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Resumo

Com o surgimento e desenvolvimento de veículos autónomos, foi igualmente criada uma necessi-
dade de monitorizar e identificar objetos e ações que ocorrem no ambiente que rodeia o veículo.
Este tipo de monitorização é particularmente importante no caso de veículos partilhados, dada a
necessidade de identificar ações não só no exterior mas também no interior do veículo devido à
ausência de um condutor humano que possa detetar, por exemplo, potenciais ações de violência
entre passageiros e/ou situações onde estes necessitem de assistência.

Englobado neste contexto, a Bosch desenvolveu uma solução de estimação de postura humana
com o objetivo de extrapolar a pose de todos os ocupantes presentes numa dada imagem, inferir
o comportamento de cada passageiro e, consequentemente, identificar ações potencialmente ma-
liciosas. Porém, para que este algoritmo possa ser aplicado não apenas a imagens isoladas mas
também a vídeos é necessário adicionar contexto temporal entre frames. Por outras palavras, é
necessário associar a estimação de pose de uma dada pessoa para uma dada frame às estimações
de pose para a mesma pessoa em frames subsequentes de modo a que a identificação dessa pessoa
(ou qualquer outra presente numa dada frame) ao longo do vídeo seja correta e consistente.

O tópico de associação temporal, também conhecido como "pose tracking", é abordado e
desenvolvido ao longo do presente projeto, culminando na proposta e implementação de uma
solução que melhora consideravelmente a consistência temporal do algoritmo de estimação de
pose humana da Bosch. A solução desenvolvida utiliza uma mistura de abordagens clássicas e
atuais de associação de informação, como por exemplo o "Hungarian algorithm", e abordagens de
lógica de informação desenvolvidas especificamente para o caso em questão. A performance do
algoritmo implementado no presente projeto é avaliada usando duas das mais recorrentes métricas
de avaliação em casos de rastreamento de pose.

Palavras-chave: Autónomo, Estimação, Interior do veículo, Postura, Rastreamento
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Abstract

With the emergence and development of autonomous vehicles, a necessity to constantly monitor
and identify objects and action that occur in the surrounding environment of the vehicle itself was
also created. This type of monitoring is particularly important in the case of shared vehicles, given
the necessity to identify actions not only in the exterior but also in the interior of the vehicle due
to the absence of a human driver that can detect, for instance, potential violent actions between
passengers and/or cases where assistance is required.

Encompassed in this context, Bosch has developed a human body pose estimation solution in
order to extrapolate the pose of all vehicle occupants present in a given image, infer the behaviour
of each passenger and, consequently, identify potentially malicious actions. However, in order
to apply this algorithm not only to isolated images but also to videos it is necessary to add tem-
poral context between frames. In other words, an association is required between the body pose
estimation for a given person in a given frame and the body pose estimations for the same per-
son in subsequent frames in order to ensure that the identification of that passenger (or any other
passenger present in the same frame) is accurate and consistent throughout the entire video.

The temporal association topic, also known as pose tracking, is addressed and developed dur-
ing the present project, culminating in the proposal and implementation of a solution that consid-
erably improves the temporal consistency of the human body pose estimation algorithm developed
by Bosch. The implemented solution uses a mixture of currently relevant classical approaches for
data association, such as the Hungarian algorithm, and approaches based on data logic developed
specifically for the present case. Regarding performance, the developed algorithm is evaluated
using two of the most recurrent metrics for pose tracking methods.

Keywords: Autonomous, Estimation, In-vehicle, Pose, Tracking
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Chapter 1

Introduction

1.1 Context

With the emergence and development of autonomous vehicles, a necessity to constantly monitor

and identify objects and actions that occur in the surrounding environment of the vehicle itself was

also created. In the case of shared autonomous vehicles, this monitoring process is also applied

to the interior of the vehicle, which plays an important role in the surveillance of the behaviour of

its passengers, given the lack of human intervention not only in the driving aspect but also in the

management of potential malicious actions performed by the passengers [17]. Such behaviours

can be detected or inferred through information obtained using body pose estimation algorithms.

In most cases, this type of algorithms uses deep learning techniques, which provide a way to

estimate the pose of the passengers through processing of images captured inside of the vehicle by

using neural networks [17].

1.1.1 Human pose estimation

Encompassed in the field of computer vision, human pose estimation (HPE) can be defined as

the task responsible for the identification/localisation of keypoints (figure 1.1) representative of

human body joints (for example wrists, elbows, shoulders or knees) in a single image or video and

subsequent estimation of the pose resulting from the spatial alignment of those keypoints [18].

The information provided by these techniques may then be used in a wide array of applica-

tions, such as human-robot interactions, virtual and augmented realities, sport analysis and video

surveillance [18], making HPE an influential and important area of research and development in

the field of computer vision. Despite of the ever-growing progress in this area, there are still

challenges that prevent state-of-the-art (SOTA) methods from achieving optimal results [18, 19].

Examples of these constraints are: necessity to capture the context, variability in human physi-

cal appearance and in background features, occlusion of keypoints due to overlapping, structural

complexity and information loss from 2D to 3D conversion [19, 20].

Regarding classification, HPE problems can be divided into distinct categories depending on

the several features/factors of the estimation process. For instance, an important aspect that needs

1



2 Introduction

Figure 1.1: Representation of the keypoints that comprise the human pose skeleton from Microsoft
Common Objects in Context dataset [1].

to be taken into consideration when performing pose estimation in an image is the number of

people that are present in it. In this case, HPE can be either classified as single-person or multi-

person pose estimation, with the latter being the most complex and demanding of the two processes

due not only to the additional challenge of identifying multiple people and correctly matching them

to their respective keypoints, but also to the possibility of the occurrence of inter-person occlusion

of keypoints. Another important aspect is the dimension of the estimation output, which allows

the classification of the estimation method into either 2D, which outputs X and Y coordinates for

each keypoint detected, or 3D HPE, which adds a third coordinate (Z) to each keypoint in order to

provide a three-dimensional prediction of the pose of each person represented in the image. Once

again, the latter category (3D HPE) is harder to implement due to, among other problems, an

inferior number of datasets (when comparing with the 2D alternative) for training of purely based

3D methods and the presence of spatial ambiguities when converting 2D poses into 3D equivalents

[18]. Besides these two main classification factors, HPE can also be classified taking into account

other aspects such as: input format (with RGB and Time of Flight being the most popular) or

number of frames (single-frame or multi-frame input).

1.1.2 Multi-person tracking

The process of tracking multiple individuals in a video is comprised within the computer vision

task of multi-target tracking (MTT) [5]. MTT is responsible for the detection and tracking of

multiple objects (for instance vehicles) and/or humans present in a given video [5]. Similarly

to pose estimation, this task can be applied to a vast set of fields such as video surveillance,

action recognition and, as the objective of this dissertation, autonomous driving [5]. Regarding

classification, MTT can be divided into two categories: 1) online methods, which provide an

estimation of the movement of each individual based only on information from current and past
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frames of a given video and 2) batch (or offline) methods, whose results for a given sequence

are based on information provided by past, current and future (occur after the current sequence)

frames [5, 21]. Whilst batch approaches often provide more accurate and temporal consistent

results due to the access to a more complete set of information, which comprises data from frames

subsequent to the one being analysed, this type of approach is not compatible with real-time due

to the necessity of using information only available after the real-time event occurs [5, 21]. In

contrast, online approaches are suitable for real-time tracking but their results are less consistent

than the ones obtained through batch tracking [5, 21].

1.2 Objectives

Despite of the clear advantages that HPE algorithms provide, one limitation of this kind of ap-

proach is their lack of temporal consistency due to the processing of video footage occurring in a

frame-by-frame basis. Given this limitation, it was proposed, within the scope of the dissertation,

the development and implementation of an algorithm, auxiliary to the pose estimation process, ca-

pable of mitigating the effects of inconsistency currently observed, with the objective of improving

the performance of the SOTA body pose estimation method developed by Bosch. Although this is

the main objective of the present dissertation, it is also necessary to perform a thorough review of

SOTA literature as well as a familiarisation with the currently relevant solutions used for temporal

consistency in body pose estimation methods. Only with the combined knowledge gathered from

the aforementioned tasks, it will be possible to fully understand the problems at hand, and develop

a method, based on already implemented approaches, capable of solving it.

1.3 Contributions

The present dissertation theme, human pose estimation and tracking, is undoubtedly an influential

and promising field of research, given, not only, its wide array of relevant applications, but also its

potential influence for the growth of other research areas, such as artificial intelligence. Therefore,

the possible results obtained at the end of the present dissertation may provide an important step

towards the development of a temporal consistent method for pose estimation and tracking applied

to surveillance in autonomous vehicles.

1.4 Document organisation

Following the brief introductory overview presented in this chapter, the subsequent chapters of

the present document will aim towards providing a thorough description of the several key as-

pects necessary to fully understand the development process of the solution implemented within

the scope of the dissertation. More specifically, in chapter 2, a literature review of the areas of

human body pose estimation and tracking is provided in order to further contextualise the work

described here and to familiarise the readers with these areas of research. In chapter 3, a more
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detailed characterisation of the main problem that this thesis aims at solving is provided, as well

as a description of the current implementation from which the solution builds upon, the proposed

solution itself and its possible alternatives. Upon proposal of the approach, the next step is the

implementation of the algorithm. This process is reported, as detailed as possible, in chapter 4.

Following implementation, the main performance results obtained for the developed algorithm are

analysed, compared with the benchmark performance and discussed also in chapter 4. Lastly, the

main conclusions of the present dissertation are provided in chapter 5 through extrapolation of all

the relevant information gathered throughout the duration of this project.



Chapter 2

Literature review

As previously stated in the chapter 1, the main objective of the present dissertation is the addition

of a temporal component to the pose estimation pipeline created by Bosch. In order to fulfil this

goal, it is necessary, firstly, to comprehend and consolidate the core concepts of the topics of pose

estimation and tracking, acknowledge which are the main pipelines used in these situations and

how the current main approaches of this area tackle the problem of pose tracking. Therefore, the

present chapter will provide a detailed review of these concepts and methodologies, firstly, for the

pose estimation topic (in sub-chapter 2.1), and secondly, for the pose tracking issue (in sub-chapter

2.2), complementing the introductory contextualisation already provided in chapter 1.

2.1 Human pose estimation

Human body pose estimation is an intriguing and versatile area of research that has the potential to

grow exponentially in the following years given the most recent reported advancements, specially

in the deep learning area. Nevertheless, it is still a very demanding and complex task given,

not only, the non-linear and unpredictable nature of the actions and movements carried out by

the human physiology, but also, due to the variety and complexity of the scenarios in which the

individuals are inserted. In the following sections, a detailed description of the main approaches,

pipelines and evaluation metrics currently used in order to overcome the previously mentioned

difficulties of this topic is provided.

2.1.1 General methodologies

Based on the approach used to tackle a pose estimation problem, the vast majority of HPE so-

lutions currently available fall into one of two main categories: classic generative methods and

discriminative methods.

Regarding generative methods, probably the most well-known example of this category are

the pictorial structure models introduced by [2]. These graphical models try to fit a pre-defined

template/model represented by a deformable arrangement of parts that are linked by spring-like

5
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spatial connections (figure 2.1) to an image, minimising the conformation and linkage energy costs

in order to achieve the best match possible for object recognition and/or pose estimation [22].

Figure 2.1: Pictorial structures representation of the facial components and their respective link-
ages (Figure courtesy of [2]).

Although the methods based on these approaches are able to successfully detect and predict

body poses from images, their performance can also be impaired by, among other issues, the lack

of modelling of interactions suited for the pose illustrated in the image, which can lead to misin-

terpretation of the spatial arrangement of parts [22, 23]. Moreover, generative methods require a

high number of degrees of freedom (parameters) in order to translate the deformable nature of the

object/body, which leads to high processing time per frame and slower computation times, making

real-time scenarios more difficult to cope with [24].

In contrast, discriminative methods base their approach on the comparison of visible features

in an image with body poses “learnt” by the method itself in an attempt to find a positive match

between the pose observed in the image and the examples available [24]. These methods are,

not only, more fitting for real-time applications than generative approaches, but also more robust,

due to a better cope with anatomically viable poses that may not be covered by a given model

[24]. Furthermore, the emergence of discriminative methods based on deep learning approaches,

namely the use of neural networks for pose estimation introduced by [25], led to a paradigm shift

on research and development of pose estimation solutions towards this new class of HPE methods.

Therefore, it is not surprising to see that most of the recent HPE solutions [26, 27, 28, 29] resort

to the use of convolutional neural networks in their estimation process.

Given the current importance of deep learning HPE methods and the fact that the present

work will be based on improving a previously implemented HPE method based on this type of

approach, the content of the following sections will focus more specifically towards deep learning

methodologies and their characterisation.
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2.1.2 Pipelines

As aforementioned, HPE approaches can be classified based on the number of people present

in a given image to be analysed. In this case there are two main categories: single-person and

multi-person pose estimation.

Single-person HPE methods perform pose estimation throughout the assumption that only one

person is present in a given image and that its location within the image is known [30]. Given this

information, the aim of these methods is to pinpoint the location of keypoints (i.e. human body

joints) that allow a method to estimate the respective pose resulting from the correct keypoint

conformation [30]. Based on this objective there are two main options for single-person pose

estimation: 1) direct regression, which is only suitable for single-person cases, and 2) Heatmap-

based, which first generates a map of the most probable areas for each keypoint and then regresses

them based on the heatmaps created previously [30].

Figure 2.2: Comparison between a top-down approach (top) and a bottom-up approach (bottom)
for multi-person pose estimation (Figure courtesy of [3]).

On the other hand, multi-person HPE presents a more demanding challenge when compared to

single-person HPE, due to the presence of more than one person in a given image, which not only

requires more computation time (due to a higher number of keypoints and possible associations)

but also a way to distinguish and associate keypoints to their respective individual in a single

image. For this type of HPE, one of the following two major approaches is usually utilised:

• Bottom-up: in this approach, a two-stage method is performed in order to obtain an estima-

tion of the poses of all the people illustrated in a given image (figure 2.2). First, a detection
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of all the displayed keypoints is executed and, afterwards, the keypoints are grouped by per-

son and connected together resulting in an accurate pose for each person involved [30, 31].

• Top-down: although this approach is also a two-stage method, the way top-down esti-

mations fulfil their objective is almost opposite to the process executed by bottom-up ap-

proaches (figure 2.2). In other words, top-down approaches firstly perform human detection

by bounding each detected person to a box and then the keypoints associated to each box are

pinpointed and connected in a manner similar to single-person estimation, with the objective

of predicting an anatomically viable pose for each person [30, 31].

Whereas top-down approaches are simpler due to the breakdown of the pose estimation process

into several easier-to-perform single-person estimation tasks, their computation time requirements

scale up with the amount of people present in the image, making these approaches more time

consuming [30, 32]. In contrast, bottom-up approaches computation time requirements almost

remain constant with the increasing number of individuals in a given image [32]. Therefore, the

balance between accuracy and computational requirements is better in the latter approaches [32].

Figure 2.3: Example of a pose estimation pipeline from the work developed by [4] (Figure courtesy
of [4]).

In a general manner, HPE approaches achieve their objectives through the implementation of

a pipeline comprised of, at least, three phases:

• Pre-processing – comprised of tasks performed prior to the estimation process in order to

prepare or normalise the input data for the next phases. Comprises tasks such as: back-

ground subtraction, which reduces the amount of noise in the image and improves keypoint

detection or bounding box creation, which is a necessary task in top-down approaches of

multi-person HPE (previously described in this section) [18, 31].

• Feature extraction – this is an important task given that not all the information present in

an image or video is relevant for the process of pose estimation. In other words, its objective

is to process input data, normally through the use of a convolutional neural network, in order

to highlight and select useful features, reducing the size of the input for the pose estimation

algorithms, which leads to a more time/resource-efficient process [18, 31].
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• Pose estimation – this task aims at determine the most accurate location of the keypoints

based on the feature gradients/heatmaps (as shown in figure 2.3) obtained on the previous

phase. Furthermore, it predicts the most likely pose resulting from keypoint connections

[18, 31]. The exact method used to obtain an accurate pose estimation varies with the

approach used.

2.1.3 Datasets and metrics

Given the necessity of training the neural networks that are part of pose estimation methods,

there is an increasing need for the creation of new and larger datasets. Furthermore, datasets

also provide a way to evaluate the performance of HPE implementations in a wide range of situ-

ations. Microsoft Common Objects in Context (MSCOCO) [33], MPII [14] and PoseTrack [34]

are among the most used datasets in the field of deep learning based HPE methods [30]. Whereas

the MSCOCO dataset provides a large-scale framework, containing 330 000 context-rich images,

for multi-object detection and segmentation in single images [33], the other two aforementioned

datasets focus solely on the particular task of articulated HPE [14, 34]. Moreover, MPII and

PoseTrack encompass less annotated information: the first dataset includes 25 000 images for

evaluation of the HPE task (both single and multi-person) [14], whereas the latter has over 46 000

annotated video frames that can be used for evaluation of both HPE (single-shot) and pose tracking

(sequential) approaches [34].

Additionally, the assessment of the overall performance of these pose estimation methodolo-

gies on datasets (such as the ones aforementioned), requires suitable evaluation metrics. The most

common are Percentage of Correct Keypoints (PCK) [35] and Percentage of Correctly estimated

body Parts (PCP) [36], which evaluate, given a pre-determined threshold, if the predicted location

for, respectively, a keypoint or part corresponds to the real location [30], and mean Average Preci-

sion (mAP) of either Object Keypoint Similarity (OKS) or Intersection-over-Union (IoU), which

were introduced by MSCOCO [1].

2.1.4 State-of-the-art approaches

Table 2.1: State-of-the-art single-person HPE methodologies based on the results available on the
MPII Human Pose Dataset website [13]. PCKh @ 0.5: PCK with a threshold of 50% of the length
of the head segment [14].

Reference PCKh @ 0.5 (%) Methodology/Novelty introduced
[37] 93.9 Cascade Feature Aggregation
[38] 92.5 Cascade Prediction Fusion & Pose Graph Neural Network
[39] 92.3 Deeply Learned Compositional Model
[40] 92.1 Multi-scale Structure-aware Neural Network
[41] 92.0 Pyramid Residual Module

Tables 2.1 and 2.2 present a summary of some of the main SOTA methodologies used for single

and multi-person HPE, respectively. Furthermore, they are ordered based on their performance,
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translated by a metric measurement (PCKh @ 0.5 for single HPE and mAP for multi-person HPE),

on the MPII dataset. Additionally, it is also reported the main methodology/novelty introduced by

those approaches in order to acknowledge the current most effective methods and innovations.

Table 2.2: State-of-the-art multi-person HPE methodologies based on the results available on the
MPII Human Pose Dataset website [13].

Reference mAP (%) Methodology/Novelty introduced
[42] 78.0 Pose Refinement Network
[43] 77.5 Associative Embedding
[44] 76.7 Regional multi-person HPE
[45] 75.6 Part Affinity Fields
[46] 74.3 Articulated tracking

2.2 Multi-person tracking

One task closely related to HPE methodologies, that arises from the natural transition of pose

estimation algorithms from single images to videos, is the pose tracking process. This task is

responsible for adding a temporal component to HPE algorithms and to confer/improve the con-

sistency of person identification throughout the several frames that constitute a video. Following

the review provided in the previous sub-chapter regarding HPE methodologies, the aim of the next

sections will be to provide a detailed overview and description of 1) the general pipelines used by

pose tracking methods, 2) which are the most popular approaches and 3) how these methods are

evaluated/validated.

2.2.1 Methodologies

Currently, the most prevalent used approach to MTT problems is tracking-by-detection, a process

comprised by two distinct steps [5, 21, 47, 48]. Firstly, a detection algorithm is applied in a per-

frame basis in order to highlight relevant features and identify all the individuals present in each

frame, similarly to the process performed by pose estimation algorithms. Secondly, the resulting

data from the detection step is submitted to an association algorithm, which is responsible for the

link of all information corresponding to each individual across the sequence of frames in order

to obtain a temporal consistent and accurate representation of the movement trajectory and/or

actions performed by each specific person represented in the video input [5, 21, 47, 48]. This

latter step is prone to incorrect results given the possibility of occurrence of misleading events

such as occlusions and interactions among individuals, which can both lead to the disruption of

the flow of one or more association sequences [48]. However, due to these same constraints,

this step is also the current focus of most pose tracking algorithms [5], since it can be seen as

the main performance bottleneck for this type of algorithms. Moreover, given the existence of

estimation algorithms that already yield very accurate detection results (as shown in tables 2.1 and
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2.2), the potential for improvement of the overall tracker performance is far greater in the case of

the association process.

Over the years, the most predominant approaches used to tackle the tracking problems afore-

mentioned were based on machine learning methodologies and/or other mathematical-based op-

erations. Examples of these techniques are the Kalman filter [49], the particle filter, optical flow,

IoU and OKS. These particular set of examples can be used for motion prediction of possible fu-

tures locations for the estimations obtained for a given current frame, or, in some cases, to produce

spatial and/or temporal information that can be used as metrics for similarity computation among

estimation candidates. On the other hand, techniques such as Multi-Hypothesis Tracking (MHT)

[50], Joint Probabilistic Data Association Filters (JPDAF) [51], the Hungarian algorithm [52] and

Support-vector machines (SVMs) [53] can use the information/metrics provided by the first set

of examples and present a reliable and accurate way to associate/classify estimations throughout

consecutive frames based on their similarity/affinity values.

As it happened in the field of pose estimation, the emergence of deep learning techniques in

the last few years led to a significant increase on the number of tracking algorithms that encompass

neural networks in their pipeline [5]. This popularity is justified by the ability of these networks to

learn and extract features from input representations and by the SOTA results that these techniques

provide in the detection process [5]. More specifically, deep learning techniques, such as convo-

lutional neural networks (CNNs) and its derivatives can be used to extract temporal and/or spatial

features from images that are then utilised as similarity metrics during the association process

[5]. Furthermore, deep learning based tracking methods may also provide ways to store informa-

tion throughout several frames through recurrent convolutional neural networks (RCNNs) and its

derivatives, such as Long-short term memory (LSTM) networks and Gated recurrent units (GRUs)

[5].

2.2.2 Pipelines

Regarding MTT pipelines, the vast majority follows, although with the possibility for small varia-

tions, a general sequence (figure 2.4) comprised of the following four stages [5]:

• Detection - as previously mentioned in subsection 2.2.1, in this stage, all objects/individuals

present in a given frame are identified through the use of bounding boxes (similarly to the

initial process used by top-down HPE approaches) [5]. Moreover, this step can be carried

out by HPE algorithms, such is the case for the use case described in the present dissertation

(more detailed in chapter 3), or by standard object/person detectors provided by benchmark

datasets, which can enable tracking algorithms to focus more on the other stages described

below [5].

• Feature extraction - upon identification of all individuals, the most relevant features of

each individual, such as appearance or motion features, are highlighted, extracted and used

by subsequent stages for tracking [5]. Common features retrieved in this step are IoU, OKS,

optical flow vectors and, more recently, general visual features/similarity metrics through
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the use of CNNs [5]. In fact, over the last few years this has been the main stage for appli-

cation of deep learning methods due to their good capability to extract high-level features

from images [5].

• Affinity computation - in this stage, the degree of similarity among two distinct detections,

based on the features and visual/distance metrics previously extracted, is computed [5]. This

step can also be merged with the association stage, since the affinity values obtained in this

process are used in the step described below [5].

• Association - as previously mentioned, this last stage takes into the account the affinity val-

ues calculated for each set of two (or more) distinct detection candidates from two (or more)

temporal adjacent frames in order to compute the optimal matching between those sets of

candidates [5]. Furthermore, for each set that is considered as an optimal matching for any

two given detections in consecutive frames, the same ID is assigned to both candidates as a

way to signalise that they correspond to the same object/person [5].

Figure 2.4: Representation of the general pipeline in which the majority of MTT algorithms is
based upon. The main four steps that comprise this pipeline are: object detection (2), feature
extraction (3), affinity computation (4) and association (5) (Figure courtesy of [5]).

2.2.3 Datasets and metrics

As it was the case of HPE methodologies, MTT approaches also require dedicated datasets in or-

der to: 1) train and test the developed neural networks (if the approach is based in deep learning

techniques), 2) validate their pipelines, 3) evaluate the overall performance of the methodology

implemented in a given benchmark and compare it with the approaches developed by other re-

search groups. Currently, MOTChallenge [54], KITTI [55] and PoseTrack [34] are the most used
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datasets for this purpose, with the first two providing a more general framework with a wide array

of annotated objects/targets [54, 55]. On the other hand, the latter dataset, as previously mentioned

in section 2.1.3, focus solely on the specific tasks of human body pose estimation and tracking,

and is regarded as one of the benchmark datasets for both tasks [34]. Furthermore, given its im-

portance in this particular area of research (which coincides with the main theme of the present

dissertation), PoseTrack dataset and the methodologies present on the leaderboard of its multi-

person pose tracking challenge (PoseTrack 2017 Challenge 3) will be regarded as reference points

and inspirational benchmarks for the development and implementation of the tracking algorithm

proposed as the main objective for the present dissertation.

Regarding evaluation metrics, the most commonly used in MTT approaches are, the ID metrics

[56], the CLEAR MOT metrics, namely Multiple Object Tracking Accuracy (MOTA) and Multi-

ple Object Tracking Precision (MOTP) [6] and the set of metrics proposed by [57]: Mostly lost

trajectories (ML), Mostly tracked trajectories (MT), Fragments, False trajectories and ID switches

[5]. The latter two sets of metrics are the most popular, with the set proposed by [57] being used in

both MOTChallenge and KITTI datasets, whereas the CLEAR MOT set is used to evaluate MTT

approaches in all three of the datasets previously mentioned in this section. Once again, given the

importance of this last set of metrics on the evaluation process for the different datasets previously

listed, it will be regarded as the benchmark set of metrics for the present work and will be used

as the main evaluation tool for the tracking performance of the solution developed throughout the

duration of this dissertation. Therefore, in the next paragraphs, the two metrics that constitute the

CLEAR MOT set (MOTA and MOTP) will be addressed and explained in more detail in order to

understand how they perform the evaluation process of tracking methodologies.

Firstly introduced by [6], the CLEAR MOT metrics are based on a matching system be-

tween ground truth (GT) objects/persons and estimation candidates, which is currently carried

out through the pairing of their respective bounding boxes based on the IoU values yielded, as

established by the MOT15 dataset [58, 5]. Once the matching is computed, for a given frame,

there are three possible situations that can be flagged as tracking errors (figure 2.5):

1. Misses (also known as false negatives): these errors occur when a GT object/person, for a

given frame, does not have a corresponding match to one of the candidates produced for

the same frame. In other words, the tracking algorithm fails to output that a candidate that

corresponds and/or is close enough to a given GT object/person to be considered a positive

match for this, which leads to a false negative situation given that for the particular frame

being evaluated there is an object annotated in the position given by the GT information

[6, 5].

2. False positives: this situation corresponds to the opposite behaviour described in the pre-

vious case, since for this situation it is the GT object that is missing (and not the candidate

object, which was the case in the miss situation). This translates into an occurrence where

a tracking candidate is proposed to be in a position where there is no matching GT object
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[6, 5]. This is one of the most undesirable types of errors since it can give the wrong num-

ber, by excess, of passengers that are currently inside the vehicle. Consequently, it may

impair the effectiveness/performance of the decision algorithms of action recognition meth-

ods, leading to the selection of incorrect outputs. Furthermore, in the case of the MSCOCO

dataset evaluation, false positives are also less penalised than, for instance, misses by the

mAP metric [1].

3. Mismatches (also known as ID switches): this last case occurs when a GT object has

matches in two (or more) consecutive frames with candidates with different IDs. In other

words, there is a switch in ID for a given GT object due to its pairing with a candidate with

a given ID in one frame and in the next frame with a candidate that has a different ID from

the previous one. This event can occur in situations where two candidates bounding boxes

are too close to each other, which may lead to incorrect matching GT-candidate pairs [6, 5].

Figure 2.5: Representation of the possible errors that may occur during the tracking process:
misses (a and d), false positives (a and d) and mismatches (b and c). The GT objects and the
estimation candidates are represented by the letters o and h, respectively. (Figure courtesy of [6]).

The first of the two metrics that compose the CLEAR MOT set, MOTA, takes into account

the aforementioned incorrect situations in order to evaluate the tracking performance of a given

algorithm. It is calculated according to the following mathematical expression [6]:
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MOTA = 1− ∑t(mt + f pt +mmet)

∑t gt
(2.1)

where mt represents the number of misses, f pt the number of false positive cases, mmet the

number of mismatches that occur for the frame corresponding to time t. The sum of all occurrences

for these three types of tracking errors is then divided by the sum of all GT objects for a given

video and the result of 1 minus this ratio translates the MOTA result (between 1, or 100%, and -∞,

since the number of errors can surpass the total number of GT objects) for the video analysed [6].

The second and last CLEAR MOT metric, MOTP, is more orientated towards the precision

of the detector, rather than yielding detailed information about the performance of the tracking

component itself [6, 5]. Moreover, it does not take into consideration any information regarding

the three most common tracking errors previously described. Instead, the MOTP evaluation metric

is calculated by using the following equation [6]:

MOT P =
∑i,t di

t

∑t ct
(2.2)

where di
t corresponds to the overlap value for a given matching pair between a GT object and

the candidate i in a particular frame t, and ct represents the number of matches performed for the

same frame t [5]. As previously mentioned, MOTP is seen as more of a measurement of precision

of the estimation/detection process. Therefore, it will not be regarded as relevant as MOTA for

the evaluation process of the tracking algorithm developed in the present dissertation, given that

the estimation/detection process, in this particular use case, is carried out by the pose estimation

algorithm previously developed by Bosch, and not by the solution implemented in this dissertation.

2.2.4 State-of-the-art approaches

Regarding SOTA approaches for the task of MTT, a summary of the top performers in this area

is provided in tables 2.3 and 2.4 for the MOTChallenge and the PoseTrack datasets, respectively.

Furthermore, a more detailed overview of the methods listed in table 2.4 will be presented in the

following paragraphs of the current section, since their purpose of human body pose tracking is

more closely related with the theme and objectives of the present dissertation, than other MTT

approaches.

Table 2.3: State-of-the-art MTT methodologies based on the Conference on Computer Vision and
Pattern Recognition (CVPR) 2019 tracking results available on the MOTChallenge website [15].

Reference MOTA (%) Type Detector Open Source
Borysenko et al. (Submitted to ECCV’20) 54.8 Online Public No

[59] 51.3 Online Public Yes [60]
[61] 47.6 Online Public No
[62] 46.7 Batch Public No
[63] 43.0 Online Public No
[64] 35.8 Batch Public No [60]
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Table 2.4: State-of-the-art MTT methodologies based on the PoseTrack 2017 multi-person track-
ing challenge leaderboard available on the PoseTrack website [16]. Only the top 3 methods for
both top-down and bottom-up approaches are shown. Anonymous submissions present on the
leaderboard are not taken into consideration in this table.

Reference mAP (%) MOTA (%) Type of approach Leaderboard position
[8] 74.14 64.09 Top-down 1st

[9] 74.04 61.15 Top-down 2nd

[65] 72.57 60.17 Top-down 3rd

[10] 68.78 54.46 Bottom-up 9th

[11] 70.28 53.81 Bottom-up 10th

[12] 63.55 53.07 Bottom-up 11th

The first approach analysed in this section is the top-down method proposed and developed

by [8]. Currently, it is the highest performing approach, regarding both mAP and MOTA metrics,

on the leaderboard for the PoseTrack 2017 multi-person challenge. Its overall architecture is

comprised of three main components: 1) a Clip Tracking Network, based on the High-Resolution

Network (HRNet) approach proposed by [7], 2) a Video Tracking Pipeline (figure 2.7) and 3) a

Spatial-Temporal Merging component [8].

The aforementioned HRNet methodology (figure 2.6) is a popular top-down solution for the

estimation process as it is used by several SOTA approaches present in the PoseTrack leaderboard,

such as [8], [9] and [7]. This deep learning based network is comprised of multiple high-to-low

resolution sub-networks, which are connected in a parallel configuration (figure 2.6) and exchange

information amongst themselves [7]. Consequently, this allows the HRNet to maintain a high

level of resolution throughout each step of the estimation process [7]. Therefore, it yields a set of

heatmaps (one for each body joint detected) that possess the same high resolution as its respective

input feature maps, which can potentially lead to more accurate predictions [8, 7].

Figure 2.6: Representation of the HRNet architecture proposed by [7] (Figure courtesy of [7]).



2.2 Multi-person tracking 17

Regarding the operation pipeline of the approach introduced by [8], this method starts by se-

lecting the middle frame of a given video clip and by detecting all the persons present on that

specific frame. It then propagates those persons throughout all the remaining frames in an attempt

to identify and estimate their positions and poses on those frames [8]. These two tasks are per-

formed by the first component of the algorithm, which is, as aforementioned, based on the HRNet

architecture introduced by [7].

Figure 2.7: Representation of the video tracking pipeline, proposed by [8] and used for merging
tracklets based on their similarity (Figure courtesy of [8]).

Afterwards, the tracklets produced by the Clip Tracking Network are passed to the pipeline

depicted in figure 2.7, which is responsible for the association of those tracklets into arbitrary

length tracks [8]. This association process is performed by the Hungarian algorithm [52] using the

OKS as the similarity metric between tracklets 2.7. Finally, the Spatial-Temporal Merging task

is responsible for the optimisation of each joint location from the previously yielded predictions,

using the Dijkstra’s algorithm [66], in order to produce the most consistent poses, both spatially

and temporally-wise [8].

Proposed by [9], the runner-up method on the PoseTrack leaderboard is also a top-down ap-

proach that introduces several novelties, such as Pose Entailment and Temporal OKS (TOKS). As

the first step of this method, the keypoints of each person are estimated using also a HRNet neural

network and then these predictions are improved by generating boxes for the current and adjacent

frames and by using OKS to decide which predictions are worth keeping [9]. Afterwards, each

estimation from two consecutive frames are paired and then converted into tokens [9] as depicted

in figure 2.8. Finally, using a transformer-based network, the tokens obtained in the previous step

are classified based on whether the estimations that constitute those tokens are a temporal match
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or not [9]. Based on this classification, an ID is assigned to the temporal accurate tokens (figure

2.8) [9].

Figure 2.8: Representation of the general pipeline, from estimation to ID assignment, for the
approach proposed by [9] (Figure courtesy of [9]).

The third position on the leaderboard is occupied by the approach proposed by [65]. Although

the focus of this method is more towards introducing improvements on the estimation part of

the algorithm, a new strategy, alternative to the Non-Maximum Suppression (NMS) technique,

is proposed for the tracking component [65]. Moreover, the authors use a Mask R-CNN for the

detection task, followed by a greedy box generator, which keeps redundant boxes as possible

candidates that are sequentially filtered using, first, a box size threshold and then a box confidence

threshold [65]. Afterwards, the remaining candidates are compared using the IoU metric and

filtered once again based on the comparison results [65].

Contrasting with the previous three approaches, the following three solutions adopt a method-

ology based on a bottom-up approach. The first of the three methods is also the highest scoring

approach regarding the MOTA metric and the second highest in terms of mAP. It was proposed

by [10] and introduces a novelty based on temporal flow maps for limbs. Initially, the features

extracted from two consecutive frames by a Visual Geometry Group (VGG) network [67] are fed

into spatial network (figure 2.9), which then produces joint heatmaps and part affinity fields based

on those features [10]. Afterwards, the resulting outputs are fed into the temporal network (figure

2.9), which then regresses the corresponding temporal flow maps [10]. These maps describe each

limb movement and can be seen as a representation of the human body flow throughout a given

video [10].

The last two bottom-up approaches described in table 2.4, are proposed by [11] and [12]

and occupy, respectively, the 10th and 11th places on the PoseTrack leaderboard for multi-person

tracking. These two approaches are described in more detail in chapter 3, due to their importance

as alternative methods for the main approach proposed. Nevertheless, a general introduction to

both approaches is still provided in the following paragraphs of this section.

The 10th and 11th best approaches on the PoseTrack leaderboard share several similarities on

their methodologies. Both resort to the use of a deep learning approaches in order to extract tempo-

ral information from each estimation [11, 12], and are equally inspired by the work developed by

[45], which introduces Part Affinity Fields (PAFs) for body parts association. In the case of [11],

the use of specific neural networks regresses Temporal Affinity Fields (TAFs), which yield impor-

tant information about keypoints connections across several frames [11], and the general idea of

this approach is depicted in figure 2.10. On the other hand, the approach proposed by [12] resorts

to deep learning networks in order to obtain movement information of every body part present in
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Figure 2.9: Representation of the architecture of the approach proposed by [10], comprised by a
spatial network and a temporal network (Figure courtesy of [10]).

two consecutive frames, which is translated by the Temporal Flow Fields (TFFs) regressed by the

dedicated temporal network depicted in figure 2.11 [12]. In both cases, the temporal information

obtained is used to provide a more accurate and consistent assignment of estimations throughout

a given video [11, 12].

Figure 2.10: Representation of the operation mode of the network proposed by [11], during infer-
ence (left) and visual representation the outputs provided by the network: keypoints (red), PAFs
(green) and TAFs (blue) (Figure courtesy of [11]).

Throughout the insightful summary of the SOTA approaches from the PoseTrack leaderboard,

provided in the present section, it was possible to observe that these top performing algorithms

use a wide variety of methodologies to solve, as accurately and efficiently as possible, the problem
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Figure 2.11: Representation of the model architecture proposed by [12]. The temporal network
(b) receives information from the spatial networks (a) in order to regress TFFs (Figure courtesy of
[12]).

of human body pose tracking. Furthermore, it is also possible to conclude that classical machine

learning techniques and metrics are still currently relevant as they are still commonly used as

part of the best solutions available for pose tracking. However, and as previously stated in both

pose estimation and tracking sub-chapters, there has been an emergence and increasing interest,

in the last few years, on the development of deep learning based approaches given the potential,

advantages and insights that they provide in comparison to the more traditional methodologies.

Therefore, it is very likely that in the next few years, the number of deep learning based approaches

present in the SOTA leaderboards for pose tracking will significantly increase as the understanding

and improvement of these techniques, undoubtedly, continues to grow.



Chapter 3

Characterisation of the problem

The main objective of the present dissertation is the development and implementation of a viable

algorithm capable of adding a tracking component to the current pose estimation method devel-

oped by Bosch. Once implemented, the resulting algorithm will be able to, not only, assist in the

estimation process (yielding more accurate and consistent pose results), but also add a temporal

component to the approach, allowing it to track several poses throughout the multiple frames of a

video (instead of analysing each frame as an individual image with no additional context).

In order to comprehend which is the best suited solution for the aforementioned scenario, it

is of utmost importance to study: 1) how the current pose estimation approach is implemented,

namely its inputs, outputs and general pipeline, 2) which requirements the tracking algorithm

needs to fulfil and 3) how state-of-the-art algorithms tackle the pose tracking problem and which

are the most popular approaches used in the literature. Since the latter point is already thoroughly

addressed in sub-chapter 2.2.4, it will only be briefly mentioned throughout the present chapter,

whereas the remaining two points will be introduced and described in more detail along the fol-

lowing sub-sections.

Afterwards, and taking into account the information collected from the literature, a main ap-

proach, as well as a few possible viable alternatives, will be proposed in order to tackle and solve

the problem described in the present dissertation.

3.1 Current implementation

Due to the Bosch Group confidentiality policy, a thorough and detailed description of the currently

implemented pose estimation algorithm is not possible in this document. Despite this fact, some

general information about the approach can be disclosed for contextualisation of the present dis-

sertation, namely the fact that it is a pose estimation algorithm based on a bottom-up deep learning

approach. More specifically, it uses a convolutional neural network in order to convert an input

image into visual features, which are posteriorly classified and translated into keypoints. These

keypoints are assembled into viable sets (poses), which are the main output of the algorithm, and

are assigned to their respective human representations in the original input image.

21
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Apart from bottom-up approaches, human body pose estimation methods can also be classified

as top-down approaches. In contrast with the first class, top-down methods firstly perform human

detection by bounding each detected person to a box and then, in each box, pinpoint and connect

the keypoints in a similar manner to single-person estimation, with the objective of predicting an

anatomically viable pose for each person [30, 31]. In general, this type of approach yields better

results in terms of accuracy than bottom-up approaches, which translates into most SOTA methods

being top-down approaches. This behavior can be justified by the use of global and body structural

information by top-down approaches (in opposition to bottom-up approaches that do not rely on

that type of context), which results in less false positive detections [68]. Despite this fact, top-down

approaches rely heavily on the performance of their human detectors and are, in general, more

demanding in terms of computing processing given their two-step estimation processes [30, 32].

Furthermore, they are more prone to estimation errors due to occlusion, complex poses and/or

overlapping than their counterparts [69, 68]. These are very common occurrences inside vehicles,

with the examples of partial occlusion of a passenger behind a seat or overlapping due to close

interaction with another passenger being the most relevant ones. Taking into account these facts,

bottom-up methods, despite their lower accuracy, appear to be the most suitable approach for the

specific problem of human body pose estimation inside vehicles, which supports the idea that not

always the best overall performing solution is the best performing solution for a given use case.

3.2 Internal datasets

Before the development and implementation of the tracking algorithm itself, it is necessary, first

and foremost, to select and characterise the set of videos that will be used to test the to-be-

developed solution. For this purpose, a subset of the internal VideoPose dataset, which contains

temporally annotated videos used by Bosch to test and validate possible sequential algorithms, is

used. Even though, a detailed description of the content of each video present in the aforemen-

tioned subset cannot be disclosed, due to the Bosch Group confidentiality policy, it is still possible

to provide a general overview of its organisation.

Regarding this subject, the subset used in this dissertation to test and validate the developed

tracking algorithm is comprised of three video datasets, designated here as datasets #1, #2 and #3,

that capture different in-vehicle perspectives of a wide variety of interactions between passengers.

Moreover, this subset has a total of 72 temporally labelled videos, which are distributed by the

three datasets (12, 39 and 21 videos respectively).

Additionally, the model of the pose estimation algorithm (responsible for providing the key-

points estimations that will be used as inputs for the pose tracking solution) developed by Bosch

was previously trained using an internal single-shot dataset: BoschCOCO, which, as the name

entails, is inspired by the MSCOCO dataset and is comprised by several images that depict a wide

array of in-vehicle situations.
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3.3 Approach proposal

Upon study of the use case at hand and the possible solutions available (reviewed in chapter 2),

the next logical step is the definition of the approach in which the algorithm to be implemented

will be based upon. For this selection, it is necessary to take into consideration a few important

requirements:

1. Must be computationally efficient/light, given the necessity to run the algorithm in real time

and, possibly, in restrictive hardware conditions, i.e., without a powerful central processing

unit (CPU);

2. Must improve overall (non-tracking and tracking) performance of the current implementa-

tion;

3. Must promote/maintain person ID consistency throughout video frames, decreasing the

number of ID switches, in order to improve the performance of pose estimation based algo-

rithms, such as action recognition methodologies;

4. Must be a reproducible algorithm, i.e, an implementation and/or detailed description of the

methodology used in the algorithm in question must be available online in order to validate

and reproduce its results obtained.

Given the previous list, the solutions currently available and the nature of the use case of this

dissertation, one main approach was proposed (figure 3.1).

Figure 3.1: Representation of the main approach proposed for this dissertation. The pose tracking
module to be developed is highlighted in blue and its general pipeline, comprised of four main
steps is shown in more detail.
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Moreover, two alternative solutions were also suggested as a precautionary measure, in case

the main approach failed to produce the expected performance improvement or hit an unforeseen

obstacle during implementation that led to the impairment/blocking of dissertation progress.

The main solution proposed is based in a modular approach, where the tracking algorithm is

separated from the pose estimation algorithm, receiving only the keypoints produced by the latter

as an input. The pose tracking module is responsible for the association of each set of keypoints,

received from the pose estimation algorithm, with their respective person ID based on information

gathered from previous and current frames, in order to yield updated human body poses that are

consistent throughout time. In a general way, this approach features a pipeline (figure 3.1) mainly

comprised of the following four steps:

1. Keypoint filtering: upon receiving a set of estimations for a given frame, the first task

performed by the proposed tracking algorithm is the selection of only viable estimations

through the application of filters that remove keypoints that do not meet certain criteria. This

process not only reduces the probability of false positives but also decreases the computation

time required for the following steps due to the reduction of the number of new estimations

from the initial list received from the estimation algorithm.

2. Affinity calculation: the second step of the pipeline is responsible for the calculation of the

similarity between the filtered estimations and the current keypoints for each person (stored

from the previous frame). Popular distance metrics, such as IoU, OKS or PCKh [70] are

used in order to compute the affinity level between two estimations/joints.

3. Estimation matching: the resulting values of each comparison performed in the last step

are then used to perform an association between the new estimations set and the current

set of tracked persons. This assignment process aims at finding the optimal combination of

estimation/person pairs, based on the affinity values previously provided, that maximises the

similarity of each pair in order to obtain the most accurate matching results possible. One

of the most broadly used methods for this type of computation is the Hungarian algorithm

[52].

4. Person management: lastly, once all viable estimations are matched with their respective

person IDs, the latter are updated with the new information and stored in order to be used

in the next frames. However, this process is not always this linear since there are cases in

which: 1) the number of viable estimations is higher than the number of persons currently

tracked or 2) not all persons possess a matching estimation for a given frame. Therefore, it

is necessary to manage each person situation accordingly, based on the association process

outcome. In the first case, it may be necessary the initialisation of a new person ID, if the

particular estimation is viable enough, and update that person with the respective keypoints.

On the other hand, in the second case, the lack of matching estimations throughout several

frames should lead to the removal of that person from the tracking set since it is possible
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the person in question may have already left the area or is not visible due to object/person

occlusion.

This is a simple and relatively easy to implement solution for the problem at hand that com-

bines several classical, yet still currently relevant and popular methods with data management

and logical operations developed taking into account the overall system architecture. Moreover,

it can be used in conjunction with different pose estimation algorithms given its modular nature

(apart from the keypoints received, it is completely independent from these methods). This fea-

ture provides a higher level of freedom, given that any improvement/modification made in the

pose estimation module does not require the alteration of the pose tracking algorithm (and vice-

versa) in order for the latter to be compatible with the newer version. In other words, it creates an

abstraction from the estimation algorithm (treating this algorithm almost as a black box) and elim-

inates most impairing dependencies/constraints that arise from developing a tracking algorithm

embedded into an already existing estimation method.

Regarding the methodologies/metrics that are utilised in this proposed solution, they are in-

spired from several SOTA approaches, specially methods present in the PoseTrack leaderboard

for multi-person tracking, which use classical techniques and/or metrics such as the Hungarian

algorithm for data assignment ([8, 71]), NMS for box filtering ([72, 7]), optical flow ([72, 7]) and

IoU measurements ([73, 65, 32]) or OKS distances ([8, 9]) for affinity calculation between esti-

mation candidates and person IDs. Additionally, the considerable variety and quantity of machine

learning-related techniques that are still used by SOTA approaches also adds more weight and

support to the viability/credibility of the use of classical methods, in opposition to a deep learning

approach, as the foundation for the main proposed approach for this dissertation.

3.4 Alternative approaches

Additionally, as previously mentioned, two alternative approaches were also considered in the

scope of the present dissertation. The first is based on a recent article [11], in which a bottom-up

estimation and tracking solution is documented (figure 3.2). This method has its foundations on the

pose estimation algorithm developed by [45], which introduces the use of PAFs for the association

of body parts [45], and builds upon it through the introduction of a temporal component: Temporal

Affinity Fields (TAFs), which, combined with the keypoints and PAFs generated each frame, allow

inference of human body pose throughout time [11]. Currently, it is the highest and second highest

rated bottom-up approach regarding, respectively, mAP and MOTA metrics, in the PoseTrack 2017

challenge for multi-person tracking. Aside from being one of the benchmark methods for bottom-

up pose tracking, an online repository containing an example implementation of this approach

(available at: https://github.com/soulslicer/openpose/tree/staf) is also provided, which allows an

easier reproducibility of this technique in other use cases. However, due to the implementation

complexity, both in terms of comprehension and adaptability, of this solution to the current use

case, it will be only considered as a strong alternative to the main solution proposed in the present

dissertation.
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Figure 3.2: Representation of the architecture of one of the estimation and tracking models pro-
posed by [11]. The interactions between the different modules in consecutive frames, regarding
its inputs and outputs (keypoints, TAFs and PAFs) are depicted (Figure courtesy of [11]).

The second approach is based on the work developed by [12], which is currently classified

one position below the method previously described ([11]) on the PoseTrack 2017 multi-person

tracking leaderboard. As the aforementioned alternative, this online approach (figure 3.3) is also

a bottom-up solution that takes inspiration on the PAFs method and introduces a novel tracking

component based on TFFs. These fields are obtained through a neural network, that receives as

input the predictions of two consecutive frames, and translate the movement direction of each

body joint between those two frames [12]. Afterwards, the TFFs values are used as a similarity

metric in a bipartite graph matching process in order to assign the estimate candidates to their

respective person representations [12]. This is an interesting solution that presents a possible

viable alternative to optical flow motion prediction approaches, which are known to be unreliable

in moving scenarios, and introduces a fairly simpler deep learning approach than most other neural

network based methods. However, despite these advantages, an online repository of this approach

is not currently available, which lowers its reproducibility level considerably and means that in

order to replicate or even adapt this methodology to the present case, the author of this dissertation

has to rely solely in the respective article description of the implementation process, which is not

an optimal solution in this context.
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Figure 3.3: Representation of the approach proposed by [12]. The pose features from two con-
secutive frames are used to predict the TFFs for each joint, which are then used in the association
process (Figure courtesy of [12]).

Despite the previously stated features and advantages of the two alternative approaches, both

share a common factor that makes them less adequate for a viable solution of the present problem

than the main approach selected: they incorporate deep learning elements, such as convolutional

neural networks, in their methods. Normally, this factor would be extremely beneficial for an ap-

proach, given that the majority of SOTA approaches are based in deep learning. However, these

approaches require a training process with temporal datasets, i.e., datasets that contain temporal

annotations throughout the set of frames of a given video. Given the lack of internal datasets of

this nature that are extensive enough to carry out an efficient training of the neural networks, it

would be necessary to resort to public datasets or even synthesize artificial data using comput-

ing resources in order to perform this task. The use of public datasets could lead to the loss of

specification since they lack the particular context (provided by internal data) for the problem of

human pose tracking inside of a vehicle, which is a particular case of tracking given its unique en-

vironment conditions (for example: vehicle movement, closeness of the passengers to the camera

in some situations, exchange of seats that leads to overlapping or occlusion behind front seats).

Furthermore, the use of synthetic data also poses an issue given the complexity and amount of

time required for creation of this type of dataset, which would impair severely the amount of time

available for the implementation of the tracking approach itself. For the aforementioned reasons,

the selection of deep learning methods as possible solutions for this specific problem of human

pose tracking was less acknowledged in favor of more simple/classical approaches, such as the

data association techniques previously mentioned throughout the present chapter.
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Chapter 4

Implementation

Upon familiarisation with the core concepts of HPE and MTT methodologies, as well as the def-

inition of the main approach pipeline (and its alternative solutions), the next logical step is the

implementation of the proposed methodology. In the following sections of the present chapter, a

thorough (when possible) description of each step of the aforementioned process will be provided

in order to further comprehend, not only the architecture of the proposed solution, but also its

general operation mode. Lastly, the performance evaluation process of the implemented approach,

carried out in order to validate its improvements in regard to the initial algorithm and its compli-

ance with the requirements stated in the previous chapter, will also be detailed in this chapter.

4.1 Tracking algorithm

In the present section, the general structure of the pose tracking algorithm proposed in chapter

3 and the reasoning behind each step of its pipeline will be discussed. Furthermore, it will be

provided an overview of the methodologies adapted from the SOTA approaches and how they

operate in order to obtain the desired results.

The general pipeline of the pose tracking algorithm implemented in the present dissertation

is described in algorithms 1 and 2. The algorithm 1 encompasses the steps followed during the

initialisation process of the tracking algorithm, more specifically, the handling and management

procedures of the inputs received from the pose estimation algorithm after processing the first

frame of a given video. On the other hand, the algorithm 2 is responsible for the processing

of the inputs corresponding to the following frames, i.e., all the frames that have at least one

preceding frame regarding the timeline of the video that they are part of. The implementation of

both algorithms was performed using the version 3.6.7 of the programming language PythonT M

[74].

The initialisation procedure of the proposed algorithm, depicted in algorithm 1, is a fairly

simple process comprised of two main steps: 1) storage of the information from the inputs (new

29
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Algorithm 1: Proposed pose tracking algorithm (first frame)
Input: Set o f new estimations (Coordinates, Scores, Box area, Con f idences)
Output: Set o f poses

1 Store new estimations

2 for each estimation in new estimations set do
3 Initialise new person ID
4 Update person with estimation information

Algorithm 2: Proposed pose tracking algorithm (following frames)
Input: Set o f new estimations (Coordinates, Scores, Box area, Con f idences)
Output: Set o f poses

1 Store new estimations

2 for each estimation in new estimations set do
3 if estimation’s bounding box area or score below given threshold then
4 Discard estimation
5 end

6 for each person in current persons set do
7 Compute affinity (IoU + OKS) between person and each estimation

8 Compute association (Hungarian algorithm)

9 if list of estimations without person match is not empty then
10 for each estimation without person match do
11 if estimation’s average confidence and score above given threshold then
12 Initialise new person ID

13 else
14 Discard estimation

15 for each person in current persons set do
16 if person has estimation match for current frame then
17 for each keypoint in matched estimation do
18 if keypoint confidence below given threshold then
19 Replace keypoint coordinates with last frame coordinates

20 Update person with matched estimation information

21 else
22 Update person using last frame information

23 if person has no match for a given time then
24 Delete person ID
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estimations) received from the pose estimation algorithm (line 1 of algorithm 1) and 2) initialisa-

tion of a new person ID (lines 2-4 of algorithm 1), for each new estimation received, and update

of the newly created person with the information contained in its respective estimation.

In this case, a person is a data structure, with an unique ID number (used to differentiate each

passenger in a given frame/video), that stores information from each estimation that is matched

to a particular person ID up to a given number of frames. In other words, each person can store

its respective assigned estimations from each of the last X frames, where the number X solely

depends on the frame rate of the current video. Additionally, the information stored for each

frame is comprised of:

1. Coordinates (x,y) for each keypoint location;

2. Estimation score, which translates the pose estimation algorithm confidence that a passenger

is present in the predicted location;

3. Bounding box area, resulting from the box generated using the minimum and maximum

coordinates locations;

4. Confidences of each keypoint predicted location.

The previously listed parameters are then used in the several stages of the algorithm 2, in order

to compute the most accurate estimation assignment possible.

Once the initialisation process is completed, the following frames of a video are processed

using the pipeline described in the algorithm 2. The aforementioned pipeline follows the logic

previously described in chapter 3, which divides the proposed approach into four main steps:

1) keypoint filtering, 2) affinity calculation, 3) estimation matching and 4) person management.

This four stages will be explained in the following sections, as well as the reasoning behind the

development of each one of them.

4.1.1 Keypoint filtering

After receiving and storing new estimations for a given current frame, the next task performed by

the proposed algorithm is the filtering of those estimations (algorithm 3) based on two parameters:

score and bounding box area. This approach was inspired by a similar method proposed by [73].

The reasoning for the use of a score threshold lies on the removal of predictions that have a low

probability to be viable representations of a person. This selection alone is able to remove several

false positive detections that would be detrimental for the rest of the pipeline and could impair the

matching process through the assignment of inaccurate estimations to a given person.

In order to complement the aforementioned filtering process, an area threshold for the bound-

ing boxes generated during this stage (based on the minimum and maximum keypoints locations)

for each estimation, was also utilised. However, this second approach was not the first choice for

the designated process, given the existence of the fairly popular NMS method. This latter tech-

nique uses the IoU metric to, first, identify a set of detections with similar bounding boxes and
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Algorithm 3: Keypoint filtering algorithm (from lines 2-5 of algorithm 2)

1 for each estimation in new estimations set do
2 if estimation’s bounding box area or score below given threshold then
3 Discard estimation
4 end

then remove all but the bounding box with the highest confidence score from that set [75]. This

process is repeated until only the highest confidence bounding boxes for each predicted location

remain [75]. In most cases, NMS is an effective solution for the removal of ambiguous bounding

boxes, that share the same general area of a correct prediction, but are seen as duplicates or false

positives that impair the overall estimation score of an algorithm.

Despite its effectiveness in other cases, NMS failed to produce a positive impact on the partic-

ular use case addressed in this dissertation. This inability to positively affect the filtering process

of the present approach was simply due to the much smaller size of the bounding boxes of po-

tential false positives when compared with the bounding boxes from the correct predictions. This

fact meant that, when applying NMS to the new estimations, the IoU threshold was never reached,

given the difference in size between the bounding boxes. Moreover, the adjustment (decrease in

this case) of the IoU threshold to increase the sensitivity to this particular case could not be per-

formed. This was mainly due to the increase possibility of removing correct predictions in the

neighbourhood of another correct bounding box if they had a low, yet above the IoU threshold,

overlap between them.

Therefore, in order to remove the small incorrect detections from the set of estimations, a

bounding box area filtering was applied, in conjunction with the prediction score threshold afore-

mentioned. The fixed values used for both thresholds were based on visual inspection of the tested

videos and analysis of the score and area values yielded by the pose estimation algorithm.

4.1.2 Affinity calculation

Following the last stage, the viable filtered estimations are then submitted to an affinity calcula-

tion process (algorithm 4). This procedure encompasses the computation of two popular distance

similarity metrics: IoU and OKS. The IoU metric is calculated, for any two given bounding boxes,

through the ratio between their respective overlap and union areas (figure 4.1) and allows the

measurement/comparison of the similarity among two bounding boxes.

Algorithm 4: Affinity calculation algorithm (from lines 6 and 7 of algorithm 2)

1 for each person in current persons set do
2 Compute affinity (IoU + OKS) between person and each estimation
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The second metric, OKS, provides an average measurement of keypoint similarity between

estimation and persons and is, as stated by MSCOCO [1], calculated using the following equation:

OKS =
∑i[exp(−d2

i /2s2k2
i )δ (vi > 0)]

∑i[δ (vi > 0)]
(4.1)

where di is the Euclidean distance between an estimation keypoint i and the corresponding person

parameter, s is the object scale, ki is a constant linked to a given keypoint i and vi is its visibility

flag (i.e. if it is labelled or not). During the calculation of this metric, only the labelled keypoints

(vi > 0) are considered and the final result is obtained through the averaging the OKS of each

visible keypoint.

Figure 4.1: Visual representation of the method used to obtain the parameters (overlap and union
areas of two bounding boxes) used for the calculation of the IoU metric. The ratio between the
overlap area and the union area yields the IoU result for two given boxes.

Once both metrics are calculated for a given estimation-person pair, their values (ranging be-

tween 0 and 1) are complemented and the sum of those two values yields the affinity level (ranging

between 0 and 2) for the estimation-person pair. The complement calculation is used to invert the

logic of the metrics, i.e., the higher the metric value is, the worse the affinity level gets. Although

this operation seems counter-intuitive, it is necessary for the next step of data association, since

the method used for that purpose tries to minimise the overall cost of the association process. This

means that estimations are assigned to a person based on how low their "inverted" affinity value

is.

The calculation of IoU and OKS metrics is performed for each estimation-person pair and the

results of this operation are stored in a cost matrix that is used as an input for the next tracking

stage. Given the possibility of the estimation and person sets having a different size, the matrix
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yielded in this step may have a square (if both sets have the same number of entries) or rectangular

shape (if the number of new estimations is different from the number of currently tracked persons).

4.1.3 Estimation matching

Upon calculation of the affinity between the new estimations set and the current persons set, the

resulting cost matrix is then used to associate those two sets and yield the combination with the

lowest "inverted" affinity values possible (algorithm 5). In this case, the matching process is

performed using the Hungarian algorithm, which is implemented in the proposed solution through

the use of the linear_sum_assignment function from the SciPy [76] optimize library.

Algorithm 5: Estimation matching algorithm (from line 8 of algorithm 2)

1 Compute association (Hungarian algorithm)

The assignment problem is solved using the following equation [77]:

Optimal assignment = min∑
i

∑
j

Ci, jXi, j (4.2)

where Ci, j is the cost ("inverted" affinity value) for the matching between an estimation i and a

person j, whereas Xi, j is a boolean variable that is 1 if the estimation i is assigned to the person j and

0 if it is not. The previous equation aims at minimising the matching cost, in order to assign the

estimation with the best similarity score possible to each person. Based on the assignment results,

the estimations are then paired with their respective person IDs and the latter are updated through

the procedure described in the next section. Furthermore, the handling process of estimations

without matching will also be addressed in the aforementioned section.

4.1.4 Person management

The last stage of the proposed tracking algorithm (lines 9-24 of algorithm 2) is also the most com-

plex one, being responsible for the initialisation, update and removal of person IDs throughout the

different frames of a given video. Moreover, this stage is very important for the coherence of the

tracking process since it correlates all the information (for instance similarity metrics and match-

ing results), from the previous three stages and decides the fate of each currently tracked person.

It is mainly divided into two steps: 1) initialisation of new person IDs for viable new estimations

that are not matched with any of the current persons (algorithm 6), and 2) update/removal of the

person IDs based on different matching parameters (algorithm 7).

The first step previously enumerated is a situational event, i.e., it only occurs in the particular

case where the number of new estimations exceeds the amount of currently tracked person IDs,

resulting in estimations without any assigned person ID. In this step, a list of those non-matching

estimations is retrieved and each of those predictions is submitted to a more restrictive filtering

than the one previously described in section 4.1.1, in order to ensure that only viable estimations
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Algorithm 6: First stage of the person management algorithm (from lines 9-14 of algo-
rithm 2)

1 if list of estimations without person match is not empty then
2 for each estimation without person match do
3 if estimation’s average confidence and score above given threshold then
4 Initialise new person ID

5 else
6 Discard estimation

lead to the initialisation of a new person ID. Moreover, this measure enforces one of the main goals

of the proposed algorithm, which is to avoid the generation of false positive estimations that can

result in an inaccurate/excessive representation of the real number of passengers inside a vehicle.

The filtering process, performed in this step, is carried out using the average confidence of

the keypoints of the assessed estimation and, once again, its prediction score. The first, and new,

parameter introduced here for filtering is, as previously stated, the average confidence of all the an-

notated/visible keypoints that comprise a given estimation. This parameter yields another possible

metric for the evaluation of the prediction viability and is compared with a fixed threshold, which

was defined based on visual inspection and data analysis of the aforementioned metric in several

videos. The second parameter (score) follows the same reasoning as the one previously stated in

section 4.1.1. However, for this particular step, its threshold is increased given the necessity to

ensure that a new person is only initialised if there is a very high confidence that the prediction in

question really represents a passenger. This is an important selection step since the initialisation

of a false positive, that will be propagated throughout the following frames, is more detrimental to

the overall algorithm performance than an error in the matching of an already tracked person for

one frame.

Algorithm 7: Second stage of the person management algorithm (from lines 10-24 of
algorithm 2)

1 for each person in current persons set do
2 if person has estimation match for current frame then
3 for each keypoint in matched estimation do
4 if keypoint confidence below given threshold then
5 Replace keypoint coordinates with last frame coordinates

6 Update person with matched estimation information

7 else
8 Update person using last frame information

9 if person has no match for a given time then
10 Delete person ID
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Afterwards, any person initialised through a viable estimation, filtered in the last step, is added

to the currently tracked list of person IDs and the second step of the person management stage is

started. During this step, each currently tracked person (including the new persons initialised in the

last step) is verified taking into account its matching situation (i.e. if an estimation was assigned

to its ID) for the current frame. Depending on the outcome of the assignment process described in

section 4.1.3, three situations may arise:

1. Update: the person has a matching estimation, which means that it will be updated with new

keypoint coordinates in the current frame. Additionally, this situation is always triggered for

the person IDs newly initialised in the present frame, since they have a guaranteed matching

in their first frame of existence.

• Addressed in lines 1-6 of algorithm 7.

2. Missing: there is no new estimation assigned to the designated person ID. In this case, the

person in question is flagged to acknowledge that, for a given frame, a matching estimation

is not present. Additionally, the person is updated, for the current frame, with the keypoint

information from the previous frame, albeit with all keypoints flagged as non-visible.

• Addressed in lines 7 and 8 of algorithm 7.

3. Deletion: once a particular person ID is flagged for a given number (based on the video

frame rate) of consecutive frames for not having a matching estimation, it is removed from

the currently tracked persons and its ID and the stored information is deleted. This measure

not only allows a person to recuperate from brief occlusions or errors from the estimation

algorithm, but also ensures that persons that, for instance already left the vehicle, are not

considered as currently tracked/active. Moreover, it also prevents the propagation of false

positives that derive from the permanent tracking of persons that are no longer detected.

Additionally, this idea to remove persons after a given number of frames was inspired by a

similar approach developed by [68].

• Addressed in lines 9 and 10 of algorithm 7.

Additionally, in the first situation previously listed, a filtering process is also performed (lines

3-5 of algorithm 7) before the occurrence of the update step. This process is executed in order

to discard keypoints with low confidence from a viable matched estimation in order to promote

more stability/consistency of keypoint locations throughout consecutive frames. Moreover, this

approach compares each joint (keypoint) confidence with its respective dynamic threshold, which

is computed using the average confidence of all matched estimations in the current frame for that

given joint. Therefore, if a given joint has a confidence value below its corresponding threshold,

it will be replaced with the respective joint coordinates from the previous frame. The idea of

using a dynamic threshold for each joint/keypoints was inspired by the work developed by [68].

In this article, the authors reported that an adaptive pruner is more effective for keypoint filtering
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and to maintain/increase tracking performance, since not all joints have the same confidence level

of estimation/detection [68]. The previous affirmation was corroborated during the development

of the present pose tracking algorithm, by the observation of a lower average confidence level of

some particular joints, when compared with the remaining keypoints.

Throughout the previous sections of this chapter, the main parts of the pose tracking algorithm

implemented in the present dissertation were introduced and described in order to provide a clear

insight of the work developed in the current project. In the following section, a comprehensive

description of the evaluation process used to test and validate the implemented solution will be

provided.

4.2 Evaluation

In order to efficiently test and visualise the results obtained using the several versions of the im-

plemented algorithm, it was necessary, first, to adapt one of the test algorithms provided by Bosch.

This adaptation consisted on:

1. Implementation of a test batch mode, in which it was possible to evaluate the whole subset

(or each dataset individually) and obtain the partial performance results for each video.

2. Addition of the bounding boxes from each person to a given video, using functions from

the OpenCV library [78], in order to complement the keypoint visualisation tool already

implemented prior to this dissertation by Bosch.

3. Implementation of the MOTA metric, using the py-motmetrics library [79], and inference

timers, using perf_counter function from Python time module, for the performance evalua-

tion of the developed algorithm. As it happened with the keypoint visualisation, the mAP

metric was already implemented by Bosch prior to the start of the present project.

Regarding the MOTA evaluation, thanks to the py-motmetrics library [79], which offers the

ability to generate partial results during the evaluation process, it was possible to obtain a detailed

report, not only containing the MOTA values, but also the number of matches (comprises both

true and false positives), misses (false negatives), ID switches and false positives. The posterior

analysis of this thorough performance report was crucial to understand how each method imple-

mented in the proposed solution affected/improved its overall tracking performance. Lastly, all

evaluation tests involving this metric were performed using the library embedded IoU calculator

with the default maximum tolerable overlap distance of 0.5, i.e., pairs of boxes with IoU below

0.5 were considered as a non-matching pair.

Regarding the measurement of the inference time necessary to perform the computation of the

tracking task, this was performed, as previously stated using the time module from Python. More

specifically, the perf_counter function was placed both immediately before the start of the pose es-

timation process and exactly after the tracking task was completed. The difference between those
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two timestamps was then compared with the benchmark difference obtained by measuring (us-

ing the same method previously described) the start and finish timestamps of the pose estimation

process alone.

Lastly, all the preliminary, validation and evaluation tests were performed under the same con-

ditions, using a development cluster equipped with a NVIDIA® Tesla V100 graphics processing

unit (GPU).

4.3 Results

Following the description of the implementation process, and the consequent validation/evaluation

procedure performed in the current dissertation, the next sections will focus on unveiling the main

results achieved in the present work. Moreover, the key highlights of the progress made throughout

the dissertation will also be presented in the following sections.

4.3.1 Metric performance

The performance results for the final algorithm and the two most relevant preliminary versions of

the work performed in the present dissertation are shown in figures 4.2, 4.3 and 4.4. Moreover,

the visual information depicted on those three figures is summarised in table 4.1, in order to aid

in the numerical analysis of the performance results. Additionally, these results are shown in rel-

ative comparison with the benchmark results obtained using solely the pose estimation algorithm

(depicted as blue bars in figures 4.2, 4.3 and 4.4). Furthermore, in this section, only the global

results for the complete video subset are shown. The partial performance results for each of the

three datasets that comprise the video subset are addressed in appendices A, B and C.

The first significant breakthrough in the improvement process of tracking performance from

the benchmark results was the implementation of a linear Kalman filter [49] for motion prediction.

Its respective performance results are depicted in figures 4.2 to 4.4 by orange bars. This method

has been an ever-lasting presence in object tracking approaches and is still currently considered

a relevant technique in this area, with application on recent articles such as [80, 81, 82, 83]. The

Kalman filter can be used to predict/determine the location of an object/target, by taking into

account the position of a particular object in the previous timestamp and the position measurement

for the current timestamp. As it is visible in figure 4.2, the implementation of this methodology

in the tracking module led to an increase in the MOTA metric, which translates in the increase of

matches seen in figure 4.3 and in the decrease of ID switches and false positives in 4.4. Despite

these improvements, the use of the Kalman filter also resulted in an increase on the number of

misses and had no effect in the mAP metric. Although this was a good start to the improvement

of the tracking module, this approach was abandoned in favour of a more data association focused

solution due to two main reasons:
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1. Lack of a model representative enough of the particularly dynamic system addressed in this

work. Despite the improvement previously observed using a linear Kalman filter, this ap-

proach is far from ideal, mainly due to the incorrect assumption that the movements carried

out by the human body are linear. On the contrary, these movements are highly non-linear

and extremely unpredictable, which impairs the definition of an equation accurate enough

to describe the system in question. Furthermore, the use of extended or unscented versions

of the Kalman filter, which provide an approximation of non-linear systems to a linear be-

haviour, is also not ideal since they both require the prior knowledge of the system equation.

2. The much higher importance given by SOTA tracking approaches to the data association

process (when compared with its motion prediction counter-part). As previously stated in

chapter 2 (more specifically in section 2.2.4), most of the best performing approaches focus

their efforts mainly in the improvement of the efficiency of their data association/assignment

methodologies. This fact highlights the key importance of this type of approaches towards

the tracking process and was highly regarded factor during the approach definition process

(as aforementioned in chapter 3).
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Figure 4.2: Subset (encompassing datasets #1, #2 and #3) performance results, regarding the
evaluation metrics mAP and MOTA, for the Kalman filter only (orange), Kalman filter + data
association (grey) and data association only (green) tracking algorithms. The values shown here
are expressed in relation to the benchmark results obtained by solely using the pose estimation
algorithm (blue), without any tracking component.

Given the aforementioned reasons, the focus of the tracking solution shifted towards a more

data association based approach, whose general pipeline was thoroughly described in the section

4.1 of the present chapter.

The performance results of this approach are shown in figures 4.2, 4.3 and 4.4, more specifi-

cally, by the depicted green bars. In the first figure, it is possible to observe a considerable mAP
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Figure 4.3: Subset (encompassing datasets #1, #2 and #3) performance results, regarding the num-
ber of matches and misses, for the Kalman filter only (orange), Kalman filter + data association
(grey) and data association only (green) tracking algorithms. The values shown here are expressed
in relation to the benchmark results obtained by solely using the pose estimation algorithm (blue),
without any tracking component. The total number of matches encompasses both true positives
and false positives matches between GT bounding boxes and tracked bounding boxes.
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Figure 4.4: Subset (encompassing datasets #1, #2 and #3) performance results, regarding the
number of ID switches and false positives, for the Kalman filter only (orange), Kalman filter +
data association (grey) and data association only (green) tracking algorithms. The values shown
here are expressed in relation to the benchmark results obtained by solely using the pose estimation
algorithm (blue), without any tracking component.

increase and a very significant boost in MOTA performance (almost a twofold increase compar-

ing to the reference value). This tracking performance gain was mainly due to the considerable
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decrease in ID switches and false positives (below 10% and 50% of the benchmark values, respec-

tively). Additionally, the number of matches also increased, which, combined with the reduction

of false positives cases, meant that the proposed algorithm was tracking more and with more ac-

curacy than the benchmark and the previous Kalman filter based approach.

Despite the overall improvement of the final tracking algorithm, the number of misses suffered

an unwanted increase (figure 4.3), similar to the behaviour previously reported for the Kalman-

filter based approach (orange bars). This tendency may be explained, at least for the final algo-

rithm, due to the "cautious" nature of this approach. In other words, the proposed final algorithm

prefers/tends to promote a miss for a person in a given frame if the confidence levels of its matched

estimation are not high enough, instead of generating a possible false positive for the same case.

This behaviour is, as previously mentioned, enforced through the use of restrictive thresholds in

different points of the tracking process. Moreover, another measure that may influence this in-

crease in the number of misses is the handling of person IDs without matching for a given frame,

since, although the keypoints are propagated, they are not visible during a frame with no matching

and therefore, are considered a miss. Nevertheless, in most situations/videos, this last measure

was seen yielding better tracking performance results than the case where keypoints are visible

during a lack of estimation matching (data not shown).

Lastly, an approach combining both the data association based and the Kalman filter based

algorithm was also tested and evaluated in terms of performance in an attempt to further improve

the results obtained by the algorithm described in section 4.1. The performance results of the

combined algorithm are present in figures 4.2, 4.3 and 4.4, depicted as grey bars. Despite the

improvement shown by the two individual approaches separately, the conjunction of these two

methodologies failed to yield better results than the approach solely based on data association.

Nevertheless, these results prove the inadequacy of the linear Kalman filter for the present use

case and corroborate the necessity of a method that is able to "learn" the system dynamics and

model in order to efficiently implement a motion prediction methodology based on the Kalman

filter.

Table 4.1: Subset (encompassing datasets #1, #2 and #3) performance results, regarding the two
evaluation metrics (mAP and MOTA) and four partial metrics derived from MOTA, for the de-
veloped tracking algorithms using 1) Kalman filter (KF) only, 2) KF + data association (DA) and
3) DA only, relative to the benchmark values obtained using only the pose estimation algorithm
(without any tracking component).

Metric
Tracker

None KF only KF + DA DA only

mAP 100% 100% 118% 122%
MOTA 100% 129% 191% 193%

Matches 100% 114% 122% 122%
Misses 100% 115% 114% 113%

ID switches 100% 29% 3.7% 3.9%
False positives 100% 96% 43% 42%
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4.3.2 Visual analysis

Following the performance results previously presented, the aim of the present section is to provide

a visual depiction and analysis of those improvements in the context of some of the subset videos

used for algorithm evaluation. The visual comparison of the benchmark pose estimation algorithm

with and without the implemented tracking algorithm is presented in figures 4.5 and 4.6, for two

distinct scenes.

Figure 4.5: Visual comparison of the performance of the pose estimation algorithm without (left)
and with (right) the proposed tracking algorithm in a representative video from dataset #1. The
flow of the time-lapse (10 frames) is given by the arrows, i.e., for both cases (left and right), the
top image represents the initial frame and the bottom image translates the scene evolution after
10 frames. Additionally, the blue outline rectangles depict the bounding boxes of each person
identified by the corresponding algorithm.

In figure 4.5, it is depicted the evolution, for a short time-lapse, of an in-vehicle scene (recorded

from a front row perspective) with four passengers (one in the front row and three in the second

row) that interact with each other. In this case, the improvement provided by the tracking algorithm

(figure 4.5, right) is mainly obtained through the removal of low confidence keypoints for the two

persons seated in the left and right side of the second row (mostly occluded in this time segment).

This allows the tracking algorithm to avoid propagation of bounding boxes with incorrect size
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from the top frame to the bottom frame (figure 4.5, right), in contrast to the behaviour observed in

the absence of this algorithm (figure 4.5, left). Additionally, this behaviour reduces the possibility

of ID switches between persons, since there is less overlap between adjacent bounding boxes due

to a more refined definition of their limits. One prominent example of the overlap area reduction

is observed in the top frames of figure 4.5, between the right passenger from the second row and

the passenger in the front row. In this case, the tracking algorithm is able to select only keypoints

that are not occluded behind the seat (i.e. with high confidence), which translates into a smaller

and more accurate bounding box for the occupant in the second row.

Figure 4.6: Visual comparison of the performance of the pose estimation algorithm without (left)
and with (right) the proposed tracking algorithm in a representative video from dataset #3. The
flow of the time-lapse (20 frames) is given by the arrows, i.e., for both cases (left and right), the
top image represents the initial frame and the bottom image translates the scene evolution after
20 frames. Additionally, the blue outline rectangles depict the bounding boxes of each person
identified by the corresponding algorithm.

The second visual example of the performance improvement provided by the tracking algo-

rithm is presented in figure 4.6. Recorded from a different perspective (second row instead of front

row), the second example introduced in this section depicts a negative interaction between two ve-

hicle occupants, both seated in the second row. Similarly to the behaviour observed and stated
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in the first example, the improvement of the tracking performance, by the proposed algorithm, in

the scene depicted in figure 4.6 was mainly due to the removal of false positives and the yield of

more stable and accurate keypoint locations. In this particular case, the reduction of the number

of false positives was a direct consequence of a more efficient data association process that led to

a decrease in person fragmentation (situation where parts of the same person are represented by

different bounding boxes). These actions not only improve the overall tracking results of the pose

estimation algorithm, but also provide a more accurate prediction of the real number of passengers

present in the vehicle at a given time. This improvement allows action recognition methods (that

receive the estimation outputs) to yield better decision results based on a more precise and much

clearer input information.

4.3.3 Computation time

Upon validation of the proposed algorithm, and evaluation/confirmation of the tracking and non-

tracking performance improvements that this approach was able to provide to the pose estimation

process, the last evaluation test performed aimed at measuring its inference time. This evaluation

was executed in order to assess if the first requirement described in chapter 3 was successfully

accomplished. To that end, the inference time of the pose estimation module was compared with

the inference time obtained for the pose estimation plus tracking modules. Additionally, this

comparison was performed for videos containing one to five passengers in order to also assess the

scalability of the tracking algorithm with the number of person IDs present in a given video. The

computation results for the pose estimation algorithm alone (orange line) and with the proposed

tracking algorithm attached to it (blue line) are shown in figure 4.7 (for visual inspection) and in

table 4.2 (for numerical analysis).

Table 4.2: Variation of the inference time with the number of passengers present in a given video,
for the pose estimation algorithm without any tracking component (None) and with the proposed
tracking algorithm. The average values shown here are expressed in relation to the benchmark
average results, obtained for the case of one passenger using the pose estimation algorithm without
any tracking component.

# Passengers
Tracker

None Proposed tracker

One 100% 105.5%
Two 104.6% 105.2%

Three 108.2% 108.4%
Four 115.0% 116.8%
Five 125.3% 126.5%

It is possible to observe, in figure 4.7, that both lines are dependent of the the number of

passengers in a given video, i.e., the inference time increases with the increment in the number

of passengers. However, this dependency is mainly due to the pose estimation algorithm, since

both share a similar behaviour. Therefore, it is possible to assume that the pose tracking algorithm

proposed and implemented in the present dissertation is invariant to the number of passengers
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present inside a given monitored vehicle. Nevertheless, more tests are required to confirm this

assumption/theory, for the specific use case analysed here but also for possible application outside

a vehicle.
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Figure 4.7: Variation of the inference time with the number of passengers present in a given
video, for the pose estimation algorithm without any tracking component (orange line) and with
the proposed tracking algorithm (blue line). The values shown here are expressed in relation to
the benchmark results obtained for the case of one passenger using the pose estimation algorithm
without any tracking component.
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Chapter 5

Conclusions

The area of autonomous driving is a fairly new and fascinating field of research that is expected

to grow and thrive in the next few years/decades. With the development of new and improved

vehicles, comes also the necessity to create, improve or adapt several complementary technolo-

gies to ensure the safety and efficiency of those modes of transportation. One example of those

technologies are the action recognition systems used to monitor the in-vehicle environment and

to identify possible acts of violence that occur between passengers. This is an important research

area, specially in the case of shared autonomous vehicles, given the lack of a human driver that

could monitor/intervene to avoid potential dangerous situations and ensure the safety of the vehicle

occupants. Most action recognition solutions resort to pose estimation algorithms to identify and

characterise the human body pose of each person in order to then be able to extrapolate behavioural

features, define the corresponding actions and classify those as violent or non-violent.

Despite the efficiency of most SOTA pose estimation approaches in single isolated images,

they tend to struggle in scenarios comprised by videos (such is the case of surveillance and moni-

toring systems) due to the lack of context association between frames. One of the most commonly

used solutions for this problem are the pose tracking algorithms, which provide the much needed

temporal consistency to pose estimation methodologies through association and tracking of person

estimations throughout consecutive frames. Therefore, the main objectives of the present disser-

tation were: 1) the familiarisation with the currently relevant and best performing techniques in

the area of pose tracking and 2) the development and implementation of a solution, based on those

techniques, that could provide an improvement in the temporal consistency of the pose estima-

tion algorithm developed by Bosch. Moreover, this solution needed mainly to be computationally

light, improve the tracking, as well as the non-tracking, performance of the pose estimation algo-

rithm and promote coherence during the tracking process in order to improve the performance of

subsequent action recognition algorithms.

Upon proposal, implementation and validation/evaluation of the pose tracking algorithm de-

veloped in the present dissertation, it is possible to conclude that the three aforementioned require-

ments were successfully fulfilled. Firstly, the inference time of the developed solution combined

with the pose estimation algorithm yielded a fairly similar result to the reference time obtained

47
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by the pose estimation algorithm alone. Additionally, the computation time of the tracking algo-

rithm appeared to be invariant with the number of passengers, which means that it is possible for

this solution to be scalable for scenarios with a higher number of targets. Secondly, the proposed

tracking approach did improve the tracking performance of the benchmark estimation algorithm,

which is reflected by the significant increase of the MOTA metric (translated by the reduction of

the number of ID switches and false positives and the increment of the number of matches). Fur-

thermore, it also improved the non-tracking performance, reflected by the mAP results, which is

translated by the indirect increase of the estimations precision of keypoints locations. Lastly, the

coherence of subsequent algorithms was also improved due to the aforementioned decrease in the

number of ID switches and false positive, which are the two of the main sources of consistency

impairment from estimation algorithms.

Beyond the fulfilment of the requirements previously mentioned, another positive aspect of the

pose tracking algorithm developed in the present work is its modular nature, which means that the

only dependence it has with the pose algorithm are the estimations yielded by the latter algorithm.

This is a very helpful feature since any modification in the architecture and/or in the parameters

of the pose estimation algorithm are inconsequential to the development and/or operation mode of

the pose tracking algorithm and vice-versa. Furthermore, this level of freedom and independence

may prove to be useful in the application of the developed tracking solution in the improvement of

other pose estimation approaches and/or other implementations of the estimation algorithm used

in the present dissertation.

All in all, the proposed and implemented pose tracking algorithm can be considered as a fairly

solid and positive solution, in all aspects, for the problem of the particular use case addressed in

the present dissertation.

5.1 Future work

Regarding future work, several aspects arise from the theme of the present dissertation that may

require further investigation/development. The first aspect is the execution of more complete batch

of comprehensive tests regarding the inference time of the proposed tracking algorithms. Although

the invariance of its computation time with the number of passengers was proven with the test per-

formed in chapter 4, its scalability for scenarios with a much higher number of estimations/targets

remains to be assessed/confirmed.

The second aspect is the impact of the application of a Kalman filter with a more accurate rep-

resentation of the system model, since the performance tests with a linear version of this method

showed its ability to positively affect, although not as much as the data association component, the

tracking performance of the estimation algorithm. Due to this fact, a more accurate representation

of the dynamics seen in the various scenarios present on the video subset used for this particular

case, may have the potential to further improve the final version of the proposed tracking algo-

rithm. Approaches such as the ones proposed by [81] and [83], which resort to deep learning to

obtain/learn information of the system dynamics and then use it to "tune" the Kalman filter, may be
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the key to unlock the improvement potential of this technique for the particular use case reported

here.

Following the work developed in the current dissertation, the last aspect that may have the

most potential for improvement of the proposed tracking algorithm is the use of deep learning

based methodologies. More specifically, the use of neural networks, either CNNs or RCNNs,

which are already currently used in some SOTA approaches such as [10], [11] and [12], to extract

visual information in the form of metrics (in the case of CNNs) or temporal context (in the case

of RCNNs) to enhance the tracking process. In the case of visual metrics, these can be used to

complement the affinity computation step and, consequently, improve the estimation assignment

process, producing more accurate associations. On the other hand, the temporal context can be

used in the data association process or to improve the detection and/or the tracking processes

during scenarios with occlusion or with estimations errors that lead to misses.
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Annex A: Dataset #1 results
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Figure A.1: Dataset #1 performance results, regarding the evaluation metrics mAP and MOTA,
for the Kalman filter only (orange), Kalman filter + data association (grey) and data association
only (green) tracking algorithms. The values shown here are expressed in relation to the bench-
mark results obtained by solely using the pose estimation algorithm (blue), without any tracking
component.
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Figure A.2: Dataset #1 performance results, regarding the number of matches and misses, for
the Kalman filter only (orange), Kalman filter + data association (grey) and data association only
(green) tracking algorithms. The values shown here are expressed in relation to the benchmark
results obtained by solely using the pose estimation algorithm (blue), without any tracking com-
ponent. The total number of matches encompasses both true positives and false positives matches
between GT bounding boxes and tracked bounding boxes.
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Figure A.3: Dataset #1 performance results, regarding the number of ID switches and false pos-
itives, for the Kalman filter only (orange), Kalman filter + data association (grey) and data as-
sociation only (green) tracking algorithms. The values shown here are expressed in relation to
the benchmark results obtained by solely using the pose estimation algorithm (blue), without any
tracking component.
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Table A.1: Dataset #1 performance results, regarding the two evaluation metrics (mAP and
MOTA) and four partial metrics derived from MOTA, for the developed tracking algorithms using
1) Kalman filter (KF) only, 2) KF + data association (DA) and 3) DA only, relative to the bench-
mark values obtained using only the pose estimation algorithm (without any tracking component).

Metric
Tracker

None KF only KF + DA DA only

mAP 100% 99% 119% 120%
MOTA 100% 150% 248% 253%

Matches 100% 121% 137% 138%
Misses 100% 119% 116% 115%

ID switches 100% 34% 3.3% 3.6%
False positives 100% 99% 55% 53%
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Annex B: Dataset #2 results
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Figure B.1: Dataset #2 performance results, regarding the evaluation metrics mAP and MOTA,
for the Kalman filter only (orange), Kalman filter + data association (grey) and data association
only (green) tracking algorithms. The values shown here are expressed in relation to the bench-
mark results obtained by solely using the pose estimation algorithm (blue), without any tracking
component.
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Figure B.2: Dataset #2 performance results, regarding the number of matches and misses, for
the Kalman filter only (orange), Kalman filter + data association (grey) and data association only
(green) tracking algorithms. The values shown here are expressed in relation to the benchmark
results obtained by solely using the pose estimation algorithm (blue), without any tracking com-
ponent. The total number of matches encompasses both true positives and false positives matches
between GT bounding boxes and tracked bounding boxes.
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Figure B.3: Dataset #2 performance results, regarding the number of ID switches and false pos-
itives, for the Kalman filter only (orange), Kalman filter + data association (grey) and data as-
sociation only (green) tracking algorithms. The values shown here are expressed in relation to
the benchmark results obtained by solely using the pose estimation algorithm (blue), without any
tracking component.
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Table B.1: Dataset #2 performance results, regarding the two evaluation metrics (mAP and MOTA)
and four partial metrics derived from MOTA, for the developed tracking algorithms using 1)
Kalman filter (KF) only, 2) KF + data association (DA) and 3) DA only, relative to the bench-
mark values obtained using only the pose estimation algorithm (without any tracking component).

Metric
Tracker

None KF only KF + DA DA only

mAP 100% 103% 118% 121%
MOTA 100% 105% 142% 143%

Matches 100% 103% 108% 109%
Misses 100% 119% 108% 107%

ID switches 100% 22% 2.1% 1.8%
False positives 100% 97% 31% 30%
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Appendix C

Annex C: Dataset #3 results
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Figure C.1: Dataset #3 performance results, regarding the evaluation metrics mAP and MOTA,
for the Kalman filter only (orange), Kalman filter + data association (grey) and data association
only (green) tracking algorithms. The values shown here are expressed in relation to the bench-
mark results obtained by solely using the pose estimation algorithm (blue), without any tracking
component.
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Figure C.2: Dataset #3 performance results, regarding the number of matches and misses, for
the Kalman filter only (orange), Kalman filter + data association (grey) and data association only
(green) tracking algorithms. The values shown here are expressed in relation to the benchmark
results obtained by solely using the pose estimation algorithm (blue), without any tracking com-
ponent. The total number of matches encompasses both true positives and false positives matches
between GT bounding boxes and tracked bounding boxes.
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Figure C.3: Dataset #3 performance results, regarding the number of ID switches and false pos-
itives, for the Kalman filter only (orange), Kalman filter + data association (grey) and data as-
sociation only (green) tracking algorithms. The values shown here are expressed in relation to
the benchmark results obtained by solely using the pose estimation algorithm (blue), without any
tracking component.
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Table C.1: Dataset #3 performance results, regarding the two evaluation metrics (mAP and MOTA)
and four partial metrics derived from MOTA, for the developed tracking algorithms using 1)
Kalman filter (KF) only, 2) KF + data association (DA) and 3) DA only, relative to the bench-
mark values obtained using only the pose estimation algorithm (without any tracking component).

Metric
Tracker

None KF only KF + DA DA only

mAP 100% 99% 119% 124%
MOTA 100% 135% 200% 202%

Matches 100% 115% 122% 122%
Misses 100% 112% 114% 113%

ID switches 100% 28% 4.1% 4.3%
False positives 100% 95% 41% 40%
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