
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Ranking Mobile Applications by Energy
Efficiency

João Paulo Silva da Rocha

Mestrado em Engenharia Informática e Computação

Supervisor: João Paulo Fernandes

Second Supervisor: Bruno Cabral

July 24, 2023

Ranking Mobile Applications by Energy Efficiency

João Paulo Silva da Rocha

Mestrado em Engenharia Informática e Computação

July 24, 2023

Resumo

Nos últimos anos, os avanços tecnológicos possibilitaram o desenvolvimento dos telemóveis in-
teligentes, também conhecidos como smartphones, e das suas aplicações (apps) que permitem a
realização de tarefas do quotidiano de forma simples, rápida e em mobilidade.

Segundo estatísticas, estima-se que atualmente estejam a ser usados 6.92 mil milhões de smart-
phones em todo o mundo e que este número possa crescer até 7.33 mil milhões em 20251. Em
média, em cada smartphone estão instaladas 35 aplicações2.

O enorme número de aplicações móveis que são executadas revela preocupações com a gestão
das baterias dos dispositivos móveis. Estas têm energia limitada e, por isso, é necessário utilizá-las
de forma eficiente para durarem mais tempo sem necessidade de carregamento. Outra questão que
se levanta é o impacto negativo no meio ambiente devido à quantidade de energia gasta com a
execução das apps. Consequentemente, é necessário pensar em Eficiência Energética associada
ao desenvolvimento de aplicações móveis para minimizar este impacto.

As principais lojas de apps não disponibilizam informação acerca da eficiência energética
das aplicações que distribuem. Com isto, surgem discussões sobre o que podemos fazer para
alertar desenvolvedores e empresas para serem mais cautelosos com a eficiência energética dos
seus produtos.

Fizemos o levantamento do estado da arte, analisamos cada uma das abordagens encontradas
para resolver esta falta de classificações energéticas e concordamos que estas podem ser melho-
radas.

Este trabalho foca-se no design e desenvolvimento de uma framework que analisa aplicações
Android e atribui classificações com base nas suas eficiências energéticas. As labels resultantes
deste projeto são obtidas a partir da análise e combinação de diferentes ferramentas de deteção de
anti-padrões que se complementam.

Acreditamos que a disponibilização destas labels energéticas pode ser um incentivo para os
desenvolvedores serem mais conscientes da eficiência energética das suas aplicações, bem como
ajudar os utilizadores a optarem por aplicações energicamente mais eficientes.

1https://www.bankmycell.com/blog/how-many-phones-are-in-the-world
2https://www.thinkwithgoogle.com/marketing-strategies/app-and-mobile/

average-number-of-apps-on-smartphones/

i

https://www.bankmycell.com/blog/how-many-phones-are-in-the-world
https://www.thinkwithgoogle.com/marketing-strategies/app-and-mobile/average-number-of-apps-on-smartphones/
https://www.thinkwithgoogle.com/marketing-strategies/app-and-mobile/average-number-of-apps-on-smartphones/

Abstract

In recent years, technological advancements have enabled the development of intelligent mobile
phones, also known as smartphones, and their applications (apps) that help complete everyday
tasks in a simple, fast, and mobile manner.

According to statistics, it is estimated that 6.92 billion smartphones are being used across the
World, and this number is expected to grow to 7.33 billion by 20253. The average user has 35 apps
installed on his smartphone4.

The enormous number of mobile applications being run raises concerns about the management
of the batteries of mobile devices. Batteries have limited power, so they must be used efficiently to
make them last longer without charging. Another issue is the negative environmental impact due
to the amount of energy running these apps uses. Consequently, it is necessary to consider Energy
Efficiency in mobile application development to minimise this impact.

The leading app stores do not provide information about the energy efficiency of the applica-
tions they distribute. With this, discussions about what we can do to alert developers and compa-
nies to be more cautious about the energy efficiency of their products arise.

We searched for related literature, analysed the approaches found to address the lack of energy
labels and agreed that they could be improved.

This work focuses on designing and developing a framework that analyses Android applica-
tions and labels them based on their energy efficiency. The resulting labels from this project are
obtained by combining the analysis of different anti-pattern detection tools that complement each
other.

We believe that providing these energy labels can serve as an incentive for developers to be
more energy efficiency aware of their applications, as well as help users choose more energy-
efficient applications.

3https://www.bankmycell.com/blog/how-many-phones-are-in-the-world
4https://www.thinkwithgoogle.com/marketing-strategies/app-and-mobile/

average-number-of-apps-on-smartphones/

ii

https://www.bankmycell.com/blog/how-many-phones-are-in-the-world
https://www.thinkwithgoogle.com/marketing-strategies/app-and-mobile/average-number-of-apps-on-smartphones/
https://www.thinkwithgoogle.com/marketing-strategies/app-and-mobile/average-number-of-apps-on-smartphones/

Agradecimentos

Obrigado Mãe e Pai por todo o apoio nesta jornada.
Obrigado Orientadores por me terem ajudado e dado várias sugestões ao longo do trabalho.
Obrigado professor João Paulo Fernandes pelo seu acompanhamento e disponibilidade.
Obrigado a toda a comunidade do GreenStamp pelos comentários construtivos e por todas as
reuniões bem passadas.

João Rocha

iii

“I have not failed. I’ve just found 10,000 ways that won’t work.”

Thomas A. Edison

iv

Contents

1 Introduction 1
1.1 Context . 1
1.2 Motivation . 2
1.3 Objectives . 3
1.4 Document Structure . 3

2 Background 4
2.1 Android . 4
2.2 Android Application . 4

2.2.1 Activities . 5
2.2.2 Services . 5
2.2.3 Broadcast Receivers . 5
2.2.4 Content Providers . 5

2.3 Energy Efficiency . 5
2.4 Energy Labelling . 6

3 State of the Art 7
3.1 Related Work . 7

3.1.1 EcoDroid . 7
3.1.2 Energy-Aware Development and Labeling for Mobile Applications . . . 8
3.1.3 Google Play Apps ERM (Energy Rating Model) 9
3.1.4 Planting Trees in the Android Forest: Energy Labeling for Mobile Appli-

cations . 9
3.2 Analysis Tools . 10

3.2.1 Android Lint . 10
3.2.2 Kadabra . 10
3.2.3 EcoAndroid . 11
3.2.4 aDoctor . 13
3.2.5 EARMO . 14
3.2.6 Paprika . 15
3.2.7 Relda2 . 17

3.3 Decompilation Tools . 17

4 Proposed Solution 18
4.1 Proposed Solution . 18

v

CONTENTS vi

5 Ranking Mobile Applications by Energy Efficiency 20
5.1 Architecture . 20

5.1.1 Decompilation . 21
5.1.2 Analysis . 21
5.1.3 Classification . 21

5.2 Implementation . 22
5.2.1 Jadx . 22
5.2.2 EARMO . 22
5.2.3 Kadabra . 23
5.2.4 Permissions Analyzer . 23
5.2.5 aDoctor . 23
5.2.6 Paprika . 23
5.2.7 Relda2 . 24
5.2.8 Android Lint . 24
5.2.9 EcoAndroid . 24

5.3 Requirements and How to Run . 25
5.4 Output . 26
5.5 Further Details . 28

6 Label Calibration and Computation 29
6.1 Dataset . 29

6.1.1 Dataset Selection . 29
6.1.2 Dataset Characterization . 31

6.2 Methodology . 33
6.2.1 Classification per Analysis Tool . 34
6.2.2 Final Classification . 34
6.2.3 How to deal with Apps with Multiple Categories 34

7 Results and Discussion 36
7.1 Analysis Environment . 36
7.2 Classification per Analysis Tool Thresholds . 37

7.2.1 Classifications and the Number of Apps 38
7.3 Final Classification and Label Thresholds . 39
7.4 Label Results . 39

8 Conclusions 42
8.1 Main Contributions . 42
8.2 Future Work . 43
8.3 Acknowledgements . 43

References 44

A Label Results 47

List of Figures

1.1 Mobile Operating Systems’ Market Share . 2

2.1 European Union Energy labels for household fridges and freezers 6

3.1 EcoDroid Call graph and executed paths of two Android apps [20] 8
3.2 EcoDroid Framework [20] . 8
3.3 Android Lint tool workflow . 10
3.4 EcoAndroid workflow [30] . 12

4.1 Workflow of the proposed solution . 19

5.1 Architecture Diagram . 20
5.2 Command Line Output . 28

6.1 Dataset Information . 31
6.2 Number of Apps per Category in the Dataset . 32
6.3 Correlation Matrix between some characteristics of the dataset 33

7.1 Comparison of the analysis time of 10 Apps analyzed in 2 different PCs 37
7.2 Final Label Results . 40
7.3 Trepn, EcoDroid and Developed Tool Results Comparison 41
7.4 Correlation Matrix between results . 41

vii

List of Tables

3.1 Kadabra Detection Patterns . 11
3.2 EcoAndroid Detection Patterns . 12
3.3 aDoctor Detection Patterns . 13
3.4 EARMO Detection Patterns . 14
3.5 Paprika Detection Patterns . 16

4.1 Average Energy Consumption of Smartphone Resources [2] 19

5.1 Analysis Tools . 21
5.2 Program Requirements . 25
5.3 Example of JSON Output Content . 27

6.1 Categories . 33

7.1 Comparison between the thresholds per Analysis Tool of two different categories
(Connectivity and Development) . 38

7.2 Comparison between the thresholds of one category when calculated with a dataset
with 20 and 43 apps) . 39

7.3 Final Classification Thresholds . 39

A.1 Classifications and Labels Results . 66

viii

Listings

6.1 Web Scraper of a category of Apps of F-Droid 29
6.2 Random selection of 50 apps from a category of Apps of F-Droid 30

ix

Abreviaturas e Símbolos

OS Operating System
App Application
APK Android Package
JSON JavaScript Object Notation
CSV Comma-separated Values
EGAPs Energy Greedy Android Patterns
EARMO Energy-Aware Refactoring Approach for Mobile Apps

x

Chapter 1

Introduction

In this chapter, we introduce the theme of this dissertation. Section 1.1 gives details about the

context the project is in. Section 1.2 describes the reasons why this project was development.

Section 1.4 contains the structure of this document and how it is divided.

1.1 Context

In today’s world, we use smartphones regularly in our everyday lives. We use these devices to

keep track of the time, stay up to date with our friends and family, have fun while playing games

and much more.

In 2023 the number of smartphones worldwide has increased to 6.92 billion, which is expected

to grow to 7.33 billion by 2025.1 This means that around 86.41% of all people nowadays have

access to a smartphone. And these numbers are not expected to slow down any time soon.

Each smartphone is packed with a lot of apps with different functionalities. The mobile app

industry has a vast market and is thriving. Mobile apps are expected to generate over $935 billion

in revenue in 20232. When we look at the statistics about app usage, we can see that 49% of people

open an app 11+ times per day and that 21% of Millennials do it 50+ times daily.2 The average

user uses ten apps daily and has around 35 apps installed on their device.3

The conventional distribution channels for mobile applications are App stores. The most fa-

mous ones are Google Play Store4, developed by Google and Apple App Store5, made by Apple.

Another app store is Aptoide, created in Portugal and the focal distribution store referenced in this

report. In 2023, 2.87 million and 1.96 million apps are available for download and installation in

these App stores.2

Both Apple App Store and Google Play Store do a similar job but are used in different op-

erational systems (OS). While Apple App Store is only used on iOS devices (also developed by

1https://www.bankmycell.com/blog/how-many-phones-are-in-the-world
2https://buildfire.com/app-statistics/
3https://www.thinkwithgoogle.com/marketing-strategies/app-and-mobile/

average-number-of-apps-on-smartphones/
4https://play.google.com/store/games
5https://www.apple.com/pt/app-store/

1

https://www.bankmycell.com/blog/how-many-phones-are-in-the-world
https://buildfire.com/app-statistics/
https://www.thinkwithgoogle.com/marketing-strategies/app-and-mobile/average-number-of-apps-on-smartphones/
https://www.thinkwithgoogle.com/marketing-strategies/app-and-mobile/average-number-of-apps-on-smartphones/
https://play.google.com/store/games
https://www.apple.com/pt/app-store/

Introduction 2

Apple), Google Play Store has a significant market share of Android devices. The market share of

Mobile Operating Systems has two leading contenders. Android has 71.8% of the market share,

while iOS has 27.6%. Figure 1.1 illustrates the market share of Mobile Operating Systems from

the first quarter of 2009 until the third quarter of 20226.

Figure 1.1: Mobile Operating Systems’ Market Share

1.2 Motivation

With the abundance of smartphones worldwide using all kinds of mobile apps and using a sizable

amount of energy, we need to start thinking about Energy Efficiency in this context [16, 27].

Mobile applications are becoming more complex and demanding more computational power

than ever. Although we see development in software and hardware, batteries are not evolving

at the same pace. If apps are not energy efficient, they contribute to increased energy consump-

tion, thereby adversely impacting the global environment. These apps will also consume users’

smartphone batteries faster than usual.

Previous studies have reported that many pages in app stores have comments referencing apps’

energy efficiency [33]. However, no mobile application store provides information about the en-

ergy efficiency of an app.

Researchers have pursued various approaches to address energy efficiency in mobile app de-

velopment. One such method involves the creation of guidelines and code refactors aimed at

enhancing battery consumption [5, 6, 9, 10, 11, 12].

6Mobile OS Market Share

https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/

1.3 Objectives 3

1.3 Objectives

This dissertation aims to create an independent and scalable method that calculates fair labels about

the Energy Efficiency of an Android application. This work is in the context of the GreenStamp

project, and it’s one of the main points of focus of the project.

The GreenStamp project7 is led by Caixa Mágica Software8 and the labels produced in this

dissertation are expected to be used in Aptoide9, an Android apps store.

The main goal is to answer the question:

How to correctly and fairly label Android applications in an independent and scalable

way?

This means labelling all Android applications by their Energy Efficiency and ranking them

accordingly. The idea is to follow the EU Energy labels used for many household appliances

such as microwaves, freezers, fridges and washing machines [8]. When the app is analyzed and

labelled, this information can be used in an Android application distributor, such as Aptoide.

1.4 Document Structure

This dissertation is divided into five chapters:

Chapter 1 explains the context of this dissertation and introduces the problem we want to solve.

Chapter 2 explains some background terms that will be used and in context with this report.

Chapter 3 enumerates and describes previously researched work, existing solutions and anal-

ysis tools.

Chapter 4 explains the proposed solution and how it will be implemented.

Chapter 5 shows how the developed application was made and how it works.

Chapter 6 explains the methods for calibrating intermediate classifications per tool and final

labels.

Chapter 7 shows the results produced from this project and a discussion about these results.

Chapter 8 is used to conclude the work and contains possible future improvements.

7https://greenstamp.caixamagica.pt
8https://caixamagica.pt
9https://pt.aptoide.com

https://greenstamp.caixamagica.pt
https://caixamagica.pt
https://pt.aptoide.com

Chapter 2

Background

This chapter provides essential contextual information regarding the project, a thorough introduc-

tion, and clarification of important terms.

2.1 Android

As stated in Chapter 1, the Android Operating System has the most significant market share

amongst all others. This OS is used globally.

Android is an open-source mobile operating system based on a modified Linux kernel version.

Google developed the most widely known version. The first beta version was released in 2007,

and the first commercial version (Android 1.0) was in September 2008. Over the years, this OS

was updated and improved, and the latest version (Android 13) was released on August 15, 2022.

2.2 Android Application

Android applications run in the Android OS on a mobile device. The most common program-

ming languages for developing Android apps are Java, Kotlin, Dart, C#, C++, Python, Lua and

Javascript. These apps are also associated with the term APK (Android Package), a Zip archive

containing all an app’s code, resources and meta information.

They are composed of one or more components of four possible types, which are described in

more detail in the following sections [22]:

• Activities

• Services

• Broadcast Receivers

• Content Providers

4

2.3 Energy Efficiency 5

2.2.1 Activities

Activities are where the application interacts with the user. It is a single screen that implements

a user interface. Many activities may work together to bring a better experience to the user, but

each one is independent of the others. An activity will have one or more view objects, which can

be considered widgets such as buttons, lists and navbars.

2.2.2 Services

Services run in the background of an application to compute long and often intensive operations.

Services don’t have user interfaces and are usually used to fetch data without interrupting user

interaction. The lifetime of services is independent of the interface elements that started them.

2.2.3 Broadcast Receivers

Broadcast receivers are components that listen to broadcast events or intents generated by the

system or other applications. Like services, they don’t have user interfaces. These receivers often

delegate tasks based on the information they receive.

2.2.4 Content Providers

Content providers provide access to the application’s data. This data can be stored in the file

system, SQLite databases, or any other storage location.

2.3 Energy Efficiency

Energy efficiency means using less energy to do the same task or achieve the same result. This is

to take better advantage of the energy that is being used. One of the easiest and most cost-effective

ways to combat climate change is to decrease the energy utilized [18].

Energy-efficient products can cost less money to the end user because they use less energy

while being essential in the fight against climate change. It can be applied to many areas, which

include buildings, transportation, industrial processes and consumer products.

As we can see, energy efficiency has many benefits. The following extract from the Office of

Energy Efficiency and Renewable Energy of the United States describes its different benefits:

“Energy efficiency saves money, increases the resilience and reliability of the electric

grid, and provides environmental, community, and health benefits.”1

1https://www.energy.gov/eere/energy-efficiency

https://www.energy.gov/eere/energy-efficiency

Background 6

2.4 Energy Labelling

Energy labelling is giving a label to a product based on its Energy efficiency. Energy labels give

energy-related information to users. This way, when a consumer chooses a product, he can con-

sider its energy label. It also contributes to companies producing more energy-efficient solutions

to get assigned a better label.

These labels rank products on a scale from A (most efficient) to G (least efficient) based on

the energy they use to function correctly. This energy is measured in KWh/annum.

Figure 2.12 shows the current European Union Energy Labels applied to a freezer. These la-

bels provide information about the product’s energy efficiency class, energy consumption, storage

volume(s), whether it has a freezer compartment and noise emissions. These labels are applied in

many areas, such as home appliances, houses, electronic displays, and tyres.

Figure 2.1: European Union Energy labels for household fridges and freezers

2Image taken from https://commission.europa.eu/energy-climate-change-environment/
standards-tools-and-labels/products-labelling-rules-and-requirements/
energy-label-and-ecodesign/energy-efficient-products/fridges-and-freezers_en

https://commission.europa.eu/energy-climate-change-environment/standards-tools-and-labels/products-labelling-rules-and-requirements/energy-label-and-ecodesign/energy-efficient-products/fridges-and-freezers_en
https://commission.europa.eu/energy-climate-change-environment/standards-tools-and-labels/products-labelling-rules-and-requirements/energy-label-and-ecodesign/energy-efficient-products/fridges-and-freezers_en
https://commission.europa.eu/energy-climate-change-environment/standards-tools-and-labels/products-labelling-rules-and-requirements/energy-label-and-ecodesign/energy-efficient-products/fridges-and-freezers_en

Chapter 3

State of the Art

Some research projects have already investigated the problem and difficulty of labelling mobile

applications based on their Energy Efficiency levels. Section 3.1 describes existing solutions to

the labelling issue. Section 3.2 outlines different analysis tools that will prove valuable in the

development of the project.

3.1 Related Work

The following sections contain a critical review of each solution found, how they compare and

how the proposed solution differs.

3.1.1 EcoDroid

EcoDroid [20] uses static and dynamic analysis to estimate the energy consumption of apps in the

same category and later uses this estimate to rank them. This approach uses test cases generated

automatically to execute apps and estimates their energy consumption based on their API usage.

These test cases may not cover all the application and catch energy-greedy patterns affecting en-

ergy usage. To combat this issue, EcoDroid proposes a new coverage criterion indicating whether

all energy-greedy statements were tested.

This solution consists of three main components: Dynamic Model Extractor (DME) - Gener-

ates random tests automatically and provides path information. Static Model Extractor (SME) -

Obtains a call graph (Figure 3.1) annotated with energy cost estimates by doing static analyses.

Analyzer - Combines information from the DME and SME.

Figure 3.2 shows the EcoDroid Framework and how the components behave.

7

State of the Art 8

Figure 3.1: EcoDroid Call graph and executed paths of two Android apps [20]

Figure 3.2: EcoDroid Framework [20]

While EcoDroid may present a good solution to the labelling problem, it only does it for apps

of the same category and not a global label that could be used to compare apps with different

purposes.

The solution proposed in this dissertation compares all types of apps and not only apps in the

same category.

3.1.2 Energy-Aware Development and Labeling for Mobile Applications

This report [32] has many contributions, including an energy benchmarking and labelling pro-

cess. This allows for comparing apps based on energy labels that describe their average energy

consumption. The stated process has five steps. Firstly, usage-domain benchmarks are defined

where each test case is generated and executed. The energy consumption measured is then stored

in energy models combined with usage models to approximate the average energy consumption.

Finally, a label is given to the app based on the value given in the previous step.

In the results, they noticed that every user might use the application differently and that this

solution is sensible for this behaviour.

This is an exciting approach, but we may obtain different results using the same test cases in

other devices because every device is different. And, since not all users use an application the

same way, these test cases may not represent this usage well. Another problem is that this solution

3.1 Related Work 9

does not consider the type of application. A complex app with many functionalities will be ranked

worse than a useless app because it consumes more energy.

The proposed solution will consider the application type and will not use test cases to analyse

it. Instead, it will use static analysis to label the app accordingly.

3.1.3 Google Play Apps ERM (Energy Rating Model)

This energy rating model [3] proposes a rating model with two separate steps. Firstly, for each

application, it is listed all its permissions to extract all phone resources it uses. Many apps need to

ask permission to access the phone resources such as the camera, contacts, etc. After getting this

list, knowing what resources the app needs is easy. Then, from all the resource usage, it is given a

rating.

The second step combines the use of two refactoring tools. These tools are the Energy-Aware

Refactoring Approach for Mobile Apps (EARMO) and Leafactor. Both tools automatically im-

prove energy consumption by refactoring code that could affect energy efficiency. The second

rating is given by comparing the pre-refactored and post-refactored apps. The final rating is the

combination of the previous two ratings.

This solution only uses two refactoring tools that cannot detect many patterns known to affect

energy consumption. Although it could use more tools, this solution uses an exciting approach by

listing and analysing resource usage.

The solution proposed in this report will also assess resource usage but will combine it with

many more analysis and refactoring tools to detect different anti-patterns and resource leaks.

3.1.4 Planting Trees in the Android Forest: Energy Labeling for Mobile Applica-
tions

This solution was proposed in the same context of the GreenStamp project [25]. It suggests using

three tools: Android Lint, EcoAndroid and Kadabra. Later on, only two of these tools (EcoAn-

droid and Kadabra) were used. These analyse apps and find possible anti-patterns in the code that

are known to affect energy consumption. After using the stated tools, the app is classified based

on the results it got. The label given to the app comes from a relative threshold based on analysing

a dataset containing other apps.

This solution uses only anti-pattern detection, which can be an incomplete way of comparing

different apps. Only two analysis tools are used, and the combination of the tools may not detect

some anti-patterns. It also needs other applications to calculate the relative threshold for each

label, which is not ideal.

The proposed solution will have a similar approach. It will use more than two analysis tools

and analyse the resource usage and leaks to combine different points of view.

State of the Art 10

3.2 Analysis Tools

This section describes static code analysis or resource leak detection tools. In the proposed solu-

tion, it is expected to automate the analysis process of each tool and then combine the multiple

results into a single one to obtain the corresponding label.

3.2.1 Android Lint

Android Lint is a tool in Android Studio used to highlight lousy coding practices that affect the

quality of an application. Each detection is reported with a description and associated with a

severity level. It needs the application’s source code and a configuration file ("lint.xml"). The only

utility of this file is to exclude or customise the severity levels. After the analysis, it calculates

values associated with security, correctness, usability, performance, accessibility and internation-

alization.

Figure 3.31 illustrates the workflow of this tool.

Figure 3.3: Android Lint tool workflow

Although a valuable tool, it cannot independently identify energy-related issues. Olivier Le

Goaër proposed an extension for Android Lint to detect code that would negatively affect the

energy consumption of an app [13].

3.2.2 Kadabra

Kadabra is a Java Source-to-Source compiler created in LARA [7, 29, 30] (an aspect-oriented

programming language for embedded systems) that can be used to statically analyze an Android

application and identify code patterns proven to affect energy consumption [1, 15].

It detects four EGAPs (Energy Greedy Android Patterns):

1Image taken from https://developer.android.com/studio/write/lint

https://developer.android.com/studio/write/lint

3.2 Analysis Tools 11

Pattern Name
HashMap Usage

Excessive Method Calls

Member Ignoring Method

Internal Getter

Table 3.1: Kadabra Detection Patterns

• HashMap Usage – The use of HashMaps is discouraged and can be replaced by an Ar-

rayMap.

• Excessive Method Calls – Recognizes code where a method call could be avoided. Method

calls usually involve manipulating the call stack, which results in a lower performance if

there are many calls, increasing energy consumption.

• Member Ignoring Method – Recognizes code where a non-static method should be static

instead. When a method does not need access to any class-specific information or is not

overriding should be defined as static. Static and non-static methods are stored differently.

A static object is only stored once.

• Internal Getter – Detects code where internal getters are used. Internal getters and setters

are considered code smells.

3.2.3 EcoAndroid

EcoAndroid is an Android Studio plugin that aids developers in having more energy-efficient

code[30]. It suggests automated refactors for reducing the energy consumption of an Android app.

This tool provides two types of warning. The first type is information warnings that inform

the developer that a pattern has been detected. Still, it is impossible to refactor it without more

information, or the refactoring would change a lot of code. When these warnings occur, a code

comment will be placed where the pattern was detected. The second type is non-informational

warnings indicating an energy pattern has been detected and will be refactored.

Figure 3.4 illustrates the workflow of this tool.

State of the Art 12

Figure 3.4: EcoAndroid workflow [30]

EcoAndroid detects and corrects the following patterns:

Pattern Name
Dynamic Retry Delay

Push Over Poll

Reduce Size

Cache

Avoid Graphics and Animations

Table 3.2: EcoAndroid Detection Patterns

• Dynamic Retry Delay – Dynamic sleep time of a thread. This value should be a constant.

• Push Over Poll – Avoid polling services, use push notifications instead.

• Reduce Size – Reduce data when transmitting.

• Cache – Use cache to avoid performing repetitive operations.

• Avoid Graphics and Animations – Switch the rendering mode to a more appropriate one.

An extension to EcoAndroid that includes resource leak detection has been released. [28]. This

detection is divided into two components. One is the Analysis component which is responsible for

3.2 Analysis Tools 13

everything related to the analysis part. This includes setting up the environment and running the

analysis. The other one is responsible for retrieving the results from the analysis and, from these,

extract possible resource leaks.

3.2.4 aDoctor

The aDoctor tool is a code smell detector developed in Java that detects design flaws that are known

to affect energy consumption and the efficiency of an application [26]. This tool was created on a

research project by the Software Engineering Lab of the University of Salerno in Italy. It features a

Graphical User Interface (GUI), but it can also be run in a command line so that it can be executed

automatically.

Currently, it detects the following code smells:

Pattern Name
Debuggable Release

Slow Loop

Data Transmission Without Compression

Inefficient Data Format and Parser

Inefficient Data Structure

Inefficient SQL Query

Internal Getter and Setter

Leaking Thread

Leaking Inner Class

No Low Memory Resolver

Unclosed Closable

Durable Wakelock

Member Ignoring Method

Public Data

Rigid Alarm Manager

Table 3.3: aDoctor Detection Patterns

• Debuggable Release – Avoid delivering code in production with debugging features.

• Slow Loop – If a loop is running slower than the speed it can achieve.

• Data Transmission Without Compression – Transmitting data without compressing it.

• Inefficient Data Format and Parser – When a Data Format and Parser result in a slower

execution time.

• Inefficient Data Structure – When a Data Structure results in a slower execution time.

State of the Art 14

• Inefficient SQL Query – When a SQL query results in a slower execution time.

• Leaking Thread – When a thread is not closed properly.

• Leaking Inner Class – When an inner class prevents from releasing the memory associated

with it and can lead to memory leaks.

• No Low Memory Resolver – When a Low Memory Resolver is not implemented.

• Unclosed Closable – A resource that is not properly closed after being used.

• Durable Wakelock – When a Wakelock that prevents the screen from turning off is not

released properly.

• Member Ignoring Method – When a non-constructor method that does not access non-static

attributes is not static.

• Public Data – When data is unnecessarily exposed as public.

• Rigid Alarm Manager – A situation where the AlarmManager API is used in a non-flexible

way.

3.2.5 EARMO

EARMO is an anti-pattern correction tool that suggests refactoring operations to optimize the

energy consumption of an application [24].

It detects and corrects the following anti-patterns and Energy Smells:

Pattern Name
Blob

Lazy Class

Long Parameter List

Spaghetti Code

Refused Parent Bequest Speculative Generality

Binding Resources too early

Releasing Resources too late

Internal getters and setters

HashMap Usage

Table 3.4: EARMO Detection Patterns

• Blob – A Binary Large Object used to save data.

• Lazy Class – A class that has little useful code to the functionality of the system.

3.2 Analysis Tools 15

• Long Parameter List – When a method or a function requires too many parameters.

• Spaghetti Code – Poorly structured and unorganized code that brings difficulties to maintain.

• Refused Parent Bequest Speculative Generality – When a subclass ignores behaviours in-

herited from a parent class.

• Binding Resources too early – Assigning resources before they are needed.

• Releasing Resources too late – Holding resources for more time than needed.

After detecting the possible refactors, it calculates a "fitness" value by comparing the pre-

refactored and post-refactored apps. This value is calculated by equation 3.1.

DI(a) =
AC(α ′)−AC(α)

AC(α)
×100 (3.1)

Design Improvement (DI) is the delta of anti-patterns occurrences between the original (α) and

the refactored app (α ′), where AC(α) is the detected number of anti-patterns in a given application.

3.2.6 Paprika

Paprika is a toolkit to detect code smells in Android applications [17]. This tool can be executed in

the command line, allowing its automatic execution. It has two modes. The first is called analyze

and allows the scan of Android applications with Soot2 to detect code smells. The second one is

query mode to know how many code smells each application has.

Paprika detects the following code smells:

2https://github.com/soot-oss/soot

https://github.com/soot-oss/soot

State of the Art 16

Pattern Name
Internal Getter and Setter

Member Ignoring Method

No Low Memory Resolver

Leaking Inner Class

UI Overdraw

Invalidate Without Rect

Heavy AsyncTask

Heavy Service Start

Heavy Broadcast Receiver

Init OnDraw

Hashmap Usage

Unsupported Hardware Acceleration

Bitmap Format Usage

Blob Class

Swiss Army Knife

Long Method

Complex Class

Table 3.5: Paprika Detection Patterns

• UI Overdraw – Avoid the overdraw of UI that has not changed.

• Invalidate Without Rect – When the invalidate() method is called without a Rect

parameter.

• Heavy AsyncTask - A heavy task performed asynchronously,

• Heavy Service Start – When a service has a heavy initialization.

• Heavy Broadcast Receiver – Android broadcast receivers performing a heavy task can trig-

ger a non-responding application dialogue message.

• Init OnDraw – Avoid initializing objects and resources in the onDraw() method. This

method is called frequently and performing heavy tasks within it can negatively impact

performance.

• Unsupported Hardware Acceleration – When hardware acceleration is not supported.

• Bitmap Format Usage – When inefficient bitmap formats are used.

• Swiss Army Knife – A class with a complex interface.

• Long Method – Methods very extensive and complex.

3.3 Decompilation Tools 17

• Complex Class – A class that contains complex methods.

3.2.6.1 Soot

Soot is a framework used to analyze, instrument, optimize and visualize Java and Android apps

[31]. It provides a wide range of analysis capabilities, which makes it helpful in understanding

and modifying Android applications.

3.2.7 Relda2

Relda2 is a lightweight, scalable and practical static analysis tool that detects resource leaks in

Android apps [34].

It detects if there are missing release operations of the resources provided by Android (Camera,

Media Player, Sensors, etc.). These missing release operations can originate resource leaks which

can cause performance degradation and system crash.

3.3 Decompilation Tools

Before the analysis process, an APK file of an Android application needs to be decompiled to

retrieve its source code. A decompiler employs reverse engineering techniques to disassemble

and translate Dalvik bytecode into Java source code. For this, two decompilers were taken into

account: Dex2Jar and Jadx. From these two, we selected Jadx because previous studies proved

that this decompiler was one of the best and where fewer errors occurred [14, 21, 23].

Chapter 4

Proposed Solution

This chapter describes the solution we propose and how it was developed. As we will see, the

solution involves different analyses of the Android application that will later be integrated with

each other.

4.1 Proposed Solution

The solution proposed in this dissertation will combine three approaches to answer the correct and

fair labelling of Android applications.

Firstly, each app will be analyzed using different analysis and refactoring tools stated previ-

ously. Each one of these tools will return valuable information to compute a rating per tool later.

The second approach is to examine the app’s resource usage. We can easily extract what

resources the app uses from the permissions referenced in the "AndroidManifest.xml" file. With

the help of a similar table to the example shown in Table 4.1 [2] we can find out what resources

use more energy. With this information, we can then rate the app accordingly.

The third one is to check for any resource leaks in the application’s code. This will be done by

two apps: EcoAndroid and Relda2. From each one of these tools, we will get an individual rating.

The final step is to combine all these results with different weights into one and get a singular

value.

It is worth mentioning that every app is different. A game will be more energy costly than

notes taking app and need to be labelled differently to result in a fair ranking. Because of this,

we need to obtain the resulting label by applying different thresholds to different categories of

applications. This way, a game with the same numerical result as a note-taking app will have a

better label because it needs more performance to execute.

Figure 4.1 illustrates the workflow of the proposed solution.

18

4.1 Proposed Solution 19

Component Average Amount of Energy
measured (mAh/m)

GPS ≈ 25

Flash Light ≈ 19

Cellular Radio ≈ 17

Cameras ≈ 17

Screen ≈ 16

Wi-Fi Radio ≈ 12

Bluetooth Radio ≈ 10

Table 4.1: Average Energy Consumption of Smartphone Resources [2]

Figure 4.1: Workflow of the proposed solution

Chapter 5

Ranking Mobile Applications by Energy
Efficiency

This chapter gives more detailed information on how the developed project works, in what steps it

is divided and how each step is essential.

5.1 Architecture

The solution proposed in this thesis can be divided into three different and separate steps: De-

compilation, Analysis and Classification. Figure 5.1 represents the architecture of the developed

project.

Figure 5.1: Architecture Diagram

The following sections will describe in more detail each one of the steps.

20

5.1 Architecture 21

5.1.1 Decompilation

This is the first step and where all the inputs for the analysis tools come from. While some tools

only require the Android Package file (APK), others require the source code to work. To get the

source code from the APK file, we need to run an Android decompiler, and for that purpose, Jadx

was chosen. There are several decompilers, such as Dex2Jar, but Jadx has better documentation,

and the decompilation results were more appropriate to the kind of inputs the analysis tools needed.

5.1.2 Analysis

The Analysis is the second and the most time expensive step. Here is where the app will be

analysed. This solution has the following analysis tools integrated:

Tools
EARMO

Kadabra

Permissions Analyzer

aDoctor

Paprika

Relda2

Android Lint

Table 5.1: Analysis Tools

Although these are implemented, we can easily add more analysis tools to this pool.

This stage results in a JSON file with the number of detections and time of execution of each

tool. This file also contains information about the app, such as the name, size, number of Java

files, and categories.

5.1.3 Classification

This is the final step, but where the final label will come from.

Firstly, thresholds for each analysis tool are calculated after analysing a dataset of different

apps. These thresholds are also calculated for each category to compare each category differently.

After calculating the thresholds, we compute a classification per tool for each mobile applica-

tion. Then, we calculate the mean value of these classifications to get a single classification from

1 to 5 for each app. Lastly, we calculate new thresholds based only on the last values but this time

not considering the apps’ categories.

At this point, we will have thresholds for classifications from 1 to 7. The last step is to convert

these numbers into labels.

Ranking Mobile Applications by Energy Efficiency 22

5.2 Implementation

In this section, we present a detailed description of the implementation process for each tool, as

well as any challenges that emerged during their implementation.

5.2.1 Jadx

Jadx was quickly integrated into the program since it provides good documentation. The only

downside we encountered was that Jadx either kept all the source files after decompilation or only

kept the ones with the same package name as the app decompiled. While the second option would

be great to filter out 3rd-party code like Android and Kotlin default code, it would also remove any

3rd-party libraries used by the application, which could affect its energy efficiency. Because of

this problem, we decided to decompile and save all the source files, and then our program would

remove the default files. This step reduces the project size that the analysis tools would analyse.

To make Jadx faster, we used the "-j 8" argument to set the number of threads to 8. The default

is four, and eight showed lower execution times. Increasing this number to more than eight didn’t

show significant results, so eight threads was the go-to number.

The following code shows how the tool is being executed:

jadx ApkPath -d OutputFolder -j 8

With the way we execute Jadx, it will save the Java files in a "Sources" folder with all the

packages used in the app and the AndroidManifest, images and other resources in a "Resources"

folder. We will then use this data as input into most analysis tools.

5.2.2 EARMO

EARMO (Energy-Aware Refactoring Approach for Mobile Apps) is a promising tool with exciting

results. The integration was pretty straightforward. It takes as input a configuration file with some

data, such as the path to the APK and is well documented. In this case, we only needed to parse

the output files and extract the information we needed, the number of anti-patterns detected.

The only downside of EARMO is that it takes way too much time to analyze more extensive

Android apps. To improve the execution times, we set the number of threads to 8, which showed

faster execution times.

We cut down the time EARMO needed to execute by reducing the number of files to be ana-

lyzed. Since Android default packages contain many files and methods, it exponentially increases

the analysis time of this tool.

The following code shows how the tool is being executed:

java -jar RefactoringStandarStudyAndroid.jar conf.prop

EARMO saves the detections of each anti-pattern in a file. We then extract the information we

want from these files by parsing them.

5.2 Implementation 23

5.2.3 Kadabra

Kadabra was by far the easiest tool to integrate. While it lacks documentation on how to run it

to detect energy anti-patterns, the developers were open to any question, making the integration

extremely easy.

This tool needs a "main.js" file with information on the detectors that will work.

Initially, we passed the APK file as input to Kadabra but noticed that some apps do not have the

source code in the same package as the app’s package name. This can occur when an application

takes advantage of libraries from the same company or group that did most of the app’s work. To

counter this issue, we input the Java source files that we got from the Jadx decompilation and after

reducing the number of files to be analysed.

The following code shows how the tool is being executed:

java -jar kadabra.jar main.js ProjectPath -WC

-APF package! -o OutputFolder -s -X -C

All results from Kadabra are saved in a JSON file that is parsed to extract the data we need.

5.2.4 Permissions Analyzer

This self-made tool extracted the number of permissions used by the app. It parses the "An-

droidManifest.xml" file decompiled by Jadx and gets information about the number of activities,

permissions, services, and providers.

5.2.5 aDoctor

To integrate the aDoctor tool, we needed to make some changes to its code due to some errors.

These changes were not complex nor time costly. The rest of the integration process was direct.

The following code shows how the tool is being executed:

java -jar aDoctor.jar ProjectPath results.csv 111111111111111

All results from aDoctor are saved in a CSV file that is parsed to extract the data we need.

5.2.6 Paprika

This was one of the tools that was harder to implement because there were some errors when

running it. We updated Soot to the newest version to fix any compatibility issues with the latest

Java version (Java 20.01). Getting to the conclusion of where the error was coming from was quite

stressful and time-consuming, but in the end, it worked well.

To run this tool, there are two different steps. First, we need to run the analyzer and save the

results in the database by running the following:

java -jar paprika.jar analyse -a AndroidJarPath -db database

-n AppName -p AppName -k sha256oftheAPK -dev mydev -cat mycat

Ranking Mobile Applications by Energy Efficiency 24

-nd 100 -d 2017-01-001 10:23:39.050315 -r 1.0 -s 1024

-u unsafe mode ApkPath

Then, we need to run the query mode of the tool to export the results in the database into a

CSV file:

java -jar paprika.jar query -db database -d TRUE -r ALLAP

This file is later parsed to extract any data we need.

5.2.7 Relda2

There were not many obstacles when integrating Relda2. The main one was that it was developed

in Python2, a different version from the Python program developed in this dissertation. There were

two ways to fix this: port Relda2 from Python2 into Python3 or have both versions of Python. The

second solution was faster, so we opted for that one.

The following code shows how the tool is being executed:

python2 Relda2.py -r OutputFolder ApkPath

The results from Relda2 are parsed from a results file containing all the detected resource leaks

it exports.

5.2.8 Android Lint

Android Lint cannot analyze an app based on energy efficiency. Luckily, this tool has an extension

that provides everything needed to detect energy anti-patterns.

The following code shows how the tool is being executed:

lint --resources ResourcesPath --sources SourcesPath

--lint-rule-jars GreenChecksJarPath

--xml OutputReportPath OutputFolder

Note that the GreenChecksJarPath is the path to the Jar file of an extension of Android Lint

that detects energy problems.

This tool saves the results in an XML file that is then parsed to extract any helpful information.

5.2.9 EcoAndroid

Although it was initially planned to use EcoAndroid to detect anti-patterns and resource leaks,

there were some problems when running it through the command line because it is an extension to

Android Studio and IntelliJ. We suspect these issues were caused by IntelliJ and Android Studio

possibly having different gradle versions than the command line, but we couldn’t resolve this.

For this reason and because this way we could not automatize the analysis process, we decided

to set aside this tool. EcoAndroid can easily be incorporated into the project if these issues are

solved.

5.3 Requirements and How to Run 25

5.3 Requirements and How to Run

To run the labelling tool, there are a few requirements:

Python 3.10 or above

Java 20.0.1 or above

Python Packages
Polars

Json

Multiprocessing

Tools
Jadx - Version 1.4.7

Kadabra - Build 20230210-1521

aDoctor

Paprika

Relda2

Android Lint

Table 5.2: Program Requirements

This is the command to run the tool:

python main.py [-h] -categories CATEGORIES [CATEGORIES ...]

[-analyzers [ANALYZERS ...]] [-force] [-fdroid FDROIDPACKAGENAME]

ApkPath

The following list shows and explains the mandatory and optional program arguments:

• ApkPath – The path to the APK file of the app to be analyzed. (Mandatory)

• -categories / -c – A list with the names of the categories of the app. (Mandatory)

• -analyzers / -a – A list with the names of the analyzers to run. Default: Earmo Kadabra

AndroidManifestAnalyzer Lint ADoctor Paprika Relda2. (Optional)

• -force / -f – A flag that, if present, will force the execution of all or some analyzers discarding

previously saved values. (Optional)

• -fdroid – The package name of an app from F-Droid. The program will try to download the

app from F-Droid if a package name is given. (Optional)

• -aptoide – The package name of an app from Aptoide. The program will try downloading

the app from Aptoide if a package name is given. (Optional)

Ranking Mobile Applications by Energy Efficiency 26

The following code shows an example of how to run the tool:

python main.py -c Test Example example.apk

With these arguments, the tool will execute all analysis tools if there are no saved previous results

and associate the app with the Test and Example categories. All analysis tools classifications and

the final label will be calculated based on these categories and others that previously could have

been associated with the app.

5.4 Output

After the analysis and label calculation, the program saves the results and the app’s info in a JSON

file named "report.json" with the same information in the example in Table 5.3.

5.4 Output 27

Field Value
Name stopthefire

Size 4.04

Categories Test

Number of Java Files 295

Size of Java Files 1.14

Time 31.80

Permissions 0

Activities 0

Services 0

Providers 0

Earmo 0

Kadabra 0

Android Lint 0

ADoctor 0

Paprika 0

Relda2 0

Classifications - Test
Earmo 5

Kadabra 5

Permissions 5

Android Lint 5

ADoctor 5

Paprika 5

Relda2 5

Final Results
Classification 5

Label A

Table 5.3: Example of JSON Output Content

Figure 5.2 shows the program’s output when executed using the command line.

Ranking Mobile Applications by Energy Efficiency 28

Figure 5.2: Command Line Output

5.5 Further Details

The developed program can easily be modified to add or change any analysis tools with minor

changes. Since the beginning of the development of the project, a possible modular solution was

always in mind to ease future changes.

Another important detail is that we can use any category. This means that the categories used

in this dissertation can be changed into any set of categories. But it is not restricted to a category.

A company can, for example, create a new category with the name of the company to track and

compare all its Android applications by their energy efficiency.

After the analysis and label computation, the program cleans all the directories used from use-

less post-analysis files. The only files that are not deleted are the log files, a text report and a JSON

file with the results. The number of detections from each tool and the respective classifications are

contained in this JSON file along with other stats.

If the -fdroid or the -aptoide argument is set, the program will try to download the app with

the given package name from the respective distributor. If it is successful, it will analyze and label

it and then delete the app from the system.

All the code developed in this project is available on Github: https://github.com/

JayRx/Labelling-Android-Apps-by-Energy-Efficiency.

https://github.com/JayRx/Labelling-Android-Apps-by-Energy-Efficiency
https://github.com/JayRx/Labelling-Android-Apps-by-Energy-Efficiency

Chapter 6

Label Calibration and Computation

In this chapter, we will see how the calibration for the thresholds of each category was calculated,

as well as what and how many apps were taken into consideration in this step of the project.

6.1 Dataset

The dataset used to compute and calibrate the values of the labels was composed of several An-

droid applications taken from F-Droid1, a catalogue of free and open-source apps.

6.1.1 Dataset Selection

The apps were selected randomly and have various sizes, numbers of files and uses. To achieve

this, a Python script was developed to Web scrape the F-Droid website and get all the apps in its

database with the respective categories. Listing 6.1 shows a piece of the script where all the apps

from a category were scraped.

1 import requests

2 from bs4 import BeautifulSoup

3 import json

4

5 def scrapeCategory(baseURL, numberOfPages):

6 packages = []

7

8 for page in range(1, numberOfPages+1):

9 if page == 1:

10 URL = baseURL

11 else:

12 URL = f"{baseURL}{page}"

13

14 r = requests.get(URL)

15

1https://f-droid.org

29

https://f-droid.org

Label Calibration and Computation 30

16 soup = BeautifulSoup(r.content, "html5lib")

17

18 packageHeaders = soup.findAll("a", attrs = {"class": "package-header"})

19

20 for packageHeader in packageHeaders:

21 packages.append(packageHeader["href"].split("/")[-2])

22

23 packages = list(dict.fromkeys(packages))

24

25 return packages

Listing 6.1: Web Scraper of a category of Apps of F-Droid

Then, a new Python script was made to select 50 mobile applications of each category ran-

domly. Listing 6.2 shows a piece of the script where the random selection of 50 apps from a

category was made. The output of this code is a JSON file per category with the package names

of the selected apps.

1 import json

2 import random

3

4 def chooseApps(category, categoryFile):

5 f = open(categoryFile, "r")

6 currentApps = json.load(f)

7 f.close()

8

9 currentApps = [app.get("name") for app in currentApps]

10

11 f = open(f"fdroidApps.json", "r")

12 data = json.load(f)

13 f.close()

14

15 allApps = data[category]

16

17 notInCurrentApps = [app for app in allApps if app not in currentApps]

18

19 chosenApps = []

20 for _ in range(50):

21 app = random.choice(notInCurrentApps)

22 chosenApps.append(app)

23 notInCurrentApps.remove(app)

24

25 currentApps = currentApps + chosenApps

26

27 data = [{"name": app} for app in currentApps]

28

29 f = open(categoryFile, "w")

30 f.write(json.dumps(data))

6.1 Dataset 31

31 f.close()

Listing 6.2: Random selection of 50 apps from a category of Apps of F-Droid

Some apps took more than 5 hours to analyze. From the initial dataset of 85 Android Apps,

only 3 took more than 2 hours, so we decided to limit the analysis time to 2 hours to have the

maximum number of applications in the dataset without taking an absurd amount of time per

analysis.

6.1.2 Dataset Characterization

As shown in Figure 6.1, the dataset used has diverse kinds and sizes of apps represented, which can

positively affect the results of the thresholds and labels when analysing apps in scenarios outside

of testing. Figure 6.2 displays the number of Android applications from each category. As we can

see, the lowest number of apps from the dataset in a category is 43.

Figure 6.1: Dataset Information

Label Calibration and Computation 32

Figure 6.2: Number of Apps per Category in the Dataset

As shown in Figure 6.3, we calculated the Spearman rank correlation coefficients between

some of the dataset characteristics. With the results we got, we noticed a strong correlation be-

tween the time of the analysis and the size of Java files of an app. This way, we can approximate

the time an application is going to take to be analysed.

6.2 Methodology 33

Figure 6.3: Correlation Matrix between some characteristics of the dataset

Each app can have one or more categories. In theory, any category name can be used in the app,

but to calibrate and test the developed model, we split the dataset apps into 17 separate categories.

We did not make these categories. We took advantage of the ones already created by F-Droid.

The categories are the following:

Category Name
Connectivity Development Games

Graphics Internet Money

Multimedia Navigation Phone and SMS

Reading Science and Education Security

Sports and Health System Theming

Time Writing

Table 6.1: Categories

6.2 Methodology

To correctly calculate thresholds to help us decide which label to attribute to each application, we

calculated separate thresholds for each category and each analysis tool. This is because apps in

different categories and with other purposes will need less or more energy. For example, a game

will be more computationally expensive than a note-taking app. Thus we need to classify them

differently.

We split the results file into separate datasets by category to achieve this. Then, for each of

these, calculated the thresholds of 5 different classification levels for each tool depending on the

Label Calibration and Computation 34

number of detections. These levels are also characterized by a number of stars, being five stars the

best level and one star the worst one.

To calculate the different thresholds, we followed a method based on making a density function

based on weights [4].

6.2.1 Classification per Analysis Tool

As previously stated, we must classify each app for each analysis tool based on its category. To

achieve this, we will need to calculate thresholds for each classification.

The derivation of thresholds defined in [4] has six steps: Metrics Extraction, Weight Ratio

Calculation, Entity Aggregation, System Aggregation, Weight Ratio Aggregation and Thresholds

Derivation. Because we are not dealing with a system with many entities, we will cut down these

steps into the following:

• Metrics Extraction – From the saved information of each app, extract the metrics and

weight values we want. For this, we will use the number of detections by each tool and for

the weight value, we will use the sum of the sizes of all the code files of the decompiled app.

• Weight Ratio Calculation – For each app in a category, we calculate the weight ratio based

on all the weights of the apps in that particular category.

• Entity Aggregation – Combine all the weight ratios of apps with the same number of de-

tections. For example, if two different apps have three detections using an analysis tool, we

sum the weights of those two apps.

• Weight Ratio Aggregation and Thresholds Derivation – Order the metric values and

select the maximum value representing 20%, 40%, 60%, and 80%.

Following this method, we can extract the thresholds for each tool and category and decide

which classification we will attribute to a newly analyzed app. These classifications will follow

Algorithm 1.

6.2.2 Final Classification

Calculating the thresholds for the final classifications will follow the same method described in

Subsection 6.2.1. The only difference is that we will not consider each app’s category in this

process, and the metric value will be the mean of the classifications previously calculated and

decided.

6.2.3 How to deal with Apps with Multiple Categories

From the calculations stated in the Subsections 6.2.1 and 6.2.2 two questions emerge:

How can we deal with apps that have multiple categories? How will we compute its

classifications?

6.2 Methodology 35

Algorithm 1 Example of Classification Algorithm for one Analysis Tool

d: number of detections from an Analysis Tool
C: final classification

Require: d ≥ 0
Ensure: 5≥C ≥ 1

if d ≤ 4 then
C← 5

else if d ≤ 8 then
C← 4

else if d ≤ 12 then
C← 3

else if d ≤ 16 then
C← 2

else
C← 1

end if

To solve this problem, we will compute the classification for each analysis tool for each cate-

gory the app has. If the app has three categories, it will have three different classifications for each

analysis tool. We can quickly go around this issue by inputting the mean value of the classifications

per app per category into the final classification.

An app with different categories will affect the threshold calculation of each category, but in

the final label thresholds computation, it will only appear once.

Chapter 7

Results and Discussion

This chapter shows the results from all the described steps until the final labels. We also discuss

the results we got.

7.1 Analysis Environment

All apps in the dataset referenced in Chapter 6 were analyzed on the same computer. We noticed

that the analysis time is affected by the hardware of the computer running the analysis tools, but

the number of detections would be the same.

Figure 7.1 compares the analysis time of 10 different mobile applications when executed on

two different computers.

The hardware specifications of the PCs are listed below:

• PC1: i7-9700k 16GB RAM

• PC2: i5-4460 8GB RAM

As shown in Figure 7.1, the times in the first computer were lower than in the second com-

puter. Sometimes the analysis time in PC2 would take more than double the analysis time in PC1.

Because of this, we decided to analyse all the apps from the dataset using the best of the two

computers (PC1) to cut down analysis times and increase the number of analysed apps.

36

7.2 Classification per Analysis Tool Thresholds 37

Figure 7.1: Comparison of the analysis time of 10 Apps analyzed in 2 different PCs

7.2 Classification per Analysis Tool Thresholds

As shown in Table 7.1, the thresholds resultant from the calculations described in Subsection 6.2.1

are all different from analysis tool to analysis tool and from category to category. The method of

threshold calculation described in Chapter 6 defines different thresholds for each category. This

way, we can compute a classification based on the categories of an app and the resulting label will

be comparable with one of an app in a different category.

Results and Discussion 38

Connectivity - EARMO
Classification
Detections 0 0 112 535 1353

Development - EARMO
Classification
Detections 0 0 62 106 367

Connectivity - Kadabra
Classification
Detections 0 0 1 2 100

Development - Kadabra
Classification
Detections 0 0 1 2 83

Connectivity - Permissions
Classification
Value 0 8 14 16 27

Development - Permissions
Classification
Value 1 2 5 9 10

Connectivity - Android Lint
Classification
Detections 0 0 1 2 9

Development - Android Lint
Classification
Detections 0 0 1 2 3

Connectivity - ADoctor
Classification
Detections 0 453 1655 1726 6273

Development - ADoctor
Classification
Detections 0 255 663 874 1944

Connectivity - Paprika
Classification
Detections 0 0 582 816 881

Development - Paprika
Classification
Detections 0 0 1 194 677

Connectivity - Relda2
Classification
Detections 0 1 3 11 12

Development - Relda2
Classification
Detections 0 0 1 2 9

Table 7.1: Comparison between the thresholds per Analysis Tool of two different categories (Con-
nectivity and Development)

Notice that some levels of classifications have the same threshold value because many apps

have the same number of detections. This will only make some tool classifications have no appli-

cations but will not necessarily affect the final labelling because we calculate new thresholds for

the label.

7.2.1 Classifications and the Number of Apps

In the previous calculations, if the number of apps in the dataset increases, the results will be more

reliable since they will come from more data.

Table 7.2 shows how the thresholds change when we compare a dataset of 20 apps with one

with 43 apps in the Connectivity category.

7.3 Final Classification and Label Thresholds 39

EARMO - 20 Apps
Classification
Detections 0 0 13 106 112

EARMO - 43 Apps
Classification
Detections 0 0 112 435 1353

Table 7.2: Comparison between the thresholds of one category when calculated with a dataset with
20 and 43 apps)

7.3 Final Classification and Label Thresholds

In this section, we calculated seven threshold values from 1 to 5. This way, we can label an

app from the final mean classification calculated based on the mean of the results of Section 7.2.

The labels go from "A" to "G", the first one being the best in terms of energy efficiency and the

last one the worst. Table 7.3 shows the thresholds resultant from the calculations described in

Subsection 6.2.2.

Label Mean Tool Classification
A 4.14

B 3.71

C 3.57

D 3.43

E 3.29

F 2.71

G 1

Table 7.3: Final Classification Thresholds

7.4 Label Results

Each Android application from the 738 different apps in the dataset was labelled following the

previously described process. Figure 7.2 illustrates that the labels obtained are distributed across

all energy labels. The dataset has many more apps with fewer anti-pattern detections, and bigger

apps generally have more detections. This makes the labelling results of the dataset more skewed

to the labels A and B. Table A.1 shows the final classification and respective label of each mobile

application in the dataset.

Results and Discussion 40

Figure 7.2: Final Label Results

We compared the results from six different apps when running our labelling tool with Trepn

[19] and EcoDroid to validate our classification and labelling method. Trepn is an energy profiler

that measures the actual energy consumption of apps. The results of both Trepn and EcoDroid

come from EcoDroid’s scientific article [20]. Figure 7.3 illustrates that comparison and, as we can

see, the results are very similar. The metric in the figure is a relative classification between the

results of the six apps. Equation 7.1 shows how these values are calculated.

RelativeClassi f ication(α) =
Classi f ication(α)

MaxClassi f ication
(7.1)

We calculated the Spearman rank correlation coefficients using these values, which showed a

0.75 correlation between our and Trep results. This means that there is some correlation between

the two values.

7.4 Label Results 41

Figure 7.3: Trepn, EcoDroid and Developed Tool Results Comparison

Figure 7.4: Correlation Matrix between results

Chapter 8

Conclusions

As we have seen, there are billions of smartphones, each having, on average, 35 apps1. With

this, we must start thinking about energy efficiency applied to mobile applications. More efficient

applications can bring advantages to users and the World. Since there is currently no app store

showing information about apps’ energy efficiency, this report contributes with a labelling solution

to solve this problem.

To have a starting point, some initial research was done in which many solutions and tools

were found. These solutions had different problems and some improvements that could be imple-

mented. After this essential step, a solution was proposed using the tools researched that combats

all limitations found in previous works.

The results obtained from this labelling method were good. The apps were compared with

the data from different tools to get multiple points of view. The threshold calculation shows

how comparing different apps regarding their types is possible. This way, apps that require more

computational power and consume more power are not affected by their category, and we will

have a more fair overall ranking.

8.1 Main Contributions

The following objectives were achieved:

• Integration of Jadx (an APK decompiler).

• Integration of several analysis tools (EARMO, Kadabra, Android Lint, ADoctor, Paprika,

Relda2).

• Classification thresholds calculation per tool.

• Label thresholds calculation.
1https://www.thinkwithgoogle.com/marketing-strategies/app-and-mobile/

average-number-of-apps-on-smartphones/

42

https://www.thinkwithgoogle.com/marketing-strategies/app-and-mobile/average-number-of-apps-on-smartphones/
https://www.thinkwithgoogle.com/marketing-strategies/app-and-mobile/average-number-of-apps-on-smartphones/

8.2 Future Work 43

• Development of a Python program that runs everything together and automatically labels

the analyzed application.

• Threshold calculation and testing done with more than 700 apps.

8.2 Future Work

Future work includes adding more analysis tools. These tools can and should behave differently

from the ones used in this project and have a different point of view to complement the overall

work. The code can easily implement more tools, so incorporating any new tool into the program

would not be a challenge.

As stated, the categories and thresholds can be easily changed and recalculated. One im-

provement to our results would be expanding the label calibration dataset to get more confident

thresholds and results.

8.3 Acknowledgements

This project was financed by FEDER (Fundo Europeu de Desenvolvimento Regional), from the

European Union through CENTRO 2020 (Programa Operacional Regional do Centro), under

project CENTRO-01-0247-FEDER-047256 – GreenStamp: Mobile Energy Efficiency Services.

References

[1] Nelson Alexandre, Saraiva Gregório, João Carlos, Viegas Martins, Bispo Supervisor, : João,
Paulo De Sousa, Ferreira Fernandes, and Sérgio Queiroz De Medeiros. Faculdade de en-
genharia da universidade do porto e-apk: Energy pattern detection in decompiled android
applications, 2022.

[2] Abdullah Almasri and Ahmed Sameh. Rating google-play apps’ energy consumption on
android smartphones. In 2019 2nd IEEE Middle East and North Africa COMMunications
Conference (MENACOMM), pages 1–6, 2019.

[3] Abdullah Mahmoud Almasri. Google play apps erm: (energy rating model) multi-criteria
evaluation model to generate tentative energy ratings for google play store apps, 2020.

[4] Tiago L. Alves, Christiaan Ypma, and Joost Visser. Deriving metric thresholds from bench-
mark data. In 2010 IEEE International Conference on Software Maintenance, pages 1–10,
2010.

[5] Abhijeet Banerjee, Lee Kee Chong, Clément Ballabriga, and Abhik Roychoudhury. En-
ergypatch: Repairing resource leaks to improve energy-efficiency of android apps. IEEE
Transactions on Software Engineering, 44(5):470–490, 2018.

[6] Huaqian Cai, Ying Zhang, Zhi Jin, Xuanzhe Liu, and Gang Huang. Delaydroid: Reducing
tail-time energy by refactoring android apps. In Proceedings of the 7th Asia-Pacific Sympo-
sium on Internetware, Internetware ’15, page 1–10, New York, NY, USA, 2015. Association
for Computing Machinery.

[7] João M.P. Cardoso, Tiago Carvalho, José G.F. Coutinho, Wayne Luk, Ricardo Nobre, Pedro
Diniz, and Zlatko Petrov. Lara: An aspect-oriented programming language for embedded
systems. In Proceedings of the 11th Annual International Conference on Aspect-Oriented
Software Development, AOSD ’12, page 179–190, New York, NY, USA, 2012. Association
for Computing Machinery.

[8] European Commission. About the energy label and ecodesign, Mar 2021.

[9] Marco Couto, João Saraiva, and João Paulo Fernandes. Energy refactorings for android in
the large and in the wild. In 2020 IEEE 27th International Conference on Software Analysis,
Evolution and Reengineering (SANER), pages 217–228, 2020.

[10] Luís Miranda da Cruz. Tools and techniques for energy-efficient mobile application devel-
opment, 2019.

[11] Iffat Fatima, Hina Anwar, Dietmar Pfahl, and Usman Qamar. Detection and correction of
android-specific code smells and energy bugs: An android lint extension, 2020.

44

REFERENCES 45

[12] Daniel Feitosa, Luís Cruz, Rui Abreu, João Paulo Fernandes, Marco Couto, and João Saraiva.
Patterns and Energy Consumption: Design, Implementation, Studies, and Stories, pages 89–
121. Springer International Publishing, Cham, 2021.

[13] Olivier Le Goaer. Enforcing green code with android lint. In Proceedings - 2020
35th IEEE/ACM International Conference on Automated Software Engineering Workshops,
ASEW 2020, pages 85–90. Institute of Electrical and Electronics Engineers Inc., 9 2020.

[14] Nelson Gregório, João Paulo Fernandes, João Bispo, and Sérgio Medeiros. E-apk: Energy
pattern detection in decompiled android applications. In Proceedings of the XXVI Brazilian
Symposium on Programming Languages, SBLP ’22, page 50–58, New York, NY, USA, 2022.
Association for Computing Machinery.

[15] Nelson Gregório, João Bispo, Paulo Fernandes, and Sérgio Queiroz De Medeiros. E-apk: En-
ergy pattern detection in decompiled android applications. Journal of Computer Languages,
76:101220, 2023.

[16] John Harris. Our phones and gadgets are now endangering the planet | john harris, Jul 2018.

[17] Geoffrey Hecht, Omar Benomar, Romain Rouvoy, Naouel Moha, and Laurence Duchien.
Tracking the software quality of android applications along their evolution (t). In 2015 30th
IEEE/ACM International Conference on Automated Software Engineering (ASE), pages 236–
247, 2015.

[18] Horace Herring. Energy efficiency—a critical view. Energy, 31(1):10–20, 2006. The Second
Biennial International Workshop "Advances in Energy Studies".

[19] Qualcomm Technologies Incorporated. When mobile apps use too much power a developer
guide for android app performance, 2013.

[20] Reyhaneh Jabbarvand, Alireza Sadeghi, Joshua Garcia, Sam Malek, and Paul Ammann. Eco-
droid: An approach for energy-based ranking of android apps. pages 8–14. Institute of Elec-
trical and Electronics Engineers Inc., 7 2015.

[21] Heejun Jang, Beomjin Jin, Sangwon Hyun, and Hyoungshick Kim. Kerberoid: A prac-
tical android app decompilation system with multiple decompilers. In Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications Security, CCS ’19, page
2557–2559, New York, NY, USA, 2019. Association for Computing Machinery.

[22] Jianye Liu and Jiankun Yu. Research on development of android applications. In 2011
4th International Conference on Intelligent Networks and Intelligent Systems, pages 69–72,
2011.

[23] Noah Mauthe, Ulf Kargx00E9;n, and Nahid Shahmehri. A large-scale empirical study of
android app decompilation. In 2021 IEEE International Conference on Software Analysis,
Evolution and Reengineering (SANER), pages 400–410, 2021.

[24] Rodrigo Morales, Rubén Saborido, Foutse Khomh, Francisco Chicano, and Giuliano Anto-
niol. Earmo: An energy-aware refactoring approach for mobile apps. In Proceedings of the
40th International Conference on Software Engineering, ICSE ’18, page 59, New York, NY,
USA, 2018. Association for Computing Machinery.

[25] André Moutinho. Planting trees in the android forest: Energy labeling for mobile applica-
tions, 2022.

REFERENCES 46

[26] Fabio Palomba, Dario Di Nucci, Annibale Panichella, Andy Zaidman, and Andrea De Lucia.
Lightweight detection of android-specific code smells: The adoctor project. In 2017 IEEE
24th International Conference on Software Analysis, Evolution and Reengineering (SANER),
pages 487–491, 2017.

[27] Murray G Patterson. What is energy efficiency?: Concepts, indicators and methodological
issues. Energy Policy, 24(5):377–390, 1996.

[28] Ricardo B. Pereira, João F. Ferreira, Alexandra Mendes, and Rui Abreu. Extending ecoan-
droid with automated detection of resource leaks. pages 17–27. Institute of Electrical and
Electronics Engineers Inc., 2022.

[29] Pedro Pinto, Tiago Carvalho, João Bispo, Miguel António Ramalho, and João M.P. Cardoso.
Aspect composition for multiple target languages using lara. Computer Languages, Systems
and Structures, 53:1–26, 9 2018.

[30] Ana Ribeiro, João F. Ferreira, and Alexandra Mendes. Ecoandroid: An android studio plugin
for developing energy-efficient java mobile applications, 2021.

[31] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and Vijay Sun-
daresan. Soot-a java bytecode optimization framework £, 1999.

[32] Claas Wilke. Energy-aware development and labeling for mobile applications, 2013.

[33] Claas Wilke, Sebastian Richly, Sebastian Götz, Christian Piechnick, and Uwe Aßmann. En-
ergy consumption and efficiency in mobile applications: A user feedback study. pages 134–
141, 2013.

[34] Tianyong Wu, Jierui Liu, Xi Deng, Jun Yan, and Jian Zhang. Relda2: An effective static anal-
ysis tool for resource leak detection in android apps. In Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering, ASE ’16, page 762–767, New
York, NY, USA, 2016. Association for Computing Machinery.

Appendix A

Label Results

App Name Classification Label
com.anysoftkeyboard.languagepack.norwegian 5.0 A

player.efis.data.usa.can 5.0 A

player.efis.data.sah.jap 5.0 A

player.efis.data.eur.rus 5.0 A

com.anysoftkeyboard.languagepack.russian2 5.0 A

de.viatorus.neo2externalkeyboard 5.0 A

com.palliser.nztides 5.0 A

com.anysoftkeyboard.languagepack.afrikaans_oss 5.0 A

com.anysoftkeyboard.languagepack.indonesian 5.0 A

com.anysoftkeyboard.languagepack.italian 5.0 A

com.anysoftkeyboard.languagepack.malayalam 5.0 A

com.menny.anysoftkeyboard.finnish 5.0 A

kasun.sinhala.keyboard 4.93 A

com.trianguloy.numericriddlegenerator 4.93 A

com.termux.boot 4.86 A

com.iamtrk.androidexplorer 4.86 A

de.cweiske.headphoneindicator 4.86 A

eu.quelltext.counting 4.86 A

ca.pr0ps.xposed.entrustunblocker 4.86 A

com.moonpi.swiftnotes 4.86 A

org.ncrmnt.nettts 4.86 A

de.Cherubin7th.blackscreenpresentationremote 4.86 A

com.grmasa.soundtoggle 4.86 A

com.unwind.networkmonitor 4.86 A

org.pulpdust.lesserpad 4.86 A

com.stoutner.privacycell 4.86 A

47

Label Results 48

com.bytehamster.flowitgame 4.86 A

ch.blinkenlights.android.apnswitch 4.86 A

org.xapek.andiodine 4.86 A

de.sirjofri.fingerlist 4.86 A

com.notriddle.null_launcer 4.86 A

ru.glesik.wifireminders 4.86 A

top.linesoft.open2share 4.86 A

me.anuraag.loveactualized 4.86 A

in.sunilpaulmathew.ashell 4.71 A

tk.hack5.treblecheck 4.71 A

com.bobek.compass 4.71 A

de.selfnet.wifisetup 4.71 A

org.osmocom.tacdatabaseclient 4.71 A

org.openintents.shopping 4.71 A

com.diblui.fullcolemak 4.71 A

cl.coders.faketraveler 4.71 A

name.seguri.android.isphoneencrypted 4.71 A

com.lecz.android.tiltmazes 4.71 A

org.dyndns.fules.ck 4.71 A

net.syntaxblitz.plucklock 4.71 A

be.uhasselt.privacypolice 4.71 A

fr.magistry.taigime 4.71 A

com.trianguloy.isUserAMonkey 4.71 A

com.wrmndfzzy.atomize 4.71 A

com.elementlo.spark_list 4.71 A

de.rochefort.childmonitor 4.71 A

com.bernaferrari.changedetection 4.71 A

bughunter2.smsfilter 4.71 A

in.indiandragon.shellshock.shellshockvulnerabilityscan 4.71 A

com.kkinder.charmap 4.71 A

in.blogspot.anselmbros.torchie 4.71 A

hsware.HSTempo 4.71 A

de.k3b.android.camerafolder 4.71 A

tk.giesecke.phoenix 4.71 A

de.laxu.apps.nachtlagerdownloader 4.71 A

eun.initialvolume 4.71 A

io.github.project_kaat.gpsdrelay 4.71 A

com.sinpo.xnfc 4.71 A

Label Results 49

com.everysoft.autoanswer 4.71 A

com.codedead.deadhash 4.71 A

com.vlath.keyboard 4.71 A

com.notecryptpro 4.71 A

us.achromaticmetaphor.imcktg 4.71 A

eu.polarclock 4.71 A

com.nitish.privacyindicator 4.71 A

com.gaurav.avnc 4.71 A

org.billthefarmer.scope 4.67 A

org.woheller69.gptassist 4.57 A

cz.hernikplays.opencanteen 4.57 A

de.drhoffmannsoft.pizza 4.57 A

fr.smarquis.sleeptimer 4.57 A

cz.antecky.netswitch 4.57 A

org.tether.tether 4.57 A

com.tttdevs.stncbookmarks 4.57 A

info.guardianproject.ripple 4.57 A

de.beowulf.libretranslater 4.57 A

com.omegavesko.holocounter 4.57 A

cz.eutopia.snooperstopper 4.57 A

com.icechen1.notable.pro 4.57 A

com.android.shellms 4.57 A

com.rigid.birthdroid 4.57 A

de.kodejak.hashr 4.57 A

akk.astro.droid.moonphase 4.57 A

io.davidar.fabularium 4.57 A

com.brapeba.roaminginfo 4.57 A

com.tananaev.calculator 4.57 A

com.soyblue.bluesound 4.57 A

com.willianveiga.countdowntimer 4.57 A

site.leos.setter 4.57 A

net.bitconomy.ckpoolwatcher 4.57 A

eu.siebeck.sipswitch 4.57 A

de.feisar.wordvalue 4.57 A

org.pixmob.freemobile.netstat 4.57 A

org.zakky.memopad 4.57 A

com.mathi_amorim.emmanuel.metrictime 4.57 A

fr.ludo1520.whatexp 4.57 A

Label Results 50

net.tedstein.AndroSS 4.57 A

com.uploadedlobster.PwdHash 4.57 A

protect.babysleepsounds 4.57 A

nodom.darkfm.inventoryguimobile 4.57 A

quickly.quit 4.57 A

tmendes.com.analyticalbalancedroid 4.57 A

com.tinkerlog.android.pongtime 4.57 A

com.example.flutter_http_server 4.57 A

com.vwp.locdemo 4.57 A

com.saiga.find.messagefinder 4.57 A

uk.co.ashtonbrsc.android.intentintercept 4.57 A

jp.sawada.np2android 4.57 A

org.opengemara.shiurim 4.57 A

ch.rmy.android.statusbar_tacho 4.57 A

io.github.engsergiu.react 4.57 A

com.gmail.altakey.effy 4.57 A

de.stefan_oltmann.falling_blocks 4.57 A

org.asdtm.goodweather 4.57 A

org.dsandler.apps.markers 4.57 A

io.github.subhamtyagi.ocr 4.57 A

io.librehealth.toolkit.cost_of_care 4.57 A

com.cityfreqs.littlesirecho 4.57 A

com.nomadlabs.labcoat.deeplinks 4.57 A

com.powerpoint45.lucidbrowser 4.57 A

com.chesire.nekome 4.57 A

be.casperverswijvelt.unifiedinternetqs 4.5 A

org.jshobbysoft.cameraalign 4.43 A

ru.tech.imageresizershrinker 4.43 A

s1m.savertuner 4.43 A

com.evilinsult 4.43 A

org.alberto97.ouilookup 4.43 A

de.lihotzki.pixelflood 4.43 A

org.pareudepararme.pareu_de_pararme_map 4.43 A

tech.techlore.plexus 4.43 A

com.tuyafeng.watt 4.43 A

com.serone.desktoplabel 4.43 A

org.safecoin.safeprice 4.43 A

com.easytarget.micopi 4.43 A

Label Results 51

org.sufficientlysecure.localcalendar 4.43 A

net.sourceforge.solitaire_cg 4.43 A

de.onyxbits.remotekeyboard 4.43 A

orbitlivewallpaperfree.puzzleduck.com 4.43 A

np.com.binabh.basedcooking 4.43 A

com.radiostudent.radiostudentstream 4.43 A

com.aaronjwood.portauthority 4.43 A

com.nathanosman.chronosnap 4.43 A

com.kanedias.vanilla.coverfetch 4.43 A

com.frankcalise.h2droid 4.43 A

com.gabriel.covid19stats 4.43 A

com.derdilla.bloodPressureApp 4.43 A

com.cr5315.cfdc 4.43 A

eu.roggstar.getmitokens 4.43 A

org.appsroid.fxpro 4.43 A

com.eventyay.organizer 4.43 A

com.deva.knot 4.43 A

com.kanedias.holywarsoo 4.43 A

net.pejici.summation 4.43 A

in.umairkhan.remotedroid 4.43 A

net.alaindonesia.silectric 4.43 A

com.example.android.monthcalendarwidget 4.43 A

org.jdfossapps.android.shopwithmom 4.43 A

buet.rafi.dictionary 4.43 A

me.gloeckl.fallasleep 4.43 A

us.koller.cameraroll 4.43 A

uscartools.USTravelConverter 4.43 A

com.ssaurel.clocklw 4.43 A

com.bwqr.mavinote 4.43 A

rodrigodavy.com.github.pixelartist 4.43 A

com.guvery.notifyme 4.43 A

foehnix.widget 4.43 A

ch.fixme.cowsay 4.43 A

com.lako.moclock 4.43 A

de.cyberit.wasgeht 4.43 A

nl.viter.glider 4.43 A

com.brucelet.spacetrader 4.43 A

zen.meditation.android 4.43 A

Label Results 52

com.aurora.corona 4.43 A

com.ten15.diyfish 4.43 A

se.pp.mc.android.Gerberoid 4.43 A

it.gmariotti.android.apps.dashclock.extensions.battery 4.43 A

com.elementarytoday.theia 4.43 A

org.weilbach.splitbills 4.43 A

ch.rmy.android.http_shortcuts 4.43 A

info.lamatricexiste.network 4.43 A

com.tjm.stripepaper 4.43 A

com.wmstein.transektcount 4.43 A

com.tnibler.cryptocam 4.43 A

com.harleensahni.android.mbr 4.43 A

com.github.shadowsocks.tv 4.43 A

com.shurik.droidzebra 4.43 A

ch.dissem.android.drupal 4.43 A

org.biotstoiq.gophercle 4.43 A

de.bloosberg.basti.childresuscalc 4.43 A

io.github.dkter.aaaaa 4.43 A

com.rafapps.earthviewformuzei 4.43 A

es.ideotec.workouttime 4.43 A

com.reddyetwo.hashmypass.app 4.36 A

io.librehealth.mhbs.essential_care_for_every_baby 4.36 A

com.tailscale.ipn 4.29 A

com.w2sv.wifiwidget 4.29 A

com.nathanatos.Cuppa 4.29 A

org.localsend.localsend_app 4.29 A

org.koreader.launcher.fdroid 4.29 A

org.billthefarmer.diary 4.29 A

ru.ifproject.android.afr 4.29 A

se.traffar.dot_race 4.29 A

pro.rudloff.openvegemap 4.29 A

co.timsmart.vouchervault 4.29 A

com.apk.editor 4.29 A

com.java.SmokeReducer 4.29 A

com.drhoffmannstoolsdataloggerreader 4.29 A

org.tomdroid 4.29 A

nl.devluuk.sleepywifi 4.29 A

eu.ryuu.screeps 4.29 A

Label Results 53

org.tunesremote 4.29 A

org.radar.app 4.29 A

fr.xtof54.scrabble 4.29 A

seanfoy.wherering 4.29 A

ca.rmen.android.poetassistant 4.29 A

com.dftec.planetcon 4.29 A

io.github.otakuchiyan.dnsman 4.29 A

italian.said.fran.theitaliansaid 4.29 A

me.kavishhukmani.watwitchstickers 4.29 A

com.rhiannonweb.android.migrainetracker 4.29 A

net.vivekiyer.GAL 4.29 A

org.segin.bfinterpreter 4.29 A

com.netthreads.android.noiz2 4.29 A

danielmeek32.compass 4.29 A

org.fitchfamily.android.symphony 4.29 A

com.miqote.brswp 4.29 A

me.anuraag.grader 4.29 A

com.gabm.fancyplaces 4.29 A

org.ghostsinthelab.apps.guilelessbopomofo 4.29 A

de.sorunome.unifiednlp.trains 4.29 A

com.example.openpass 4.29 A

org.jsharkey.sky 4.29 A

org.bibledit.android 4.29 A

com.graphhopper.maps 4.29 A

de.reimardoeffinger.quickdic 4.29 A

com.example.siete_media 4.29 A

com.jorgecastillo.kanadrill 4.29 A

negativedensity.techahashi 4.29 A

com.sound.ampache 4.29 A

cz.jiriskorpil.amixerwebui 4.29 A

com.gmail.mugcuposup.android 4.29 A

fi.kroon.vadret 4.29 A

com.fullscreen 4.29 A

eu.dfdx.jslab 4.29 A

org.michaelevans.nightmodeenabler 4.29 A

org.woheller69.arity 4.29 A

com.appengine.paranoid_android.lost 4.29 A

com.threedlite.livePolys 4.29 A

Label Results 54

es.ideotec.t16fling 4.29 A

mixedbit.speechtrainer 4.29 A

eu.zimbelstern.tournant 4.29 A

org.xphnx.iconsubmit 4.29 A

com.voklen.daily_diary 4.21 A

com.vincentengelsoftware.vesandroidimagecompare 4.21 A

com.activitymanager 4.14 A

com.bagaturchess 4.14 A

io.spaceapi.community.myhackerspace 4.14 A

com.jithware.brethap 4.14 A

juloo.keyboard2 4.14 A

it.davquar.halfdot 4.14 A

org.godotengine.editor.v4 4.14 A

org.billthefarmer.buses 4.14 A

com.thatsmanmeet.taskyapp 4.14 A

com.github.bmx666.appcachecleaner 4.14 A

com.github.lamarios.clipious 4.14 A

ru.sash0k.bluetooth_terminal 4.14 A

io.github.divverent.aaaaxy 4.14 A

io.github.freewatermark.mobileapp 4.14 A

m.co.rh.id.a_flash_deck 4.14 A

ru.gelin.android.weather.notification.skin.biggertext 4.14 A

de.tobiasbielefeld.solitaire 4.14 A

com.gracecode.android.presentation 4.14 A

cxa.lineswallpaper 4.14 A

open.com.permissionsmanager 4.14 A

com.darshancomputing.BatteryIndicatorPro 4.14 A

com.rastating.droidbeard 4.14 A

com.swiss.tournament 4.14 A

com.google.android.location 4.14 A

com.blockbasti.justanotherworkouttimer 4.14 A

com.tritop.androsense2 4.14 A

org.billthefarmer.accordion 4.14 A

io.github.mwageringel.everest 4.14 A

com.tiwa.pl 4.14 A

pro.oblivioncoding.fluffy_board 4.14 A

com.myopicmobile.textwarrior.android 4.14 A

de.sigfood 4.14 A

Label Results 55

org.kde.necessitas.ministro 4.14 A

org.projectmaxs.module.locationfine 4.14 A

edu.killerud.kitchentimer 4.14 A

com.tkton.wallet 4.14 A

org.secuso.privacyfriendly2048 4.14 A

org.broeuschmeul.android.gps.usb.provider 4.14 A

com.github.libretube 4.14 A

de.beatbrot.screenshotassistant 4.14 A

com.thehoick.evergreenwishlist 4.14 A

org.mosspaper 4.14 A

rs.pedjaapps.alogcatroot.app 4.14 A

de.digisocken.reotwe 4.14 A

org.secuso.privacyfriendlytapemeasure 4.14 A

org.gfd.gsmlocation 4.14 A

com.github.igrmk.smsq 4.14 A

com.gueei.applocker 4.14 A

com.hlidskialf.android.pomodoro 4.14 A

se.embargo.retroboy 4.14 A

org.covolunablu.marswallpaper 4.14 A

com.github.niccokunzmann.hanumanchalisa 4.14 A

org.jwz.xscreensaver 4.14 A

tk.jordynsmediagroup.simpleirc.fdroid 4.14 A

com.nextcloud_cookbook_flutter 4.14 A

org.moire.ultrasonic 4.14 A

news.androidtv.launchonboot 4.14 A

com.github.xfalcon.vhosts 4.14 A

org.principate.matthew.dealing_sheet 4.14 A

com.example.muzei.muzeiapod 4.14 A

org.openintents.notepad 4.14 A

net.i2p.android.router 4.14 A

ch.fixme.status 4.14 A

de.mwvb.blockpuzzle 4.14 A

de.smasi.tickmate 4.14 A

biz.gyrus.yaab 4.14 A

ro.ui.pttdroid 4.14 A

org.birthdayadapter 4.14 A

com.github.ruleant.getback_gps 4.14 A

nodomain.vanous.blitztypekeyboard 4.14 A

Label Results 56

uk.co.yahoo.p1rpp.secondsclock 4.14 A

is.xyz.mpv 4.14 A

org.segin.ttleditor 4.14 A

com.morlunk.mountie 4.14 A

com.github.webierta.call_counter 4.14 A

com.flasskamp.energize 4.07 B

com.gitlab.ardash.appleflinger.android 4.0 B

de.salomax.currencies 4.0 B

com.sadellie.unitto 4.0 B

de.ritscher.simplemobiletools.contacts.pro 4.0 B

org.ostrya.presencepublisher 4.0 B

com.madlonkay.orgro 4.0 B

com.simondalvai.ball2box 4.0 B

com.nima.mymood 4.0 B

org.mcxa.vortaro 4.0 B

com.bmco.cratesiounofficial 4.0 B

ro.ciubex.dscautorename 4.0 B

io.gresse.hugo.anecdote 4.0 B

com.mileskrell.texttorch 4.0 B

org.fsociety.vernet 4.0 B

at.bitfire.gfxtablet 4.0 B

com.quinncasey.paperless_share 4.0 B

com.github.yeriomin.workoutlog 4.0 B

org.krita 4.0 B

com.sagar.screenshift2 4.0 B

fr.ybo.transportsbordeaux 4.0 B

com.inator.calculator 4.0 B

com.darknessmap 4.0 B

cs4295.memecreator 4.0 B

com.simplemobiletools.draw.pro 4.0 B

org.projectmaxs.module.bluetooth 4.0 B

com.prhlt.aemus.Read4SpeechExperiments 4.0 B

corewala.gemini.buran 4.0 B

com.katiearose.sobriety 4.0 B

org.keyoxide.keyoxide 4.0 B

org.projectmaxs.module.smsnotify 4.0 B

com.mareksebera.simpledilbert 4.0 B

com.germainz.activityforcenewtask 4.0 B

Label Results 57

org.exarhteam.iitc_mobile 4.0 B

com.lako.walletcount 4.0 B

eu.prismsw.lampshade 4.0 B

org.voidptr.swpieview 4.0 B

com.sunilpaulmathew.snotz 4.0 B

com.dozingcatsoftware.asciicam 4.0 B

net.foucry.pilldroid 4.0 B

com.NightDreamGames.Grade.ly 4.0 B

luke.launcher 4.0 B

org.joinmastodon.android 4.0 B

org.wentura.getflow 4.0 B

ut.ewh.audiometrytest 4.0 B

me.johnmh.boogdroid 4.0 B

org.macno.puma 4.0 B

fly.speedmeter.grub 4.0 B

de.kaffeemitkoffein.imagepipe 4.0 B

org.mariotaku.imageviewergl 4.0 B

de.k3b.android.lossless_jpg_crop 4.0 B

ru.subprogram.paranoidsmsblocker 4.0 B

com.oml.recordtimedroid 4.0 B

raffarti.simpleadvancedmetronome 4.0 B

net.taler.cashier 4.0 B

com.zhenxiang.superimage 4.0 B

org.btcmap 3.95 B

com.byagowi.persiancalendar 3.86 B

com.kaajjo.libresudoku 3.86 B

org.catrobat.paintroid 3.86 B

cx.ring 3.86 B

helium314.localbackend 3.86 B

net.viggers.zade.wallpaper 3.86 B

com.zell_mbc.medilog 3.86 B

org.totschnig.myexpenses 3.86 B

us.spotco.malwarescanner 3.86 B

org.billthefarmer.gridle 3.86 B

de.taz.android.app.free 3.86 B

network.loki.messenger.fdroid 3.86 B

io.github.friesi23.mhabit 3.86 B

app.olauncher 3.86 B

Label Results 58

m.co.rh.id.a_medic_log 3.86 B

space.kraut.schluessel 3.86 B

cat.jordihernandez.cinecat 3.86 B

arity.calculator 3.86 B

com.ktprograms.watertracker 3.86 B

com.github.livingwithhippos.unchained 3.86 B

name.gdr.acastus_photon 3.86 B

com.teamdc.stephendiniz.autoaway 3.86 B

org.ligi.gobandroid_hd 3.86 B

luke.kfz 3.86 B

ch.gassenarbeit.bern.your.rights 3.86 B

com.itds.sms.ping 3.86 B

com.googlecode.networklog 3.86 B

com.jlyr 3.86 B

com.maxistar.textpad 3.86 B

saschpe.contactevents 3.86 B

pro.rudloff.muzei.commons 3.86 B

com.retroarch 3.86 B

de.hskl.contacts 3.86 B

com.libopenmw.openmw 3.86 B

cx.hell.android.pdfview 3.86 B

eu.bauerj.paperless_app 3.86 B

com.tunerly 3.86 B

com.kaliturin.blacklist 3.86 B

ivl.android.moneybalance 3.86 B

org.edunivers.whereami 3.86 B

me.malladi.dashcricket 3.86 B

org.ligi.ipfsdroid 3.86 B

com.tasomaniac.dashclock.hackerspace.floss 3.86 B

com.outerworldapps.wairtonow 3.86 B

org.grapentin.apps.exceer 3.86 B

com.asdoi.gymwen 3.86 B

de.schlikk.calls 3.86 B

org.iilab.pb 3.86 B

com.beemdevelopment.aegis 3.86 B

ee.ioc.phon.android.speak 3.86 B

com.googlecode.awsms 3.86 B

com.wesaphzt.privatelock 3.86 B

Label Results 59

com.sam.hex 3.86 B

org.berlin_vegan.bvapp 3.86 B

me.lucky.red 3.86 B

org.diygenomics.pg 3.86 B

com.llamacorp.equate 3.86 B

net.nhiroki.bluelineconsole 3.86 B

org.hermit.tricorder 3.86 B

com.olam 3.86 B

com.krawieck.lemmur 3.86 B

com.write.Quill 3.86 B

com.gh4a 3.86 B

com.cepmuvakkit.times 3.86 B

nya.kitsunyan.foxydroid 3.86 B

com.dosse.bwentrain.androidPlayer 3.86 B

com.simpledecredwidget 3.86 B

ch.jiikuy.velocitycalculator 3.86 B

com.ero.kinoko 3.79 B

com.sensirion.smartgadget 3.79 B

com.android.gpstest.osmdroid 3.71 B

cat.mvmike.minimalcalendarwidget 3.71 B

de.moooon.acrylicons 3.71 B

com.unciv.app 3.71 B

sushi.hardcore.droidfs 3.71 B

org.lufebe16.pysolfc 3.71 B

com.sweak.qralarm 3.71 B

net.kourlas.voipms_sms 3.71 B

com.matoski.adbm 3.71 B

com.team242.robozzle 3.71 B

de.rki.covpass.checkapp 3.71 B

com.coste.syncorg 3.71 B

app.mlauncher 3.71 B

io.nekohasekai.sagernet 3.71 B

me.tagavari.airmessage 3.71 B

org.gnu.emacs 3.71 B

com.android.launcher3 3.71 B

org.openintents.safe 3.71 B

org.kaqui 3.71 B

fr.emersion.goguma 3.71 B

Label Results 60

de.devmil.muzei.bingimageofthedayartsource 3.71 B

de.piratentools.spickerrr 3.71 B

net.kervala.comicsreader 3.71 B

it.angrydroids.epub3reader 3.71 B

org.iilab.openmentoring 3.71 B

org.dslul.openboard.inputmethod.latin 3.71 B

com.plusonelabs.calendar 3.71 B

com.quaap.launchtime 3.71 B

dev.lucanlm.antimine 3.71 B

ir.hsn6.k2 3.71 B

com.xatik.app.droiddraw.client 3.71 B

io.github.datastopwatch 3.71 B

io.homeassistant.companion.android.minimal 3.71 B

it.collideorscopeapps.codename_hippopotamos 3.71 B

com.cohenchris.weeklybudget 3.71 B

io.github.gsantner.memetastic 3.71 B

org.jtb.alogcat 3.71 B

kvj.taskw 3.71 B

tech.platypush.platypush 3.71 B

com.rj.pixelesque 3.71 B

net.stargw.contactsimport 3.71 B

pro.kherel.selfprivacy 3.71 B

com.philliphsu.clock2 3.71 B

ru.natsuru.websdr 3.71 B

de.arnowelzel.android.periodical 3.71 B

ee.smkv.calc.loan 3.71 B

mobi.maptrek 3.71 B

org.mysociety.FixMyStreet 3.71 B

org.secuso.privacyfriendlyfinancemanager 3.71 B

com.nesbox.tic 3.71 B

net.yolosec.routerkeygen2 3.71 B

org.secuso.privacyfriendlynotes 3.71 B

org.ea.sqrl 3.71 B

org.nitri.opentopo 3.71 B

ca.andries.portknocker 3.71 B

wtf.technodisaster.tldr 3.71 B

it.niedermann.nextcloud.tables 3.71 B

nl.implode.regenalarm 3.71 B

Label Results 61

net.taler.merchantpos 3.71 B

eu.veldsoft.dice.overflow 3.71 B

com.codebutler.farebot 3.71 B

btools.routingapp 3.71 B

org.billthefarmer.currency 3.71 B

com.standardnotes 3.64 C

in.digistorm.aksharam 3.64 C

com.tombursch.kitchenowl 3.64 C

de.ptrlx.oneshot 3.64 C

com.bnyro.translate 3.57 C

fr.fdesousa.bikesharinghub 3.57 C

com.moimob.drinkable 3.57 C

org.smc.inputmethod.indic 3.57 C

website.leifs.delta.foss 3.57 C

com.jiaqifeng.hacki 3.57 C

com.forrestguice.suntimeswidget 3.57 C

org.unifiedpush.distributor.nextpush 3.57 C

se.danielj.geometridestroyer 3.57 C

eu.kanade.tachiyomi 3.57 C

com.bald.uriah.baldphone 3.57 C

be.ugent.zeus.hydra.open 3.57 C

de.karbach.tac 3.57 C

com.practicalapps.hamtrainer 3.57 C

com.example.booklistingapk 3.57 C

com.altillimity.satpredict 3.57 C

org.woheller69.audiometry 3.57 C

de.sudoq 3.57 C

rak.pixellwp 3.57 C

com.adonai.manman 3.57 C

de.blocklink.pigrid 3.57 C

com.antony.muzei.pixiv 3.57 C

ro.ieval.fonbot 3.57 C

de.vanitasvitae.enigmandroid 3.57 C

net.vonforst.evmap 3.57 C

com.reminimalism.materialslivewallpaper 3.57 C

com.coinerella.peercoin 3.57 C

com.klee.volumelockr 3.57 C

de.sensebox.blockly 3.57 C

Label Results 62

de.binary_kitchen.doorlock_app 3.57 C

com.github.axet.binauralbeats 3.57 C

software.mdev.bookstracker 3.57 C

dev.patri9ck.a2ln 3.57 C

org.daylightingsociety.wherearetheeyes 3.57 C

com.dkanada.openapk 3.57 C

com.iven.xdafeedreader 3.57 C

dev.yashgarg.qbit 3.57 C

com.developerfromjokela.motioneyeclient 3.57 C

com.lightning.walletapp 3.57 C

com.openear.www 3.57 C

ch.seto.kanjirecog 3.57 C

chat.fluffy.fluffychat 3.57 C

ca.momi.lift 3.57 C

com.nima.demomusix 3.57 C

se.manyver 3.57 C

com.hyperionics.fbreader.plugin.tts_plus 3.57 C

itkach.aard2 3.57 C

it.danieleverducci.ojo 3.52 D

org.purplei2p.i2pd 3.52 D

chat.simplex.app 3.5 D

rasel.lunar.launcher 3.43 D

uk.openvk.android.legacy 3.43 D

org.woheller69.spritpreise 3.43 D

com.wattwurm.toodoo 3.43 D

priv.wh201906.serialtest 3.43 D

deckers.thibault.aves.libre 3.43 D

com.yogeshpaliyal.keypass 3.43 D

org.simlar 3.43 D

app.simple.inure 3.43 D

co.localmonero.app 3.43 D

com.github.andreyasadchy.xtra 3.43 D

de.westnordost.streetcomplete 3.43 D

com.cosmos.unreddit 3.43 D

com.saverio.wordoftheday_en 3.43 D

io.github.folderlogs 3.43 D

com.github.samotari.paynoway 3.43 D

org.decsync.sparss.floss 3.43 D

Label Results 63

de.digisocken.stop_o_moto 3.43 D

de.determapp.android 3.43 D

fr.syncarnet 3.43 D

com.infomaniak.mail 3.43 D

com.tobykurien.webmediashare 3.43 D

com.madgag.agit 3.43 D

com.ecuamobi.deckwallet 3.43 D

com.nutomic.ensichat 3.43 D

de.foodsharing.app 3.43 D

com.tht.k3pler 3.43 D

com.genonbeta.TrebleShot 3.43 D

org.ligi.survivalmanual 3.43 D

com.example.regis_cat 3.43 D

com.ogsdroid 3.43 D

app.organicmaps 3.43 D

cc.narumi.chaldea.fdroid 3.43 D

org.piwigo.android 3.43 D

org.secuso.privacyfriendlypasswordgenerator 3.43 D

org.glucosio.android 3.43 D

click.dummer.UartSmartwatch 3.43 D

com.perol.asdpl.play.pixivez.libre 3.43 D

com.jonbanjo.cupsprintservice 3.43 D

de.westnordost.streetcomplete.expert 3.43 D

com.enjoyingfoss.feeel 3.43 D

team.swing.pendulums 3.43 D

com.artivain.reseaudiscord 3.43 D

com.google.marvin.shell 3.43 D

ws.xsoh.etar 3.43 D

org.adw.launcher 3.43 D

de.eknoes.inofficialgolem 3.43 D

com.gatheringhallstudios.mhworlddatabase 3.43 D

dev.leonlatsch.photok 3.43 D

de.nucleus.foss_warn 3.43 D

org.kore.kolabnotes.android 3.29 E

com.pierreduchemin.smsforward 3.29 E

com.fredhappyface.fhcode 3.29 E

com.fox2code.mmm.fdroid 3.29 E

com.nyxkn.meditation 3.29 E

Label Results 64

info.metadude.android.debconf.schedule 3.29 E

com.afollestad.nocknock 3.29 E

de.k4ever.k4android 3.29 E

org.strongswan.android 3.29 E

com.invoiceninja.app 3.29 E

app.fedilab.fedilabtube 3.29 E

com.github.samotari.cryptoterminal 3.29 E

com.mdiqentw.lifedots 3.29 E

app.crossword.yourealwaysbe.forkyz 3.29 E

se.leap.bitmaskclient 3.29 E

org.secuso.privacyfriendlytodolist 3.29 E

io.kubenav.kubenav 3.29 E

com.iatfei.streakalarm 3.29 E

com.chooloo.www.koler 3.29 E

com.willchan.simple_random_stock 3.29 E

de.niendo.ImapNotes3 3.29 E

de.storchp.fdroidbuildstatus 3.14 F

name.bresciani.marco.tkcompanionapp 3.14 F

org.ligi.passandroid 3.14 F

org.hollowbamboo.chordreader2 3.14 F

de.nulide.bikecomputer 3.14 F

fr.nuage.souvenirs 3.14 F

amirz.rootless.nexuslauncher 3.14 F

com.serwylo.babyphone 3.14 F

org.blitzortung.android.app 3.14 F

com.perflyst.twire 3.14 F

de.skubware.opentraining 3.14 F

com.jstappdev.identify_dog_breeds_pro 3.14 F

de.neuwirthinformatik.alexander.archerystats 3.14 F

net.ivpn.client 3.14 F

de.fgerbig.spacepeng 3.14 F

com.concept1tech.instalate 3.14 F

com.jparkie.aizoban 3.14 F

jsettlers.main.android 3.14 F

org.traccar.client 3.14 F

com.simplemobiletools.gallery.pro 3.0 F

com.agoradesk.app 3.0 F

io.treehouses.remote 3.0 F

Label Results 65

net.nightwhistler.pageturner 3.0 F

tk.giesecke.disaster_radio 3.0 F

com.releasestandard.scriptmanager 3.0 F

org.olpc_france.sugarizer 3.0 F

com.github.fi3te.notificationcron 3.0 F

rocks.poopjournal.morse 3.0 F

org.telegram.messenger 3.0 F

com.fproject.cryptolitycs 3.0 F

com.foobnix.pro.pdf.reader 2.86 F

org.xcsoar 2.86 F

com.cheogram.android 2.86 F

info.metadude.android.foss4g.schedule 2.86 F

com.easwareapps.g2l 2.86 F

com.xvzan.simplemoneytracker 2.86 F

com.sovworks.edslite 2.86 F

de.tap.easy_xkcd 2.86 F

com.example.trigger 2.86 F

org.studip.unofficial_app 2.86 F

eu.vranckaert.worktime 2.86 F

com.totsp.crossword.shortyz 2.86 F

com.newsblur 2.86 F

de.chaosdorf.meteroid 2.86 F

foundation.e.blisslauncher 2.86 F

site.leos.apps.lespas 2.79 F

org.koitharu.kotatsu 2.71 F

org.secuso.privacyfriendlydame 2.71 F

org.forkgram.messenger 2.71 F

org.walleth 2.71 F

org.linphone 2.71 F

dev.drsoran.moloko 2.71 F

fr.mobdev.blooddonation 2.71 F

net.turtton.ytalarm 2.71 F

fr.guillaumevillena.opendnsupdater 2.71 F

com.blogspot.e_kanivets.moneytracker 2.71 F

mobi.boilr.boilr 2.71 F

org.sipdroid.sipua 2.71 F

com.spisoft.quicknote 2.71 F

com.jefftharris.passwdsafe 2.71 F

Label Results 66

nodomain.freeyourgadget.gadgetbridge 2.71 F

ryey.easer.beta 2.71 F

player.phonograph.plus 2.57 G

org.kde.kdeconnect_tp 2.57 G

com.donnnno.arcticons 2.57 G

com.donnnno.arcticons.light 2.57 G

org.snikket.android 2.57 G

at.bitfire.icsdroid 2.57 G

de.geeksfactory.opacclient 2.57 G

org.droidupnp 2.57 G

com.tutpro.baresip 2.43 G

org.woheller69.solxpect 2.43 G

de.bahnhoefe.deutschlands.bahnhofsfotos 2.43 G

com.etesync.syncadapter 2.43 G

de.langerhans.wallet 2.43 G

org.servalproject 2.43 G

com.github.jameshnsears.quoteunquote 2.43 G

im.quicksy.client 2.29 G

com.manimarank.spell4wiki 2.29 G

me.jfenn.alarmio 2.29 G

hashengineering.groestlcoin.wallet_test 2.29 G

com.espruino.gadgetbridge.banglejs 2.29 G

com.jens.automation2 2.0 G

de.dennisguse.opentracks 2.0 G

it.feio.android.omninotes.foss 2.0 G

ch.corona.tracing 1.86 G

com.github.meypod.al_azan 1.71 G

ch.bailu.aat 1.71 G

Table A.1: Classifications and Labels Results

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	List of Listings
	1 Introduction
	1.1 Context
	1.2 Motivation
	1.3 Objectives
	1.4 Document Structure

	2 Background
	2.1 Android
	2.2 Android Application
	2.2.1 Activities
	2.2.2 Services
	2.2.3 Broadcast Receivers
	2.2.4 Content Providers

	2.3 Energy Efficiency
	2.4 Energy Labelling

	3 State of the Art
	3.1 Related Work
	3.1.1 EcoDroid
	3.1.2 Energy-Aware Development and Labeling for Mobile Applications
	3.1.3 Google Play Apps ERM (Energy Rating Model)
	3.1.4 Planting Trees in the Android Forest: Energy Labeling for Mobile Applications

	3.2 Analysis Tools
	3.2.1 Android Lint
	3.2.2 Kadabra
	3.2.3 EcoAndroid
	3.2.4 aDoctor
	3.2.5 EARMO
	3.2.6 Paprika
	3.2.7 Relda2

	3.3 Decompilation Tools

	4 Proposed Solution
	4.1 Proposed Solution

	5 Ranking Mobile Applications by Energy Efficiency
	5.1 Architecture
	5.1.1 Decompilation
	5.1.2 Analysis
	5.1.3 Classification

	5.2 Implementation
	5.2.1 Jadx
	5.2.2 EARMO
	5.2.3 Kadabra
	5.2.4 Permissions Analyzer
	5.2.5 aDoctor
	5.2.6 Paprika
	5.2.7 Relda2
	5.2.8 Android Lint
	5.2.9 EcoAndroid

	5.3 Requirements and How to Run
	5.4 Output
	5.5 Further Details

	6 Label Calibration and Computation
	6.1 Dataset
	6.1.1 Dataset Selection
	6.1.2 Dataset Characterization

	6.2 Methodology
	6.2.1 Classification per Analysis Tool
	6.2.2 Final Classification
	6.2.3 How to deal with Apps with Multiple Categories

	7 Results and Discussion
	7.1 Analysis Environment
	7.2 Classification per Analysis Tool Thresholds
	7.2.1 Classifications and the Number of Apps

	7.3 Final Classification and Label Thresholds
	7.4 Label Results

	8 Conclusions
	8.1 Main Contributions
	8.2 Future Work
	8.3 Acknowledgements

	References
	A Label Results

