
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Digital Twin for Drone Control using a
Brain-Computer Interface

Diana Cristina Teixeira Ramos

Mestrado em Engenharia de Software

Supervisor: Professor Doutor Gil Gonçalves

Second Supervisor: Ricardo Faria

July 28, 2021

Digital Twin for Drone Control using a Brain-Computer
Interface

Diana Cristina Teixeira Ramos

Mestrado em Engenharia de Software

Approved in oral examination by the committee:

Chair: Prof. Nuno Honório Rodrigues Flores

External Examiner: Prof. Paulo Maio
Supervisor: Prof. Gil Manuel Magalhães de Andrade Gonçalves

July 28, 2021

Abstract

With the increasing technological evolution and the appearance of new needs derived from the
various modernization movements, among them the urban air mobility mission, there is also an
exponential attraction for unmanned aerial vehicles, often referred to as drones. These vehicles are
not only associated with transportation tasks, but may also be related to the execution of tasks, data
collection and monitoring services; being particularly crucial for the execution of high risk and/or
almost unreachable operations, allowing the operator to accomplish them remotely and safely.

The brain-computer interface technologies have gained popularity due to their increasing ap-
plicability in a wide variety of situations, among them the remote control of drones. Considering
that these vehicles are considered critical systems and their control should be both cautious and
stable, brain-computer interfaces provide an alternative to the manual control. Since these tech-
nologies are directly linked to the emotional and cognitive state of the operator, situations of
anxiety and distractions can influence the control and stability of the drone.

This thesis proposes a decision making system that considers the emotional state of the op-
erator, deciding whether the command formulated by the operator should be sent to the drone.
By developing a digital copy of the operator, through the digital twin technology, with predictive
capabilities for emotional detection (visual and cognitive) of the operator, the proposed solution
should be able to identify if the operator is in a stable state to send commands. As soon as these
situations are detected, the system will calculate the necessary information, corresponding to the
desired command, and send it to the drone. Additionally, the communication between the solu-
tion and the drone is established through a ROS 2 client node, that connects to a server node,
responsible for managing one or more drones.

The validation of the solution is comprised in four scenarios that aim for an incremental level
of robustness and security of the system, the first being an experiment without the execution of the
developed solution and the last one the integration of the solution with all its functionalities. In ad-
dition, validation was performed in a free scenario in order to evaluate whether the solution detects
rapid emotional changes in response to external events. For this purpose, an arena was created
for a controlled execution of the experiments with the crazyflie drone. Additionally, a scenario
where two client nodes, simulating two drones, was tested in order to evaluate the communication
between multiple client nodes and the server.

Results show that the digital twin is able to detect emotions, classified through cognitive and
visual inputs, in real time, accurately and with the ability to identify mood changes, adjusting to
various scenarios when defining and making a decision. Overall, the system is a reliable and safe
platform for controlling drones, allowing this to be ensured through the formulation of mental
commands. This solution fits in the context of the use of drones, but may enhance the control of
other critical and high-risk systems.

Keywords: drone, brain-computer interface, digital twin, ROS2, decision making, emotional state.

i

ii

Resumo

Com a crescente evolução tecnológica e aparecimento de novas necessidades derivadas dos vários
movimentos de modernização, entre eles a missão da mobilidade urbana aérea, existe, igualmente,
uma atração exponencial por veículos não tripulados, frequentemente denominados de drones.
Estes veículos não são só associados a tarefas de transporte, como podem estar relacionados com
execução de tarefas, recolha de dados e serviços de monitorização; sendo particularmente cruciais
para a execução de operações de risco elevado e/ou de difícil acesso, permitindo que o operador
as consiga cumprir de forma remota e com segurança.

As tecnologias de interface cérebro-computador têm ganho popularidade devido à sua cres-
cente aplicabilidade nas mais variadas situações, entre eles o controlo remoto de drones. Tendo
em conta que estes veículos são considerados sistemas críticos e o controlo dos mesmos deverá
ser tanto cauteloso como estável, as interfaces cérebro-computador constituem uma alternativa ao
modo manual. Visto que estas tecnologias estão diretamente vinculadas ao estado emocional e
cognitivo do operador, situações de ansiedade e distrações podem influenciar o controlo e estabil-
idade do drone.

Esta tese propõe um sistema de tomada de decisão, tendo em consideração o estado emocional
do operador, decidindo se o comando formulado por este deve ser enviado para o drone. Ao
desenvolver uma cópia digital do operador, através da tecnologia digital twin, com capacidades
preditivas para deteção emocional (visual e cognitiva) do mesmo, a solução proposta deverá ser
capaz identificar se o operador está num estado estável para enviar comandos. Assim que estas
situações são detetadas, o sistema calculará a informação necessária, correspondente ao comando
pretendido, e a enviará para o drone. Adicionalmente, a comunicação entre a solução e o drone é
estabelecida através de um nó cliente em ROS 2, conetando-se a um nó servidor, responsável pela
gestão de um ou mais drones.

A validação da solução é compreendida em quatro cenários que visam um nível incremental
de robustez e segurança do sistema, sendo que o primeiro será uma experiência sem a execução da
solução desenvolvida e o último a integração da solução com todas as suas funcionalidades. Além
disso, foi realizada a validação num cenário livre de forma a avaliar se a solução deteta rápidas
mudanças emocionais em resposta a eventos externos. Para este propósito, foi criada uma arena
para a realização controlada das experiências com o drone crazyflie. Adicionalmente, foi testado
um cenário onde são compreendidos dois nós cliente a simularem dois drones, de forma a avaliar
a comunicação entre múltiplos nós cliente e o servidor.

Os resultados mostram que o digital twin é capaz de detetar emoções, classificadas através
de entradas cognitivas e visuais, em tempo real, de forma eficaz e com capacidade de identificar
mudanças de humor, ajustando-se aos vários cenários ao definir e concretizar uma decisão. De
forma geral, o sistema é uma plataforma fiável e segura para o controlo de drones, permitindo que
este seja assegurado através da formulação de comandos mentais. Esta solução enquadra-se no
contexto de utilização de drones, mas poderá potencializar controlo de outros sistemas críticos e

iii

iv

de alto risco.

Palavras-chave: drone; interfaces cérebro-computador; digital twin, ROS2; tomada de decisão;
estado emocional.

Acknowledgements

I would like to thank my advisor Professor Gil Gonçalves for his guidance during this thesis and
for inciting me with interesting and innovative ideas for this project. I would like to acknowledge
my supervisor, Ricardo Faria, for the daily support and availability he has given me.

I would like to acknowledge the Faculty of Engineering of the University of Porto for the
support and preparation for the development of this thesis.

I would like to thank Cagpgemini Engineering for accepting me in this project, for making
available all resources whenever I needed and for giving me access to their amazing laboratory
facilities. With Capgemini Engineering, it was possible to integrate this work within a real use
case and demonstrate the value of this thesis in the best way possible.

I am also grateful to my fellow colleagues at Capgemini Engineering, Jorge Godinho and Rui
Carvalho, who are part of the project’s team and always made me feel well integrated. My special
thanks to Matheus Sanches, who was my primary source of support during this thesis and that
encouraged and assisted me in whatever I needed.

Finally, I’m deeply indebted to my family that have been present in every stage of my education
and academic years and that have always supported me in my decisions with proud. I am extremely
grateful for being provided with all means and resources to follow my own path which led to the
development of this thesis.

Diana Cristina Teixeira Ramos

v

vi

"One has to watch out for engineers
they begin with the sewing machine and

end up with the atomic bomb."

Marcel Pagnol

vii

viii

Contents

1 Introduction 1
1.1 Motivation and Problem Overview . 2
1.2 Research Questions . 3
1.3 Thesis Statement . 3
1.4 Goals . 3
1.5 Research Methodology . 4
1.6 Document Structure . 5

2 State-of-the-Art 7
2.1 Brain-Computer Interfaces . 7

2.1.1 Switching between manual control and brain-computer interface using
long term and short term quality measures [37] 8

2.1.2 A Real-time Control Approach for Unmanned Aerial Vehicles using Brain-
computer Interface [50] . 9

2.1.3 Brain Computer Interface system based on indoor semi-autonomous nav-
igation and motor imagery for Unmanned Aerial Vehicle control [47] . . 10

2.1.4 Mental workload and Emotion analysis on the human brain 12
2.2 Digital Twin . 15

2.2.1 Improving Prediction Capability of Quadcopter Through Digital Twin [35] 15
2.2.2 Reinforcement Learning for UAV Attitude Control [36] 17
2.2.3 Simulation and Digital Twin Support for Managed UAV Applications [32] 18

2.3 Summary . 21

3 Solution Overview 23
3.1 Decision Making System Overview . 23

3.1.1 Digital Twin Subsystem . 24
3.1.2 ROS2 Client-Server Subsystem . 25

3.2 Research Methodology . 27
3.2.1 Brain-computer Interface Headset . 27
3.2.2 Experimental Setup . 30

3.3 Summary . 31

4 Implementation 33
4.1 Headset Connection with the Brain . 33
4.2 The Digital Twin . 34

4.2.1 The Cognitive Digital Twin . 35
4.2.2 The Visual Digital Twin . 48
4.2.3 The Decision Component . 49

ix

x CONTENTS

4.3 ROS2 Client Node . 51
4.3.1 RQT Plugin . 53

4.4 Summary . 54

5 Results and Discussion 57
5.1 Experiments . 57
5.2 Results and discussion . 58

5.2.1 Digital Twin . 59
5.3 Summary . 70

6 Conclusion 73
6.1 Conclusions . 73
6.2 Response to Research Questions . 76
6.3 Final Appreciations . 76
6.4 Future Work . 77

A Cortex Auxiliary Information 79
A.1 Method Calls . 79
A.2 Reproduced Examples . 83

B Descriptive Data Analysis 95
B.0.1 Motion Data Stream . 95
B.0.2 Facial Expression Data Stream . 95
B.0.3 Band Power Data Stream . 95

C ROS2 Auxiliary Information 109
C.1 ROS2 Service Architecture . 109
C.2 Tutorials . 110
C.3 Command Line Operations . 119

References 123

List of Figures

1.1 Crisp-dm methodology diagram (from [39]). 5

2.1 Overview of the feedback system (from [37]). 9
2.2 Workflow of motor imagery tasks (adapted from [50]) 10
2.3 Subsystem’s architecture. 12
2.4 Emotional levels based on arousal and valence (adapted from [40]) 14
2.5 Proposed approach to model update and real-time model estimation (adapted from

[35]) . 16
2.6 Architecture of the GymFC simulator (from [36]). 18
2.7 PaaS architecture for drone usages (from [32]). 19
2.8 Overview of the simulation and digital twin for PaaS (from [32]). 20
2.9 V-drone configuration (from [32]). 20

3.1 Decision making system architecture diagram. 24
3.2 ROS2 system deployment diagram. 26
3.3 Crazyradio PA USB dongle. 27
3.4 Emotiv Epoc+ hardware (from [25]). 28
3.5 EmotivBCI mental command training and testing. 29
3.6 Crazyflie 2.1 quadcopter top perspective, top and bottom views. 31
3.7 Arena composition hardware. 31

4.1 Activity diagram showing the workflow of the digital twin. 35
4.2 Activity diagram showing the workflow of data preparation. 37
4.3 Activity diagram showing the workflow of the modeling task. 43
4.4 Decision Tree algorithm Evaluation. 45
4.5 Random Forest algorithm Evaluation. 45
4.6 k-nearest neighbors and Naive Bayes algorithm Evaluation. 46
4.7 Support Vector Machine and Neural Networks algorithm Evaluation. 46
4.8 Linear Discriminant Analysis confusion matrix. 47
4.9 Confusion matrix resulted from the mini-Xception model (from [29]). 49
4.10 Activity diagram showing the workflow of decision making. 50
4.11 Above perspective of axis of the drone and corresponding command coordinates. 52
4.12 Activity diagram showing the workflow of sending commands. 52
4.13 RQT plugin user interface. 53

5.1 Success and error rates per emotion and per test. 60
5.2 Calm state overall predictions. 61
5.3 Focused state overall predictions. 62
5.4 Distracted state overall predictions. 63

xi

xii LIST OF FIGURES

5.5 Stressed state overall predictions. 64
5.6 Real-time mission with distracting external events with a single drone. 66
5.7 Position of the drone during a flight. 67

A.1 Activity diagram showing the workflow of the connection of the Emotiv Epoc+
headset (from [26]). 80

B.1 Overall data distribution for the motion streams. 96
B.2 Overall data distribution for the facial expressions categorical streams (before one-

hot-encoding). 97
B.3 Facial expressions numerical data stream box plot. 97
B.4 AF4 sensor and theta, alpha, betaL, betaH and gamma bands box plot. 98
B.5 F8 sensor and theta, alpha, betaL, betaH and gamma bands box plot. 99
B.6 F4 sensor and theta, alpha, betaL, betaH and gamma bands box plot. 99
B.7 FC6 sensor and theta, alpha, betaL, betaH and gamma bands box plot. 100
B.8 T8 sensor and theta, alpha, betaL, betaH and gamma bands box plot. 101
B.9 P8 sensor and theta, alpha, betaL, betaH and gamma bands box plot. 102
B.10 O2 sensor and theta, alpha, betaL, betaH and gamma bands box plot. 102
B.11 O1 sensor and theta, alpha, betaL, betaH and gamma bands box plot. 103
B.12 P7 sensor and theta, alpha, betaL, betaH and gamma bands box plot. 104
B.13 T7 sensor and theta, alpha, betaL, betaH and gamma bands box plot. 105
B.14 FC5 sensor and theta, alpha, betaL, betaH and gamma bands box plot. 105
B.15 F3 sensor and theta, alpha, betaL, betaH and gamma bands box plot. 106
B.16 F7 sensor and theta, alpha, betaL, betaH and gamma bands box plot. 107
B.17 AF3 sensor and theta, alpha, betaL, betaH and gamma bands box plot. 108

C.1 Service-client ROS2 architecture (adapted from [44]). 109
C.2 Turtles trajectories. 118
C.3 Turtlesim execution. 119
C.4 Turtlesim execution. 119
C.5 Turtles trajectories. 120

List of Tables

3.1 Demographic’s information regarding the operator. 29

4.1 Data streams provided by Cortex (adapted from [3]). 36
4.2 Motion data stream labels (adapted from [4]). 38
4.3 Facial expression data stream labels (adapted from [4]). 39
4.4 Mental command data stream labels (adapted from [4]). 40
4.5 Head of the integrated dataframe for the calm mental state. 41
4.6 Evaluation of algorithms . 48

5.1 Number of Observations per Emotion and per Level 60
5.2 Distracted Emotion Recognition . 65
5.3 Stressed Emotion Recognition . 65

A.1 Control device method call parameters (adapted from [3]). 81
A.2 requestAccess method call parameters (adapted from [3]). 81
A.3 authorize method call parameters (adapted from [3]). 82
A.4 subscribe method call parameters (adapted from [3]). 83

B.1 Overall Motion data stream statistics. 95
B.2 Overall Facial Expressions categorical data stream statistics. 95
B.3 Overall Facial expressions numerical data stream statistics. 96
B.4 AF4 sensor and theta, alpha, betaL, betaH and gamma bands data distribution. . 96
B.5 F8 sensor and theta, alpha, betaL, betaH and gamma bands data distribution. . . 98
B.6 F4 sensor and theta, alpha, betaL, betaH and gamma bands data distribution. . . 98
B.7 FC6 sensor and theta, alpha, betaL, betaH and gamma bands data distribution. . 100
B.8 T8 sensor and theta, alpha, betaL, betaH and gamma bands data distribution. . . 100
B.9 P8 sensor and theta, alpha, betaL, betaH and gamma bands data distribution. . . 101
B.10 O2 sensor and theta, alpha, betaL, betaH and gamma bands data distribution. . . 101
B.11 O1 sensor and theta, alpha, betaL, betaH and gamma bands data distribution. . . 103
B.12 P7 sensor and theta, alpha, betaL, betaH and gamma bands data distribution. . . 103
B.13 T7 sensor and theta, alpha, betaL, betaH and gamma bands data distribution. . . 104
B.14 FC5 sensor and theta, alpha, betaL, betaH and gamma bands data distribution. . 104
B.15 F3 sensor and theta, alpha, betaL, betaH and gamma bands data distribution. . . 106
B.16 F7 sensor and theta, alpha, betaL, betaH and gamma bands data distribution. . . 106
B.17 AF3 sensor and theta, alpha, betaL, betaH and gamma bands data distribution. . 107

xiii

xiv LIST OF TABLES

Abbreviations

UAV Unmanned Aerial Vehicle
UAM Urban Air Mobility
BCI Brain-Computer Interface
R&D Research and Development
DT Digital Twin
ROS Robotic Operating System
CRISP-DM Cross Industry Standard Process for Data Mining
EEG Electroencephalography
hBCI hybrid Brain-Computer Interface
MI Motor Imagery
LOA Level of Support
SVM Support Vector Machine
LDA Linear Discriminant Analysis
PLM Product Lifecycle Management
PID Proportional-Integral-Derivative
RL Reinforcement Learning
DDPG Deep Deterministic Policy Gradient
TRPO Trust Region Policy Optimization
PPO Proximal Policy Optimization
PaaS Platform-as-a-Service
DDS Data Distribution System
CRTP Crazy Real-Time Protocol
API Application Programming Interface
k-NN K Nearest Neighbors
INTELLI International Conference on Intelligent Systems and Applications
ICAR International Conference on Advanced Robotics

xv

Chapter 1

Introduction

An Unmanned Aerial Vehicle (or UAV), or usually labelled as drone in this thesis, is an aerial

vehicle (or aerial drone) that does not require a human pilot to control it [5]. The common believe

is that these vehicles are employed only by governments, for military affairs as they are frequently

designated for battlefield surveillance, missile launching etc.; however, this technology has been

gaining exponential popularity through the years and higher demand in many other areas. The

most significant evolution was noted by the increasing interest of the end-consumer, civilians,

as these vehicles are accessible to the public via technological stores and can be acquired by

anyone. Typically, these consumers use drones for entertainment purposes (i.e., photography,

cinematography); thus, there are cases where the drone is acquired as an assistive device to aid

consumers with less motor skills on their everyday routines ([37]).

Furthermore, drones have attracted companies due to their visionary utility and are discov-

ered to be relevant and cost-effective systems. One major application is providing monitoring

services: target searching and surveillance for security purposes, and others. As a system whose

sole fundamental purpose is to fly, companies have adopted more creative solutions for it. Amazon,

a dominant e-commerce company, has already developed drone’s systems for package delivering

[10], where it is claimed that a fully autonomous drone is assigned up to a 5 pound-parcel to be de-

livered in 30 minutes. This is one example of an innovative idea that meets the Urban Air Mobility

(or UAM) mission ([18]). It is expected that, by the year of 2030, 60% of the world’s population

will be urbanized ([8]). Due to the emerging new requirements that meet this new reality, the con-

cept of UAM dictates that drones will be a crucial technology to boost this modernization as they

will be the prime mechanism of transportation. The main goal is to connect various points of the

city by creating an airline network to allow multiple drones (swarms) to perform individualized

operations in parallel.

Moreover, considering that a singular drone, being employed in an indoor mission environ-

ment or an outdoor one, is an efficient and effective mechanism for completing simple tasks with

1

2 Introduction

success, when having a set of tasks with higher level of complexity (and/or criticality), an individ-

ual drone might be insufficient due to the amount of time and resources provided. In contrast, a

drone swarm is a network of drones that are allocated to perform connected operations in a more

efficient and organized way and is useful when the operator 1 has these kind of tasks at hand.

1.1 Motivation and Problem Overview

When managing one drone, an operator is responsible for performing standard operations with

maximum security and precision, i.e., taking-off and landing the drone, and even the everyday

tasks, although simple, can provide some complexity. When adding unsafe and critical operations

to the task log, the control complexity increases significantly. The operator needs abilities at its

peak, full attention and focus when performing these operations, to provide a reliable and stable

control. Furthermore, the inclusion of a swarm of drones for performing these critical-safety tasks

is another variable that will require synchronization to avoid drone collisions and will increase the

operator’s mental workload.

Hand control allows operators to remotely send commands to the drones; however, these are

critical systems and especially when they are organized in a swarm, operators need to be cautious

with the commands they deliver. The Brain-Computer Interface (or BCI) technology is an alter-

native control mechanism. Fundamentally, these interfaces are recording systems of the human’s

brain activity that allow data to be collected, analyzed, processed and, ultimately, classified as

corresponding drone commands. The main problem in this procedure is the fact that, as men-

tioned above, the operator must be fully focused to, consciously, decide the next commands of the

drone to achieve the desired goal. The mental state of the operator is not consistent as he is prone

to stress, fatigue, increasing mental workload and other degrading emotions, transforming once

a stable control into an uncertain and insecure one. The operator, when in an unsuitable state to

send commands (under the influence of a degrading emotion), can potentially mislead the drone or

swarm of drones with the wrong commands. In addition, BCI’s require operators to have previous

experiences to learn to formulate commands, which implies multiple training sessions. Even so,

these command classifications are error-prone and contribute to an unreliable control.

This project is placed in the context of the Research and Innovation (or R&D) department

of Capgemini Engineering, a worldwide leader in engineering consulting. As UAM has being

gaining more attention such as the automation of drone systems, this company has been making

efforts for developing innovative solutions that accommodate the demands of these sectors. This

project is one example.

1Human operator that has the required training and licensing to control certain types of drones, according with these
standards [2].

1.2 Research Questions 3

1.2 Research Questions

Through the analysis of the research problem and its background insights, specific research ques-

tions emerge to be addressed by this master thesis:

RQ1 How to estimate the emotional states of the operator using a BCI?

RQ2 How to reduce or avoid the operational impact on the drone or drone swarm when the

operator sends a command under the influence of a negative emotion?

1.3 Thesis Statement

According to the research questions mentioned in section 1.2, the proposed thesis can be addressed

in the following manners:

TS1 Regarding RQ1, the first hypothesis of this work is that: by adopting a (cognitive)

digital twin (or DT) [31] to virtually represent the operator and using machine learning

techniques and recorded data from a BCI, it is possible to process, filter and predict the

mental emotional condition of the operator.

TS2 Regarding RQ2, the second hypothesis of this work is that: with the goal of validating

the formulated commands, a digital twin is composed by a main component, a cognitive DT,

for mental emotion detection and a complementary component, a visual DT, for visual facial

expression detection. In this way, the digital twin can detect whether the operator has high

mental workload and/or impactful emotions, at both mental and visual levels. Then, it will

decide whether the commands produced should or should not be sent to the drone or swarm

of drones. The visual DT aims for minimizing classification errors from the cognitive DT,

preventing some commands to be sent to the drone or swarm of drones under the influence

of a mental negative emotion. Additionally, a Robotic Operating System (or ROS) 2 client

node can be used to send the commands to the drone or swarm of drones.

1.4 Goals

According to the context and research problem explained above, the set of sequential goals defined

for this master thesis are the following:

1. Getting acquainted with the technologies required for the research, implementation and val-

idation of this topic, particularly learn and operate with the third-party application involved

(introduced in section 3.2.1), relevant to the training (of mental commands) and creation of

profiles for such testing scenarios;

4 Introduction

2. Design and development of a machine learning subsystem, based on a data mining method-

ology (introduced in section 1.5), for data analysis and building, training and testing a cogni-

tive emotion prediction model (cognitive digital twin), implemented in python, for real-time

cognitive recognition based on data gathered by a BCI (introduced in chapter 3);

3. Research and integration of an visual digital twin, built under a machine learning procedure

in python, for real-time emotion prediction model based on data gathered by a webcam

(introduced in chapter 3);

4. Design and development of a decision making component implemented in python, that will

retrieve real-time predictions from both visual and cognitive digital twins and operate as

a layer for deciding whether the mental commands classified should be sent to the drones

(introduced in chapter 3);

5. Create a connection between this solution and the real drones, implementing a commu-

nication channel for sending the required information, resulted from the decision making

system, based on a client-server pattern for the ROS2 (whole solution explained in section

3.1.2.1).

1.5 Research Methodology

The main part of the solution that this thesis proposes involves data mining techniques and machine

learning, which can be integrated by various methodologies to ease, structure and organize the

research plan.

The methodology adopted in this project was one of most common ones: the Cross Industry

Standard Process for Data Mining (or CRISP-DM) methodology. Although this one has a clear

separation of steps required for achieving the project’s goals, the project can also be changed to

meet new emerging requirements or, as new knowledge is being gathered throughout the project,

there is the need of refining previous procedures, and so, although this represents a sequential

methodology, it is also characterized by its agile development.

As illustrated by figure 1.1, this methodology depicts six main tasks, which are briefly ex-

plained bellow. For more detailed information and adaptation to this specific project, the integra-

tion of this methodology and the detailed implementation are described in chapter 4.

1. Business understanding: first step is to assess the project at a more high-level perspective

and outline an implementation plan according to the business goals and specified require-

ments (described in section 1.4).

2. Data understanding: second step is to collect data from the required sources, analyze its

format and assess the value and contribution of each fetched feature for the dataset as a

whole, evaluating as well the quality of the information, i.e., finding missing values (de-

scribed in section 4.2.1.1 and appendix B).

1.6 Document Structure 5

Figure 1.1: Crisp-dm methodology diagram (from [39]).

3. Data Preparation: third step is to take the knowledge learnt from the data’s insights and

select and perform modifications to the dataset to prepare it for the modeling phase. Data

preparation is a crucial step that has a direct impact on the outcome and performance of the

predictions models (described in sections 4.2.1.2.1, 4.2.1.2.2, 4.2.1.2.3 4.2.1.2.4).

4. Modeling: fourth step is to model and manipulate data, using the prepared dataset from the

previous phase as an input, to build a prediction model by training and testing a machine

learning algorithm. From the performance results of the algorithm’s validation, it is possible

to assess the model in terms of quality of the predictions and choose the best fitted for the

data mining problem at hand (described in section 4.2.1.3).

5. Evaluation: fifth step comprehends that, with the chosen prediction model, its outputs

and performance evaluation, it is possible to gather new knowledge and align it with the

business and data mining goals established in the beginning of the project (described in

section 4.2.1.3).

6. Deployment: this last step is related to the deployment of the resulted product, maintenance

and production of last reviews and conclusions for the overall project (described in chapters

5 and 6).

1.6 Document Structure

This document is divided in six chapters as it follows:

6 Introduction

Chapter 1 - this is the current chapter where the context, research problem, research questions,

thesis and methodology were presented, in addition of the motivation for this thesis and

goals.

Chapter 2 - this chapter (2) is related to literature review of the state-of-the-art technologies that

cover this thesis’ research area (BCI and DT) and problem, where there are described studies

implemented in specific use cases, which can be useful for the thesis solution.

Chapter 3 - this chapter (3) displays the solution as a whole and its individual components at a

more high level perspective, showcasing the required materials and experimental setup are

explained.

Chapter 4 - this chapter (4) explains the implementation, design choices and all details and efforts

for reaching the proposed goals.

Chapter 5 - this chapter (5) outlines the verification and validation plan, where the conducted

experiments are described with details and results are shown.

Chapter 6 - this chapter (6) presents the in-depth findings of this research topic from the results

registered during the experiments and gives an answer to the research questions placed in

the start of the thesis.

Chapter 2

State-of-the-Art

This chapter is related to the state-of-the-art of both digital twin and brain-computer interface

technologies that are crucial for the understanding and development of the proposed solution. The

first section is the literature review regarding the brain-computer interfaces and their usages on

drone management, other research areas, in addition to mental workload analysis and emotion

classification based on BCI data. The second section reviews related works where digital twin was

an applicable solution for drone problems and for other similar industry use cases. Each study is

followed by its paper title, context, research problem, overview of the solution, a more detailed

explanation of the solution and validation.

2.1 Brain-Computer Interfaces

Brain-machine interfaces were a great invention phenomenon at the time they started to be concep-

tualized. Even nowadays, a time characterized by its modern, digital and exponential technological

advancements, BCI is not a common topic, off-the-shelf technology, and is being mostly used for

research purposes.

BCI’s are defined as "a device that connects the brain to a computer and decodes in real

time a specific, predefined brain activity" [38]. They can use direct or indirect methods to do

so, namely by evaluating the nerve cells activity or by assessing the levels of blood oxygen for

these cells [38]. Essentially, these mechanisms are built under the concept of mind controlling

something, depending on the subject, which, at first glance, most people will resemble it as some

science-fiction theory of some sort.

These mechanisms are around since 1924, when appeared the first record of the brain activ-

ity with support of Electroencephalography (or EEG) when assessing a subject with a probable

brain tumor with needles electrodes [38]. The first concrete device for this type of recording was

composed of wires connected to the scalp of the patients. Obviously that these devices evolved

7

8 State-of-the-Art

drastically. Currently there are incomparably more refined headsets that are comfortable and ef-

fective (for instance, the EMOTIV EPOC+ headset [25]).

This section of the state-of-the-art describes how the BCI mechanism can be implemented to

solve some diverse problems. Not also apply to drone-related use cases but also to other industry

examples (games and others).

2.1.1 Switching between manual control and brain-computer interface using long
term and short term quality measures [37]

Accessibility is a complex topic that is growing in popularity and more systems are designed and

developed with this matter in mind. When reading about this subject, it is common to general-

ize to the portion of humanity with blindness or with severe ocular diseases; however, there are

individuals with motor disabilities that also require supportive systems on their everyday lives.

Assistive devices are designed to help people extending their capabilities in performing certain

activities they would no longer be able to do by themselves. One crucial point on these systems is

how this individual can control them since their motor qualifications is limited. Most supportive

systems require a single input form from physical movement [37], such as a finger motion, yet,

besides of the physical impairments that restrict the ways of controlling such mechanisms, the

quality of these signals degrades, due to inner factors of the individual, i.e., build-up fatigue or

inconsistent motion triggered by spams.

A study was presented in Frontiers in Neuroscience conference that showcased a rather inno-

vative way of surpassing the problem mentioned above [37]. The goal of this study was to propose

a hybrid brain-computer interface (or hBCI) that would enhance assistive device’s functional ca-

pabilities by assessing the signal quality and improving the functionality consistency through a

mix of cognitive and physical input forms.

This proposal is composed by a BCI which is the cognitive signal provider and a joystick as

the physical signal provider. Both of these mechanisms have their disadvantages on account of

those internal factors, so the first step was to pick the short-term and long-term quality metrics (for

instance, BCI instability, joystick shaking and others) that would more effortlessly distinguish odd

signals and, consequently, detect inefficiencies on the system functioning [37].

As illustrated in figure 2.1, the individual equips with both cognitive and physical providers

and uses both when performing an operation, thus only the mechanism with the best quality sig-

nal gets the control. When performing some operation, the system collects signal data from both

providers and quality measurements are constantly being computed considering the metrics de-

fined. When the quality of the signals of the current provider drops below the threshold, that is,

the limit value accepted for the quality standard, then the system sends feedback to switch from

the current technology to the other. For instance, if the BCI is the controlling technology and the

individual breaks his concentration, which leads to a decrease in the signal quality, the system

might switch the mode from the BCI to the joystick, turning the physical device the dominant

control mode.

2.1 Brain-Computer Interfaces 9

Figure 2.1: Overview of the feedback system (from [37]).

To validate this approach, each individual would have access to a car game, where they would

drive it and collect as many coins on their path as they could and surpass the obstacles that occa-

sionally appeared. They would rely on both modes of operation, each at a time.

This study concludes that using a combination of two input signals, cognitive and physical,

helped individuals increase their points on the online car game; however, the experiments would

need to be applied to real patients and real use cases. The main issue to point out is that this system

has into consideration many parameters that are adjusted according to the user’s profile, thus, each

patient is unique to its condition so one crucial attribute of this system would be its parameters and

weighting methods to be flexible with the intention of each caretaker portray their patient in detail.

Additionally, this framework can be expanded by applying more quality parameters, weighting

methods and more input signals all together.

2.1.2 A Real-time Control Approach for Unmanned Aerial Vehicles using Brain-
computer Interface [50]

BCIs have been around for a while and have demonstrated to be a multi-purposed technology when

implemented on many sectors beyond the medical scope, one of them being the drone’s control

systems. There are many studies that give an overview of these systems and many perspectives on

their development, evaluation and value; nevertheless, signal processing and classification, which

are main data mining tasks that compose these systems, involve common algorithms, for instance

SVM, that give acceptable and reliable outcomes.

When applying these same mechanisms on high-speed control systems, the problem becomes

apparent. SVM’s time complexity is O(nd2) where n is the number of data points and d the

dimension, which means that the larger the dataset, the higher will be the training time with it

[12]. In summary, these popular algorithms are not adequate for these types of situations due to

their low-speed classification. When handling critical systems like drone’s, not also we need to

consider having reliable models that produce accurate predictions but also the runtime that they

need to do so.

10 State-of-the-Art

To tackle this problem, it was made a study where the authors developed a classification

methodology that, by mixing the Common Spatial Paradigm (CSP) and the Linear Discriminant

Analysis (LDA) algorithms, they were able to improve classification precision in real time and

validated the approach with a fixed-wing drone use case.

For this procedure, an EEG headset will record the brain activity, following an acquisition

protocol. This protocol incorporates a motor imagery (or MI) acquisition mechanism that involves

four tasks as illustrated in figure 2.2. Motor imagery tasks are based on visualizing physical

movements instead of performing them, in other words, the subject would imagine certain motions

like moving one hand. The outcome for distinctly identify each movement and tasks now lays on

the algorithms of classification.

Figure 2.2: Workflow of motor imagery tasks (adapted from [50])

With the data in hand, the classification is a procedure with great importance for this method-

ology. Choosing CSP and LDA algorithms had a reason behind it. First, the authors identified

points of interest: handling noise, frequency band and channel selection [50]. CSP is a feature

extraction algorithm that uses spatial filters to differentiate the classes of data more distinctly and

that copes well with noise [7]. The authors describe those spatial filters "result in optimal vari-

ances for the classification of two motor imagery signals" [50]. Secondly, the authors applied

LDA algorithm for training models which is a binary classification algorithm that aims to divide

the dataset in two classes. Another approach was also explored due to the limitations of the binary

classification methodology, because it only considers two classes as a classification discriminant;

however, when having more than these two classes, another algorithm must be used. In this case

the authors explored the SVM algorithm with the non-linear kernel.

To validate this methodology, a fixed-wing drone was chosen. As soon as the LDA algorithm

gave its predictions, the outcomes would be sent to the drone. The experiment involved 14 in-

dividuals with no previous experience with the BCI technology and needed to be submitted for

training for the usage of the BCI. In a general appreciation, the approach proceeds as the authors

wanted as it gives a good overall real time accuracy. The performance evaluation was based on

three metrics: the LDA accuracy, the SVM accuracy, the average focus time for some imagery

tasks and the maximum reached focus time for each subject. Both accuracy evaluation did not go

below 0.77, from 0 to 1, although, one of the individuals had 505 seconds of maximum focus time,

which is significantly higher than the others (the second had about 367 seconds) [50], due to the

fact that he/she does Yoga, which is a known sport to increase mental and physical stability [9].

2.1.3 Brain Computer Interface system based on indoor semi-autonomous naviga-
tion and motor imagery for Unmanned Aerial Vehicle control [47]

As commonly perceived by most people and probably being the main usage for it, drones are

featured as a system with significant impact for outdoor activities. Thus, these systems can also be

2.1 Brain-Computer Interfaces 11

implemented for indoor tasks, for instance, target searching. This is an important one considering

the effect that it can give at the level of an emergency, i.e., searching for someone on a fire situation,

inside a building.

Although this may seem a very alluring solution, problems can arise unexpectedly and add

more complexity to the task at hand. The human operator is a crucial piece for smoothing out the

procedure, in other words, having a fully automated system might not correspond to the expected

results. The human operator plays an important role on the system; nevertheless, the addition of

the human interceptor also rises some complications. Depending on the operator’s profile, it will

reflect on the control system of the drone. The system itself lacks a stable and standard control

system.

To fill this gap, a study was made to develop a decision-making system, featuring MI and a

semi-autonomous system through a BCI equipment [47], to counter balance the computational

costs required to give some level of autonomy for the drone. This enabled the drone to detect and

dodge obstacles at its course and provide some feedback regarding which path to follow.

This system is divided in two subsystems: the decision-making and the semi-autonomous

navigation. The first one is responsible for fetching the data recorded by the BCI equipment and

classify it as commands, i.e., by applying data mining techniques. Figure 2.3a illustrates how this

subsystem is organized and the workflow for classifying the data. Two vital phases are the feature

extraction and classification tasks. For the feature extraction step, the authors applied an improved

cross-correlation algorithm which, for the nature of this context, was the most beneficial in terms

of determining more valuable information and provides an effective noise reduction [47]. For

the classification task, the authors opted for a logistic regression algorithm due to its "low model

complexity and low risk of overfitting" [47], converting the output into drone commands.

The semi-autonomous navigation subsystem (figure 2.3b) has a higher level of intelligence

since the human operates in it. As part of the experiment, which is detailed above, there are

two types of flight: simulated and non-simulated indoor environment. This system collects those

environmental variables from both modes so that the drone can dodge the obstacles and give the

feedback to the operator in terms of possible directions to follow. These directions are displayed

in a real-time video screen so that the operator acknowledge them and perform MI tasks (for

example, moving the left hand) accordingly with the direction they want to take. This data enters

the decision making subsystem and results in drone commands, which are sent to the drone itself

and the loop continues.

To validate this approach the authors performed a set of experiments. The subjects had to go

through an initial experience, by following some random MI tasks that appeared on the screen and

then performed some simulated flight-related tasks following defined paths to calibrate the system

(MI experiment). Now for the actual goal of this study, the authors then performed an indoor target

searching experiment. The individuals that participated in the MI experiment, plus others who had

not were included. The aim was to take off the drone from its initial position and find the target

that was hidden somewhere on the site which map was unknown to all subjects. This task was

split into two parts: (1) all subjects equipped with the BCI and performed the experiment and (2)

12 State-of-the-Art

(a) Architecture of the decision-
making subsystem (adapted
from [47])

(b) Architecture of the semi-
autonomous navigation subsys-
tem (adapted from [47])

Figure 2.3: Subsystem’s architecture.

only the left-out individuals from the MI experiment performed without the BCI equipment, via a

mobile phone.

Regarding the MI experiment, results indicate that the algorithms for feature extraction and

classification were highly accurate and effective (lowest value for accuracy was 0.91) and outper-

formed other comparable algorithms (i.e., CSP) [47]. The subjects that were not present in the MI

experiment had more difficulties adapting to the MI tasks (the trajectories were not as straight),

but they improved their control over time, which indicates that unprepared individuals can learn

and handle the system successfully within limited time. Following this narrative, the subjects that

were present in the first experiment had smoother trajectories and had a better control of the drone,

proving that this system reached its expectations.

2.1.4 Mental workload and Emotion analysis on the human brain

As the main goal of this thesis is based on defining a system capable of discriminating the opera-

tor’s emotional states, in this section it is presented two studies that analyzed the emotion spectrum

of subjects and the impact of increasing mental workload on drone operator’s via a BCI.

2.1.4.1 Mental Workload Assessment for UAV Traffic Control Using Consumer-Grade BCI
Equipment [13]

Critical systems are defined as applications with strong reliability and quality-persistence as they

cope with tasks which might outcome in significant losses when there is an alteration on their

internal state [34]. For instance, the failure of systems that handle big volumes of sensitive data

2.1 Brain-Computer Interfaces 13

can lead to loss of important data or the failure of safety-critical systems can lead to injuries or

even death.

One example of a critical system is a drone. Drones have an important role on many scenarios,

because they perform operations that are physically unreachable for humans, thus they are more

intelligent systems that require a different control. Without proper control of the flight, there isn’t a

way of ensuring that the system won’t drift from its initial operation in response of some external

factor and this is where the human layer has an important role. When performing such critical

tasks, these systems must be consistently at its peak of performance, which is exhausting for the

human operator as he is prone to fatigue and other natural deterioration that lowers the expected

efficiency. One possible solution is implementing a system with multiple Levels Of Autonomy

(or LOAs), that is, the automation of a system in different degrees in which each one gradually

discriminates the level of support from external entities to perform some operation.

It was published a paper that targeted the implementation of a system with a LOA’s framework

to support drone’s flight control. Since the drone’s human operator performance could be affected

by accumulated fatigue, the goal was to give the drone some degree of autonomy to decrease the

impact of the operator’s inefficiencies [13], by separating this autonomy control in different levels

that would switch accordingly with the operator’s mental state.

Before jumping into how the authors developed this solution, it is also important to mention

how they uncovered a method of evaluating the operator’s mental workload. Mental workload,

or cognitive workload, is defined as the cognitive effort required from an operator to perform a

certain task [17]. The authors opted to use the BCI technology to read brain waves signals to

evaluate the operator’s mental state. Now concerning the LOAs, the system needs to acknowledge

when to switch from one level to another, which implies that the system must adapt itself to the

operator or, in other words, it needs to develop prediction capabilities. A prediction model was

developed for this purpose with support of the Support Vector Machine (or SVM) classification

algorithm.

There were four tasks with different difficulties that contributed for the operator’s cognitive

assessment: M1 (a drone would follow a path and detect and dodge obstacles), M2 (two drones

that would have theirs paths intersected), M3 (five drone flights in which three of them would

intersect each other) and M4 (six drone flight that needed the operator’s assistance). Due to the

ease of successfully completing the task M1, the data resulted from this mission was considered the

baseline for future comparisons and, because of the increasing mental pressure, the data fetched

by M4 was considered a reference. To validate this approach, ten subjects performed the four tasks

above, each one equipped with the Emotiv Headset ([25]).

Two of the ten participants only successfully completed one mission, which made the training

portion of the model harder due to the classes’ imbalance. The accuracy of the predictions of both

the sets; test set and validation set; are similar which leads to the conclusion that the model is

not overfitted and should make accurate predictions when tested by other subject’s test cases. In

the future, the author’s aspiration is to perform online assessment, instead of offline evaluation

performed this study.

14 State-of-the-Art

2.1.4.2 Detecting Emotion from EEG Signals Using the Emotive Epoc Device [40]

There is a growing urge of software to be supported with facial and voice data collection from

users for emotion recognition. Although these systems can classify human emotions, based on

these data streams, with satisfactory results of accuracy [40], there is a need to rely on other

data streams. Facial and voice data are manipulated by the brain and therefore filtered, while the

processing of human brain waves allow the further analysis of inherent emotions [40].

It was developed an approach for emotion recognition based on EEG signals as input, triggered

by specific sounds. By means of machine learning techniques, the goal was to classify emotions

as levels of arousal (or excitement) and valence (defined what is a positive and negative emotion).

As displayed by figure 2.4, arousal and valence can be organized as axis and can define multiple

categories of emotions; for instance, low levels of arousal and negative values of valence can mean

the brain is in a sleepy state.

Figure 2.4: Emotional levels based on arousal and valence (adapted from [40])

Values of arousal and valence can be computed according to the alpha (8-12Hz) and beta (12-

30Hz) frequency bands of EEG signals, as described in [40]. For this purpose, the authors chose

the Emotiv Epoc headset as a BCI for data collection, which allows band power data stream to be

recorded that included the alpha and beta bands. This study involved six subjects (two males and

three females). They were subjected to a sets of sounds 1 (in sessions of five seconds) (from IADS

library of emotion-annotated sounds [40]), that would trigger stimuli from multiple positions on

the map (figure 2.4). Between these sessions, a 10-second silent rest was inserted to set a neutral

emotional state.

The authors evaluated two classifiers: Linear Discriminant Analysis (or LDA) and SVM, on

the classification of the emotional states of the subject in the following classes: happiness, anger,

sadness, and calm. The resulting dataset was split in 90% for training the algorithms and 10% for

validating the models. Average accuracies for depicting high-low arousal and positive-negative

valence were 77.82% and 80.11% and the best accuracies were 83.35% and 86.33%, both with

the SVM (radial function kernel) [40]. Overall, the models were able to distinguish the emotional

states without any specific training of each emotion by the subjects.

1Sounds that were stimulates high/low values of valence and arousal [40].

2.2 Digital Twin 15

2.2 Digital Twin

Nowadays, a digital twin is described as a virtual representation that carries information to realis-

tically behave, change and look like some physical hardware. In fact, it is formally introduced as

"a set of virtual information constructs that fully describes a potential or actual physical manu-

factured product from the micro atomic level to the macro geometrical level" [31].

The digital twin concept was not always this straightforward and was refined overtime. The

idea was once mentioned in 2002 by Michael Grieves when describing a model for Product Life-

cycle Management (or PLM) which, at first sight, seem two very different subjects. The interesting

part was that Grieves hypothesis was that there were two models of the same system: one physical

and one virtual that carried all specifications of the first one and there were links between the two

spaces. Both models would be synchronized and there would exist a data transferring between

them [31]. This narrative already has some similarities with the digital twin we know of today as

it covers the key points of the technology. To this point forward, this model of PLM became to

be referred as the mirrored spaces model until it was adopted by NASA in aerospace projects in

which they associated with the jargon digital twin.

The premise of this technology is somehow restricted to its purposes but also abstract enough

to be applicable to many industry cases. It is constantly evolving to serve for each project needs.

One variant that derives from it is the digital twin environment [31] with predicting capabilities

which is the branch where this thesis and related work fit into. The main goal is to have a simulated

environment with high-fidelity physics for training the digital twin and evaluate if it learned from

the experiences. The digital twin should gain predictive capabilities to anticipate the hardware’s

response or behavior in situational events during runtime.

This section of the state-of-the-art is specifically regarding the application of the digital twin

environment with multiple industry use cases, targeting the drones as the test subject.

2.2.1 Improving Prediction Capability of Quadcopter Through Digital Twin [35]

When operating complex systems that are connected by many components, due to slight differ-

ences in the manufacturing process (it is not possible to have two identical pieces), each part of

the system is associated with a range of measurements which represents an uncertainty rate [35].

This is one of the main problems when dealing with physical mechanisms: we can think of the

final system as a whole; however, we need to consider the irregularities on each of its fragments.

Another concern is monitoring and optimizing these systems’ processes [35], which is an

increased interest when we have such diversities between the same system and is harder to predict

whether the system is functioning in a correct way and where it is failing, if that is the case. In

other words, having a standardized monitoring/predicting process, where the performance of the

system is expected to be the same for every similar system, as well as for the fault tracking, is not

very efficient or even accurate.

A research work emerged from this context with the intent of proposing a framework to im-

prove the estimates of certain measurements of physical systems, more specifically a quadcopter

16 State-of-the-Art

or drone, by implementing a virtual layer, i.e., a digital twin, that would represent the real device

and predict its performance [35].

This approach implies that each piece of the quadcopter has its own prediction models that

should learn with each experiment, be updated through time and, ultimately, accurately anticipate

some metrics that are valuable to the end-user. An important metric that is highlighted in this study

is endurance, between many others. As explained above, because we are handling diversities on

the same version of a component, another mentioned metric is the maximum range [35].

Figure 2.5: Proposed approach to model update and real-time model estimation (adapted from
[35])

As demonstrated in figure 2.5, in a closed loop, the models receive real-time information from

the sensors of the quadcopter, proceed to predict the wanted metrics and perform the operation.

Once the operation ends, new data collected during the experiment is compared to the earlier

predicted data and the models are adjusted to become better fitting. It is important to emphasize

that each of these components have their own models, which are developed considering many

inherent variables and aerodynamic theories.

To validate this approach, the team conducted two experiments to predict the quadcopter power

consumption in hover condition. The experimental flight is just a normal flight where the quad-

copter has some mission details with tasks or requirements it needs to fulfil. While the mission

is occurring, more and more information is being fetched by the sensors and is going to be used

to refine the component’s models hyper parameters, i.e., what they refer as coefficient calibration.

The other experiment is supported by a digital flight that continuously calculates the metrics based

on these same requirements and real time data collected by the sensors. At the end, the power

consumption values between the experimental flight and the digital flight are compared.

As the number of experiments increases, the prediction of power consumption improves and

the model gets less affected by noisy data, provided by situational conditions from the experi-

mental flights. When the process is completed, as the refined model is now comparable to the

quadcopter, it turns into its digital twin.

2.2 Digital Twin 17

2.2.2 Reinforcement Learning for UAV Attitude Control [36]

Control systems are mechanisms that are usually required by autopilot technologies. More partic-

ularly, when implementing autopilot functionalities on drones, urges the need of considering two

aspects: (1) maintaining some support and stability on the flight, which is an inner task, or inner

loop [36], and (2) an outer loop [36], or mission tasks like having flight information provided by

sensors, illustrated by the usage of the way-point navigation or GPS navigation.

Most flight control technologies that are required for the first aspect mentioned and responsible

for controlling the assets of drones, are based on the Proportional-Integral-Derivative (or PID)

control systems [36]. These systems are highly reliable due to their process of systematically

computing and updating parameters regarding their components and are closed to the optimal

performance when a stable environment is achieved, with no influences from external factors [36].

Nonetheless, when the environment is not stable and have other unknown variables that impact

the system, like aerodynamic factors, the performance of this controller decreases significantly.

This is a major concern when developing an autopilot system. Realistically, while drones are

performing some task or mission, being indoors or outdoors, it is inevitable that external events

occur and triggers a change of the current state of the system. PID controllers are not capable

enough to adapt to issue this concern.

A study emerged to address this issue and is based on a refined solution that promises deliv-

ering more realistic approaches when handling attitude control systems. This study describes a

modern simulator, called GymFC, that realistically and accurately implements possible external

dynamics supported by physic laws. The goal of GymFC is to provide a training platform to put

drone’s control systems under test. A virtual representation (digital twin) of the hardware is used

to learn from the experiences of the simulation and be deployed to the physical hardware if the

desired outcomes are achieved.

As illustrated in figure 2.6, GymFC is composed by many tiers: a digital twin tier, a commu-

nication tier and an environment interface tier, which were developed during this study in addition

of the usage of the gazebo simulator as a baseline for visualization.

The digital twin layer has a crucial role in this system. Reminding that the main goal of

GymFC is to have a realistic and accurate flight simulation so that the drone can virtually learn

from the experience and gather knowledge to apply to real case scenarios for the sole purpose of

learning attitude control policies, when we have the simulated environment, we will also need the

closest digital representation of the hardware to simulate its exact behavior. This layer functions

around the collaboration of the gazebo simulator and an aircraft plugin, in addition of its endpoints

established for the communication layer. Furthermore, the communication layer provides an indi-

rect connection from the digital twin and the higher layers, such as the environment interface and

the agent itself. The last layer connects the rest of the system to the agent.

The evaluation of the simulator was based on training controllers with Reinforcement Learning

(or RL) with the support of algorithms from the neural-network family, for instance, Deep Deter-

ministic Policy Gradient (or DDPG), Trust Region Policy Optimization (or TRPO), and Proximal

18 State-of-the-Art

Figure 2.6: Architecture of the GymFC simulator (from [36]).

Policy Optimization (or PPO). The goal is to experiment and discover which one of these RL

algorithm has the best performance. To analyze and compare the algorithms, some performance

measurements were defined, some of them being the stability of the response until the simulation

reaches mid duration.

With the same conditions established for all evaluation simulations, the authors distinguished

the PPO algorithm as this had a better performance than PID in almost all metrics and has proven

to be a more refined attitude controller than PID itself. In conclusion, this study helped figuring

out that RL can be applied to correctly train attitude controllers. Although the digital twin was

a small part of this study, it provides interchangeable information to pass from the digital world

to the physical hardware and one of the main goals of the authors for the future is to transfer all

trained data to the physical hardware and perform more analysis.

2.2.3 Simulation and Digital Twin Support for Managed UAV Applications [32]

One of the sectors where drones are becoming more prominent is the smart city industry. This con-

cept is defined as the modern futuristic cities based on a technological foundation and networking

to improve the commodity of the infrastructure for the locals. drones play a crucial role because

they can be used for most monitoring activities (surveillance) and other services [48].

However, the complexity for managing these drones at the scale of an entire city is very high.

Not also arises the concern about developing stabilized control systems to avoid collisions and

other possible unsafe scenarios, i.e., when performing critical tasks, but also about privacy, which

has been a dilemma for the population when accepting these systems in their lives and urban air

mobility management. Other management approaches target territorial domains for drones where

the state of the drone itself should be rather the prioritized information.

2.2 Digital Twin 19

At the light of this subject, it was made a study aiming to make the usage of drones a more

trustworthy technology for its collaborators [32]. The main contribution mentioned on this paper

is the development of a simulation environment built with the Platform-as-a-Service (or PaaS)

paradigm, based on a shared platform and with the support of the digital twin technology.

PaaS is almost an intrinsic pattern that developers look for in cloud computing. According to

Grohmann, PaaS is a "provision of a complete platform, i.e., hardware and software, as service"

[33] to "develop and to provide SaaS solutions or to integrate them with traditional software

applications" [33]. This means that it includes all the infrastructure, development environment

and other required tools for teams to develop a system for the cloud [11]. In the context of this

work, as illustrated in figure 2.7, the authors developed the management controller which is a

cloud service provider that is responsible for managing all client calls. Each physical drone is

connected to this service through their official software, which represents the different nodes with

isolated runtime, saved on the system’s repository. Artifacts like flight data, flight capabilities and

drone resources are handled by what they call the descriptors [32]. The management controller

is also responsible for allocating all necessary data for each client request, i.e., drone application

execution. Each drone has its own flight-related information (restrictions, flight plan, etc.) that

runs under a unique environment, specially made for maintaining its runtime isolation.

Figure 2.7: PaaS architecture for drone usages (from [32]).

Another component of this approach is the usage of the digital twin technology. PaaS gives

the ability to manage and deploy drone applications, yet, part of the problem is finding a way of

testing and uncovering the underlying errors that might lead to drone failures in the future. There

are some virtual representations: of the drone (what they refer as the v-drone) and of the controller

(what they refer as the v-controller). The v-drone acts just like the real hardware and runs the same

code. When having a simulation with a swarm of v-drones, they connect via the v-controller for

20 State-of-the-Art

management and exchange information through communication channels directly with each other

and/or through the v-controller. To specifically proceed to the testing part, a new environment is

introduced into the system.

Figure 2.8: Overview of the simulation and digital twin for PaaS (from [32]).

As described in figure 2.8, the test orchestrator communicates with an agent interface to pre-

pare the test environment for all the entities. Another important aspect is the log feature of the

agent that allows to save all runtime logs when performing the test and be analyzed by the results

analyzer to assess whether the drone or the system itself is compliant or if there is any exceptional

behavior.

Figure 2.9: V-drone configuration (from [32]).

The digital twin configuration is displayed in figure 2.9. Both drones, virtual and real, run with

a small lag from each other and the v-drone will have a replay engine with information captured

from the real drone. The agent entity will receive information from the application and compare it

with the real drone’s application data. In case of dissimilarities between them, it means that there

is some error that might lead to a failure and the system sends a signal.

2.3 Summary 21

To validate this approach, the authors developed a python script containing all configurations

for the digital twin as well as for the tests. The drone would perform some scripted movements

and the v-drone the configurations to equal to the real one. At the end, the assertions and evalu-

ation were performed. Besides the success on the experiments of this framework, the authors are

still improving and considering other options, for instance, a predictive digital twin for runtime

simulation.

2.3 Summary

This chapter presented the state-of-the-art of two technologies: (1) brain-computer interfaces and

(2) digital twin mechanisms, where drone-related use cases and others were depicted.

Brain-computer interfaces are a technology that even though it has been around for almost a

century, they are still being discovered as a viable solution for many research areas. These mech-

anisms connects our thoughts to science by allowing the recording of the human brain waves and

by discriminating the factors that compose our cognitive ideas, materializing them into something

usable. The human brain is a complex organ that is constantly active, producing considerable

amounts of data and we organically interpret it with so much ease that when we try to replicate the

process in computational environments, there is an emphasized effort to produce the same accurate

outcomes. As shown by the studies conducted with experiments, data analysis is a crucial step to

acquire this same successful scenario when applying brain-computer interfaces in a research prob-

lem. This is also a task determined by the context of the problem, that is, some studies refer that

SVM, a popular classification algorithm for machine learning, is not appropriate to be applied

when we have a large dataset and so, other algorithms should be considered. Studies show how a

BCI can be used for measuring the mental workload of human subjects.

The digital twin is a small component that runs on the fourth industrial revolution machinery,

as it envisions the automation of procedures by providing a digital representation of a system.

From a more fundamental level, humans are intelligent beings that have always created refined and

innovative systems to meet life’s needs for improvement; thus, this cycle is ongoing since human’s

existence and one concern right now is how to pass on that intelligence to systems. By providing

simulated environments, researchers and other entities can validate or perform tests on a system

without really compromising its physical integrity. Furthermore, with the same concept, it is

possible to monitor and evaluate one’s status without being physically present. Creating simulated

environments, beyond the complexity of combining high-reliable physics and even replicating the

system itself, predicting ones behavior is the main reason for employing digital twins and the most

intricate task of all. Applying data analysis techniques for creating learning models is almost an

inevitable solution for the data that these models produce and expect to receive (i.e., the predictions

for the hardware’s behavior).

Overall, these studies give an overview of how researchers have implemented BCIs to intercept

our thoughts and organize them as commands for piloting drone’s, which is a research problem

of this thesis. Ultimately, studies also suggest the application of digital twins for simulating and

22 State-of-the-Art

monitoring swarm of drone’s, retiring the human operator to a more supervisory control role. The

application of data analysis and the determination of the most optimal data mining techniques

have a crucial and effective role for both research areas. Considering that this thesis’ problem

and solution focuses on analyzing data collected directly from the brain waves, it is important to

study and learn data analysis techniques to discriminate human emotions and what are the desired

drone’s commands, which also connects to the idea of using a digital twin to intercept, learn and

redirect the classified commands to the drone or swarm of drones. In addition, even though these

are two prominent research areas, there is not a published study that embraces both BCIs and

digital twin for solving drone’s research problems or other industry use cases, which makes this

thesis more unique and this state-of-the-art as an inspiration.

Chapter 3

Solution Overview

This chapter is divided into two sections: (1) an overview of the architecture of the proposed so-

lution, often mentioned in this thesis as the decision making system, and (2) the research method-

ology adopted during this work. First, design choices and high-level insights regarding each com-

ponent or subsystem of the proposed solution are explained. Second, the research methodology

includes a detailed explanation of the needed hardware and tools to implement and validate the

proposed solution, such as the BCI chosen, how was conducted the training of mental commands

by the operator and the drone-related hardware, tools and spaces assembled for the validation of

the thesis, including the complementary communication subsystem adopted for the project.

3.1 Decision Making System Overview

As mentioned in chapter 1, the core goal of this thesis is the implementation of a system, called

decision making system, that captures real-time data from brain-wave activity of a drone operator,

processes and classifies it according to a set of emotional (mental) states. Additionally, this system

should also capture the real-time visual facial expressions of the operator via a camera and identify

them as a set of emotional (visual) states. Ultimately, it decides whether the command formulated

by the operator, during this period, is valid and formulated while the operator was in a stable emo-

tional environment to be sent as instructions to the drone or swarm of drones. Considering that this

solution is integrated in a use case involving real drones, it should be established communication

with the drone or swarm of drones through a ROS 2 client node for transferring necessary data for

the drone to execute the desired operation.

Since this system will handle with multiple technologies and different types of hardware and

data, it was assembled a set of components and subsystems that represent different kinds of oper-

ations (figure 3.1): the digital twin subsystem, containing a cognitive and visual digital twins and

a decision component; and a ROS2 client-server subsystem, containing a ROS2 client node that

communicates with an external server node, that is connected to the project.

23

24 Solution Overview

Figure 3.1: Decision making system architecture diagram.

Considering that this system handles large amounts of data, the whole solution was developed

in python 3.8, a high-level, object-oriented, programming language in script form that delivers

dynamic and robust data processing and provides multiple useful libraries that were often used in

this project (i.e., pandas, pyplot, numpy and others). This project was developed in a visual studio

code environment and under the Windows operating system.

3.1.1 Digital Twin Subsystem

The digital twin is a technology that aims to mimic a real-world component. Although often asso-

ciated with physical hardware, this concept can be also applied in this solution. The human being

is rather a more complex entity and develop its own traits through time, as well as learning how

to react to different scenarios and situations. Machine learning is a useful technique to build the

operator’s profile since it also requires data and learning mechanisms for behavior recognition.

The digital twin can benefit from these technologies to capture the essence of the operator, includ-

ing its naturally involuntary behaviors and inherent reactions, and associate them with a certain

emotional state. In order words, this decision making system is composed by a software subsys-

tem called the digital twin which aims for learning the behaviors of the operator and recognize

its patterns by developing prediction models. Consequently, the digital twin will standardize the

operator’s reactions and associate them with multiple positive and negative emotion categories.

For this purpose, this subsystem is divided into three parts: (1) the cognitive digital twin; (2) the

visual digital twin and (3) a decision component.

Since the primary goal of this thesis is to detect whether the operator is in a suitable, cognitive,

state to send commands to the drone or swarm of drones, at its core, the first component is the main

3.1 Decision Making System Overview 25

one for the composition of the digital twin of the operator. This component requires the training of

a machine learning algorithm with real-time data from the BCI that will output a mental emotion

classification (more details are explained in section 4.2.1). In conjunction with this cognitive

digital twin, it was developed an additional component to improve the accuracy and security of

the resulting decision of this subsystem: the visual digital twin. Although being the core of this

thesis and a suitable proposition for the resolution of the presented problem, it is inevitable that

the cognitive digital twin will have its uncertainties on predicted emotions or else a perfect model

can be associated with an overfitted one. This new component aims for filling the possible failures

of this core solution by, similarly to the cognitive digital twin, standardize the visual features

of the operator through camera footage and classify the current facial expressions as emotional

states. For this purpose, solutions from open-source repositories are searched and the best fitted

one is included within this system. As opposed to the first digital twin, which gathers knowledge

of a certain operator profile, this component is more generic and not exclusive to the operator’s

character (more details are explained in section 4.2.2).

The second part of this subsystem is the evaluation of the operator’s mental and visual emo-

tional states to accept or reject the formulated mental commands to be sent to the drone or swarm

of drones. For this purpose, the decision component will be receiving the classified mental emo-

tion and the visual emotion as complementary information. Since this decision concerns a certain

point in time where the operator has a certain disposition and mood, both the prediction models

should be executed in parallel to ensure that the classifications they provide are from the same

periods of time. In this way, for a certain moment, the system should record information (both

mental and visual inputs), fed it to the digital twins and the system will evaluate if the operator is

in a suitable overall emotional state to formulate valid commands (more details are explained in

section 4.2.3). In a positive scenario, meaning that the visual and cognitive digital twins output

and overall positive classification, the decision component should acquire the classified command

from the Emotiv system 1, as depicted by figure 3.1 (further explained in section 4.2.1.1) and

translate it into a compatible data scheme, so that the drone can process it and execute (further

details on section 4.2.3.1).

3.1.2 ROS2 Client-Server Subsystem

The third and final part of the system is the creation of a ROS 2 client node (using the ROS2

Foxy distribution). This represents another additional software layer that aims to optimize the

communication between the operator, the system and the drone or swarm of drones. Firstly, ROS

is a framework for building robotic-related applications and increases the value of this proposed

solution due to its generality of use, providing more diversity and growth space, and ease of adding

more drones to the whole system (more details about the overall ROS2 subsystem are explained in

section 3.1.2.1 and the concrete implementation on section 4.3). Secondly, another development

1External system whose implementation it not integrated in the proposed solution, but rather is needed for the overall
functionality of the decision making system and is crucial for acquiring the BCI recorded information and command
classification.

26 Solution Overview

environment is needed (visual studio community version) and multiple other dependencies need

to be fulfilled to install, build and execute ROS2 projects on Windows (as detailed in [42]). This

ROS2 node is part of another subsystem of the solution and ultimately connects to an external, pre-

existing, component (a server node), that already provides a platform for drone management. This

subsystem is implemented under a client-server ROS2 architecture (as further detailed in section

3.1.2.1). For more information about this type of architecture and how it works, check appendix

C.

3.1.2.1 ROS2 Server Node

Section 3.1 details the architecture of the proposed solution, comprising all components necessary

to achieve the goals of this thesis; thus, defining a ROS2 client node is not the only artifact required

to achieve real-time communication with the drone or swarm of drones. This section details the

remaining needed components for establishing this communication channel, that are part of an ex-

isting subsystem that manages the hardware. As mentioned above, this subsystem was developed

under a client-server ROS2 architecture, which means there is a server node that provides services

and client nodes that request those services. Considering this, the client node implemented in the

proposed solution does not comprises functionalities to send information directly to the drone, but

rather connects to this subsystem, requesting certain services, allowing information to be received

by it and forwarded to the drone or swarm of drones (for more information about this architecture,

see appendix C).

As described by figure 3.2, the server node that provides services for the decision making

system is called the base station and runs under a Linux environment. This node has its own

subsystem, containing two additional components: (1) the micro-ros agent and (2) the bridge.

Figure 3.2: ROS2 system deployment diagram.

The decision making system will provide a graphical user interface such as a RQT plugin 2, to

accommodate all operations required and developed in this thesis. This plugin will be developed

with the support of QT Creator 3. This will serve as a control panel for the operator to manage all

2ROS’ graphical user interface framework for creating adapted interfaces in the form of plugins [49].
3Multi-platform editor for building applications and graphical user interfaces [19].

3.2 Research Methodology 27

drone executions and to run experiments methodically. When executing any functionality from the

plugin, the communication between the server and the client machine is accomplished through the

Data Distribution System (or DDS) 4. Since ROS2 is not compatible with the drone’s microcon-

trollers, a micro-ros agent was used to translate all information from the proposed, ROS2-based,

system to micro-ros, a lighter and simpler version of ROS2. This agent is connected to a python

bridge, through a virtual serial port.

The bridge is the interface that will allow messaging between the entire subsystem and the

drone. All data that results from the decision making system and that enters into the server ma-

chine, through the invocation of services, will be received by this component. Ultimately, the

server machine will connect to the crazyradio PA (figure 3.3), an USB radio dongle with a max-

imum range of 1 km, that will allow to send radio messages containing the required information

to the drone or swarm of drones. In addition, this communication is possible due to the usage of a

python library provided by Bitcraze called cflib, which is based on the Crazy Real-Time Protocol

(or CRTP).

Figure 3.3: Crazyradio PA USB dongle.

3.2 Research Methodology

This section is related to the research methodology that was followed in this thesis. It is divided

into two themes: (1) the BCI related contents, where it is detailed the chosen headset and how the

training of the mental commands was conducted and (2) the experimental setup, including insights

of the hardware required for the validation of the proposed solution in a real-case scenario, such

as the drone model selected and all its derivative components to execute the experiments.

3.2.1 Brain-computer Interface Headset

The BCI selected for this thesis was the Emotiv Epoc+ headset ([25]), developed by the Emotiv

company. It is one of the most popular devices on this market and commonly used on scien-

tific research (i.e., in study [47]), due to its portability, reliability and connection with multiple

applications and functionalities that composes a complete platform for brain-activity examination.

4End-to-end middleware based on a publish-subscriber pattern for data transferring [27].

28 Solution Overview

Figure 3.4: Emotiv Epoc+ hardware (from [25]).

This model has a built-in gyroscope based on 3-axis as well as an accelerometer and multiple

other artifacts. Regarding the physical specifications, the device has two electrode arms containing

seven sensors, two reference ones on each (as showed on figure 3.4). For achieving good coverage

and quality signal, the operator will need to position these references on the correct location so

that the remaining sensors can be identified. Each sensor has its specific location to be fitted and

the headset already organizes them through the connectors on each arm. The operator will only

have to place the device on a comfortable position and readjust each sensor. Each sensor assembly

is composed by mainly the copper-based sensor and a felt tip. To make the connection, a saline

solution is required for dumping these felt tips; otherwise, the quality of the contact will be low or

even none.

In addition, Emotiv provides multiple software applications for exploring the features of their

headsets, which vary according to the user’s license and type of hardware. In this thesis, it is

used the EmotivBCI application ([21]) with the free-of-charge license. This application allows

the operator to create multiple profiles with customizable demographics, for instance, level of

education, age, gender and others (table 3.1 displays the operator’s profile). For each created

profile, the operator can perform multiple operations: training of mental commands, training of

facial expressions and monitoring of real-time data streams.

3.2.1.1 Mental Command Training

As a fundamental task of this thesis, the operator must learn how to formulate and send commands

through the mind. For this purpose, he must create a profile on the EmotivBCI with his specific de-

mographics (table 3.1), as described above, that will provide additional information for delivering

better results.

For the concrete training of the mental commands, the operator needs to establish strategies

for reproducing each desired command whenever he wants. Considering that the main goal is to

forward commands uniquely through the detection of the brain activity, it is important to highlight

that these strategies will be based entirely on the formulation of thoughts, excluding any kind of

3.2 Research Methodology 29

Table 3.1: Demographic’s information regarding the operator.

Demographic Key Value
Gender Female
Year born 1998
Handedness Right-handed
Education Bachelor’s degree
Nature of occupation Engineering
Language Ability Bilingual
Musical Ability Single instrumentalist
Country of residence Portugal
Country of cultural influence Portugal
Meditation No

muscle motions of the head, for instance, rotation of the head and facial muscle motions, that

would compromise the training of these mental commands. For accurate detection of commands,

the application is supported by a machine learning prediction model based on pattern recognition

to build a profile and refine it each time the user has a training session. Figure 3.5 displays the

panels for mental command training and formulation.

(a) EmotivBCI mental command training panel. (b) EmotivBCI live mode.

Figure 3.5: EmotivBCI mental command training and testing.

According to 3.5a, the application will display a map containing the neutral state, which is

mandatory to have, and the remaining desired commands. This neutral state represents a neutral

mental condition, where the operator defines a relaxed state, meant to provide no command, typi-

cally by remaining still and think of anything. The algorithm of detection will compare the neutral

state to the remaining commands and define their relative positions on this map. The ideal scenario

is to have the commands with as much distinct and separable positions as possible, meaning that

the model can discriminate each trained command with distinction. In this work, two mental com-

mands were trained: right and left, with about 23 training sessions. For each command training,

a cube appears in the middle of the screen to simulate the motion of the command (similarly to

30 Solution Overview

figure 3.5b) and the session lasts eight seconds. If the operator is not satisfied with the training

session, he can discard it.

The strategy adopted for the formulation of the mental commands that best fitted the operator

and that provided a robust procedure for reproducing them anytime was visualizing the cube mov-

ing to the desired direction of the command, for instance, if the right command was being trained,

then the operator would visualize the cube moving to the right.

The main approach here is to train the neutral state interleaved with the remaining commands

to keep the map updated. Each command is trained sequentially, meaning that only when there

is enough confidence for performing the current trained command that another one can be added

to the profile. These training sessions were conducted in multiple days, to incorporate different

states of mind, adapting according to the operator’s disposition and validate if the current strategy

is valid enough to be used at whatever time.

For the practice of the mental commands, the operator accesses the live mode (figure 3.5b),

where the same cube appears and the operator can reproduce whatever command he wants, as

opposed to the 8-second training session with individualized command formulation. Before any

demonstration or validation of the proposed solution, the operator was submitted to a warm-up

live mode session, to switch to a control mode mindset and practice the desired commands for the

mission.

3.2.2 Experimental Setup

Considering that this system is validated with a real-world use case, where the goal is to control a

drone in a live setting, these sections detail how it was arranged the experimental setup, including

insights on the hardware and tools that were used, such as the model of the drone and the area of

flight.

3.2.2.1 Crazyflie Quadcopter

The drone model selected to validate the solution of this thesis is the crazyflie 2.1 quadcopter

(figure 3.6).

With a dimension of 92 mm of width, 92 mm of height and 29 mm of depth, this quadcopter

has a low weight of 27 g, making it a suitable drone for indoor experiments and eases the control

of unexpected situations, without significantly disrupting its surroundings. Regarding the flight

specifications, with a fully charged battery, the quadcopter holds about seven minutes and needs

forty minutes to charge the battery (for more information, check [14]).

3.2.2.2 Arena Location

To execute all experiments in a secure setting, it was assembled a physical environment for drone

flight demonstrations, composed by a four square meter indoor zone, called the arena (figure

3.7b). In the arena, a system similar to a GPS is established, using the loco positioning system

[16], provided by the Bitcraze company ([15]), for locating the drone’s absolute position in the

3.3 Summary 31

Figure 3.6: Crazyflie 2.1 quadcopter top perspective, top and bottom views.

3-dimensional space. In each vertex are positioned a set of anchors (figure 3.7a), which serve

as reference guides, that communicate via radio messages with the drone’s tags 5. Both modules

allow the computation of the absolute location of the drone [16].

(a) Anchor hardware. (b) Arena composition.

Figure 3.7: Arena composition hardware.

3.3 Summary

The core goal of this thesis is the implementation of a digital twin of the operator to predict his

cognitive state and evaluate whether he is in a suitable state to formulate and send commands to

the drone or swarm of drones. Furthermore, two additional software components are proposed

to increase the system’s reliability and security, crucial whenever the cognitive digital twin has its

failures. For this purpose, the proposed solution is developed in a Windows machine with a python

5Hardware component of the crazyflie drone.

32 Solution Overview

3.8 environment, benefiting from its useful data processing libraries to deliver a robust and quick

result in real-time. There are two subsystems in this solution, being (1) the digital twin (containing

the cognitive and visual digital twins and a decision component) and (2) a ROS2 communication

channel for establishing message sending between the system and the hardware, so that the drone

can execute the reproduced command.

Considering that the selection of the BCI headset is a crucial step that will influence the course

of this work, Emotiv Epoc+ device has proven to be a suitable one due to its ease of use and

connection to multiple applications of interest. One of them is the EmotivBCI application that,

among many functionalities, has a section for mental command training and practice, based on

a built-in machine learning model for command pattern recognition. The operator creates his

profile, inserts his demographic information and creates his mental command profile with three

mental commands: neutral, right and left.

The experimental setup includes a single or multiple crazyflie quadcopters, a suitable drone

model for indoor missions, an arena, a specially designed area for flight testing and an end-to-end

communication platform based on the ROS2 architecture to deliver messages from the decision

making system to the drone.

Lastly, for the purpose of establishing a real-time connection between the proposed solution

and the crazyflie quadcopter, a ROS2 client node is created on the decision making system and

communicates with the base station, i.e., the server machine. This machine contains an agent that

will translate information from a ROS2 scheme to a lighter and compatible distribution, micro-

ros. In addition, the machine connects to an USB radio dongle that will allow information to

be sent to the drone through the opening of a bridge, based on cflib, a python library for radio

communication.

Chapter 4

Implementation

In this chapter, implementation of each component/subsystem and step to develop the proposed

solution is explained in detail in the following order: (1) the connection with the chosen headset

and base code; (2) the digital twin subsystem, including the cognitive digital twin (data acquisition,

preparation and modeling), the visual digital twin and decision component (command handling

and computation of coordinates) and (3) the ROS2 client-server communication subsystem. Each

of these components are associated with their corresponding activity diagrams.

4.1 Headset Connection with the Brain

As a starting point, since the Emotiv Epoc+ headset uniquely communicates with the Emotiv server

(or Emotiv Cloud), the system receives data captured from this device through an Application Pro-

gramming Interface (or API). The Cortex API ([22]) is a wrapper built by Emotiv to aid developers

to start their third-party applications by providing multiple tools, for instance the subscription of

data streams (see appendix A), and communicates over JSON requests and web sockets.

Following the official guide of Emotiv ([24]) for the development of such applications, the first

step is to choose a suitable license starting from a cost-free API access with the core functionalities,

an academic one for access to extra applications and EEG research and a business one for custom

software. For this thesis, the cost-free license was selected as it covers all functionalities needed.

The second step is to install the Emotiv App, which manages all Emotiv devices, allows to

create new simulated ones, has quick access to other applications and is responsible for the login

on the application, interaction required to access the headset and all its functionalities.

The third and fourth steps are to register what it is called the Cortex App and receive its ID,

client ID and client secret. Since the purpose is to create a third-party application to access the

server’s information, this mechanism allows these applications to connect to the user’s account

without their credentials, by entering the client’s generated ID and secret.

33

34 Implementation

The Emotiv company provides basic examples to demonstrate the multiple features of the

Cortex API in various languages (Python, C++, etc.), for instance, how the subscription of data

streams is conducted (see appendix A for more information). The connection between the Cortex

API is achieved through the creation of a web socket client that connects to the localhost address,

port 6868, with the support of the web socket secure and JSON-rpc 2.0 protocols, as described in

[20]. Requests incorporate the required method of the service, the parameters (as needed) and the

id of the request. The response incorporates the result of the function called (if successfully exe-

cuted) an error code and message (if unsuccessfully executed) and the matched id of the request.

For example, for getting information about the logged in user, as described in [3], the request is

composed with the following structure:

1 {

2 "id": 1,

3 "JSONrpc": "2.0",

4 "method": "getUserLogin"

5 }

Listing 4.1: JSON request example.

1 {

2 "id": 1,

3 "JSONrpc": "2.0",

4 "result": [{

5 "currentOSUId":"501",

6 "currentOSUsername":"jsnow",

7 "lastLoginTime": "2019-11-28

T12:09:17.300+07:00",

8 "loggedInOSUId":"501",

9 "loggedInOSUsername":"jsnow",

10 "username":"jon.snow"

11 }]

12 }

Listing 4.2: JSON response example (from

[3]).

To access any functionality of the headset, it is required that the user goes through a connection

and authorization procedure, followed by the creation of a session. Figure A.1 represents all steps

required to initiate a session with the headset. By completing all steps described and adding the

credentials to the system, the application will query turned on headsets and connect to the selected

one. A Cortex token will be generated, which is associated with the license, specific Cortex App

and the user, required to be sent in most of the service’s method calls.

Since the Emotiv examples already assembles most function calls in a library and makes the

connection with the current headset for the demonstration of core functionalities, the project was

built above these code bases with an already functional connection to the Cortex API in a synchro-

nized manner.

4.2 The Digital Twin

In the context of this thesis, the digital twin is a virtual representation of the operator and its

main goal is to predict, in real-time, his emotional (cognitive and visual) state. This subsystem

is composed by 3 components, as described in figure 3.1 and in section 3.1: (1) the cognitive

4.2 The Digital Twin 35

digital twin (main component); (2) the visual digital twin (complementary component) and (3) the

decision component.

4.2.1 The Cognitive Digital Twin

The first component is the cognitive digital twin, which uses data collected by the BCI headset

to build a cognitive profile, adapted to the operator. It is the core component of the decision

making system as it will provide decisive information to ascertain the destination of the command.

The remaining components that follow are designated to support the cognitive digital twin and

add complementary information for the decision. This approach involves acquiring data from the

headset (section 4.2.1.1), submit this information to several transformations (section 4.2.1.2) to

create a valid dataset and the creation of a prediction model with the support of machine learning

techniques to build the operator’s emotional profile at the cognitive level (section 4.2.1.3) (tasks

described in figure 4.1).

Figure 4.1: Activity diagram showing the workflow of the digital twin.

4.2.1.1 Data Acquisition

After the session is created, it is possible to subscribe to multiple data streams, that represent

real-time information that the headset captures and/or computes. This data is composed by indi-

vidual data sample objects, uploaded to the Emotiv Cloud, that are continuously sent and match

values from a certain point in time. Table 4.1 contains all streams provided by the headset. Each

subscription response has an associated id, the specific values of the selected data stream and a

numerical timestamp 1 registered by the headset.

Considering all data streams available, in this thesis, four of them are subscribed: (1) the

head motion, (2) the band power, (3) the mental command detection and (4) facial expression

detection. With the exception of the mental command detection, which is a command prediction

resulted from the internal classification model at a certain point in time, the remaining data streams

represent a set of features with high value for the creation of the emotional mental profile, that is,

values that are directly related with the mental state of the operator. For instance, the rotation of

the head can be a sign of discomfort, distraction or even the lack of it a sign of tranquility.

For the classification of the operator’s emotional states, a set of emotions were selected to

represent positive states (i.e., calm and focused), meaning that he is in a stable cognitive state

to send commands to the drone, as opposed to the negative spectrum of emotions (i.e., stressed

and distracted) that detail an unstable cognitive state and, therefore, unacceptable state to send

1The number of seconds that have elapsed since 00:00:00 Thursday, 1 January 1970 UTC.

36 Implementation

Table 4.1: Data streams provided by Cortex (adapted from [3]).

Data Stream Description
eeg The raw EEG data from the headset.
mot The motion data from the headset, captured by the built-in gyro-

scope
dev The device data from the headset. It includes the battery level,

the wireless signal strength, and the contact quality of each EEG
sensor.

eq The EEG quality of each EEG sensor.
pow The band power of each EEG sensor. It includes the alpha, low

beta, high beta, gamma, and theta bands.
met The results of the performance metrics detection.
com The results of the mental commands detection. You must load a

profile to get meaningful results.
fac The results of the facial expressions from muscle motion detec-

tion.
sys The system events. These events are related to the training of the

mental commands and facial expressions.

commands. In this work, the same operator simulated all the four emotions, at multiple days, in

sessions of 8 seconds, to ensure full concentration on the reproduction of such scenarios.

Similarly to the training of the mental commands (mentioned in 3.2.1.1), the training of the

mental emotional states need to follow a certain strategy established by the operator. Even though

emotions are natural reactions and associated with specific involuntary or voluntary motions and

gestures, these different reactions can be similar enough to induce the prediction model in error.

So, the operator needs to have concrete physical and mental dispositions pre-defined for each emo-

tion. For instance, in this case, the calm state is defined by low, almost non-existent, motion of the

head and facial muscle motions, and the operator is looking straightforward, blinking very slowly,

to deliver a calmer and neutral disposition. The focused state is characterized by a non-existent

or slightly lowering of the head, occasional frowning of the eyes and little blinking, focused on

some task (i.e., reading a text without any interruption or sending commands on live mode on the

EmotivBCI application). Regarding the negative emotions, the distracted one is defined by fre-

quent motions, being facial muscle motions or rotation of the head in high amplitudes and normal

amount of blinking, often boosted by scenarios of conversations with other people, looking around

at multiple objects for short periods of time in conjunction with intense background noise. Finally,

the stressed state is characterized by its pre-preparation before recording, physical workout signif-

icant enough to trigger a heart race and heavy breathing, in addition to constant physical agitation,

small amplitude and often head rotation, facial muscle constant change and frequent blinking.

4.2 The Digital Twin 37

4.2.1.2 Data Preparation

Each data stream response has its own structure, frequency rate and features, which require multi-

ple steps of data pre-processing. Figure 4.2 gives an overview how data preparation is conducted.

Figure 4.2: Activity diagram showing the workflow of data preparation.

4.2.1.2.1 Data Format

The first step of data preparation is formatting the structure of the received responses. Each JSON

object is composed by keys, representing a specific feature or information about the object and with

a corresponding value pair. These objects are commonly associated with a timestamp, registered

by the headset at the time of the recording, the session id and the specified values of a certain data

stream, that vary from type to type, which are received as an array.

The valuable information is grouped in these arrays, on each object that is retrieved, but, when

handling this data, nested lists add unnecessary complexity. The main goal of this task is to convert

JSON objects to python dictionaries, a common data structure for the collection of key-value pairs

and transform these dictionaries to a one-dimensional list of objects with the associated feature

key, which was implicit on the data. In addition, because the registered timestamp is in seconds,

this value is converted to a datetime object (readable timestamp), which will compute the instant

at a millisecond precision.

Concerning the motion data stream, the 12 collected features are presented in table 4.2 with

the matching type and description.

38 Implementation

Table 4.2: Motion data stream labels (adapted from [4]).

Label Type Description
COUNTER_MEMS number Increment by 1 for each sample, reset every

second.
INTERPOLATED_MEMS number 0 if sample was received from the headset. 1

if sample was interpolated by Cortex.
ACCX, ACCY, ACCZ number X, Y, Z axis of the accelerometer.

MAGX, MAGY, MAGZ number X, Y, Z axis of the magnetometer.
Q0, Q1, Q2, Q3 number Quaternions of the gyroscope.

As exemplified by code listing 4.3, the mot array has 12 values that matches the features on

table 4.2 in an ordered fashion. Code listing 4.4 is the same object after the formatting transfor-

mations.

1 {

2 "mot": [

3 24,

4 0,

5 0.636,

6 -0.215454,

7 -0.671997,

8 -0.312256,

9 0.965835,

10 0.137209,

11 0.009766,

12 -94.059663,

13 -129.799344,

14 35.739681

15],

16 "sid": ...,

17 "time": 1619707227.7945

18 }

Listing 4.3: Motion raw JSON object

example.

1 {

2 "sid": ...,

3 "time": "2021-04-29

15:40:27.794500",

4 "COUNTER_MEMS": 24,

5 "INTERPOLATED_MEMS": 0,

6 "Q0": 0.636,

7 "Q1": -0.215454,

8 "Q2": -0.671997,

9 "Q3": -0.312256,

10 "ACCX": 0.965835,

11 "ACCY": 0.137209,

12 "ACCZ": 0.009766,

13 "MAGX": -94.059663,

14 "MAGY": -129.799344,

15 "MAGZ": 35.739681

16 }

Listing 4.4: Motion formatted JSON object

example.

The band power has about seventy features, representing the sensor and band at the level of

theta waves (4-8Hz), alpha waves (8-12Hz), low beta waves (12-16Hz), high beta waves (16-

25Hz) and gamma waves (24-45Hz), and is illustrated by object 4.5 (some values were omitted).

Code listing 4.6 is the same object after the formatting transformations.

4.2 The Digital Twin 39

1 {

2 "pow": [

3 14.925,

4 2.526,

5 0.387,

6 0.411,

7 0.525,

8 11.512,

9 ...

10],

11 "sid": ...,

12 "time": 1619707227.8338

13 }

Listing 4.5: Band power raw JSON object

example.

1 {

2 "sid": ...,

3 "time": "2021-04-29

15:40:27.833800",

4 "AF3/theta": 14.925,

5 "AF3/alpha": 2.526,

6 "AF3/betaL": 0.387,

7 "AF3/betaH": 0.411,

8 "AF3/gamma": 0.525,

9 "F7/theta": 11.512,

10 ...

11 }

Listing 4.6: Band power formatted JSON

object example.

The facial expression has five features, as described in table 4.3 that present the detection of

muscle motions.

Table 4.3: Facial expression data stream labels (adapted from [4]).

Label Type Description
eyeAct string The action of the eyes.
uAct string The upper face action.
uPow number Power of the upper face action. Zero means

"low power", 1 means "high power".
lAct string The lower face action.
lPow number Power of the lower face action. Zero means

"low power", 1 means "high power".

Code listing 4.7 is an example of an object of facial expression detection and code listing 4.8

represents the same object after the formatting transformations.

40 Implementation

1 {

2 "fac": [

3 "neutral",

4 "neutral",

5 0.0,

6 "neutral",

7 0.0

8],

9 "sid": ...,

10 "time": 1619707227.8024

11 }

Listing 4.7: Facial expression raw JSON

object example.

1 {

2 "sid": ...,

3 "time": "2021-04-29

15:40:27.802400",

4 "eyeAct": "neutral",

5 "uAct": "neutral",

6 "uPow": 0.0,

7 "lAct": "neutral",

8 "lPow": 0.0

9 }

Listing 4.8: Facial expression formatted

JSON object example.

The mental commands are composed by 2 features as illustrated by table 4.4.
Table 4.4: Mental command data stream labels (adapted from [4]).

Label Type Description
act string A mental command action.

pow number The power of the action. It is a
decimal number between 0 and
1, zero means "low power", 1
means "high power".

Code listing 4.9 is an example of a pull command and code listing 4.10 is the same command

object after the formatting transformations.

1 {

2 "com":[

3 "pull",

4 0.564

5],

6 "sid":...,

7 "time":1559903099.348

8 }

Listing 4.9: Mental command raw JSON

object example.

1 {

2 "sid":...,

3 "time":1559903099.348,

4 "command":"pull",

5 "confidence":0.564

6 }

Listing 4.10: Mental command formatted

JSON object example.

Although crucial for the main goal of this thesis, this data stream is handled in a different way

than the rest. The classification of a command not also does not add any value to the dataset but can

worsen its accuracy. The number or category of commands should not influence the classification

of the operator’s mental state, meaning that, once these features are added to the dataset, the model

4.2 The Digital Twin 41

will rather learn that is more likely the operator is in a certain mood if he sends a certain amount of

a command. For instance, if he only sends left commands to the drones when he is focused, then

the model may never output a focused mental state at a time of a right command. So, this data

stream is discarded from the training of the digital twin, but added during the live experiments.

4.2.1.2.2 Data Integration

As mentioned above, each request and response correspond to a single object of a certain data

stream for a specific time instant. During data acquisition, these objects are appended to individual,

categorized, temporary lists and, when ending the session, these lists are encoded to files as python

objects. Additionally, each data stream has its own frequency rate, meaning that one type can

receive five responses per second, and others thirty. The resulting datasets will significantly differ

in number of observations and, since JSON objects are data oriented and not time oriented, i.e.,

each object matches a certain type of values as opposed to a single object containing all data

streams for a specific point in time, observations may not match exactly to the same instant.

The main goal of this task is to integrate all data stream datasets to build one. It is divided into

two sub-tasks: (1) an internal integration and (2) an external integration.

Initially, each data stream dataset is read and the JSON strings (converted when written to a

file) are decoded to a pandas object, or dataframe, with the support of the widely used library pan-

das. Pandas dataframes and python dictionaries are similar structures, thus, for machine learning

and data analysis, the first one has proved to be more useful and provides many data manipulation

methods for this purpose.

The internal integration comprehends that, for recorded data streams (motion, facial expres-

sions and band power streams) of a certain training session specific to each emotion, observations

are matched according to their nearest point in time. For this purpose, it was performed a left-joint

based on the time label, that is common to every observation type, and will select all features of

each dataset and add to a single row. The creation of new variables is performed before the next

integration and is described in section 4.2.1.2.3. Table 4.5 displays the head of the new dataframe

after this first integration (most features are omitted).

Table 4.5: Head of the integrated dataframe for the calm mental state.

index time COUNTER_MEMS emotion ... arousal valence
0 1619710827794 24 calm ... 0.310255 0.576670
1 1619710827825 25 calm ... 0.310255 0.576670
2 1619710827857 26 calm ... 0.310255 0.576670
3 1619710827888 27 calm ... 0.310255 0.576670
4 1619710827920 28 calm ... 0.370159 -0.253846

As described in section 4.2.1.1, the operator simulates four scenarios matching the four emo-

tional states; therefore, after the internal integration, there will be four individual datasets, each

42 Implementation

representing data collected during these simulations. At this phase, each dataset has a sum of 91

features: the time feature, seventy features from the band power data stream, five features from

the facial expressions data stream, 12 features from the motion data stream, two features added

during the integration (described in 4.2.1.2.3) and the target variable. The external integration

aims to concatenate all previously integrated datasets to build a valid one for the training of the

cognitive digital twin, resulting in a dataset with 78 400 observations. Furthermore, some features

are binary encoded (as described in section 4.2.1.2.3), resulting in a dataset with 102 features (11

new features were added) and the resulting dataset is cleaned (as described in section 4.2.1.2.4),

were six features were removed from the dataset, resulting in a sum of 96 features.

Considering that this concatenation is sequential and each dataset is appended at the tail of the

last one, each class will not be equally distributed throughout the dataset and can lead to a poor

performance from algorithms. Consequently, observations are shuffled at this phase.

4.2.1.2.3 Feature Engineering

There are multiple categorical, not ordinal, features that can have various values, so one-hot-

encoding is performed to convert these multi-dimensional features into binary ones. Each category

of the specific feature is converted to a new feature of the dataset, represented by a binary value

(0 or 1). The features that were encoded were the eyeAct, uAct and lAct, resulting in the follow-

ing ones: x0_blink, x0_lookL, x0_lookR, x0_neutral, x0_winkL, x0_winkR, x1_frown, x1_neutral,

x1_surprise, x2_neutral, x2_smile.

Another step of feature engineering is creating new features from knowledge bases. Although

the dataset already comprises large amounts of information regarding multiple perspectives, fre-

quency waves recorded by the headset (i.e., band power) are in their raw values and perhaps are

the features that are directly correlated with the brain-stimuli and activity, which represents high

value to the dataset. According to study [40], alpha and beta waves can be useful to detect emo-

tional states of subjects. Arousal (or excitement) (equation 4.1) is detailed by a high power level

of beta waves with lower values of alpha waves, whereas valence (equation 4.2) is the definition

of positive emotions or negative. These values are computed for each observation of the integrated

dataset.

arousal =
(F3/betaL+F4/betaL)
(F3/al pha+F4/al pha)

(4.1)

valence =
F4/al pha
F4/betaL

− F3/al pha
F3/betaL

(4.2)

4.2.1.2.4 Data Analysis and Data Cleaning

Considering that, at the integration task, observations are matched by the nearest recorded time

and will fill all features accordingly, there will not be any missing values, thus, the dataset at this

4.2 The Digital Twin 43

point has multiple features with low value and even with unique-values, which does not bring any

additional worth to it; therefore, the following features are eliminated, decreasing the size of the

final dataset: original features that were previously binary-decoded (eyeAct, uAct and lAct); the

time which no longer is needed for any operation forward; COUNTER_MEMS that represents a

simple counter and with no related value for the measures of the brain activity and INTERPO-

LATED_MEMS which has a single value for all observations.

The final dataset has a shape of 78 400 observations, where 20 000 are part of the distracted

class, 20 000 are part of the stressed class, 19 200 are part of the calm class and 19 200 are

part of the focused class, and 96 features in total. From this dataset, the numerical, float, fea-

tures are the following: motion and some facial expression data streams features (Q0, Q1, Q2,

Q3, ACCX, ACCY, ACCY, MAGX, MAGY, MAGZ, uPow, lPow) and all band power data stream

features (from AF3/theta to AF4/gamma). Other numerical, integer, features are: the remaining

facial expression data stream features that were previously encoded from categorical to binary

features (x0_blink, x0_lookL, x0_lookR, x0_neutral, x0_winkL, x0_winkR, x1_frown, x1_neutral,

x1_surprise, x2_neutral, x2_smile). Finally, the categorical one, which is the target variable emo-

tion. The whole dataset has a memory usage of about 58 MB. For more information regarding

descriptive, statistical, data analysis, see appendix B. Since each class is represented closely by

the same number of observations, the dataset is considered to be balanced.

4.2.1.3 Modeling

Regarding the concrete building of the operator’s cognitive emotional profile, the modeling phase

has several steps to be accomplished, as depicted by figure 4.3, and further explained in this

section.

Figure 4.3: Activity diagram showing the workflow of the modeling task.

In this work, data was split into 70% for training the algorithms and 30% for testing. Eight

machine learning algorithms (Decision Tree, Random Forest, Support Vector Machine, k-Nearest

Neighbors (or k-NN), Naive Bayes, Linear Discriminant and Neural Networks) were evaluated in

4 performance metrics (accuracy, precision, recall and f1-score) and a confusion matrix:

accuracy =
(T P+T N)

(T P+T N +FP+FN)
(4.3)

44 Implementation

precision =
T P

(T P+FP)
(4.4)

recall =
T P

(T P+FN)
(4.5)

f 1− score = 2∗ (precision∗ recall)
(precision+ recall)

(4.6)

Where TP 2 are the true positives, TN 3 are the true negatives, FP 4 are the false positives and

FN 5 are the false negatives. Accuracy represents the observations that were correctly classified (as

part of the class and not part of the class) by the prediction model and valuable since the resulting

dataset is balanced (i.e., each class has about the same number of observations). Precision is the

measurement of how many observations were correctly identified as part of the class. Recall is the

proportion of observations that were correctly identified as part of the class in the overall positives

of the class and falsely classified ones. F1-score is the conjunction of these both last performance

metrics. The confusion matrix is a disposition of the true and false positives and negatives, in other

words, it will provide a way of measuring the level of confusion.

Hyper parameter optimization was conducted to choose the optimal or best suited parameter

values, specific to each algorithm.

Figure 4.4 displays the resulting confusion matrix and a line chart for evaluating the rela-

tionship between the maximum depth of the decision tree and the given accuracy. The classifier

identified mostly true positives (diagonal line on 4.4a), which indicates the number of predicted la-

bels that belonged to the correct class. However, there were some observations that were wrongly

classified. Inaccurate predictions between the two positive emotions (i.e., calm and focused) and

between the two negative emotions (i.e., distracted and stressed), and even observations that be-

long to the positive class that are classified as negative emotions are not critical scenarios. What

needs to be evaluated are the observations that belong to the negative classes but are classified as

positive ones. 15 observations of the stressed class were mistaken as the calm class, 16 obser-

vations of the distracted class were mistaken as the calm class and 5 more were mistaken as the

focused class. From the 23 520 split observations for testing (30% of the whole sample), these

numbers of false negatives represents 0,15% of this sample. Figure 4.4b shows that the classifier

reaches its maximum accuracy with max_depth parameter of 10, value used for the final modeling

of this digital twin based on this algorithm.

Figure 4.5 displays the resulting confusion matrix and a line chart for evaluating the relation-

ship between the maximum depth of the random forest and the given accuracy. Overall, as showed

by figure 4.5a, the number of true positives almost reaches all observations. As explained above,

what should also be measured is the number of observations that belong to the negative classes

2Observation where the prediction model inaccurately predicts the class it belongs [30].
3Observation where the prediction model inaccurately predicts the class it does not belong [30].
4Observation where the prediction model inaccurately predicts the class it belongs [30].
5Observation where the prediction model inaccurately predicts the class it does not belong [30].

4.2 The Digital Twin 45

(a) Decision Tree confusion matrix.
(b) Decision’s Tree Line chart accuracy vs
max_depth.

Figure 4.4: Decision Tree algorithm Evaluation.

that were classified as belonging to the positive class. Regarding the stressed class, there are no

observations that were classified as part of the positive classes and only 2 observations from the

true distracted class was classified as calm. From the 23 520-observation testing set, this error rep-

resents 0,009% of the sample. Similarly to the Decision Tree algorithm, the maximum accuracy

is registered with max_depth of 10 (figure 4.5b).

(a) Random Forest confusion matrix.
(b) Random Forest’s Line chart accuracy vs
max_depth.

Figure 4.5: Random Forest algorithm Evaluation.

Figure 4.6 displays the resulting confusion matrices of the testing of k-Nearest Neighbors

and Naive Bayes algorithms. Regarding the first algorithm (figure 4.6a), overall the classifier

can discriminate the four classes as the number of true positives is significantly high, thus, the

stressed class has 15 observations mistaken by the calm class and 2 by the focused class and the

distracted class has 13 observations mistaken by the calm class and other 3 by the focused class,

which represents 0,14% of the testing sample. Regarding the modeling with the Naive Bayes

46 Implementation

algorithm, figure 4.6b shows that the classifier cannot discriminate the four classes distinctly and

has high level of error that, for the same sample, 18,6% of false negatives are from inaccurate

classifications of the negative class.

(a) k-Nearest Neighbors confusion matrix. (b) Naive Bayes confusion matrix.

Figure 4.6: k-nearest neighbors and Naive Bayes algorithm Evaluation.

(a) Support Vector Machine confusion matrix. (b) Neural Networks confusion matrix.

Figure 4.7: Support Vector Machine and Neural Networks algorithm Evaluation.

Figure 4.7 displays the resulting confusion matrices of the modeling of Support Vector Ma-

chine and Neural Networks algorithms. Both of the classifiers can accurately discriminate the four

classes, thus the Neural Network has a higher level of false negatives and positives than the SVM

algorithm. Regarding the SVM (figure 4.7a), 0,09% of the false negatives and positives are ob-

servations that belong to the negative classes and are inaccurately classified as one of the positive

classes. For this matter, Neural Networks (figure 4.7b) has a higher value of 1,14% of the testing

sample. At this stage, this algorithm was modeled not by the optimizer, but with stable parame-

ters of five hidden layers and 6000 of maximum iterations, because the increase of one of these

4.2 The Digital Twin 47

parameters can lead to model overfitting.

Figure 4.8: Linear Discriminant Analysis confusion matrix.

Figure 4.8 displays the resulting confusion matrix of the modeling of the Linear Discriminant

Analysis algorithm. This classifier can discriminate the four classes, although not with the same

accuracy than most of the algorithms previously presented. Concerning the number of false nega-

tives for the negative classes, 4,6% of observations that were inaccurately classified as part of the

positive classes.

Table 4.6 comprises the computation of the multiple performance metrics (equations 4.2.1.3)

for the evaluation of each algorithm. These performance metrics are further used for the compar-

ison between algorithms and selection of the best one for the modeling of the final digital twin.

In addition, as mentioned above, confusion matrices are useful for analysing the percentage of

false negatives regarding the classification of the negative classes. Since negative classes mean

that, ultimately, the system will not allow drones to receive information, when analysing the false

negatives registered under a negative classification (observations that belong to one of the negative

classes but are classified as one of the positives), it is possible to rank each algorithm in terms of

classification errors that have actual impact on the flight of the drone. For instance, algorithms

with high percentage of these classification errors mean they can allow higher quantities of com-

mands to be sent when the operator is under stress (or other degrading emotion). The algorithm

with the lowest percentage of these classification errors should be considered. The goal is to select

the model with the highest possible accuracy and the lowest percentage of classification errors.

Overall, the algorithms have high values of each performance metric. This phenomenon can

be explained by the way the training of each emotional state was conducted by the operator. Each

emotional state was followed by sets of specific scenarios to ease their replication by the operator.

These scenarios comply with very distinct gestures, head rotation and even breathing (as described

in section 4.2.1.1), reason why the algorithms can discriminate each class with distinction. In

addition, each scenario was reproduced with caution and along with the scenario’s guidelines, not

allowing unexpected reactions from the operator. Observations resulted from unexpected reactions

were deleted from the dataset during the simulation of each emotion.

48 Implementation

Random Forest algorithm outperforms the remaining ones in every performance metric and

has the lowest percentage of these false negatives with a value of 0,009%; therefore used to model

the final cognitive digital twin.

Table 4.6: Evaluation of algorithms

Algorithms Performance Metrics
Accuracy Precision Recall f1-Score

Decision Tree 0.995 0.995 0.995 0.995
k-NN 0.997 0.997 0.997 0.997
LDA 0.911 0.916 0.911 0.912

Naive Bayes 0.614 0.645 0.614 0.617
Random Forest 0.999 0.999 0.999 0.999

SVM (linear kernel) 0.994 0.994 0.994 0.994
SVM (rbf kernel) 0.888 0.923 0.888 0.894
Neural Networks 0.948 0.949 0.948 0.948

4.2.2 The Visual Digital Twin

The second component is called the visual digital twin and its main goal is to provide complemen-

tary information to the decision component and boost the emotion recognition of the operator by

adding an extra layer of software intended to analyze his visual appearance and facial expressions

and include an additional input to the decision, validating or invalidating the classification from

the cognitive digital twin and lowering the impact of its inaccurate classifications on the drone or

swarm of drones.

The webcam will have access to the real-time image of the operator and the visual digital

twin will output an emotion at each time instant. This component is adapted from an open-source

project [29] that creates a prediction model with the Convolutional Neural Network algorithm,

called the mini-Xception. This model was trained with the FER-2013 emotion dataset ([46]),

which contains 35 887 observations (grey-scale images) matching the following classes: angry,

disgust, fear, happy, sad, surprised and neutral. This model has an overall accuracy of 66% and

figure 4.9 represents the confusion matrix for the emotion recognition.

According to the results [29], there are high levels of false negatives, for instance, 20% of

observations belonging to the fear class are wrongly classified as sad, 26% of observations that

belong to the disgust class are classified as angry and 19% of observations belonging to the sad

class are classified as neutral. Similarly to the evaluation of the cognitive digital twin’s algorithms

based on their confusion matrices, positive classes that are confused with negative ones do not

have significant impact on the flight of the drone; however, negative-class observations that are

inaccurately classified as positive can have impact on the drones. The positive classes are the happy

and neutral ones and the negative classes are the remaining. 14% of observations that belong to

the angry class were classified as a positive class. 7% of observations from the disgust class were

classified as a positive class. 16% of observations that belong to the fear class were classified

4.2 The Digital Twin 49

Figure 4.9: Confusion matrix resulted from the mini-Xception model (from [29]).

as a positive class. 25% of observations from the sad class were classified as a positive class

(highest level). 8% of observations that belong to the surprise class were classified as a positive

class. Overall, the mini-Xception model can discriminate the seven classes. The integration of

both projects is explained on section 4.2.3.

4.2.3 The Decision Component

The third component of the Digital twin is the decision component. It aims for determine if the

operator is stable by mentally and visually evaluate his state and decide whether the command

formulated at the time should be sent to the drones. Previous sections (4.2 and 4.2.2) describe how

the system classifies the emotional states of the operator by establishing two digital twins that are

fed with cognitive and visual inputs, as both mental and visual classified emotions are required

for the decision making. This procedure is further described in figure 4.10: (1) evaluation of the

emotional state of the operator; (2) computation of the final mental command and (3) computation

of coordinates.

Both digital twins should be outputting their predictions that concerns certain periods of time,

so both models should be running concurrently. For this purpose, there will be two processes

running in parallel by means of python multiprocessing [28]. These processes are spawned in this

main decision component, where resources are allocated, including individualized memory re-

gions, and will execute independently from each other. Considering that both components can run

for unspecified periods of time and need to be recursively outputting predictions, it was established

a shared memory region where all processes involved will have access to. Since the digital twin is

built-in in this component, the shared variable is written to every time the visual digital twin has

a new classification and the decision component will read it, avoiding data inconsistencies (i.e.,

only one component writes and another one reads).

This component comprises all procedures regarding the digital twin, for instance data acqui-

sition, preparation and processing. Primarily, data acquisition is performed in sessions of two

50 Implementation

Figure 4.10: Activity diagram showing the workflow of decision making.

seconds, where all data streams are being recorded, followed by data preparation where the newly

collected datasets are formatted and integrated. Since data subscriptions, as mentioned in section

4.2.1.2.2, have high frequency rates, a 2-second session can result in a 10-observation dataset,

which, ultimately, will correspond to ten predictions by the classifier. Computation of the most

frequent cognitive emotion and command and their confidences are conducted at this stage. The

decision component will iterate the matrix of classified commands and mental emotions, count the

occurrences of each class and output the most frequent one; then compute the average confidence

of these observations.

Regarding the evaluation of the cognitive and visual states of the operator, the decision compo-

nent retrieves the last written value of the visual digital twin from the shared variable and proceeds

to the decision making task. At this stage, the decision component will comprehend that if the

cognitive state of the operator is within the positive spectrum of classes, meaning that is either

a calm or focused states, and the visual predicted emotion is either neutral or happy states, then

the decision is positive, i.e., the command should be sent to the drones, as opposed to a negative

decision, which means that no command should reach the drone or swarm of drones. Another

possible scenario is that the predicted command is neutral, which is not a motion command and,

therefore, these ones will not be sent as well.

4.2.3.1 Computation of Coordinates

Predicted command categories from the built-in classifier of the EmotivBCI application are not

included in the drones’ vocabulary, meaning that left, right and others are conceptual types of

commands and drones do not have the intelligence to measure and interpret them. As the final task

4.3 ROS2 Client Node 51

of the decision component, these mental commands are translated into a compatible data scheme

that can be acknowledged by the hardware: value of relative coordinates.

d = (c∗ i)∗ e (4.7)

Equation 4.7 represents the distance to be travelled by the drone, where c is the command

confidence of the classifier upon the prediction, varying between 0 and 1; e is the average emotion

confidence of the cognitive digital twin upon the prediction, varying between 0 and 1 and i, a

constant variable that represents the absolute increment and has value of 0,25. This increment

value will set the maximum distance the drone can travel, that is, 100% of increment of position

(both prediction confidences are 100%) means that the drone will shift 0,25 meters in a certain

direction.

Each time the decision component checks all requirements for sending a command, it could

settle an increment of position by 100%; however, if the cognitive and visual digital twins wrongly

classify the emotional state of the operator as one of the positive classes, where he is affected by

a negative emotion, the drone will receive a 100% of increment position and will move the whole

0,25 meters. In the context of execution of critical tasks, where the operator should be as metic-

ulous as possible, 0,25 meters can have a significant impact on the hardware and the surrounding

environment, so, to minimize those impacts, the decision component considers two more variables

(confidences upon the predictions) for the computation of the distance. Consequently, considering

that these confidences are based on the probability of the observation belonging to a certain class,

uncertainties are included, to prevent those drones shift the whole 0,25 meters of distance when

the classifiers are inaccurate.

t =
i
v

(4.8)

The execution time of the command (left or right) is calculated (equation 4.8) according with

the constant increment of position (i), of 0,25 meters, and the constant velocity established (v, of

0,25 meters per second. All command operations will be performed within one second. Regarding

standard operations, such as landing and taking-off, the run time is set to two seconds for achieving

a smooth execution.

The classified command will reveal the direction and sense of the operation. Figure 4.11

represents the two axis (x and y axis) in which the drone can be positioned. If the command is

classified as left, the value increment of y will be the computed distance as positive and x will be 0,

while if the command is classified as right, the value increment of y will be the computed distance

as negative and x will be 0.

4.3 ROS2 Client Node

In previous sections, the subjects regarding the classification of the mental and visual emotional

states of the operator are covered, and how both prediction models work together synchronously,

52 Implementation

Figure 4.11: Above perspective of axis of the drone and corresponding command coordinates.

contributing to the decision of whether the system should send the reproduced command and

compute its matching coordinates. Lastly, it was established a communication channel between

the system and, ultimately, the operator, to the physical hardware, through the implementation of

a ROS2 client-server architecture.

As described in chapter 3, nodes are components of software that represent a specific function-

ality and communication is achieved by services. In this context, the client node is implemented

as a gateway of the decision component and will send synchronous requests to the service node.

These requests should obey to the structure of the requested service, where each variable should

be filled with its corresponding value (see appendix C for more information). The service node

is called the base station, which is mainly the machine that manages one or more drones and that

actually forwards the information to them. The implementation of this approach is divided in 3

tasks: (1) the creation of a ROS2 package, (2) creation of custom service and message files for the

service-client and (3) creation of an RQT plugin interface.

Figure 4.12: Activity diagram showing the workflow of sending commands.

First, a ROS2 package is created by sourcing the ROS2 installation module to access all ROS2

command options and choosing package creation one. All commands mentioned forward are

described in appendix C.2 and C.3. Considering that the system creates custom services with

specific schemes, those files need to be accessible by any ROS2 package of the project; therefore,

two of these packages are created, one for the main code of the client node and necessary python

files and the other for the creation of these services.

To achieve a basic flight, the necessary services are: the take-off (4.13), the landing (4.12)

and a motion (4.11) command. Ultimately, the client is a class containing all requests for each

service. For sending a request, it was implemented a loop to check if there is any response from

the service. The decision component will compact all coordinates and information necessary to

4.3 ROS2 Client Node 53

send a goto request; thus, the remaining operations are directly sent by the RQT plugin, described

in section 4.3.1.

1 float32 x

2 float32 y

3 float32 z

4 float32 yaw

5 float32 duration

6 ---

7 int8 ret

Listing 4.11: GoTo service

scheme

1 float32 height

2 float32 duration

3 ---

4 int8 ret

Listing 4.12: Land service

scheme

1 float32 height

2 float32 duration

3 ---

4 int8 ret

Listing 4.13: Take-off

service scheme

4.3.1 RQT Plugin

The main goal of this thesis is to simulate a live environment for the control of a single or multiple

drones, which requires the operator to be facing the hardware; however, for the purpose of facil-

itating the execution of experiments, described in chapter 5, and the experience of the operator

managing operations, it was created a graphical user interface plugin using the RQT framework

(as showed by figure 4.13).

This plugin is divided in two sections: (1) the execution of test levels and live control, including

the standard operations of landing and taking-off the drone and (2) the training of the digital twin.

Figure 4.13: RQT plugin user interface.

54 Implementation

The height of the take-off is defined à priori and has a default value of 0,5 meters. For execut-

ing any operation, it is mandatory that the operator takes-off the drone first. As mentioned above,

for the purpose of performing the experiments, which imply the isolated simulation of each of the

trained emotions, the user interface displays some functionalities for testing and, according to the

type of test and simulation, results are written to specialized files. For an independent live drone

control, the operator should click on any and on full test.

After the operator is done with the simulation, he can land the drone by pressing the land

button, which sends a landing request by instantiating the land service with 0 of height.

Regarding the second part of the interface, the operator can refine the cognitive digital twin by

sequentially selecting the button for data subscription, formatting, integration and training.

The underlying commands can also be reproduced through a command prompt by manually

entering specific command lines. Considering that this system deals with the take-off, landing

and motion (goto) operations, each one of these activities have their own command lines and

variables, as depicted in the above service schemes. When one of these operations are performed,

informative prints are written in the client (the one that runs the RQT plugin) and service consoles.

All these command lines and prints are displayed in appendix C.3.

4.4 Summary

In this section, implementation details were explored and explained. For the development of this

approach, multiple components were created to maintain a synchronized and sequential procedure

for the resolution of a decision, according to the mental and visual emotional states of the operator.

First, the primary data source of this thesis is via a BCI, intended for the capture of multiple

measurements, for instance, the rotation of the head. The connection with the Emotiv Epoc+

headset (described in section 4.1), the selected device of this work, is achieved through the Cortex

API by establishing web sockets and sending/receiving JSON requests and responses.

The first developed component of this system is the cognitive digital twin (section 4.2), the core

solution of this approach, which is a digital representation of the cognitive profile of the operator

and aims for predicting his emotional state. For the implementation of this component, machine

learning techniques were applied. Three data streams provided by the headset are subscribed in

sessions of eight seconds and in four different scenarios where the operator had to simulate the four

mental states. Two of them are considered the positive states, i.e., suitable mental states for sending

commands (calm and focused), and the remaining two are considered the negative states that, as

opposed to the other classes, represent unsuitable states for sending commands (distracted and

stressed). Multiple steps are performed in data preparation to compose a valid and single dataset

input for the training of the prediction models, for instance, data is formatted, removing nested lists

and matching the key-value pairs; the different datasets are integrated resulting in a single dataset

for each simulated emotion, where each observation is matched with the corresponding feature

values by their nearest point in time; new features are created based on knowledge of the brain-

wave frequencies as well as one-hot-encoding is performed to transform categorical features into

4.4 Summary 55

binary ones and data is cleaned from their worthless or unique-value features. Multiple algorithms

were used for training a temporary digital twin and the resulting models were evaluated in four

performance metrics (accuracy, precision, recall and f1-score). Random forest was the selected

algorithm for training the final twin as it outperforms the remaining algorithms and has a low

percentage of false negatives and positives regarding classifications belonging from the negative

classes that are classified as the positive ones.

The second developed component was the visual digital twin (section 4.2.2), an additional

software layer, that is considered to be a complementary component of the digital twin, aiming

for classifying the visual facial expression of the operator and, in conjunction with the cognitive

digital twin, minimize impacts consequent to inaccurate classifications. For this purpose, it was

made a research and integration of an open-source project in python that created a prediction

model based on a Convolutional Neural Network ([29]). This model can classify observations as

angry, disgust, fear, happy, sad, surprised and neutral states with an overall accuracy of 66%.

The third and main developed component was the decision component (section 4.2.3) that

comprises all procedures for the evaluation of the cognitive and visual states of the operator and

resolution of the destination of formulated commands. The cognitive digital twin is run on the

main process whereas the visual digital twin is executed in a different process to achieve indepen-

dent parallelism. Data is recorded for 2-second sessions, pre-processed and fed to the both digital

twins to output a set of classifications. The most frequent command, mental emotion and matching

confidences are computed. The decision component will then evaluate whether the cognitive and

visual states belong to the positive classes and if the command is a motion one. In these situations,

relative coordinates are computed according to the confidences and direction of the command or

the command is ignored.

The fourth and final component is the implementation of a ROS2 client node (section 4.3) for

compacting the information and sending it to the drone. The node implemented on the project is

called the client node, which will send request, and the node implemented on the machine that

is linked to the drones (service node) is called the base station. These two nodes communicate

over services, which are created to adapt to the drone’s operations (take-off, landing and motion

commands). The client node sends the services with the compacted information from the decision

component to the service node and this one will forward the information to the drones. For the

control of all functionalities of the project, it was created an RQT plugin.

56 Implementation

Chapter 5

Results and Discussion

In this chapter, results and their discussion are presented. First, it is explained the set-up and

how the experiments were conducted to validate the solution and to demonstrate its value for an

isolated emotional environment and in a live environment. Secondly, one digital twin, trained with

the Random Forest algorithm, is put under test in a multi-level experimental manner, discussed,

evaluated in multiple performance metrics and then assessed in a free live session.

5.1 Experiments

To evaluate the different impacts of the solution, functionalities were split in an incremental, multi-

level, manner that goes from the lowest, the baseline experiment, to the highest level and, therefore,

the solution, to emphasize its value and impact on securing a stable control environment for critical

systems as a drone. These experimental levels are described incrementally bellow:

1. Baseline test: defines the current state of drone control without the support of emotion

recognition, where the operator is directly connected with the drone and each reproduced

command, being correctly or incorrectly classified by the BCI, is forwarded to the drone.

As described in chapter 4, section 4.2.3.1, the computation of the coordinates is supported

by the confidences of the resulting visual and mental classifications. Since machine learn-

ing is not incorporated in this test level, coordinates sent to the drone are solely computed

depending on the direction of the command, at a 100% of increment. The goal at this level

is to establish the lowest solution in terms of accuracy, security and reliability, giving a

perspective of what the minimum valuable solution is.

2. Level 1 test: represents the implementation of the core functionalities of the solution - the

cognitive digital twin. This digital twin receives the real-time collected information from

the BCI during the 2-second time period of data acquisition and will predict the operator’s

mental state and make decisions. As a first level experiment with a prediction model, the

57

58 Results and Discussion

computation of the coordinates is like the baseline test. This test level aims to demonstrate

that the implementation of the solution, at its core, already increases the stability of the

flight.

3. Level 2 test: represents the implementation of the core functionalities with the addition

of the computation of coordinates as described in chapter 4, section 4.2.3.1. At this test

level, the goal is to validate that the power in which the subject sends a command has its

effects on the increment of the position of the drone as unsure commands or even incorrect

classifications have minor impact on the drone.

4. Full test: represents the finalized solution, having all the same functionalities as the level

2 test, including the visual digital twin, supported by a camera. As the last level of the

solution, the goal is to demonstrate that the addition of the visual digital twin increases the

security of the flight as it prevents commands to be sent under incorrect classifications by

the cognitive digital twin.

Except for the baseline test, which gives no importance to the mental state of the subject,

each test covers the four mental states the models have been trained to classify (focused, calm,

distracted and stressed) individually, each one with sessions of 8 seconds. The subject had to be

put under the same circumstances in which he used to simulate the four emotions on the training

phase, described in chapter 4.

Ultimately, and fulfilling the core goal of this thesis, a last experiment is conducted in a live

setting where the subject has full and free drone control and space to feel whatever emotion. As

a way of evaluating the long-term solution in a unpredictable environment, the subject is recorded

for two consecutive minutes and is occasionally interfered with some diversion, i.e., a phone starts

to ring, in a certain timestamp. The goal is to evaluate how both digital twins can classify rapid

emotional switches of the subject.

All procedures of this thesis are conducted by one operator, meaning that the training of the

commands, the training of the digital twin and validation of the solution is associated with a

unique operator as the goal is to prove the adaptability of the models and gathered knowledge in

accordance with the unique human profile of the operator.

5.2 Results and discussion

This section is related to the results and discussion of the validity of the proposed solution as well

as the demonstration of the value it brings to not also the resolution of this thesis problems and

the research questions but also the optimizations it brings. The model trained with the Random

Forest, selected by its high accuracy, is used and discussed in this section. Multiple metrics were

created to evaluate the solution, for instance, the success and error rates and sent commands by

incorrect classifications on a negative emotion simulation.

5.2 Results and discussion 59

The success rate represents the ratio of correctly classified observations from the total number

of classifications of the sample and it measures how well the classifier can identify a certain emo-

tion in an isolated environment. This metric can be computed according to equation 5.1, where E

is the number of correct predictions of a certain emotion and S the total number of predictions of

a certain session.

sr =
E
S

(5.1)

As opposed to the success rate, the error rate represents the ratio of incorrectly classified

observations from the total number of classifications of the sample. This metric can be computed

according to equation 5.2, where A is the number of incorrect predictions of a certain emotion and

S the total number of predictions of a certain session.

er =
A
S

(5.2)

Regarding the negative emotional experiments, it is performed further result analysis, depict-

ing the incorrect classifications, i.e., positive emotion detection during the simulation of either the

distracted state or stressed state. For the purpose of this analysis, the collected observations are:

all positive predictions detected during these sessions, the number of neutral commands from this

fraction, the number of all sent commands from this same fraction and the number of positive

emotions, predicted by the cognitive DT, where the visual DT classified the facial expression as a

negative emotion, in conjunction with the non-neutral commands. Just a reminder that, as men-

tioned in chapter 4, there are multiple conditions to be checked to a command be sent to the drone,

for instance, the both digital twins must predict an overall positive emotion and the most frequent

formulated command must be a motion one, not neutral. In this section, when summing the num-

ber of sent commands, internally all these conditions are checked. The sum of sent commands

represent moments in time where both classifiers were flawed. Unlike this metric, the last sum

represents the number of commands that were prevented due to the addition of the extra layer of

the visual DT.

5.2.1 Digital Twin

Given the environment set-up described in section 5.1, the number of observations per emotion

and per experimental level are displayed in table 5.1.

5.2.1.1 Success and Error Rates

Given equation 5.1, for the calm state, the highest accuracy of the classifier was 87,5%, for the

focused state a 98%, for the distracted state a 93,5% and for the stressed state a 100%. The lowest

success rate of the cognitive digital twin, for the calm state was 80,3%, for the focused one, 71,3%,

60 Results and Discussion

Table 5.1: Number of Observations per Emotion and per Level

Emotions Group of Test
Level 1 Test Level 2 Test Full Test

Calm 142 120 85
Focused 94 101 90

Distracted 124 135 104
Stressed 134 120 112

for the distracted state a 57% and stressed state a 97,3%. Figure 5.1a 1 displays all the values for

each emotion and per experimental level 2.

Given equation 5.2, the highest and lowest error rates for the calm, focused, distracted and

stressed states were 19% and 12,5%, 28,8% and 1%, 43% and 6,4% and 2,7% and 0% corre-

spondingly. Figure 5.1b displays all the values for each emotion and per experimental level.

(a) Success Rate. (b) Error rate.

Figure 5.1: Success and error rates per emotion and per test.

Even with a high average of 87,2% of success rate for detecting the subject’s mental states, the

most accurately classified emotion was the stressed state. The difference between them can be due

to the distinct way the model is trained in this segment, which involves more physical movement

to provoke agitation, rather than a low on motion condition on the remaining ones.

In addition, lower success rate depicted on level 1 for the focused state classification can be

explained by the different background noise and movement between the training and test phase,

which cause the subject to deviate his attention, explaining the occurrences of distracted classifi-

cations during this period. Analyzing the next test levels, the success rate is no lower than 80%,

which is explained by the calmer environment. As opposed to this situation, the lower success rate

1Both bar charts have different scales.
2Implementation efforts in each experimental levels are not being evaluated. In this context, the experimental levels

are different temporal sessions that allow the computation of accuracy on discriminating each emotion on different
times.

5.2 Results and discussion 61

on level 2 for the distracted state classification can be explained by the lower amount interference

or other diversions derived from background movement which led to short occurrences of focus

by the subject.

5.2.1.2 Overall Predictions

All predictions registered for the simulation of the calm state are displayed in figure 5.2. Regarding

the first experimental level, from the 19,72% of error rate, 17,61% of observations were classified

as stressed and the remaining 2,11% as distracted. For the second level (figure 5.2b), the 12,5%

error rate corresponds to 5,83% of distracted, 5% of focused and 1,67% of stressed incorrect

classifications. Finally, from the error rate of the last experimental level(16,47%) (figure 5.2c),

the digital twin inaccurately classified 15,29% of observations as focused and 1,18% as distracted

states.

(a) Level 1 Test. (b) Level 2 Test.

(c) Full Test.

Figure 5.2: Calm state overall predictions.

Although having a high average success rate of 84% and a low average error of 16%, in most

experimental levels it was detected both the stressed and distracted cognitive states. If the operator

is in a suitable cognitive condition and the cognitive DT incorrectly outputs a negative emotion,

62 Results and Discussion

the drone will simply not receive any coordinates as the final decision is not to send any commands

at that time, which represents no associated risk to the control of the drone. The positive focused

state was also detected in the last experimental level, which brings no instability to the drone

because the command was to be sent regardless of which positive emotion was detected.

Regarding predictions registered in the simulation of the focused state, displayed in figure 5.3,

from the 28,72% error rate of the first experimental level (figure 5.3a), 15,96% of observations

were classified as calm state, 10,64% as stressed and 2,13% as distracted. As for the second level

(figure 5.3b) with an error rate of 11,88%, 8,91% of observations were classified as distracted

state, 1,98% as calm and 0,99% as stressed. In the final level (figure 5.3c), 1,11% of error rate

corresponds solely to the detection of distracted state.

(a) Level 1 Test. (b) Level 2 Test.

(c) Full Test.

Figure 5.3: Focused state overall predictions.

Similarly to the calm validation, due the fact the focused state is considered to be a positive

emotional state, in the worst case scenario, meaning that the cognitive DT inaccurately classifies

the operator’s mental condition, the system will not simply allow the reproduced commands during

this time to be sent to the drones, representing no risk to the operation. Confusions between

positive emotions will not mark any differentiation because both represent suitable cognitive states

of the operator.

5.2 Results and discussion 63

Concerning the simulation of the distracted mental state, figure 5.4 shows all detections during

each one of the performed experiments. For the first experimental level (figure 5.4a), from the

6,45% error rate, 4,03% were focused classifications, 1,61% were stressed and 0,81% were calm

detections. With one of the highest error rates registered from all experiments (42,96%) at the

second level experiment (figure 5.4b), 34,81% of observations were classified as stressed, 7,41%

as focused and 0,74% as calm states. In the final experimental level (figure 5.4c), from the 10,58%

of error rate, 4,81% of observations were classified as calm, 4,81% as focused and 0,96% as

stressed.

(a) Level 1 Test. (b) Level 2 Test.

(c) Full Test.

Figure 5.4: Distracted state overall predictions.

Having a negative emotional detection represents a turning point to the decision of the broad-

casting of commands, so inaccuracies in negative scenarios from the cognitive DT can bring insta-

bilities to the control of the drones. When the operator is in an inadequate condition, the system

must prevent these commands to reach the drones as they can be misleading and it threatens the

secure environment once created. In this simulation, the subject was doing some other tasks but

the cognitive DT, although in a small ratio of observations, outputted positive emotions which

represents a flaw and can lead to repercussions. In the level 2 test, with a high error rate, there

was a confusion between the distracted, target value, and the stressed; however, as both values are

64 Results and Discussion

considered to be negative emotions, the reproduced commands will not be forwarded to the drones

and, therefore, will not have any impact on the security of the environment established.

As for the simulation of the stressed state, with the highest success rates of all simulations,

only at the last experimental level (figure 5.5), from the 2,68% error rate, 0,89% of observations

were classified as distracted, 0,89% as focused and the other 0,89% as calm.

Figure 5.5: Stressed state overall predictions.

As mentioned above, although the cognitive DT can distinctly discriminate the stressed mental

state, there are still some cases where the classifier is flawed and, because a negative emotion

is being incorrectly classified as a positive one, these errors can reach the drone and provoke

unexpected motions, disrupting the synchronization between operator and drone and destabilizing

the flight.

5.2.1.3 Negative Spectrum Analysis

As referred in section 5.2.1.2, errors on the cognitive DT’s classification when the operator is in

a suitable cognitive state for sending commands has no impact or associated risk on the drones;

however, the opposite scenario, for instance, when this DT should classify the mental state of the

operator as one of the negative classes but instead classifies as one of the positives, this can allow

commands to reach the drones contributing to a disruption of the stability of the flight. Taking this

into account and, considering that previous the analysis concerns exclusively the cognitive DT,

this section provides further analysis of the negative spectrum of the classification and the impact

of the addition of the extra layer of the visual DT on the decision.

For the distracted and stressed states, table 5.2 and table 5.3 give some insight about the

number of sent commands under an incorrect classification, described in the introduction of this

section.

Regarding the distracted state, at level 1 was detected six positive states, two of them sent;

at level 2 was detected 11 positive emotions in which four were sent and the at the full test ten

positive emotions were detected, but only one command was sent to the drone due to the detection

5.2 Results and discussion 65

Table 5.2: Distracted Emotion Recognition

Positive Detections Group of Test
Level 1 Test Level 2 Test Full Test

Cognitive Digital Twin’s Total number 6 11 10
Cognitive Digital Twin’s number of neutral commands 4 7 6

Cognitive Digital Twin’s number of sent commands 2 4 1
Cognitive Digital Twin’s positive detection,

N/A N/A 3
Visual Digital Twin’s negative detection

of a negative visual emotion by the visual DT, which prevented the subject to send three other

commands.

Table 5.3: Stressed Emotion Recognition

Positive Detections Group of Test
Level 1 Test Level 2 Test Full Test

Cognitive Digital Twin’s total number 0 0 2
Cognitive Digital Twin’s number of neutral commands 0 0 1

Cognitive Digital Twin’s number of sent commands 0 0 0
Cognitive Digital Twin’s positive detection,

N/A N/A 1
Visual Digital Twin’s negative detection

For the stressed state, only at the full test was detected two positive emotions and none of them

were sent by the subject because one was a neutral command and the other was associated with a

negative visual emotion, detected by the visual emotion component.

Since the training of the mental commands is a task that requires some time to practice and

refine, it is equally challenging to reproduce a command at a live setting and in an equivalent

environment the subject trained (described in chapter 4). Even if the model has a classification

error associated, most commands detected by the BCI are neutral ones, which have no implication

on the drones; however, because the command classifier can incorrectly output a motion command,

these ones can be sent to the drones. With the extra layer of the visual DT, these unique situations

are assessed by it and some of those errors are prevented.

Considering that this is a 4-class classification problem, there is a probability of 25% that a

baseline classifier correctly categorizes the subject emotion state and, in the baseline test char-

acterized by the lack of machine learning, all commands are sent to the drones, regardless of

the operator’s emotional state, which could only be beneficial if the subject has perfect cognitive

condition at all times, condition very unlikely to happen.

66 Results and Discussion

5.2.1.4 Real-time Mission with a Singular Drone

The previous sections of this chapter validates the solution in isolated simulations, where the oper-

ator explicitly is put under a certain condition to match a certain emotion and multiple experiments

are conducted during these sessions; however, the purpose of this work is to develop a secure plat-

form for an operator to control and manage a drone or swarm of drones within the context of a

mission with a BCI. A mission is defined as a set of planned operations required for achieving

a certain goal. As opposed to the individual experiments for the validation of each emotion that

are supervised and controlled by the operator, the mission is conducted under a unpredictable live

environment.

In this section, a real-time mission is conducted with one drone to analyze how the digital twin

can identify multiple emotions at a longer execution time, as well as the switching of emotions is

performed, in response to external events. For this purpose, a 2-minute experiment is conducted

where the operator will be surprised at certain points in time by an alarm. The ideal outcome of

these experiments is that when the operator is focused, the system detects a persistent cognitive fo-

cused state until the first alarm is triggered and the system detects the distraction or stress involved

as well as the visual surprised or other negative emotion from the visual DT and stops sending

commands. This is a cyclic event which should be happening by each triggered alarm. The second

section is related to the validation of a 2-drone scenario, to simulate a swarm and the behavior of

the system when sending information for more than one client node.

Figure 5.6: Real-time mission with distracting external events with a single drone.

Figure 5.6 describes the trajectory the drone has made during the experiment. Considering

that the valid commands are the right and left ones and they both operate only on the y axis, the

y axis of this chart represents the absolute position of the drone. During this period, the operator

reproduced commands to the right and left, being only valid and sent the ones to the right, reason

why the absolute position has only negative numbers. The x axis represents the timestamps, in

seconds, since the beginning of the experiment until the end of it.. Sent commands are indicated

5.2 Results and discussion 67

by the vertical, dotted blue, line on the line chart, meaning the point in time/observation, where

the drone has received a valid command and started moving to a different location on the arena.

In this case, two alarms were set for 27.6 seconds and one minute and twenty eight seconds

after the experiment initiated. At the beginning of the experiment, the operator was distracted by

the multiple events that were happening on the screen, considering it was initiating, and there was

a period for relaxation and preparation to send commands, hence why the first 21,4 seconds the

drone did not move. At this timestamp, the operator has been stabilized and focused on the drone

and was able to send a right command with an increment of position of 0.04 meters. The next

timestamp was detected a focused state, but a neutral command and would continue to send right

commands if the first alarm would not sound at 27,6 seconds in. Here, the system immediately

detected a distracted mental state and a surprised visual state, triggered by the vibration of the

alarm. Stressed and distracted mental states were both detected during the next 17 seconds as

the operator was turning of the alarm and redirecting his focus to the drone. At timestamp 44,9

seconds, the operator was able to send a set of commands for a period of forty seconds. During this

time, where the operator was in a persistent mental state of focused, sending right commands and

most neutral ones, it was detected a sum of 3 negative mental states. At the sound of the second

alarm, at the exact timestamp denoted as 88,3 seconds, the digital twin resulted in a focused mental

state but the visual DT resulted in a fear visual emotion, due to the significantly expressive facial

expressions of the operator, a reaction to the unexpected vibration of the alarm. The operator did

recover faster and, at timestamp 94,8 seconds, he began to send a set of commands under the

mental state of focused, until the experiment ended. During this period, four negative emotions

were detected: two distracted ones and two stressed ones at the end of the experiment.

(a) Drone after take-off.
(b) Drone after a right com-
mand.

Figure 5.7: Position of the drone during a flight.

Although the operator, in multiple periods of time during this experiment, has stabilized the

focused mental state and was formulating motion commands, the cognitive DT has mistaken a few

observations as one of the negative emotions; thus, it was not a persistent classification and did

not have impact on the drone. With the alarms triggered at exact times, the visual DT detected

68 Results and Discussion

a disturbance on the operator before the cognitive one, not allowing sending the right command,

as formulated by the operator, proving that this component is valuable to the system and provides

extra security to the execution of the mission. In concern of the detection of humor switches,

for instance from one positive emotion to a negative one and so on, the system is capable of

discriminating each one at significant timestamps, meaning that on the sound of the alarms, the

system was capable of detecting that the operator was no longer focused on the drone and rather

distracted and surprised by the alarm and when the operator turned off the alarm and refocused on

the drone, the system was also able to detect it. Even though the training of the emotional states

was in short sessions of eight seconds, the operator was able to persist on a certain emotion in

longer periods of time.

5.2.1.5 Swarm ROS2 Management Validation

Considering that the long-term goal is to apply this solution to a swarm of drones and, as men-

tioned in section 5.2.1.4, this system has been validated with a single drone with satisfactory re-

sults, this section demonstrates the inclusion of two drones on the experiments and the interaction

between them and the system.

Since the arena has its own limitations and do not provide enough space for testing, this

experiment was conducted with the support of a simulated server node, which will mimic the base

station and does not have connection to a physical drone. The main goal of this experiment is to

send commands through all client nodes involved and validating if the server node has received

them. For this purpose, an additional client node was created as a second drone. The ROS2-related

code was modified to comply with the current client nodes. Due to debugging purposes, messages

that are printed in the consoles address their own drone to identify whether the system and the

server node can receive requests from both client nodes. For this purpose, the operator executed

one take-off, one motion command and a landing operation.

1 [INFO] [1623235179.701766700] [minimal_service]: Take off incoming request

2 height: 0.500000

3 duration: 2.000000

4 response: 1

5

6 [INFO] [1623235179.704947100] [minimal_service]: Take off incoming request

7 height: 0.500000

8 duration: 2.000000

9 response: 1

Listing 5.1: Server node take-off message.

1 [INFO] [1623235180.412227300] [drone1]: Sending information to server: height:

0.500000

2 duration: 2.000000

5.2 Results and discussion 69

3 response: 1

4

5 [INFO] [1623235180.413246332] [drone2]: Sending information to server: height:

0.500000

6 duration: 2.000000

7 response: 1

Listing 5.2: Client nodes take-off messages.

1 [INFO] [1623235924.239647700] [minimal_service]: Go to incoming request

2 x: 0.000000 y: 0.041117 z: 0.000000 yaw: 0.000000 duration: 1.000000

3

4 [INFO] [1623235924.244461100] [minimal_service]: Go to incoming request

5 x: 0.000000 y: 0.041117 z: 0.000000 yaw: 0.000000 duration: 1.000000

Listing 5.3: Server node go to message.

1 [INFO] [1623235925.104762600] [drone1]: Sending information to server: x coordinate

: 0.000000

2 y coordinate: 0.041117

3 z coordinate: 0.000000

4 rotation: 0.000000

5 duration: 1.000000

6 response: 1

7

8 [INFO] [1623235925.106783200] [drone2]: Sending information to server: x coordinate

: 0.000000

9 y coordinate: 0.041117

10 z coordinate: 0.000000

11 rotation: 0.000000

12 duration: 1.000000

13 response: 1

Listing 5.4: Client nodes go to messages.

1 [INFO] [1623231818.296960000] [minimal_service]: Land incoming request

2 height: 0.000000

3 duration: 2.000000

4 response: 1

5

6 [INFO] [1623231818.407826700] [minimal_service]: Land incoming request

7 height: 0.000000

8 duration: 2.000000

9 response: 1

70 Results and Discussion

Listing 5.5: Server node land message.

1 [INFO] [1623235180.412227300] [drone1]: Sending information to server: height:

0.000000

2 duration: 2.000000

3 response: 1

4

5 [INFO] [1623235180.413246332] [drone2]: Sending information to server: height:

0.000000

6 duration: 2.000000

7 response: 1

Listing 5.6: Client nodes land messages.

By analyzing these console logs, it is possible to conclude that the system can support more

than one client node, meaning that it allows the sending of commands to more than one drone.

In this experiment, it was added a second client node with few code changes so, increasing the

number of drones that operate in the swarm does not imply huge efforts and modifications to the

code base.

5.3 Summary

In this section, a random forest-based digital twin is validated under four experimental levels that

represent an increment of security: (1) the baseline test, (2) the level 1 test, (3) the level 2 test and

finally (3) the full test, where the cognitive DT is boosted by the addition of the visual DT.

The baseline test has no consideration for the emotional cognitive and visual states of the

operator and, therefore, all commands reproduced are immediately broadcast to the drone. Since

humans are prone to fatigue, distractions and even irritations, due to the unexpected behavior of

the drone or to external events, it is very likely that negative emotions are very frequent, and these

situations can create instability to the flight.

As for the level 1 test, that incorporates the digital twin of the operator, success rates were

measured between 71% and 100%, being the stressed mental state the best discriminated one.

Level 2 test also measures its success rate from 57% to 100%, thus, although it is noticeable that the

minimum success rate dropped significantly, classification errors can be propagated to the drone,

but their impact is minimized due to the computation of coordinates based on the confidences of

the predictions, commonly lower in these situations, meaning that drones will not probably move

enough to disrupt the stability of their flight. Regarding the full test, success rates are measured

between 84% and 99%.

In a positive case scenario, where the operator is in a mental emotional state considered to be

suitable to send commands (calm and focused), if the cognitive DT outputs a negative emotion,

5.3 Summary 71

the command will simply not be sent to the drone, having no impact whatsoever on the flight.

However, in a negative case scenario, meaning that the operator is not in a suitable state to send

commands, if one of the cognitive DT outputs a positive emotion, the commands can be sent and

destabilize the flight, so, this solution has proven to minimize the impact on the drones under these

incorrect classifications when added the extra layer of the visual DT. Results show that some, if not

all, observations where the cognitive DT outputs a positive emotion and the reproduced command

is a motion one, the visual DT outputs a negative emotion, preventing them to be sent to the drones.

In a free, live, simulation, switches between emotions, more importantly from positive to

negative emotions and so on, are correctly identified as well as continuous emotions that persists

for longer periods of time.

This solution has proven to not also accurately identify the operator’s visual and mental states

and to handle, with efficiency, the commands as far as computing coordinates and providing a

communication channel to the hardware, but also minimizes the impact of flaws of the system on

the flight of the drone. In addition, comprehending that a ROS2 client node is associated with one

drone through a client-server architecture, a swarm of drones is easily composed and managed by

adding as many client nodes as needed.

72 Results and Discussion

Chapter 6

Conclusion

In this chapter, overall conclusions about each part of the development of this work are presented.

The research questions mentioned in chapter 1 are answered according with the results and gath-

ered knowledge obtained by the implemented solution and what it represents in the context of the

problem. In addition, it is mentioned how this solution could be optimized or enhanced and how

can it fit in a bigger plan than given in this thesis.

6.1 Conclusions

In this work, I analyzed data captured by the BCI Emotive Epoc+ of a drone operator and, using

machine learning techniques, I was able to build a digital twin of the operator capable of predicting

his emotional (cognitive and visual) state and decide whether the commands formulated should be

sent to the drone. The classification of the emotional state is mainly supported by BCI recorded

data and by the analysis of the visual facial expressions, for higher levels of precision for the

decision. In addition, the communication between the system and the drone is done through a

ROS2 client node.

To implement the proposed solution, I divided the work into the following tasks (see section

1.4): (1) getting acknowledged with the EmotivBCI headset and aggregated software as well as

building a mental profile of commands; (2) perform data analysis and data pre-processing on

recordings from the BCI; (3) build a cognitive digital twin of the operator with best fitted machine

learning algorithm; (4) search and include a visual digital twin in the project; (5) develop a decision

component capable of determine the destination of commands and (6) build a communication

channel between the system and the drone based on a client-server architecture with ROS2.

First, the work started with the exploration of the Emotiv Epoc+ device which was associated

with multiple software, most of them requiring a license for access. EmotivBCI application did

not need any special license and it had most core functionalities I considered to be crucial, mean-

ing that it provided a platform for training the mental commands and to monitor our cognitive

73

74 Conclusion

metrics. Right from the beginning, I noticed that the training of these mental commands was such

a time-consuming and complex task, because this whole concept of formulating commands with

thoughts was not also very new to me but having to learn this process from scratch was a little

difficult. Establishing a strategy to formulate these commands, one that could be easily repro-

duced whenever I wanted, had to be well-though. To validate that the commands formulated were

uniquely based on thoughts, I could not move any facial muscle. In addition, different days mean

different states of mind and consciousness, making the task even more challenging when trying to

reproduce equivalent thoughts. Beyond the fact that this training was based on trial and error, the

number of commands was also a great concern. As many commands I add to my profile, the more

confusing it gets, meaning that training one command and having confidence that the model can

discriminate it well enough and adding a new one is sufficient to alter the whole profile and to cre-

ate confusions for the model. Both commands need to have very different formulation strategies to

the model accurately discriminate each other. So, the challenge lays not also in teaching our brain

to formulate commands and to practice them, but also to ensure that each are well discriminated

and separated in this profile. The operator has total responsibility for creating strategies to formu-

late commands to accomplish them whenever he wants. For example, if the training occurs when

the operator has high levels of stress, then the model will learn that the command he is training is

correlated with these levels and, presumably, will only output the command when the operator is

in an equivalent state. Classification errors occurs, thus as many training the operator completes,

the better the classifier will perform on distinguishing the commands. In this thesis, the operator

is focused on formulating commands, but occasionally the classifier outputs commands when the

operator is with higher levels of stress or distracted.

With a suitable and well-trained profile in the EmotivBCI application, the next step was to

perform some data analysis. Since all data from the headset is sent to the server, the system needs

to send requests to an API and receive the data streams in JSON format. Considering that each

request is unique and is received multiple times per second, pre-processing the information was

a time-consuming task to get everything in a single dataset, where each point in time is matched

with the correct values of each data stream.

Training data was collected with as much precision as possible, meaning that I used small

sessions of data acquisition so that it would be easier to concentrate on replicating a certain emo-

tion. If, for whatever reason, I was not able to replicate equivalent scenarios for each simulation,

the training would be then discarded and this session would be replaced, resulting in a task based

on trial and error. Multiple machine learning algorithms were validated with this training set, for

instance Decision Tree, K-Nearest Neighbors, Linear Discriminant Analysis, Naive Bayes, Ran-

dom Forest, Support Vector Machine and Neural Networks (see accuracies in table 4.6). Random

Forest was the algorithm with the highest values on each performance metric and therefore used

for training the cognitive digital twin. Results from the validation experiments show that this

component, the cognitive digital twin has a high success rate of 84%.

Regarding the visual digital twin, I searched multiple repositories for a suitable project, in

python, that would have a model trained with visual input for classifying the operator’s facial

6.1 Conclusions 75

expression. I found a project with a publication concerning their visual recognizer that was trained

with the FER-2013 dataset, a generic one that has thousands of images with people’s faces and

even of cartoons. Although the classifier has an accuracy of 66%, the real-time run of this solution

is rather surprising. In one hand, a video appears on the screen from the webcam, and the resulting

classification appears on the face of the operator with specific colors for each detected emotion.

This model can detect switches from one emotion to another and the classification is usually

accurate. On the other hand, these face switches are detected with a little delay, is not an immediate

reaction from the model and it can more easily detect the neutral and happy states. Considering

this, the model’s classification is correlated with the rotation of the head of the operator, meaning

that if the operator lowers his face, the classifier will output a sad state. Lowering the face can

be a standard behavior of someone who is sad, thus, in this work, the goal is having an operator

managing a drone and looking at it in real-time, so it is normal that the operator’s eyes and head

follow the motions of the drone. In these situations, it surfaces an inconvenience as the position of

the camera is a variable to consider. In this way, the classification can output a wrong classification

but it just translates into an inconvenience and not an actual negative impact to the drone (because

the decision component will not send the commands if this visual DT outputs a negative emotion).

In the decision component it lays the responsibility of evaluating both the visual and cognitive

states of the operator and decide whether the command should be forwarded to the drone. To

minimize the impact of classification errors on the drone, the coordinates are computed according

to the confidences of the classified command and the classified mental emotion by the models. All

procedures for data cleaning and processing are reused for the newly collected data. One recurrent

concern when running the solution in a real-time setting was its processing time. Considering that

the raw JSON data is crossed by multiple transformations to be handled by the digital twin, these

events could have a significant run-time, enough to disrupt the flow of a real-time control. Thus,

the solution is efficient enough to not spend more than 0,2 seconds to run all these procedures and

send the command to the drone.

Lastly, the final component of this system is the ROS2 client node. The addition of this com-

ponent boosts the value of this system significantly because not also it is easier later to add more

drones as I wish and manage them with ease, but also it proves that it is feasible to control drones

in a live, free will, environment. In this work, it is explicit that I developed the client node, but it

is hidden the real complexity of building the whole ROS2 framework. It requires other modules to

be built to connect the hardware to the system and the level of synchronization needed between all

these modules is imperative. Having a virtual, simulated, device is a simpler validation procedure

but does not have the same impact and value when applied to a real hardware in real scenarios.

Thus, these connections are more unstable and unpredictable because I am handling critical and

under-development systems and it represents a frequent challenge. Furthermore, I demonstrate

that I can manage drones through ROS2 via any client node without the limitation of different

development environments (operating systems), as this thesis’ solution is implemented in python

and the server node in C++. Overall, the ROS2 client node is a secure and stable option to com-

municate with the drones.

76 Conclusion

In summary, the digital twin can accurately discriminate the operator’s emotional states at a

live setting and the combination of classification models improved the security and reliability of

the system to decide upon the broadcasting of the formulated commands by the operator.

6.2 Response to Research Questions

In response to RQ1, TS1 has proven its veracity. The cognitive digital twin is built according to

the operator’s specific natural reactions and inherent emotions. Since it learns from the operator

and finds patterns on data recorded from a BCI, it can accurately discriminate each emotional

state.

Concerning RQ2, TS2 has proven its veracity. By adopting a digital twin of the operator to

detect both cognitive and visual emotional states and by computing coordinates proportionally to

the confidences of the predictions, commands formulated in a negative state are discarded and

classification errors have a minimized impact on the drones. The cognitive digital twin delivers

conclusive information for the decision upon the formulated commands; thus, the prediction model

behind this DT has its uncertainties and can output an inaccurate classification that leads to desta-

bilization of the drone or swarm of drones. Particularly when the operator is stressed or distracted,

but the cognitive DT classifies his emotional condition as one of the positive classes. As part of

this thesis’ validation, multiple levels of experiments were established to ascertain the value of

each added component for handling commands formulated on these specific situations. Results

show that the last experimental level, which incorporates all mentioned components, delivers the

highest level of robustness of the solution.

6.3 Final Appreciations

The resolution of this thesis’ problem was one of the most satisfactory ones I had in my academic

years. This thesis was proposed in a completely different context I was used to and handled

with so many technologies that I have never learnt, since the programming language to the BCI

headsets and software. There was an exponential learning path where I became acknowledged

with so many areas and could build such a complete solution, one that would ultimately surpass

any expectations and more. Overall, this solution has reached all goals established in the beginning

of the project, proved to be very reliable and stable, reflects the amount of efforts and teamwork

that were necessary and it has showed its relevance as this is the beginning of a bigger, broader,

project for the future.

It was also submitted and accepted a short paper (four pages) on the tenth International Confer-

ence on Intelligent Systems and Applications (or INTELLI 2021 [6]) summarizing all work done

in this thesis and with preliminary results, in the context of case studies of intelligent solutions, in-

telligent data analysis, intelligent human-computer interaction systems and real-time intelligence.

In addition, it is expected the submission of a full-length (six pages) paper, containing the final

results of this thesis, on the twentieth International Conference on Advanced Robotics (or ICAR

6.4 Future Work 77

[1]). Additionally, this solution is integrated in the context of an industrial use case, being cur-

rently demonstrated to associated clients of Capgemini Engineering and it opens the possibility of

using this decision making solution to other safety-critical systems.

6.4 Future Work

As future work, I would like to better the operator’s experience regarding the training of the men-

tal commands. Since the procedure was to rely on the EmotivBCI application to formulate and

practice the commands, when providing a new platform without the dependency from external ap-

plications, I could control and link all training in a unique application and adapt the interface and

functionalities to better fit the control and flight of drones, meaning that, for instance, instead of a

generic object appearing (cube), it could appear a drone and add as much drones as the operator

would like.

Regarding the digital twin, the core functionality of this system, I would like to collect and

add more data for its training. Additionally, because different days can make a difference in the

operator’s state of mind, I would like to add a complementary recording of a baseline each day

the operator accesses to this system, so that the digital twin can adapt itself according to these

values, as the EmotivBCI application establishes. Furthermore, data cleaning and processing can

be optimized so that larger datasets in the training phase can be handled with more efficiency and

consume less time. Since this solution is not generic and depends on each operator’s profile, I

would like to have a larger number of subjects and with different demographics (i.e., genders,

ages, etc.) to evaluate this solution in a broader level, which was not possible in this thesis due to

Covid-19.

The chosen BCI for the purpose of this thesis was the Emotiv Epoc+; thus, there are multiple

other options to take into consideration, for instance the OpenBCI that has the advantage of having

open-source software. Data collected from this BCI will not need to be sent to a server and can

output raw EEG, unlike the Emotiv Epoc+ without the proper license. I would like to explore

these others BCIs and assess them in the context of this problem.

78 Conclusion

Appendix A

Cortex Auxiliary Information

In this appendix, additional information regarding the Cortex API is displayed. Since this API

provides a gateway to access the Emotiv services and data, the first section shows all method calls

required for the implementation of this thesis proposed solution. The second section explains the

reproduced Cortex examples to demonstrate this API’s functionalities.

A.1 Method Calls

Considering that the Cortex examples’ repository ([23]) was the foundation of the code base, the

Cortex library synchronous method calls was adapted for this project’s needs.

First of all, concerning the connection to the headset described in section 4.1 and showcased

by figure A.1, the procedure is composed by 5 steps: (1) query the available headsets, (2) connect

to the desired headset, (3) request access for accessing to the user’s application, (4) authorize

the headset’s user and (5) create the session. These method calls are displayed above with the

corresponding request bodies and parameters.

1 query_headset_request = {

2 "jsonrpc": "2.0",

3 "id": g.QUERY_HEADSET_ID,

4 "method": "queryHeadsets",

5 "params": {}

6 }

Listing A.1: queryHeadsets request body.

79

80 Cortex Auxiliary Information

Figure A.1: Activity diagram showing the workflow of the connection of the Emotiv Epoc+ head-
set (from [26]).

A.1 Method Calls 81

1 connect_headset_request = {

2 "jsonrpc": "2.0",

3 "id": g.CONNECT_HEADSET_ID,

4 "method": "controlDevice",

5 "params": {

6 "command": "connect",

7 "headset": <headset_id>

8 }

9 }

Listing A.2: controlDevice request body for

connecting the headset.

1 connect_headset_request = {

2 "jsonrpc": "2.0",

3 "id": g.CONNECT_HEADSET_ID,

4 "method": "controlDevice",

5 "params": {

6 "command": "disconnect",

7 "headset": <headset_id>

8 }

9 }

Listing A.3: controlDevice request body for

disconnecting the headset.

Table A.1: Control device method call parameters (adapted from [3]).

Name Type Required Description
command string yes The command must be "connect", "disconnect" or "refresh".
headset string no The id of the headset that you want to connect or disconnect. The

headset id is returned by queryHeadsets. If the command is "re-
fresh", then you should omit this parameter.

1 request_access_request = {

2 "jsonrpc": "2.0",

3 "method": "requestAccess",

4 "params": {

5 "clientId":<client_id>,

6 "clientSecret": <client_secret>

7 },

8 "id": g.REQUEST_ACCESS_ID

9 }

Listing A.4: requestAccess request body.

Table A.2: requestAccess method call parameters (adapted from [3]).

Name Type Required Description
clientId string yes The client id of your Cortex application.

clientSecret string yes The client secret of your Cortex application.

82 Cortex Auxiliary Information

1 authorize_request = {

2 "jsonrpc": "2.0",

3 "method": "authorize",

4 "params": {

5 "clientId": <client_id>,

6 "clientSecret": <client_secret>,

7 "license": <license>,

8 "debit": <debit>

9 },

10 "id": g.AUTHORIZE_ID

11 }

Listing A.5: authorize request body.

Table A.3: authorize method call parameters (adapted from [3]).

Name Type Required Description
clientId string yes The client id of your Cortex application.

clientSecret string yes The client secret of your Cortex application.
license string no A license id. In most cases, you don’t need to specify the license

id. Cortex will find the appropriate license based on the client id.
debit number no Number of sessions to debit from the license, so that it can be

spent locally without having to authorize again. You need to debit
the license only if you want to activate a session. The default
value is zero.

Regarding the data subscription

1 sub_request_json = {

2 "jsonrpc": "2.0",

3 "method": "subscribe",

4 "params": {

5 "cortexToken": <auth>,

6 "session": <session_id>,

7 "streams": stream

8 },

9 "id": g.SUB_REQUEST_ID

10 }

Listing A.6: subscribe request body.

A.2 Reproduced Examples 83

Table A.4: subscribe method call parameters (adapted from [3]).

Name Type Required Description
cortexToken string yes A token returned by authorize.

session string yes A session id returned by createSession.
streams array of string yes The data streams you want to subscribe to.

A.2 Reproduced Examples

As mentioned above, Cortex API provides multiple demonstrations that were run at the time of

the headset exploration and research; thus, this section only contains the demonstrations that were

useful for the understanding and implementation of this thesis proposed solution, starting with the

subscription of data streams. In addition, the library, the subscription method has encapsulated a

writing method that fetches the data and writes it to a separated file.

1 import numpy as np

2 import pandas as pd

3 from cortex import Cortex

4

5 class Subcribe():

6 count = 5

7

8 def __init__(self):

9 self.c = Cortex(user, debug_mode=True)

10 self.c.do_prepare_steps()

11

12 def sub(self, streams):

13 self.c.sub_request(streams)

14

15 user = {

16 "license": "",

17 "client_id": <client_id>,

18 "client_secret": <client_secret>,

19 "debit": 100

20 }

21

22 s = Subcribe()

23 streams = [’com’]

24 s.sub(streams)

Listing A.7: Subscribe method call example python file.

84 Cortex Auxiliary Information

1 {"id":6,"jsonrpc":"2.0","result":{"failure":[],"success":[{"cols":["act","pow"],"

sid": <sid>,"streamName":"com"}]}},{"com":["neutral",0.0],"sid":<sid>,"time"

:1622641319.5343},{"com":["neutral",0.0],"sid":<sid>,"time":1622641319.6593}

Listing A.8: Data streams read from the written file.

Regarding the training of the mental commands, the following code listings displays the pro-

cedure of the tutorial and execution.

1 from cortex import Cortex

2

3 class Train():

4 def __init__(self):

5 self.c = Cortex(user, debug_mode=True)

6 self.c.do_prepare_steps()

7

8 def train(self,

9 profile_name,

10 training_action,

11 number_of_train):

12

13 stream = [’sys’]

14 self.c.sub_request(stream)

15

16 profiles = self.c.query_profile()

17

18 if profile_name not in profiles:

19 status = ’create’

20 self.c.setup_profile(profile_name, status)

21

22 status = ’load’

23 self.c.setup_profile(profile_name, status)

24

25 print(’begin train -----------------------------------’)

26 num_train = 0

27 while num_train < number_of_train:

28 num_train = num_train + 1

29

30 print(’start training {0} time {1} ---------------’.format(training_action,

num_train))

31 print(’\n’)

32 status=’start’

33 self.c.train_request(detection=’mentalCommand’,

34 action=training_action,

35 status=status)

36

37 print(’accept {0} time {1} ---------------’.format(training_action, num_train

))

A.2 Reproduced Examples 85

38 print(’\n’)

39 status=’accept’

40 self.c.train_request(detection=’mentalCommand’,

41 action=training_action,

42 status=status)

43

44 print(’save trained action’)

45 status = "save"

46 self.c.setup_profile(profile_name, status)

47

48 status = ’unload’

49 self.c.setup_profile(profile_name, status)

50

51

52 def live(self, profile_name):

53 print(’begin live mode ----------------------------------’)

54 # load profile

55 status = ’load’

56 self.c.setup_profile(profile_name, status)

57

58 stream = [’com’]

59 self.c.sub_request(stream)

60

61 user = {

62 "license" : "",

63 "client_id" : <client_id>,

64 "client_secret" : <client_secret>,

65 "debit" : 100

66 }

67

68 t=Train()

69 profile_name = ’Train_test’

70 number_of_train = 1

71

72 training_action = ’neutral’

73 t.train(profile_name,

74 training_action,

75 number_of_train)

76

77 training_action = ’push’

78 t.train(profile_name,

79 training_action,

80 number_of_train)

81

82 t.live(profile_name)

Listing A.9: Complete procedure for the training of the mental commands.

86 Cortex Auxiliary Information

1 subscribe request --------------------------------

2 "{\"id\":6,\"jsonrpc\":\"2.0\",\"result\":{\"failure\":[],\"success\":[{\"cols

\":[\"event\",\"msg\"],\"sid\":\<sid>,\"streamName\":\"sys\"}]}}"

3

4

5 NEW DATA -----------------------

6 {"id":6,"jsonrpc":"2.0","result":{"failure":[],"success":[{"cols":["event","msg"],"

sid":<sid>,"streamName":"sys"}]}}

7 query profile --------------------------------

8 query profile request

9 {

10 "jsonrpc": "2.0",

11 "method": "queryProfile",

12 "params": {

13 "cortexToken": <cortex_token>

14 },

15 "id": 8

16 }

17

18

19 query profile result

20 {’id’: 8, ’jsonrpc’: ’2.0’, ’result’: [{’meta’: {’creation_time’: ’2021-02-12T10

:51:57.223+00:00’}, ’name’: ’Diana’}, {’meta’: {’creation_time’: ’2021-06-02

T14:23:07.510+01:00’}, ’name’: ’Test’}, {’meta’: {’creation_time’: ’2021-02-12

T15:45:24.858+00:00’}, ’name’: ’Diana 2’}, {’meta’: {’creation_time’: ’

2021-03-24T09:25:36.479-01:00’}, ’name’: ’Diana 3’}, {’meta’: {’creation_time’

: ’2021-06-02T14:27:52.185+01:00’}, ’name’: ’Train_test’}]}

21

22

23 extract profiles name only

24 [’Diana’, ’Test’, ’Diana 2’, ’Diana 3’, ’Train_test’]

25

26

27 setup profile --------------------------------

28 setup profile json:

29 {

30 "jsonrpc": "2.0",

31 "method": "setupProfile",

32 "params": {

33 "cortexToken": <cortex_token>,

34 "headset": <headset_id>,

35 "profile": "Train_test",

36 "status": "load"

37 },

38 "id": 7

39 }

40

41

42 result

A.2 Reproduced Examples 87

43 {

44 "id": 7,

45 "jsonrpc": "2.0",

46 "result": {

47 "action": "load",

48 "message": "The profile is loaded successfully",

49 "name": "Train_test"

50 }

51 }

52

53 begin train -----------------------------------

54 start training neutral time 1 ---------------

55

56 YOU HAVE 8 SECONDS FOR TRAIN ACTION NEUTRAL

57

58 {

59 "id": 9,

60 "jsonrpc": "2.0",

61 "result": {

62 "action": "neutral",

63 "message": "Set up training successfully",

64 "status": "start"

65 }

66 }

67 {

68 "sid": <sid>,

69 "sys": [

70 "mentalCommand",

71 "MC_Started"

72],

73 "time": 1622641819.284287

74 }

75 {

76 "sid": <sid>,

77 "sys": [

78 "mentalCommand",

79 "MC_Succeeded"

80],

81 "time": 1622641828.159287

82 }

83 accept neutral time 1 ---------------

84

85

86 {

87 "id": 9,

88 "jsonrpc": "2.0",

89 "result": {

90 "action": "neutral",

91 "message": "Set up training successfully",

88 Cortex Auxiliary Information

92 "status": "accept"

93 }

94 }

95 {

96 "sid": <sid>,

97 "sys": [

98 "mentalCommand",

99 "MC_Completed"

100],

101 "time": 1622641828.284287

102 }

103 save trained action

104 setup profile --------------------------------

105 setup profile json:

106 {

107 "jsonrpc": "2.0",

108 "method": "setupProfile",

109 "params": {

110 "cortexToken": <cortex_token>,

111 "headset": <headset_id>,

112 "profile": "Train_test",

113 "status": "save"

114 },

115 "id": 7

116 }

117

118

119 result

120 {

121 "id": 7,

122 "jsonrpc": "2.0",

123 "result": {

124 "action": "save",

125 "message": "The profile is saved successfully",

126 "name": "Train_test"

127 }

128 }

129

130

131 setup profile --------------------------------

132 setup profile json:

133 {

134 "jsonrpc": "2.0",

135 "method": "setupProfile",

136 "params": {

137 "cortexToken": <cortex_token>,

138 "headset": <headset_id>,

139 "profile": "Train_test",

140 "status": "unload"

A.2 Reproduced Examples 89

141 },

142 "id": 7

143 }

144

145

146 result

147 {

148 "id": 7,

149 "jsonrpc": "2.0",

150 "result": {

151 "action": "unload",

152 "headsetId": <headset_id>,

153 "message": "Profile unloaded successfully for headset <headset_id>"

154 }

155 }

156

157

158 subscribe request --------------------------------

159 "{\"id\":6,\"jsonrpc\":\"2.0\",\"result\":{\"failure\":[],\"success\":[{\"cols

\":[\"event\",\"msg\"],\"sid\":\<sid>",\"streamName\":\"sys\"}]}}"

160

161

162 NEW DATA -----------------------

163 {"id":6,"jsonrpc":"2.0","result":{"failure":[],"success":[{"cols":["event","msg"],"

sid":<sid>,"streamName":"sys"}]}}

164 query profile --------------------------------

165 query profile request

166 {

167 "jsonrpc": "2.0",

168 "method": "queryProfile",

169 "params": {

170 "cortexToken": <cortex_token>

171 },

172 "id": 8

173 }

174

175

176 query profile result

177 {’id’: 8, ’jsonrpc’: ’2.0’, ’result’: [{’meta’: {’creation_time’: ’2021-02-12T10

:51:57.223+00:00’}, ’name’: ’Diana’}, {’meta’: {’creation_time’: ’2021-06-02

T14:23:07.510+01:00’}, ’name’: ’Test’}, {’meta’: {’creation_time’: ’2021-02-12

T15:45:24.858+00:00’}, ’name’: ’Diana 2’}, {’meta’: {’creation_time’: ’

2021-03-24T09:25:36.479-01:00’}, ’name’: ’Diana 3’}, {’meta’: {’creation_time’

: ’2021-06-02T14:27:52.185+01:00’}, ’name’: ’Train_test’}]}

178

179

180 extract profiles name only

181 [’Diana’, ’Test’, ’Diana 2’, ’Diana 3’, ’Train_test’]

182

90 Cortex Auxiliary Information

183 setup profile --------------------------------

184 setup profile json:

185 {

186 "jsonrpc": "2.0",

187 "method": "setupProfile",

188 "params": {

189 "cortexToken": <cortex_token>,

190 "headset": <headset_id>,

191 "profile": "Train_test",

192 "status": "load"

193 },

194 "id": 7

195 }

196

197

198 result

199 {

200 "id": 7,

201 "jsonrpc": "2.0",

202 "result": {

203 "action": "load",

204 "message": "The profile is loaded successfully",

205 "name": "Train_test"

206 }

207 }

208

209

210 begin train -----------------------------------

211 start training push time 1 ---------------

212

213

214

215 YOU HAVE 8 SECONDS FOR TRAIN ACTION PUSH

216

217 {

218 "id": 9,

219 "jsonrpc": "2.0",

220 "result": {

221 "action": "push",

222 "message": "Set up training successfully",

223 "status": "start"

224 }

225 }

226 {

227 "sid": <sid>,

228 "sys": [

229 "mentalCommand",

230 "MC_Started"

231],

A.2 Reproduced Examples 91

232 "time": 1622641828.409287

233 }

234 {

235 "sid": <sid>,

236 "sys": [

237 "mentalCommand",

238 "MC_Succeeded"

239],

240 "time": 1622641837.284287

241 }

242 accept push time 1 ---------------

243

244

245 {

246 "id": 9,

247 "jsonrpc": "2.0",

248 "result": {

249 "action": "push",

250 "message": "Set up training successfully",

251 "status": "accept"

252 }

253 }

254 {

255 "sid": <sid>,

256 "sys": [

257 "mentalCommand",

258 "MC_Completed"

259],

260 "time": 1622641837.409287

261 }

262 save trained action

263 setup profile --------------------------------

264 setup profile json:

265 {

266 "jsonrpc": "2.0",

267 "method": "setupProfile",

268 "params": {

269 "cortexToken": <cortex_token>,

270 "headset": <headset_id>,

271 "profile": "Train_test",

272 "status": "save"

273 },

274 "id": 7

275 }

276

277

278 result

279 {

280 "id": 7,

92 Cortex Auxiliary Information

281 "jsonrpc": "2.0",

282 "result": {

283 "action": "save",

284 "message": "The profile is saved successfully",

285 "name": "Train_test"

286 }

287 }

288

289

290 setup profile --------------------------------

291 setup profile json:

292 {

293 "jsonrpc": "2.0",

294 "method": "setupProfile",

295 "params": {

296 "cortexToken": <cortex_token>,

297 "headset": <headset_id>,

298 "profile": "Train_test",

299 "status": "unload"

300 },

301 "id": 7

302 }

303

304

305 result

306 {

307 "id": 7,

308 "jsonrpc": "2.0",

309 "result": {

310 "action": "unload",

311 "headsetId": <headset_id>,

312 "message": "Profile unloaded successfully for headset <headset_id>"

313 }

314 }

315

316 begin live mode ----------------------------------

317 setup profile --------------------------------

318 setup profile json:

319 {

320 "jsonrpc": "2.0",

321 "method": "setupProfile",

322 "params": {

323 "cortexToken": <cortex_token>",

324 "headset": <headset_id>,

325 "profile": "Train_test",

326 "status": "load"

327 },

328 "id": 7

329 }

A.2 Reproduced Examples 93

330

331

332 result

333 {

334 "id": 7,

335 "jsonrpc": "2.0",

336 "result": {

337 "action": "load",

338 "message": "The profile is loaded successfully",

339 "name": "Train_test"

340 }

341 }

Listing A.10: Mental Command training example execution.

94 Cortex Auxiliary Information

Appendix B

Descriptive Data Analysis

B.0.1 Motion Data Stream

Table B.1: Overall Motion data stream statistics.

Feature Count Mean Standard Deviation Minimum Maximum
ACCX 78 400 0.973062 0.101278 -0.108888 2.685588
ACCY 78 400 0.122431 0.035157 -0.509773 1.208026
ACCZ 78 400 0.023528 0.053613 0.048829 0.377447
MAGX 78 400 -98.237158 1.788835 -108.415351 -85.535973
MAGY 78 400 -137.213464 8.684884 -170.174716 -107.667659
MAGZ 78 400 41.764094 7.266094 24.374762 63.254749

Q0 78 400 0.382023 0.212553 0.000000 0.743819
Q1 78 400 -0.047733 0.534911 -0.770569 0.827820
Q2 78 400 -0.386831 0.226918 -0.763611 0.326538
Q3 78 400 -0.110115 0.554278 -0.780518 0.794556

B.0.2 Facial Expression Data Stream

Table B.2: Overall Facial Expressions categorical data stream statistics.

Feature Count Most Frequent Category
eyeAct 78 400 Neutral
uAct 78 400 Neutral
lAct 78 400 Neutral

B.0.3 Band Power Data Stream

95

96 Descriptive Data Analysis

(a) ACC boxplot. (b) MAG boxplot.

(c) Q boxplot.

Figure B.1: Overall data distribution for the motion streams.

Table B.3: Overall Facial expressions numerical data stream statistics.

Feature Count Mean Standard Deviation Minimum Maximum
uPow 78 400 0.097225 0.219010 0.000000 1.000000
lPow 78 400 0.012644 0.087591 0.000000 1.000000

Table B.4: AF4 sensor and theta, alpha, betaL, betaH and gamma bands data distribution.

Feature Count Mean Standard Deviation Minimum Maximum
AF4/theta 78 400 -0.386831 0.226918 -0.763611 0.326538
AF4/alpha 78 400 -0.110115 0.554278 -0.780518 0.794556
AF4/betaL 78 400 -0.386831 0.226918 -0.763611 0.326538
AF4/betaH 78 400 -0.110115 0.554278 -0.780518 0.794556

AF4/gamma 78 400 -0.110115 0.554278 -0.780518 0.794556

Descriptive Data Analysis 97

(a) eyeAct boxplot. (b) uAct boxplot.

(c) lAct boxplot.

Figure B.2: Overall data distribution for the facial expressions categorical streams (before one-
hot-encoding).

Figure B.3: Facial expressions numerical data stream box plot.

98 Descriptive Data Analysis

Figure B.4: AF4 sensor and theta, alpha, betaL, betaH and gamma bands box plot.

Table B.5: F8 sensor and theta, alpha, betaL, betaH and gamma bands data distribution.

Feature Count Mean Standard Deviation Minimum Maximum
F8/theta 78 400 -0.386831 0.226918 -0.763611 0.326538
F8/alpha 78 400 -0.110115 0.554278 -0.780518 0.794556
F8/betaL 78 400 -0.386831 0.226918 -0.763611 0.326538
F8/betaH 78 400 -0.110115 0.554278 -0.780518 0.794556

F8/gamma 78 400 -0.110115 0.554278 -0.780518 0.794556

Table B.6: F4 sensor and theta, alpha, betaL, betaH and gamma bands data distribution.

Feature Count Mean Standard Deviation Minimum Maximum
F4/theta 78 400 -0.386831 0.226918 -0.763611 0.326538
F4/alpha 78 400 -0.110115 0.554278 -0.780518 0.794556
F4/betaL 78 400 -0.386831 0.226918 -0.763611 0.326538
F4/betaH 78 400 -0.110115 0.554278 -0.780518 0.794556

F4/gamma 78 400 -0.110115 0.554278 -0.780518 0.794556

Descriptive Data Analysis 99

Figure B.5: F8 sensor and theta, alpha, betaL, betaH and gamma bands box plot.

Figure B.6: F4 sensor and theta, alpha, betaL, betaH and gamma bands box plot.

100 Descriptive Data Analysis

Table B.7: FC6 sensor and theta, alpha, betaL, betaH and gamma bands data distribution.

Feature Count Mean Standard Deviation Minimum Maximum
FC6/theta 78 400 -0.386831 0.226918 -0.763611 0.326538
FC6/alpha 78 400 -0.110115 0.554278 -0.780518 0.794556
FC6/betaL 78 400 -0.386831 0.226918 -0.763611 0.326538
FC6/betaH 78 400 -0.110115 0.554278 -0.780518 0.794556

FC6/gamma 78 400 -0.110115 0.554278 -0.780518 0.794556

Figure B.7: FC6 sensor and theta, alpha, betaL, betaH and gamma bands box plot.

Table B.8: T8 sensor and theta, alpha, betaL, betaH and gamma bands data distribution.

Feature Count Mean Standard Deviation Minimum Maximum
T8/theta 78 400 -0.386831 0.226918 -0.763611 0.326538
T8/alpha 78 400 -0.110115 0.554278 -0.780518 0.794556
T8/betaL 78 400 -0.386831 0.226918 -0.763611 0.326538
T8/betaH 78 400 -0.110115 0.554278 -0.780518 0.794556

T8/gamma 78 400 -0.110115 0.554278 -0.780518 0.794556

Descriptive Data Analysis 101

Figure B.8: T8 sensor and theta, alpha, betaL, betaH and gamma bands box plot.

Table B.9: P8 sensor and theta, alpha, betaL, betaH and gamma bands data distribution.

Feature Count Mean Standard Deviation Minimum Maximum
P8/theta 78 400 -0.386831 0.226918 -0.763611 0.326538
P8/alpha 78 400 -0.110115 0.554278 -0.780518 0.794556
P8/betaL 78 400 -0.386831 0.226918 -0.763611 0.326538
P8/betaH 78 400 -0.110115 0.554278 -0.780518 0.794556

P8/gamma 78 400 -0.110115 0.554278 -0.780518 0.794556

Table B.10: O2 sensor and theta, alpha, betaL, betaH and gamma bands data distribution.

Feature Count Mean Standard Deviation Minimum Maximum
O2/theta 78 400 -0.386831 0.226918 -0.763611 0.326538
O2/alpha 78 400 -0.110115 0.554278 -0.780518 0.794556
O2/betaL 78 400 -0.386831 0.226918 -0.763611 0.326538
O2/betaH 78 400 -0.110115 0.554278 -0.780518 0.794556

O2/gamma 78 400 -0.110115 0.554278 -0.780518 0.794556
P8/gamma 78 400 -0.110115 0.554278 -0.780518 0.794556

102 Descriptive Data Analysis

Figure B.9: P8 sensor and theta, alpha, betaL, betaH and gamma bands box plot.

Figure B.10: O2 sensor and theta, alpha, betaL, betaH and gamma bands box plot.

Descriptive Data Analysis 103

Table B.11: O1 sensor and theta, alpha, betaL, betaH and gamma bands data distribution.

Feature Count Mean Standard Deviation Minimum Maximum
O1/theta 78 400 -0.386831 0.226918 -0.763611 0.326538
O1/alpha 78 400 -0.110115 0.554278 -0.780518 0.794556
O1/betaL 78 400 -0.386831 0.226918 -0.763611 0.326538
O1/betaH 78 400 -0.110115 0.554278 -0.780518 0.794556

O1/gamma 78 400 -0.110115 0.554278 -0.780518 0.794556

Figure B.11: O1 sensor and theta, alpha, betaL, betaH and gamma bands box plot.

Table B.12: P7 sensor and theta, alpha, betaL, betaH and gamma bands data distribution.

Feature Count Mean Standard Deviation Minimum Maximum
P7/theta 78 400 -0.386831 0.226918 -0.763611 0.326538
P7/alpha 78 400 -0.110115 0.554278 -0.780518 0.794556
P7/betaL 78 400 -0.386831 0.226918 -0.763611 0.326538
P7/betaH 78 400 -0.110115 0.554278 -0.780518 0.794556

P7/gamma 78 400 -0.110115 0.554278 -0.780518 0.794556

104 Descriptive Data Analysis

Figure B.12: P7 sensor and theta, alpha, betaL, betaH and gamma bands box plot.

Table B.13: T7 sensor and theta, alpha, betaL, betaH and gamma bands data distribution.

Feature Count Mean Standard Deviation Minimum Maximum
T7/theta 78 400 -0.386831 0.226918 -0.763611 0.326538
T7/alpha 78 400 -0.110115 0.554278 -0.780518 0.794556
T7/betaL 78 400 -0.386831 0.226918 -0.763611 0.326538
T7/betaH 78 400 -0.110115 0.554278 -0.780518 0.794556

T7/gamma 78 400 -0.110115 0.554278 -0.780518 0.794556

Table B.14: FC5 sensor and theta, alpha, betaL, betaH and gamma bands data distribution.

Feature Count Mean Standard Deviation Minimum Maximum
FC5/theta 78 400 -0.386831 0.226918 -0.763611 0.326538
FC5/alpha 78 400 -0.110115 0.554278 -0.780518 0.794556
FC5/betaL 78 400 -0.386831 0.226918 -0.763611 0.326538
FC5/betaH 78 400 -0.110115 0.554278 -0.780518 0.794556

FC5/gamma 78 400 -0.110115 0.554278 -0.780518 0.794556

Descriptive Data Analysis 105

Figure B.13: T7 sensor and theta, alpha, betaL, betaH and gamma bands box plot.

Figure B.14: FC5 sensor and theta, alpha, betaL, betaH and gamma bands box plot.

106 Descriptive Data Analysis

Table B.15: F3 sensor and theta, alpha, betaL, betaH and gamma bands data distribution.

Feature Count Mean Standard Deviation Minimum Maximum
F3/theta 78 400 -0.386831 0.226918 -0.763611 0.326538
F3/alpha 78 400 -0.110115 0.554278 -0.780518 0.794556
F3/betaL 78 400 -0.386831 0.226918 -0.763611 0.326538
F3/betaH 78 400 -0.110115 0.554278 -0.780518 0.794556

F3/gamma 78 400 -0.110115 0.554278 -0.780518 0.794556

Figure B.15: F3 sensor and theta, alpha, betaL, betaH and gamma bands box plot.

Table B.16: F7 sensor and theta, alpha, betaL, betaH and gamma bands data distribution.

Feature Count Mean Standard Deviation Minimum Maximum
F7/theta 78 400 -98.237158 1.788835 -108.415351 -85.535973

F7/alpha" 78 400 -137.213464 8.684884 -170.174716 -107.667659
F7/betaL 78 400 41.764094 7.266094 24.374762 63.254749
F7/betaH 78 400 0.382023 0.212553 0.000000 0.743819

F7/gamma 78 400 -0.047733 0.534911 -0.770569 0.827820

Descriptive Data Analysis 107

Figure B.16: F7 sensor and theta, alpha, betaL, betaH and gamma bands box plot.

Table B.17: AF3 sensor and theta, alpha, betaL, betaH and gamma bands data distribution.

Feature Count Mean Standard Deviation Minimum Maximum
AF3/theta 78 400 0.382023 0.212553 0.000000 0.743819
AF3/alpha 78 400 1 1 1 1
AF3/betaL 78 400 0.973062 0.101278 -0.108888 2.685588
AF3/betaH 78 400 0.122431 0.035157 -0.509773 1.208026

AF3/gamma 78 400 0.023528 0.053613 0.048829 0.377447

108 Descriptive Data Analysis

Figure B.17: AF3 sensor and theta, alpha, betaL, betaH and gamma bands box plot.

Appendix C

ROS2 Auxiliary Information

For the integration of the ROS2 client node on the project, research and tutorials were consulted

and followed to build a general understanding of ROS concepts and implementation schemes. For

this purpose, this section explains the reproduced tutorials that are available in the official ROS2

documentation ([45]).

C.1 ROS2 Service Architecture

Since the existing system already implements a service node (described in section 3.1.2.1), it was

defined that the service-client architecture needed to persist and the new node, the client one (as

described in section 4.3), was to be created. Ultimately, a node is a software component that is

responsible for some specific task. For 2 nodes to communicate, ROS2 provides multiple ways:

by topics, services, actions or parameters.

As described in figure C.1, a service is an additional software layer with a specific scheme for

request and responses, where the client calls the specific service, instantiates its values matching its

scheme and composes the request message. Considering that the message is successfully received

by the server node, a response is sent following the same procedure. In addition, multiple nodes

can be implemented to the system.

Figure C.1: Service-client ROS2 architecture (adapted from [44]).

109

110 ROS2 Auxiliary Information

C.2 Tutorials

This section presents reproduced tutorials of interest that aid on the implementation of the client

node of this thesis. First, it was followed a tutorial for implementing a simple service and client

nodes in python ([45]), on a Windows environment, that will fetch a pre-defined service file from

an example’s package (AddTwoInts). The purpose of this tutorial is to provide a server node that

receives two integers from the client node’s request message, computes their sum and sends the

final value in the response message. Every step and code below is from [45]:

1. Source ROS2 installation:

1 call <path to installation>\local_setup.bat

2. Create a ROS2 package:

1 ros2 pkg create --build-type ament_python py_srvcli --dependencies rclpy

example_interfaces

2

3 int64 a

4 int64 b

5 ---

6 int64 sum

3. Create a ROS2 package:

1 ros2 pkg create --build-type ament_python py_srvcli --dependencies rclpy

example_interfaces

4. Update package.xml:

1 <description>Python client server tutorial</description>

2 <maintainer email="you@email.com">Your Name</maintainer>

3 <license>Apache License 2.0</license>

5. Update setup.py:

1 maintainer=’Your Name’,

2 maintainer_email=’you@email.com’,

3 description=’Python client server tutorial’,

4 license=’Apache License 2.0’,

C.2 Tutorials 111

6. Write the service node:

1 from example_interfaces.srv import AddTwoInts

2

3 import rclpy

4 from rclpy.node import Node

5

6

7 class MinimalService(Node):

8

9 def __init__(self):

10 super().__init__(’minimal_service’)

11 self.srv = self.create_service(AddTwoInts, ’add_two_ints’, self.

add_two_ints_callback)

12

13 def add_two_ints_callback(self, request, response):

14 response.sum = request.a + request.b

15 self.get_logger().info(’Incoming request\na: %d b: %d’ % (request

.a, request.b))

16

17 return response

18

19

20 def main(args=None):

21 rclpy.init(args=args)

22

23 minimal_service = MinimalService()

24

25 rclpy.spin(minimal_service)

26

27 rclpy.shutdown()

28

29

30 if __name__ == ’__main__’:

31 main()

7. Write the client node:

1 import sys

2

3 from example_interfaces.srv import AddTwoInts

4 import rclpy

5 from rclpy.node import Node

6

7

8 class MinimalClientAsync(Node):

9

112 ROS2 Auxiliary Information

10 def __init__(self):

11 super().__init__(’minimal_client_async’)

12 self.cli = self.create_client(AddTwoInts, ’add_two_ints’)

13 while not self.cli.wait_for_service(timeout_sec=1.0):

14 self.get_logger().info(’service not available, waiting again

...’)

15 self.req = AddTwoInts.Request()

16

17 def send_request(self):

18 self.req.a = int(sys.argv[1])

19 self.req.b = int(sys.argv[2])

20 self.future = self.cli.call_async(self.req)

21

22

23 def main(args=None):

24 rclpy.init(args=args)

25

26 minimal_client = MinimalClientAsync()

27 minimal_client.send_request()

28

29 while rclpy.ok():

30 rclpy.spin_once(minimal_client)

31 if minimal_client.future.done():

32 try:

33 response = minimal_client.future.result()

34 except Exception as e:

35 minimal_client.get_logger().info(

36 ’Service call failed %r’ % (e,))

37 else:

38 minimal_client.get_logger().info(

39 ’Result of add_two_ints: for %d + %d = %d’ %

40 (minimal_client.req.a, minimal_client.req.b, response

.sum))

41 break

42

43 minimal_client.destroy_node()

44 rclpy.shutdown()

45

46

47 if __name__ == ’__main__’:

48 main()

8. Add entry point to the setup.py on the console_scripts:

1 entry_points={

2 ’console_scripts’: [

3 ’service = py_srvcli.service_member_function:main’,

4 ’client = py_srvcli.client_member_function:main’,

C.2 Tutorials 113

5],

6 },

9. In a new terminal, source the setup files and run the service node:

1 cd <path to project>

2 call install/setup.bat

3 ros2 run py_srvcli service

10. In a another new terminal, source the setup files and run the client node:

1 cd <path to project>

2 call install/setup.bat

3 ros2 run py_srvcli client 2 3

11. Get request message on the server node:

1 [INFO] [minimal_service]: Incoming request

2 a: 2 b: 3

12. Get response message on the client node:

1 [INFO] [minimal_client_async]: Result of add_two_ints: for 2 + 3 = 5

Secondly, it was followed a tutorial that defines its own service and message files, without the

dependency of external packages, as opposed to the above tutorial. The purpose of this tutorial

is to provide a server node that receives three integers from the client node’s request message,

computes their sum and sends the final value in the response message. Every step and code below

is from [41]:

1. Source ROS2 installation:

1 call <path to installation>\local_setup.bat

2. Create a ROS2 package:

1 ros2 pkg create --build-type ament_cmake tutorial_interfaces

114 ROS2 Auxiliary Information

3. Create the message and services directories:

1 cd <path to source>/tutorial_interfaces

2 mkdir msg

3 mkdir srv

4. Create the service AddThreeInts.srv:

1 int64 a

2 int64 b

3 int64 c

4 ---

5 int64 sum

5. Update CMakeLists.txt:

1 find_package(rosidl_default_generators REQUIRED)

2

3 rosidl_generate_interfaces(${PROJECT_NAME}

4 "msg/Num.msg"

5 "srv/AddThreeInts.srv"

6)

6. Build the tutorial_interfaces package:

1 colcon build --merge-install --packages-select tutorial_interfaces

7. In a new terminal, source the files:

1 cd <path to workspace>

2 call install/setup.bat

8. Write the service node:

1 from tutorial_interfaces.srv import AddThreeInts

2

3 import rclpy

4 from rclpy.node import Node

5

6

C.2 Tutorials 115

7 class MinimalService(Node):

8

9 def __init__(self):

10 super().__init__(’minimal_service’)

11 self.srv = self.create_service(AddThreeInts, ’add_three_ints’,

self.add_three_ints_callback)

12

13 def add_three_ints_callback(self, request, response):

14 response.sum = request.a + request.b + request.c

15 self.get_logger().info(’Incoming request\na: %d b: %d c: %d’ % (

request.a, request.b, request.c))

16

17 return response

18

19 def main(args=None):

20 rclpy.init(args=args)

21

22 minimal_service = MinimalService()

23

24 rclpy.spin(minimal_service)

25

26 rclpy.shutdown()

27

28 if __name__ == ’__main__’:

29 main()

9. Write the client node:

1 from tutorial_interfaces.srv import AddThreeInts

2 import sys

3 import rclpy

4 from rclpy.node import Node

5

6

7 class MinimalClientAsync(Node):

8

9 def __init__(self):

10 super().__init__(’minimal_client_async’)

11 self.cli = self.create_client(AddThreeInts, ’add_three_ints’)

12 while not self.cli.wait_for_service(timeout_sec=1.0):

13 self.get_logger().info(’service not available, waiting again

...’)

14 self.req = AddThreeInts.Request()

15

16 def send_request(self):

17 self.req.a = int(sys.argv[1])

18 self.req.b = int(sys.argv[2])

19 self.req.c = int(sys.argv[3])

116 ROS2 Auxiliary Information

20 self.future = self.cli.call_async(self.req)

21

22

23 def main(args=None):

24 rclpy.init(args=args)

25

26 minimal_client = MinimalClientAsync()

27 minimal_client.send_request()

28

29 while rclpy.ok():

30 rclpy.spin_once(minimal_client)

31 if minimal_client.future.done():

32 try:

33 response = minimal_client.future.result()

34 except Exception as e:

35 minimal_client.get_logger().info(

36 ’Service call failed %r’ % (e,))

37 else:

38 minimal_client.get_logger().info(

39 ’Result of add_three_ints: for %d + %d + %d = %d’ %

CHANGE

40 (minimal_client.req.a, minimal_client.req.b,

minimal_client.req.c, response.sum)) # CHANGE

41 break

42

43 minimal_client.destroy_node()

44 rclpy.shutdown()

45

46

47 if __name__ == ’__main__’:

48 main()

10. Add the following line to package.xml:

1 <exec_depend>tutorial_interfaces</exec_depend>

11. Build the package:

1 colcon build --merge-install --packages-select py_srvcli

12. In a new terminal, source the setup files and run the server node:

1 ros2 run py_srvcli service

C.2 Tutorials 117

13. In a another new terminal, source the setup files and run the client node:

1 ros2 run py_srvcli client 2 3 1

14. Get request message on the server node:

1 [INFO] [minimal_service]: Incoming request

2 a: 2 b: 3 c: 1

15. Get response message on the client node:

1 [INFO] [minimal_client_async]: Result of add_two_ints: for 2 + 3 + 1 = 6

Lastly, it was followed a tutorial that introduces the graphical user interface for ROS2 (RQT),

another technology that was used in this thesis. The purpose of this tutorial was to start RQT and

explore its built-in functionalities with the aid of the turtlesim demonstration, for instance, the

service caller for verifying the turtlesim available services, the spawn service and set_pen service.

Turtlesim is a simulator of a turtle that appears in the middle of the screen and executes whatever

movement triggered by certain keys of the keyboard. Steps below are from [43]:

1. Source ROS2 installation:

1 call <path to installation>\local_setup.bat

2. Start turtlesim (figure C.2a).

1 ros2 run turtlesim turtlesim_node

3. Check feedback on the terminal:

1 [INFO] [1622624716.108938100] [turtlesim]: Starting turtlesim with node

name /turtlesim

2 [INFO] [1622624716.187215900] [turtlesim]: Spawning turtle [turtle1] at x

=[5.544445], y=[5.544445], theta=[0.000000]

4. Open a new terminal, source the files and run the controller node:

118 ROS2 Auxiliary Information

(a) Turtlesim execution.
(b) Movement of the turtle based on pressed
keys.

Figure C.2: Turtles trajectories.

1 call <path to installation>\local_setup.bat

2 ros2 run turtlesim turtle_teleop_key

5. Click on forward arrow followed by the e key (figure C.2b).

6. Check feedback on both terminals:

1 Reading from keyboard

2 ---------------------------

3 Use arrow keys to move the turtle.

4 Use G|B|V|C|D|E|R|T keys to rotate to

absolute orientations. ’F’ to

cancel a rotation.

5 ’Q’ to quit.

Listing C.1: Key controller node (terminal

2).

1 [INFO] [1622624948.634001200] [

turtlesim]: Rotation goal

completed successfully

Listing C.2: Turtle simulator (terminal

1).

7. Start rqt:

1 rqt

8. Spawn a new turtle with the turtlesim spawn service (figure C.3).

C.3 Command Line Operations 119

Figure C.3: Turtlesim execution.

9. Check feedback on the turtlesim node (terminal 1):

1 [INFO] [1622626285.540052200] [turtlesim]: Spawning turtle [turtle2] at x

=[1.000000], y=[1.000000], theta=[0.000000]

10. Draw a trajectory line with the turtlesim set_pen service (figure C.4).

Figure C.4: Turtlesim execution.

11. Open new terminal, source files and remap the controller node:

1 ros2 run turtlesim turtle_teleop_key --ros-args --remap turtle1/cmd_vel:=

turtle2/cmd_vel

12. Check turtle positions (figure C.5).:

C.3 Command Line Operations

1 call <path to installation>\setup.bat

120 ROS2 Auxiliary Information

(a) Turtle1 in a forward movement with
custom trajectory line. (b) Turtle2 in a forward movement.

Figure C.5: Turtles trajectories.

2 call install\setup.bat

3 ros2 run rqt_mypkg service

Listing C.3: Run the server node.

1 [INFO] [1622643702.357147400] [minimal_service]: Take off incoming request

2 height: 0.500000

3 duration: 2.000000

4 response: 1

Listing C.4: Server node receives a request.

1 ros2 service call /drone1/takeoff cf_messages/srv/TakeOff "{height: 0.5, duration:

2}"

Listing C.5: Client node take-off command line.

1 Preparing for takeoff...

2 [INFO] [1622643703.314919500] [minimal_client]: Sending information to server:

height: 0.500000

3 duration: 2.000000

4 response: 1

Listing C.6: Client node take-off message.

C.3 Command Line Operations 121

1 ros2 service call /drone1/gotorel cf_messages/srv/GoTo "{x: 0.0, y: 0.5, z: 0.0,

yaw: 0.0, duration: 2}"

Listing C.7: Client node goto command line.

1 Preparing for takeoff...

2 [INFO] [1622643703.314919500] [minimal_client]: Sending information to server: x:

0.0

3 y: 0.5

4 z: 0.0

5 yaw: 0.0

6 duration: 2

7 response: 1

Listing C.8: Client node goto message.

1 ros2 service call /drone1/land cf_messages/srv/Land "{height: 0.5, duration: 2}"

Listing C.9: Client node land command line.

1 Preparing for takeoff...

2 [INFO] [1622643703.314919500] [minimal_client]: Sending information to server:

height: 0.500000

3 duration: 2.000000

4 response: 1

Listing C.10: Client node land message.

1 Preparing for takeoff...

2 [INFO] [1622644217.633422100] [minimal_client]: service not available, waiting

again...

Listing C.11: Service not available message.

122 ROS2 Auxiliary Information

References

[1] 2021 international conference on advanced robotics. Available at http://icar-2021.
org/. Accessed on 21.06.2021.

[2] Aeronaves não tripuladas (uas/drones). Available at https://www.anac.pt/vPT/
Generico/drones/Paginas/AeronavesCivisPilotadasRemotamente.aspx.
Accessed on 25.06.2021.

[3] Authentication. Available at https://emotiv.gitbook.io/cortex-api/
authentication/getuserlogin. Accessed on 24.05.2021.

[4] Data sample object. Available at https://emotiv.gitbook.io/cortex-api/
data-subscription/data-sample-object. Accessed on 29.06.2021.

[5] Drone. Available at https://www.merriam-webster.com/dictionary/drone.
Accessed on 25.06.2021.

[6] Intelli 2021. Available at https://www.iaria.org/conferences2021/
INTELLI21.html. Accessed on 21.06.2021.

[7] Qingsong Ai, Quan Liu, Wei Meng, and Sheng Quan Xie. Chapter 6 - eeg-based brain
intention recognition. In Qingsong Ai, Quan Liu, Wei Meng, and Sheng Quan Xie, editors,
Advanced Rehabilitative Technology, pages 135 – 166. Academic Press, 2018.

[8] Airbus. Urban air mobility. Available at https://www.airbus.com/innovation/
zero-emission/urban-air-mobility.html. Accessed on 11.06.2021.

[9] Pooja Akhtar, Sujata Yardi, and Murtaza Akhtar. Effects of yoga on functional capacity and
well being. International journal of yoga, 6:76–9, 02 2013.

[10] Amazon. Amazon prime air. Available at https://www.amazon.com/
Amazon-Prime-Air/b?node=8037720011. Accessed on 11.06.20121.

[11] Microsoft Azure. O que é paas? plataforma como serviço: Microsoft azure. Available at
https://azure.microsoft.com/pt-pt/overview/what-is-paas/. Accessed
on 28.06.2021.

[12] Alekhyo Banerjee. Computational complexity of svm. Available at https://alekhyo.
medium.com/computational-complexity-of-svm-4d3cacf2f952, Aug 2020.
Accessed on 30.11.2020.

[13] Federica Bazzano, Paolo Montuschi, F. Lamberti, Gianluca Paravati, Silvia Casola, Gabriel
Cerón Viveros, Jaime Londoño, and Flavio Tanese. Mental workload assessment for uav
traffic control using consumer-grade bci equipment. pages 60–72, 12 2017.

123

http://icar-2021.org/
http://icar-2021.org/
https://www.anac.pt/vPT/Generico/drones/Paginas/AeronavesCivisPilotadasRemotamente.aspx
https://www.anac.pt/vPT/Generico/drones/Paginas/AeronavesCivisPilotadasRemotamente.aspx
https://emotiv.gitbook.io/cortex-api/authentication/getuserlogin
https://emotiv.gitbook.io/cortex-api/authentication/getuserlogin
https://emotiv.gitbook.io/cortex-api/data-subscription/data-sample-object
https://emotiv.gitbook.io/cortex-api/data-subscription/data-sample-object
https://www.merriam-webster.com/dictionary/drone
https://www.iaria.org/conferences2021/INTELLI21.html
https://www.iaria.org/conferences2021/INTELLI21.html
https://www.airbus.com/innovation/zero-emission/urban-air-mobility.html
https://www.airbus.com/innovation/zero-emission/urban-air-mobility.html
https://www.amazon.com/Amazon-Prime-Air/b?node=8037720011
https://www.amazon.com/Amazon-Prime-Air/b?node=8037720011
https://azure.microsoft.com/pt-pt/overview/what-is-paas/
https://alekhyo.medium.com/computational-complexity-of-svm-4d3cacf2f952
https://alekhyo.medium.com/computational-complexity-of-svm-4d3cacf2f952

124 REFERENCES

[14] Bitcraze. Crazyflie 2.1. Available at https://store.bitcraze.io/products/
crazyflie-2-1. Accessed on 30.06.2021.

[15] Bitcraze. Crazyflie 2.1. Available at https://www.bitcraze.io/products/
crazyflie-2-1/. Accessed on 30.06.2021.

[16] Bitcraze. Loco positioning system. Available at https://www.bitcraze.
io/documentation/system/positioning/loco-positioning-system/. Ac-
cessed on 30.06.2021.

[17] Brad Cain. A review of the mental workload literature. English, page 35, 07 2007.

[18] European Commission. Urban air mobility (uam). Avail-
able at https://smart-cities-marketplace.ec.europa.
eu/action-clusters-and-initiatives/action-clusters/
sustainable-urban-mobility/urban-air-mobility-uam. Accessed on
20.06.2021.

[19] The Qt Company. Embedded software development tools: Cross platform ide: Qt cre-
ator. Available at https://www.qt.io/product/development-tools. Accessed
on 16.06.2021.

[20] EMOTIV. Connecting to the cortex api. Available at https://emotiv.gitbook.io/
cortex-api/connecting-to-the-cortex-api. Accessed on 24.05.2021.

[21] EMOTIV. Emotivbci. Available at https://www.emotiv.com/emotiv-bci/. Ac-
cessed on 28.06.2021.

[22] EMOTIV. Getting started. Available at https://emotiv.gitbook.io/
cortex-api/. Accessed on 17.06.2021.

[23] EMOTIV. Python example. Available at https://github.com/Emotiv/
cortex-v2-example/tree/master/python. Accessed on 28.06.2021.

[24] EMOTIV. Developers - join our worldwide community. Available at https://www.
emotiv.com/developer/, Sep 2020. Accessed on 25.05.2021.

[25] EMOTIV. Emotiv epoc 14-channel wireless eeg headset. Available at https://www.
emotiv.com/epoc/, Sep 2020. Accessed on 13.07.2021.

[26] EMOTIV. Overview of api flow. Available at https://emotiv.gitbook.io/
cortex-api/overview-of-api-flow, 2020. Accessed on 15.06.2021.

[27] DDS Foundation. What is dds? Available at https://www.dds-foundation.org/
what-is-dds-3/. Accessed on 16.06.2021.

[28] Python Software Foundation. multiprocessing - process-based parallelism. Available at
https://docs.python.org/3/library/multiprocessing.html. Accessed on
28.06.2021.

[29] Uttara Gogate, Alap Parate, Shubham Sah, and Sagar Narayanan. Real time emotion recog-
nition and gender classification. In 2020 International Conference on Smart Innovations in
Design, Environment, Management, Planning and Computing (ICSIDEMPC), pages 138–
143, 2020.

https://store.bitcraze.io/products/crazyflie-2-1
https://store.bitcraze.io/products/crazyflie-2-1
https://www.bitcraze.io/products/crazyflie-2-1/
https://www.bitcraze.io/products/crazyflie-2-1/
https://www.bitcraze.io/documentation/system/positioning/loco-positioning-system/
https://www.bitcraze.io/documentation/system/positioning/loco-positioning-system/
https://smart-cities-marketplace.ec.europa.eu/action-clusters-and-initiatives/action-clusters/sustainable-urban-mobility/urban-air-mobility-uam
https://smart-cities-marketplace.ec.europa.eu/action-clusters-and-initiatives/action-clusters/sustainable-urban-mobility/urban-air-mobility-uam
https://smart-cities-marketplace.ec.europa.eu/action-clusters-and-initiatives/action-clusters/sustainable-urban-mobility/urban-air-mobility-uam
https://www.qt.io/product/development-tools
https://emotiv.gitbook.io/cortex-api/connecting-to-the-cortex-api
https://emotiv.gitbook.io/cortex-api/connecting-to-the-cortex-api
https://www.emotiv.com/emotiv-bci/
https://emotiv.gitbook.io/cortex-api/
https://emotiv.gitbook.io/cortex-api/
https://github.com/Emotiv/cortex-v2-example/tree/master/python
https://github.com/Emotiv/cortex-v2-example/tree/master/python
https://www.emotiv.com/developer/
https://www.emotiv.com/developer/
https://www.emotiv.com/epoc/
https://www.emotiv.com/epoc/
https://emotiv.gitbook.io/cortex-api/overview-of-api-flow
https://emotiv.gitbook.io/cortex-api/overview-of-api-flow
https://www.dds-foundation.org/what-is-dds-3/
https://www.dds-foundation.org/what-is-dds-3/
https://docs.python.org/3/library/multiprocessing.html

REFERENCES 125

[30] Google. Classification: True vs. false and positive vs. negative. Available at
https://developers.google.com/machine-learning/crash-course/
classification/true-false-positive-negative. Accessed on 17.06.2021.

[31] Michael Grieves. Origins of the digital twin concept. 08 2016.

[32] N. Grigoropoulos and S. Lalis. Simulation and digital twin support for managed drone ap-
plications. In 2020 IEEE/ACM 24th International Symposium on Distributed Simulation and
Real Time Applications (DS-RT), pages 1–8, 2020.

[33] Werner Grohmann. Von der Software zum Service: ASP-Software on Demand- Software-
as-a-Service- Cloud Computing ; Neue Formen der Software-Nutzung. H.K.P. Consulting,
2009.

[34] M. Hinchey and L. Coyle. Evolving critical systems: A research agenda for computer-based
systems. In 2010 17th IEEE International Conference and Workshops on Engineering of
Computer Based Systems, pages 430–435, 2010.

[35] Hee Yong Jeon, Cedric Justin, and Dimitri Mavris. Improving prediction capability of quad-
copter through digital twin. 01 2019.

[36] Wil Koch, Renato Mancuso, Richard West, and Azer Bestavros. Reinforcement learning for
uav attitude control. ACM Transactions on Cyber-Physical Systems, 3, 04 2018.

[37] Alex Kreilinger, Vera Kaiser, Christian Breitwieser, John Williamson, Christa Neuper, and
Gernot Müller-Putz. Switching between manual control and brain-computer interface using
long term and short term quality measures. Frontiers in neuroscience, 5:147, 01 2011.

[38] Andrea Kübler. The history of bci: From a vision for the future to real support for personhood
in people with locked-in syndrome. Neuroethics, 13(2):163–180, 2020.

[39] Chris Manna. An intro to the crisp-dm methodology. Available at https://medium.com/
@chrismanna/an-intro-to-the-crisp-dm-methodology-c58cbe0371a3,
Jun 2019. Accessed on 21.03.2021.

[40] Rafael Ramirez and Zacharias Vamvakousis. Detecting emotion from eeg signals using the
emotive epoc device. In Fabio Massimo Zanzotto, Shusaku Tsumoto, Niels Taatgen, and
Yiyu Yao, editors, Brain Informatics, pages 175–184, Berlin, Heidelberg, 2012. Springer
Berlin Heidelberg.

[41] Open Robotics. Creating custom ros 2 msg and srv files. Available at https://docs.
ros.org/en/foxy/Tutorials/Custom-ROS2-Interfaces.html. Accessed on
13.06.2021.

[42] Open Robotics. Installing ros 2 on windows. Available at https://docs.ros.org/en/
foxy/Installation/Windows-Install-Binary.html. Accessed on 14.06.2021.

[43] Open Robotics. Introducing turtlesim and rqt. Available at https://docs.ros.org/
en/foxy/Tutorials/Turtlesim/Introducing-Turtlesim.html. Accessed on
30.06.2021.

[44] Open Robotics. Understanding ros 2 services. Available at https://docs.ros.org/
en/foxy/Tutorials/Services/Understanding-ROS2-Services.html. Ac-
cessed on 30.06.2021.

https://developers.google.com/machine-learning/crash-course/classification/true-false-positive-negative
https://developers.google.com/machine-learning/crash-course/classification/true-false-positive-negative
https://medium.com/@chrismanna/an-intro-to-the-crisp-dm-methodology-c58cbe0371a3
https://medium.com/@chrismanna/an-intro-to-the-crisp-dm-methodology-c58cbe0371a3
https://docs.ros.org/en/foxy/Tutorials/Custom-ROS2-Interfaces.html
https://docs.ros.org/en/foxy/Tutorials/Custom-ROS2-Interfaces.html
https://docs.ros.org/en/foxy/Installation/Windows-Install-Binary.html
https://docs.ros.org/en/foxy/Installation/Windows-Install-Binary.html
https://docs.ros.org/en/foxy/Tutorials/Turtlesim/Introducing-Turtlesim.html
https://docs.ros.org/en/foxy/Tutorials/Turtlesim/Introducing-Turtlesim.html
https://docs.ros.org/en/foxy/Tutorials/Services/Understanding-ROS2-Services.html
https://docs.ros.org/en/foxy/Tutorials/Services/Understanding-ROS2-Services.html

126 REFERENCES

[45] Open Robotics. Writing a simple service and client (python).
Available at https://docs.ros.org/en/foxy/Tutorials/
Writing-A-Simple-Py-Service-And-Client.html. Accessed on 30.06.2021.

[46] Manas Sambare. Fer-2013. Available at https://www.kaggle.com/msambare/
fer2013. Accessed on 20.06.2021.

[47] Tianwei Shi, Hong Wang, and Chi Zhang. Brain computer interface system based on indoor
semi-autonomous navigation and motor imagery for unmanned aerial vehicle control. Expert
Systems with Applications, 42(9):4196 – 4206, 2015.

[48] Amit Raj Singh. Drone and smart cities- how are uavs crucial for smart
cities? Available at https://www.geospatialworld.net/blogs/
how-drones-are-crucial-for-smart-cities/, Apr 2018. Accessed on
30.06.2021.

[49] Dirk Thomas. Rqt - package summary. Available at http://wiki.ros.org/rqt. Ac-
cessed on 16.06.2021.

[50] Ravi M. Vishwanath, Saumya Kumaar Saksena, and S. N. Omkar. A real-time control ap-
proach for unmanned aerial vehicles using brain-computer interface. CoRR, abs/1809.00346,
2018.

https://docs.ros.org/en/foxy/Tutorials/Writing-A-Simple-Py-Service-And-Client.html
https://docs.ros.org/en/foxy/Tutorials/Writing-A-Simple-Py-Service-And-Client.html
https://www.kaggle.com/msambare/fer2013
https://www.kaggle.com/msambare/fer2013
https://www.geospatialworld.net/blogs/how-drones-are-crucial-for-smart-cities/
https://www.geospatialworld.net/blogs/how-drones-are-crucial-for-smart-cities/
http://wiki.ros.org/rqt

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation and Problem Overview
	1.2 Research Questions
	1.3 Thesis Statement
	1.4 Goals
	1.5 Research Methodology
	1.6 Document Structure

	2 State-of-the-Art
	2.1 Brain-Computer Interfaces
	2.1.1 Switching between manual control and brain-computer interface using long term and short term quality measures SwitchingManualControlBrain-ComputerInterface
	2.1.2 A Real-time Control Approach for Unmanned Aerial Vehicles using Brain-computer Interface realtimecontrolapproachUAVBCI
	2.1.3 Brain Computer Interface system based on indoor semi-autonomous navigation and motor imagery for Unmanned Aerial Vehicle control indoorbcidrone
	2.1.4 Mental workload and Emotion analysis on the human brain

	2.2 Digital Twin
	2.2.1 Improving Prediction Capability of Quadcopter Through Digital Twin ImprovingPredictionCapabilityQuadcopterThroughDigitalTwin
	2.2.2 Reinforcement Learning for UAV Attitude Control RLUAVAttitudeControl
	2.2.3 Simulation and Digital Twin Support for Managed UAV Applications simulationdigitaltwin

	2.3 Summary

	3 Solution Overview
	3.1 Decision Making System Overview
	3.1.1 Digital Twin Subsystem
	3.1.2 ROS2 Client-Server Subsystem

	3.2 Research Methodology
	3.2.1 Brain-computer Interface Headset
	3.2.2 Experimental Setup

	3.3 Summary

	4 Implementation
	4.1 Headset Connection with the Brain
	4.2 The Digital Twin
	4.2.1 The Cognitive Digital Twin
	4.2.2 The Visual Digital Twin
	4.2.3 The Decision Component

	4.3 ROS2 Client Node
	4.3.1 RQT Plugin

	4.4 Summary

	5 Results and Discussion
	5.1 Experiments
	5.2 Results and discussion
	5.2.1 Digital Twin

	5.3 Summary

	6 Conclusion
	6.1 Conclusions
	6.2 Response to Research Questions
	6.3 Final Appreciations
	6.4 Future Work

	A Cortex Auxiliary Information
	A.1 Method Calls
	A.2 Reproduced Examples

	B Descriptive Data Analysis
	B.0.1 Motion Data Stream
	B.0.2 Facial Expression Data Stream
	B.0.3 Band Power Data Stream

	C ROS2 Auxiliary Information
	C.1 ROS2 Service Architecture
	C.2 Tutorials
	C.3 Command Line Operations

	References

