructed

through of oracle components that have more properties than the minimal ones described in Def-

inition 2.4.1. For instance, an oracle component such that a cell becomes insensitive to cells that

are on the same state, corresponds, under the current formalism, to the following constraint.

f̂i

(
x;

[
wi1

w

]
,

[
x

x

])
= f̂i (x;w,x) . (3.15)

This assumption is present, for instance in the Kuramoto model. Note that this makes the cells of

such a system always insensitive to self-loops. �

We can now show that the sets of F-invariant partitions form lattices.

Theorem 3.5.6. Denote by LF the subset of partitions in LT that are F-invariant, with F ⊆ FG .

Then, LF is a lattice whose minimal element⊥F is the trivial partition⊥ and whose join operation

∨F is the partition join ∨ as described in Lemma 3.2.2. �

Proof. We know that LT is finite, therefore, LF is also finite. From Corollary 3.5.2, we know that

⊥ ∈ LF for all F ⊆FG . Since ⊥ is the finest partition, we have that ⊥F =⊥.

Consider anyA1,A2 ∈ LF . Then, from Corollary 3.5.4, we know thatA1∨A2 ∈ LF . Any partition

coarser than A1 and A2 has to be coarser than A1∨A2. Therefore, ∨F = ∨. From Lemma 3.2.4,

we know that LF is a lattice. �

3.6 Balanced partitions 35

Remark 3.5.7. Note that L /0 = LT since being /0-invariant is vacuously satisfied. �

Corollary 3.5.8. Denote by L f (instead of by L{ f}) the subset of partitions in LT that are f -

invariant, with f ∈ FG . Then, for all F ⊆FG , we have that LF =
⋂

f∈F L f . �

Corollary 3.5.9. For every F1,F2 ⊆FG , we have that

1. If F1 ⊆ F2, then LF1 ⊇ LF2 .

2. LF1∪F2 = LF1 ∩LF2 .

3. LF1∩F2 ⊇ LF1 ∪LF2 .

�

From item 1 of Corollary 3.5.9, we know that LFG is the smallest possible lattice of invariant

partitions.

We have shown in Lemma 3.2.5 that for a lattice L such that ⊥L =⊥ and ∨L = ∨, there exists of

a function cirL that assigns to each element in LT an element of L. Since every F-invariant lattice

satisfies these assumptions, we have the following.

Corollary 3.5.10. Consider a F-invariant lattice LF , with F ⊆ FG . Given any partition A ∈ LT ,

there is a partition B ∈ LF that is the coarsest one in LF such that B ≤ A. This establishes the

function cirF : LT → LF . �

Corollary 3.5.11. Consider partitions A1,A2 ∈ LF , with F ⊆ FG . Then A1 ∧F A2 = cirF(A1 ∧
A2). �

In summary, we have seen that the join operation (∨) as described in Lemma 3.2.2 is fun-

damental with regard to the study of invariance in polydiagonals. In particular, it corresponds to

the fact that the intersection of invariant polydiagonals gives us another invariant polydiagonal.

On the other hand, the meet operation is not fixed. It is dependent on the particular lattice L and

does not present a clear intuitive meaning. In fact, from Lemma 3.2.4, its existence can be seen

as a mere consequence of a minimal partition ⊥L together with some join operation ∨L. Since we

have that ∨L = ∨ for all the lattices we are interested in (F-invariant lattices), we see that the join

operation is the most convenient of the two fundamental operations on lattices and we focus on it

in this work.

3.6 Balanced partitions

We now show that if the connectivity structure of a network G respects certain conditions, it

enforces certain polydiagonals to be invariant, regardless of the particular choice of admissible

f ∈ FG .

36 Equality-based synchronism

Definition 3.6.1. Consider a network G defined on a cell set C with a cell type partition T and an

in-adjacency matrix M. A partition A∈ LT with characteristic matrix P is said to be balanced on

G if for all c,d ∈ C

A(c) =A(d) =⇒ mcP = mdP, (3.16)

where mc,md are the rows of matrix M corresponding to cells c and d, respectively. �

Note that a partition is balanced if and only if there is a matrix Q of elements in the appropriate

monoids {Mi j}i, j∈T such that

MP = PQ. (3.17)

A balanced partition is usually indicated with the symbol ./ and we denote the set of all balanced

partitions in a given network G by ΛG .

In Stewart (2007) it was shown that for the unweighted formalism, ΛG forms a lattice under the

partition refinement relation (≤), as described in Equation (3.1). We show that this follows easily

from the results in Section 3.5.

Corollary 3.6.2. The trivial partition ⊥ is always balanced. �

Proof. For any M, the condition Equation (3.17) is satisfied with P = I and Q = M. �

Lemma 3.6.3. Consider balanced partitions ./1,./2 ∈ ΛG . Then, ./1∨./2 is also balanced. �

Proof. Denote ./ := ./1 ∨ ./2 and choose any two colors A,B ∈ ./. Since ./1,./2 are both finer

than ./, there are colors b1
1, . . . ,b

1
k1
∈ ./1 and b2

1, . . . ,b
2
k2
∈ ./2 such that B =

⋃k1
i=1 b1

i =
⋃k2

i=1 b2
i .

Consider any pair of cells c,d ∈ A. From Lemma 3.2.2, ./(c) = ./(d) implies that there is a chain

of cells c = c1, . . . ,ck = d such that, for each ci,ci+1, with 1 ≤ i < k, we have either ./1(ci) =

./1(ci+1) or ./2(ci) = ./2(ci+1). Then, for each link ci,ci+1 in the chain, there is some p ∈ {1,2}
such that

∑
e∈bp

j

wcie = ∑
e∈bp

j

wci+1e ∀ j ∈ {1, . . . ,kp},

which implies

∑
e∈B

wcie = ∑
e∈B

wci+1e.

Since this quantity is preserved across each link ci,ci+1 of the chain, is it preserved across the

whole chain. Therefore,

∑
e∈B

wce = ∑
e∈B

wde

for every c,d ∈ A. Since this argument applies to every pair of colors A,B ∈ ./, we have that ./ is

balanced. �

3.6 Balanced partitions 37

Using Lemma 3.2.4 again, the following is an immediate consequence of Corollary 3.6.2 and

Lemma 3.6.3.

Corollary 3.6.4. Given a network G, the set of balanced partitions ΛG forms a lattice whose

minimal element ⊥G is the trivial partition ⊥ and whose join operation ∨G is the partition join ∨
as described in Lemma 3.2.2. �

From Lemma 3.2.5, the following is immediate.

Corollary 3.6.5. Given any partition A ∈ LT , there is a partition ./ ∈ ΛG that is the coarsest one

in ΛG such that ./≤A. �

This implies the existence of a cir function from LT to ΛG , which we denote by just cir. Then,

we have the following.

Corollary 3.6.6. Consider balanced partitions ./1,./2 ∈ ΛG . Then, ./1∧G ./2 = cir(./1∧ ./2).

�

The particular cir function associated with ΛG is easy to compute and was extended in Sequeira

et al. (2021) for the general weighted case.

In order to present the interesting properties of balanced partitions, we require the following result,

which relates partitions and oracle components.

Lemma 3.6.7. For any oracle component f̂i ∈ F̂i, we have that

f̂i(x;w,Px) = f̂i(x;P>w,x), (3.18)

where P is a partition matrix of appropriate dimensions such that the vectors w and Px have

elements of matching cell types. �

Proof. We prove this by induction. Consider fixed integers n,k such that 0 < k < n. Assume

Equation (3.18) applies to all partition matrices of dimension n× (k+ 1) as long as it is applied

to suitable (type matching) w and x. Note that any partition matrix P of dimension n× k can be

obtained by taking some partition matrix P of dimension n× (k+ 1) and merging together two

of its columns. That is, P = Ppσ , with p =

1 0>

1 0>

0 Ik−1

 and where σ is a permutation matrix of

dimension k× k.

Consider one such P and any suitable w and x. Then, f̂i(x;w,Px) = f̂i(x;w,P(pσx)). From as-

sumption, we call apply Equation (3.18) with respect to P, which gets us f̂i(x;P>w, pσx). Due to

the particular shape of p, applying Equation (3.18) with regard to p is equivalent to item 2 of Defi-

nition 2.4.1. This gives us f̂i(x; p>P>w,σx). Similarly, we can apply Equation (3.18) with regard

to σ since it corresponds to item 1 of Definition 2.4.1. Note that since σ is a permutation ma-

trix, we have that σ−1 = σ>. Therefore, this becomes f̂i(x;σ>p>P>w,x) = f̂i(x;(Ppσ)>w,x) =
f̂i(x;P>w,x), which proves that Equation (3.18) is satisfied for any partition matrix P of size n×k.

38 Equality-based synchronism

In the base case k = n, the partition matrix is in fact a permutation, therefore, it is direct from item 1

of Definition 2.4.1, which concludes the proof. �

Remark 3.6.8. Note that Lemma 3.6.7 is valid for all inputs such that the evaluation is meaningful.

That is, whenever the domain Equation (2.1) is respected. Furthermore, it can be seen that vectors

w and Px having elements of matching cell types is equivalent to P>w and x having elements of

matching cell types and the sum P>w being well-defined. That is, each sum operates on elements

of the same commutative monoid. �

Remark 3.6.9. We just proved Lemma 3.6.7 using items 1 and 2 in Definition 2.4.1. Furthermore,

it is straightforward that these items are just particular cases of Lemma 3.6.7. Therefore, these

are equivalent statements. �

This result is illustrated in the following example.

Example 3.6.10. Consider the networks in Figure 3.4, consisting on a cell and its respective

in-neighborhood. We have cell types T = {1,2} which represent “circle” and “square” cells,

respectively. We define the monoid operations ‖ to be the usual addition. If we write the state and

x2 x1 x2 x1

x

1 1 2 1

(a) First input set.

x2 x1

x

3 2

(b) Second (edge compressed)
input set.

Figure 3.4: Networks with equivalent input sets.

weight vectors from left to right, we get

x =
[
x2 x1 x2 x1

]>
,

x =
[
x2 x1

]>
,

w =
[
1 1 2 1

]>
,

w =
[
3 2

]>
for each of the Figures 3.4a and 3.4b, respectively. Consider now the partition matrix

P =

1 0

0 1

1 0

0 1

 .

3.6 Balanced partitions 39

Note that x = Px and w = P>w. Furthermore, these operations respect the cell types since we

have that T = PT, with

T =
[
1 2 1 2

]>
, T =

[
1 2

]>
.

Then, from Lemma 3.6.7, we see that

f̂i(x;w,x) = f̂i(x;w,Px) = f̂i(x;P>w,x) = f̂i(x;w,x).

�

Having proven this, we can now state the following result, which underlines the importance of

balanced partitions in the study of invariance.

Theorem 3.6.11. Consider a balanced partition ./ ∈ ΛG on a network G and any G-admissible

function f ∈ FG . Then, ./ is f -invariant. �

Proof. Consider any ./ ∈ ΛG and a state in the related polydiagonal x ∈ ∆X
./. That is, x = Px for

some x, where P is a partition matrix of ./.

For any pair of cells c,d ∈ C such that ./(c) = ./(d), we have that xc = xd . Furthermore, from

Definition 3.6.1, we have that P>m>c = P>m>d . Therefore, f̂i
(
xc;P>m>c ,x

)
= f̂i

(
xd ;P>m>d ,x

)
for

any f̂i ∈ F̂i, with i = T(c) = T(d).
Using Lemma 3.6.7, this becomes f̂i

(
xc;m>c ,Px

)
= f̂i

(
xd ;m>d ,Px

)
, which from Definition 2.4.5

is equivalent to fc(Px) = fd(Px). This means that for every G-admissible function f ∈ FG , there

is a f such that f (Px) = P f (x). That is, ./ is f -invariant. �

Which is equivalent to the following statement.

Corollary 3.6.12. Given a network G, we have that ΛG ⊆ LF , for any F ⊆FG . �

Theorem 3.6.13. Consider a partition A≤ T on some network G. If A is FG-invariant, then A is

balanced on G. �

Proof. We prove this through its contrapositive. That is, A /∈ ΛG implies A /∈ LFG .

Consider any partition A≤ T that is not balanced. Then, there are cells c,d ∈ C such that A(c) =
A(d) and P>m>c 6= P>m>d , where P is a partition matrix of A. Consider k one of the entries in

which they differ. That is,
[
P>m>c

]
k 6=

[
P>m>d

]
k.

We now choose a state in the related polydiagonal x ∈ ∆X
A, that is, x = Px for some x, such that xk

is different from all other entries of x.

Then, there is an f ∈ FG , that is, f = f̂ |G such that f̂i (x;w,x) = y1 if w, summed over the entries

in x that are xk, results into
[
P>m>c

]
k, and f̂i (x;w,x) = y2 otherwise, with y1 6= y2, y1,y2 ∈Yi and

i = T(c). Then, f̂i
(
xc;P>m>c ,x

)
= y1 and f̂i

(
xd ;P>m>d ,x

)
= y2. That is, fc(Px) 6= fd(Px), and we

have an f ∈ FG and x such that f (Px) 6∈ ∆Y
A. That is, A /∈ ΛG implies A /∈ LFG , which completes

the proof. �

40 Equality-based synchronism

Which is equivalent to the following statement.

Corollary 3.6.14. Given a network G, we have that ΛG ⊇ LFG . �

Note that LFG is the smallest possible lattice of invariant partitions. In Stewart et al. (2003);

Golubitsky et al. (2005); Golubitsky and Stewart (2006), Theorem 3.6.13 was derived by proving a

stronger result. In particular, by showing that exists some subset F ⊆FG such that ΛG ⊇ LF . This

type of results is of interest since one might only be interested in certain subclasses of admissible

functions and not the full FG .

This stronger result, which was originally hid away in their proof of the unweighted version of The-

orem 3.6.13, was made explicit and generalized in Sequeira et al. (2021) for the general weighted

formalism.

From and Corollaries 3.6.12 and 3.6.14 the following is now immediate.

Corollary 3.6.15. Given a network G, we have that ΛG = LFG . �

3.7 Quotient networks

In this section we describe how the behavior of a network G when evaluated at some polydiagonal

∆X
./ for some balanced partition ./ can be described by a smaller network Q.

Definition 3.7.1. Consider a network G defined on a cell set CG with a cell type partition TG and

an in-adjacency matrix M. Take a balanced partition ./ ∈ ΛG .

The quotient network Q of G over ./, denoted Q := G/./, is defined on a cell set CQ := CG/./
with a cell type partition TQ := TG/./ and an in-adjacency matrix Q given by MP = PQ, where P

represents ./. �

Remark 3.7.2. We assume that a particular ordering has been chosen for the sets of cells CG and

CQ. Then, the partition P representing ./ and the in-adjacency matrices M and Q are uniquely

defined. �

Lemma 3.7.3. Consider a balanced partition ./01 ∈ ΛG0 on a network G0 and its respective quo-

tient network G1 = G0/./01. For a partition ./02 such that ./01 ≤ ./02, define ./12 := ./02/./01.

Then, ./02 ∈ ΛG0 if and only if ./12 ∈ ΛG1 . Furthermore, if ./02 and ./12 satisfy this, then

G0/./02 = G1/./12. �

Proof. Denote by T0, T1, the cell type partitions of networks G0, G1, respectively. Then, T1 =

T0/./01 by definition. From Lemma 3.1.6, we know that T1/./12 = (T0/./01)/(./02/./01) =

T0/./02.

Consider now that M0, M1 are the in-adjacency matrices of G0, G1, respectively, and that P01,

P02, P12 are the partition matrices of ./01, ./02, ./12. Then, from ./12 = ./02/./01, we have that

P02 = P01P12. Moreover, since ./01 ∈ ΛG0 , we have that M0P01 = P01M1.

In order to show that ./02 ∈ ΛG0 if and only if ./12 ∈ ΛG1 , we prove that

M0P02 = P02M2⇐⇒M1P12 = P12M2.

3.7 Quotient networks 41

Expanding P02 in the left hand side, this becomes

M0P01P12 = P01P12M2⇐⇒M1P12 = P12M2.

From M0P01 = P01M1, this can be written as

P01(M1P12) = P01(P12M2)⇐⇒M1P12 = P12M2,

which is now clear from the fact that P01 has full column rank, that is, it is left invertible. Note that

if there is a matrix M2 that satisfies these expressions, the network G2 defined by the in-adjacency

matrix M2 and the cell type partition T2 = T1/./12 = T0/./02, is such that G2 = G0/./02 = G1/./12.

�

From Theorem 3.6.11, we know that any balanced partition ./ ∈ ΛG is f -invariant for any

f ∈FG . Note that in Equation (3.11) it was shown that for a partitionA and a function f such that

A is f -invariant, then, f , when evaluated on ∆X
A can be determined by a simpler function f . We

will see that for the case of balanced partitions this function is particularly noteworthy.

Definition 3.7.4. Consider a network G and a balanced partition ./ ∈ ΛG . Let f ∈ FG . The

quotient function g := f/./ is defined through constraining f to the polydiagonal ∆X
./. That is,

f (Px) = Pg(x), (3.19)

where P is the partition matrix of ./. �

We now show that the quotient function is very intimately related to the quotient network.

Theorem 3.7.5. Consider networks G and Q such that Q = G/./ for some balanced partition

./ ∈ ΛG . Then, for any f ∈ FG , which is given by f = f̂ |G , for some f̂ ∈ F̂T , we have that its

quotient function g = f/./ is given by g = f̂ |Q. Therefore, g ∈ FQ. �

Proof. From Definition 3.7.4, we have that gk(x)= fc(Px) for all c∈CG and k = ./(c). Then, from

G-admissibility, fc(Px) = f̂i
(
xk;m>c ,Px

)
, with i = TG(c). From Lemma 3.6.7, f̂i

(
xk;m>c ,Px

)
=

f̂i
(
xk;P>m>c ,x

)
, and since ./ is balanced, this is equal to f̂i(xk;q>k ,x). That is, we have that

gk(x) = f̂i(xk;q>k ,x) for all k ∈ CQ with i = TQ(k). Therefore, g = (gk)k∈CQ isQ-admissible, with

g = f̂ |Q. �

The following is now immediate from Definition 3.7.4 and Theorem 3.7.5.

Corollary 3.7.6. Consider networks G and Q such that Q = G/./ for some balanced partition

./ ∈ ΛG . Then, for any f̂ 1, f̂ 2 ∈ F̂T , we have that

f̂ 1|G = f̂ 2|G =⇒ f̂ 1|Q = f̂ 2|Q.

�

42 Equality-based synchronism

Now that we understand the relationship between f ∈ FG and its quotient g = f/./ in terms

of oracle functions, the following is clear.

Corollary 3.7.7. Consider networks G and Q such that Q = G/./ for some balanced partition

./ ∈ ΛG . Then, for any g ∈ FQ, there is some f ∈ FG such that g = f/./. �

Note that Corollary 3.7.7 only refers to existence, not to uniqueness. That is, it could be

possible to have f1, f2 ∈ FG such that f1 6= f2 but g = f1/./ = f2/./. They will, however, match

when evaluated at the polydiagonal ∆X
./.

Example 3.7.8. Consider the given partition A = {{1,2},{3}} on the CCN of Example 2.4.6

(Figure 2.6). One partition matrix of A is

P =

1 0

1 0

0 1

 , (3.20)

in which each column identifies one of the colors of the partition. From this we obtain the product

MP =

1 1

1 1

2 1

 . (3.21)

Note that rows 1 and 2 are the same and the respective cells are of the same cell type. That means

that for any admissible f we have f1(x) = f2(x) when x1 = x2.

Observe that this is in agreement with the functional form we wrote in Equations (2.7) and (2.8).

Since the rows of MP respect an equality relationship according to A, then A is balanced and

there is a quotient matrix Q that obeys the balanced condition Equation (3.17). In fact, the quotient

matrix Q is

Q =

[
1 1

2 1

]
, (3.22)

which is directly obtained from MP by compressing its rows according to A.

The behavior of this CCN when x1 = x2 is then described by the smaller CCN given by the quotient

matrix Q which is represented in Figure 3.5b. The coloring is a way of representing the partition

1 2

3

(a) Original.

1,2

3

2

(b) Quotient.

Figure 3.5: Color-coded network of Figure 2.6 and its quotient over the balanced partition
{{1,2},{3}}.

A = {{1,2},{3}} over which the quotient is done. Note that in both Figures 3.5a and 3.5b each

3.7 Quotient networks 43

gray cell receives one connection from a gray cell and one connection from a white cell. On the

other hand, each white cell receives a connection from a white cell and two connections from a

gray cell. The function g = f/./ has the following structure

g12(x) = f̂1(x12;
[
1 1

]>
,x), (3.23)

g3(x) = f̂2(x3;
[
2 1

]>
,x), (3.24)

where f̂ ∈ F̂T is any oracle function such that f = f̂ |G . �

Remark 3.7.9. Note that finding a balanced partition from its graph representation or its matrix

M is not obvious. See Example 3.7.10. �

Example 3.7.10. Consider the following network illustrated in Figure 3.6. Since cells 2 and 3 have

1 2 3

Figure 3.6: Chain CCN.

the same type of input it might be tempting to think that A = {{1},{2,3}} should be balanced.

Note, however, that the rows of the corresponding matrix MP Equation (3.25) do not respect the

row equalities according to A, which means that it is not balanced.

MP =

0 0

1 0

0 1

 . (3.25)

Another way to see this is to color the cells according to the partition (Figure 3.7) and see that

cells with the same color do not have equivalent colored input sets. Note that cells 2 and 3 are

1 2 3

Figure 3.7: Unbalanced coloring.

both gray but one of them receives one edge from a white cell and the other receives one edge from

a gray cell. Therefore, this coloring (partition) is not balanced. In fact, it can be easily seen that

the only balanced partition of this network is the trivial one. �

We now extend the concept of quotient of admissible functions to sets of admissible functions.

Definition 3.7.11. Consider networks G and Q such that Q= G/./ for some ./ ∈ ΛG . Given any

subset of G-admissible functions FG ⊆ FG , we define its quotient FQ = FG/./ as the subset of FQ

such that g ∈ FQ if and only if there is some f ∈ FG such that g = f/./. �

44 Equality-based synchronism

Note that from Corollary 3.7.7 it is immediate that FG/./= FQ. That is, FG/./= FG/./.

We are now ready to study the relation between the invariant lattices LFG of a network G and

corresponding invariant lattice of its quotient network Q= G/./.

The following is direct from Lemma 3.7.3.

Corollary 3.7.12. Consider networks G and Q such that Q = G/./ for some ./ ∈ ΛG . Then,

ΛQ = ΛG/./. �

We now generalize this to lattices of F-invariant partitions.

Theorem 3.7.13. Consider networks G and Q such that Q= G/./ for some ./ ∈ ΛG , and subsets

FG ⊆FG , FQ ⊆FQ such that FQ = FG/./.

Then, for partitions AG ≤ TG and AQ ≤ TQ such that AG ≥ ./ and AQ = AG/./, we have that

AG ∈ LFG if and only if AQ ∈ LFQ . That is, LFQ = LFG/./. �

Proof. We consider the partitions ./, AG and AQ to be represented by partition matrices P, PG
and PQ respectively, such that PG = PPQ.

AssumeAG ∈ LFG . Note that for any g ∈ FQ, there is some f ∈ FG such that g = f/./. Then, from

the fact that ./ is balanced, we know from Definition 3.7.4 that f (PGx) = f (PPQx) = Pg(PQx).
On the other hand, from the fact that AG ∈ LFG we know that f (PGx) = PG f (x) = PPQ f (x) for

some f . Therefore, Pg(PQx) = PPQ f (x). Since P always has full column rank, it is left-invertible,

which means that g(PQx) = PQ f (x). That is, AQ is g-invariant for any g ∈ FQ, from which we

conclude that AG ∈ LFG implies AQ ∈ LFQ . We now prove the converse direction.

Assume AQ ∈ LFQ . Note that for any f ∈ FG , its quotient g = f/./ is in FQ. Then, from the fact

that AQ ∈ LFQ we know that g(PQx) = PQg(x) for some g. Multiplying on the left by P gives us

Pg(PQx) = PPQg(x) = PGg(x). On the other hand, from the fact that ./ is balanced, we have from

Definition 3.7.4 that Pg(PQx) = f (PPQx) = f (PGx). Therefore, f (PGx) = PGg(x). That is, AG

is f -invariant for any f ∈ FG , from which we conclude that AQ ∈ LFQ implies AG ∈ LFG , which

completes the proof. �

Note that this is in agreement with Corollary 3.7.12 when we consider the particular case

FG =FG and FQ =FQ. The following is now immediate from Theorem 3.7.13 and Lemma 3.3.7.

Corollary 3.7.14. Consider networks G andQ such thatQ= G/./ for some ./ ∈ΛG , and subsets

FG ⊆FG , FQ ⊆FQ such that FQ = FG/./.

Then, for A≤ TG such that A≥ ./, we have that

cirFG (A)/./= cirFQ(A/./). (3.26)

�

3.8 CIR algorithm for balanced partitions 45

3.8 CIR algorithm for balanced partitions

In this section we describe our improvement of the CIR algorithm that works with general weight

sets and has a worst-case complexity of O(|C|3) in the case of a dense graph and O(|C|2) in the

sparse case.

Consider a network represented by a matrix M together with an initial partitionA0≤T represented

by matrix P0, of which we want to find the coarsest refinement (e.g., make P0 the characteristic

matrix of T if the goal is to find the maximal balanced partition >).

3.8.1 Method

The idea of this algorithm is to start with the initial partition A0 and progressively refine it in a

conservative manner. That is, given a partition Ai, we construct a partition Ai+1 ≤ Ai such that

any balanced partition finer than Ai is also finer than Ai+1. We create Ai+1 by taking each color

of Ai and splitting its cells according to whenever their corresponding rows in MPi match or not.

If Ai+1 = Ai the algorithm has converged and we found Ai = cir(A0), otherwise we continue

iterating.

Lemma 3.8.1. According to the described iterative method, any balanced partition finer than Ai

is also finer than Ai+1. �

Proof. Assume that there are cells c, d such that Ai(c) =Ai(d) but rows c and d of MPi do not

match perfectly (assume on kth column). Note that the kth color of Ai will correspond to either a

color, or a union of colors of any balanced partition finer than Ai. This means that no matter what

refinement happens, the cells c and d will have no chance of having the same color in a balanced

refinement, since if the sum of the parts is different, it will not be possible for the parts themselves

to match. Therefore, any balanced partition finer than Ai is also finer than Ai+1. �

Remark 3.8.2. Note that if at a certain iteration no more refinement happens, that means that the

balanced condition Equation (3.16) has been achieved and we found cir(A0). �

Lemma 3.8.3. The iterative procedure always converges in at most |C|− rank(A0) iterations. �

Proof. Note that in each iteration, either the rank of the partition increases or the algorithm stops

because a balanced partition was achieved. In the worst case scenario, the rank increases by

one until the trivial partition is reached. Therefore, the algorithm always converges in at most

|C|− rank(A0) iterations. �

Since this algorithm always converges, this shows by construction that cir(A0) exists. That is,

for any partition A0, there is a unique balanced partition Ai = cir(A0) such Ai ≤A0 and ./≤Ai

for any balanced partition ./ such that ./≤A0.

46 Equality-based synchronism

3.8.2 Efficient implementation and cost analysis

Note that a partition matrix P on a set of cells C can be efficiently represented by a vector of size |C|
as seen in Example 3.1.7. Calculating the product MPi consists on summing (‖) certain elements

of M according to the pattern described in Pi. To compare rows of MPi previous works considered

a quadratic cost which was the bottleneck of the algorithm. If the appropriate data structure (hash

table) is used, such operation is of the order O(rank(Ai)). A pseudo-code description of the

algorithm implementation is presented in Algorithms 1 and 2.

Algorithm 1 CIR algorithm
M← CCN matrix
p0← initial partition vector
r0← rank of p0
pnew← p0
rnew← r0
repeat

pold ← pnew

rold ← rnew

(pnew,rnew)← cir_iteration(M, pold ,rold)
until rnew == rold

Algorithm 2 CIR iteration
M← CCN matrix
pold ← previous partition vector
rold ← rank of pold
pnew← new partition vector
rnew← 0
for r = 1: |C| do

v← zero vector of size rold
for c : (r,c) ∈ E do

v[pold(c)]← v[pold(c)]+M(r,c)
end for
s← vec2string([pold(r),v])
value← hash_table. f ind(s)
if value NOT_FOUND then

rnew←rnew +1
pnew[r]← rnew

hash_table.insert(s,rnew)
else

pnew[r]← value
end if

end for

Lemma 3.8.4. This implementation of the CIR algorithm leads to a worst-case complexity of

O(|C|3)). �

3.8 CIR algorithm for balanced partitions 47

Proof. In each iteration we are summing (‖) a total of |E| entries of M. The lookup and insertion

in an hash table are fast operations with complexity O(1) which are each executed |C| times. The

|C| strings that are used as key in the hash table have size proportional to rank(Ai).

The complexity of the ith iteration is then O(|E|+ |C|+ |C|rank(Ai)). In the worst-case scenario

the rank increases by one and the number of iterations is O(|C|). This implies total worst-case

complexity of O(|C|3). �

Remark 3.8.5. In practice, the number of iterations seems to be much lower than |C| which means

that this is a very pessimistic upper bound for the complexity. �

We illustrate this algorithm with the following example.

Example 3.8.6. Consider the network illustrated in Figure 3.8 with cell type partition

T = {{1,2,5,6},{3,4}}. The edge weight monoid is the same as in the parallel of resistors (Ex-

ample 2.1.1). We assume that the arrows all represent values of 30. Note that the zero of the

monoid is 0M = ∞. This is represented by the matrix in Equation (3.27).

1 2

3

4

5 6

Figure 3.8: Network of Example 3.8.6 illustrating the CIR algorithm.

M =

30 30 30 ∞ ∞ ∞

30 30 30 ∞ ∞ ∞

30 ∞ ∞ 30 30 ∞

∞ ∞ 30 ∞ 30 30

30 ∞ ∞ ∞ 30 ∞

∞ 30 ∞ ∞ 30 ∞

. (3.27)

If we are interested in finding the top partition >, we initialize A0 = T. This partition can be

represented by the matrix P0

A0 =

1

1

2

2

1

1

, P0 =

1 0

1 0

0 1

0 1

1 0

1 0

.

48 Equality-based synchronism

Applying the algorithm we get

[
A0 MP0

]
=

1 15 30

1 15 30

2 15 30

2 15 30

1 15 ∞

1 15 ∞

whose row comparison determines the next iteration A1 and P1

A1 =

1

1

2

2

3

3

, P1 =

1 0 0

1 0 0

0 1 0

0 1 0

0 0 1

0 0 1

.

Applying the same procedure

[
A1 MP1

]
=

1 15 30 ∞

1 15 30 ∞

2 30 30 30

2 ∞ 30 15

3 30 ∞ 30

3 30 ∞ 30

and we get the second iteration defined by

A2 =

1

1

2

3

4

4

, P2 =

1 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 1

,

[
A2 MP2

]
=

1 15 30 ∞ ∞

1 15 30 ∞ ∞

2 30 ∞ 30 30

3 ∞ 30 ∞ 15

4 30 ∞ ∞ 30

4 30 ∞ ∞ 30

.

3.8 CIR algorithm for balanced partitions 49

We can now see that A2 =A3. This means that we have converged and A2 = cir(A0) = cir(T) =
>.

This is not the only non-trivial balanced partition on this network. For example, with an ini-

tial partition B0 = {{1,2,5},{3,4},{6}} we find the other balanced partition B1 = cir(B0) =

{{1,2},{3},{4},{5},{6}}.
Note that we already knew that any other balanced partitions would have to be finer that >.

Therefore we could have instead just verified if any of the partitions {{1},{2},{3},{4},{5,6}}
or {{1,2},{3},{4},{5},{6}} were balanced. �

50 Equality-based synchronism

Chapter 4

In-reachability based classification of
synchrony partitions

In this chapter, we analyze the influence that the connectivity structure of a network has on its

dynamics, in particular, with respect to the different types of (cumulative) in-neighborhoods and

the in-reachability sets. This motivates the introduction of a qualitative classification scheme for

the study of invariant synchrony sets.

4.1 Network connectivity

In this section we summarize the definitions and notation necessary to study the connectivity of a

directed network and relate those characteristics to its dynamics. For an overview of the notions of

in-neighborhoods, in-reachability and strongly connected components see Bang-Jensen and Gutin

(2008).

4.1.1 Neighborhoods and reachability

Definition 4.1.1. The in-neighborhood N−(c) of a cell c ∈ C, is the subset of cells d ∈ C such

that the total of directed edges from d to c has a non-zero weight. Similarly, its out-neighborhood,

denoted N+(c), is the subset of cells d ∈ C such that the total of directed edges from c to d has a

non-zero weight. �

In our context, this means that if M is an in-adjacency matrix of a network, we have that

N−(c) = {d ∈ C : mcd 6= 0i j, i = T(c), j = T(d)}. Note that the commutative monoid structure

allows us to encode arbitrary (finite) edges from a cell d to a cell c using a single element. This

definition says that even if there are non-zero edges from d to c, if their total effect is equivalent

to a non-edge (0i j), then d is not in N−(c).

Remark 4.1.2. We often denote c ∈N−(d), or equivalently, d ∈N+(c), by c→ d. �

Definition 4.1.3. The cumulative in-neighborhood V−(c) of a cell c ∈ C, is defined as V−(c) :=

c∪N−(c). �

51

52 In-reachability based classification of synchrony partitions

Definition 4.1.4. The kth cumulative in-neighborhood V−k (c) of a cell c ∈ C, is defined recursively

as

V−0 (c) := c, (4.1)

V−k (c) :=
⋃

d∈V−k−1(c)

V−(d), k > 0. (4.2)

That is, the set of cells from which there is a directed path of at most k edges that ends at c. Note

that V−1 = V−. The kth cumulative out-neighborhood V+k is defined similarly by replacing the

signs. �

Lemma 4.1.5. The sequence
(
V−k
)

k≥0 is monotonically increasing, that is,

V−k (c)⊆ V−k+1(c), k ≥ 0.

Moreover, if V−k (c) = V−k+1(c) for some k ≥ 0, then the recursion in Equation (4.2) has reached a

fixed point, which means that V−k (c) = V−n (c) for all n≥ k. �

This result motivates the following definition.

Definition 4.1.6. The in-reachabilityR−(c) of a cell c ∈ C, is defined as

R−(c) :=
⋃
k≥0

V−k (c). (4.3)

That is, the set of cells from which there is a finite directed path that ends at c.

The out-reachabilityR+ is defined similarly by replacing the signs. �

Remark 4.1.7. We often denote c ∈ R−(d), or equivalently, d ∈ R+(c), by c d, illustrating

that there is a direct path starting at cell c and ending at cell d. �

Corollary 4.1.8. For any cell c we have that V−k (c) ⊆ R−(c) for all k ≥ 0. Moreover, when

considering a finite amount of cells, equality is achieved at some finite k. �

Corollary 4.1.9. If c ∈R−(d), thenR−(c)⊆R−(d). That is, if c d, then, for every cell e such

that e c we also have that e d. �

1 2 3 4

Figure 4.1: Simple chain of 4 cells.

Example 4.1.10. Consider the simple network in Figure 4.1. Cell 3 receives an edge from cell 2,

that is, N−(3) = {2}. Its cumulative in-neighborhood is given by V−(3) = 3∪N−(3) = {2,3}.
Using the definition, its second cumulative in-neighborhood is V−2 (3) = V−(2)∪V−(3), which

results in {1,2}∪{2,3} = {1,2,3}, which are the cells that have a directed path to cell 3 with a

4.1 Network connectivity 53

length of two or less. Note that this is already the maximal cumulative in-neighborhood of cell 3

since V−3 (3) = V−(1)∪V−(2)∪V−(3) again equals {1,2,3}. That is, V−2 (3) =R−(3).
Furthermore, the point at which the cumulative in-neighborhoods equals the in-reachability set

depends on the particular cell of the network. For instance, we have that V−0 (1) =R−(1) = {1}
and V−3 (4) =R−(4) = {1,2,3,4}.
Finally, we have that R−(1) ⊂ R−(2) ⊂ R−(3) ⊂ R−(4) since each cell has a direct path to

every cell that is identified with an higher number. In particular, the set inclusions are strict, that

is, there are no two cells with the same in-reachability set. Note that this would require directed

loops, that is, R−(c) = R−(d) is equivalent to R−(c) ⊆ R−(d) and R−(d) ⊆ R−(c), which

implies c ∈R−(d) and d ∈R−(c). That is, c d and d c. �

4.1.2 Dynamics from in-neighborhoods

Consider a network G and an G-admissible state set X such that a state x ∈ X evolves (either

discretely or continuously) according to a G-admissible function f ∈ FG . That is,

x+/ẋ = f (x). (4.4)

From the definition of admissibility, the component fc of an G-admissible function f is only de-

pendent on the states associated with the cells in V−(c). This allows us to relate the dynamics

of the system to the neighborhoods of cells. We now show how V−k in particular is related to the

evolution of an admissible system in both the discrete and continuous cases.

Theorem 4.1.11. Consider a network that evolves discretely according to a function f ∈ FG .

Then, xc[n],xc[n+1], . . . ,xc[n+k] are fully determined by the set of states {xd [n]}, with d ∈ V−k (c).

�

Proof. It is enough to just prove that xc[n+k] is fully determined, the rest comes directly from the

monotonicity of
(
V−k
)

k≥0.

The proof is by induction. Assume this to be true for some k ≥ 0. Then, xc[n+ k + 1] is fully

determined by the set of states {xd [n+1]} with d ∈ V−k (c). From f being G-admissible, the states

{xd [n+1]} themselves are fully determined by {xe[n]} with e ∈ V−1 (d) for each d ∈ V−k (c). This

means that xc[n+ k+1] is fully determined by the states {xd [n]} with d ∈ V−k+1(c), which proves

the induction step. The base case k = 0 is trivial. �

Theorem 4.1.12. Consider a system that evolves continuously according to a function f ∈ FG .

Then, assuming sufficient differentiability, the derivatives up to kth order at time t, that is, xc(t),

ẋc(t), . . . ,x
(k)
c (t) are fully determined by the set of states {xd(t)}, with d ∈ V−k (c). �

Proof. It is enough to just prove that x(k)c (t) is fully determined, the rest comes directly from the

monotonicity of
(
V−k
)

k≥0.

The proof is by induction. Assume this to be true for some k ≥ 0. Then, there is a function g such

54 In-reachability based classification of synchrony partitions

that

x(k)c (t) = g({xd(t) : d ∈ V−k (c)}).

Differentiating on both sides gives

x(k+1)
c (t) = ∑

d∈V−k (c)

∂g
∂xd

x(1)d (t).

From f being G-admissible, the first derivatives {x(1)d (t)} are fully determined by {xe(t)} with

e ∈ V−1 (d) for each d ∈ V−k (c). This means that x(k+1)
c (t) is fully determined by the states {xd(t)}

with d ∈ V−k+1(c). The base case k = 0 is trivial. �

We now show that knowledge about the in-reachabilityR− of a cell fully defines its evolution.

Theorem 4.1.13. Consider a network that evolves either discretely or continuously, according

to a function f ∈ FG . Then, the whole (xc[k])k≥n /xc(·) is fully determined by the set of states

xd [n]/xd(t) for d ∈R−(c). �

Proof. From Corollary 4.1.9, we know that for any in-reachability setR−(c) = S, any cell d ∈ S
has its own in-reachability contained within that same set. That is, R−(d)⊆ S . Since V−(d) ⊆
R−(d), we have that V−(d)⊆ S .

From admissibility, we know that the dynamics of a cell d are a function of the states of the cells

in V−(d). Therefore, we can constrain our network to the subset of cells S while preserving all

their dependencies within that same set. That is, knowledge about the initial conditions of the cells

S is enough to fully determine the evolution of the induced subsystem. �

Remark 4.1.14. Note that for the discrete time case (Theorem 4.1.11), this result is direct from

Corollary 4.1.8. However, to extend the continuous time case (Theorem 4.1.12) in the same man-

ner, we would have to require the dynamics to be analytical, which is usually too much to ask for.

Often, only the Lipschitz condition is assumed. Our approach in the previous proof works for both

the discrete and continuous cases. �

Corollary 4.1.15. Consider a subset of cells S in a network that is an in-reachability set. That

is, S =R−(c) ⊆ C for some c ∈ C. Then, for any solution x(t) of the whole system, constraining

x(t) to the cells in S gives us a valid solution to the subnetwork induced by S. Conversely, for a

solution xS(t) on the subnetwork, there will be a solution on the whole network that is an extension

of it. �

Proof. This is direct from Theorem 4.1.13. �

4.1 Network connectivity 55

4.1.3 Strongly connected components and root dependency

To study the in-reachability setsR− of the cells of the network, it is useful to decompose its graph

into strongly connected components (SCC).

Definition 4.1.16. Two cells c,d ∈ C are said to be strongly connected if R−(c) =R−(d). That

is, there are directed paths d c and c d. �

Remark 4.1.17. Note that the strongly connected property induces a partition on the set of cells

C. The subsets of this partition are called the SCCs. �

Since two cells in the same SCC have exactly the same in-reachability set, that is R−(c) =
R−(d) for all c,d ∈ Si, we simply refer to it asR−(Si).

Definition 4.1.18. The condensation graph is obtained by representing each SCC Si by a block

and connecting Si→S j for i 6= j, if there are cells ci ∈ Si, c j ∈ S j such that ci→ c j. �

The diagram obtained is blockwise acyclic. Note that for ci ∈Si,c j ∈S j, i 6= j, the existence of

a directed path ci c j is equivalent to the existence of a directed path Si S j in the condensation

graph. Moreover, if in the condensation graph there is a direct path Si S j then Si ⊆R−(S j).

This decomposition can be done very efficiently in time O(|C|+ |E|), where E denotes the set of

edges, using for instance Tarjan’s algorithm Tarjan (1972).

Building on the concept of SCCs, we are now ready to define a decomposition based on root

dependency components (RDC).

Definition 4.1.19. An SCC Si is called a root if there are no other SCCs that have a directed path

to it. That is, Si =R−(Si). �

Definition 4.1.20. Two cells c,d ∈ C are said to have the same root dependency ifR−(c),R−(d)
contain exactly the same subset of roots. �

Remark 4.1.21. Note that the property of having the same root dependency induces a partition

on the set of cells C. The subsets of this partition are called the root dependency components.

Moreover, note that in network with n roots, this partition has at most 2n−1 disjoint subsets, since

there is no cell that does not depend on any root. �

The following is straightforward from the definitions.

Corollary 4.1.22. The partition formed by the SCCs is finer than the one formed by the RDCs. �

Example 4.1.23. Consider the network in Figure 4.2a. Note that it has four different SCCs.

In particular, S1 = {1,2,3}, S2 = {4}, S3 = {5} and S4 = {6,7}. This induces the partition

{{1,2,3},{4},{5},{6,7}} on the set of cells in the network. We form the condensation graph at

Figure 4.2b by representing each SCC by a block and connecting them appropriately. That is, we

have that 2→ 4, 3→ 6 and 5→ 7, which means that we need to connect S1→S2, S1→S4 and

S3→S4, respectively.

56 In-reachability based classification of synchrony partitions

5 7

6

4

1

2

3

(a) Original network.

S1

S3

S2

S4

(b) Condensation graph.

Figure 4.2: Decomposition of a network into its strongly connected components.

Using the condensation graph, it is very easy to see that the in-reachability sets of the SCCs are

R−(S1) = S1,R−(S2) = S1∪S2,R−(S3) = S3 andR−(S4) = S1∪S3∪S4. This means that the

network has two roots, S1 and S3. With two roots, we can partition the cells of the network in, at

most, three RDCs. That is, the ones that depend on the root S1 but not S3 (S1∪S2), the ones that

depend on S3 but not S1 (S3) and the ones that depend on both S1 and S3 (S4). Therefore, the

partition induced by the RDCs is {S1 ∪S2,S3,S4} = {{1,2,3,4},{5},{6,7}}, which is coarser

that the partition of SCCs. �

4.2 Strong, rooted and weak partitions

In this section, we classify the colors of partitions that represent synchrony patterns (as described

in Chapter 3) according to their relationship to the structure of the network. To this purpose, we

pay particular attention to the in-reachability sets, which fully determine the dynamical evolution

of the cells, and the SCCs, which are the natural way of segmenting them.

Consider the network in Figure 4.2. Note that S1 and S3 are roots, that is, R−(S1) = S1 and

R−(S3) = S3. From Theorem 4.1.13, the evolution of each of those sets can be completely deter-

mined without regard to the rest of the network. That is, for any G-admissible function f , we can

constraint and evaluate it separately in the sets of cells S1, S3.

Consider a partition A in this network such that there are cells in S1 and S3 that share the same

color, that is, there are two cells c1 ∈ S1, c3 ∈ S3 such that A(c1) =A(c3).

Since the two SCCs evolve completely decoupled from one another, any disturbance on c1 would

not be felt by c3 and vice-versa. Moreover, there is no cell that could simultaneously affect both c1

and c3 and act as a pacemaker to drive them to a common state. However, this lack of feedback be-

tween these cells does not mean that it would be impossible for the synchrony pattern determined

by A to appear in a physical system. That, is for states sufficiently close to the polydiagonal ∆X
A

to be driven back to ∆X
A, or at least stay close to it. This could be achieved if, for instance, both

xc1(t) and xc3(t) converge to the same stable equilibrium point.

On the other hand, if xc1(t),xc3(t) converge to the same limit cycle, we would not expect such

synchrony space to be stable, since there would be no mechanism that could counteract a possible

4.2 Strong, rooted and weak partitions 57

phase offset. In particular, note that if xS1(t) is a solution for the subnetwork induced by S1, the

time shifted version xS1(t− δ) is also a solution. Therefore, phase synchronism with S3 would

never happen unless we started with precise initial conditions.

Assume now that instead, there are two cells c2 ∈ S2, c4 ∈ S4 of the same color, that is A(c2) =

A(c4). Their in-reachability sets are R−(S2) = S2∪S1 and R−(S4) = S4∪S1∪S3 respectively.

Now, although there is still no feedback between one another, their in-reachability sets intersect in

S1. Thus, it could still be possible for c2 and c4 to maintain synchronism with non-trivial behavior

if S1 is driving them to do so.

This shows that the structure of the network can make a crucial difference in the qualitative be-

havior of the invariant synchrony patterns, which motivates the following definitions.

Definition 4.2.1. A color A on a partition of a network G is

• Strong if all the cells of that color are in the same SCC. That is,

c,d ∈ A =⇒ R−(c) =R−(d), (4.5)

or equivalently,

⋂
c∈A

R−(c) =
⋃
c∈A

R−(c). (4.6)

• Rooted if it is not strong but there is some cell (root) in G that has a directed path to all the

cells of that color. That is,

/0⊂
⋂
c∈A

R−(c)⊂
⋃
c∈A

R−(c). (4.7)

• Weak if it is neither strong nor rooted. That is,

⋂
c∈A

R−(c) = /0. (4.8)

�

Clearly, every color on a partition is of one, and only one, of these three types. The following

properties follow directly from the definition.

Lemma 4.2.2. Consider a strong color As, a rooted color Ar, and a weak color Aw. Then, the

following is true

• If A⊆ As, then A is strong.

• If A⊆ Ar, then A is either rooted or strong.

• If Ar ⊆ A, then A is either rooted or weak.

58 In-reachability based classification of synchrony partitions

• If Aw ⊆ A, then A is weak.

�

Note that Definition 4.2.1 classifies a particular color of some partition on G with respect to the

connectivity structure of G. This classification scheme is independent of the underlying partition

containing that color. Furthermore, we do not assume any particular structure on the underlying

partitions, such as being balanced or being finer that the partition of cell types TG .

Using this classification scheme for individual colors, we classify a whole partition according to

the following definition.

Definition 4.2.3. A partition A on a network G is

• Strong if all of its colors are strong.

• Rooted if it is not strong but all of its colors are either rooted or strong. That is, it has at

least one rooted color.

• Weak if any of its colors is weak.

�

Clearly, every partition is of one, and only one, of these three types. Similarly to Lemma 4.2.2,

the following properties are direct.

Lemma 4.2.4. Consider a strong partition As, a rooted partition Ar and a weak partition Aw.

Then, the following is true

• If A≤As, then A is strong.

• If A≤Ar, then A is either rooted or strong.

• If Ar ≤A, then A is either rooted or weak.

• If Aw ≤A, then A is weak.

�

The following is straightforward.

Corollary 4.2.5. If a color A is a singleton set, then is it strong. Furthermore, the trivial partition

⊥, whose colors are all singleton sets is always strong. �

We now relate our classification of partitions to the network connectivity according to the

decomposition into SCCs and RDCs, as defined in Section 4.1.3. The two following results are

direct from the definitions.

Lemma 4.2.6. A partition is strong if and only if it is finer than the partition of SCCs. �

4.2 Strong, rooted and weak partitions 59

We use the term non-weak to denote partitions or colors that are not weak, that is, either rooted

or strong.

Lemma 4.2.7. A partition finer than the partition of RDCs is non-weak. �

In Section 3.5 we have seen that for any particular subset of functions F ⊆ FG , the subset

of partitions that are F-invariant always forms a lattice LF . Furthermore, we know that its min-

imal element is always the trivial partition ⊥, which is strong. Also, given any two partitions

A1,A2 ∈ LF , their least upper bound is always given by A1 ∨A2, where ∨ denotes the partition

join operation as defined in Lemma 3.2.2. We now show how the join operation interacts with the

proposed classification scheme.

Lemma 4.2.8. For any pair of strong partitions A1,A2 on a network G, their join A=A1∨A2

is strong. �

Proof. Since A1,A2 are strong, from Lemma 4.2.6, they are finer than the partition of SCCs.

Then, A = A1 ∨A2 is also finer than the partition of SCCs. From Lemma 4.2.6 again, A is

strong. �

This result, together with Lemma 4.2.4, allows us to understand how the join operation affects

our connectivity-based classification of general partitions. This is summarized in Table 4.1, where

S, R and W denote the partition classifications of strong, rooted and weak, respectively. So far we

∨ S R W
S S R/W W
R R/W R/W W
W W W W

Table 4.1: Join table for general partitions.

have not made any assumptions about the partitions. Moreover, we see in Table 4.1 that there are

entries in which the classification is not completely defined. In particular, there are cases where

the result of the join could be either rooted or weak (R/W).

Denote the subset of strong partitions in a lattice LF by LS
F and the subset of non-weak partitions

by LNW
F . Then, we have that

LS
F ⊆ LNW

F ⊆ LF . (4.9)

From Lemma 4.2.8, together with the fact that the trivial partition ⊥ is strong, we know that LS
F

always forms a sublattice of LF with a top element >S
F . On the other hand, LNW

F might or might

not be a lattice. This is illustrated in the following example.

Example 4.2.9. Consider the network in Figure 4.3a and its respective lattice of balanced parti-

tions Λ in Figure 4.3b. Consider the full edges to have a weight of 1 and the dashed edges to have

weights of −1.

60 In-reachability based classification of synchrony partitions

In the lattice schematics, the partitions are colored according to their type such that strong parti-

tions are in white, rooted ones are light gray and weak ones are in dark gray.

Note that ΛS, consisting of partitions in white, forms a sublattice of Λ with top partition >S =

12/34. On the other hand, ΛNW does not form a lattice. In particular, if we join one of 12/45,

12/345 with one of 25/34, 125/34, we get 12345, which is a weak partition. �

1

2

3

4

5

(a) Network.

⊥

12 34

12/45 13/24 12/34 14/23 25/34

12/345 1234 125/34

12345

(b) Lattice of balanced partitions.

Figure 4.3: A network and its lattice of balanced partitions.

From Lemma 4.2.4, we know that knowledge of the top partition >F of a lattice LF , with

F ⊆FG , can give us important information about the whole lattice.

Corollary 4.2.10. If the top partition >F of a lattice LF , with F ⊆FG , is non-weak, then all of its

partitions are non-weak. Moreover, if >F is strong, then all partitions are also strong. �

We now show how the top strong partition >S
F is given in terms of the cirF function.

Corollary 4.2.11. Consider a network G with cell type partition T. Represent its SCCs according

to a partition A. Then, >S
F = cirF(T ∧A). �

Note that LNW
F is not necessarily a lattice and there might exist multiple locally maximal non-

weak partitions, as in Example 4.2.9. In the following section we see that under some relatively

tame assumptions, the resulting join table becomes much cleaner and we can guarantee that LNW
F

is a lattice with some top partition >NW
F .

4.3 Neighborhood color matching

In this section we present a sequence of progressively weaker assumptions about a partition on a

network. We show that the weakest of them is enough to fix the remaining uncertain entries of

Table 4.1 into Table 4.2.

We use the notation convention A(s) :=
⋃

c∈sA(c). That is, A(s) denotes the subset of colors that

are present in the set of cells s⊆ C, according to the coloring assigned by A.

4.3 Neighborhood color matching 61

Definition 4.3.1. Consider a function U that assigns to each cell a subset of cells. That is, U : C →
2C . Then, a partition A on C is U-matched if when we apply U to cells of the same color, the

resulting subsets share the exact same subset of colors. That is,

A(c) =A(d) =⇒ A(U(c)) =A(U(d)). (4.10)

�

Corollary 4.3.2. The trivial partition ⊥ is U-matched for every function U . �

In this work, we are interested in the situation where the function U in Definition 4.3.1 denotes

a neighborhood as described in Section 4.1.1, such as N−, V−, V−k orR−.

Corollary 4.3.3. If a partition A is N−-matched, then, it is V−-matched. �

Proof. If A(c) = A(d), from assumption we have that A(N−(c)) = A(N−(d)). Then, we have

that

A(c)∪A(N−(c)) =A(d)∪A(N−(d))

A(c∪N−(c)) =A(d∪N−(d))

A(V−(c)) =A(V−(d)).

�

Lemma 4.3.4. If a partition A is V−-matched, then, it is V−k -matched for every k ≥ 1. �

Proof. The proof is by induction. We assume that the statement applies to a given k. That is, A is

both V−-matched and V−k -matched. Then, we know that

A(V−k+1(c)) =A

 ⋃
c?∈V−k (c)

V−(c?)

=
⋃

c?∈V−k (c)

A(V−(c?)),

where the first equality comes from Equation (4.2) and the second from how we defined the no-

tation of applying A to a set. Since A is V−-matched, we know that A(V−(c?)) only depends on

the color of the cell c?. Moreover, sinceA is also V−k -matched we know thatA(c) =A(d) implies

A(V−k (c)) = A(V−k (d)), which means that c? ∈ V−k (c) and d? ∈ V−k (d) index the exact same set

of colors. Therefore, A(V−k+1(c)) =A(V
−
k+1(d)).

The base case k = 1 is trivial since V−1 = V−. �

Corollary 4.3.5. If a partition defined on a finite set of cells is V−-matched, then it is also R−-

matched. �

Proof. This is direct from Lemma 4.3.4 and Corollary 4.1.8. �

We have seen in Corollary 4.3.3 that a N−-matched partition is also V−-matched. The next

very trivial example shows that the converse is not necessarily true.

62 In-reachability based classification of synchrony partitions

Example 4.3.6. Consider the network in Figure 4.4, which is colored with only one color (white).

Note thatN−(1)= {} is empty andN−(2)= {1} contains the white color. Therefore, the partition

is not N−-matched. On the other hand, we have that V−(1) = {1} and V−(2) = {1,2} which

means that the partition is V−-matched. �

1 2

Figure 4.4: Partition that is not N−-matched but is V−-matched.

We have also seen in Corollary 4.3.5 that a V−-matched partition is also R−-matched. In the

next example we disprove the converse statement.

Example 4.3.7. Consider the network in Figure 4.5. Note that V−(1) = {1,4} contains only white

colors and V−(4) = {2,3,4} contains white and gray colors. Therefore, the partition is not V−-

matched. On the other hand, we have that R−(1) =R−(4) and R−(2) =R−(3), which means

that the partition isR−-matched. �

1

2

3

4

Figure 4.5: Partition that is not V−-matched but isR−-matched.

In summary, we have shown that the sequence: N−-matched , V−-matched and R−-matched

lists progressively weaker assumptions. Note that in Example 4.3.7 the in-reachability sets are, in

fact, all the same. The following result should be obvious from the definitions.

Corollary 4.3.8. In a network that is a SCC, every partition isR−-matched. �

More generally,

Corollary 4.3.9. Every strong partition isR−-matched. �

We now show that the tamest assumption we described (R−-matched) is enough to allow the

following results.

Lemma 4.3.10. If a non-weak partition isR−-matched, then it is finer than the partition of RDCs.

�

Proof. Consider some network with n roots S1, . . . ,Sn and a partitionA that is non-weak andR−-

matched. From the fact that they are roots, we have that Si =R−(Si) and Si∩S j = /0 for all i 6= j,

which impliesR−(Si)∩R−(S j) = /0 for all i 6= j. Then, sinceA is non-weak,R−(Si)∩R−(S j) =

/0 impliesA(Si)∩A(S j) = /0, for all i 6= j. That is, each root in the network contains a set of colors

4.3 Neighborhood color matching 63

distinct from every other root.

Consider a cell c that is of a color that is present in one of the roots. That is, A(c) = k for some

k ∈ A(Si). Then, since A is R−-matched, we have that A(R−(c)) =A(Si). Since each root has

a set of colors distinct from every other root, this means that A(R−(c))∩A(S j) = /0 for all j 6= i.

This impliesR−(c)∩S j = /0 for all j 6= i. That is, if some cell in the network shares its color with

a root, then that cell cannot depend (in theR− sense) on any other roots. Since it is impossible to

not depend on any roots at all, this implies that R−(c)⊇ Si. That is, if a cell shares its color with

a root, then it depends (in theR− sense) on that root (and no other roots).

Finally, consider c,d such that A(c) = A(d). Then, from A being R−-matched we have that

A(R−(c)) = A(R−(d)). Since R−(c) and R−(d) share the exact same set of colors, they also

share the same subset of colors that are present in roots. From what we have shown before,

depending on a color shared by a root implies depending on the root itself. Therefore, cells of the

same color depend on exactly the same roots, which means that A is finer than the partition of

RDCs. �

We now show how the top non-weak partition >NW
F is given in terms of the cirF function for

the case where we know that all rooted partitions areR−-matched.

Corollary 4.3.11. Consider a network G with cell type partition T. Represent its RDCs according

to a partition B. Assume all its rooted partitions areR−-matched. Then, >NW
F = cirF(T ∧B). �

We are now ready to prove the following result.

Lemma 4.3.12. For any pair of non-weak R−-matched partitions Anw1 ,Anw2 , their join Anw =

Anw1 ∨Anw2 is also non-weak. �

Proof. From Lemma 4.3.10 we know that Anw1 ,Anw2 are both finer than the partition of RDCs.

Therefore, their join Anw is also going to be finer. From Lemma 4.2.7 we know that it is also

non-weak. �

The following result is straightforward from the general case illustrated in Table 4.1, together

with Lemma 4.3.12.

Corollary 4.3.13. Consider partitions As,Ar1 ,Ar2 such that As is strong and Ar1 ,Ar2 are rooted

andR−-matched. Then, As∨Ar1 and Ar1 ∨Ar2 are rooted. �

This means that for the case where rooted partitions areR−-matched, Table 4.1 simplifies into

Table 4.2. Furthermore, under such conditions we know that LNW
F is a sublattice of LF . This is

illustrated in the following example.

Example 4.3.14. Consider the network in Figure 4.6a and its respective lattice of balanced par-

titions Λ in Figure 4.6b. Note that ΛS and ΛNW are both lattices with top partitions >S = ⊥ and

>NW = 13/24, respectively. Note that every balanced partition in this network is R−-matched,

therefore Table 4.2 applies. In the following section we will see that this fact is immediate from

the network not allowing edge cancelings. �

64 In-reachability based classification of synchrony partitions

∨ S R W
S S R W
R R R W
W W W W

Table 4.2: Join table when rooted partitions areR−-matched.

1

2

3

4

5

(a) Network.

⊥

13 12 24

123 12/34 13/24 124

1234

(b) Lattice of balanced partitions.

Figure 4.6: A network and its lattice of balanced partitions.

4.4 Neighborhood color invariance

We now introduce a property that is stronger than Definition 4.3.1, that only applies to balanced

partitions, since it is related to the respective quotient network.

Definition 4.4.1. Consider a balanced partition ./∈ΛG on a network G and its respective quotient

network Q= G/./. Take a particular type of neighborhood U ∈ {N−,V−,V−k ,R−} such that UG
and UQ are the corresponding functions on G and Q, respectively. Then, we say that ./ is U-

invariant if

d ∈ UG(c) =⇒ ./(d) ∈ UQ(./(c)), (4.11)

or equivalently,

./(UG(c))⊆ UQ(./(c)) (4.12)

for all c ∈ CG . �

We note that, as the following result shows, that the converse property of Definition 4.4.1 is

always satisfied.

Lemma 4.4.2. Consider a balanced partition ./ ∈ ΛG on a network G and its respective quotient

network Q= G/./. Then, for every color A ∈ ./, which maps into the cell kA ∈ CQ, we have that

kA ∈ UQ(./(c)) =⇒ A∩UG(c) 6= /0, (4.13)

4.4 Neighborhood color invariance 65

or equivalently,

UQ(./(c))⊆ ./(UG(c)) (4.14)

for all c ∈ CG . �

Proof. Firstly, we define B ∈ ./ to be the color of c, mapping into the cell kB ∈ CQ.

Assume kA ∈ N−Q (kB) . Then, from the definition of N−, we have a non-zero entry qkBkA 6= 0i j,

with i= TQ(kB)= TG(B) and j = TQ(kA)= TG(A) in the in-adjacency matrix Q associated with the

quotient networkQ. Then, from the definition of quotient network, we have that ∑d∈A∩N−G (c) wcd =

qkBkA . Since qkBkA 6= 0i j, this means that A∩N−G (c) is non-empty. That is, the statement is true for

the case U =N−.

We now prove the case U = V−. Assume kA ∈ V−Q(./(c)). Then, kA ∈ {kB∪N−Q (kB)}. Consider

the case kA = kB. Then, c ∈ A∩V−G (c), which makes the set non-empty. Consider now the case

kA ∈N−Q (kB). Then, since the statement is true for U =N−, A∩N−G (c) is non-empty. Therefore,

A∩V−G (c)⊇ A∩N−G (c) is also non-empty, which concludes the proof for U = V−.

We now prove the case U = V−k for every k ≥ 1. The proof is by induction. Assume it to be true

for a given k. Consider kA ∈ V−k+1Q(kB). Then, kA ∈
⋃

kC∈V−kQ(kB)
V−Q(kC). That is, kA ∈ V−Q(kC) for

at least one particular kC ∈ V−kQ(kB). Then, since the case U = V−k is true from assumption, we

have that C∩V−kG(c) 6= /0, where C ∈ ./ is the color that maps into cell kC. We choose a particular

cell d ∈C∩V−kG(c). Then, ./(d) = kC. Furthermore, since we know that the case U = V− is true,

kA ∈V−Q(kC) implies A∩V−G (d) 6= /0. Finally, note that A∩V−k+1G(c)⊇A∩V−G (d) since d ∈V−kG(c),
which means that A∩V−k+1G(c) is also non-empty. This concludes the induction step. The base

case k = 1 is trivial since V−1 = V−.

Finally, the case U =R− is immediate from Corollary 4.1.8. �

The following is immediate from Definition 4.4.1 and Lemma 4.4.2.

Corollary 4.4.3. Consider a balanced partition ./∈ΛG on a network G and its respective quotient

network Q= G/./. Then, ./ is U-invariant if and only if

./(UG(c)) = UQ(./(c)) (4.15)

for all c ∈ CG . �

We now show that Definition 4.4.1 is a stronger property than the one in Definition 4.3.1.

Lemma 4.4.4. If a balanced partition ./ is U-invariant, then, it is U-matched. �

Proof. Consider cells c,d ∈ CG in a network G such that ./(c) = ./(d). Then, we have that

UQ(./(c)) = UQ(./(d)) in the quotient network Q = G/./. Since ./ is U-invariant, from Corol-

lary 4.4.3 we have that ./(UG(c)) = ./(UG(d)). Therefore, ./ is U-matched. �

66 In-reachability based classification of synchrony partitions

Lemma 4.4.5. Consider a U-invariant balanced partition ./ ∈ ΛG on a network G and its respec-

tive quotient network Q= G/./. Then, for a partition A≥ ./, we have that

A(UG(c)) =A/./(UQ(./(c))) (4.16)

for all c ∈ CG . �

Proof. From the fact that A ≥ ./, we have that A(UG(c)) = A/./(./(UG(c))). Since ./ is U-

invariant, from Corollary 4.4.3, this becomes A/./(UQ(./(c))). �

Lemma 4.4.6. Consider a U-invariant balanced partition ./ ∈ ΛG on a network G and its respec-

tive quotient network Q= G/./. Then, for a partition A≥ ./, we have that A is U-matched in G
if and only if A/./ is U-matched in Q. �

Proof. Firstly, note that A/./ being U-matched in Q, from definition, means that A/./(./(c)) =
A/./(./(d)) implies A/./(UQ(./(c))) = A/./(UQ(./(d))). This simplifies into A(c) = A(d)
implies A/./(UQ(./(c))) =A/./(UQ(./(d))). Therefore, we have to prove that if A(c) =A(d),
then A(UG(c)) = A(UG(d)) is equivalent to A/./(UQ(./(c))) = A/./(UQ(./(d))). Since ./ is

U-invariant, this is immediate from Lemma 4.4.5. �

Lemma 4.4.7. Consider a U-invariant balanced partition ./01 ∈ ΛG on a network G and its re-

spective quotient network Q1 = G/./01. Then, for a balanced partition ./02 ≥ ./01, we have that

./02 is U-invariant in G if and only if ./12 := ./02/./01 is U-invariant in Q1. �

Proof. From Corollary 4.4.3, we have that ./02 being U-invariant in G means that ./02(UG(c)) =
UQ2(./02(c)), with Q2 := G/./02, for all c ∈ CG . This can be rewritten, using ./12 as

./12(./01(UG(c))) = UQ2(./12(./01(c))). Since from assumption, ./01 is U-invariant, this can be

equivalently written as ./12(UQ1(./01(c)) = UQ2(./12(./01(c))), for all c∈ CG . Using the mapping

d = ./01(c), it is easy to see that this is equivalent to ./12(UQ1(d) = UQ2(./12(d)), for all d ∈ CQ1 .

Since from Lemma 3.7.3 we know that Q2 =Q1/./12, this is equivalent to ./12 being U-invariant

in Q1. �

Similarly to the U-matched case, we have the following results.

Corollary 4.4.8. The trivial partition ⊥ is U-invariant for every U ∈ {N−,V−,V−k ,R−}. �

Corollary 4.4.9. If a balanced partition ./ is N−-invariant, then, it is V−-invariant. �

Proof. Consider cells c,d ∈ CG in a network G such that c ∈ V−G (d). Then, c ∈ d∪N−G (d). Con-

sider the case c = d. Then, ./(c) ∈ V−Q(./(c)) in the quotient network Q = G/./, is immediate

from the definition of V−. Consider now that c ∈ N−G (d). Then, from ./ being N−-invariant, we

have that ./(c) ∈N−Q (./(d)), which implies ./(c) ∈ V−Q(./(d)). �

Lemma 4.4.10. If a balanced partition ./ is V−-invariant, then, it is V−k -invariant for every k≥ 1.

�

4.4 Neighborhood color invariance 67

Proof. The proof is by induction. We assume that the statement applies to a given k. That is,

./ is both V−-invariant and V−k -invariant. Consider cells c,d ∈ CG in a network G such that c ∈
V−k+1G(d). Then, c ∈

⋃
d?∈V−kG(d)

V−G (d?). That is, c ∈ V−G (d?) for at least one particular d? ∈
V−kG(d).
Then, from ./ being V−-invariant and V−k -invariant, we have that ./(c)∈V−Q(./(d?)) and ./(d?)∈
V−kQ(./(d)), respectively, in the quotient network Q = G/./. Therefore, ./(c) ∈ V−k+1Q(./(d)),

which means that ./ is V−k+1-invariant.

The base case k = 1 is trivial since V−1 = V−. �

Corollary 4.4.11. If a balanced partition ./ defined on a finite set of cells is V−-invariant, then it

is alsoR−-invariant. �

Proof. This is direct from Lemma 4.4.10 and Corollary 4.1.8. �

We note that the concept of U-invariance generalizes the concept of spurious partitions, which

was defined in Aguiar et al. (2017). In particular, it corresponds to partitions not being N−-

invariant. This is illustrated in the following example.

Example 4.4.12. Consider the network in Figure 4.7a. Note that for a general admissible func-

tion f ∈ FG , f3 depends on the states of cells 1,2. However, when the state is in ∆X
./ with

./= {{1,2},{3},{4}}, the total effect of cells 1,2 on cell 3 cancels and 3 acts as if there were no

edges coming from those cells. �

1 2

3

4

(a) Original network.

1 2 3

4

(b) Edge canceling.

1 2 3

4

(c) Quotient network.

Figure 4.7: Example of a spurious (not N−-invariant) partition.

Note that the partition in Example 4.4.12 isN−-matched despite not beingN−-invariant. That

is, while being N−-invariant is a sufficient condition for a partition to be N−-matched, it is not

a necessary one. We now present an example that clarifies why the edge canceling in a balanced

partition that is not N−-invariant might lead to it not being N−-matched.

Example 4.4.13. Consider the network in Figure 4.8a, which is colored according to a balanced

partition that is not N−-invariant (that is, it is spurious). Note that N−(1) = {1} contains only

white colors andN−(4) = {1,2,3} contains white and gray colors. The fact that the edges coming

from cells 2 and 3 cancel each other is exactly what allows this partition to be balanced despite

this difference. �

68 In-reachability based classification of synchrony partitions

1

2

3

4

(a) Original network.

1 4

2 3

(b) Quotient network.

Figure 4.8: Example of a partition that is neither N−-invariant nor N−-matched.

We have seen in Corollary 4.4.9 that a N−-invariant partition is also V−-invariant. The next

example shows that the converse is not necessarily true.

Example 4.4.14. Consider the network in Figure 4.9a, which is colored with a single color, ac-

cording to the balanced partition {{1,2,3}}. Note that in this network, both the N− and V−

in-neighborhoods of white cells contain white cells. On the other hand, in the quotient network

in Figure 4.9b, we see that N− of its only existing cell is empty. Therefore, this partition is not

N−-invariant. It is, however, V−-invariant. �

1 2

3

(a) Original network.

1 2 3

(b) Quotient network.

Figure 4.9: Example of a partition that is not N−-invariant but is V−-invariant.

We have also seen in Corollary 4.4.11 that a V−-invariant partition is alsoR−-invariant. In the

next example we disprove the converse statement.

Example 4.4.15. Consider the network in Figure 4.10a, which is colored according to the bal-

anced partition {{1},{2,3},{4}}. Note that in the original network G, we have that V−(1) =
{1,2,3,4}. That is, white cells have white, light gray and dark gray colors in its V− neighbor-

hood. On the other hand, in the quotient, the white cell only has white and dark gray colors in its

V− neighborhood, which means that the partition is not V−-invariant. However, it is clear that the

partition isR−-invariant, since in both the original network and in the quotient, all in-reachability

setsR− contain all the three colors of the partition. �

In summary, we have shown that the sequence: N−-invariant , V−-invariant andR−-invariant

lists progressively weaker assumptions.

Remark 4.4.16. Refer back to Example 4.3.14. Note that the network only contains positive

weights, which means that no matter which quotient we apply, there will be no edge canceling.

That is, every balanced partition is immediately guaranteed to be N−-invariant. Then, it is also

R−-invariant, which from Lemma 4.4.4 means that they areR−-matched. �

4.4 Neighborhood color invariance 69

1 2

3 4

(a) Original network.

1

2 3

4

(b) Quotient network.

Figure 4.10: Example of a partition that is not V−-invariant but isR−-invariant.

We now show that the tamest assumption we defined in this section (R−-invariant) is enough

to allow the following results.

Lemma 4.4.17. Consider a R−-invariant balanced partition ./ ∈ ΛG on a network G and its

respective quotient network Q= G/./. If a partition A≥ ./ is strong in G, then A/./ is strong in

Q. �

Proof. Firstly, note that A/./ being strong in Q, from definition, means that A/./(./(c)) =
A/./(./(d)) implies R−Q(./(c)) = R−Q(./(d)). This simplifies into A(c) = A(d) implies

R−Q(./(c)) = R
−
Q(./(d)). Assume A(c) = A(d). Then, from A being strong in G, we have

that R−G (c) =R
−
G (d), which implies ./(R−G (c)) = ./(R−G (d)). Since ./ is R−-invariant, we have

from Corollary 4.4.3 thatR−Q(./(c)) =R
−
Q(./(d)), which concludes the proof. �

Lemma 4.4.18. Consider a R−-invariant balanced partition ./ ∈ ΛG on a network G and its

respective quotient network Q = G/./. If a partition A ≥ ./ is non-weak in G, then A/./ is

non-weak in Q. �

Proof. Assume A is non-weak in G. Then, for every color A ∈ A, we have that
⋂

c∈AR−G (c) 6=
/0. Then, we have that ./

(⋂
c∈AR−G (c)

)
6= /0. Note that

⋂
c∈A ./(R−G (c)) ⊇ ./

(⋂
c∈AR−G (c)

)
,

therefore,
⋂

c∈A ./(R−G (c)) 6= /0. Since ./ is R−-invariant, we have from Corollary 4.4.3 that⋂
c∈AR−Q(./(c)) 6= /0. This can written as

⋂
./(c)∈A/./R−Q(./(c)) 6= /0, which means that A/./ is

non-weak in Q. �

These results are summarized in the left hand side of Table 4.3, where, as before, S, R and W

denote the partition classifications of strong, rooted and weak, respectively. The right hand side

is easily seen to be equivalent to the left one. Note that for Table 4.3 to apply, we require the

A,G →A/./,Q
S S
R S/R
W S/R/W

A/./,Q→A,G
S S/R/W
R R/W
W W

Table 4.3: Relation between partitions and their quotients over aR−-invariant partition.

partition we quotient over (./) to beR−-invariant. We now present some examples that show that

these results do not apply if this assumption is not satisfied.

70 In-reachability based classification of synchrony partitions

Example 4.4.19. Consider the network G in Figure 4.11a, which is colored according to the

balanced partition ./ = {{1,2},{3}}. Note that R−G (3) = {1,2,3}. That is, gray cells have

white and gray colors in its R−G neighborhood. On the other hand, in the quotient network Q in

Figure 4.11b, we have that R−Q(3) = {3}. That is, the gray cell only has the gray color in its R−Q
neighborhood. Therefore, ./ is not R−-invariant. Consider now the partition A = {{1,2,3}}.
Although this partition is rooted in G, its quotient A/./= {{12,3}} is weak in G. �

1

2

3

(a) Original network.

1 2 3

(b) Quotient network.

Figure 4.11: Example of a quotient over a partition that is notR−-invariant.

Example 4.4.20. Consider the network G in Figure 4.12a, which is colored according to the

balanced partition ./= {{1,2},{3,4}}. Note that G consist of a single SCC. Therefore, each cell

has white and gray colors in its R−G neighborhood. On the other hand, in the quotient network

Q in Figure 4.12b, we have that R−Q(12) = {12}. That is, the white cell only has the white

color in its R−Q neighborhood. Therefore, ./ is not R−-invariant. Consider now the partition

A= {{1,2,3,4}}. Although this partition is strong in G, its quotient A/./ = {{12,34}} is weak

in G. �

1

2

3

4

(a) Original network.

1 2 3 4

(b) Quotient network.

Figure 4.12: Example of a quotient over a partition that is notR−-invariant.

We now present examples where Table 4.3 does indeed apply.

Example 4.4.21. Consider the network in Figure 4.13a and its respective lattice of balanced par-

titions ΛG in Figure 4.13b. We define the quotient networks Q1 := G/./1, Q2 := G/./2 over the

balanced partitions ./1 = {{1,2},{3},{4}} and ./2 = {{1},{2},{3,4}}, respectively. Note that

both ./1 and ./2 areR−-invariant, therefore, Table 4.3 applies.

The set of partitions in ΛG that are coarser than ./1 are {{1,2},{3},{4}} (./1 itself) and {{1,2},{3,4}},
which are both weak. In the lattice ΛQ1 these two partitions correspond to⊥Q1 and {{12},{3,4}},
which are strong and rooted, respectively.

The set of partitions in ΛG that are coarser than ./2 are {{1},{2},{3,4}} (./2 itself) and {{1,2},{3,4}},

4.4 Neighborhood color invariance 71

which are rooted and weak respectively. In the lattice ΛQ2 these two partitions correspond to⊥Q2

and {{1,2},{34}}, which are strong and weak respectively. �

1

2

3

4

(a) Network G.

⊥G

12 34

12/34

(b) Lattice ΛG .

12

3

4

2

2

(c) Network Q1 := G/{{1,2},{3},{4}}.

⊥Q1

(12)/34

(d) Lattice ΛQ1 .

1

2

34

(e) Network Q2 := G/{{1},{2},{3,4}}.

⊥Q2

12/(34)

(f) Lattice ΛQ2 .

Figure 4.13: Lattices of balanced partitions of a network and its quotients.

Note that we can always quotient a network over the trivial partition. That is, Q := G/⊥G .

Consider we encode ⊥G through the identity mapping. In such case we have that G = Q and

LFQ = LFG/⊥G = LFG . Therefore, every partition in LFG maps to itself in LFQ . This implies the

cases S→ S, R→ R and W →W in the left side of Table 4.3.

On the other hand, for the case Q := G/./ and LFQ = LFG/./, for any ./ ∈ ΛG we have that

.//./=⊥Q. Since ⊥Q is always strong in Q, this covers the cases S/R/W → S in the left side of

Table 4.3. This means that most of the cases of Table 4.3 were forced. The remaining case W → R,

was illustrated in Example 4.4.21. That is, the interest of this result lies in the fact that it excludes

most of the non-forced cases.

72 In-reachability based classification of synchrony partitions

Chapter 5

Output vector spaces

In this chapter we present results that apply when the output sets {Yi}i∈T are vector spaces.

5.1 Admissible vector spaces and related results

In this section we present some direct consequences of the output spaces being vector spaces.

Namely, the set of oracle functions F̂T and admissible functions FG also being vector spaces.

Also, evaluation on a network (|G) is a linear map that maps F̂T into FG . We also present some

local robustness results related to invariant patterns and balanced partitions.

Lemma 5.1.1. Consider F̂i, defined on an output set Yi that is a vector space. Then, F̂i is itself a

vector space. �

Proof. Consider components f̂i, ĝi ∈ F̂i. Defining, ĥi := α f̂i + ĝi for some scalar α , we have that

ĥi(x;w,x) = α f̂i(x;w,x)+ ĝi(x;w,x)

= α f̂i(x;σw,σx)+ ĝi(x;σw,σx)

= ĥi(x;σw,σx),

which means that ĥi satisfies item 1 of Definition 2.4.1. Items 2 and 3 are verified in the exact

same way. Therefore ĥi ∈ F̂i and F̂i is a vector space. �

Corollary 5.1.2. Consider F̂T , defined on the output sets {Yi}i∈T that are vector spaces. Then,

F̂T is itself a vector space. �

Lemma 5.1.3. Assume F̂T is a vector space. Evaluation on a network (|G) is linear. �

73

74 Output vector spaces

Proof. Consider oracle functions f̂ , ĝ ∈ F̂T . Since F̂T is a vector space, there is a ĥ ∈ F̂T such

that ĥ = α f̂ + ĝ for some scalar α . Define f = f̂ |G and g = ĝ|G . Then h = ĥ|G is such that

hc(x) = ĥi (xc;mc,x)

= α f̂i (xc;mc,x)+ ĝi (xc;mc,x)

= α fc(x)+gc(x)

for all c ∈ C with i = T(c). That is, (α f̂ + ĝ)|G = α f̂ |G + ĝ|G . Therefore, evaluation on a network

(|G) is a linear map on F̂T . �

Corollary 5.1.4. Consider some F̂T ⊆ F̂T and define FG := F̂T |G . If F̂T is a vector space, then FG
is also a vector space. �

Corollary 5.1.5. Assume F̂T is a vector space. Then, evaluating at a network G (|G) partitions

the space of functions F̂T into affine planes parallel to the kernel (or nullspace) ker(|G) such that

each plane represents the set of oracle functions that behave the same in that network, that is,

f̂ |G = ĝ|G ⇐⇒ f̂ − ĝ ∈ ker(|G)

for every f̂ , ĝ ∈ F̂T . �

We now present synchrony properties for output vector spaces.

Lemma 5.1.6. Consider some FG ⊆ FG . Given some partition A ≤ TG , define FA
G := { f ∈ FG :

A is f -invariant}. If FG is a vector space, then FA
G is also a vector space. �

Proof. Consider functions f ,g ∈ FA
G . Then, f ,g ∈ FG . Defining, h := α f +g for some scalar α ,

we have that h ∈ FG since, from assumption, FG is a vector space. Furthermore, if x = Px, where

P is a partition matrix that represents A, we have

h(Px) = α f (Px)+g(Px)

= αP f (x)+Pg(x)

= P
(
α f (x)+g(x)

)
= P

(
h(x)

)
.

Therefore h ∈ FA
G , which means that FA

G is a vector space. �

Corollary 5.1.7. Consider some F̂T ⊆ F̂T . Given some partition A ≤ TG , define FA
G := { f ∈

F̂T |G :A is f -invariant}. If F̂T is a vector space, then FA
G is also a vector space. �

In a practical application, the nominal admissible function f ∗ that we desire in theory might

not be the one that is actually realized. This motivates the interest in having some sort of local

robustness so functions f that are sufficiently close to f ∗ show similar properties.

5.1 Admissible vector spaces and related results 75

Corollary 5.1.8. Consider some FG ⊆FG such that FG is a normed vector space. Given a f ∗ ∈FG ,

if we require that for some ε > 0, all the functions f ∈ FG in the ball ‖ f − f ∗‖ < ε are such that

f ∈ FA
G , then FG = FA

G . �

From Corollary 3.6.15 the following is now immediate.

Corollary 5.1.9. Assume FG is a normed vector space. Given a f ∗ ∈ FG , if we require that for

some ε > 0, all the functions f ∈ FG in the ball ‖ f − f ∗‖< ε are such that f ∈ FA
G , thenA∈ ΛG .

�

We now present special cases for particular monoids in which A being FG-invariant for some

subsets FG ⊆FG is enough to enforce A to be balanced.

The usual proof for Theorem 3.6.13 in the unweighted and scalar-weighted cases, uses functions

that are linear in the weights. This approach, however, does not scale well to general weight sets.

Note that the analogous in this framework is to consider functions that are additive in the weights,

that is,

p(w1‖w2) = p(w1)+ p(w2).

If there is an annihilator inM, then p(w) = 0M for all w ∈M. That is, only the trivial case for

such functions exists. We now present an extension of the linear in the weights argument to a

particular type of weight monoids for which it works.

Theorem 5.1.10. Consider non-trivial output vector spaces {Yi}i∈T and assume that the edges

are in the monoidM= 〈M|E〉, with M= R×W and

E = {λ1w‖λ2w = (λ1 +λ2)w, ∀λ1,λ2 ∈ R,w ∈W},

where W is not necessarily countable.

Consider the set of oracle components f̂i , i ∈ T , that are only dependent on neighbors that are in

a specific state xk, such that

f̂i
(
x;∑λww,xk

)
= λev, v ∈ Yi,v 6= 0Yi

for some e ∈W.

If a partition A is invariant under the subset FG ⊆FG that is constructed with oracle components

f̂i of the type above, then A is balanced in G. �

Proof. We prove this through its contrapositive. That is, A /∈ ΛG implies A /∈ LFG .

Consider any partition A≤ T that is not balanced. Then, there are cells c,d ∈ C such that A(c) =
A(d) and P>m>c 6= P>m>d , where P is a partition matrix of A. Consider k one of the entries in

which they differ. That is,
[
P>m>c

]
k 6=

[
P>m>d

]
k.

We now choose a state in the related polydiagonal x ∈ ∆X
A, that is, x = Px for some x, such that xk

is different from all other entries of x.

76 Output vector spaces

An element of the monoidM can be written as linear combination over a finite subset of elements

in W, that is, ∑λww. If
[
P>m>c

]
k 6=

[
P>m>d

]
k, then they differ on the associated coefficient of at

least one element e ∈W. Then, there is an f̂i as defined above, sensitive to that element e, so that

f̂i
(
x;
[
P>m>c

]
k ,xk

)
= λ c

e v 6= λ d
e v = f̂i

(
x;
[
P>m>d

]
k ,xk

)
. That is, fc(Px) 6= fd(Px), and we have

an f ∈ FG and x such that f (Px) 6∈ ∆Y
A. That is, A /∈ ΛG implies A /∈ LFG , which completes the

proof. �

The next result is valid for systems in which the weight set allows for the existence of an

annihilator. However, the monoid is almost free, in the sense that its congruence relation does not

define further equivalence classes.

Theorem 5.1.11. Consider non-trivial output vector spaces {Yi}i∈T and assume that the edges

are either on a free monoid M = 〈W|〉 or the result of adding an annihilator to a free monoid.

That is,M= 〈{a}∪W|E〉, with

E = {w‖a = a, ∀w ∈M},

where W is not necessarily countable.

Consider the set of oracle components f̂i , i ∈ T , that are only dependent on neighbors that are in

a specific state xk, of the form

f̂i
(
x;∑w,xk

)
= v∏ p(w), v ∈ Yi,v 6= 0Yi .

If a partition A is invariant under the subset FG ⊆FG that is constructed with oracle components

f̂i of the type above, then A is balanced in G. �

Proof. We prove this through its contrapositive. That is, A /∈ ΛG implies A /∈ LFG .

Consider any partition A ≤ T that is not balanced. Then, there are cells c,d ∈ C such that

A(c) = A(d) and P>m>c 6= P>m>d , where P is a partition matrix of A. Consider k one of the

entries in which they differ. That is,
[
P>m>c

]
k 6=

[
P>m>d

]
k.

We now choose a state in the related polydiagonal x ∈ ∆X
A, that is, x = Px for some x, such that xk

is different from all other entries of x.

An element of the monoid M can be written as a finite sum over elements in W. Call the

support, that is, the elements that appear at least once in
[
P>m>c

]
k as w1, . . . ,wn and the sup-

port of
[
P>m>d

]
k as v1, . . . ,vm. We can, with some function p, assign to each distinct element

of the union of both sets, a distinct prime number, with the exception of the zero element 0M
and a possible annihilator a, in which we have instead that p(0M) = 1 and p(a) = 0. Then,

there is an f̂i as defined above, such that f̂i
(
x;
[
P>m>c

]
k ,xk

)
= v∏

n
i=1 p(wi)

αi 6= v∏
m
j=1 p(v j)

β j =

f̂i
(
x;
[
P>m>d

]
k ,xk

)
. That is, fc(Px) 6= fd(Px), and we have an f ∈FG and x such that f (Px) 6∈∆Y

A.

That is, A /∈ ΛG implies A /∈ LFG , which completes the proof. �

Remark 5.1.12. Note that additional conditions on E, that defines a congruence relation of the

monoid, might invalidate this approach, e.g., w1‖w2 = w3‖w4, where all weights are different. �

5.2 Decomposition into coupling components 77

5.2 Decomposition into coupling components

In this section, we develop our first decomposition scheme for oracle components in which the

output sets {Yi}i∈T are vector spaces. We start by illustrating the main ideas with an example.

Example 5.2.1. Consider cell types T = {1,2} which denote the cell types “circle” and “square”

respectively. Figure 5.1 presents a cell of type 1 with different types of inputs sets, denoted by the

multi-indexes [00], [01] and [02] respectively. We assume a particular oracle component f̂1 ∈ F̂1

x

(a) No in-neighbors.

xa

x

wa

(b) One in-neighbor.

xa xb

x

wa wb

(c) Two in-neighbors.

Figure 5.1: Simple input sets.

has been chosen. Consider the input set in Figure 5.1a. This cell does not depend on anything

else in the network, it evolves only according to its own internal dynamics. We define the function

f [00]
1 : X1→ Y1 as

f [00]
1 (x) := f̂1(x).

We use this to rewrite the function evaluation of the input set in Figure 5.1b as

f̂1(x;wa,xa) = f [00]
1 (x)+ f [01]

1 (x;wa,xa),

where f [01]
1 : X1×M12×X2→ Y1 is defined as

f [01]
1 (x;wa,xa) := f̂1(x;wa,xa)− f [00]

1 (x).

That is, we decompose the evaluation of the oracle component f̂1 into the internal dynamics of the

cell
(

f [00]
1

)
and the influence from its single in-neighbor of cell type 2

(
f [01]
1

)
. Note that if the

weight value is 012, this case reduces to the one in Figure 5.1a, which implies that f [01]
1 (x;012,xa)=

0Y1 .

Consider now the input set in Figure 5.1c. We can write its evaluation of the oracle component as

f̂1

(
x;

[
wa

wb

]
,

[
xa

xb

])
= f [00]

1 (x)+ f [01]
1 (x;wa,xa)+ f [01]

1 (x;wb,xb)+ f [02]
1

(
x;

[
wa

wb

]
,

[
xa

xb

])
,

78 Output vector spaces

where f [02]
1 : X1×M2

12×X2
2→ Y1 is defined as

f [02]
1

(
x;

[
wa

wb

]
,

[
xa

xb

])
:= f̂1

(
x;

[
wa

wb

]
,

[
xa

xb

])
− f [00]

1 (x)− f [01]
1 (x;wa,xa)− f [01]

1 (x;wb,xb).

The term f [02]
1 describes a 2-order coupling effect of cells of type “square" onto cells of type “cir-

cle”. By definition, it corresponds to what cannot be explained by the internal dynamics
(

f [00]
1

)
(0-

order coupling) and the 1-order coupling contributions from each “square” in-neighbor
(

f [01]
1

)
.

Note that if any of its weight parameters wa,wb is 012, this reduces to the previous case and simi-

larly we conclude that f [02]
1

(
x;

[
wa

wb

]
,

[
xa

xb

])
= 0Y1 . Moreover, note that

f [02]
1

(
x;

[
wa

wb

]
,

[
xa

xb

])
= f [02]

1

(
x;

[
wb

wa

]
,

[
xb

xa

])
.

Consider now the case where xa = xb = xab. This is equivalent to having an edge weight of wa‖wb

in Figure 5.1b. This implies

f [01]
1 (x;wa‖wb,xab) = f [01]

1 (x;wa,xab)+ f [01]
1 (x;wb,xab)+ f [02]

1

(
x;

[
wa

wb

]
,

[
xab

xab

])
, (5.1)

which means that f [01]
1 and f [02]

1 are related to one another and cannot be chosen independently.

�

The following definition is the generalization of this approach to arbitrary finite cell types and

in-neighborhoods.

Definition 5.2.2. Consider the set of cell types T and the related sets {Xi,Yi}i∈T where {Yi}i∈T

are vector spaces. Given an oracle component f̂i ∈ F̂i, i ∈ T , we define the family of coupling
components { f k

i }k≥0|T | , with

f k
i : Xi×Mk

i ×Xk→ Yi, (5.2)

defined recursively by

fK(s)
i (x;ws,xs) := f̂i (x;ws,xs)−∑

s⊂s
fK(s)
i (x;ws,xs) , (5.3)

where k = K(s) gives the corresponding multi-index of the types of cells s and x ∈ Xi, xs ∈ Xk,

ws ∈Mk
i . �

The following result expands the recursive formula in Equation (5.3) and writes { f k
i }k≥0|T |

explicitly in terms of f̂i.

5.2 Decomposition into coupling components 79

Lemma 5.2.3. The coupling components { f k
i }k≥0|T | of an oracle component f̂i ∈ F̂i, i ∈ T , are

given by

fK(s)
i (x;ws,xs) = ∑

s⊆s
(−1)|s|−|s| f̂i (x;ws,xs) . (5.4)

�

Proof. The proof is by strong induction. Assume the statement to be true for all s ⊂ s. Then,

by assumption we can plug the explicit formula Equation (5.4) into the recursive definition Equa-

tion (5.3) in order to obtain

fK(s)
i (x;ws,xs) = f̂i (x;ws,xs)−∑

s⊂s
fK(s)
i (x;ws,xs)

= f̂i (x;ws,xs)−∑
s⊂s

∑
r⊆s

(−1)|s|−|r| f̂i (x;wr,xr) .

We reorder this such that the outer sum is indexed over r, which yields

f̂i (x;ws,xs)−∑
r⊂s

∑
s⊂s
s⊇r

(−1)|s|−|r|

 f̂i (x;wr,xr) .

Note that

∑
s⊂s
s⊇r

(−1)|s|−|r| = ∑
(s\r)⊂(s\r)

(−1)|s\r| = ∑
(s\r)⊆(s\r)

(−1)|s\r|− (−1)|s\r|.

In the power set of a non-empty finite set, half of the subsets have an even size and the other half

has odd size. Therefore, if r⊂ s, we are in this situation and the sum cancels, and we get

fK(s)
i (x;ws,xs) = f̂i (x;ws,xs)−∑

r⊂s

[
−(−1)|s\r|

]
f̂i (x;wr,xr)

= f̂i (x;ws,xs)+∑
r⊂s

(−1)|s|−|r| f̂i (x;wr,xr)

= ∑
r⊆s

(−1)|s|−|r| f̂i (x;wr,xr) ,

which proves the result for s. Note that the strong induction immediately satisfies the case s = /0

since its hypothesis is vacuously true. �

Similarly, we can also write f̂i explicitly in terms of { f k
i }k≥0|T | .

Lemma 5.2.4. An oracle component f̂i ∈ F̂i, i∈ T is given by its coupling components { f k
i }k≥0|T | ,

according to

f̂i (x;ws,xs) = ∑
s⊆s

fK(s)
i (x;ws,xs) . (5.5)

80 Output vector spaces

�

Proof. This is immediate from Equation (5.3) by simple rearrangement. �

Note that Equation (5.5) can also be written as

f̂i (x;ws,xs) = ∑
k≤k

K(s)=k

∑
s⊆s

K(s)=k

f k
i (x;ws,xs) . (5.6)

Remark 5.2.5. The number of multi-indexes smaller or equal to k is ∏i∈T (ki + 1) and for each

particular k the number of terms in the sum is ∏i∈T
(ki

ki

)
. �

Remark 5.2.6. These functions operate on an arbitrary (but finite) set of cells s. Even though

there is no upper bound for the amount of terms in the sums, for any particular chosen s the sum

is always finite. Therefore, everything is well-defined and there are no convergence issues. �

This is exactly the anchored decomposition Kuo et al. (2010) applied to an arbitrary finite set

of variables. The decomposition is done with respect to the weights of ws, anchoring them at 0i j,

for the appropriate j ∈ T . From the properties of the anchored decomposition we know immedi-

ately that if any of the entries of w is 0i j, then f k
i (x;w,x) = 0Yi . From item 3 of Definition 2.4.1,

we note that when we anchor some entry of ws to 0i j we are also removing the functional depen-

dence on the corresponding entry of xs.

Moreover, note that for subsets of cells s1,s2 ⊂ s such that K(s1) = K(s2) = k, we indexed their

associated function by k instead of by s1 and s2 as is traditional in the anchored decomposition.

This is proper since the functions { f k
i }k≥0|T | inherit from f̂i the property of being invariant to per-

mutations.

In summary, the decomposition according to Definition 5.2.2 gives us a family of functions { f k
i }k≥0|T | ,

which is an equivalent representation of a given oracle component function f̂i.

The following result presents the necessary and sufficient conditions for { f k
i }k≥0|T | to be such that

it corresponds to a valid f̂i. That is, for the corresponding f̂i to follow Definition 2.4.1.

Theorem 5.2.7. The family of functions { f k
i }k≥0|T | , represents some valid oracle component f̂i ∈

F̂i, and is related to it according to Definition 5.2.2, if and only if for every k ≥ 0|T |, f k
i has the

following properties:

1. If σ is any permutation matrix (of appropriate dimension), then

f k
i (x;w,x) = f k

i (x;σw,σx) . (5.7)

5.2 Decomposition into coupling components 81

2. If k j > 0, then f k
i and f k+e j

i are related by

f k
i

(
x;

[
w j1‖w j2

ws

]
,

[
x j12

xs

])
= f k

i

(
x;

[
w j1

ws

]
,

[
x j12

xs

])
+ f k

i

(
x;

[
w j2

ws

]
,

[
x j12

xs

])
(5.8)

+ f k+e j
i

x;

w j1

w j2

ws

 ,
x j12

x j12

xs

 ,

where s is a set of cells such that K(s) = k− e j, and the indexes j1, j2 and j12 denote cells

of type j.

3. If the index j denotes a cell of type j ∈ T , then

f k
i

(
x;

[
0i j

w

]
,

[
x j

x

])
= 0Yi . (5.9)

�

Proof. We begin by proving the =⇒ direction. That is, for a given f̂i, the family of functions

{ f k
i }k≥0|T | will have the properties in items 1 to 3.

Item 1 is immediate from Equation (5.4), which writes fK(s)
i explicitly as a function of f̂i, to-

gether with Equation (2.2). Note that the sum Equation (5.4) being indexed over all subsets s⊆ s
is crucial to keep the whole sum invariant under permutations. This means that unlike what is

traditional in the general anchored decomposition, we do not require to index the coupling com-

ponents according to cells subsets (e.g., f s1
i , f s2

i) since they are functionally the same whenever

K(s1) = K(s2). Instead we can freely index them according to their respective type multi-index.

That is, our definition is self-consistent.

The proof of item 2 is by strong induction. Assume the statement to be true for all s⊂ s. We apply

Equation (5.5) to Equation (2.3). Then, the left hand side becomes

∑
s⊆s

(
fK(s)
i (x;ws,xs)+ fK(s)+e j

i

(
x;

[
w j1‖w j2

ws

]
,

[
x j12

xs

]))
,

and the right hand expands into

∑
s⊆s

[
fK(s)
i (x;ws,xs)+ fK(s)+e j

i

(
x;

[
w j1

ws

]
,

[
x j12

xs

])
+ fK(s)+e j

i

(
x;

[
w j2

ws

]
,

[
x j12

xs

])

+ fK(s)+2e j
i

x;

w j1

w j2

ws

 ,
x j12

x j12

xs

 .

The first terms of the sum in both sides cancel each other. Using the assumption that item 2 holds

for every index s ⊂ s, the last term of the left hand side cancels with the last three terms of the

82 Output vector spaces

right hand side. Thus, what remains is those terms indexed with s = s, that is,

fK(s)+e j
i

(
x;

[
w j1‖w j2

ws

]
,

[
x j12

xs

])
= fK(s)+e j

i

(
x;

[
w j1

ws

]
,

[
x j12

xs

])
+ fK(s)+e j

i

(
x;

[
w j2

ws

]
,

[
x j12

xs

])

+ fK(s)+2e j
i

x;

w j1

w j2

ws

 ,
x j12

x j12

xs

 .

This means that item 2 applies for every s.

Item 3 comes directly from the known properties of the anchored decomposition. We prove it

explicitly for completeness sake. Split the sum in Equation (5.4) into two sums according to

whenever the indexed subset contains a given cell c or not. That is,

fK(s)
i (x;ws,xs) = ∑

s⊆s\{c}
(−1)|s|−|s| f̂i (x;ws,xs)+ ∑

s⊆s\{c}
(−1)|s|−|s∪{c}| f̂i

(
x;

[
wc

ws

]
,

[
xc

xs

])
.

If wc = 0i j for some j ∈ T , then, we can apply Equation (2.4) on the right sum, which results in

fK(s)
i (x;ws,xs) = ∑

s⊆s\{c}
(−1)|s|−|s| f̂i (x;ws,xs)− ∑

s⊆s\{c}
(−1)|s|−|s| f̂i (x;ws,xs) = 0Yi .

We now prove the ⇐= direction. That is, any given family of functions { f k
i }k≥0|T | with the

properties in items 1 to 3, defines a valid oracle component f̂i. To prove that, we show that

Definition 5.2.2 will always be respected for any input.

The proof of Equation (2.2) is immediate from Equation (5.5), which writes f̂i explicitly as a

function of fK(s)
i , together with item 1. Note that the sum Equation (5.5) being indexed over all

subsets s⊆ s is crucial to keep the whole sum invariant under permutations.

We now prove that Equation (2.3) is satisfied. Using Equation (5.5) on its left hand side gives us

∑
s⊆s

(
fK(s)
i (x;ws,xs)+ fK(s)+e j

i

(
x;

[
w j1‖w j2

ws

]
,

[
x j12

xs

]))
.

We now apply item 2 to the second term of the sum and we obtain

∑
s⊆s

[
fK(s)
i (x;ws,xs)+ fK(s)+e j

i

(
x;

[
w j1

ws

]
,

[
x j12

xs

])
+ fK(s)+e j

i

(
x;

[
w j2

ws

]
,

[
x j12

xs

])

+ fK(s)+2e j
i

x;

w j1

w j2

ws

 ,
x j12

x j12

xs

 ,

Using Equation (5.5) again gives us the right hand side of Equation (2.3).

We now prove Equation (2.4). Split the sum in Equation (5.5) into two sums according to whenever

5.2 Decomposition into coupling components 83

the indexed subset contains a given cell c or not. That is,

f̂i (x;ws,xs) = ∑
s⊆s\{c}

fK(s)
i (x;ws,xs)+ ∑

s⊆s\{c}
fK(s∪{c})
i

(
x;

[
wc

ws

]
,

[
xc

xs

])
.

If wc = 0i j for some j ∈ T , then, we can apply item 3 on the right sum, which results in

f̂i (x;ws,xs) = ∑
s⊆s\{c}

fK(s)
i (x;ws,xs) = f̂i

(
x;ws\{c},xs\{c}

)
.

�

At this point, we have started with the definition of oracle components f̂i in Definition 2.4.1.

Then, we established a bijective correspondence between f̂i and a family of coupling components

{ f k
i }k≥0|T | in Definition 5.2.2. Finally, Theorem 5.2.7 completed the cycle by making it so that

we can also start by first constructing a valid { f k
i }k≥0|T | and then obtaining the corresponding f̂i

afterwards.

We are now interested in knowing how to manipulate this mathematical object through this new

representation. Subsequently, we will provide some examples that illustrate this decomposition

and its properties.

Lemma 5.2.8. Consider the oracle components f̂i and the ones in the sequence (N f̂i)N∈N such

that their corresponding coupling components are, respectively, { f k
i }k≥0|T | and(

{N f k
i }k≥0|T |

)
N∈N

. If the output set Yi is a Hausdorff topological vector space, then,

lim
N→∞

N f̂i = f̂i⇐⇒ lim
N→∞
{N f k

i }k≥0|T | = { f k
i }k≥0|T |

in the topology of pointwise convergence. �

Proof. We begin by proving the =⇒ direction. That is, assume lim
N→∞

N f̂i = f̂i.

For any N ∈ N, we know from Equation (5.4), that for any set of cells s

lim
N→∞

N fK(s)
i (x;ws,xs) = lim

N→∞
∑
s⊆s

(−1)|s|−|s|N f̂i (x;ws,xs)

= ∑
s⊆s

(−1)|s|−|s| lim
N→∞

N f̂i (x;ws,xs)

= ∑
s⊆s

(−1)|s|−|s| f̂i (x;ws,xs)

= fK(s)
i (x;ws,xs) .

84 Output vector spaces

We now prove the ⇐= direction. That is, assume lim
N→∞
{N f k

i }k≥0|T | = { f k
i }k≥0|T | .

For any N ∈ N, we know from Equation (5.5), that for any set of cells s

lim
N→∞

N f̂i (x;ws,xs) = lim
N→∞

∑
s⊆s

N fK(s)
i (x;ws,xs)

= ∑
s⊆s

lim
N→∞

N fK(s)
i (x;ws,xs)

= ∑
s⊆s

fK(s)
i (x;ws,xs)

= f̂i (x;ws,xs) .

Note that in a topological vector space the addition operation +(·, ·) is (jointly) continuous. This

is what allowed us to convert limits of (finite) sums into (finite) sums of the limits. The Hausdorff

property is required to ensure that the limits are always as stated due to uniqueness. �

Lemma 5.2.9. For two oracle components f̂i, ĝi ∈ F̂i with coupling components { f k
i }k≥0|T | and

{gk
i }k≥0|T | respectively, the coupling components of ĥi = α f̂i + ĝi are given by {α f k

i + gk
i }k≥0|T | ,

for any scalar α . �

Proof. This comes directly from writing the coupling components explicitly in terms of the oracle

components as in Equation (5.4). That is,

hK(s)
i (x;ws,xs) = ∑

s⊆s
(−1)|s|−|s|

(
α f̂i + ĝi

)
(x;ws,xs)

= α

(
∑
s⊆s

(−1)|s|−|s| f̂i (x;ws,xs)

)
+∑

s⊆s
(−1)|s|−|s|ĝi (x;ws,xs)

= α fK(s)
i (x;ws,xs)+gK(s)

i (x;ws,xs)

=
(

α fK(s)
i +gK(s)

i

)
(x;ws,xs) .

�

We have shown that operating linearly on F̂i is completely straightforward, with the coupling

components { f k
i }k≥0|T | being affected component-wise according to the respective linear combi-

nation.

Corollary 5.2.10. The coupling components of order 0, that is, f 0
i , which describes the inner

dynamics of a cell, are completely free and independent of the remaining coupling components

{ f k
i }k>0. �

Corollary 5.2.11. Consider f k+e j
i = 0Yi for some k≥ 0|T |, with k j ≥ 1, j ∈ T .

Then, f k
i is additive in the weights with respect to type j. That is,

f k
i

(
x;

[
w j1‖w j2

ws

]
,

[
x j12

xs

])
= f k

i

(
x;

[
w j1

ws

]
,

[
x j12

xs

])
+ f k

i

(
x;

[
w j2

ws

]
,

[
x j12

xs

])
. (5.10)

5.2 Decomposition into coupling components 85

�

The coupling decomposition allows us to define very important concepts that will prove es-

sential in Section 5.3.

Definition 5.2.12. We say that an oracle component f̂i ∈ F̂i with coupling components

{ f k
i }k≥0|T | has (finite) coupling order γ j ∈ N0 with respect to the cell type j ∈ T , if there is some

k≥ 0|T |, with k j = γ j such that f k
i 6= 0Yi and there is no such k≥ 0|T | with k j > γ j.

We say that f̂i ∈ F̂i has infinite coupling order (γ j = ∞) with respect to the cell type j ∈ T , if for

every k j ∈ N0 there is some k≥ 0|T | such that f k
i 6= 0Yi , with k j ≥ k j.

In particular, if γ j = 1 or γ j = 0, we say that it is additive or uncoupled, respectively, with regard

to j ∈ T . �

Corollary 5.2.13. Consider an oracle component f̂i ∈ F̂i with finite coupling order γ j ≥ 1 for

some j ∈ T . Then, for any k≥ 0|T | such that k j = γ j, f k
i is additive in the weights with respect to

type j. �

Proof. If is it of order k j = γ j, then, f k+e j
i = 0Yi . The rest follows from Corollary 5.2.11. �

Lemma 5.2.14. Consider an oracle component f̂i ∈ F̂i such that for a particular j ∈ T the asso-

ciated commutative monoidMi j has an annihilator ai j. Then the coupling order of f̂i with respect

to cell type j ∈ T , is either infinite or 0 (uncoupled). �

Proof. The proof is by contradiction. Assume f̂i has finite order γ j ≥ 1. Then, for every k≥ 0|T |,
with k j = γ j, we have that f k+e j

i = 0Yi . From Corollary 5.2.13, f k
i is additive, which implies

f k
i

(
x;

[
w j1‖ai j

ws

]
,

[
x j12

xs

])
= f k

i

(
x;

[
w j1

ws

]
,

[
x j12

xs

])
+ f k

i

(
x;

[
ai j

ws

]
,

[
x j12

xs

])
. (5.11)

Since w j1‖ai j = ai j, this means that f k
i = 0Yi , which contradicts the assumption that f̂i is of order

γ j. �

We illustrate the decomposition into coupling components scheme with the following exam-

ples.

Example 5.2.15. Consider a single-type network such that

f̂i (x;ws,xs) = f 0
i (x)+

(
∑
c∈s

wcxc

)2

.

We can derive the commutative monoid that defines the edge merging. It has to obey

f 0
i (x)+((w1‖w2)x12)

2 = f 0
i (x)+(w1x12 +w2x12)

2 ,

(w1‖w2)
2 x2

12 = (w1 +w2)
2 x2

12,

86 Output vector spaces

from which we conclude that w1‖w2 is either w1 +w2 or −(w1 +w2). Note that for either case

0‖0 = 0. Assume the second option to be true. From the properties of the commutative monoid

w‖(0‖0) = (w‖0)‖0,

w‖0 =−w‖0,

−w = w.

That is, the second option will only allow the trivial situation in which all edges are 0. Therefore,

we choose w1‖w2 = w1 +w2. Considering only one in-neighbor, we conclude that

f 1
i (x;w1,x1) = (w1x1)

2 .

Similarly,

f 2
i

(
x;

[
w1

w2

]
,

[
x1

x2

])
= 2(w1x1)(w2x2).

We can verify that item 2 of Theorem 5.2.7 is satisfied, that is

f 1
i (x;w1‖w2,x12) = f 1

i (x;w1,x12)+ f 1
i (x;w2,x12)+ f 2

i

(
x;

[
w1

w2

]
,

[
x12

x12

])
,

((w1 +w2)x12)
2 = (w1x12)

2 +(w2x12)
2 +2w1w2x2

12,

which is indeed true. It can be seen that higher orders will all be 0. That is,

f̂i (x;ws,xs) = f 0
i (x)+∑

c∈s
(wcxc)

2 + ∑
c,d∈s
c 6=d

2(wcxc)(wdxd)

= f 0
i (x)+∑

c∈s
f 1
i (x;wc,xc)+ ∑

c,d∈s
c 6=d

f 2
i

(
x;

[
wc

wd

]
,

[
xc

xd

])
.

�

We now extend the previous example to a general integer power. This requires the following

generalization of the binomial coefficient.

Definition 5.2.16. Consider n ≥ 0 and m ∈ Zk such that k > 1 and |m| = n. The multinomial
coefficient

(n
m
)

is defined as

(
n
m

)
:=

n!

∏
k
i=1 mi!

if m≥ 0k,

0 otherwise.
(5.12)

�

5.2 Decomposition into coupling components 87

Remark 5.2.17. The reason for considering the cases m ∈ Zk that are outside Nk
0 and defining

them as 0 is because it greatly simplifies the use of the recurrence relation(
n
m

)
=

k

∑
i=1

(
n−1

m−1i

)
, n > 0. (5.13)

This avoids having to treat many corner cases as special. For instance, in the binomial case,

defined as
(n

m

)
=
(n

m,n−m

)
, this corresponds to

(n
m

)
=
(n−1

m−1

)
+
(n−1

m

)
, for n > 0. The cases m = 0

and m = n give us
(n

0

)
=
(n−1
−1

)
+
(n−1

0

)
=
(n−1

0

)
and

(n
n

)
=
(n−1

n−1

)
+
(n−1

n

)
=
(n−1

n−1

)
, respectively. �

Example 5.2.18. Consider a single-type network such that

f̂i (x;ws,xs) = f 0
i (x)+

(
∑
c∈s

wcxc

)n

,

with n ∈ N. Then, the coupling components f k for k > 0 are given according to

f |s|i (x;ws,xs) = ∑
m≥1|s|
|m|=n

(
n
m

)
∏
c∈s

(wcxc)
mc = n! ∑

m≥1|s|
|m|=n

∏
c∈s

(wcxc)
mc

mc!
.

The proof is by strong induction. Assume this to be true for k ∈ {1, . . . ,a−1}, with a > 0. Choose

any set of cells s such that |s|= a. From the recursive definition we have

f a
i (x;ws,xs) = f̂i (x;ws,xs)−∑

s⊂s
f |s|i (x;ws,xs)

= f 0
i (x)+ ∑

m≥0|s|
|m|=n

(
n
m

)
∏
c∈s

(wcxc)
mc−

 f 0
i (x)+ ∑

s⊂s
s 6= /0

∑
m≥1|s|
|m|=n

(
n
m

)
∏
c∈s

(wcxc)
mc

= ∑

m≥1|s|
|m|=n

(
n
m

)
∏
c∈s

(wcxc)
mc

= n! ∑
m≥1|s|
|m|=n

∏
c∈s

(wcxc)
mc

mc!
.

That is, the case k = a is also satisfied, which concludes the proof. Note that the case k = 1 comes

for free due to using strong induction (its hypothesis is vacuously true), although it is trivial to

verify. �

Remark 5.2.19. Note that for k > n there are no multi-indexes that satisfy simultaneously m≥ 1k

and |m|= n. Therefore, f k
i = 0 for such k. The coupling order is then γ = n. �

88 Output vector spaces

Remark 5.2.20. As a sanity check we verify that item 2 of Theorem 5.2.7 is satisfied.

First we can derive the commutative monoid that defines the edge merging. It has to obey

f 0
i (x)+((w1‖w2)x12)

n = f 0
i (x)+(w1x12 +w2x12)

n ,

(w1‖w2)
n xn

12 = (w1 +w2)
n xn

12.

If n is odd, then w1‖w2 = w1 +w2. If n is even, we are in the same situation as in Example 5.2.15

and w1‖w2 = w1 +w2 for us to be in a non-trivial setting. Now, to verify

f |s|+2
i

x;

w1

w2

ws

 ,
x12

x12

xs

= f |s|+1

i

(
x;

[
w1‖w2

ws

]
,

[
x12

xs

])

− f |s|+1
i

(
x;

[
w1

ws

]
,

[
x12

xs

])
− f |s|+1

i

(
x;

[
w2

ws

]
,

[
x12

xs

])
,

we note that (
n

m1,m2,m

)
=

(
m1 +m2

m1,m2

)(
n

m1 +m2,m

)
.

Using this, the left hand side can be written as

∑
m1,m2≥1

(
m1 +m2

m1,m2

)
wm1

1 wm2
2 xm1+m2

12 ∑
m≥1|s|

m1+m2+|m|=n

(
n

m1 +m2,m

)
∏
c∈s

(wcxc)
mc

and the right hand side as

∑
m12≥1

((w1 +w2)
m12−wm12

1 −wm12
2)xm12

12 ∑
m≥1|s|

m12+|m|=n

(
n

m12,m

)
∏
c∈s

(wcxc)
mc .

Using the binomial theorem on (w1 +w2)
m12 we see that for a fixed m12 we have that

(w1 +w2)
m12−wm12

1 −wm12
2 = ∑

m1,m2≥1
m1+m2=m12

(
m12

m1,m2

)
wm1

1 wm2
2 .

Therefore, both sides are the same. �

We now extend Example 5.2.18 to the polynomial case.

Example 5.2.21. From Example 5.2.18 and Lemma 5.2.9 we have that for single-type networks

such that

f̂i (x;ws,xs) = f 0
i (x)+

N

∑
n=1

an

(
∑
c∈s

wcxc

)n

,

5.2 Decomposition into coupling components 89

the coupling components f k
i for k > 0 are given according to

f |s|i (x;ws,xs) =
N

∑
n=1

ann! ∑
m≥1|s|
|m|=n

∏
c∈s

(wcxc)
mc

mc!
.

�

Example 5.2.22. Consider the exponential case

f̂i (x;ws,xs) = f 0
i (x)+ exp

(
∑
c∈s

wcxc

)
−1.

The coupling components f k for k > 0 are given according to

f |s|i (x;ws,xs) = ∏
c∈s

(exp(wcxc)−1) .

This is proven by creating the sequence of oracle components (N f̂i)N∈N such that

N f̂i (x;ws,xs) = f 0
i (x)+

N

∑
n=1

1
n!

(
∑
c∈s

wcxc

)n

.

That is, the oracle components obtained by replacing exp(·)− 1 by its Nth order Taylor series

truncation. From Example 5.2.21 we know that for the sequence
(
{N f k

i }k≥0
)

N∈N, the components
N f k, for k > 0 are given according to

N f |s|i (x;ws,xs) = ∑
m≥1|s|
|m|≤N

∏
c∈s

(wcxc)
mc

mc!
.

Since we know that lim
N→∞

N f̂i = f̂i (pointwise), from Lemma 5.2.8 we conclude that lim
N→∞

N f |s|i = f |s|i .

That is,

f |s|i (x;ws,xs) = ∑
m≥1|s|

∏
c∈s

(wcxc)
mc

mc!
.

Here, the infinite sum ∑m≥1|s| is taken as

∑
m≥1|s|

:= lim
N→∞

∑
m≥1|s|
|m|≤N

.

We can prove, however, that this particular infinite sum is absolutely convergent on the index set

90 Output vector spaces

m≥ 1|s|. That is,

∑
m≥1|s|

∣∣∣∣∣∏c∈s

(wcxc)
mc

mc!

∣∣∣∣∣= ∑
m≥1|s|

∏
c∈s

|wcxc|mc

mc!
= ∏

c∈s
∑

mc≥1

|wcxc|mc

mc!
= ∏

c∈s
(exp(|wcxc|)−1)< ∞.

This means that the order does not matter and we can freely rearrange the sum into

f |s|i (x;ws,xs) = ∑
m≥1|s|

∏
c∈s

(wcxc)
mc

mc!
= ∏

c∈s
∑

mc≥1

(wcxc)
mc

mc!
= ∏

c∈s
(exp(wcxc)−1) .

�

We now extend the previous results for multi-type networks.

Example 5.2.23. Consider a multi-type network such that

f̂i (x;ws,xs) = f 0
i (x)+∏

j∈T

(
∑
c∈s j

wcxc

)n j

.

with n > 0|T |, and where s j ⊆ s represents the subset of cells that are of type j ∈ T . We use the

definition 00 = 1, which is standard and avoids many corner cases (e.g., consider the binomial

theorem applied to (x+0)n). Then, the coupling components { f k}k>0|T | are given according to

fK(s)
i (x;ws,xs) = ∏

j∈T
n j! ∑

m≥1|s j |
|m|=n j

∏
c∈s j

(wcxc)
mc

mc!
.

Note that expanding the outer product gives us

∑
m≥1|s|
|m1|=n1

...
|m|T ||=n|T |

(
∏
j∈T

n j!

)
∏
c∈s

(wcxc)
mc

mc!
, with m :=

m1
...

m|T |

 .

This is now proven by strong induction. Assume this to be true for |k| ∈ {1, . . . ,a−1}, with a > 0.

For any k > 0|T | with |k| = a, choose any set of cells s := {s1 ∪ . . .∪ s|T |}, such that for every

j ∈ T , s j is a set of cells of type j and |s j|= k j.

5.2 Decomposition into coupling components 91

From the recursive definition, fK(s)
i (x;ws,xs) = f̂i (x;ws,xs)−∑s⊂s fK(s)

i (x;ws,xs) becomes

∏
j∈T

∑
m≥0|s j |
|m|=n j

(
n j

m j

)
∏
c∈s j

(wcxc)
mc−

∑
s⊂s
s6= /0

∑
m≥1|s|
|m1|=n1

...
|m|T ||=n|T |

(
∏
j∈T

n j!

)
∏
c∈s

(wcxc)
mc

mc!

= ∑

m≥0|s|
|m1|=n1

...
|m|T ||=n|T |

(
∏
j∈T

n j!

)
∏
c∈s

(wcxc)
mc

mc!
−∑

s⊂s
s6= /0

∑
m≥1|s|
|m1|=n1

...
|m|T ||=n|T |

(
∏
j∈T

n j!

)
∏
c∈s

(wcxc)
mc

mc!

= ∑
m≥1|s|
|m1|=n1

...
|m|T ||=n|T |

(
∏
j∈T

n j!

)
∏
c∈s

(wcxc)
mc

mc!

= ∏
j∈T

n j! ∑
m≥1|s j |
|m|=n j

∏
c∈s j

(wcxc)
mc

mc!
.

That is, the case |k|= a is also satisfied, which concludes the proof. �

Example 5.2.24. From Example 5.2.23 and Lemma 5.2.9, we have that for multi-type networks

such that

f̂i (x;ws,xs) = f 0
i (x)+ ∑

n>0|T |

an ∏
j∈T

(
∑
c∈s j

wcxc

)n j

,

with {an}n>0|T | with finite support, the coupling components { f k}k>0|T | are given according to

fK(s)
i (x;ws,xs) = ∑

n>0|T |

an ∏
j∈T

n j! ∑
m≥1|s j |
|m|=n j

∏
c∈s j

(wcxc)
mc

mc!
.

�

The following example illustrates how an oracle component for multi-type networks can have

the form of Example 5.2.24 while being constructed in a more natural manner.

Example 5.2.25. Consider multi-type networks such that

f̂i (x;ws,xs) = f 0
i (x)+F

(
∑
j∈T

Fj

(
∑
c∈s j

wcxc

))
.

92 Output vector spaces

with F(X) = ∑
N
n=1 anXn and Fj(X) = ∑

N j
n=1 a j

nXn, for all j ∈ T . Then, we have that

F

(
∑
j∈T

Fj

(
∑
c∈s j

wcxc

))
=

N

∑
n=1

an

(
∑
j∈T

Fj

(
∑
c∈s j

wcxc

))n

=
N

∑
n=1

an ∑
m≥0|T |
|m|=n

(
n
m

)
∏
j∈T

Fj

(
∑
c∈s j

wcxc

)m j

=
N

∑
n=1

ann! ∑
m≥0|T |
|m|=n

∏
j∈T

1
m j!

Fj

(
∑
c∈s j

wcxc

)m j

=
N

∑
n=1

ann! ∑
m≥0|T |
|m|=n

∏
j∈T

1
m j!

 N j

∑
l=1

a j
l

(
∑
c∈s j

wcxc

)l
m j

.

Note that the product of polynomials can be obtained by the convolution of their coefficients.

Therefore, raising a polynomial to the power n is equivalent to convolving its coefficients with

themselves n times. In particular, (∑N
n=1 anXn)m can be written as ∑

Nm
n=m bnXn, with

bn = ∑
l≥1m

l≤N 1m
|l|=n

m

∏
i=1

ali .

Therefore, for any fixed n > 0|T |, the coefficient an associated with ∏ j∈T

(
∑c∈s j wcxc

)n j
as in

Example 5.2.24 is given by

an =
N

∑
n=1

ann! ∑
m≥0|T |
|m|=n

∏
j∈T

1

m j!
∑

l≥1m j
l≤N j 1m j
|l|=n j

m j

∏
i=1

a j
li

 .

Note that the outer function F is the one responsible for the existence of non-zero coupling com-

ponents with mixed typing. Consider, for instance, N = 1. Then, an with n > 0|T | can only be

non-zero whenever n = ae j for some j ∈ T . The reason is that the only way for the innermost

sum to be non-zero whenever m j = 0, is for n j to be zero as well. In that situation, we have a sum

over one valid index (the 0-tuple) of an empty product, which results in 1. Similarly, if we consider

N = 2, then, an with n > 0|T | can only be non-zero whenever n = ae j +bek for some j,k ∈ T , and

so on. �

We now introduce the second composition scheme.

5.3 Decomposition into basis components 93

5.3 Decomposition into basis components

In Section 5.2 we introduced a scheme that decomposes any given oracle component f̂i ∈ F̂i into

a family of coupling components { f k
i }k≥0|T | that have the properties described in Theorem 5.2.7.

With that, one can easily verify in a very systematic way if some function f̂i that is used to model

the behavior of cells in a network satisfies the properties given by Definition 2.4.1.

Although this decomposition works well for verification, it is lacking from the perspective of

design. The reason for this is the item 2 of Theorem 5.2.7. It forces all coupling components

{ f k
i }k≥0|T | to be interdependent. Therefore, it is not clear at all what are exactly the degrees of

freedom that are available for us, nor how one would even start when choosing such functions.

In this section, we use the previous decomposition as an essential stepping stone in order to create

another with more desirable properties.

For that, we require the use of the multiplicity notation and also Stirling numbers of the first and

second kinds, which we now describe.

5.3.1 Multiplicity notation

We now introduce the multiplicity notation, which simplifies the following work.

By mws, with m ≥ 0|s|, we mean that each entry wc of the vector ws is expanded into mc entries

of the same value. For instance, consider

ws =

[
wa

wb

]
, m =

[
1

2

]
. Then, mws =

wa

wb

wb

 .
Note that the number of elements in the resulting vector mws is |ms|= |m|, which in this case is

3. Moreover, multiplicities can be composed. That is, we can apply some m to the previous mws,

in order to obtain mmws, which requires m≥ 0|m|. For instance, we could have

m =

2

1

2

 , mmws =

wa

wa

wb

wb

wb

 ,

where the horizontal bars are just for illustration purposes in order to make the expansion of mws

into mmws clearer. Note that |mms|= |m|= 5. Moreover, applying the successive multiplicities

94 Output vector spaces

(m after m) is equivalent to applying a single multiplicity M, in our case, we have,

M =

[
2

3

]
, Mws =

wa

wa

wb

wb

wb

 .

Note that |M| = |m| = 5. We say that M = mm, where mm is the composition of the two mul-

tiplicities m and m. This should not be confused with extending m according to m, which has a

completely different meaning. In our example, we have

mm =

2

1

2

[1

2

]
=

[
2

3

]
= M.

The |m| entries of m can be divided according to the values of m, which in this case is a first

block with one element and a second block with two elements. Note that each block will affect

a different element of the original vector we are applying mm to (e.g., ws), that is, each element

of the ith block of m expands the ith element of ws that amount of times. In conclusion, to find

the equivalent multiplicity M we just need to sum each block of the multiplicity m, in which, the

blocks are defined according to m.

5.3.2 Stirling numbers

The Stirling numbers of the first and second kinds are integers that appear in combinatorics, in

particular when studying partitions and permutations Comtet (1974). In this section we will define

them with respect to their recurrence relations. The related results that will be used in the sections

are presented and proved in Appendix A.1.

Definition 5.3.1. The unsigned Stirling numbers of the first kind, S1(n,k), with n,k≥ 0, are given

by the recurrence relation

S1(n,k) = (n−1)S1(n−1,k)+S1(n−1,k−1), n,k > 0,

together with the boundary conditions

S1(0,0) = 1,

S1(0,k) = 0, k > 0,

S1(n,0) = 0, n > 0.

�

5.3 Decomposition into basis components 95

Definition 5.3.2. The Stirling numbers of the second kind, S2(n,k), with n,k≥ 0, are given by the

recurrence relation

S2(n,k) = kS2(n−1,k)+S2(n−1,k−1), n,k > 0,

together with the boundary conditions

S2(0,0) = 1,

S2(0,k) = 0, k > 0,

S2(n,0) = 0, n > 0.

�

5.3.3 Finite coupling order

We denote by F̂<∞
i the subset of elements in F̂i whose set of coupling components { f k

i }k≥0|T | has

only finitely many non-zero terms. From Lemma 5.2.9, this forms a subspace. We now show that

we can represent the elements of F̂<∞
i by a set of functions {b f k

i }k≥0|T | , called basis components,

which have simpler properties than the coupling components { f k
i }k≥0|T | . In particular, they are

decoupled from one another. These functions have the following structure.

Definition 5.3.3. A basis component b f k
i , with k≥ 0|T |, is a function defined on

b f k
i : Xi×Mk

i ×Xk→ Yi, (5.14)

such that:

1. If σ is any permutation matrix (of appropriate dimension), then

b f k
i (x;w,x) = b f k

i (x;σw,σx) . (5.15)

2. If k j > 0, then b f k
i is additive in the weights with respect to type j. That is,

b f k
i

(
x;

[
w j1‖w j2

ws

]
,

[
x j12

xs

])
= b f k

i

(
x;

[
w j1

ws

]
,

[
x j12

xs

])
+ b f k

i

(
x;

[
w j2

ws

]
,

[
x j12

xs

])
.

(5.16)

�

Corollary 5.3.4. Given a basis component b f k
i , if any of the entries of w is 0i j for some j ∈ T ,

then

b f k
i (x;w,x) = 0Yi . (5.17)

96 Output vector spaces

�

Proof. From item 2 of Definition 5.3.3, we know that

b f k
i

(
x;

[
w j1‖0i j

ws

]
,

[
x j12

xs

])
= b f k

i

(
x;

[
w j1

ws

]
,

[
x j12

xs

])
+ b f k

i

(
x;

[
0i j

ws

]
,

[
x j12

xs

])
.

Since w j1‖0i j = w j1 , this implies that

b f k
i

(
x;

[
0i j

ws

]
,

[
x j12

xs

])
= 0Yi .

The fact that this applies to every j ∈ T , together with item 1 of Definition 5.3.3, proves the result

for a zero in any entry of w. �

The following result assigns the appropriate basis components {b f k
i }k≥0|T | to the elements

of F̂<∞
i by relating them, bijectively, to the coupling components { f k

i }k≥0|T | . We now use the

following shorthand notation

fK(ms)
i (x;m,ws,xs) := fK(ms)

i (x;mws,mxs) .

Theorem 5.3.5. Assuming the related set Yi to be a vector space, there is a bijection between

the set of coupling components { f k
i }k≥0|T | of elements in F̂<∞

i , and the set of basis components

{b f k
i }k≥0|T | with finitely many non-zero terms. In particular, this bijection is given by the following

equivalent expressions,

fK(s)
i (x;ws,xs) = ∑

m≥1|s|

1
∏c∈s mc!

b fK(ms)
i (x;m,ws,xs) , (5.18)

b fK(s)
i (x;ws,xs) = ∑

m≥1|s|

(−1)|m|−|s|

∏c∈s mc
fK(ms)
i (x;m,ws,xs) , (5.19)

and in general for multiplicities m≥ 0|s|,

fK(ms)
i (x;m,ws,xs) = ∑

M≥0|s|

(
∏
c∈s

mc!
Mc!
S2(Mc,mc)

)
b fK(Ms)

i (x;M,ws,xs) , (5.20)

b fK(ms)
i (x;m,ws,xs) = ∑

M≥0|s|

(−1)|M|−|m|
(

∏
c∈s

mc!
Mc!
S1(Mc,mc)

)
fK(Ms)
i (x;M,ws,xs) . (5.21)

�

5.3 Decomposition into basis components 97

In order to prove this, we require Lemmas 5.3.6 to 5.3.12, which are proven in Appendix A.1.

Lemma 5.3.6. For m,M≥ 0k, with k ≥ 0, we have that

∑
m≥1|m|
mm=M

1

∏
|m|
i=1 mi

=
k

∏
i=1

mi!
Mi!
S1(Mi,mi). (5.22)

�

Lemma 5.3.7. For m,M≥ 0k, with k ≥ 0, we have that

∑
m≥1|m|
mm=M

1

∏
|m|
i=1 mi!

=
k

∏
i=1

mi!
Mi!
S2(Mi,mi). (5.23)

�

Lemma 5.3.8. For M≥ 0k, with k ≥ 0, we have that

∑
m≥1k

k

∏
i=1

(−1)miS1(Mi,mi) =

(−1)k if M = 1k,

0 otherwise.
(5.24)

�

Lemma 5.3.9. For M≥ 0k, with k ≥ 0, we have that

∑
m≥1k

k

∏
i=1

(−1)mi(mi−1)!S2(Mi,mi) =

(−1)k if M = 1k,

0 otherwise.
(5.25)

�

Lemma 5.3.10. Consider a function b f k
i with the properties in Definition 5.3.3, for some k≥ 0|T |.

For every m12 ≥ 0,m≥ 0|s|, such that k =K(ms)+m12 e j, we have that

b f k
i

(
x;

[
m12

m

]
,

[
w j1‖w j2

ws

]
,

[
x j12

xs

])
= ∑

m1,m2≥0
m1+m2=m12

(
m12

m1,m2

)
b f k

i

x;

m1

m2

m

 ,
w j1

w j2

ws

 ,
x j12

x j12

xs

 .

(5.26)

�

98 Output vector spaces

Lemma 5.3.11. Consider a family of functions { f k
i }k≥0|T | with the properties in Theorem 5.2.7,

for some k≥ 0|T |. For every m12 ≥ 0,m≥ 0|s|, such that k =K(ms), we have that

f k+m12 e j
i

(
x;

[
m12

m

]
,

[
w j1‖w j2

ws

]
,

[
x j12

xs

])
(5.27)

= ∑
m1,m2≥0

m1,m2≤m12
m1+m2≥m12

B(m1,m2,m12) f k+(m1+m2)e j
i

x;

m1

m2

m

 ,
w j1

w j2

ws

 ,
x j12

x j12

xs

 ,

where B(m1,m2,m12) is defined as

B(m1,m2,m12) :=
(

m12

m12−m1,m12−m2,m1 +m2−m12

)
.

�

Lemma 5.3.12. For every m1,m2 ∈ N0, we have that

∑
n≥1,m1,m2
n≤m1+m2

(−1)n

n

(
n

n−m1,n−m2,m1 +m2−n

)
=

(−1)m1

m1
if m1 ≥ 1,m2 = 0,

(−1)m2

m2
if m1 = 0,m2 ≥ 1,

0 otherwise.

(5.28)

. �

Proof of Theorem 5.3.5. Firstly, we prove that if both { f k
i }k≥0|T | and {b f k

i }k≥0|T | have finitely

many non-zero terms, then, Equations (5.18) to (5.21) are all equivalent. Note that the assumption

implies that all the sums indexed at m ≥ 1|s| and M ≥ 0|s| have finite support. That is, they are

actually finite sums in disguise and there are no convergence issues.

We now prove the equivalence of Equations (5.18) to (5.21) by proving the cycle of implications

Equation (5.18) =⇒ Equation (5.20) =⇒ Equation (5.19) =⇒ Equation (5.21) =⇒ Equa-

tion (5.18).

Assume Equation (5.18). Direct substitution gives us

fK(ms)
i (x;m,ws,xs) = ∑

m≥1|m|

1

∏
|m|
i=1 mi!

b fK(mms)
i (x;mm,ws,xs) .

Since we are dealing with finite sums, we can freely reorder the terms such that we merge together

the pairs (m,m) such that mm = M. That is,

fK(ms)
i (x;m,ws,xs) = ∑

M≥0|s|
∑

m≥1|m|
mm=M

1

∏
|m|
i=1 mi!

b fK(Ms)
i (x;M,ws,xs) ,

5.3 Decomposition into basis components 99

which from Lemma 5.3.7 simplifies into Equation (5.20). Therefore, Equation (5.18) =⇒ Equa-

tion (5.20).

We now assume Equation (5.20). Using this on the right hand side of Equation (5.19) we get

∑
m≥1|s|

(−1)|m|−|s|

∏c∈s mc
fK(ms)
i (x;m,ws,xs)

= ∑
m≥1|s|

(−1)|m|−|s|

∏c∈s mc
∑

M≥0|s|

(
∏
c∈s

mc!
Mc!
S2(Mc,mc)

)
b fK(Ms)

i (x;M,ws,xs) .

Exchanging the order of the two sums and simplifying we get

∑
M≥0|s|

(−1)|s|

∏c∈s Mc!

 ∑
m≥1|s|

∏
c∈s

(−1)mc(mc−1)!S2(Mc,mc)

 b fK(Ms)
i (x;M,ws,xs) ,

which from Lemma 5.3.9 simplifies into b fK(s)
i (x;ws,xs), the left hand side of Equation (5.19).

Therefore, Equation (5.20) =⇒ Equation (5.19).

We now assume Equation (5.19). Direct substitution gives us

b fK(ms)
i (x;m,ws,xs) = ∑

m≥1|m|

(−1)|m|−|m|

∏
|m|
i=1 mi

fK(mms)
i (x;mm,ws,xs) .

Merging together the pairs (m,m) such that mm = M, we obtain

b fK(ms)
i (x;m,ws,xs) = ∑

M≥0|s|

(−1)|M|−|m| ∑
m≥1|m|
mm=M

1

∏
|m|
i=1 mi

fK(Ms)
i (x;M,ws,xs) .

Note that |m| = |M|. From Lemma 5.3.6, this simplifies into Equation (5.21). Therefore, Equa-

tion (5.19) =⇒ Equation (5.21).

Finally, we assume Equation (5.21). Using this on the right hand side of Equation (5.18) we get

∑
m≥1|s|

1
∏c∈s mc!

b fK(ms)
i (x;m,ws,xs)

= ∑
m≥1|s|

1
∏c∈s mc! ∑

M≥0|s|

(−1)|M|−|m|
(

∏
c∈s

mc!
Mc!
S1(Mc,mc)

)
fK(Ms)
i (x;M,ws,xs) .

Exchanging the order of the two sums and simplifying we get

∑
M≥0|s|

(−1)|M|

∏c∈s Mc!

 ∑
m≥1|s|

∏
c∈s

(−1)mcS1(Mc,mc)

 fK(Ms)
i (x;M,ws,xs) ,

which from Lemma 5.3.8 simplifies into Equation (5.18). This completes the proof that Equa-

tions (5.18) to (5.21) are equivalent under the assumption that both { f k
i }k≥0|T | and {b f k

i }k≥0|T |

100 Output vector spaces

have finitely many non-zero terms. We now weaken this assumption by showing that one of them

having finitely many non-zero terms implies the other also having that property.

Assume { f k
i }k≥0|T | has finitely many terms. Then, there is some K ≥ 0|T | such that all non-zero

terms are inside the subset { f k
i }k≤K. Note that the sums Equation (5.19) are always finite, which

means that the corresponding {b f k
i }k≥0|T | is well-defined. Furthermore, every b f k

i such that k
does not obey k ≤ K, is given by a sum of zero terms. Therefore, {b f k

i }k≥0|T | also has all of its

non-zero terms inside the subset {b f k
i }k≤K, which means that it also has finitely many non-zero

terms. Then, the previous assumptions are satisfied and consequently Equations (5.18) to (5.21)

are equivalent.

The exact same argument applies when starting with some {b f k
i }k≥0|T | that has finitely many non-

zero terms and constructing the corresponding { f k
i }k≥0|T | through Equation (5.18).

We now prove that { f k
i }k≥0|T | has the properties in Theorem 5.2.7 if and only if the corresponding

{b f k
i }k≥0|T | has the properties in Definition 5.3.3.

Assume some {b f k
i }k≥0|T | has the properties in Definition 5.3.3. Then, from Equation (5.18), we

have that for any permutation matrix σ ,

fK(s)
i (x;ws,xs) = ∑

m≥1|s|

1
∏c∈s mc!

b fK(ms)
i (x;m,ws,xs)

= ∑
m≥1|s|

1
∏c∈s mc!

b fK([σm]σs)
i (x;σm,σws,σxs)

= ∑
m≥1|s|

1
∏c∈s mc!

b fK(mσs)
i (x;m,σws,σxs)

= fK(s)
i (x;σws,σxs) ,

where m=σm establishes a bijection between the sets of indexes m≥ 1|s| and m≥ 1|s|. Therefore,

{ f k
i }k≥0|T | satisfies item 1 of Theorem 5.2.7.

Again from Equation (5.18), we have that

fK(s)
i

(
x;

[
w j1‖w j2

ws

]
,xs

)
= ∑

m≥1|s|

1
∏c∈s mc!

b fK(ms)
i

(
x;m,

[
w j1‖w j2

ws

]
,xs

)
,

with m =

[
m12

m

]
and xs =

[
x j12

xs

]
. Applying Lemma 5.3.10, the right hand side expands into

∑
m12≥1
m≥1|s|

1
m12!∏c∈s mc! ∑

m1,m2≥0
m1+m2=m12

m12!
m1!m2!

b f k
i

x;

m1

m2

m

 ,
w j1

w j2

ws

 ,
x j12

x j12

xs

 .

5.3 Decomposition into basis components 101

We cancel the m12! terms and merge the two sums, which simplifies the expression into

∑
m1,m2≥0
m1+m2≥1

m≥1|s|

1
m1!m2!∏c∈s mc!

b f k
i

x;

m1

m2

m

 ,
w j1

w j2

ws

 ,
x j12

x j12

xs

 .

We now split this sum into three parts. The first with m1≥ 1,m2 = 0, the second with m1 = 0,m2≥
1 and the third with m1,m2 ≥ 1. Applying Equation (5.18) again, gives us the three terms of the

right hand side of item 2 of Theorem 5.2.7.

Finally, consider that some entry of w is 0i j for some j ∈ T . Then, from Corollary 5.3.4, every term

of the sum Equation (5.18) is zero, which means that { f k
i }k≥0|T | satisfies item 3 of Theorem 5.2.7.

We now prove the converse direction. Assume some { f k
i }k≥0|T | has the properties in Theo-

rem 5.2.7. Then, from Equation (5.19), we have that for any permutation matrix σ ,

b fK(s)
i (x;ws,xs) = ∑

m≥1|s|

(−1)|m|−|s|

∏c∈s mc
fK(ms)
i (x;m,ws,xs)

= ∑
m≥1|s|

(−1)|m|−|s|

∏c∈s mc
fK([σm]σs)
i (x;σm,σws,σxs)

= ∑
m≥1|s|

(−1)|m|−|s|

∏c∈s mc
fK(mσs)
i (x;m,σws,σxs)

= b fK(s)
i (x;σws,σxs) ,

where m=σm establishes a bijection between the sets of indexes m≥ 1|s| and m≥ 1|s|. Therefore,

{b f k
i }k≥0|T | satisfies item 1 of Definition 5.3.3.

Finally, we have that

b fK(s)
i

(
x;

[
w j1‖w j2

ws

]
,xs

)
= ∑

m≥1|s|

(−1)|m|−|s|

∏c∈s mc
fK(ms)
i

(
x;m,

[
w j1‖w j2

ws

]
,xs

)
,

with m =

[
m12

m

]
and xs =

[
x j12

xs

]
. Applying Lemma 5.3.11, the right hand side expands into

∑
m12≥1
m≥1|s|

(−1)|m|−|s|

∏c∈s mc

(−1)m12

m12
∑

m1,m2≥0
m1,m2≤m12

m1+m2≥m12

B(m1,m2,m12) fK(ms)+(m1+m2)e j
i

x;

m1

m2

m

 ,
w j1

w j2

ws

 ,
x j12

x j12

xs

 ,

with B(m1,m2,m12) as defined in Lemma 5.3.11. Note that we are summing over all tuples

(m12,m1,m2,m) with m12≥ 1, m1,m2≥ 0 and m≥ 1|s|, such that m1,m2≤m12 and m1+m2≥m12.

102 Output vector spaces

We can then rearrange the two sums into

∑
m1,m2≥0
m≥1|s|

(−1)|m|−|s|

∏c∈s mc

 ∑
m12≥1,m1,m2
m12≤m1+m2

(−1)m12

m12
B(m1,m2,m12)

 fK(ms)+(m1+m2)e j
i

x;

m1

m2

m

 ,
w j1

w j2

ws

 ,
x j12

x j12

xs

 .

From Lemma 5.3.12, this simplifies into

∑
m1≥1
m≥1|s|

(−1)|m|+m1−|s|

m1 ∏c∈s mc
fK(m1s)
i

(
x;

[
m1

m

]
,

[
w j1

ws

]
,xs

)

+ ∑
m2≥1
m≥1|s|

(−1)|m|+m2−|s|

m2 ∏c∈s mc
fK(m2s)
i

(
x;

[
m2

m

]
,

[
w j2

ws

]
,xs

)

= b fK(s)
i

(
x;

[
w j1

ws

]
,xs

)
+ b fK(s)

i

(
x;

[
w j2

ws

]
,xs

)
,

with m1 =

[
m1

m

]
and m2 =

[
m2

m

]
, which gives us the right hand side of item 2 of Definition 5.3.3.

�

An evident but important consequence of Theorem 5.3.5 is the following.

Corollary 5.3.13. Consider a finite order f̂i ∈ F̂<∞
i , with coupling components { f k

i }k≥0|T | and

with basis components {b f k
i }k≥0|T | . Then,

f 0
i = b f 0

i . (5.29)

�

This can be generalized with the help of the following definition.

Definition 5.3.14. Consider a family of functions { f k
i }k≥0|T | defined on f k

i : Xi×Mk
i ×Xk→Yi.

We say that a given index k ≥ 0|T | is a locally maximal order if f k
i 6= 0Yi and f k

i = 0Yi for all

k > k such that k and k have zeros in the same entries. �

Lemma 5.3.15. Consider a finite order f̂i ∈ F̂<∞
i , with coupling components { f k

i }k≥0|T | and with

basis components {b f k
i }k≥0|T | .

A given index k ≥ 0|T | is a locally maximal order with respect to { f k
i }k≥0|T | if and only if it is a

locally maximal order with respect to {b f k
i }k≥0|T | . Furthermore, if k ≥ 0|T | is a locally maximal

order, then,

f k
i = b f k

i . (5.30)

�

5.3 Decomposition into basis components 103

Proof. Assume k≥ 0|T | is a locally maximal order with respect to { f k
i }k≥0|T | . This implies, from

Equation (5.19), that b f k
i = 0Yi whenever k < k and k,k have zeros in the same entries. Moreover,

when k = k, Equation (5.19) simplifies into Equation (5.30).

The exact same reasoning applies in order to prove the converse direction using Equation (5.18).

�

The following result allows us to build any f̂i ∈ F̂<∞
i directly from the specification of a simple

and decoupled family of basis components {b f k
i }k≥0|T | .

Theorem 5.3.16. Every finite order oracle component f̂i ∈ F̂<∞
i , can be directly expressed in

terms of its basis components {b f k
i }k≥0|T | according to

f̂i (x;ws,xs) = ∑
m≥0|s|

1
∏c∈s mc!

b fK(ms)
i (x;m,ws,xs) . (5.31)

�

Proof. We plug in Equation (5.18) on Equation (5.5), which gives us

f̂i (x;ws,xs) = ∑
s⊆s

∑
m≥1|s|

1
∏c∈s mc!

b fK(ms)
i (x;m,ws,xs) .

The result comes directly from merging the two sums. �

Similarly to Lemma 5.2.9, we see that the representation on this second decomposition is also

component-wise linear.

Lemma 5.3.17. For two finite order oracle components f̂i, ĝi ∈ F̂<∞
i with basis components

{b f k
i }k≥0|T | and {bgk

i }k≥0|T | respectively, the basis components of ĥi = α f̂i + ĝi are given by

{αb f k
i + bgk

i }k≥0|T | for any scalar α . �

Proof. This comes directly from writing the basis components explicitly in terms of the coupling

components as in Equation (5.19), together with Lemma 5.2.9.

bhK(s)
i (x;ws,xs)

= ∑
m≥1|s|

(−1)|m|−|s|

∏c∈s mc

(
α fK(ms)

i +gK(ms)
i

)
(x;m,ws,xs)

= α

 ∑
m≥1|s|

(−1)|m|−|s|

∏c∈s mc
fK(ms)
i (x;m,ws,xs)

+ ∑
m≥1|s|

(−1)|m|−|s|

∏c∈s mc
gK(ms)

i (x;m,ws,xs)

= α
b fK(s)

i (x;ws,xs)+
bgK(s)

i (x;ws,xs)

=
(

α
b fK(s)

i + bgK(s)
i

)
(x;ws,xs) .

�

104 Output vector spaces

The following examples illustrate the proposed decomposition.

Example 5.3.18. Consider a single-type finite order oracle component f̂i ∈ F̂<∞
i with basis com-

ponents {b f k
i }k≥0 such that, for some fixed n > 0

b f |s|i (x;ws,xs) =

n!∏c∈s(wcxc) |s|= n,

f 0
i (x) |s|= 0,

0 otherwise.

It is clear that {b f k
i }k≥0 satisfy items 1 and 2 of Definition 5.3.3. Using Theorem 5.3.16 we can

find the corresponding oracle component directly. That is,

f̂i (x;ws,xs) = ∑
m≥0|s|

1
∏c∈s mc!

b f |m|i (x;m,ws,xs)

= f 0
i (x)+n! ∑

m≥0|s|
|m|=n

∏
c∈s

(wcxc)
mc

mc!

= f 0
i (x)+

(
∑
c∈s

wcxc

)n

,

which is exactly the same oracle component as in Example 5.2.18.

As a sanity check we can easily verify from Equation (5.18) that the coupling components { f k
i }k≥0

match the previously calculated ones. In particular, for |s|> 0,

f |s|i (x;ws,xs) = ∑
m≥1|s|

1
∏c∈s mc!

b f |m|i (x;m,ws,xs) = n! ∑
m≥1|s|
|m|=n

∏
c∈s

(wcxc)
mc

mc!
.

Finally, note that Lemma 5.3.15 is verified for |s|= n. That is, f n
i = b f n

i . �

We now extend Example 5.3.18 to the polynomial case.

Example 5.3.19. Consider a single-type finite order oracle component f̂i ∈ F̂<∞
i with basis com-

ponents {b f k
i }k≥0 such that, for some fixed N > 0

b f |s|i (x;ws,xs) =

a|s||s|!∏c∈s(wcxc) 0 < |s| ≤ N,

f 0
i (x) |s|= 0,

0 otherwise.

It is clear that {b f k
i }k≥0 satisfy items 1 and 2 of Definition 5.3.3.

From Example 5.3.18 and Lemma 5.3.17, we conclude that the corresponding oracle component

5.3 Decomposition into basis components 105

is given by

f̂i (x;ws,xs) = f 0
i (x)+

N

∑
n=1

an

(
∑
c∈s

wcxc

)n

,

which is exactly the same oracle component as in Example 5.2.21. Note that we could also obtain

this directly through Theorem 5.3.16. �

We now extend the previous result for multi-type networks.

Example 5.3.20. Consider a multi-type finite order oracle component f̂i ∈ F̂<∞
i with basis com-

ponents {b f k
i }k≥0|T | such that, for {an}n>0|T | with finite support,

b f k
i (x;ws,xs) =

ak ∏ j∈T k j!∏c∈s j(wcxc) k > 0|T |,

f 0
i (x) k = 0|T |.

It is clear that {b f k
i }k≥0|T | satisfy items 1 and 2 of Definition 5.3.3. The corresponding oracle

component is given by

f̂i (x;ws,xs) = ∑
m≥0|s|

1
∏c∈s mc!

b fK(ms)
i (x;m,ws,xs)

= f 0
i (x)+ ∑

n>0|T |
∑

m≥0|s|
|m1|=n1

...
|m|T ||=n|T |

an

(
∏
j∈T

n j!

)
∏
c∈s

(wcxc)
mc

mc!

= f 0
i (x)+ ∑

n>0|T |

an ∏
j∈T

∑
m j≥0|s j |
|m j|=n j

n j! ∏
c∈s j

(wcxc)
mc

mc!

= f 0
i (x)+ ∑

n>0|T |

an ∏
j∈T

(
∑
c∈s j

wcxc

)n j

,

which is exactly the same oracle component as in Equation (5.14). �

We now consider a slightly more complicated type of basis components.

Example 5.3.21. Consider a single-type finite order oracle component f̂i ∈ F̂<∞
i with basis com-

ponents {b f k
i }k≥0 such that, for some fixed n,k with n≥ k > 0

b f |s|i (x;ws,xs) =

(n− k)!k!(∏c∈s wc)ek(xs) |s|= n,

f 0
i (x) |s|= 0,

0 otherwise.

106 Output vector spaces

where ek denotes what is called elementary symmetric polynomials. With the multi-index notation

this can be written as

ek(xs) = ∑
q≥0|s|
q≤1|s|
|q|=k

∏
c∈s

xqc
c .

It is clear that {b f k
i }k≥0 satisfy items 1 and 2 of Definition 5.3.3. We show that the oracle compo-

nents { f k
i }k≥0 can be found to be

f̂i (x;ws,xs) = f 0
i (x)+

(
∑
c∈s

wc

)n−k(
∑
c∈s

wcxc

)k

.

To prove this, firstly note that

ek(mxs) = ∑
q≥0|s|
q≤m
|q|=k

∏
c∈s

xqc
c

(
mc

qc

)
.

Using Theorem 5.3.16,

f̂i (x;ws,xs) = ∑
m≥0|s|

1
∏c∈s mc!

b f |m|i (x;m,ws,xs)

= f 0
i (x)+ ∑

m≥0|s|
|m|=n

1
∏c∈s mc!

b f |m|i (x;m,ws,xs)

= f 0
i (x)+(n− k)!k! ∑

m≥0|s|
|m|=n

1
∏c∈s mc!

(
∏
c∈s

wmc
c

)
ek(mxs)

= f 0
i (x)+(n− k)!k! ∑

m≥0|s|
|m|=n

(
∏
c∈s

wmc
c

mc!

)
∑

q≥0|s|
q≤m
|q|=k

∏
c∈s

xqc
c

(
mc

qc

)

= f 0
i (x)+(n− k)!k! ∑

m≥0|s|
|m|=n

∑
q≥0|s|
q≤m
|q|=k

∏
c∈s

wmc−qc
c (wcxc)

qc

(mc−qc)!qc!
.

5.3 Decomposition into basis components 107

Define pc := mc−qc. Then, we can write this in terms of p as

f̂i (x;ws,xs) = f 0
i (x)+(n− k)!k! ∑

p≥0|s|
q≥0|s|
|p|=n−k
|q|=k

∏
c∈s

wpc
c (wcxc)

qc

pc!qc!

= f 0
i (x)+

(n− k)! ∑
p≥0|s|
|p|=n−k

∏
c∈s

wpc
c

pc!

k! ∑

q≥0|s|
|q|=k

∏
c∈s

(wcxc)
qc

qc!

= f 0

i (x)+

(
∑
c∈s

wc

)n−k(
∑
c∈s

wcxc

)k

,

which completes our proof. �

For completeness sake, we present in Theorem 5.3.24 the inverse result of Theorem 5.3.16.

That is, we express the basis components in terms of the oracle components. In this result, we

use a generalization of Stirling numbers called r-Stirling numbers, which are defined in Broder

(1984).

Definition 5.3.22. The unsigned r-Stirling numbers of the first kind, Sr
1(n,k), with r,n,k ≥ 0, are

given by the recurrence relation

Sr
1(n,k) = (n−1)Sr

1(n−1,k)+Sr
1(n−1,k−1), n > r,k > 0,

together with the boundary conditions

Sr
1(r,k) = δr,k,

Sr
1(n,k) = 0 n < r,

Sr
1(n,0) = 0 n > r.

�

Remark 5.3.23. Note that S0
1 (n,k) = S1(n,k). Moreover, S1

1 (n,k) = S1(n,k) when n > 0. �

We denote by F̂≤K
i the subset of all f̂i ∈ F̂i such that all of their non-zero coupling components

are inside the subset { f k
i }k≤K. From Lemma 5.2.9, this forms a subspace.

Theorem 5.3.24. For every finite order f̂i ∈ F̂<∞
i , we can express the set of basis components

{b f k
i }k≥0|T | , which have the properties as in Definition 5.3.3, in terms of its oracle components f̂i.

In particular, for any K≥ 0|T | such that f̂i ∈ F̂≤K
i , we have that

b fK(s)
i (x;ws,xs) = (−1)|s|∑

s⊆s
∑

M≥1|s|
K(Ms)≤K

(−1)|M|

∏c∈s Mc

[
∏
j∈T

C(K j, |M j|, |s j \ s j|)

]
f̂i (x;M,ws,xs) (5.32)

108 Output vector spaces

where C(K,M,r), with K ≥M ≥ 0 and r ≥ 0, is defined as

C(K,M,r) :=
r!

(K−M)!
SM+1

1 (K +1,r+M+1). (5.33)

�

In order to prove this, we require Lemma 5.3.25, which is proved in Appendix A.2.

Lemma 5.3.25. For M≥ 1k, with n≥ |M| and k,r ≥ 0, we have that

∑
m≥M
p≥1r

|m|+|p|≤n

k

∏
i=1

(
mi−1
Mi−1

) r

∏
j=1

1
p j

=
r!

(n−|M|)!
S |M|+1

1 (n+1,r+ |M|+1). (5.34)

�

Proof of Theorem 5.3.24. We first note that Equation (5.4) can be generalized into

fK(ms)
i (x;m,ws,xs) = ∑

m≥0|s|
m≤m

[
∏
c∈s

(
mc

mc

)]
(−1)|m|−|m| f̂i (x;m,ws,xs) .

Plugging in this result into Equation (5.19), we obtain

b fK(s)
i (x;ws,xs) = ∑

m≥1|s|
K(ms)≤K

(−1)|m|−|s|

∏c∈s mc
∑

m≥0|s|
m≤m

[
∏
c∈s

(
mc

mc

)]
(−1)|m|−|m| f̂i (x;m,ws,xs)

= (−1)|s| ∑
m≥1|s|

K(ms)≤K

∑
m≥0|s|
m≤m

[
∏
c∈s

(mc
mc

)
mc

]
(−1)|m| f̂i (x;m,ws,xs) .

Rearranging the two sums we get

b fK(s)
i (x;ws,xs) = (−1)|s| ∑

m≥0|s|
K(ms)≤K

(−1)|m|

 ∑
m≥m
m≥1|s|

K(ms)≤K

∏
c∈s

(mc
mc

)
mc

 f̂i (x;m,ws,xs) .

We now break the first sum into

∑
m≥0|s|

K(ms)≤K

= ∑
s⊆s

∑
M≥1|s|

K(Ms)≤K

,

that is, we correspond a given m ≥ 0|s| to the subset s ⊆ s, of its non-zero entries. Therefore,

we have that ms = M and ms\s = 0|s\s|. Note that according to this split, the condition m ≥ m
becomes ms ≥M and ms\s ≥ 0|s\s|. On the other hand, the condition m ≥ 1|s| becomes ms ≥ 1|s|

5.3 Decomposition into basis components 109

and ms\s ≥ 1|s\s|. Out of the resulting four conditions, the non-redundant ones are clearly ms ≥M
and ms\s ≥ 1|s\s|. This results in

b fK(s)
i (x;ws,xs)

= (−1)|s|∑
s⊆s

∑
M≥1|s|

K(Ms)≤K

(−1)|M|

 ∑
ms≥M

ms\s≥1|s\s|
K(ms)≤K

∏
c∈s

(mc
Mc

)
mc

∏
d∈s\s

1
md

 f̂i (x;M,ws,xs)

= (−1)|s|∑
s⊆s

∑
M≥1|s|

K(Ms)≤K

(−1)|M|

∏c∈s Mc

 ∑
ms≥M

ms\s≥1|s\s|
K(ms)≤K

∏
c∈s

(
mc−1
Mc−1

)
∏

d∈s\s

1
md

 f̂i (x;M,ws,xs) .

Note that (
mc
Mc)
mc

=
(mc−1

Mc−1)
Mc

, whenever Mc ≥ 1.

We now show that the expression in brackets gives us ∏ j∈T C(K j, |M j|, |s j \ s j|), as given by

Equation (5.33). We rearrange it by breaking all the multi-indices according to the typing of their

cells. That is,

∏
j∈T

∑
ms j≥M j

ms j\s j≥1|s j\s j |
|ms j |+|ms j\s j |≤K j

∏
c∈s j

(
mc−1
Mc−1

)
∏

d∈s j\s j

1
md

,

and from Lemma 5.3.25, the result is proven. �

Remark 5.3.26. Note that if f̂i ∈ F̂≤K1
i ∩ F̂≤K2

i , with K1 6= K2, the associated coefficients

C(K j, |M j|, |s j \ s j|) will be different when we apply Equation (5.32) to K1 and K2.

The fact that there are multiple valid formulas that express {b f k
i }k≥0|T | as a function of f̂i might

seem unexpected. One way to convince ourselves that this is reasonable, is to consider a simple

case like f̂i ∈ F̂≤0
i . In this case, we have that b f 0

i (x) = f̂i (x;ws,xs) and it is easy to get creative

and find multiple formulas that are all valid under the (very strict) assumption that f̂i ∈ F̂≤0
i . �

Remark 5.3.27. Note that the coefficients C(K j, |M j|, |s j \ s j|) diverge as K→ ∞. In particular,

C(K j,1,0) = S2
1 (K j +1,2)/(K j−1)! = K j!/(K j−1)! = K j for K j ≥ 1. Therefore, the limit case

of Theorem 5.3.24 does not give us a universal formula that works for all f̂i ∈ F̂<∞
i . �

5.3.4 Infinite coupling order

All the results of Section 5.3.3 fall under the assumption that the oracle functions are in F̂<∞
i .

That is, they have finite order. There are, however, plentiful useful functions that lie outside this

subspace, such as the exponential function in Example 5.2.22. Our goal is to create a useful

extension of this theory that applies to at least some important functions, such as the exponential

110 Output vector spaces

and the trigonometric functions. The first idea that comes to mind is to simply allow the family

of basis components {b f k
i }k≥0|T | to have infinite support. There is an important issue with such an

approach. When dealing with infinite sums we are actually talking about limits on a sequence of

partial sums. For this to be well-defined we need to be clear about the meaning of infinite sums of

the type ∑m≥1|s| am. There are plenty of possible definitions, with some of the more obvious ones

being

lim
N→∞

N

∑
n=0

∑
m≥1|s|
|m|=n

am, or lim
N→∞

N

∑
n=0

∑
m≥1|s|

max(m)=n

am.

However, there is no clear reason for why one definition would be preferable to the other. If we

chose one of them and developed our theory based on that, we would only be restricting ourselves

to that choice. A different (and better) approach is to simply choose to give up on a {b f k
i }k≥0|T |

representation for oracle components outside F̂<∞
i and use the following results instead.

Lemma 5.3.28. Consider F̂i and F̂T such that the related sets {Y j} j∈T are Hausdorff spaces.

Then, F̂i and F̂T are sequentially closed in the topology of pointwise convergence (product topol-

ogy). �

Proof. Consider a sequence of functions (N f̂i)N∈N, with N f̂i ∈ F̂i for all N ∈ N, such that it con-

verges pointwise to some function f̂i. That is,

lim
N→∞

N f̂i(x;w,x) = f̂i(x;w,x),

for all x∈Xi, x∈Xk, w∈Mk
i , for any given k≥ 0|T |. Given a permutation matrix σ of appropriate

dimension, then

lim
N→∞

N f̂i(x;σw,σx) = f̂i(x;σw,σx).

Note that from assumption, Equation (2.2) is satisfied for every N f̂i. Therefore, these two se-

quences are the same. Since Yi is Hausdorff, we know that the limit of a convergent sequence

is unique, which implies f̂i(x;w,x) = f̂i(x;σw,σx). That is, f̂i also satisfies Equation (2.2). The

same reasoning applies with respect to Equations (2.3) and (2.4).

Therefore, f̂i ∈ F̂i, which means that F̂i is sequentially closed. Since the product of sequentially

closed sets is sequentially closed, F̂T is also sequentially closed. �

Corollary 5.3.29. Consider the related set Yi to be a Hausdorff vector space. Then, for every

sequence (N f̂i)N∈N, with N f̂i ∈ F̂<∞
i for all N ∈N such that f̂i := lim

N→∞

N f̂i converges pointwise, we

have that f̂i ∈ F̂i. �

Proof. This is direct from Lemma 5.3.28 and F̂<∞
i ⊂ F̂i. We assume Yi is a vector space so that

F̂<∞
i can be defined. �

5.4 Extension for exogenous inputs and inner cell parameters 111

This provides us with a framework that allows us to build a set of oracle components with

infinite order, in particular the ones in scl(F̂<∞
i), the sequential closure of F̂<∞

i . We illustrate this

with the following example.

Example 5.3.30. Consider the sequence of oracle components with finite coupling order

(N f̂i)N∈N such that the basis components of N f̂i ∈ F̂<∞
i are given according to

bN f |s|i (x;ws,xs) =

a|s||s|!∏c∈s(wcxc) 0 < |s| ≤ N,

f 0
i (x) |s|= 0,

0 otherwise.

From Example 5.3.19, we know that this corresponds to the oracle component

N f̂i (x;ws,xs) = f 0
i (x)+

N

∑
n=1

an

(
∑
c∈s

wcxc

)n

.

Then, if the infinite series given by F(x) = ∑
∞
n=1 anxn converges for all x, we know from Corol-

lary 5.3.29 that f̂i := lim
N→∞

N f̂i is given by

f̂i (x;ws,xs) = f 0
i (x)+F

(
∑
c∈s

wcxc

)

and it is a valid oracle component. �

Remark 5.3.31. Note that this example covers functions such as F(x) = exp(x)−1, F(x) = sin(x)

and F(x) = cos(x)−1. �

Lemma 5.3.32. The set scl(F̂<∞
i) is a vector space. �

Proof. Consider f̂i, ĝi ∈ scl(F̂<∞
i). From assumption, there are sequences (N f̂i)N∈N, (N ĝi)N∈N

with N f̂i,
N ĝi ∈ F̂<∞

i such that lim
N→∞

N f̂i = f̂i and lim
N→∞

N ĝi = ĝi. Then, the elements of the sequence

(αN f̂i +
N ĝi)N∈N are also in F̂<∞

i and the sequence converges into α f̂i + ĝi. Therefore α f̂i + ĝi ∈
scl(F̂<∞

i) and scl(F̂<∞
i) is a vector space. �

Remark 5.3.33. Note that F̂<∞
i ⊆ scl(F̂<∞

i)⊆ F̂i. �

5.4 Extension for exogenous inputs and inner cell parameters

Using the extension described in Section 2.5, we can similarly extend the coupling components

f k
i and basis components b f k

i to be defined on

f k
i ,

b f k
i : Xi×Pi×Ui×Mk

i ×Xk→ Yi. (5.35)

112 Output vector spaces

It is clear that the decomposition schemes and related results described in Sections 5.2 and 5.3

apply to the extended framework with essentially the same formulas. In the following example

we show how to construct a valid oracle component using the naturally extended version of The-

orem 5.3.16.

Example 5.4.1. Consider a single-type finite order oracle component f̂i ∈ F̂<∞
i with basis com-

ponents {b f k
i }k≥0 such that, for some fixed n > 0

b f |s|i (x, p,u;ws,xs) =

u2n!∏c∈s(wcxc) |s|= n,

f 0
i (x, p,u) |s|= 0,

0 otherwise.

It is clear that {b f k
i }k≥0 satisfy items 1 and 2 and Corollary 5.3.4 of Definition 5.3.3. Using

the direct extension of Theorem 5.3.16 to this framework, we can find the corresponding oracle

component directly. That is,

f̂i (x, p,u;ws,xs) = ∑
m≥0|s|

1
∏c∈s mc!

b f |m|i (x, p,u;m,ws,xs)

= f 0
i (x, p,u)+u2n! ∑

m≥0|s|
|m|=n

∏
c∈s

(wcxc)
mc

mc!

= f 0
i (x, p,u)+u2

(
∑
c∈s

wcxc

)n

.

�

Chapter 6

Conclusion

This thesis generalizes the theory of coupled cell networks to the general weighted case.

We found it simpler to encode the notion of in-neighborhood equivalence through items 1 to 3 of

Definition 2.4.1, which act as generators of a set of equality constraints, instead of defining them

using a pullback map on a groupoid of bijections, as in the original CCN formalism.

In this work, we do not assume, in geral, any prior structure on the cell domains Xi and codomains

Yi or any smoothness requirement in order for a function to be admissible. While this is quite

usual and reasonable for continuous-time systems, it is not so for discrete-time systems. Such as-

sumptions are application-dependent and therefore, should not be built in the general definitions.

One can always particularize by adding such constraints at a later point. Furthermore, we do not

require the networks to obey the “consistency condition”, which would force the different monoids

{Mi j}i, j∈T to be pairwise disjoint. We only operate (‖) and compare elements within the same

monoidMi j, therefore, such condition is unnecessary.

The most important contribution of this work is the definition of oracle components. The crucial

difference with respect to the previous formalism is that the notion of in-neighborhood equiva-

lence is imposed on all (finite) in-neighborhoods of a cell, and not just the ones that might appear

in our particular network of interest, according to its size. In this sense, it is more constrained that

in the original formalism, however, we argue that this is a very reasonable constraint. In partic-

ular, note that from a physical point of view, the existence of function that describes how a cell

behaves under arbitrary (finite) in-neighborhoods is not too much to ask for. No matter how large,

complicated, or even nonsensical is the way that we connect a physical system, there will always

be an equation that describes its evolution, regardless of how dramatic the result is (e.g., the whole

system crashing or burning). That is, the underlying oracle components always “exists”.

Furthermore, note that the idea of specifying how a cell behaves under arbitrary in-neighborhoods

is not new. This is something that in practice is done everywhere, through specific expressions

according to the particular application. The contribution here was to formalize the idea underlying

such expressions as a mathematical object in its own right and generalizing it by only requiring it

to satisfy the notions of in-neighborhood equivalence.

Note that this approach has the very important advantage that given an oracle function, the ad-

113

114 Conclusion

missible function associated with every network (with finite neighborhoods) is automatically (and

uniquely) defined. On the other hand, as we have shown in Example 2.4.7, by constructing ad-

missible functions while only enforcing cross-compatibility between the particular types of in-

neighborhoods that we are interested in, does not gives us any guarantees that such functions

could then be further extended for other types of in-neighborhoods. In such a case, we would have

assigned an admissible function to a network while claiming that some other networks living in

the same universe and evolving according to the same laws would simply not have an admissible

function that specifies its dynamical evolution. Such a scenario would be non-physical and the

way of guaranteeing that such a situation can never arise is through the proposed approach.

Another argument in favor of the oracle component is the fact that having the behavior of a cell

completely specified for any conceivable neighborhood made it not only possible but also very nat-

ural to ask the right questions which led to the development of the decompositions in Sections 5.2

and 5.3. We consider these decompositions to be the part of this work that has the most potential

for practical application.

Due to the rise in interest in admissible functions with higher order, non-pairwise structure, other

works in the literature have taken a different approach and focused in the construction of these

terms by making the network structure more complicated (e.g., hypernetworks and simplicial com-

plexes). We would suggest a similar approach to the one present in this work to be applied to the

study of these more general structures. In particular, to start from the absolutely minimal assump-

tions (e.g., in our case it was the notion of in-neighborhood equivalence) and then reverse engineer

the degrees of freedom from the ground up. This should be done in a systematic manner in or-

der to ensure that there are no missing terms from the stated formulas. For this reason, we argue

that extensions of the concept of oracle function for higher-order network structures should be

investigated.

References

Manuela Aguiar and Ana Dias. Synchrony and antisynchrony in weighted networks. SIAM Journal
on Applied Dynamical Systems, 20(3):1382–1420, 2021.

Manuela Aguiar, Christian Bick, and Ana Dias. Network dynamics with higher-order interactions:
Coupled cell hypernetworks for identical cells and synchrony. arXiv preprint arXiv:2201.09379,
2022.

Manuela AD Aguiar and Ana Paula S Dias. Synchronization and equitable partitions in weighted
networks. Chaos: An Interdisciplinary Journal of Nonlinear Science, 28(7):073105, 2018.

Manuela AD Aguiar, Ana Paula S Dias, and Flora Ferreira. Patterns of synchrony for feed-forward
and auto-regulation feed-forward neural networks. Chaos: An Interdisciplinary Journal of Non-
linear Science, 27(1):013103, 2017.

John W Aldis. A polynomial time algorithm to determine maximal balanced equivalence relations.
International Journal of Bifurcation and Chaos, 18(02):407–427, 2008.

Alex Arenas, Albert Díaz-Guilera, Jurgen Kurths, Yamir Moreno, and Changsong Zhou. Synchro-
nization in complex networks. Physics reports, 469(3):93–153, 2008.

Peter Ashwin and Ana Rodrigues. Hopf normal form with sn symmetry and reduction to systems
of nonlinearly coupled phase oscillators. Physica D: Nonlinear Phenomena, 325:14–24, 2016.

Jørgen Bang-Jensen and Gregory Z Gutin. Digraphs: theory, algorithms and applications.
Springer Science & Business Media, 2008.

Federico Battiston, Giulia Cencetti, Iacopo Iacopini, Vito Latora, Maxime Lucas, Alice Patania,
Jean-Gabriel Young, and Giovanni Petri. Networks beyond pairwise interactions: structure and
dynamics. Physics Reports, 874:1–92, 2020.

Federico Battiston, Enrico Amico, Alain Barrat, Ginestra Bianconi, Guilherme Ferraz de Arruda,
Benedetta Franceschiello, Iacopo Iacopini, Sonia Kéfi, Vito Latora, Yamir Moreno, et al. The
physics of higher-order interactions in complex systems. Nature Physics, 17(10):1093–1098,
2021.

Christian Bick, Peter Ashwin, and Ana Rodrigues. Chaos in generically coupled phase oscillator
networks with nonpairwise interactions. Chaos: An Interdisciplinary Journal of Nonlinear
Science, 26(9):094814, 2016.

Christian Bick, Elizabeth Gross, Heather A Harrington, and Michael T Schaub. What are higher-
order networks? arXiv preprint arXiv:2104.11329, 2021.

Andrei Z Broder. The r-stirling numbers. Discrete Mathematics, 49(3):241–259, 1984.

115

116 REFERENCES

Louis Comtet. Advanced Combinatorics: The art of finite and infinite expansions. Springer
Science & Business Media, 1974.

B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. Cambridge University Press,
2 edition, 2002.

Florian Dörfler and Francesco Bullo. Synchronization in complex networks of phase oscillators:
A survey. Automatica, 50(6):1539–1564, 2014.

Martin Golubitsky and Ian Stewart. Nonlinear dynamics of networks: the groupoid formalism.
Bulletin of the american mathematical society, 43(3):305–364, 2006.

Martin Golubitsky, Ian Stewart, and Andrei Török. Patterns of synchrony in coupled cell networks
with multiple arrows. SIAM Journal on Applied Dynamical Systems, 4(1):78–100, 2005.

F Kuo, I Sloan, Grzegorz Wasilkowski, and Henryk Woźniakowski. On decompositions of multi-
variate functions. Mathematics of computation, 79(270):953–966, 2010.

Raoul-Martin Memmesheimer and Marc Timme. Non-additive coupling enables propagation of
synchronous spiking activity in purely random networks. PLoS computational biology, 8(4):
e1002384, 2012.

John M Neuberger, Nandor Sieben, and James W Swift. Invariant synchrony subspaces of sets of
matrices. SIAM Journal on Applied Dynamical Systems, 19(2):964–993, 2020.

Eddie Nijholt and Lee DeVille. Dynamical systems defined on simplicial complexes: symmetries,
conjugacies, and invariant subspaces. arXiv preprint arXiv:2204.08350, 2022.

Francisco A Rodrigues, Thomas K DM Peron, Peng Ji, and Jürgen Kurths. The kuramoto model
in complex networks. Physics Reports, 610:1–98, 2016.

Pedro M. Sequeira, A. Pedro Aguiar, and João Hespanha. Commutative monoid formalism for
weighted coupled cell networks and invariant synchrony patterns. SIAM Journal on Applied
Dynamical Systems, 20(3):1485–1513, 2021.

Pedro M. Sequeira, João P. Hespanha, and A. Pedro Aguiar. Decomposition of admissible func-
tions in weighted coupled cell networks. SIAM Journal on Applied Dynamical Systems, 22(2):
1114–1152, 2023a.

Pedro M. Sequeira, João P. Hespanha, and A. Pedro Aguiar. An in-reachability based classi-
fication of invariant synchrony patterns in weighted coupled cell networks. arXiv preprint
arXiv:2306.00725, 2023b.

Ian Stewart. The lattice of balanced equivalence relations of a coupled cell network. In Math-
ematical Proceedings of the Cambridge Philosophical Society, volume 143, pages 165–183.
Cambridge University Press, 2007.

Ian Stewart, Martin Golubitsky, and Marcus Pivato. Symmetry groupoids and patterns of syn-
chrony in coupled cell networks. SIAM Journal on Applied Dynamical Systems, 2(4):609–646,
2003.

Steven H Strogatz and Ian Stewart. Coupled oscillators and biological synchronization. Scientific
American, 269(6):102–109, 1993.

Robert Tarjan. Depth-first search and linear graph algorithms. SIAM journal on computing, 1(2):
146–160, 1972.

Appendix A

Intermediate results

This appendix presents intermediate results that are required for some proofs in the main text. In

particular, in Appendix A.1 we derive Lemmas 5.3.6 to 5.3.12, which are used to prove Theo-

rem 5.3.5. Appendix A.2 derives Lemma 5.3.25 which is used to prove Theorem 5.3.24.

A.1 Intermediate results used in Theorem 5.3.5

Lemma A.1.1. For every n ∈ Z, k ∈ N, we have that

∑
m≥1k
|m|=n

n

∏
k
i=1 mi

= ∑
m≥1k
|m|=n−1

n−1

∏
k
i=1 mi

+ ∑
m≥1k−1
|m|=n−1

k

∏
k−1
i=1 mi

. (A.1)

�

Proof. Using the fact that |m|= n, we can rewrite the left hand side into

∑
m≥1k
|m|=n

n

∏
k
i=1 mi

= ∑
m≥1k
|m|=n

k

∑
j=1

m j

∏
k
i=1 mi

=
k

∑
j=1

∑
m≥1k
|m|=n

1

∏
k
i=1
i6= j

mi
.

Note that m j ≥ 1, therefore, the quotients are always well-defined. We perform a change of vari-

ables by removing the entry j of the multi-index m. The other conditions in the sum have to be

adjusted accordingly, in particular, |m|= n becomes |m| ≤ n−1, that is,

k

∑
j=1

∑
m≥1k
|m|=n

1

∏
k
i=1
i 6= j

mi
=

k

∑
j=1

∑
m≥1k−1
|m|≤n−1

1

∏
k−1
i=1 mi

= ∑
m≥1k−1
|m|≤n−1

k

∏
k−1
i=1 mi

.

In summary, we have proven that

∑
m≥1k
|m|=n

n

∏
k
i=1 mi

= ∑
m≥1k−1
|m|≤n−1

k

∏
k−1
i=1 mi

.

117

118 Intermediate results

This expression is valid for every n ∈ Z, therefore, changing variable n into n−1, one obtains

∑
m≥1k
|m|=n−1

n−1

∏
k
i=1 mi

= ∑
m≥1k−1
|m|≤n−2

k

∏
k−1
i=1 mi

.

These two equations can be merged in the following way

∑
m≥1k
|m|=n

n

∏
k
i=1 mi

= ∑
m≥1k−1
|m|≤n−1

k

∏
k−1
i=1 mi

= ∑
m≥1k−1
|m|≤n−2

k

∏
k−1
i=1 mi

+ ∑
m≥1k−1
|m|=n−1

k

∏
k−1
i=1 mi

= ∑
m≥1k
|m|=n−1

n−1

∏
k
i=1 mi

+ ∑
m≥1k−1
|m|=n−1

k

∏
k−1
i=1 mi

,

which concludes the proof. �

Lemma A.1.2. For every n ∈ Z, k ∈ N, we have that

∑
m≥1k
|m|=n

n

∏
k
i=1 mi!

= ∑
m≥1k
|m|=n−1

k

∏
k
i=1 mi!

+ ∑
m≥1k−1
|m|=n−1

k

∏
k−1
i=1 mi!

. (A.2)

�

Proof. Using the fact that |m|= n, we can rewrite the left hand side into

∑
m≥1k
|m|=n

n

∏
k
i=1 mi!

= ∑
m≥1k
|m|=n

k

∑
j=1

m j

∏
k
i=1 mi!

=
k

∑
j=1

∑
m≥1k
|m|=n

1
(m j−1)!∏

k
i=1
i6= j

mi!
.

Note that m j ≥ 1, therefore, the quotients are always well-defined. We now split the multi-index

m according to whenever m j ≥ 2 or m j = 1, that is,

k

∑
j=1

 ∑
m≥1k
m j≥2
|m|=n

1
(m j−1)!∏

k
i=1
i 6= j

mi!
+ ∑

m≥1k
m j=1
|m|=n

1

∏
k
i=1
i 6= j

mi!

 .

On the first inner sum, we perform a change of variables so that m j−1 becomes m j. This means

that the condition m j ≥ 2 becomes m j ≥ 1. Therefore, we can compress the conditions m ≥ 1k

and m j ≥ 2 in the old coordinates into just m≥ 1k in the new ones.

A.1 Intermediate results used in Theorem 5.3.5 119

On the second inner sum we perform a change of variables by removing the entry j of the multi-

index m. For both sums, the conditions |m|= n become |m|= n−1. That is,

∑
m≥1k
|m|=n

n

∏
k
i=1 mi!

=
k

∑
j=1

 ∑
m≥1k
|m|=n−1

1

∏
k
i=1 mi!

+ ∑
m≥1k−1
|m|=n−1

1

∏
k−1
i=1 mi!

= ∑

m≥1k
|m|=n−1

k

∏
k
i=1 mi!

+ ∑
m≥1k−1
|m|=n−1

k

∏
k−1
i=1 mi!

,

which concludes the proof. �

We are now ready to introduce our new formulas for the Stirling numbers of the first and

second kinds.

Theorem A.1.3. The unsigned Stirling numbers of the first kind, S1(n,k), with n,k ≥ 0 are given

by

S1(n,k) =
n!
k! ∑

m≥1k
|m|=n

1

∏
k
i=1 mi

. (A.3)

�

Proof. We have to prove that the right hand side of Equation (A.3) has the properties of Defini-

tion 5.3.1.

Consider n,k = 0, the initial condition is satisfied since the only valid argument of the sum is the

0-tuple. For both n > 0, k = 0 and n = 0, k > 0 there are no valid arguments in the sum, which

results in zero and those initial conditions are also satisfied.

For the remaining values, n,k > 0, we have to show that they follow the recurrence relation, that

is,

n!
k! ∑

m≥1k
|m|=n

1

∏
k
i=1 mi

= (n−1)
(n−1)!

k! ∑
m≥1k
|m|=n−1

1

∏
k
i=1 mi

+
(n−1)!
(k−1)! ∑

m≥1k−1
|m|=n−1

1

∏
k−1
i=1 mi

.

Multiplying both sides by k!
(n−1)! we obtain

∑
m≥1k
|m|=n

n

∏
k
i=1 mi

= ∑
m≥1k
|m|=n−1

n−1

∏
k
i=1 mi

+ ∑
m≥1k−1
|m|=n−1

k

∏
k−1
i=1 mi

,

which is true from Lemma A.1.1. �

120 Intermediate results

Theorem A.1.4. The Stirling numbers of the second kind, S2(n,k), with n,k ≥ 0 are given by

S2(n,k) =
n!
k! ∑

m≥1k
|m|=n

1

∏
k
i=1 mi!

. (A.4)

�

Proof. We have to prove that the right hand side of Equation (A.4) has the properties of Defini-

tion 5.3.2.

Consider n,k = 0, the initial condition is satisfied since the only valid argument of the sum is the

0-tuple. For both n > 0, k = 0 and n = 0, k > 0 there are no valid arguments in the sum, which

results in zero and those initial conditions are also satisfied.

For the remaining values, n,k > 0, we have to show that they follow the recurrence relation, that

is,

n!
k! ∑

m≥1k
|m|=n

1

∏
k
i=1 mi!

= k
(n−1)!

k! ∑
m≥1k
|m|=n−1

1

∏
k
i=1 mi!

+
(n−1)!
(k−1)! ∑

m≥1k−1
|m|=n−1

1

∏
k−1
i=1 mi!

.

Multiplying both sides by k!
(n−1)! we obtain

∑
m≥1k
|m|=n

n

∏
k
i=1 mi!

= ∑
m≥1k
|m|=n−1

k

∏
k
i=1 mi!

+ ∑
m≥1k−1
|m|=n−1

k

∏
k−1
i=1 mi!

,

which is true from Lemma A.1.2. �

Lemma 5.3.6. For m,M≥ 0k, with k ≥ 0, we have that

∑
m≥1|m|
mm=M

1

∏
|m|
i=1 mi

=
k

∏
i=1

mi!
Mi!
S1(Mi,mi). (5.22)

�

Proof. We can break the multi-index m with |m| elements into the set of multi-indexes (mi), with

1 ≤ i ≤ k, such that each mi has mi elements and is associated with Mi. In particular, this means

that mm = M becomes |mi| = Mi, for every i with 1 ≤ i ≤ k. Using this, the left hand side of

Equation (5.22) can be written as the product

k

∏
i=1

 ∑
mi≥1mi
|mi|=Mi

1
∏

mi
j=1 mi

j

 .

The result comes directly from applying Theorem A.1.3. �

A.1 Intermediate results used in Theorem 5.3.5 121

Lemma 5.3.7. For m,M≥ 0k, with k ≥ 0, we have that

∑
m≥1|m|
mm=M

1

∏
|m|
i=1 mi!

=
k

∏
i=1

mi!
Mi!
S2(Mi,mi). (5.23)

�

Proof. Using the exact same approach as in the proof of Lemma 5.3.6, the left hand side of Equa-

tion (5.23) can be written as the product

k

∏
i=1

 ∑
mi≥1mi
|mi|=Mi

1
∏

mi
j=1 mi

j!

 .

The result comes directly from applying Theorem A.1.4. �

Lemma A.1.5. For n≥ 0, we have that

∑
k≥1

(−1)kS1(n,k) =

−1 if n = 1,

0 otherwise.
(A.5)

�

Proof. The first cases can easily be verified from inspection. Note that the sum is finite since

S1(n,k) = 0 when k > n. For n = 0 this is a zero sum and for n = 1 we have (−1)S1(1,1) =−1.

The remaining terms are proven by induction. Assume the sum to be zero for n > 1. We expand

S1(n+1,k) according to its recurrence relation

∑
k≥1

(−1)kS1(n+1,k) = ∑
k≥1

(−1)k [nS1(n,k)+S1(n,k−1)]

= n ∑
k≥1

(−1)kS1(n,k)+ ∑
k≥1

(−1)kS1(n,k−1)

= 0.

The base case of the induction process, n = 2, is simply S1(2,2)−S1(2,1) = 1−1 = 0. �

Lemma A.1.6. For n≥ 0, we have that

∑
k≥1

(−1)k(k−1)!S2(n,k) =

−1 if n = 1,

0 otherwise.
(A.6)

�

122 Intermediate results

Proof. Firstly, note that for n = 0, the sum is trivially 0. Consider now n > 0. Then, from Defini-

tion 5.3.2

∑
k≥1

(−1)k(k−1)!S2(n,k) = ∑
k≥1

(−1)kk!S2(n−1,k)+ ∑
k≥1

(−1)k(k−1)!S2(n−1,k−1).

We perform the change of variables k = k− 1 on the second sum of the right hand side, which

gives

∑
k≥1

(−1)k(k−1)!S2(n,k) = ∑
k≥1

(−1)kk!S2(n−1,k)+ ∑
k≥0

(−1)k+1k!S2(n−1,k)

=−S2(n−1,0),

which is −1 for n = 1 and 0 for n > 1. �

Lemma 5.3.8. For M≥ 0k, with k ≥ 0, we have that

∑
m≥1k

k

∏
i=1

(−1)miS1(Mi,mi) =

(−1)k if M = 1k,

0 otherwise.
(5.24)

�

Proof. We can write the left hand side of Equation (5.24) as the product

k

∏
i=1

∑
mi≥1

(−1)miS1(Mi,mi).

Note that although the outer sum of Equation (5.24) looks infinite, it only has a finite number of

non-zero elements. Therefore, there are no convergence issues when we do this rearrangement.

Consider k > 0. If M 6= 1k, then there will be at least one i with 1≤ i≤ k such that Mi 6= 1. From

Lemma A.1.5, that term will be zero, which means that the whole product is zero. For M = 1k the

result is immediate. In the case k = 0 we have on the left hand side a sum over one valid index

(the 0-tuple) of an empty product, which results in 1 = (−1)0. �

Lemma 5.3.9. For M≥ 0k, with k ≥ 0, we have that

∑
m≥1k

k

∏
i=1

(−1)mi(mi−1)!S2(Mi,mi) =

(−1)k if M = 1k,

0 otherwise.
(5.25)

�

Proof. We can write the left hand side of Equation (5.25) as the product

k

∏
i=1

∑
mi≥1

(−1)mi(mi−1)!S2(Mi,mi).

A.1 Intermediate results used in Theorem 5.3.5 123

Using the exact same approach as in the proof of Lemma 5.3.8, the result is straightforward from

Lemma A.1.6. �

Lemma 5.3.10. Consider a function b f k
i with the properties in Definition 5.3.3, for some k≥ 0|T |.

For every m12 ≥ 0,m≥ 0|s|, such that k =K(ms)+m12 e j, we have that

b f k
i

(
x;

[
m12

m

]
,

[
w j1‖w j2

ws

]
,

[
x j12

xs

])
= ∑

m1,m2≥0
m1+m2=m12

(
m12

m1,m2

)
b f k

i

x;

m1

m2

m

 ,
w j1

w j2

ws

 ,
x j12

x j12

xs

 .

(5.26)

�

Proof. The proof is by induction. Assume this to be satisfied for m12 = a− 1 ≥ 0. Then, for the

case m12 = a, the left hand side of Equation (5.26) can be written as

b f k
i

x;

a−1

1

m

 ,
w j1‖w j2

w j1‖w j2

ws

 ,
x j12

x j12

xs

 .

From assumption, this can be expanded into

∑
m1,m2≥0

m1+m2=a−1

(
a−1

m1,m2

)
b f k

i

x;

m1

m2

1

m

 ,

w j1

w j2

w j1‖w j2

ws

 ,

x j12

x j12

x j12

xs

 .

Using item 2 of Definition 5.3.3 in order to expand over the weight w j1‖w j2 , we get

∑
m1,m2≥0

m1+m2=a−1

(
a−1

m1,m2

)b f k
i

x;

m1 +1

m2

m

 ,
w j1

w j2

ws

 ,
x j12

x j12

xs

+ b f k
i

x;

 m1

m2 +1

m

 ,
w j1

w j2

ws

 ,
x j12

x j12

xs

 .

We split this sum into two according to the two terms. Furthermore, we change variables such that

m1 +1 becomes m1 on the first sum and m2 +1 becomes m2 on the second sum. This gives us ∑
m1≥1
m2≥0

m1+m2=a

(
a−1

m1−1,m2

)
+ ∑

m1≥0
m2≥1

m1+m2=a

(
a−1

m1,m2−1

) b f k
i

x;

m1

m2

m

 ,
w j1

w j2

ws

 ,
x j12

x j12

xs

 .

124 Intermediate results

These two sums can be unified into one by appending cases that correspond to zero terms until

their index sets match. In particular, in the first sum we can freely append the cases m1 = 0 and

in the second sum we can append the cases m2 = 0. Then, we end up with a single sum over the

index set m1,m2 ≥ 0, with m1 +m2 = a.

Then, from the fact that
(n

m1,m2

)
=
(n−1

m1−1,m2

)
+
(n−1

m1,m2−1

)
, our expression simplifies into the right

hand side of Equation (5.26) and the result applies to m12 = a.

In base case m12 = 0, the only valid term in the sum is the one indexed with m1,m2 = 0. It is clear

that for this case the equality is satisfied, which concludes the proof. �

Lemma 5.3.11. Consider a family of functions { f k
i }k≥0|T | with the properties in Theorem 5.2.7,

for some k≥ 0|T |. For every m12 ≥ 0,m≥ 0|s|, such that k =K(ms), we have that

f k+m12 e j
i

(
x;

[
m12

m

]
,

[
w j1‖w j2

ws

]
,

[
x j12

xs

])
(5.27)

= ∑
m1,m2≥0

m1,m2≤m12
m1+m2≥m12

B(m1,m2,m12) f k+(m1+m2)e j
i

x;

m1

m2

m

 ,
w j1

w j2

ws

 ,
x j12

x j12

xs

 ,

where B(m1,m2,m12) is defined as

B(m1,m2,m12) :=
(

m12

m12−m1,m12−m2,m1 +m2−m12

)
.

�

Proof. The proof is by induction. Assume this to be satisfied for m12 = a− 1 ≥ 0. Then, for the

case m12 = a, the left hand side of Equation (5.27) can be written as

f k+ae j
i

x;

a−1

1

m

 ,
w j1‖w j2

w j1‖w j2

ws

 ,
x j12

x j12

xs

 .

From assumption, this can be expanded into

∑
m1,m2≥0

m1,m2≤a−1
m1+m2≥a−1

B(m1,m2,a−1) f k+(m1+m2+1)e j
i

x;

m1

m2

1

m

 ,

w j1

w j2

w j1‖w j2

ws

 ,

x j12

x j12

x j12

xs

 .

A.1 Intermediate results used in Theorem 5.3.5 125

Using item 2 of Theorem 5.2.7 in order to expand over the weight w j1‖w j2 , we get

∑
m1,m2≥0

m1,m2≤a−1
m1+m2≥a−1

B(m1,m2,a−1)

 f k+(m1+m2+1)e j
i

x;

m1 +1

m2

m

 ,
w j1

w j2

ws

 ,
x j12

x j12

xs

+ f k+(m1+m2+1)e j
i

x;

 m1

m2 +1

m

 ,
w j1

w j2

ws

 ,
x j12

x j12

xs

+ f k+(m1+m2+2)e j
i

x;

m1 +1

m2 +1

m

 ,
w j1

w j2

ws

 ,
x j12

x j12

xs

 .

We split this sum into three according to the three terms. Furthermore, we change variables such

that m1+1 becomes m1 on the first sum, m2+1 becomes m2 on the second sum and we apply both

changes on the third sum. This gives us
∑

m1≥1
m2≥0
m1≤a

m2≤a−1
m1+m2≥a

B(m1−1,m2,a−1)+ ∑
m1≥0
m2≥1

m1≤a−1
m2≤a

m1+m2≥a

B(m1,m2−1,a−1)

+ ∑
m1,m2≥1
m1,m2≤a

m1+m2≥a+1

B(m1−1,m2−1,a−1)

 f k+(m1+m2)e j
i

x;

m1

m2

m

 ,
w j1

w j2

ws

 ,
x j12

x j12

xs

 .

These three sums can be unified into one by appending cases that correspond to zero terms until

their index sets match. In particular, in the first sum we can freely append the cases m1 = 0 and

the cases m2 = a. Similarly, in the second sum, we can append the cases m1 = a and the cases

m2 = 0. Finally, in the last sum, we can append the cases m1 = 0, the cases m2 = 0 and the cases

m1 +m2 = a. Then, we end up with a single sum over the index set m1,m2 ≥ 0, with m1,m2 ≤ a,

and m1 +m2 ≥ a. Note that

B(m1−1,m2,a−1)+B(m1,m2−1,a−1)+B(m1−1,m2−1,a−1),

which is equal to(
a−1

a−m1,a−m2−1,m1 +m2−a

)
+

(
a−1

a−m1−1,a−m2,m1 +m2−a

)
+

(
a−1

a−m1,a−m2,m1 +m2−a−1

)
,

126 Intermediate results

gives us (
a

a−m1,a−m2,m1 +m2−a

)
= B(m1,m2,a),

from the fact that
(n

m1,m2,m3

)
=
(n−1

m1−1,m2,m3

)
+
(n−1

m1,m2−1,m3

)
+
(n−1

m1,m2,m3−1

)
. Therefore, our expression

simplifies into the right hand side of Equation (5.27) and the result applies to m12 = a.

In base case m12 = 0, the only valid term in the sum is the one indexed with m1,m2 = 0. It is clear

that for this case the equality is satisfied, which concludes the proof. �

Lemma A.1.7. For every m1,m2 ∈ N, we have that

m1

∑
n=0

(−1)n
(

m1

n

)(
n+m2−1

m1−1

)
= 0. (A.7)

�

Proof. The proof is by induction on m1. Assume Equation (A.7) is valid for a particular m1 ≥ 1.

Using
(n−1

k−1

)
=
(n

k

)
−
(n−1

k

)
, we expand Equation (A.7) into

m1

∑
n=0

(−1)n
(

m1

n

)[(
n+m2

m1

)
−
(

n+m2−1
m1

)]
= 0

m1

∑
n=0

(−1)n
(

m1

n

)(
n+m2

m1

)
−

m1

∑
n=0

(−1)n
(

m1

n

)(
n+m2−1

m1

)
= 0.

On the first sum we change variables so that n+1 becomes n, which gives us

m1+1

∑
n=1

(−1)n−1
(

m1

n−1

)(
n+m2−1

m1

)
−

m1

∑
n=0

(−1)n
(

m1

n

)(
n+m2−1

m1

)
= 0.

We can append the case n = 0 on the first sum and the case n = m1 + 1 on the second, which

correspond to zero terms. Then, we can merge the two sums back into

−
m1+1

∑
n=0

(−1)n
[(

m1

n−1

)
+

(
m1

n

)](
n+m2−1

m1

)
= 0

−
m1+1

∑
n=0

(−1)n
(

m1 +1
n

)(
n+m2−1

m1

)
= 0.

That is, Equation (A.7) is also valid for m1+1. In the base case m1 = 1, the sum gives us 1−1= 0,

which concludes de proof. �

A.2 Intermediate results used in Theorem 5.3.24 127

Lemma 5.3.12. For every m1,m2 ∈ N0, we have that

∑
n≥1,m1,m2
n≤m1+m2

(−1)n

n

(
n

n−m1,n−m2,m1 +m2−n

)
=

(−1)m1

m1
if m1 ≥ 1,m2 = 0,

(−1)m2

m2
if m1 = 0,m2 ≥ 1,

0 otherwise.

(5.28)

. �

Proof. For the case m1 = 0,m2 = 0 the sum is empty, therefore the result is 0. Consider now the

case m1 ≥ 1,m2 = 0. Then, the sum consists of only the term indexed with n = m1, which is equal

to (−1)m1

m1
. Note that we only need to study the cases with m1 ≤ m2, since the other ones can be

trivially deduced thanks to the symmetry of this expression with regard to m1 and m2. Therefore,

to study the remaining cases m1,m2 ≥ 1, we will now consider the case 1≤m1 ≤m2, without loss

of generality. We multiply the expression by m1!
m1(m1−1)! , where we have that m1! = m1(m1− 1)!

since we know from assumption that m1 > 0. This gives us

1
m1

m1+m2

∑
n≥m2

(−1)n m1!
n(m1−1)!

(
n

n−m1,n−m2,m1 +m2−n

)
.

We change variables such that n becomes n+m2

1
m1

m1

∑
n≥0

(−1)n+m2
m1!

(n+m2)(m1−1)!

(
n+m2

n+m2−m1,n,m1−n

)
.

This can be further simplified as follows

(−1)m2

m1

m1

∑
n≥0

(−1)n m1!
(n+m2)(m1−1)!

(n+m2)(n+m2−1)!
(n+m2−m1)!n!(m1−n)!

=
(−1)m2

m1

m1

∑
n≥0

(−1)n m1!
n!(m1−n)!

(n+m2−1)!
(m1−1)!(n+m2−m1)!

=
(−1)m2

m1

m1

∑
n≥0

(−1)n
(

m1

n

)(
n+m2−1

m1−1

)
,

which is 0 from Lemma A.1.7. �

A.2 Intermediate results used in Theorem 5.3.24

Lemma A.2.1 (Theorem 3 of Broder (1984)). The r-Stirling numbers of the first kind are related

according to the cross-recurrence formula

Sr
1(n,k) = rSr+1

1 (n,k+1)+Sr+1
1 (n,k), (A.8)

for all n > r ≥ 0 and k ≥ 0. �

128 Intermediate results

Remark A.2.2. Note that if one takes the original form of Theorem 3 of Broder (1984) and ma-

nipulates it until the present form is reached, the domain obtained would be n > r > 0. This can

be easily extended for the case r = 0 as well, since we have that S0
1 (n,k) = S1

1 (n,k) for n > 0. This

case was missed in the original formula because it corresponded to a singularity.

Lemma A.2.3. For n > r > 0 and k > 0, we have that

Sr
1(n,k) = (n− r)Sr

1(n−1,k)+Sr−1
1 (n−1,k−1). (A.9)

�

Proof. We take the recurrence relation in Definition 5.3.22 and we add and subtract the term

(r−1)Sr
1(n−1,k) to it. That is,

Sr
1(n,k) = (n−1)Sr

1(n−1,k)− (r−1)Sr
1(n−1,k)+(r−1)Sr

1(n−1,k)+Sr
1(n−1,k−1).

The first two terms of the right hand side simplify into (n− r)Sr
1(n− 1,k) while the last two,

according to Lemma A.2.1, simplify into Sr−1
1 (n−1,k−1) whenever n > r > 0 and k > 0, which

concludes the proof. �

Lemma A.2.4. For r,N,k ≥ 0, we have that,

N

∑
n=0

Sr
1(n+ r,k+ r)

n!
=
Sr+1

1 (N + r+1,k+ r+1)
N!

. (A.10)

�

Proof. The proof is by induction. Assume Equation (A.10) to be satisfied for some N = a−1≥ 0.

Then,

a

∑
n=0

Sr
1(n+ r,k+ r)

n!
=

a−1

∑
n=0

Sr
1(n+ r,k+ r)

n!
+
Sr

1(a+ r,k+ r)
a!

=
Sr+1

1 (a+ r,k+ r+1)
(a−1)!

+
Sr

1(a+ r,k+ r)
a!

=
1
a!
[
aSr+1

1 (a+ r,k+ r+1)+Sr
1(a+ r,k+ r)

]
.

Consider the change of variables n := a+ r+1, r = r+1 and k = k+ r+1. Then, this becomes

1
a!
[
(n− r)Sr

1(n−1,k)+Sr−1
1 (n−1,k−1)

]
.

Note that the prerequisites for applying Lemma A.2.3 are satisfied. That is, n > r, r > 0 and k > 0

correspond to a+ r+1 > r+1, r+1 > 0 and k+ r+1 > 0 respectively. Therefore, this simplifies

A.2 Intermediate results used in Theorem 5.3.24 129

into

Sr
1(n,k)

a!
=
Sr+1

1 (a+ r+1,k+ r+1)
a!

,

which concludes the induction step. For the base case N = 0, we have that Sr
1(r,k+ r) = Sr+1

1 (r+

1,k+ r+1), which is always satisfied since δr,k+r = δr+1,k+r+1. �

Lemma A.2.5. For n≥ r ≥ 0 and k ≥ 0, we have that

n−r

∑
p=k

(
n− p

r

)
S1(p,k)

p!
=
Sr+1

1 (n+1,k+ r+1)
(n− r)!

. (A.11)

�

Proof. Consider n = r. Then, the expression becomes

0

∑
p=k

(
n− p

n

)
S1(p,k)

p!
=
Sn+1

1 (n+1,k+n+1)
0!

.

If k = 0, the left hand side is
(n

n

)S1(0,0)
0! = 1. If k > 0, the sum is empty so it is 0. The generalized

Stirling number on the right simplifies into δn+1,k+n+1, which is one if k = 0 and zero if k > 0.

Therefore, equality is achieved for all k ≥ 0.

Consider now r = 0. Then, we have

n

∑
p=k

(
n− p

0

)
S1(p,k)

p!
=
S1

1 (n+1,k+1)
n!

.

If n≥ k, this reduces to Lemma A.2.4 (note that the missing indexes of the sum correspond to zero

terms). If n< k then the left hand side is an empty sum and the Stirling number on the right is zero.

The remaining cases that we have to prove are n > r > 0, k ≥ 0, which we prove by induction.

Assume Equation (A.11) is satisfied for all (n,r,k) such that n = a−1 with n ≥ r ≥ 0 and k ≥ 0.

We now prove that it is satisfied for the cases (a,r,k) with a > r > 0 and k ≥ 0. Note that we have

a− p≥ 1 for all p in the sum due to the fact that r > 0 from assumption. Therefore, we can split

Equation (A.11) into

a−r

∑
p=k

[(
a− p−1

r−1

)
+

(
a− p−1

r

)]
S1(p,k)

p!

=
(a−1)−(r−1)

∑
p=k

(
(a−1)− p

r−1

)
S1(p,k)

p!
+

(a−1)−r

∑
p=k

(
(a−1)− p

r

)
S1(p,k)

p!
.

Note that the cases (a−1,r−1,k) and (a−1,r,k) satisfy the assumption. That is, a−1≥ r−1≥ 0

130 Intermediate results

and a−1≥ r ≥ 0 are true if a > r > 0. We can apply Equation (A.11) to those cases and obtain

1
(a− r)!

[
Sr

1(a,k+ r)+(a− r)Sr+1
1 (a,k+ r+1)

]
.

From Lemma A.2.3, this simplifies into the right hand side of what we want to prove as long as

a+1 > r+1, r+1 > 0 and k+ r+1 > 0, which are all satisfied under the current assumptions.

The base case n = 0 has r = 0, since n ≥ r ≥ 0. This was already covered by the previous cases

n = r and r = 0. �

Lemma A.2.6. For n≥ r ≥ 0 and k ≥ 0, we have that

∑
m≥1k
|m|≤n−r

1

∏
k
i=1 mi

(
n−|m|

r

)
=

k!
(n− r)!

Sr+1
1 (n+1,k+ r+1). (A.12)

. �

Proof. Split the sum in the left hand side into the two sums

n−r

∑
p=k

∑
m≥1k
|m|=p

1

∏
k
i=1 mi

(
n−|m|

r

)
=

n−r

∑
p=k

∑
m≥1k
|m|=p

1

∏
k
i=1 mi

(
n− p

r

)

=
n−r

∑
p=k

(
n− p

r

)
∑

m≥1k
|m|=p

1

∏
k
i=1 mi

.

From Theorem A.1.3, this is

k!
n−r

∑
p=k

(
n− p

r

)
S1(p,k)

p!
.

the result is now straightforward from Lemma A.2.5. �

Lemma A.2.7. For n≥ k ≥ 0, we have that,

∑
m≥1k
|m|≤n

1 =

(
n
k

)
. (A.13)

�

Proof. The proof is by induction. Assume that the result applies for a given n ≥ 0 and all k such

that 0≤ k ≤ n. We can split the following sum

∑
m≥1k
|m|≤n+1

1 = ∑
m≥1k
|m|≤n

1+ ∑
m≥1k
|m|=n+1

1.

A.2 Intermediate results used in Theorem 5.3.24 131

If k ≥ 1, we can rearrange the last sum so that we obtain

∑
m≥1k
|m|≤n+1

1 = ∑
m≥1k
|m|≤n

1+ ∑
m≥1k−1
|m|≤n

1.

From assumption, whenever k ≤ n, this simplifies into
(n

k

)
+
(n

k−1

)
=
(n+1

k

)
. To complete the

induction step we now prove the remaining cases k = 0 and k = n+1. For the first one, the only

valid index is the 0-tuple so the sum is always 1 =
(n+1

0

)
. For the second one the only valid index

is the (n+1)-tuple of all ones so the sum is always 1 =
(n+1

n+1

)
. Therefore, the result applies to n+1

and all k such that 0≤ k ≤ n+1.

In the base case n,k = 0, the only valid index is again the 0-tuple and the sum gives us 1 =
(0

0

)
. �

Lemma A.2.8. For M≥ 1k, with n≥ |M| and k ≥ 0, we have that

∑
m≥M
|m|≤n

k

∏
i=1

(
mi−1
Mi−1

)
=

(
n
|M|

)
. (A.14)

�

Proof. Using Lemma A.2.7, the left hand side can be expanded into

∑
m≥M
|m|≤n

k

∏
i=1

∑
mi≥1Mi−1
|mi|≤mi−1

1.

The inner sum can be rearranged such that we get

∑
m≥M
|m|≤n

k

∏
i=1

∑
mi≥1Mi
|mi|=mi

1.

Distributing the product over the inner sum gives us

∑
m≥M
|m|≤n

∑
m1≥1M1...
mk≥1Mk
|m1|=m1

...
|mk|=mk

1.

Note that we can completely remove the dependence on m in this expression. In particular, note

that for every i such that 1 ≤ i ≤ k, we have that mi ≥ 1Mi . Then, |mi| ≥Mi. Since we also have

that |mi|= mi, this implies that mi ≥Mi for all i. Therefore, the expression m ≥M is redundant.

Moreover, we can replace |m| ≤ n by |m1|+ . . .+ |mk| ≤ n. Defining m as the concatenation of

132 Intermediate results

m1, . . . ,mk, the expression simplifies into

∑
m≥1|M|
|m|≤n

1.

Since n ≥ |M| from assumption and |M| ≥ k ≥ 0, the result is now immediate from applying

Lemma A.2.7 again. �

Lemma 5.3.25. For M≥ 1k, with n≥ |M| and k,r ≥ 0, we have that

∑
m≥M
p≥1r

|m|+|p|≤n

k

∏
i=1

(
mi−1
Mi−1

) r

∏
j=1

1
p j

=
r!

(n−|M|)!
S |M|+1

1 (n+1,r+ |M|+1). (5.34)

�

Proof. We first split the sum of the left hand side and reorganize it as

∑
p≥1r

|p|≤n−|M|

1
∏

r
j=1 p j

 ∑
m≥M
|m|≤n−|p|

k

∏
i=1

(
mi−1
Mi−1

) .
Using Lemma A.2.8, this simplifies into

∑
p≥1r

|p|≤n−|M|

1
∏

r
j=1 p j

(
n−|p|
|M|

)
.

The result now follows from Lemma A.2.6. �

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Outline and main contributions

	2 Weighted CCN formalism
	2.1 Commutative monoids
	2.2 Multi-indexes
	2.3 Weighted coupled cell networks
	2.4 Admissibility
	2.5 Extension for exogenous inputs and inner cell parameters

	3 Equality-based synchronism
	3.1 Partitions and their representations
	3.2 Lattices of partitions
	3.3 Lattice quotients
	3.4 Polydiagonals
	3.5 Invariance of polydiagonals
	3.6 Balanced partitions
	3.7 Quotient networks
	3.8 CIR algorithm for balanced partitions
	3.8.1 Method
	3.8.2 Efficient implementation and cost analysis

	4 In-reachability based classification of synchrony partitions
	4.1 Network connectivity
	4.1.1 Neighborhoods and reachability
	4.1.2 Dynamics from in-neighborhoods
	4.1.3 Strongly connected components and root dependency

	4.2 Strong, rooted and weak partitions
	4.3 Neighborhood color matching
	4.4 Neighborhood color invariance

	5 Output vector spaces
	5.1 Admissible vector spaces and related results
	5.2 Decomposition into coupling components
	5.3 Decomposition into basis components
	5.3.1 Multiplicity notation
	5.3.2 Stirling numbers
	5.3.3 Finite coupling order
	5.3.4 Infinite coupling order

	5.4 Extension for exogenous inputs and inner cell parameters

	6 Conclusion
	References
	A Intermediate results
	A.1 Intermediate results used in thm:decompositionfinite
	A.2 Intermediate results used in thm:oraclebasisrelationoracleto basis

