
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Trace-based ns3-gym Reinforcement
Learning Environment Framework for

Wireless Networks

Gonçalo Regueiras dos Santos

Mestrado Integrado em Engenharia Informática e Computação

Supervisor: Rui Lopes Campos

Co-Supervisors: Eduardo Nuno Almeida and Helder Martins Fontes

September 2, 2021

Trace-based ns3-gym Reinforcement Learning
Environment Framework for Wireless Networks

Gonçalo Regueiras dos Santos

Mestrado Integrado em Engenharia Informática e Computação

September 2, 2021

Abstract

Aerial wireless networks composed of Unmanned Aerial Vehicles (UAVs) acting as aerial Wi-Fi
Access Points (APs) or cellular base stations have come forth as a potential approach to wireless
networks in a multitude of scenarios, such as emergency scenarios and crowded events. To ensure
that the Quality of Service (QoS) requirements are satisfied, it is crucial to position the UAVs
according to the users’ traffic demand. Reinforcement Learning (RL) has emerged as an interest-
ing solution to solve several wireless network problems such as this one. In RL algorithms, an
agent learns on its own how to make optimal decisions based on experience gained in previous
interactions with the environment.

A problem common to all wireless networking research and development is the validation
phase. Validation is usually done through experimentation, in a real-world environment. This
brings many challenges, including setup and operational costs, external interference, which, among
other problems, might compromise the repeatability and reproducibility of an experiment. Sim-
ulation can be used as an easy-to-use estimation, but due to the use of models that simplify real
phenomena, their results can vastly differ from real experiments. Merging these two approaches
enables researchers to run simulations with real experimental results, while maintaining all simu-
lation advantages, such as simplicity, cost, repeatability and reproducibility, all key factors when
validating or evaluating a proposed wireless network solution. These trace-based simulation ap-
proaches rely on repeating real experiments conditions in simulation. However, they all share
a major limitation, they only allow the repetition of the exact conditions of an experiment, not
supporting any variation, such as the number of nodes, trajectory, or experiment duration.

The main goal of this work is to create a framework, based on a trace-based approach that
supports developing, training and evaluating RL algorithms for wireless networks. This work pro-
vides an enhanced tool to improve network simulations and solutions, even when a real testbed is
not available or cannot be used. We propose a novel trace-based approach, by training a machine
learning (ML) model able to generate dynamic variations of a given scenario, which is charac-
terised by the corresponding traces. The ML trace-based approach can then be used in the ns-3
network simulator, together with ns3-gym, a reinforcement learning framework, that enables the
creation of an OpenAI Gym environment within ns-3. Additionally, this model can be used inde-
pendently to run network simulations with improved accuracy.

ML trace-based propagation loss models showed to be more accurate than their classical coun-
terparts in most of the scenarios. Simulations done in ns-3 showed that improved propagation loss
models are useful, both when analysing simulation data from ns-3 and when training a RL agent
using ns3-gym. This framework can be used to represent different scenarios, as long as new data
is collected and the ML models are trained on it.

Keywords: Wireless Networking Experimentation, Trace-Based Simulation, Reinforcement Learn-
ing, Wireless Networks

i

ii

Resumo

As redes aéreas sem fios compostas por veículos aéreos não tripulados (UAVs) atuando como Pon-
tos de Acesso Wi-Fi aéreos (APs) ou estações base de rede móvel surgiram como uma potencial
abordagem às redes sem fios numa multiplicidade de cenários, tais como cenários de emergência
e eventos com multidões. Para assegurar os requisitos de Qualidade de Serviço (QoS), é crucial
posicionar os UAV de acordo com a necessidade de tráfego dos utilizadores.Aprendizagem por Re-
forço (RL) surgiu como uma solução interessante para resolver vários problemas de redes sem fios,
tais como o posicionamento dos UAVs. Nos algoritmos de RL, um agente aprende como tomar
decisões óptimas com base na experiência adquirida em interacções anteriores com o ambiente.

Um problema comum a toda a investigação e desenvolvimento de redes sem fios é a fase de
validação. Esta é geralmente feita através de experimentação, num ambiente real. Isto traz muitos
desafios, incluindo custos de instalação e operacionais, interferências externas, que, entre out-
ros problemas, podem comprometer a repetibilidade e reprodutibilidade de uma experiência. A
simulação pode ser usada como uma estimativa fácil de usar, mas, devido à utilização de mod-
elos que simplificam fenómenos reais, os seus resultados podem ser não corresponder aos reais.
A fusão destas duas abordagens permite aos investigadores executar simulações com resultados
experimentais reais, mantendo todas as vantagens da simulação, tais como simplicidade, custo,
repetibilidade e reprodutibilidade, todos factores-chave ao validar ou avaliar uma solução de rede
sem fios. Estas abordagens de simulação baseadas em traços dependem da repetição das condições
reais das experiências na simulação, no entanto, todas elas partilham uma limitação. Apenas per-
mitem a repetição das condições exactas de uma experiência, não suportando qualquer variação,
como o número de nós, trajectória, ou duração da experiência.O objectivo principal deste trabalho
é a criação de uma solução, baseada em traços, que suporte o desnvolvimento, treino e avaliação
de algoritmos de RL no contexto de redes sem fios. Este trabalho fornece uma ferramenta para
melhorar as simulações de redes sem fios para quando a utilização de um banco de ensaio não é
possível. É proposta uma nova abordagem baseada em traços, através do treino de um modelo de
aprendizagem de máquinas (ML) capaz de gerar variações dinâmicas de um determinado cenário,
caracterizado pelos traços correspondentes. A abordagem baseada em ML pode ser utilizada no
simulador de redes ns-3, juntamente com o ns3-gym, uma infraestrutura de RL, permitindo a
criação de um ambiente OpenAI Gym em ns-3. Além disso, este modelo pode ser utilizado inde-
pendentemente para executar simulações de rede com maior precisão.Os modelos de propagação
baseados em ML e traços mostraram-se mais precisos que os seus equivalentes determinísticos na
maioria dos cenários. Simulações realizadas no ns-3 tiraram partido da melhoria nos modelos de
propagação, quer analisando os dados do ns-3 quer quando são utilizados para o treino de agentes
de RL através do ns3-gym. Esta solução pode ser utilizada para simular inúmeros cenários e am-
bientes desde que novos dados nesses ambientes sejam recolhidos ou utilizados e que os modelos
de ML baseados em traços sejam treinados com esses novos dados.

iii

iv

Acknowledgements

I would first like to express my gratitude to my supervisors, Prof. Rui Campos, Eng. Eduardo
Almeida and PhD Helder Fontes, who accompanied me since the beginning of this dissertation,
with great wisdom and who were always available to explain and help me understand more about
wireless networks.

I am deeply grateful to all the teaching and supporting staff at FEUP, for all the academic,
technological and personal growth experiences, that through many challenges helped me grow
and become the person that I am today.

Finally, I can not thank my family and friends enough, for putting through all my grumpiness
and supporting me throughout this five year journey. A very special thanks to my sisters, who
helped me transforming my thoughts in words, even when they were a chaotic theory on my head
that even I did not fully understand.

This article is a result of the project “DECARBONIZE – DEvelopment of strategies and poli-
cies based on energy and non-energy applications towards CARBON neutrality via digitalization
for citIZEns and society” (NORTE-01-0145-FEDER-000065), supported by Norte Portugal Re-
gional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agree-
ment, through the European Regional Development Fund (ERDF).

Gonçalo Regueiras dos Santos

v

vi

“I am in a charming state of confusion.”

Ada Lovelace

vii

viii

Contents

1 Introduction 1
1.1 Context . 1
1.2 Motivation . 2
1.3 Objectives . 2
1.4 Original Contributions . 2
1.5 Document Structure . 3

2 Literature Review 5
2.1 Machine Learning . 5

2.1.1 Supervised Learning . 7
2.1.2 Unsupervised Learning . 7
2.1.3 Reinforcement Learning . 8

2.2 Supervised Learning Models . 10
2.2.1 Decision Trees . 10
2.2.2 Random Forests . 11
2.2.3 Boosting . 11
2.2.4 Support Vector Machine (SVM) . 12
2.2.5 Artificial Neural Networks . 12

2.3 Path Loss Models . 14
2.3.1 Friis Model . 14
2.3.2 Log-distance Model . 14
2.3.3 Two-Ray Model . 14
2.3.4 Machine Learning-based Models . 15

2.4 Trace-based Simulation . 16
2.5 Conclusion . 17

3 Problem and proposed solution 19
3.1 Problem Definition . 19
3.2 Solution Architecture . 19
3.3 ML Trace-based Propagation Loss Model . 21

3.3.1 Path Loss Model . 21
3.3.2 Fast-fading Model . 22

3.4 Trace-based ns3-gym framework . 22

4 Trace-based ns3-gym framework validation 25
4.1 Dataset . 25
4.2 ML Trace-based Propagation Loss Model Validation 25

4.2.1 Full Set scenario . 26

ix

x CONTENTS

4.2.2 Extrapolation scenario . 29
4.2.3 Interpolation scenario . 30

4.3 ML Trace-based Propagation Loss Model impact in ns-3 simulation 32
4.4 Trace-based ns3-gym framework validation . 36

5 Conclusions and Future Work 39
5.1 Overview of the Work Developed . 39
5.2 Original Contributions . 40
5.3 Future Work . 40

References 43

List of Figures

2.1 Machine Learning workflow. 5
2.2 Reinforcement Learning algorithm. 8
2.3 Example of a decision tree. 10
2.4 Example of a random forest. 11
2.5 SVMs can be applied to both classification and regression tasks. 12
2.6 Artificial Neural Network example. 13
2.7 Two-Ray model diagram. 15

3.1 Proposed trace-based ns3-gym framework architecture. 20
3.2 Sequence of steps for the development of the proposed solution. 20
3.3 High-level diagram of the ML trace-based propagated loss model. The value of

each component is calculated independently and then is summed, to achieve the
complete propagation loss value. 21

3.4 Class diagram for the proposed MLTraceBasedPropagationLossModel. 22
3.5 Structures used by ns3-ai to communicate to Python process. 23

4.1 Propagation loss prediction by distance and propagation loss model. The thicker
line represents the median, while the shadow bounds the 25th and 75th percentiles. 26

4.2 Propagation loss absolute difference by distance and model. Each line represents
the absolute difference between the respective percentiles of the real data and the
model in study. The black horizontal line represents the perfect scenario, where
both the model and the real percentiles are the same. 27

4.3 Propagation loss boxplot by model, showcasing the median, 25th percentile and
the 75th percentile of the different distributions. 28

4.4 Fast-fading component boxplot by distribution, highlighting the median, 25th per-
centile and the 75th percentile for each distributions. 28

4.5 Propagation loss prediction by distance and propagation loss model. The thicker
line represents the median, while the shadow bounds the 25th and 75th percentiles. 29

4.6 Propagation loss absolute difference by distance and model. Each line represents
the absolute difference between the respective percentiles of the real data and the
model in study. The black horizontal line represents the perfect scenario, where
both the model and the real percentiles are the same. 30

4.7 Propagation loss boxplot by model, showcasing the median, 25th percentile and
the 75th percentile of the different distributions. 30

4.8 Fast-fading component boxplot by distribution, highlighting the median, 25th per-
centile and the 75th percentile for each distributions. 31

4.9 Propagation loss prediction by distance and propagation loss model. The thicker
line represents the median, while the shadow bounds the 25th and 75th percentiles. 31

xi

xii LIST OF FIGURES

4.10 Propagation loss absolute difference by distance and model. Each line represents
the absolute difference between the respective percentiles of the real data and the
model in study. The black horizontal line represents the perfect scenario, where
both the model and the real percentiles are the same. 32

4.11 Propagation loss boxplot by model, showcasing the median, 25th percentile and
the 75th percentile of the different distributions. 33

4.12 Fast-fading component boxplot by distribution, highlighting the median, 25th per-
centile and the 75th percentile for each distributions. 33

4.13 Real run goodput over distance. 35
4.14 ns-3 simulations using different propagation loss models. All models predict both

path loss and fast-fading components, except for Friis that only predicts the path
loss component. 36

4.15 RL agent training performance on the same scenario using different propagation
loss models. 38

List of Tables

4.1 ns-3.33 simulation parameters. All unspecified parameters used the ns-3 default
values. 34

xiii

xiv LIST OF TABLES

Abbreviations

AP Access Point
PR AUC Area Under Precision-Recall Curve
ROC AUC Area Under Receiver Operating Characteristic Curve
ANN Artificial Neural Network
CWI COST-Walfisch-Ikegami
DL Deep Learning
DQN Deep Q-network
DRL Deep Reinforcement Learning
DDQN Duelling Deep Q-network
GPSR Greedy Perimeter Stateless Routing
ML Machine Learning
MC Monte Carlo
MLP-NN Multilayer Perceptron Neural Network
OSPF Open Shortest Path First
OLSR Optimised Link State Routing
PL Path Loss
QoS Quality of Service
RBF-NN Radial Basis Function Neural Network
RSS Received Signal Strength
RSSI Received Signal Strength Indicator
ReLU Rectified Linear Unit
RL Reinforcement Learning
RMSE Root Mean Square Error
RMS Root Mean Squared
SVM Support Vector Machine
SVR Support Vector Regression
TD Temporal-difference
T-OLSR Trajectory Optimised Link State Routing
UAV Unmanned Aerial Vehicle

xv

Chapter 1

Introduction

1.1 Context

Wireless networks are a key component of modern life as we know it, and they are a hot topic of

research [52, 30]. They can be composed of one or more Access Points (APs) that communicate

with several kinds of devices, allowing them to communicate with each other without the need

for a wired connection. Recently, aerial wireless networks have appeared as a promising solution

for dynamic scenarios, due to their versatility and applicability in many domains, from crowded

events to emergencies, that traditional networks may not be able to handle. These networks are

partially or entirely composed of flying nodes – Unmanned Aerial Vehicles (UAVs) – serving as

Wi-Fi APs or cellular base stations. To fulfil the Quality of Service (QoS) requirements, the UAVs’

position must be chosen according to the users’ traffic demand.

Reinforcement Learning (RL) has emerged as an interesting solution to multiple network prob-

lems [50, 20], such as the UAV placement problem in flying networks [29], where each UAV acts

as an autonomous training agent that learns how to position itself, guaranteeing acceptable QoS

levels, based on experience previously collected in interactions with the environment.

To develop and evaluate an RL algorithm’s performance, an RL environment must be created,

where an agent can interact and observe the conditions of the environment [24]. The ns3-gym [17]

framework enables the creation of RL network environments, leveraging the interface provided by

OpenAI Gym [6] and the network simulation provided by ns-31. A standard OpenAI Gym inter-

face is defined through this framework to access the observations, actions, and rewards provided

by an underlying ns-3 network simulation.

To assist wireless networks development efforts, several network simulators were created –

e.g., ns-3 and NetSim2. Originally, these simulators have theoretical equations and models as a

basis. However, this comes with some disadvantages, as those models cannot accurately reproduce

all characteristics of a real environment. To better approximate simulators to real-world conditions,

several researchers have proposed mixed approaches, where data collected from real experiments

1http://www.nsnam.org/
2https://www.tetcos.com/

1

2 Introduction

– network traces – is integrated into the network simulators and complements theoretical models,

creating trace-based simulations [1, 13, 35].

Trace-based simulations offer most of the advantages of computer simulations, such as ease of

reproducibility and repeatability, lower costs, and improved accuracy compared to more classical

approaches. Nonetheless, trace-based simulations do not offer that much flexibility, as the network

topology has to follow the one registered in the experiment.

1.2 Motivation

As real experiments have a complex and costly setup, simulations can be helpful. Experiments

in testbeds are subject to testbed availability or reproduction conditions, leading to an increased

difficulty to repeat and reproduce other experiments. This hinders the capacity of researchers

validating the results of others, a key component of the scientific method. Some trace-based ap-

proaches have been proposed to eliminate this problem, allowing the repetition of the experiment

conditions in a simulation – either at the physical level [13, 14] or at the application level [1, 35].

However, all these approaches share a common flaw, only supporting complete repetition of the

experiment, not supporting any kind of change to it, such as changing the trajectory of a node or

increasing the duration of the experiment. As such, an approach that allows the dynamic gener-

ation of scenarios based on an experiment is a valuable contribution, improving the accuracy of

simulations and reducing the need for experimentation in testbeds. Such enhanced simulations

could then be used in several domains, such as the training environment of an RL agent.

1.3 Objectives

The major objective of this work is to develop a framework based on a trace-based approach that

supports developing, training and evaluating RL algorithms for wireless networks. To accomplish

this, the major objective can be divided into three sub-objectives:

• Creation of a Machine Learning (ML) trace-based propagation loss model able to dynami-

cally generate scenarios similar to the one characterised by the collected traces;

• Integration of the ML trace-based model with ns-3 and ns3-gym, creating a trace-based ns3-

gym framework. This framework will enable the training and evaluation of RL algorithms

for wireless networks;

• Validation of the trace-based ns3-gym framework performance by comparing it with an

agent trained in ns3-gym using a pure simulation3 approach.

1.4 Original Contributions

At the end of this dissertation, the original contributions are:
3Pure simulations are simulations based on not trace-based models, such as Friis or Log-distance.

1.5 Document Structure 3

1. ML trace-based propagation loss model. A ML model able to learn both the primary and

the fast-fading component of the path loss from traces collected in an environment. This

strategy allows the model to replicate the conditions of the environment, not only repeating

the collected traces but rather be the basis for the creation of new ones in a virtual represen-

tation of the original environment.

2. Trace-based ns3-gym framework. An ns3-gym framework, where users can leverage the

earlier mentioned models, combining the capabilities of the ns-3 simulator and the easy to

use interface of ns3-gym to train and develop new RL algorithms and environments.

1.5 Document Structure

The remainder of this document is structured as follows. Chapter 2 focuses on literature review

on machine learning concepts, state-of-the-art supervised and reinforcement learning algorithms,

methods of calculating signal propagation loss and existing trace-based simulation approaches

and related work in these areas. Chapter 3 defines the problem, proposes a solution and explains

its implementation. Chapter 4 analyses the solution performance and behaviour in multiple test

scenarios. Finally, Chapter 5 concludes the document and identifies the future work.

4 Introduction

Chapter 2

Literature Review

This chapter presents an analysis of the state-of-the-art and related work for the main topics of this

dissertation. It is divided into four sections: machine learning, focused on fundamental machine

learning concepts; machine learning models, where some supervised and reinforcement learning

algorithms are introduced; path loss models, discussing both theoretical and machine learning

approaches to model path loss; network simulation based on traces of experiments; and conclusion,

linking all these topics.

2.1 Machine Learning

Machine Learning is a branch of Artificial Intelligence responsible for identifying patterns in data

and autonomously making decisions on it, improving its performance by learning from previous

samples. As Bishop [5] defines it, “pattern recognition is concerned with the automatic discovery

of regularities in data through the use of computer algorithms and with the use of these regularities

to take actions such as classifying the data into different categories”. This concept can be extended

to other domains, such as predicting the value of a continuous variable. Usually, a machine learn-

ing model is created by feeding a machine learning algorithm a set of data which is used to train a

model to make predictions on new data items. The algorithm is expected to deduce the correlation

between the training data features’ values and the target variables.

Figure 2.1: Machine Learning workflow.

As can be observed in Figure 2.1, the workflow in machine learning passes through multiple

steps, from acquiring the data to deploying the model in production, and it is cyclic, as a ML

model requires maintenance, to make sure it stays relevant and accurate.

5

6 Literature Review

Ideally, one of the first decisions that is made in ML problems is the definition of the evalu-

ation method and success metrics. Commonly used evaluation methods are accuracy, percentage

of correct prediction out of all predictions; precision, percentage of positive instances out of all

predicted positives; recall, percentage of positive instances out of the total actual positives; area

under precision-recall curve (PR AUC), a graph plotted against the precision and recall values for

different threshold values and area under receiver operating characteristic curve (ROC AUC), a

graph plotted against true positive ratio and false positive ratio for various threshold values. Both

accuracy, precision and recall are too simplistic and, depending on the problem, it is possible to

achieve high values of them with a completely useless model. ROC AUC and PR AUC are more

robust measures, as they provide a clearer picture of the model’s performance. Saito et al. [41]

strongly recommend that PR AUC is a more representative metric than ROC AUC in tasks with

unbalanced data, where the ratio between samples from the negative class outweigh positive class

ones.

After acquiring the data and before passing the training data to the model, most of the times, the

input values are transformed to simplify the pattern recognition problem or reduce the computation

cost, in a preprocessing step. When preprocessing is applied to the training data, it must also be

applied to the test data, as the model does not know how to infer knowledge based on the real

data, but only on the transformed version of it. New features can be created, inferred from others,

to highlight some patterns that may be easy for humans to infer, but difficult to machines, in a

process called feature engineering. While this feature extraction from raw data process can be

manually done by humans, recently Deep Learning (DL) has proved to be an interesting solution

to automate it [31]. DL is an ML approach that uses multiple neural network layers, mimicking

the human brain structure, to extract high-level features from complex raw data.

After training a model, it can be used on new samples, usually with low computational costs,

and then evaluated based on the defined metrics. This whole process can be repeated several times

– e.g., modifying the model hyper-parameters or using a different preprocessing technique – until

reaching satisfying values.

Machine Learning problems can be divided into three major categories: supervised, unsuper-

vised learning and reinforcement learning. In supervised learning problems the true value of the

target variables in the training data are known, while in unsupervised those values are unknown.

Reinforcement learning problems are characterised by an interaction with the environment, as the

agent learns by trial-and-error from feedback provided by the environment. Following the same

taxonomy applied to machine learning problems, machine learning models can also be divided in

three main groups: unsupervised, supervised and reinforcement learning models. As the former is

out of scope for this dissertation, it won’t be covered in detail.

ML has been used with success to solve several networking problems, such as cache man-

agement [46] where reinforcement learning was used to design an efficient caching strategy,

outperforming random caching and caching based on time-averaged content popularity. Super-

vised learning has also been adopted to solve network routing problems, such as [25] where deep

learning was used to route packets through a wireless network, maximising the total throughput

2.1 Machine Learning 7

and achieving better results than state-of-the-art routing strategies such as open shortest path first

(OSPF).

When compared to traditional methods, ML-based methods have several advantages [45] in-

cluding creating algorithms with similar performance to traditional algorithms but with a reduced

complexity, leading to lower computational expense; successfully lead with lack of network infor-

mation and knowledge gaps, as some traditional methods that require global knowledge of the net-

work can be replaced with reinforcement learning associated to transfer learning – where a model

trained in a scenario is used to bootstrap the training in other scenario – to minimise the energy

spent in cellular radio access networks [28], achieving results almost as good as state-of-the-art

algorithms that require complete knowledge of traffic loads in all nodes; easier self-organisation

capabilities [3]; and in some cases, better performance than traditional optimisation methods [49].

2.1.1 Supervised Learning

Supervised learning problems can be further classified, regarding their goal, as classification and

regression problems. Classification problems try to assign each input data to one of a finite number

of classes or categories – e.g., identifying a handwritten digit. Regression tasks try to predict the

value of one or more continuous variables – e.g., forecasting houses price. Supervised learning is

commonly applied in the wireless network context to solve multiple problems [48], such as signal

strength prediction problems [53]. Section 2.2 details several supervised learning algorithms.

2.1.2 Unsupervised Learning

Unsupervised learning tasks are characterised by the lack of a target value for each sample. The

absence of a true ground value, brings some challenges on how to evaluate those systems, as a hard

metric is sometimes difficult to reach. Usually, it can be divided in two groups: Clustering [22]

– create groups of similar data – and Association Rules [19] – determine interesting relationships

or dependencies in large sets of data items. Unsupervised Learning is many times used as a

complement for supervised learning problems, e.g., annotating large datasets or to help gain some

insight into how the data is structured before developing a supervised learning approach. When

clustering a dataset, a commonly used algorithm is K-means [23]. K-means was first published

in 1955, but still is one of the most popular clustering algorithm [23]. It works by choosing K

points as cluster centres and assigning each data point to its closest cluster centre. Afterwards new

cluster centres are computed and the data points are reassigned. This step is repeated until cluster

membership stabilises.

Agrawal et al. [2] proposed an algorithm to find association rules in data. It is based on the

Apriori property that if an item set is frequent, then all its non-empty subsets are also frequent. It

starts by computing the frequency (support) of each item and discarding the ones whose support is

inferior to a threshold. In the second iteration, the support of all item sets of size two formed from

pairs of single items that survived the first pass is computed and pairs with support inferior to the

threshold are removed. In the next iterations, the item sets that survived the previous iteration are

8 Literature Review

combined with those retained from the first iteration, discarding those with support inferior to the

threshold. This is repeated until no more combinations can be made.

Unsupervised learning can be used in a myriad of scenarios in the wireless network context,

such as detecting intrusions. Zhong et al. [42] applied clustering techniques to detect intrusions

and anomalous behaviour in wireless networks.

2.1.3 Reinforcement Learning

A reinforcement learning agent learns by sequentially interacting with a dynamic environment and

trying to maximise the obtained rewards. Kaelbling et al. [24] defines a reinforcement learning

model as a set of states, a set of possible actions and a set of scalar rewards. At each step, the agent

receives as input the environment’s state; chooses an action, changing the environment’s state; and

receives a reward, as Figure 2.2 depicts. The agent’s main task is to infer a policy that maps states

to actions and maximises the expected total reward.

Figure 2.2: Reinforcement Learning algorithm.

Multiple algorithms have been proposed for training the agent’s policy. Those algorithms can

be divided in two major groups: Monte Carlo and Temporal-difference. Both are model-free in the

sense that they do not need to know all the states and possible actions, as they learn from episodes

of experience. Recently, deep reinforcement learning (DRL) [32] has appeared as an interesting

solution to solve several problems in different domains [32, 34], including wireless networks. DRL

merges the self-learning capacity of RL with the perception capacity of DL solutions, creating RL

agents able to extract deeper features from the networks which can help to speed up the learning

phase and achieve better results. DRL can autonomously infer the environment’s state from its

observation instead of relying on a human-designed set of states, transforming the observation

space from discrete to continuous.

Monte Carlo (MC) [7] methods are present in many areas of computing and mathematics.

In general, all these methods work by generating a set of random numbers or experiences and

then inferring some kind of knowledge based on a fraction of the numbers obeying some property

or group of properties. When applied to reinforcement learning, it works by running multiple

2.1 Machine Learning 9

episodes until the end, and averaging the returns for the visited states in each episode. Two main

strategies exist, First-visit MC and Every-visit MC. In the first, only the first time each state is

visited is included in the average calculations while in the latter it is included every time it is

visited.

Temporal-difference (TD) [10] approaches are characterised by continuously updating their

policy. TD approaches share some similarities with MC ones, in the sense that they learn from

samples of the environment but they differ in the policy updating strategy, as they update their

state-value prediction as they explore the environment, based on the current estimate of the next

state and the reward obtained along the way. The value of a state is iteratively updated following

the equation depicted in Equation (2.1), where V (s) and V (s′) are the value estimate for the old

and new states, respectively; α is a learning factor; r is the observed reward; and γ is a discount

factor.

V (s)←V (s)+α(r+ γV (s′)−V (s)) (2.1)

Reinforcement Learning has proved to be highly helpful in dealing with multiple problems, in

many different domains, such as flying and non-flying wireless networks.

Hou et al. [21] uses Q-learning, a TD algorithm, to improve the optimized link state routing

(OLSR) protocol, creating a novel trajectory-OLSR (T-OLSR) algorithm, applied to sparse UAV

networks. Compared to the state of the art algorithms, such as greedy perimeter stateless routing

(GPSR) and the original OLSR, the packet delivery ratio improved by over 30%, reducing the

end-to-end delay by more than 40s in some conditions.

Nie et al. [34] proposes a deep reinforcement learning approach to solve the energy efficiency

problem in a wireless flying communications network. In this situation, fixed ground devices

are powered by the wireless signal of a flying rotary-wing UAV. As such, the goal is to design

the UAV trajectory, minimising the energy spent and guaranteeing acceptable levels of QoS to

the ground devices. The UAV acts as an agent, receiving observations and a reward from the

environment. For computational simplification, UAV’s height is fixed, its speed is constant, and

its actions are moving horizontally into one of eight directions or not moving. To learn the best

policy for the agent’s behaviour, it uses a deep Q-network (DQN) algorithm, which combines

Q-Learning with deep learning techniques. An artificial neural network is used to estimate the

action-value function. Furthermore, a duelling DQN (DDQN) is adopted for action selection to

improve the convergence speed. An iterative approximation was considered the optimal value to

evaluate the proposed framework, and a random approach was introduced as the baseline. Both

DQN and DDQN approaches achieved similar average energy efficiency results per episode, with

DDQN having a slight advantage over DQN. DQN and DDQN accomplished better results than the

random approach but were marginally worse than the iterative one. The obtained results indicate

that reinforcement learning, associated with deep neural networks, can potentially be used to solve

flying network problems.

10 Literature Review

2.2 Supervised Learning Models

All supervised learning models share a common goal: learn from a labelled dataset and apply it

in either classification or regression problems. In what follows, we refer to a set of supervised

learning models available in the state of the art.

2.2.1 Decision Trees

Decision Trees are one of the simplest machine learning models. The input’s prediction is mod-

elled as a path, starting from the tree’s root and ending on a leaf. A linear decision is taken in each

node regarding the value of one of the input variables, choosing a new branch, until reaching a ter-

minal node – a leaf – with a target variable value associated. Their main advantages are the relative

simplicity of the model, allowing some interpretability and resilience to overfitting. Initially, this

strategy was designed to solve classification problems. However, it can be adapted for regression

problems with some limitations. Decision trees cannot fully model the output variable’s domain,

as the values at the leaves are restricted to a finite set of possible output values.

Figure 2.3: Example of a decision tree.

Figure 2.3 depicts the task of classifying a flying insect animal like a bee, a wasp or a mosquito.

The two input variables relevant to the classification task are:

• if the insect is black and yellow or not;

• if the insect has a hairy body or not.

The three possible classes are wasp, bee and mosquito. This model can be easily interpreted, and

from it, it is possible to infer three rules:

• if the insect is not black and yellow, it is a mosquito;

• if the insect is black and yellow and has a hairy body, it is a bee;

• if the insect is black and yellow and does not have a hairy body, it is a wasp.

This set of rules are easy to understand, for both machines and humans, and can classify any new

sample by following a path from the tree’s root to one of its leaves.

2.2 Supervised Learning Models 11

2.2.2 Random Forests

Random forests take advantage of Decision Trees’ characteristics, combining several decision

trees, trained on different samples of the training set. They are especially suited for data sets

where the number of features is large, as they randomly select a subset of those features for each

tree. Their main advantages are the relative level of interpretability and predictive performance.

As more trees are used, the variability of the results lowers, while the computational expense

increases. Moreira et al. [33] indicates that the recommended number of trees varies between

1000 and 5000, and the number of attributes to be used at each split-node is similar to the square

root of the number of input attributes.

Figure 2.4: Example of a random forest.

Figure 2.4 depicts an example of a random forest, for a classification task with three output

classes and five input attributes. When a new sample is processed, it passes through all decision

trees and their result is aggregated into a final prediction.

2.2.3 Boosting

Boosting is a Machine Learning strategy where several weak learners – learners slightly better

than random guesses – are combined into a strong model. Several algorithms benefit from this

approach, such as Adaboost [15], XGBoost [9] and Light GBM [26].

Adaboost works by sequentially training decision trees as weak learners, assigning larger

weights to misclassified samples. After training each learner, it is assigned a weight proportional

to accuracy. After the training phase, the final prediction is made by a weighted majority vote for

classification problems or a weighted median in case of regression problems. Adaboost has the

advantage of having fewer hyperparameters that need to be tuned but is more sensitive to noisy

data.

While Adaboost was initially designed to work as a classification technique, it can be adapted

to work in regression problems. One of the most popular adaptations is gradient boosting, from

where XGBoost is based. XGBoost stands for “extreme gradient boosting” and is especially suited

for large quantities of data, as it is takes advantage of some optimisations, such as cache access

patterns, data compression and sharding to improve its computational efficiency [9]. LightGBM is

another approach to gradient boosting decision trees, applying novel techniques for sampling the

data and reducing the number of features, resulting in up to 20 times faster training times while

achieving similar accuracy to other methods [9].

12 Literature Review

2.2.4 Support Vector Machine (SVM)

Support Vector Machines (SVMs) can be applied to both regression and classification tasks. In

binary classification tasks, the SVM learning algorithm works by selecting some samples as sup-

port vectors, that will be used to create a border and a separation margin ε , as can be seen in

Figure 2.5a. While originally SVMs could only deal with linearly separable tasks, using kernel

functions it is possible to transform non-linearly separable data into a higher-dimensional space,

where it is linearly separable. When applied to regression tasks, the main difference is the error

formula, where instead of maximising the separation margin, the goal is to minimise it and the

error ζ is the sum of all samples outside that margin.

Figure 2.5b depicts a regression task, where a user defined ε margin is set and a soft margin 0

is found, minimising the ζ sum.

(a) SVM classification example. (b) SVM regressor example.

Figure 2.5: SVMs can be applied to both classification and regression tasks.

2.2.5 Artificial Neural Networks

Interest in artificial neural network (ANN) dates back to the early 1940’s [47]; however, it was

highly limited by the computational power available in that period. Recently they have been used

in many different domains, with highly satisfying results. These networks bear some resemblance

to how biological brains work, by having multiple neurons interconnected in layers.

As can be observed in Figure 2.6, an ANN can be split into three parts: an input layer, one

or more hidden layers and an output layer. The input has as many nodes as the number of data

features, and the output layer can have as many nodes as possible classes, in a classification task,

or just one node, in regression tasks. The hidden layers have a much more diverse structure

depending on the particular task at hands.

2.2 Supervised Learning Models 13

Each node (neuron) is connected to other nodes by links and its output is calculated by applying

a mathematical function to the neuron’s input. The output value of a neuron is fed-forward to the

neurons in the following layer, according to the neural network’s connection graph. Each link

has a weight associated with it. This computation can be split into two: a linear computation,

computing the weighted sum of the input links and a nonlinear computation, transforming the

previously computed value with an activation function [40]. This activation function’s behaviour

can be seen as deciding whether the neuron is activated (“fired”) or not, based on the neuron’s

relevance for the model’s behaviour. It can be as simple as a step function, turning the neuron

on and off, following some threshold, or more complex, mapping the input signals domain into

a different domain. Some examples of these more complex functions are Sigmoid and Rectified

Linear Unit (ReLU).

Figure 2.6: Artificial Neural Network example.

The training phase consists of learning the optimal weights in order to minimise the error

between the ANN’s predictions and the expected output, which is provided in the dataset. Labelled

training data is supplied to the network that feeds it forward through all layers until reaching

the output layer, where the error is calculated and propagated back, updating the associated link

weights, until the error is smaller than a defined threshold or the network can’t improve more.

This process is known as back-propagation and was introduced in 1969 by Bryson and Ho [40].

The idea is that each node has a certain contribute to the error of its output nodes and that by

distributing the error by the involved nodes, proportionally to the strength of their connection, we

can tune those weights to reach an acceptable error level.

14 Literature Review

2.3 Path Loss Models

When developing or researching wireless networks systems, radio wave propagation is a key factor

to take in consideration. As the quality of the network link highly depends on the received signal’s

strength, its modelling is a hot topic of research [37]. Throughout the years, several methods

were proposed to model the path loss, defined as the signal strength lost throughout its path. They

can be classified as theoretical, such as Friis [16] and Two-Ray [37]; empirical, for instance Log-

distance [11] and ML-based, explained in more detail in Section 2.3.4. All approaches have some

drawbacks, as classical theoretical models are too optimist since they do not take into account the

specific phenomena and conditions of the environment and both empirical and ML-based models

require a previous characterisation of the scenario, making them only suitable for that specific

scenario.

2.3.1 Friis Model

The Friis model is a simple model which characterises the decreasing of the signal strength caused

by distance. It is used to calculate the received power Pr, taking as parameters the transmission

power Pt ; the gain of the receiving and transmitting antennas, Gr and Gt , respectively; the signal’s

wavelength λ ; and the distance between antennas d, as can be seen in Equation (2.2). Friis’s

original formula in 1946 [16] took the antenna’s area into account. Nowadays, the area of the

antennas is not considered [37], as they are considered ideal isotropic antennas.

Pr = PtGrGt

(
λ

4πd

)2

(2.2)

2.3.2 Log-distance Model

The Log-distance model considers that the path loss varies exponentially with distance, taking

into account the shadowing that occurs. The path loss value L is defined by a reference loss value

near the transmitting antenna L0; an empirical path loss exponent γ , which is based on empirical

observations; and the distance between antennas d, given by Equation (2.3). A Gaussian random

variable Xg with zero mean can be added to this value, representing the attenuation caused by

fading [4].

L = L0 +10γ log10

(
d
d0

)
+Xg (2.3)

2.3.3 Two-Ray Model

The two-ray model considers the effect of the signal’s reflection, which can be positive or neg-

ative to calculate the path loss. It divides the signal into two components: a direct line of sight

component dlos and a reflected one dre f , as is represented in Figure 2.7.

As the complete formula that takes into account the phase difference ϕ between the com-

ponents and the reflection coefficient Γ results in a too complex and computationally expensive

2.3 Path Loss Models 15

Figure 2.7: Two-Ray model diagram.

calculation – as can be seen in Equation (2.5) –, it is commonly simplified using the Friis’ equa-

tion, if the distance d is inferior to a cross-over distance dc – calculated by Equation (2.4) –,

or by a formula assuming perfect polarisation and reflection if superior [52], as it is depicted in

Equation (2.6). The gain of the receiving and transmitting antennas are represented by Gr and Gt ,

respectively.

dc =
4πhthr

λ
(2.4)

Pr = 20log10

(
4π

d
λ

∣∣1+Γ⊥eiϕ
∣∣−1
)

(2.5)

Pr =

 PtGtGr

(
λ

4πd

)2
if d ≤ dc,

PtGtGr

(
ht hr
d2

)2
if d > dc.

(2.6)

2.3.4 Machine Learning-based Models

As mentioned above, classical theoretical and classical empirical models are not perfect, as they

lack accuracy and the empirical models have parameters that need to be manually adjusted to each

scenario. Several techniques for estimating path loss using machine learning were developed to

solve this problem. As ML-based models are trained with data collected from the location in

study, its accuracy tends to be better than classical empirical models. Nonetheless, ML-based

models suffer from increased complexity, due to the ML model development and training phases;

data collection; and, as classical empirical models, lack of applicability in different scenarios.

Zhang et al. [53] makes a comparison between the collected data in an urban scenario in

Beijing, China and the predicted values of path loss using ANNs, SVMs, Random Forests and the

classical empirical log-distance model. Data was collected by a moving vehicle communicating

with a fixed based station, at first with the signal obstructed by buildings and trees – out of line

16 Literature Review

of sight – and then on a highway – within line of sight. The provided inputs were the distance

between antennas and the used frequency. A test with synthetic data, generated by the log-distance

model, added to the real collected data, performed well in a new frequency not present in the

training data, having a root mean square error (RMSE) value between 1.61 and 2.52 dB. Adding 30

samples (from the new frequency set of 110 samples), proved to improve the models’ performance,

lowering the overall RMSE to values between 1.37 and 1.72 dB. The researchers’ main challenges

were the lack of enough data, both in quality and in number.

Cabral et al. [8] used the data collected in Huelva, Spain in an open environment scenario,

where a UAV flew in the vicinity of a fixed base station. The selected features feeding the ML

model were the UAV position – latitude, longitude and altitude – and its attitude – roll, pitch and

yaw. At first, the direct received signal strength (RSS) prediction was the output of the models.

Then, another approach was explored. Instead of having the machine learning models predict the

received signal strength, they were provided with Friis model’s prediction and trained to predict

its difference to the theoretical Friis value, effectively correcting it to achieve the real result. Both

approaches were benchmarked against Friis, Log-distance and Two-Ray models. In two of the

used techniques – Adaboost and SVM – the direct RSS approach had a slightly lower mean abso-

lute error than the Friis correction one, 2.59 dB to 2.91 dB and 2.52 dB to 2.69 dB respectively. In

the other technique – Random Forest –, the Friis correction model showed improved performance

compared to direct RSS prediction, 2.82 dB compared to 3.12 dB.

Popescu et al. have studied the usage of ANN based models both in indoor [38] as in out-

door [39] settings. To study the path loss estimation indoors tests were conducted in a university

building, in a hall of offices, and compared with a modified Log-distance model, which took into

consideration the number of walls penetrated by the signal. Two ANN topologies were consid-

ered, a Generalised Radial Basis Function Neural Network (RBF-NN) and a Multilayer Percep-

tron Neural Network (MLP-NN). Both achieved similar root mean squared (RMS) results, with

RBF-NN improving MPL-NN’s result by 0.15 dB. One of the ANN based model, not specified,

improves the RMS value by 4.37 dB. To explore those ANN topologies in outdoor settings, the

results achieved were compared to a COST-Walfisch-Ikegami (CWI) model. A hybrid prediction

model was also considered, where the CWI prediction is used as the ground value of the models’

output. Both ANN models achieved better results than CWI for both urban, in and out of line-

of-sight, and suburban, out of line-of-sight, environments when directly predicting the path loss

value. Analysing the obtained results, Popescu et al. concluded that both ANN studied and both

prediction strategies have similar results and perform better than the CWI model.

2.4 Trace-based Simulation

As simulation is a crucial step in researching, developing, and validating new networking solu-

tions, several researchers have been trying to create new solutions to improve network simulation

accuracy. These allow better representations of real-world conditions and save time and resources,

which are often limited. The central concept is common to several of these approaches, replacing

2.5 Conclusion 17

some part of the network stack, previously approximated using some theoretical model, with real

data collected from experiments. All the methods that we will explore were proposed for the ns-3

network simulator, which is widely used in the scientific community.

The approaches of Agrawal and Vutukuru [1] and Owezarski Larrieu [35] rely on replacing

the application layer with a replay of previously collected network traces. The main advantage of

this strategy is the increased accuracy compared to other ns-3 application layer models; however,

it comes at the price of lower flexibility, as only the exact traffic generated at the experiment time

can be used, not allowing any traffic variation characteristics.

In contrast, Fontes et al. [13, 14] proposes a different method, replaying the signal physical

characteristics, effectively replacing the physical layer and allowing the network simulator to han-

dle all layers above it. Instead of using theoretical models of path loss to calculate the RSS, it

uses values recorded during live experiments of RSS indicator (RSSI), an indication of the RSS

observed by the network card. It benefits from having greater flexibility regarding the traffic gen-

erated by the nodes, as they do not significantly influence the signal’s physical characteristics but

are influenced by it. This method is not free from limitations, as it does not support any variation

to the number, position or trajectory of the network nodes.

To tackle these limitations, a ML-based path loss model, as explained in Section 2.3.4, can

be integrated with ns-3, allowing researchers to benefit from trace-based simulation advantages,

while maintaining a degree of flexibility. The approach presented by Zhang et al. [53] was only

evaluated in a urban environment, tests in other scenarios should be made to evaluate its perfor-

mance in different environments. Additionally, it is too simplistic as the only features taken into

consideration are the antenna-separation distance and the signal frequency. While adding more

features does not guarantee a performance improvement, it would be interesting to explore the

effect of using additional features. Popescu et al. [39, 38] explored two ANN models that can be

interesting, however more tests should be done to improve ML-based models performance. The

model proposed by Cabral et al. [8] is based on a network with a fixed base station and a mov-

ing UAV, as such the used features are aligned with that domain and can not be used in different

situations. As the dataset considered was collected during a single experiment, the conclusions

found may have some difficulties generalising to other environments. Additionally, the only hy-

brid approach considered was using the Friis Model, no other classical models were explored by

the authors. Neither approach has been integrated and tested in a network simulator nor do they

take into consideration the fast fading component of the path loss, only predicting the average

value of RSSI measured both at the UAV and the Base Station (BS).

2.5 Conclusion

Machine learning is an evergrowing field of research, with strong statistical and mathematical

basis, capable of inferring relationships in data that would be seriously difficult or impossible for

humans to do. Machine learning can be applied to multiple domains, such as path loss estimation

and classical wireless network problems.

18 Literature Review

Several approaches to estimate RSS in wireless network nodes have been proposed in the past,

from simpler deterministic/theoretical models to more complex ones using machine learning. ML-

based models had a better performance than the ones using traditional techniques [8, 53, 39, 38],

which indicates a potential solution for improving network simulation while maintaining a degree

of flexibility. However, the discussed approaches are only tested on specific scenarios and have

not been integrated in network simulators.

Reinforcement Learning is a methodology growing in popularity, capable of dealing with sev-

eral types of problems, ranging from playing games better than humans [31, 43] to improve the

energy efficiency [34] or image transmission quality [21] of flying networks. Training an RL agent

requires a dynamic environment, where the agent’s actions influence and modify the environment,

allowing it to explore multiple actions in different scenarios. As such, the improved accuracy of

a trace-based simulation, with machine learning augmented data, is a potentially attractive solu-

tion to that problem. The state-of-the-art ML-based path loss models are a good starting point

to dynamically generate the above mentioned scenarios. However, as previously discussed, those

models share some drawbacks. Therefore, an improved solution that addresses those problems is

fundamental.

Chapter 3

Problem and proposed solution

As previously stated in Section 1.3, this work’s main goal is to create a trace-based ns3-gym frame-

work, which supports developing, training and evaluating RL algorithms for wireless networks. To

achieve the main goal, an intermediate step is to develop and integrate an ML trace-based model

in the ns-3 simulator.

This chapter discusses an overview of the main problem and how the proposed solution will

be accomplished.

3.1 Problem Definition

As stated in Sections 1.1 and 1.2, pure simulation – using classical propagation loss theoretical

models – achieves results that can differ from those obtained in experimentation. Nevertheless, it

is not feasible to only do experiments, as multiple conditions – such as, their setup cost and testbed

availability –, make them impractical. Consequently, the need for a hybrid approach is evident,

where the advantages of both techniques are merged, mitigating their disadvantages. All the past

approaches to solve this problem fall short of this goal in some aspect, such as lack of flexibility,

only replaying the exact conditions registered in the experiment [14] or the absence of integration

with existing network simulators [8].

State-of-the-art trace-based simulations do not support any change to the environment, which

is crucial in an RL agent’s training. As such they can not be used in a trace-based ns3-gym frame-

work. Pure simulation approaches are also not feasible, as the lack of accuracy would compromise

the agent performance in real world applications. To develop such framework, a novel ML trace-

based simulation able to dynamically generate scenarios similar to the one characterised by the

collected traces has to be implemented.

3.2 Solution Architecture

In the RL agent training process, the agent has to observe the environment and act on it. As the

environment is an ns-3 simulation, ns3-gym is used, acting as a bridge between ns-3 simulations

19

20 Problem and proposed solution

and the RL agent. ns3-gym exposes an OpenAI Gym [6] interface through which the agent is

able to communicate with the environment implementing the collection of the observations, the

calculation of the reward and the execution of the action in the ns-3 simulation.

Figure 3.1 depicts the architecture of the proposed solution, with ns3-gym acting as a bridge

between the ns-3 trace-based simulation and the RL agent.

Figure 3.1: Proposed trace-based ns3-gym framework architecture.

Figure 3.2 represents the steps to follow in order to build the proposed trace-based ns3-gym

framework, organised in three major phases.

Data
acquisition

Data
preprocessing

Models
training

Models
analysis and

validation

ML trace-based propagation loss model
Trace-based

ns3-gym framework
Framework validation with RL algorithms

Connect ML
model to ns-3
propagation
loss model

State-of-the-art
RL agents

training

Trace-Based
Simulation
Enviroment

Pure
Simulation

Environment

Results
Analysis

Figure 3.2: Sequence of steps for the development of the proposed solution.

The first step towards this goal is to design an ML trace-based model able to dynamically

generate scenarios based on previously collected traces. Using the dataset of network traces col-

lected in SIMBED [27] research project developed at INESC TEC, multiple machine learning

algorithms were analysed and compared, looking for the model that most accurately replicates the

Propagation loss values throughout the experiment.

The next step consists in integrating the propagation loss model in the ns-3 network simulator,

as a custom PropagationLossModel able to communicate with a Python process via ns3-ai [51].

This setup has the advantage of having two different processes running ns-3 and the ML model,

communicating via shared memory. This allows the use of standard ML frameworks, such as

Tensorflow [12] or PyTorch [36].

After integrating the ML model in ns-3, it is possible to design network simulations in the same

conditions as the experiments, even if the network topology differs from the recorded experiment.

This improved accuracy helps an RL agent’s training process, as it will benefit from more realistic

results than a pure simulation approach. Finally, this idea shall be put in practice, validating it

using state-of-the-art RL algorithms.

3.3 ML Trace-based Propagation Loss Model 21

3.3 ML Trace-based Propagation Loss Model

The ML Trace-based Propagation Loss model simulation approach consists of two components, a

path loss component and a fast-fading one. A ML model is combined with a fitted statistical dis-

tribution to predict the complete propagation loss value. The path loss component is responsible

for calculating the main signal power loss that happens naturally as the distance increases, as the

fast-fading component handles the signal reflections and other phenomena that alters the received

power, even when the distance is constant. When a new propagation loss value is requested to the

ML trace-based propagation loss model, given the distance between the nodes, the path loss com-

ponent is predicted by the ML model and a pseudo-random value from the fast-fading distribution

are added, getting the total propagation loss value, as depicted in Figure 3.3. This result is then

combined with the transmission power to get the actual received power.

Input

Distance (m)

Path loss component

Predict path loss using ML model

Fast-fading component

Sample value from fast-fading
distribution

Output

Propagation Loss
+

Figure 3.3: High-level diagram of the ML trace-based propagated loss model. The value of each
component is calculated independently and then is summed, to achieve the complete propagation
loss value.

3.3.1 Path Loss Model

To make the model independent from changes in transmission power, the collected SNR value

was not used directly as training data. Instead, a preprocess step was done, where the path loss

was calculated using Equation (3.1), considering an ambient noise N of -95 dBm, the receiver and

transmitter antenna gains, Gr and Gt , and the transmission power Pt .

PL =−SNR−N +Gr +Gt +Pt (3.1)

In order to train the ML model only on the Path Loss (PL) component, it is fundamental to

isolate this component from the fast-fading. This was done by calculating the average propagation

loss value per second. This inherently leads to a conjecture that the fast-fading component can

be modelled as a Gaussian distribution with a mean of zero, as we are assuming that the average

22 Problem and proposed solution

of the complete propagation loss values will counterbalance the fast-fading aspect. While there

are other distributions more suitable for describing the fast-fading behaviour, such as Rician’s and

Rayleigh’s [44], the process of isolating them from the PL component would be more challenging.

Both XGBoost and SVR supervised learning models were trained on this data, with the objective

of predicting the average PL value from the node’s distance.

3.3.2 Fast-fading Model

To create the fast-fading model, each trace’s propagation loss value was subtracted by the average

PL value per meter. Normal, Rician and Rayleigh distributions were fitted to the data, the proba-

bility density function calculated and the sum of the squared error measured. The distribution with

the smallest sum of squared error was selected as the fast-fading model to be used. The distribu-

tion fitting was done using the scipy distribution fit function, which finds estimates for distribution

parameters that best adapt to the provided data. The same parameters were used independently of

the distance, that is the fast-fading distribution remains uniform for all distances.

3.4 Trace-based ns3-gym framework

To take advantage of the previously engineered ML trace-based propagation loss model in ns-

3, a connection between them must be established. The chosen approach relies on a custom

PropagationLossModel that communicates with a Python process through shared memory, using

ns3-ai. The development was done on ns-3 version 3.33 and all source code is publicly available 1.

MLTraceBasedPropagationLossModel

- m_mltbAI: Ptr<MLTraceBased>

+ DoCalcRxPower(txPowerDbm: double, a:
Ptr<MobilityModel>, b: Ptr<MobilityModel>): double

PropagationLossModel

Figure 3.4: Class diagram for the proposed MLTraceBasedPropagationLossModel.

The novel MLTraceBasedPropagationLossModel, characterised by the class diagram on Fig-

ure 3.4, is a subclass of ns-3’s PropagationLossModel. The base class was extended, adding a

pointer to a MLTraceBased instance and overriding the DoCalcRxPower method. MLTraceBased

1https://github.com/gregueiras/feup_tese

3.4 Trace-based ns3-gym framework 23

is a subclass of Ns3AIRL, an ns3-ai class that handles the communication between ns-3 and the

Python process. This communication was defined by two C++ structures: TbFeature and TbPre-

dicted, as can be seen in Figure 3.5.

1 struct TbFeature
2 {
3 double distance;
4 }Packed;

struct TbPredicted
{
double path_loss;

}Packed;

Figure 3.5: Structures used by ns3-ai to communicate to Python process.

TbFeature describes the features to be passed to the ML model, in this case, the only feature is

the distance between the two nodes. TbPredicted represents the predicted propagation loss value.

In practice, when a new packet arrives to the node, its received power RxPower must be cal-

culated. If it is using the MLTraceBasedPropagationLossModel, instead of directly calculating it,

the features are passed to a Python process that uses the ML model to predict the propagation loss

for the input distance and send it to the simulation, where it is added to the transmission power,

to calculate the effective RxPower. This Python process starts by loading the ML models and then

runs in a loop, waiting for new features to arrive. When that happens, it calculates the propagation

loss and sends it back. This mechanism repeats until the simulation reaches its end.

24 Problem and proposed solution

Chapter 4

Trace-based ns3-gym framework
validation

This chapter describes the experimental setup used to analyse and evaluate the solution discussed

in the previous chapter.

4.1 Dataset

The used data was compiled in the context of the SIMBED project [27] where it was collected

using Fed4FIRE+ 1 testbeds, in a warehouse environment. For SIMBED, four experiments were

done, three of them only using static nodes and one using a static and a moving node. This was

SIMBED’s 3rd experiment, that was used to train and evaluate the ML trace-based propagation

loss models, as it provided continuous distance values, as the dynamic node moved throughout the

environment, while the other experiments were limited to the discrete values of the static nodes’

distances. The collected traces registered multiple metrics, such as distance, SNR and goodput.

Each experiment is comprised of multiple runs, varying the transmitter node transmission power

from 0 dBm to 12 dBm.

4.2 ML Trace-based Propagation Loss Model Validation

In preparation for a validation of the ML trace-based propagation loss model in a ns-3 environment,

some simulations were made. The ML models trained either in complete or partial data from an

experiment run were evaluated and measured against pure simulation approaches in other runs.

Those measurements were made by comparing the propagation loss predicted by the ML models

with both the real measurements and the pure simulation calculations.

To test the ML models in different contexts, three scenarios were idealised. All three scenarios

share a ground rule: the training data was collected in one experiment run and the test data came

from a different run. In the “Full Set” scenario, the model was trained with all available data from a

1https://www.fed4fire.eu/

25

26 Trace-based ns3-gym framework validation

run and tested on another run. This should tell us if the model is able to extract knowledge from the

data and learn from it. After that, the model was trained on shorter distances and tested on longer

distances, to evaluate its extrapolation capabilities. Finally, the distances were split into some

bins and the model learnt from some of them, effectively training on data with knowledge gaps.

This scenario showcases the model interpolation behaviour. The training data [27] originated from

run 08022019_11.04.35, which is characterised by a transmission power of 1 dBm. The test data

comes from run 07022019_02.49.27, where a transmission power of 7 dBm was used. Both runs

share the same channel centre frequency, 5220 MHz, bandwidth, 20 MHz, and a gain of -7 dBi

was used for each antenna. The gain of the antennas is being represented as a negative value since

signal attenuators of 10 dB were used in-line with the 3 dBi antennas, to limit the signal’s range

in the warehouse.

4.2.1 Full Set scenario

In the first scenario, where all data is available to training, both Support Vector Regression (SVR)

and XGBoost have shown to better modulate the propagation loss when compared to either Friis

or Log-distance path loss models, as can be seen in Figure 4.1.

55

60

65

70

75

80 Real
SVR

Real
XGB

Real
friis

5 10 15 20 25

55

60

65

70

75

80 Real
log_d_1.7

5 10 15 20 25

Real
log_d_2.0

5 10 15 20 25

Real
log_d_2.5

0.0 0.2 0.4 0.6 0.8 1.0
Distance (m)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

ag
at

io
n

Lo
ss

 (d
B)

Propagation Loss percentiles by distance (25, 50, 75)

Figure 4.1: Propagation loss prediction by distance and propagation loss model. The thicker line
represents the median, while the shadow bounds the 25th and 75th percentiles.

The thicker lines represent the median, while the shadow bounds the 25th and 75th percentiles.

When a fast-fading component is not present, such as in Friis and Log-distance models, the 25th

and 75th percentiles are not shown on the plot since these models are deterministic. XGBoost

follows the real data closely, being able to replicate local spikes along the experiment, while

SVR’s curve is smoother. In this context, Friis and Log-distance with path loss exponent less than

or equal to 2.0 are too optimistic while a path loss exponent of 2.5 is too pessimistic.

4.2 ML Trace-based Propagation Loss Model Validation 27

Figure 4.2 shows us the absolute difference between the 25th, 50th (median) and 75th per-

centiles for each model and the real data. The black dashed line serves as a baseline for the perfect

scenario, where both models’ percentiles have the same value. These follow the Figure 4.1 find-

ings, where SVR and XGBoost have a smaller error. XGBoost difference is slightly smaller than

the SVR one. Pure simulation models show a maximum error around 15 dB, while ML models

errors’ stay below 5 dB.

5

0

5

10

15

SVR
p_25
p_50
p_75

XGB
p_25
p_50
p_75

friis
p_25
p_50
p_75

5 10 15 20 25

5

0

5

10

15

log_d_1.7
p_25
p_50
p_75

5 10 15 20 25

log_d_2.0
p_25
p_50
p_75

5 10 15 20 25

log_d_2.5
p_25
p_50
p_75

0.0 0.2 0.4 0.6 0.8 1.0
Distance (m)

0.0

0.2

0.4

0.6

0.8

1.0

Ab
so

lu
te

 D
iff

er
en

ce
 b

et
we

en
 p

er
ce

nt
ile

s (
dB

)

Propagation Loss percentiles absolute difference by distance (25, 50, 75)

Figure 4.2: Propagation loss absolute difference by distance and model. Each line represents the
absolute difference between the respective percentiles of the real data and the model in study. The
black horizontal line represents the perfect scenario, where both the model and the real percentiles
are the same.

The boxplot in Figure 4.3 represents the propagation loss distribution for each model, high-

lighting the median, the 25th and the 75th percentiles. The whiskers depict the full distribu-

tion, excluding some points considered to be outsiders, shown individually. The points are con-

sidered outliers if they fall outside of the area defined by multiplying the inter-quartile range,

Percentile75−Percentile25, by 1.5, subtracting it to the 25th percentile and adding it to the 75th

percentile. When comparing the propagation loss distribution for each model, in Figure 4.3, XG-

Boost and SVR present similar results, both being able to accurately model the real data. The

analysis of the boxplot, in conjunction with the rest of the data, shows that the ML trace-based

propagation loss model can correctly learn and represent the real experiment data when trained on

the full dataset.

To choose the distribution that more accurately represents the fast-fading component, normal,

Rician and Rayleigh distributions parameters were fitted to it, the probability density function cal-

culated and the sum of the squared errors (SSE) compared, choosing the distribution with smallest

value. Figure 4.4 represents the distributions of the multiple possible fast-fading distributions

28 Trace-based ns3-gym framework validation

Real XGB SVR friis log_d_1.7 log_d_2.0 log_d_2.5
Model

50

55

60

65

70

75

80

Pr
op

ag
at

io
n

Lo
ss

 (d
B)

Propagation Loss distribution by model

Figure 4.3: Propagation loss boxplot by model, showcasing the median, 25th percentile and the
75th percentile of the different distributions.

compared with the real one. The distribution that more accurately represents it is the normal dis-

tribution, as they are almost indistinguishable. The SSE values are 0.5, 7.3 and 8.0, for normal,

Rician and Rayleigh’s distributions, respectively.

Real Normal Rician Rayleigh
Distribution

8

6

4

2

0

2

4

6

Fa
st

-fa
di

ng
 c

om
po

ne
nt

 (d
B)

Fast-fading distributions

Figure 4.4: Fast-fading component boxplot by distribution, highlighting the median, 25th per-
centile and the 75th percentile for each distributions.

4.2 ML Trace-based Propagation Loss Model Validation 29

4.2.2 Extrapolation scenario

In the second scenario, where only the data until 10 m is available to training, the ML trace-based

models’ behaviour changes when compared to the “Full Set” scenario, as can be seen in Figure 4.5.

55

60

65

70

75

80 Real
SVR

Real
XGB

Real
friis

5 10 15 20 25

55

60

65

70

75

80 Real
log_d_1.7

5 10 15 20 25

Real
log_d_2.0

5 10 15 20 25

Real
log_d_2.5

0.0 0.2 0.4 0.6 0.8 1.0
Distance (m)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

ag
at

io
n

Lo
ss

 (d
B)

Propagation Loss percentiles by distance (25, 50, 75)

Figure 4.5: Propagation loss prediction by distance and propagation loss model. The thicker line
represents the median, while the shadow bounds the 25th and 75th percentiles.

While predicting propagation loss for known distance values, the behaviour is similar to the

previous experience, however, when dealing with unseen data, data not included in the training set,

both ML trace-based models predict virtually a constant value. As expected, the pure simulation

models’ behaviour does not change.

Comparing the propagation loss distribution median, 25th and 75th percentiles absolute differ-

ence for each model in Figure 4.6, shows a similar situation, where the difference curve for unseen

values follows the real data one, as the predicted values are constant.

When comparing the propagation loss values distribution, the results are similar to the previous

scenario, with XGBoost providing the most accurate representation of the data.

Considering all information, it is possible to infer that the extrapolation capabilities of the ML

trace-based propagation loss model are limited and other training strategies should be preferen-

tially used.

Following the same methodology of the previous scenario, Rician and normal distributions

have the same SSE, that is, they both represent the fast-fading component with the same accuracy,

as can be observed in Figure 4.8. The distributions’ SSE values are 0.8, 0.8 and 2.3 for normal,

Rician and Rayleigh’s distributions, respectively.

30 Trace-based ns3-gym framework validation

5

0

5

10

15

SVR
p_25
p_50
p_75

XGB
p_25
p_50
p_75

friis
p_25
p_50
p_75

5 10 15 20 25

5

0

5

10

15

log_d_1.7
p_25
p_50
p_75

5 10 15 20 25

log_d_2.0
p_25
p_50
p_75

5 10 15 20 25

log_d_2.5
p_25
p_50
p_75

0.0 0.2 0.4 0.6 0.8 1.0
Distance (m)

0.0

0.2

0.4

0.6

0.8

1.0

Ab
so

lu
te

 D
iff

er
en

ce
 b

et
we

en
 p

er
ce

nt
ile

s (
dB

)

Propagation Loss percentiles absolute difference by distance (25, 50, 75)

Figure 4.6: Propagation loss absolute difference by distance and model. Each line represents the
absolute difference between the respective percentiles of the real data and the model in study. The
black horizontal line represents the perfect scenario, where both the model and the real percentiles
are the same.

Real XGB SVR friis log_d_1.7 log_d_2.0 log_d_2.5
Model

50

55

60

65

70

75

80

Pr
op

ag
at

io
n

Lo
ss

 (d
B)

Propagation Loss distribution by model

Figure 4.7: Propagation loss boxplot by model, showcasing the median, 25th percentile and the
75th percentile of the different distributions.

4.2.3 Interpolation scenario

In the last scenario, a different strategy was employed. The training data had some gaps, i.e. the

training data consisted of data from distances shorter than 5 m, between 10 m and 15 m and larger

4.2 ML Trace-based Propagation Loss Model Validation 31

Real Normal Rician Rayleigh
Distribution

5.0

2.5

0.0

2.5

5.0

7.5

10.0

12.5
Fa

st
-fa

di
ng

 c
om

po
ne

nt
 (d

B)
Fast-fading distributions

Figure 4.8: Fast-fading component boxplot by distribution, highlighting the median, 25th per-
centile and the 75th percentile for each distributions.

than 20 m. As can be seen in Figure 4.9, both SVR and XGBoost curves are essentially contained

in the real data shadow, except on the local spikes excluded from train data, where both models

follow the overall tendency on that spot. This indicates that this approach still allows us to achieve

good performance while using less data.

55

60

65

70

75

80 Real
SVR

Real
XGB

Real
friis

5 10 15 20 25

55

60

65

70

75

80 Real
log_d_1.7

5 10 15 20 25

Real
log_d_2.0

5 10 15 20 25

Real
log_d_2.5

0.0 0.2 0.4 0.6 0.8 1.0
Distance (m)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

ag
at

io
n

Lo
ss

 (d
B)

Propagation Loss percentiles by distance (25, 50, 75)

Figure 4.9: Propagation loss prediction by distance and propagation loss model. The thicker line
represents the median, while the shadow bounds the 25th and 75th percentiles.

32 Trace-based ns3-gym framework validation

Looking at the propagation loss distribution median, 25th and 75th percentiles absolute differ-

ence for each model in Figure 4.10, it is possible to infer that the knowledge gaps were not a big

problem for the ML models, as they were able to infer those missing values based on the previous

and following ones.

5

0

5

10

15

SVR
p_25
p_50
p_75

XGB
p_25
p_50
p_75

friis
p_25
p_50
p_75

5 10 15 20 25

5

0

5

10

15

log_d_1.7
p_25
p_50
p_75

5 10 15 20 25

log_d_2.0
p_25
p_50
p_75

5 10 15 20 25

log_d_2.5
p_25
p_50
p_75

0.0 0.2 0.4 0.6 0.8 1.0
Distance (m)

0.0

0.2

0.4

0.6

0.8

1.0

Ab
so

lu
te

 D
iff

er
en

ce
 b

et
we

en
 p

er
ce

nt
ile

s (
dB

)

Propagation Loss percentiles absolute difference by distance (25, 50, 75)

Figure 4.10: Propagation loss absolute difference by distance and model. Each line represents the
absolute difference between the respective percentiles of the real data and the model in study. The
black horizontal line represents the perfect scenario, where both the model and the real percentiles
are the same.

The propagation loss distribution for each model is similar to the extrapolation scenario, where

XGBoost and SVR distributions are more identical to the real one than the pure simulation models

distributions, as can be observed in Figure 4.11.

Applying the same strategy for choosing the most accurate fast-fading component distribution

as in the other two scenarios, the distribution chosen is the normal one, as can be observed in

Figure 4.12. The calculated SSE values are 0.8, 2.6 and 2.4, for normal, Rician and Rayleigh’s

distributions, respectively.

4.3 ML Trace-based Propagation Loss Model impact in ns-3 simula-
tion

To evaluate the impact of using the proposed MLTraceBasedPropagationLossModel on a specific

wireless network scenario, several simulations on the scenario used to train the ML models were

made. The wireless network performance on that scenario using pure simulation models and the

novel ML trace-based propagation loss model were measured and compared. The simulations

used one static and one moving node. The path taken by the moving node follows the path of

4.3 ML Trace-based Propagation Loss Model impact in ns-3 simulation 33

Real XGB SVR friis log_d_1.7 log_d_2.0 log_d_2.5
Model

50

55

60

65

70

75

80
Pr

op
ag

at
io

n
Lo

ss
 (d

B)

Propagation Loss distribution by model

Figure 4.11: Propagation loss boxplot by model, showcasing the median, 25th percentile and the
75th percentile of the different distributions.

Real Normal Rician Rayleigh
Distribution

5

0

5

10

15

Fa
st

-fa
di

ng
 c

om
po

ne
nt

 (d
B)

Fast-fading distributions

Figure 4.12: Fast-fading component boxplot by distribution, highlighting the median, 25th per-
centile and the 75th percentile for each distributions.

the test experiment run, 07022019_02.49.27, and the simulation was configured to use the same

parameters as that run. Those parameters can be consulted on Table 4.1. Both nodes used the

ConstantPositionMobilityModel to ensure that their position was consistent with the original run.

The moving node position was updated once a second, as that was the available distance data

resolution. The fixed node generated a, UDP flow with a constant bitrate of 54 Mbit/s, to ensure

34 Trace-based ns3-gym framework validation

that the connection was fully loaded, as the offered load was always above the link capacity,

since we were using the IEEE 802.11a standard. MinstrelWifiManager was used to automatically

adjust the data rate based on the link condition. The traffic was generated in simulation using the

OnOffApplication, which was configured to be always on and transmitting packets of 1400 bytes.

All unspecified parameters used the ns-3 default values.

Parameter Value
ns-3 version 3.33
Wi-Fi standard IEEE 802.11a
Preamble detection threshold (dBm) -90.0
Packet Size (bytes) 1400
Generated bitrate traffic (MBit/s) 54
Duration (s) 404
Tx Power (dBm) 7
Frequency (MHz) 5220
Bandwidth (MHz) 20
Receiving Antenna Gain (dBi) -7
Transmission Antenna Gain (dBi) -7
Minimum Distance (m) 2.07
Maximum Distance (m) 24.09

Table 4.1: ns-3.33 simulation parameters. All unspecified parameters used the ns-3 default values.

To measure the Machine Learning Trace-based propagation loss model impact on that sim-

ulation scenario, it was compared against several pure simulation propagation loss models, such

as Friis and Log-distance using different path loss exponents. The training approach followed

the “Full Set” scenario, as it was the most accurate model. The Log-distance model was used in

conjunction with JakesPropagationLossModel, in order to reproduce the fast-fading component

of the propagation loss. As the Friis model and Log-distance with 2.0 exponent are identical, a

fast-fading component was not added to the Friis model, leaving it fully deterministic; this way,

the effect of the fast-fading component can be evaluated by comparing the Friis and Log-distance

2.0 (with fast fading) curves. The propagation loss models were compared using the goodput

measured on the receiving node, that is the number of bits of useful information delivered to the

application layer of the receiving node per second. A stronger received signal should reflect on a

higher goodput, as Minstrel uses higher data rates to transmit the packets and as less errors occur

and more messages can be successfully received in a given time frame and vice-versa, making

this a suitable metric to evaluate the impact of the proposed ML trace-based propagation loss

model. As the transport protocol used was UDP, erroneous messages or messages that could not

be delivered are simply dropped and do not count towards the measured goodput.

The real experiment data can be seen in Figure 4.13. As expected, the goodput and the dis-

tance are inversely proportional. As the distance increases the signal gets weaker and the goodput

decays. When the distance decreases, we can observe the opposite, a goodput increase.

In the real-world experiment, the mobile node starts approximately 5 m away from the static

4.3 ML Trace-based Propagation Loss Model impact in ns-3 simulation 35

0 50 100 150 200 250 300 350 400
Time (s)

5

10

15

20

25

Di
st

an
ce

(m
)

Distance over time

5 10 15 20 25
Distance (m)

5000

10000

15000

20000

25000

Go
od

pu
t(k

bi
t/s

)

Goodput over distance

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

Real experiment run

Figure 4.13: Real run goodput over distance.

one, moves in its direction and then moves farther away, to a maximum of around 25 m. After

reaching this point, it goes back to the static node position and finally distantiates itself again,

ending the experiment roughly 7 m apart. The goodput does not follow this variation directly, as

the small changes in distance at lower values do not reflect on the goodput. Instead, the goodput

follows the significant changes in distance, achieving its peak value when the distance is smaller

and its lowest at the most distant point.

In order to calculate statistically confident results, five runs were done for each model and the

median of the values per second was calculated. As some of the results tend to be more disperse,

a rolling window of five seconds was used to present the data, where the median of those values

was calculated and used to represent each window.

The median of the goodput over distance for all propagation loss models is shown in Fig-

ure 4.14. Observing the results, we can infer that neither Log-distance nor Friis models are able

to accurately reproduce the observed goodput, as the points are condensed, lacking the spread of

the real data. Friis ends up being too optimistic, saturating the channel when the nodes distance is

smaller, resulting in higher than expected goodput values during all experiment. SVR, while not

completely replicating the original results, generally follows the trend of the real data, in which

the goodput is inversely proportional to the distance. XGBoost, while being able to replicate some

of the observed real values, is not able to accurately reproduce the goodput when the distance

increases. However, it is the only model that accurately reproduced the spread nature of the real

data. Both ML trace-based propagation loss models do not achieve as low goodput values as the

real experiment, however, for higher values they tend to be more accurate. This data indicates that

both ML models lead to more accurate representations of the real-world scenario than the pure

simulation models.

36 Trace-based ns3-gym framework validation

0

5000

10000

15000

20000

25000

30000

Go
od

pu
t(k

bi
t/s

)

SVR
Real
SVR

XGBoost
Real
XGBoost

Friis
Real
Friis

5 10 15 20 25
Distance (m)

0

5000

10000

15000

20000

25000

30000

Go
od

pu
t(k

bi
t/s

)

Log-distance =1.7
Real
Log-distance =1.7

5 10 15 20 25
Distance (m)

Log-distance =2.0
Real
Log-distance =2.0

5 10 15 20 25
Distance (m)

Log-distance =2.5
Real
Log-distance =2.5

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

ns-3 simulations

Figure 4.14: ns-3 simulations using different propagation loss models. All models predict both
path loss and fast-fading components, except for Friis that only predicts the path loss component.

4.4 Trace-based ns3-gym framework validation

In order to validate the integration of the ML trace-based propagation loss model on the trace-

based ns3-gym framework, an example from ns3-gym was used [18]. The problem proposed in

this example concerns the selection of which radio channel to broadcast, between two nodes, in a

environment where the interference follows a periodic pattern, switching through all channels. The

nodes are distanced from each other by 10 m. An RL agent is trained with the objective of predict-

ing which channel to use in the next time slot avoiding any collisions with the interference signal.

This scenario was chosen by several reasons, as it is a state-of-the-art example, directly supported

by ns3-gym and it depicts a wireless network scenario where the algorithm’s performance directly

depends on a good representation of the environment, which includes the propagation loss.

The simulation scenario provided by ns3-gym used the Friis propagation loss model, without

fast-fading, and its performance was compared to both proposed trace-based ns3-gym frameworks

using the SVR and XGBoost propagation loss models.

Each agent was trained for two hundred episodes, where in each episode it had to choose

in which radio channel to transmit in the next time slot. For each correct decision it received

a reward of 1 point, whereas if it chose an occupied channel the reward value was −1. If the

agent accumulated 3 errors in the last 10 time slots, the episode would end. Each episode had at

4.4 Trace-based ns3-gym framework validation 37

most 100 time slots. Figure 4.15 represents the learning performance of three agents, trained on

the same scenario using different propagation loss models. As a baseline, the performance using

the Friis model, without fast-fading, is shown on Figure 4.15a. The learning performance in the

SVR and XGBoost trace-based propagation loss models scenarios is represented by Figure 4.15b

and Figure 4.15c, respectively. The reward value obtained in each episode by the agent can be

observed in the orange line, while the blue line with triangles indicate how much time slots the

episode lasted. A perfect performance would be both lines at the top, as the agent was able to

accurately learn the environment and make the correct decision every time. A plot with distance

between both lines indicates that the agent made some mistakes, but not consecutively.

Comparing the data in Figure 4.15, we can observe that the RL agent learning from the simula-

tion that used the Friis model was able to learn the environment and always select the unoccupied

channel in around 120 episodes, while the agent that learnt from an environment backed by the

ML trace-based propagation loss model was able to almost instantly learn it when using the XG-

Boost model. The simulation based on the SVR model, albeit converging faster than the Friis one,

in around 45 episodes, was not able to reach the reward values as the other two approaches. This

goes alongside with the expected results, as XGBoost was the most accurate model in the previous

scenarios, Section 4.2 and Section 4.3. In principal, an agent trained on the trace-based ns3-gym

framework would perform better in the real-world environment for which it was trained (based on

real traces) than an agent trained on an environment based on pure simulation models.

38 Trace-based ns3-gym framework validation

(a) Learning performance RL agent trained on ns3-gym environment based
on Friis propagation loss model.

(b) Learning performance RL agent trained on ns3-gym environment based
on SVR trace-based propagation loss model.

(c) Learning performance RL agent trained on ns3-gym environment based
on XGBoost trace-based propagation loss model.

Figure 4.15: RL agent training performance on the same scenario using different propagation loss
models.

Chapter 5

Conclusions and Future Work

In this chapter we make an overview of the work developed, we reinstate the major original con-

tributions, point out limitations of the developed framework and reflect on possible future work.

5.1 Overview of the Work Developed

The main goal of this dissertation was to improve trace-based network simulation, providing more

flexibility and integrating it with the ns-3 simulator and ns3-gym, creating a trace-based ns3-gym

framework that can be used to train and evaluate RL algorithms for wireless networks. In spite

of the work being developed over a single dataset, it is made to be as flexible as possible and it

could easily be used in other scenario/environment, provided that new traces are collected in that

environment and the ML trace-based propagation loss models are trained on it.

This dissertation began by providing the context and motivation for why both simulations and

experiments have limitations, leading to the necessity of a hybrid solution. These limitations go

from the cost and complexity of setting up real-world testbeds to the lack of flexibility presented

by state-of-the-art trace-based solutions. This constraint became even more relevant nowadays,

that RL algorithms are being more applied to solve different wireless networks problems. Follow-

ing that, a review of the related work and the state-of-the-art fields related to this dissertation was

discussed. Machine Learning fundamental concepts were discussed, and some popular supervised

and reinforcement learning concepts and algorithms were introduced. Propagation loss models

were also presented, ranging from classical models to machine learning approaches. It was con-

cluded that, to the best of our knowledge, no other proposed approach solves all the raised prob-

lems. The following chapter described the problem in detail, proposed a solution, and discussed

how to implement it. Finally, the fourth chapter analysed the performance of the ML trace-based

ns3-gym framework, validating all components of the proposed solution. First, the ML trace-

based propagation loss models were compared against classical propagation loss models. After

39

40 Conclusions and Future Work

that, the models were integrated into ns-3 and their operation was evaluated, where ML trace-

based propagation loss models showed to more accurately represent the real-world scenario than

their pure simulation (either deterministic or stochastic) counterparts, even when both are used in

conjunction. Finally, the complete trace-based ns3-gym framework was put to the test to solve a

”cognitive radio” problem using RL agents, which benefited from the improved accuracy of the

proposed ML trace-based propagation loss models. The main objective was accomplished, as the

trace-based ns3-gym framework was implemented and the ML trace-based propagation loss model

is a better representation of the real scenario than the classical models, and its integration on ns-3

confirms that. The integration with ns3-gym also shows that the RL agents benefit from more ac-

curate representations of the environment provided by the models mentioned above, which meant

superior learning performance, as the agents were able to learn faster when compared to agents

trained on environments using pure simulation propagation loss models. Finally, although not in

the scope of this dissertation, such RL agents trained using the proposed trace-based ns3-gym

framework should also perform better than the RL agents trained with pure simulation models,

when deployed in the real-word scenarios for which they were trained/specialised for.

5.2 Original Contributions

The main original contributions of this work are the following:

1. ML trace-based propagation loss model. A ML model able to learn both the primary and

the fast-fading component of the path loss from traces collected in an environment. This

strategy allows the model to replicate the conditions of the environment, not only repeating

the collected traces but rather be the basis for the creation of new ones in a virtual represen-

tation of the original environment.

2. Trace-based ns3-gym framework. An ns3-gym framework, where users can leverage the

earlier mentioned models, combining the capabilities of the ns-3 simulator and the easy to

use interface of ns3-gym to train and develop new RL algorithms and environments.

5.3 Future Work

In the following, we reflect on future work that would aggregate value to the trace-based ns3-gym

framework and further explore its capabilities.

In the ML trace-based propagation loss model training process, instead of only using the dis-

tance between two nodes to predict the propagation loss value, it could be interesting to use other

features, such as the node’s position in a Cartesian plane or its height. The fast fading component

could also benefit from the position of the nodes, as it would enable us to adapt it to different parts

of the environment, for example by dividing it in a grid, where each cell has its own fast fading

component.

5.3 Future Work 41

It is possible to use the implemented trace-based ns3-gym framework to create new models

tailored for different environments. However, in order to improve the framework developed some

refinements could still be considered, for example, how to overcome the difficulty in extrapolation,

as noted in Section 4.2.2.

It would also be interesting to evaluate the performance of an agent trained with the proposed

trace-based ns3-gym framework, in the same environment where its traces were collected, com-

paring it with the performance of a RL agent trained only on pure simulation environments.

Finally, the results achieved by the ML trace-based propagation loss model and by the trace-

based ns3-gym framework could be published in a conference article. The framework could be

made available in the ns-3 app store, associated with the ”Trace-based simulation” application

group, currently in development by the wireless networks team in INESC TEC, in which this

dissertation is included.

42 Conclusions and Future Work

References

[1] Prakash Agrawal and Mythili Vutukuru. Trace based application layer modeling in ns-3. In
2016 Twenty Second National Conference on Communication (NCC), pages 1–6, Guwahati,
India, March 2016. IEEE.

[2] R. Agrawal and R. Srikant. Mining sequential patterns. In Proceedings of the Eleventh
International Conference on Data Engineering, pages 3–14, March 1995.

[3] O. G. Aliu, A. Imran, M. A. Imran, and B. Evans. A Survey of Self Organisation in Future
Cellular Networks. IEEE Communications Surveys Tutorials, 15(1):336–361, 2013. Confer-
ence Name: IEEE Communications Surveys Tutorials.

[4] A Baidya and Siladitya Sen. Qualitative Analysis on Log-Distance Propagation Model for
Wlan Standard Engineering. PARIPEX, 1.6714, March 2014.

[5] Christopher M. Bishop. Pattern recognition and machine learning. Information science and
statistics. Springer, New York, 2006.

[6] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie
Tang, and Wojciech Zaremba. Openai gym, 2016.

[7] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling, P. Rohlfshagen,
S. Tavener, D. Perez, S. Samothrakis, and S. Colton. A Survey of Monte Carlo Tree Search
Methods. IEEE Transactions on Computational Intelligence and AI in Games, 4(1):1–43,
March 2012.

[8] João Rafael de Figueiredo Cabral. A Machine Learning Approach for Path Loss Estimation
in Emerging Wireless Networks. February 2019. Accepted: 2020-02-03T03:54:33Z.

[9] Tianqi Chen and Carlos Guestrin. XGBoost: A Scalable Tree Boosting System. In Pro-
ceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pages 785–794, San Francisco California USA, August 2016. ACM.

[10] Christoph Dann, Gerhard Neumann, and Jan Peters. Policy Evaluation with Temporal Dif-
ferences: A Survey and Comparison (Extended Abstract). Proceedings of the International
Conference on Automated Planning and Scheduling, 25(1), April 2015. Number: 1.

[11] Department of Electronics & Communication Engineering Heritage Institute of Technology,
Kolkata, India, A. Pallob Baidya, and B. Prof. Siladitya Sen. Qualitative Analysis on Log-
Distance Propagation Model for Wlan Standard. Paripex - Indian Journal Of Research,
3(3):69–70, January 2012.

43

44 REFERENCES

[12] TensorFlow Developers. Tensorflow, June 2021. Specific TensorFlow versions can be found
in the "Versions" list on the right side of this page.
See the full list of authors <a href="htt
ps://github.com/tensorflow/tensorflow/graphs/contr ibutors">on GitHub.

[13] Helder Fontes, Rui Campos, and Manuel Ricardo. A Trace-based ns-3 Simulation Approach
for Perpetuating Real-World Experiments. In Proceedings of the Workshop on ns-3 - 2017
WNS3, pages 118–124, Porto, Portugal, 2017. ACM Press.

[14] Helder Fontes, Rui Campos, and Manuel Ricardo. Improving the ns-3 TraceBasedPropa-
gationLossModel to support multiple access wireless scenarios. In Proceedings of the 10th
Workshop on ns-3, WNS3 ’18, pages 77–83, New York, NY, USA, June 2018. Association
for Computing Machinery.

[15] Yoav Freund and Robert E Schapire. A Decision-Theoretic Generalization of On-Line Learn-
ing and an Application to Boosting. Journal of Computer and System Sciences, 55(1):119–
139, August 1997.

[16] H.T. Friis. A Note on a Simple Transmission Formula. Proceedings of the IRE, 34(5):254–
256, May 1946.

[17] Piotr Gawłowicz and Anatolij Zubow. ns-3 meets OpenAI Gym: The Playground for Ma-
chine Learning in Networking Research. In ACM International Conference on Modeling,
Analysis and Simulation of Wireless and Mobile Systems (MSWiM), November 2019.

[18] Piotr Gawłowicz and Anatolij Zubow. ns3-gym: Extending OpenAI Gym for Networking
Research. arXiv:1810.03943 [cs], October 2018. arXiv: 1810.03943.

[19] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. Unsupervised learning. In The
elements of statistical learning, pages 485–585. Springer, 2009.

[20] Y. He, Z. Zhang, F. R. Yu, N. Zhao, H. Yin, V. C. M. Leung, and Y. Zhang. Deep-
Reinforcement-Learning-Based Optimization for Cache-Enabled Opportunistic Interference
Alignment Wireless Networks. IEEE Transactions on Vehicular Technology, 66(11):10433–
10445, November 2017.

[21] Chen Hou, Zhexin Xu, Wen-Kang Jia, Jianyong Cai, and Hui Li. Improving aerial im-
age transmission quality using trajectory-aided OLSR in flying ad hoc networks. EURASIP
Journal on Wireless Communications and Networking, 2020(1):140, December 2020.

[22] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a review. ACM Computing Surveys,
31(3):264–323, September 1999.

[23] Anil K. Jain. Data clustering: 50 years beyond K-means. Pattern Recognition Letters,
31(8):651–666, June 2010.

[24] L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement Learning: A Survey.
Journal of Artificial Intelligence Research, 4:237–285, May 1996.

[25] N. Kato, Z. M. Fadlullah, B. Mao, F. Tang, O. Akashi, T. Inoue, and K. Mizutani. The Deep
Learning Vision for Heterogeneous Network Traffic Control: Proposal, Challenges, and Fu-
ture Perspective. IEEE Wireless Communications, 24(3):146–153, June 2017. Conference
Name: IEEE Wireless Communications.

REFERENCES 45

[26] Guolin Ke, Qi Meng, Thomas Finely, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and
Tie-Yan Liu. LightGBM: A Highly Efficient Gradient Boosting Decision Tree. In Advances
in Neural Information Processing Systems 30 (NIP 2017), December 2017.

[27] Vitor Lamela, Helder Fontes, Tiago Oliveira, José Ruela, Manuel Ricardo, and Rui Cam-
pos. SIMBED - Offline Real-World Wireless Networking Experimentation using ns-3, April
2019. Version Number: 1.0 type: dataset, https://zenodo.org/record/2634272.

[28] R. Li, Z. Zhao, X. Chen, J. Palicot, and H. Zhang. TACT: A Transfer Actor-Critic Learning
Framework for Energy Saving in Cellular Radio Access Networks. IEEE Transactions on
Wireless Communications, 13(4):2000–2011, April 2014. Conference Name: IEEE Transac-
tions on Wireless Communications.

[29] X. Liu, Y. Liu, and Y. Chen. Reinforcement Learning in Multiple-UAV Networks: Deploy-
ment and Movement Design. IEEE Transactions on Vehicular Technology, 68(8):8036–8049,
August 2019.

[30] Q. Mao, F. Hu, and Q. Hao. Deep Learning for Intelligent Wireless Networks: A Compre-
hensive Survey. IEEE Communications Surveys Tutorials, 20(4):2595–2621, 2018.

[31] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou,
Daan Wierstra, and Martin Riedmiller. Playing Atari With Deep Reinforcement Learning.
In NIPS Deep Learning Workshop. 2013.

[32] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G.
Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Pe-
tersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran,
Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level control through deep rein-
forcement learning. Nature, 518(7540):529–533, February 2015. Number: 7540 Publisher:
Nature Publishing Group.

[33] João Mendes Moreira, André C. P. L. F. de Carvalho, and Tomáš Horváth. A General Intro-
duction to Data Analytics. John Wiley & Sons, Inc., Hoboken, NJ, USA, June 2018.

[34] Yiwen Nie, Junhui Zhao, Jun Liu, Jing Jiang, and Ruijin Ding. Energy-efficient UAV trajec-
tory design for backscatter communication: A deep reinforcement learning approach. China
Communications, 17(10):129–141, October 2020.

[35] P. Owezarski and N. Larrieu. A trace based method for realistic simulation. In 2004 IEEE
International Conference on Communications (IEEE Cat. No.04CH37577), volume 4, pages
2236–2239 Vol.4, June 2004.

[36] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,
high-performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Process-
ing Systems 32, pages 8024–8035. Curran Associates, Inc., 2019.

[37] Caleb Phillips, Douglas Sicker, and Dirk Grunwald. A Survey of Wireless Path Loss
Prediction and Coverage Mapping Methods. IEEE Communications Surveys & Tutorials,
15(1):255–270, 2013.

46 REFERENCES

[38] I. Popescu, D. Nikitopoulos, P. Constantinou, and I. Nafornita. Comparison of ANN Based
Models for Path Loss Prediction in Indoor Environment. In IEEE Vehicular Technology
Conference, pages 1–5, September 2006. ISSN: 1090-3038.

[39] Ileana Popescu, Dimitris Nikitopoulos, Philip Constantinou, and Ioan Nafornita. ANN Pre-
diction Models for Outdoor Environment. In 2006 IEEE 17th International Symposium on
Personal, Indoor and Mobile Radio Communications, pages 1–5, Helsinki, September 2006.
IEEE.

[40] Stuart J. Russell and Peter Norvig. Artificial intelligence: a modern approach. Prentice Hall
series in artificial intelligence. Prentice Hall, Englewood Cliffs, N.J, 1995.

[41] Takaya Saito and Marc Rehmsmeier. The Precision-Recall Plot Is More Informative than
the ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets. PLOS ONE,
10(3):e0118432, March 2015.

[42] Shi Zhong, T. M. Khoshgoftaar, and S. V. Nath. A clustering approach to wireless network
intrusion detection. In 17th IEEE International Conference on Tools with Artificial Intelli-
gence (ICTAI’05), pages 7 pp.–196, November 2005. ISSN: 2375-0197.

[43] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur
Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy
Lillicrap, Fan Hui, Laurent Sifre, George van den Driessche, Thore Graepel, and Demis
Hassabis. Mastering the game of Go without human knowledge. Nature, 550(7676):354–
359, October 2017.

[44] A. Sudhir Babu and K.V Sambasiva Rao. "Evaluation of BER for AWGN, Rayleigh and Ri-
cian Fading Channels under Various Modulation Schemes". International Journal of Com-
puter Applications, 26(9):23–28, July 2011.

[45] Y. Sun, M. Peng, Y. Zhou, Y. Huang, and S. Mao. Application of Machine Learning in Wire-
less Networks: Key Techniques and Open Issues. IEEE Communications Surveys Tutorials,
21(4):3072–3108, 2019. Conference Name: IEEE Communications Surveys Tutorials.

[46] S. Tamoor-ul Hassan, S. Samarakoon, M. Bennis, M. Latva-aho, and C. S. Hong. Learning-
Based Caching in Cloud-Aided Wireless Networks. IEEE Communications Letters,
22(1):137–140, January 2018. Conference Name: IEEE Communications Letters.

[47] Susan R. Wallace and F. Layne Wallace. Two neural network programming assignments
using arrays. ACM SIGCSE Bulletin, 23(1):43–47, March 1991.

[48] J. Wang, C. Jiang, H. Zhang, Y. Ren, K.-C. Chen, and L. Hanzo. Thirty Years of Machine
Learning: The Road to Pareto-Optimal Wireless Networks. IEEE Communications Surveys
Tutorials, 22(3):1472–1514, 2020.

[49] J. Wang, J. Wang, Y. Wu, J. Wang, H. Zhu, M. Lin, and J. Wang. A Machine Learning Frame-
work for Resource Allocation Assisted by Cloud Computing. IEEE Network, 32(2):144–151,
March 2018. Conference Name: IEEE Network.

[50] S. Wang, H. Liu, P. H. Gomes, and B. Krishnamachari. Deep Reinforcement Learning for
Dynamic Multichannel Access in Wireless Networks. IEEE Transactions on Cognitive Com-
munications and Networking, 4(2):257–265, June 2018.

REFERENCES 47

[51] Hao Yin, Pengyu Liu, Keshu Liu, Liu Cao, Lytianyang Zhang, Yayu Gao, and Xiaojun Hei.
Ns3-ai: Fostering artificial intelligence algorithms for networking research. In Proceedings
of the 2020 Workshop on Ns-3, WNS3 2020, page 57–64, New York, NY, USA, 2020. Asso-
ciation for Computing Machinery.

[52] L. Zhang, H. Zhao, S. Hou, Z. Zhao, H. Xu, X. Wu, Q. Wu, and R. Zhang. A Survey on
5G Millimeter Wave Communications for UAV-Assisted Wireless Networks. IEEE Access,
7:117460–117504, 2019.

[53] Yan Zhang, Jinxiao Wen, Guanshu Yang, Zunwen He, and Jing Wang. Path Loss Prediction
Based on Machine Learning: Principle, Method, and Data Expansion. Applied Sciences,
9(9):1908, May 2019.

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Motivation
	1.3 Objectives
	1.4 Original Contributions
	1.5 Document Structure

	2 Literature Review
	2.1 Machine Learning
	2.1.1 Supervised Learning
	2.1.2 Unsupervised Learning
	2.1.3 Reinforcement Learning

	2.2 Supervised Learning Models
	2.2.1 Decision Trees
	2.2.2 Random Forests
	2.2.3 Boosting
	2.2.4 Support Vector Machine (SVM)
	2.2.5 Artificial Neural Networks

	2.3 Path Loss Models
	2.3.1 Friis Model
	2.3.2 Log-distance Model
	2.3.3 Two-Ray Model
	2.3.4 Machine Learning-based Models

	2.4 Trace-based Simulation
	2.5 Conclusion

	3 Problem and proposed solution
	3.1 Problem Definition
	3.2 Solution Architecture
	3.3 ML Trace-based Propagation Loss Model
	3.3.1 Path Loss Model
	3.3.2 Fast-fading Model

	3.4 Trace-based ns3-gym framework

	4 Trace-based ns3-gym framework validation
	4.1 Dataset
	4.2 ML Trace-based Propagation Loss Model Validation
	4.2.1 Full Set scenario
	4.2.2 Extrapolation scenario
	4.2.3 Interpolation scenario

	4.3 ML Trace-based Propagation Loss Model impact in ns-3 simulation
	4.4 Trace-based ns3-gym framework validation

	5 Conclusions and Future Work
	5.1 Overview of the Work Developed
	5.2 Original Contributions
	5.3 Future Work

	References

