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Abstract

Cardiovascular diseases are known to be responsible for more deaths than any other health issue,
and are projected to remain the leading cause of death globally. Cardiac imaging modalities are a
key factor to detect several pathologies from which echocardiography can be highlighted. Several
upsides of it can be enumerated, such as high temporal resolution, absence of ionizing radiation,
its portability and the relatively low costs associated, therefore playing a crucial role in clinical
cardiology with diagnostic, prognostic and interventional value.

As such, echocardiography is used as a tool to extract several clinical parameters to evaluate
cardiac morphology, deformation and function. Nonetheless, such results require manual delin-
eation and tracking of the cardiac chamber walls or other structures, which can be time consuming
for physicians, arising the need for complementary or full automatic analysis tools. Despite the
attempts to automate these tasks, the image quality is still a major drawback which decreases its
success rate. This happens due to echocardiographic images’ low contrast-to-noise ratio, the pres-
ence of artefacts and general lower quality due to the dependence on the acquisition conditions
and settings. These problems have been previously tackled in other medical areas, namely in the
quality enhancement field, mainly resorting to Generative Adversarial Networks.

Thus, the development and validation of automatic image analysis algorithms for image quality
enhancement based on image-to-image generative adversarial networks has been conducted, more
specifically using cycleGAN, enabling the automatic improvement of image quality.

The dataset used contained two chamber and four chamber views of 500 different patients,
comprising a total of 19.240 echocardiography images, along with their respective segmentations.
Each sequence was labeled regarding its quality, ranging from low, medium or high quality. A
cycleGAN model was developed, aiming to enhance lower quality images and compare them to
high quality ones. Two different experiments were conducted. Firstly, the model was trained using
low and high quality images. Secondly, low and medium quality images were grouped into one
low quality category, therefore using the full dataset during training.

The optimized cycleGAN model was achieved after empirically studying the impact of dif-
ferent variables such as training data and learning rate schedulers. The enhanced images trained
with the full dataset in conjunction with the application of a learning rate scheduler achieved the
best results, attaining an FID score of 21.539 compared to the baseline of 27.440 with the orig-
inal dataset echocardiograms. Subsequently, the same model was validated on its impact on an
automatic cardiac chamber segmentation algorithm. Its DICE score improved in approximately
14.06% over the baseline after applying the enhanced echocardiography images, improving its
automatic segmentation capacities and contributing to an improvement on medical analysis and
diagnosis.

The utilization of cycleGAN for echocardiography image enhancement successfully fulfilled
its objectives, improving image clarity and quality overall. This enhancement improved the results
regarding cardiac chamber automatic segmentations, contributing to the advancement of artificial
intelligence in the field of cardiology.
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Chapter 1

Introduction

1.1 Context and Objectives

Cardiovascular diseases are the leading cause of death worldwide [25] and echocardiography is a

key tool in the detection of pathologies. Despite its advantages, such as high temporal resolution,

absence of ionizing radiation and low cost, the quality of images obtained can be poor due to low

contrast-to-noise ratio, artefacts and other factors.

This represents an obstacle not only for human operators who could benefit from better im-

age quality, but especially for automatic image interpretation methods such as segmentation and

tracking of cardiac chambers.

In order to address this issue, this project aims to develop and validate algorithms for automatic

image quality enhancement based on generative adversarial networks (GANs). GANs are a class of

deep learning models which consists of two neural networks, the generator and the discriminator,

which work in a competitive environment to produce enhanced images. By leveraging the potential

of GANs, this project aims to improve the visual quality of echocardiographic images, making

them clearer and more informative.

Following the development of the algorithms, various validation techniques will be performed,

recurring to evaluation metrics such as the Fréchet Inception Distance (FID). Additionally, the

impact of the image quality enhancement algorithms on automatic cardiac chamber segmentation

algorithms will be evaluated. By enhancing the images before they undergo segmentation, it is

expected to improve the accuracy and reliability of the segmentation process. This could lead to

more precise and consistent medical analysis and diagnosis of cardiovascular conditions.

The potential benefits of this research are extensive, as enhanced image quality could enhance

the overall performance of echocardiography and therefore contribute to early and accurate detec-

tion of cardiovascular diseases.
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Introduction 2

1.2 Document Structure

This document is structured in six sections, consisting of "Introduction", "Fundamental Concepts",

"Image Generation and Enhancement in Echocardiography", "CycleGAN-based Echocardiogra-

phy Image Quality Enhancement", "Echocardiographic Quality Enhancement in Automatic Seg-

mentation" and "Conclusion and Future Work". The bases and fundamental concepts for this

paper are further discriminated in section 2, "Fundamental Concepts", which introduces several

cardiology concepts, focusing on cardiovascular imaging techniques, specifically echocardiogra-

phy. Section 3, "Image Generation and Enhancement in Echocardiography", presents the state of

the art, analysing the existing work in similar contexts and the similar approaches and technolo-

gies used, followed by the analysis on the conclusions drawn from each of them. In section 4,

"CycleGAN-based Echocardiography Image Quality Enhancement", the experimental process re-

garding the development of the CycleGAN model will be presented along with the results obtained.

Subsequently, section 5, "Echocardiographic Quality Enhancement in Automatic Segmentation"

aims to analyse the integration of the images obtained from the model developed in section 4 in

an automatic segmentation algorithm, explaining the process and its outcomes. Lastly, in section

6, "Conclusion and Future Work", the conclusions of the dissertation are enumerated, as well as

potential future work.



Chapter 2

Fundamental Concepts

2.1 The Heart and Cardiovascular Disease

The heart is a vital muscular organ which is responsible for providing the body with oxygenated

blood, pumping it to all parts of the body, including the brain and other organs. It is the center of

the circulatory system and is structured in four chambers: two atria and two ventricles. It is also

constituted by muscle tissue and is responsible for pumping oxygenated blood through the body

and deoxygenated blood back to the lungs. Without a healthy heart, the body would not be able to

function properly.

Figure 2.1: Representation of the heart structure [5]

Bearing this in mind, it is important to focus on cardiovascular diseases and their magnitude

and impact on the proper functioning of the heart. These are a major and growing cause of death

and disability in the world, representing the leading cause of death in most developed countries,

3
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responsible for more than 17.9 [36] million deaths annually. Cardiovascular diseases are also

the leading cause of death in low- and middle-income countries, where they are responsible for

over 80% [10] of all deaths while its global burden is still increasing, due to aging population,

unhealthy lifestyles, and increasing urbanization. These include a range of conditions, such as

coronary artery disease, congestive heart failure, and stroke, which can have a major impact on an

individual’s health, quality of life, and ability to work and participate in society. Therefore, under-

standing the causes and developing effective treatments for these diseases is of great importance.

Early detection and treatment can help reduce the risk of serious complications, including heart

attack and stroke, hence the need to improve the existing methods and make them more efficient

and accessible.

2.2 Cardiovascular Imaging

It is of substantial importance to understand and analyse the heart’s morphology, adapted to each

individual, in order to assemble an accurate diagnostic. Such can be achieved through the usage of

several different cardiovascular imaging modalities, the main ones being Echocardiogram (echo),

Cardiac computed tomography (CT), Single-photon emission computed tomography (SPECT),

Cardiac positron emission tomography (PET) and Cardiac Magnetic resonance imaging (MRI).

Echocardiogram (echo) consists in the image resulting from an echocardiography. This

modality is widely available and noninvasive, and allows quantitative and qualitative assessment

of cardiac anatomy and function, such as heart wall thickness and motion. Additionally, it is also

used for assessment of the function and anatomy of the heart valves, detection of valvular vege-

tations and intracardiac thrombus and providing an approximation of pulmonary arterial pressure

and central venous pressure. [33] There are three different echocardiography techniques, these

being transthoracic as the most common one, transesophageal and intracardiac.

Figure 2.2: Example of an echocardiogram [2]

Among other cardiovascular imaging modalities, Cardiac computed tomography (CT) is

also widely utilized. In CT, multiple x-ray images are taken from various angles all around the
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patient in order to generate two-dimensional images (tomograms) representing a slice of the struc-

ture, or three dimensional images of the heart, in addition to great vessels and surrounding struc-

tures [19]. CT provides significantly more information compared to conventional x-rays due to a

better differentiation between various soft-tissue densities, and its 3D component can be partic-

ularly useful in surgery planning. Nevertheless, this modality presents some disadvantages, the

main one being a relatively high exposure to radiation, placing the patient at potential risk over

time.

Figure 2.3: Example of a three dimensional cardiac CT [8]

Figure 2.4: Example of a two dimensional cardiac CT [27]

Cardiac Magnetic resonance imaging (MRI) relies on the usage of magnetic fields and radio

waves in order to generate images of thin slices of tissues, designated as tomographic images. This

method can produce detailed images with high resolution, both two and three dimensional, pro-

viding an extensive analysis of heart structure, function and diseases [20]. Although this modality

does not emit radiation, it is rather expensive and requires longer imaging times than CT. It may

also generate further issues relative to the magnetic field, patient claustrophobia or contrast reac-

tions.
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Figure 2.5: Example of a cardiac MRI [7]

Similarly to MRI, Single-photon emission computed tomography (SPECT) also allows for

three-dimensional cardiac images, however its focus is more leaned to the functioning of the heart

such as how the heart is working or how well blood is flowing, rather than the anatomical or struc-

tural viewpoint. It consists on a noninvasive method which injects radioactive tracers into a vein,

using a rotating camera system and tomographic reconstruction to produce images which may be

useful on different diagnostics such as coronary artery disease or the previous occurrence of a heart

attack. [1] Some downsides of SPECT involve long scan times as well as lower resolution images

susceptible to artifacts and attenuation. Contrarily to PET, it also does not provide a quantifiable

estimation of blood flow.

Figure 2.6: Example of SPECT Imaging [26]

Comparably to SPECT, Cardiac positron emission tomography (PET) consists on a non-

invasive nuclear imaging test, using compounds containing radionuclides in order to generate im-

ages of the heart. It can provide information regarding tissue function due to the incorporation

of positron-emitting radionuclides into metabolically compounds [21]. This can result in several

possible applications such as evaluating myocardial viability, diagnosing coronary artery disease
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or assessing the damage provoked by a heart attack. Similarly to SPECT, it is generally safe,

involving a relatively small amount of radiation, however it presents some downsides regarding

fluorodeoxyglucose (FDG), which is the most common compound used. Its production requires a

cyclotron and has a short half-live, leading to a resulting expense, inconvenience and impractical-

ity which impact the availability of this modality.

Figure 2.7: Example of a PET Myocardial Perfusion Imaging [35]

While each of the mentioned modalities has its own advantages and is adequate for specific

situations, echocardiography can be highlighted since it is widely used due to some characteristics,

such as portability, high temporal resolution, absence of radiation, and its low-costs [32]. Addi-

tionally, it allows for decision-making with a high degree of accuracy in a multitude of clinical

settings. On the other hand, one of the main disadvantages of echocardiography is the relatively

low image quality and presence of artifacts whereby a patient might undergo unnecessary other

diagnostic tests or interventions, possibly requiring more expenses and risks.

2.2.1 Echocardiography

It is essential to understand the basic principles of ultrasound imaging and Doppler echocardiog-

raphy in order to achieve accurate results, both during data acquisition and for the interpretation

of the ultrasound information. [28] Echocardiography is based on ultrasound waves mechanisms,

which consist of mechanical vibrations which can be defined in terms of frequency inducing alter-

nate refraction and compression of any physical medium they pass through.

Sound waves with frequencies ranging from 1.0 to 20 MHz are frequently used in medical

ultrasound imaging. The capability of distinguishing separate objects increases directly with fre-

quency and decreases with wavelength. An ultrasound with a high frequency and short wavelength

can differentiate objects that are only 1 mm apart, resulting in enhanced spatial resolution. As a

result, since the resolution of an echocardiographic image is typically 1 or 2 wavelengths, imaging

with a 2.5 MHz transducer would produce an image resolution of about 1 mm. However, due to

attenuation, the ability to transmit enough ultrasonic energy into the tissue or the depth of tissue

penetration is directly proportional to wavelength and hence inversely related to transducer fre-

quency. Hence, reduced tissue penetration is the trade-off for using higher frequency transducers,

and therefore higher spatial resolution.

Each sound wave is a pulse; its frequency is determined by the number of pulses emitted per

unit of time, and its "spatial pulse length" consists of the distance from the start to its end. A
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pulse moves across a homogenous medium in a straight line. Pulses which are being released

collide with tissue surfaces that have various acoustic properties and reflect some of their energy

back to the transducer. During the "listening" phase, the echoes that return to the transducer are

transformed into an electrical signal which generates a picture on a monitor. [22] However, by

changing to a non homogeneous medium, the pulse path is altered, occurring, besides reflection,

events of scattering, refraction and attenuation, all three contributing to decreasing the wave’s size.

Attenuation consists on the gradual loss of energy due to reflection and absorption by conversion

to heat, being frequency and wavelength dependent.

2.3 Towards Automated Echo Interpretation

As previously mentioned, automated Echo interpretation plays an important role in improving

current imaging modalities, as it can help to enhance the accuracy and speed of diagnosing medical

conditions. Automated techniques can have different applications, from quality assessment to full

diagnosis, which can provide more accurate results in a fraction of the time it takes a trained

doctor to interpret an echocardiogram. Automated echocardiography interpretation can also help

to reduce costs associated with diagnosis, as it reduces the need for a trained professional to

manually interpret the test results. Furthermore, it can also be used to identify patterns in the data

that could not be detected through manual interpretation, as well as to improve patient care by

providing more accurate information which can be used to assist on the best possible treatment

decisions.

Quality assessment is crucial to ensure the conditions for an accurate automated interpretation

diagnosis. Artificial intelligence still presents major drawbacks associated to computer vision in

low quality or off standard imaging, as is common for echocardiographic images. Additionally,

a better image quality also facilitates the interpretation of a trained professional and can help re-

ducing the time it takes for a full diagnosis. These advantages can be highly expanded through

automated image quality enhancement, as quality improvement will inevitably lead to more pre-

cise conclusions and faster results.



Chapter 3

Image Generation and Enhancement in
Echocardiography

3.1 State of the Art in Image Generation

The rapid adoption of artificial intelligence (AI) technology in various fields has greatly impacted

the development of precision medicine, particularly with the growth of medical data and advance-

ments in deep learning technology. One of the most prominent areas of AI application in medicine

is in medical image generation.[3] Artificial image generation has been extensively studied and

documented due to its many potential applications such as image synthesis, reconstruction, seg-

mentation, noise reduction, and classification [37].

In this section, a comprehensive understanding of the current state of AI image generation

will be provided, including the most recent technologies and tools used, as well as their applica-

tions. The chapter will delve into the latest developments in AI image generation, including the

use of Generative Adversarial Networks (GANs), which have shown promising results in gener-

ating high-quality images. The limitations of current AI image generation techniques will also be

explored, along with the challenges faced by researchers and practitioners in this field.

3.1.1 Generative Adversarial Networks Fundamentals

Generative Adversarial Networks (GANs) are a technique in machine learning which allows for

both semi-supervised and unsupervised learning by modeling high-dimensional data distributions.

A GAN consists of two networks: a generator network, G, and a discriminator network, D, as

shown in figure 3.1. The generator network creates synthetic images with the goal of making

them appear realistic, learning from its interaction with the discriminator network, while the latter

receives both the synthetic images and real images and is trained to differentiate between them,

classifying the images as real or fake. [3]

9



Image Generation and Enhancement in Echocardiography 10

Figure 3.1: Representation of a GAN architecture [11]

The generator and discriminator are trained in parallel and in opposition to one another,

through a process known as adversarial training, which consists on updating the weights of both

networks based on their respective performance. The generator is trained to reduce the accuracy

of the discriminator, while the discriminator is trained to minimize its error in classifying real

from fake data, hence if the generator distribution is able to match the real data distribution, the

discriminator network will be maximally confused. The end result is that both networks improve

over time, and the generator is able to generate increasingly realistic synthetic data.

GANs have a number of key applications, including image synthesis, image-to-image trans-

lation, and style transfer. For instance, GANs can be trained on a dataset of real images in order

to produce synthetic images which resemble the real images, although with some variation. This

has applications in various fields such as medical sciences, where synthetic images can be used to

generate training data for other machine learning algorithms.

However, a challenging aspect of GANs is that they can be difficult to train, due to the compet-

ing objectives of the generator and discriminator. This can result in a phenomenon known as mode

collapse, where the generator fails to generate a diverse range of synthetic data. There are several

strategies for overcoming this challenge, including the use of a variety of GAN architectures, and

the use of techniques such as progressive growing and self-attention.

3.1.2 Image to Image GANs

3.1.2.1 Pix2pix

The pix2pix model is based on conditional adversarial networks and, as an image-to-image GAN,

it is designed to translate an input image into an output image. This is a common task in com-

puter graphics, image processing, and computer vision. [3] The model is trained by learning the
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mapping between the input image and the output image and constructing a loss function to opti-

mize the mapping. More specifically, it uses a U-Net [30] generator network and a Convolutional

PatchGAN discriminator network to translate an input image into an output image. After that, the

model is trained by optimizing the CGAN loss function with an additional L1 distance term to

gauge how close the produced and real images are. This produces a generated image with less

blurring. In order to prevent vanishing gradients [15], the generator network is trained to maxi-

mize log(D(x,G(x,z))), while the hyper-parameter regulates the weight of the L1 distance term.

The Pix2Pix algorithm’s requirement for paired photos, which can be challenging or expensive to

get, is one of its primary flaws.

Figure 3.2: Representation of a pix2pix architecture [18]

3.1.2.2 CycleGAN

Alternatively to the pix2pix model, CycleGAN is an unsupervised generative model which does

not require paired images. As long as there is enough variety in the source and target data, it can

be applied to images that are not associated. Two cycles make up the model, which is divided into

four networks. As illustrated in figure 3.3, two of these networks are generator networks (G1 and

G2), and the other two are discriminator networks (D1 and D2) [38].

Figure 3.3: Representation of a CycleGAN architecture [18]

The generators and discriminators are trained in an adversarial manner, where the generators

aim to produce images which are indistinguishable from real images, while the discriminators aim
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to distinguish between real and generated images. During training, the generators and discrimi-

nators are updated alternately, with both being updated in order to improve their abilities to fulfill

each objective.

One key feature of the CycleGAN is the use of cycle consistency loss, which ensures that

the translated images are consistent with their original inputs. This is achieved by comparing

the original image with the translated image and then translating it back to its original domain

using the remaining generator. The cycle consistency loss ensures that the original image and

the translated-back image are similar, which encourages the generators to produce semantically

meaningful translations.

3.2 Evaluation Methods

Due to the lack of a single metric which may capture the various features of image quality, such

as realism, diversity, and stability, evaluating GANs is frequently a difficult endeavor. The quality

and similarity of created images to genuine images is not measured by the objective function of the

generator and discriminator networks, which simply compares how well these networks perform

against one another. Therefore, in order to address this issue, a combination of both qualitative

and quantitative evaluation measures is needed. In this section, various methods used to evaluate

the performance of GANs will be discussed.

3.2.1 Qualitative Measures

Perceptual studies represent one of the most common methods for evaluating the legitimacy of

generated samples in GANs, although prone to subjectivity. In this method, human evaluators are

presented with real and generated samples and requested to rate them as real or fake, quantifying

the model’s quality. Human evaluation is the most comprehensive evaluation method as it takes

into account all aspects of image quality, including realism, diversity, and stability. However,

it is also the most time-consuming and expensive evaluation method, besides being exposed to

subjective factors such as the setup, chosen samples or the annotators themselves.

The Visual Turing Test (VTT) is another example of a qualitative evaluation method applied to

GANs in order to assess the quality of generated images [12]. This method is based on the concept

of the Turing Test, which consists on the measure of a machine’s ability to exhibit intelligent

behavior equivalent to, or indistinguishable from, that of a human.

In the case of the VTT, a human evaluator is presented with a set of images, some of which

are real and others generated by the GAN. The evaluator is then asked a series of binary questions

regarding the set of images, providing a qualitative evaluation of the quality of the generated

images and the system’s ability to recognize objects and attributes, as well as relationships between

them. One advantage of the VTT is that it provides a more faithful evaluation of the generated

images, which is of high importance in certain applications where the quality of the generated

images is critical, such as in medical imaging. On the other hand, the VTT is inherently subjective

and may be affected by individual biases and limitations in human perception.
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3.2.2 Quantitative Measures

The most common way to evaluate GANs in a quantitative way aims to compare the generated

outputs to real-world data. This method involves computing metrics such as the Inception Score

(IS) or the Fréchet Inception Distance (FID), which measure the quality and similarity of the

generated images to real images.

The IS aims to measure the quality and diversity of generated images by combining two fac-

tors: the marginal likelihood of generated images and the entropy of the predicted class probabil-

ities. The goal of this metric is to measure the performance of a generative model by evaluating

the generated samples in terms of their perceived quality and diversity. A high Inception Score in-

dicates that the generated images are both high-quality and diverse, whereas a low score suggests

that the images are either low-quality or have low diversity.

In order to calculate the Inception Score, the generated images are first passed through an In-

ception Network, a pre-trained convolutional neural network (CNN) for image classification [31].

The Inception Network produces a predicted class probability for each image, and the Inception

Score is calculated as the exponential of the average entropy of these predicted class probabilities

across all generated images.

IS = exp(Ex∼pgDKL(p(y|x)∥p(y))) (3.1)

In the equation 3.1, x consists of a generated image, p(y|x) represents the conditional proba-

bility of the class label y given the image x, and p(y) is the marginal probability of the class label y.

The KL divergence between p(y|x) and p(y) measures the difference between the class distributions

in the generated dataset and the real dataset.

As previously mentioned, the FID is another widely used evaluation metric for generative

models, particularly GANs. Similarly to the Inception Score, it aims to measure the quality and

diversity of generated images, however it does so in a more direct and detailed manner.

The FID measures the distance between the feature representations of real and generated im-

ages in a feature space defined by a pre-trained convolutional neural network (CNN), such as the

Inception Network [13]. The feature representations are calculated as the activations of a particular

layer of the CNN, and they capture the high-level semantic information regarding the images.

The distance between the real and generated feature representations is calculated using the

Fréchet distance, which measures the similarity between two multivariate probability distributions,

as represented in the equation 3.2. Regarding FID, the distributions consist on the distributions of

feature activations for the real and generated images.

A low FID score indicates that the generated images are similar in terms of their semantic

content to the real images, whereas a high score indicates a large difference between the real and

generated images.

FID(G,R) = ∥µg −µr∥2 +Tr(Cg +Cr −2(CgCr)
1
2 ) (3.2)
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In the FID equation, G and R denote the generated images and real images, respectively, µg

and µr are the mean activations of the Inception network for the generated and real images, and

Cg and Cr consist of the covariance matrices of the activations.

The FID therefore provides a detailed evaluation of the quality and diversity of generated

images by comparing the semantic content of real and generated images in a feature space defined

by a pre-trained CNN. It is considered to be a more reliable and direct metric compared to the

Inception Score, but it is also more computationally expensive to compute.

In cases where real-world data is not available or not appropriate for evaluation, non-data-

based methods can be used. For instance, the Frechet Distance (FD) measures the similarity

between two distributions, without requiring real-world data. The Wasserstein Distance (WD) and

the Earth Mover’s Distance (EMD) are other methods which evaluate the quality of the generated

images by comparing them to a noise distribution or to a target distribution, respectively.

3.3 Applications in Echo Image Enhancement

Automatic image quality enhancement algorithms applied to medical fields have been previously

and continuously explored. In the present chapter, previous works on this field will be introduced

and discussed on their results and relevance to this dissertation.

3.3.1 State of the art

Automatic image quality enhancement using AI in the medical field can be particularly helpful

and time saving when performing an examination and diagnosis. This topic has been previously

explored, namely in the echocardiography area as shown in table 3.1.

For instance, Maria Escobar et al. [9] sought to develop "UltraGAN", a method for ultrasound

enhancement which is able to transfer quality details while also preserving structural information

of the heart and therefore maintaining anatomical consistency. This project started by using the

CAMUS dataset [23] where each echocardiogram was labeled into three categories: high, medium

or low quality. The development started out by reducing this into only 2 categories, considering all

medium quality images as low quality, using 80% of the images for training and 20% for testing.

A training on a simple U-Net model for LV segmentation was performed, using cross validation

on the dataset images. Afterwards, an UltraGAN was used in order to improve the quality of the

training images for data augmentation, and the U-Net was trained again by merging the two sets

of images.

The architecture of the UltraGAN consists of two main components: a generator network and

a discriminator network, as shown in figure 3.4.
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Authors Year Model used Dataset Inclusion
of temporal
information

Results

M. Escobar et
al.

2020 UltraGAN CAMUS No Average Dice Score
of 89.6%

Jafari, M. et
al.

2020 Fully convo-
lutional deep
translation
model

1089 echo
studies from
841 patients

No Improvement of 30%
in the LV segmenta-
tion Dice score and
34mm in Hausdorff
distance metrics

Jafari, M. et
al.

2019 ACCGAN 854 annotated
AP4 frames

No Worst-case Dice
score improved 15%
over the baseline

Liao et al. 2019 QT-StarGAN 16,612 echo
cine series
from 3,157
patients

Yes Improved classi-
fication accuracy
above 60% user-
defined quality level
for DenseNet and
DenseNet+LSTM,
and at 80% for
VGG-16

Diller et al. 2019 Custom Au-
toencoder
Network

267 subjects
with routine
transthoracic
examinations

No p < 0.005

Table 3.1: Comparative analysis between the papers presented

Figure 3.4: UtraGAN architecture [9]

The generator network is designed to enhance low-quality ultrasound images and is based on

a U-Net architecture. The U-Net architecture consists of an encoder part which down-samples

the input image, followed by a decoder part that up-samples the down-sampled feature maps to

produce the final output image. Skip connections are used to concatenate the feature maps from

the corresponding encoder and decoder parts, allowing the network to capture both low- and high-

level information from the input image.

The discriminator network, on the other hand, is designed to distinguish between real high-

quality ultrasound images and fake images generated by the generator network. It is based on
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a patch-based discriminator, where the input image is divided into multiple overlapping patches,

and each patch is fed into a separate branch of the network. The outputs from all branches are

concatenated and passed through a fully connected layer in order to produce the final classifica-

tion. To ensure that the generated results are anatomically accurate, the discriminator takes two

inputs - the ultrasound image (whether it is real or generated) and the segmentation of the relevant

corresponding structures.

During training, the generator and discriminator networks are optimized using the adversarial

loss, which consists of a combination of the binary cross-entropy loss and a gradient penalty term.

The binary cross-entropy loss measures the difference between the predicted and ground-truth

labels for real and fake images, while the gradient penalty term helps to ensure that the generated

images have a similar distribution to the real images.

Results show that increasing the training data improved the segmentation results in practically

all images, suggesting that it correctly preserves the anatomical structure of the images, which

is crucial in the context of health diagnosis. The UltraGAN is therefore able to learn a mapping

from low-quality to high-quality ultrasound images and produce enhanced images which are more

visually appealing and useful for medical diagnosis.

Figure 3.5: Qualitative results obtained by UltraGAN compared to CycleGAN [9]

Furthermore, Jafari, M. et al. [17] also proposed the use of GANs in order to perform echocar-

diographic image enhancement. More specifically, an anatomically restricted CycleGAN (ACC-

GAN) was proposed in order to improve the quality of echocardiography in the A4C view (4-

chamber), for LV segmentation purposes.

The ACCGAN (Anatomically Constrained CycleGAN) architecture is a variant of the Cycle-

GAN which takes into account the anatomical structure of the echocardiography images during
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training. As a GAN, it consists mainly of a generator network and a discriminator network, as

represented in figure 3.6.

Figure 3.6: Representation of the ACCGAN architecture [17]

A dataset of 854 images with annotations regarding their quality was used and the results

showed that the proposed method improved the robustness of the LV segmentation, with the worst-

case Dice similarity score increasing by 15% over the baseline. Visual results, which can be

analysed in figure 3.7, demonstrated that the ACCGAN network learned to distinguish between

high-quality and low-quality echocardiography images and improved the visibility and anatomy

of LV in the high-quality images. Additionally, the proposed method is faster and results in a more

accurate LV segmentation comparatively to CycleGAN.

Figure 3.7: Qualitative results obtained by ACCGAN in automatic segmentation algorithms com-
pared to CycleGAN [17]

Furthermore, the same group [16] later attempted to improve the quality of POCUS images

to match that of high-end cart-based US systems through a fully convolutional deep translation



Image Generation and Enhancement in Echocardiography 18

model. The model was trained using a constrained cycle-consistent GAN and the proposed system

resulted in improved accuracy of LV segmentation from an apical cardiac view.

Analogously, Liao et al. [24] proposed a quality transfer network for echocardiography im-

ages, called QT-StarGAN, which uses the StarGAN approach to translate images to a desired

quality level. Unlike the previous papers, QT-StarGAN incorporates temporal information during

training.

Figure 3.8: Representation of the QT-StarGAN architecture [24]

In the original StarGAN network, the generator is in the form of an auto-encoder with a series

of down-sampling convolution layers (contraction path), a series of residual layers (feature tuning

path), and a series of up-sampling deconvolution layers (expansion path). The discriminator is a

multi-layer convolutional network. In order to improve the performance of StarGAN, the authors

made three main modifications to the architecture. Firstly, the deconvolution layers were replaced

with bilinear up-sampling layers, so as to reduce visually noticeable artifacts. Additionally, skip

connections between the contraction and expansion paths were added in order to allow for the

utilization of high-frequency information in image generation. Lastly, the temporal window of

the discriminator was extended to three frames, in order to allow for the utilization of temporal

information in optimization. These modifications are illustrated in figure 3.8 and examples of

their effects are shown in 3.9.

The approach was evaluated with 16,612 echo images from 3,157 patients, showing improved

accuracy in a standard echo view classification task using QT-StarGAN.
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Figure 3.9: Qualitative results obtained by QT-StarGAN [24]

Additionally, Diller et al. [6] aimed to explore the effectiveness of autoencoders, a type of deep

neural network, in eliminating noise and removing acoustic shadowing artifacts in Transthoracic

Echocardiography Apical 4-Chamber (TTE A4C) views, particularly in patients with Congenital

Heart Disease (CHD).

The autoencoder consisted of an encoder, a hidden coding layer, and a decoder that recon-

structed the original image from a modified version of the image with added noise, as represented

in figure 3.10. The performance of the autoencoder was measured by binary cross-entropy and

sum of squared differences, and visually assessed by two experienced investigators. The autoen-

coder was trained using an adadelta optimization, binary cross-entropy as the loss function, and a

batch size of 16 over 200-400 epochs.

Figure 3.10: General architecture of an autoencoder [6]
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The deep learning algorithms specifically designed for CHD samples were compared to those

trained only on structurally normal heart samples. Results showed that the proposed network sig-

nificantly improved the image quality in all diagnostic subgroups (p < 0.005) and that the models

trained on CHD samples performed better when applied to CHD patient examples.

3.3.2 Datasets

The CAMUS [23] dataset, integrated in the CAMUS project, is the largest publicly-available and

fully-annotated dataset for 2D echocardiographic assessment. This dataset contains clinical exams

from 500 patients, collected at the University Hospital of St Etienne (France) in accordance with

the local ethical committee regulations. The exams were designed to measure left ventricle ejec-

tion fraction and no pre-selection or data selection was done in order to ensure a realistic clinical

representation. The dataset covers a wide range of acquisition settings and for some patients, parts

of the wall were not visible on the images, which might be useful when detecting poorer quality

images. For certain cases, the recommended four-chamber view could not be obtained, so a five-

chamber view was used instead. This results in a highly heterogeneous dataset, typical of daily

clinical practice, including both image quality and pathological cases.

The dataset incorporates a training set of 450 patients with corresponding manual references

based on the analysis of a clinical expert, plus a testing set of 50 other patients, where the raw

input images are provided in the raw/mhd file format. The quality annotations are divided into

three categories, these being "Poor", "Medium" or "Good".

Figure 3.11: Images from the CAMUS dataset, from "poor" to "good" quality, the first row repre-
senting the two chamber view and the bottom row the four chamber view of the same patient [23]



Chapter 4

CycleGAN-based Echocardiography
Image Quality Enhancement

As previously highlighted, echocardiography is a diagnostic tool of extreme importance, being vi-

tal in the field of cardiovascular medicine. It provides real-time imaging of the heart’s structure and

functioning, however, the image quality remains a major drawback in its development. Echocar-

diography images are often compromised by various aspects such as artifacts, low contrast-to-

noise ratio and suboptimal image acquisition techniques, resulting in general lower quality. These

limitations can lead to inaccurate diagnosis, resulting in potential errors in patient treatment and

care.

This chapter aims to present the implementation of an approach for echocardiography image

quality enhancement using a CycleGAN-based framework. The presented method represents a

powerful tool in this context due to the CycleGAN structure and functionality. As an approach

to deep convolutional neural networks effective for image-to-image translation tasks, cycleGAN

offers a significant potential for enhancing lower quality echocardiography images while receiving

non paired training data.

The following sections will provide a comprehensive understanding of the experimental setup,

including details regarding the dataset used, the architecture of the CycleGAN model, and the

training procedure employed, as well as the optimization techniques applied. The rationale behind

these choices will be discussed and the evaluation metrics used to assess the performance of the

model will be further presented, as well as the obtained results.

4.1 Methodology

4.1.1 Dataset Overview

The dataset used consists of the CAMUS [23] dataset, which contains echocardiographic images

and the respective segmentations of the left ventricle, left ventricular myocardium and left atrium

of 500 patients, each with annotations as to their quality, established by cardiologists. These

images have been divided into training and testing sets, containing the echos of 450 and 50 patients

21
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respectively, each patient having two image sequences associated - a two chamber view and a four

chamber view. Since each view is composed by a sequence of around 18 images, it results in a

total of 17,274 training images and 1,968 for testing.

Regarding the final data partitioning, four distinct subsets were used. Both the training and

testing data were divided into high quality images and a gathering of lower quality images. The

partition also took into consideration the distribution of the patients across the training and testing

sets, avoiding the presence of the same patient in both sets. The number of data contained in each

set is presented in the table 4.1.

Training Testing Total
High Quality 8,949 950 9,899

Medium Quality 6,367 731 7,098
Low Quality 1,956 287 2,243

Total 17,272 1,968 19,240
Table 4.1: Dataset Distribution

4.1.2 Model Architecture

This section provides a thorough overview of the model’s architecture, as well as its application

to the image-to-image translation task. The model’s configuration and training details, along with

the modifications and enhancements made to the original design to increase its efficiency will be

discussed.

Preprocessing of Input Images

The original dataset images were preprocessed in order to better fit the model’s requirements and

achieve better results. Due to the specificity of the data, the images were firstly resized to a

squared shape in order to later be introduced into the model. The pictures were resized without

getting deformed by cutting either the left and right sides or the bottom part, since it prevented the

relevant data from being lost. This process aimed to preserve an isotropic pixel size and took into

consideration the relatively low information present in the bottom and sides of echocardiograms.

Given the computational limitations, during training, all images were resized to a fixed resolution

of 256 x 256 pixels, in order to establish a balance between data preservation and computational

efficiency. These dimensions additionally allowed for all the data to be uniform and consistent

throughout the entirety of the training process.

Model Specifications

CycleGAN consists of a deep learning architecture designed for unsupervised image-to-image

translation tasks. Without paired training data, it uses the capacity of generative adversarial net-

works (GANs) to establish the mapping between two separate picture domains. CycleGAN, in
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contrast to conventional GANs, does not need one-to-one association between pictures, therefore

making it fit for situations where acquiring paired data is difficult or impracticable. Due to the

lack of paired data regarding the quality of echocardiography images, CycleGAN is a suitable

application with significant potential in this context. Therefore, the main goal of its application in

echocardiography image quality enhancement is the improvement of visual understanding, noise

reduction and overall improvement of diagnostic quality. This can be achieved due to the resulting

mapping between the lower quality images and their corresponding high quality equivalents. From

this mapping, the trained model can be used to generate the high quality counterparts and thereby

assisting in a more accurate diagnosis.

The model’s training process consists of two main steps, these being the adversarial train-

ing and the cycle-consistency training. During the adversarial training phase, the generator and

discriminator networks are set against one another in a competitive environment. While the dis-

criminator’s goal is to differentiate between generated and original images, the generator seeks to

improve low quality echocardiography images into higher quality ones. Both networks constantly

enhance their performance through backpropagation and gradient descent.

CycleGAN also employs cycle consistency as pictured in figure 4.1 to guarantee that the

generated images are consistent with the input domain. As a result, an echocardiogram should

not change when enhanced from low to high-quality domain and back again. This restriction is

enforced during training by the cycle-consistency loss, which enables the model to reliably learn

the mapping functions. This constraint is particularly important in the current context due to the

specificity and sensitivity of the data.

Figure 4.1: CycleGAN consistency loss diagram [4]

Moreover, the generator and discriminator losses have been calculated by recurring to Mean

Squared Error Loss (MSE), a commonly used loss function in deep learning tasks which calculates

the mean squared difference between the predicted output and the target output.

The generator loss, in this context, is calculated through the MSE loss function. In order to

do so, the generated image is fed into the discriminator network, which produces a prediction

based on this generated image. This prediction is then compared to the expected output for real

images. Therefore, the generator loss is calculated by quantifying the discrepancy between the

discriminator’s assessment of the generated image and the expected output for real images.
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The overall generator loss is determined by taking the average of the losses obtained from

evaluating the generated images in both directions of the GAN (from the low quality domain to

high quality domain and vice versa). This average represents the generator’s ability to generate

realistic images that can deceive the discriminator.

Similarly, for fake images produced by the generator, the discriminator’s prediction is com-

pared to the expected "fake" label while also using the MSE loss function, which aims to quantify

the difference between the discriminator’s evaluation and the desired classification. Its loss is

computed by combining the losses obtained from real and fake images. The main objective is to

minimize this loss, enabling the discriminator to accurately classify real and fake images.

Conversely, the generator aims to maximize the discriminator loss. By doing so, the gener-

ator strives to generate fake images which are classified as real by the discriminator, ultimately

improving its ability to produce more convincing and realistic images.

Through this adversarial process, the generator and discriminator update their parameters in

an iterative way, each trying to outperform the other. This adversarial interplay drives the GAN

towards generating reliable high quality images.

4.2 Experiments

This chapter aims to delve into the results obtained by the developed model and to provide a me-

thodical assessment of its performance in various aspects. Through a meticulous examination of

the results, added to the architectural details previously mentioned, this analysis intents to offer

insights into the performance and constraints of CycleGAN for echocardiographic image transla-

tion tasks. Two main configuration factors will be distinguished, these being the influence of both

the training data and the application of a learning rate scheduler.

The experimental process consisted on the CycleGAN training, followed by the application

of the model in image generation. The image generation step consisted on the generation of high

quality images from the lower quality images on the testing set by applying the resulting models

from the various epochs. For each training and for each epoch, all lower quality testing images

were converted to high quality ones using the corresponding model. The generated data then

served as input to calculate the FID score, a widely adopted metric used in quality assessment of

images generated by a specific model.

4.2.1 Influence of training data

In this section, the influence of the training data will be studied along with its impact in the model’s

development and evaluation results. Two different training options will be presented, based on the

variation of the usage of medium quality images during training.
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Model 1 - Low and High Quality Based Training

As previously stated, each image sequence from the dataset is labeled according its quality, this

being low, medium or high. Initially, only high and low quality images were considered, in order

for the distinction to be clearer for the algorithm. This option significantly diminished the amount

of data available, since medium quality images were not considered neither for training nor for

image generation purposes. This option resulted in a reduction from 17,272 training images and

1,968 testing images to a total of 10,905 and 1,237, respectively.

Therefore, in the initial experiments, only low quality images were converted by the model to

high quality ones, which resulted in 287 generated images per epoch.

In order to establish the baseline, the FID score was firstly calculated with the original images,

comparing the high quality testing images to the low quality ones, without any modifications,

representing the control group. This step allowed for a more accurate comparison between the

generated images and the ground truth and its dissimilarities.

Subsequently, the FID score was calculated for each set of generated images. Through the

comparison between the FID scores of the generated images and the control value, it was possible

to objectively measure the performance of the different models in enhancing the original images.

This procedure allowed for a meticulous assessment of the model’s image enhancement capabili-

ties and provided valuable insights into the extent to which it was able to maintain the quality and

integrity of the data.

Afterwards, the model was tested on the full testing set, this including both medium and low

quality images, increasing its size to 1018 generated images. Therefore, despite having been

trained using only low quality images, its improvement capacity of medium quality images was

tested. Similarly to the previous experiment, the FID baseline was calculated comparing low and

medium quality images to high quiality ones.

Model 2 - Low, Medium and High Quality Based Training

Due to the reduced training size of the previous experiment, as an alternative experimental setting

and similarly to Maria Escobar et al. [9], low and medium quality images were grouped into a

single low quality category. This decision took into account the cycleGAN structure regarding

the usage of two different sets of data for model training, added to the intention of leveraging the

entirety of the dataset. Thus, a larger sample of data was used, containing both low and medium

quality images from the training set, which allowed for a usage of the totality of the dataset.

Similarly to the first experiment, this model underwent both FID evaluation scenarios of gen-

erated images from the testing set. Firstly, only low quality images were enhanced and its FID

calculated, followed by the enhancement of the gathering of both low and medium quality images

and their respective FID scores. This method allowed for a more precise comparison between both

models in order to assess the impact of the training data in model performance.
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4.2.2 Influence of learning rate scheduler

The CycleGAN model architecture comprises two fundamental components, the generator and

discriminator networks. Within the context of the current problem, the generator network aims to

generate both high quality images from low quality inputs and the reverse transformation, whereas

the discriminator is responsible for distinguishing between real and generated images. In order to

ensure continuous improvement of the model, it is crucial to establish a balance in the competitive

dynamics between the generator and discriminator networks. This balance drives their progressive

enhancement as they mutually challenge each other to refine their respective performances. The

learning rate of each network consists on a hyper-parameter which tunes the learning evolution of

the network, and therefore is crucial to maintaining this balance. The tuning of the learning rate

scheduler is widely used as a tool to balance the training of the model. As a result, the influence of

the application of a learning rate scheduler with different values has been studied and thoroughly

analysed in the following section.

Model Variations

In the initial trainings, the same base learning rate of 0.0001 was used for both networks, as an

experimental approach. This experimental setup allowed for an exploration on how the discrimi-

nator and generator interacted under the same learning rate setting. Notably, such approach has the

potential to yield valuable insights into the learning dynamics and the potential imbalance between

the two networks.

In order to further explore the learning rate dynamic and its impact on each network throughout

training, a learning rate scheduler was incorporated to tune each network’s evolution individually

and therefore optimize the training process. The learning rate scheduler was adapted to each

network’s characteristics and dynamically manipulated the learning rates, allowing the model to

converge more efficiently. The determination of its values was determined empirically through

rigorous experimentation, enabling the identification of ideal settings for an optimized training

performance.

Since the learning rate diminished throughout the training process, the base learning rate was

firstly increased from 0.0001 and set to 0.0002 for both networks. Each network’s learning rate

then varied according to fixed factors after a specified number of epochs, which was set to 5. This

means that, from the decaying epoch number 5, each network’s learning rate decreased constantly

after each 5 epochs. This approach was expected to allow for more stable and accurate updates to

the model’s weights, and consequently improving the loss graphs and FID scores.

Therefore, four different model versions were made in order to empirically assess the influence

of different learning rate values during the training process and consequent model performance.

All models were trained grouping both low and medium quality into one, similarly to Model 2.

Throughout all versions, the discriminator decaying factor was higher, meaning that its learning

rate decreased faster than the generator’s. The decaying factors for each network of each model
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are of the following type: N
( epoch

decay_epoch)
1 ×N

⌊
epoch

decay_epoch

⌋
2 . The N1 and N2 values are specified for

each model’s network in table 4.2

Generator N1 Generator N2 Discriminator N1 Discriminator N2
Model 3 0.95 0.8 0.5 0.5
Model 4 0.9 0.2 0.4 0.2
Model 5 0.9 0.1 0.1 0.1
Model 6 0.9 0.4 0.5 0.4

Table 4.2: Decay factor values for each model’s network

The generator learning rate decay graph across four different model versions throughout the

20 training epochs can be observed in figure 4.2.

Figure 4.2: Generator learning rates decay across 4 different model versions

Similarly, the discriminator’s learning rate graph relative to the 4 models throughout the 20

epochs is portrayed in figure 4.3.
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Figure 4.3: Discriminator learning rates decay across 4 different model versions

The FID values were then calculated in the full testing set, meaning that both low and medium

quality images were enhanced.

4.3 Results and Discussion

This chapter aims to present and discuss the results obtained by the enumerated experimental

settings. The outcomes will be explored systematically, shedding light on the key outcomes and

patterns observed during experimentation and analysis. By examining the influence of both the

training data and the learning rate scheduler in model development, this chapter will delve into the

implications and potential limitations of the findings.

4.3.1 Influence of training data

As previously stated, each model underwent image enhancement and FID calculation steps for

two different scenarios. In the first scenario, only low quality images from the testing set were

enhanced by the models, with a baseline value of 53.013. The FID values obtained for Model 1

across all 20 epochs are illustrated in figure 4.4. Through its analysis, it is concluded that the

model achieved its best value of 43.720 in epoch 4, representing an improvement of the baseline

value. The model progressed consistently until epoch 5, from which the FID scores escalated

abruptly, remaining this way until the last epoch.

Following the previous step, Model 2 was also firstly tested on image enhancement of only low

quality images. The FID scores obtained can be observed in figure 4.4, in comparison with the

baseline FID value and Model 1’s results for the low quality testing set. The lowest value achieved

by Model 2 was 39.771 in epoch 5, representing an improvement from the results achieved by

Model 1. Similarly to that same model, the FID values shot up from epoch 6 onwards, suggesting

that the model had already reached its optimal state.
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Figure 4.4: FID score obtained by models 1 and 2 tested on low quality images from the dataset

Regarding the second testing scenario, both models underwent evaluation on the generated

enhanced images from the full testing set, containing both medium and low quality images. The

achieved results from both models can be observed in figure 4.5 along with the baseline value

of 27.440. Once again, Model 1 achieved its best result of 24.452 in epoch 4, this being the only

value going under the baseline. On the other hand, Model 2 attained its lowest value of 22.484 in

epoch 5, as expected.

Figure 4.5: FID score obtained by Model 2 tested on low and medium quality images from the
dataset

Through the analysis of the FID scores for both models in both situations, it is concluded

that Model 2 attained more favourable results compared to Model 1, as depicted in table 4.3.

While both models improved the baseline FID scores, implying that the image enhancement was

successful in both situations, Model 2 achieved the lowest FID value from both models. Moreover,

Model 2’s scores remained under the baseline value for more epochs than Model 1 and showed

more consistency in comparison, as observed in figures 4.4 and 4.5.

Furthermore, both models visually enhanced the original images, as represented in figure 4.6,

where a real low quality image from the testing set is compared to its improved versions by each

model. For this example, both images were generated using their respective models in their optimal
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Baseline Model 1 Model 2
Lowest FID Score on Low Quality Testing Set 53.013 43.720 39.771

Lowest FID score on Low and Medium Quality Testing Set 27.440 24.452 22.484
Number of Images used During Training - 10,905 17,272

Table 4.3: Models 1 and 2 comparison

state, this being epoch 4 for Model 1 and epoch 5 for Model 2. On one hand, the enhanced images

presented a notable increase in high-frequency noise, with a higher increase by Model 1, which

could lead to the potential presence of undesired artifacts. However, both demonstrated enhanced

contrast in the walls of the left ventricle, increasing the differentiation between the ventricular

wall and surrounding structures. This heightened contrast enables a clearer delineation of the left

ventricle, which can be advantageous for accurate segmentation and analysis tasks. Therefore,

generated images from both models showed improved clarity and sharpness overall in comparison

to the original low quality images, increasing quality and therefore underlining the potential and

efficiency of the presented methodology.

Figure 4.6: Visual comparison of a sample low quality original image and its enhancement by
models 1 and 2 in their optimal state, respectively from left to right

Regarding the evolution of both models throughout the different epochs, in both situations,

there was a consistent and favourable evolution until the optimal solutions in epochs 4 and 5, from

which the values shot up, which could be explained by the discrepancy in loss values between

the generator and discriminator, depicted in figure 4.7. A low discriminator loss indicates that

the discriminator has become highly accurate in distinguishing between real and fake images,

which, in turn, is detrimental to the generator’s ability to further learn and improve, resulting in an

imbalance during the training process.
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Figure 4.7: Model 2’s generator and discriminator losses throughout training

The outcomes presented achieved positive results in comparison to the original images, high-

lighting the potential of CycleGAN in echocardiography image quality enhancement. The impact

of the size and characteristics of the training set was studied and concluded that the usage of

medium quality images during training was essential for model improvement. This enhances not

only the model’s adaptability to new data but also increases its overall precision and efficiency.

However, as previously stated, beyond epoch 5 until epoch 20, the values increase and be-

come inconsistent, leading to a deterioration in the model and consequent quality of the generated

images. Therefore, by incorporating techniques such as learning rate tuning, the model can be

further improved, ensuring sustained enhancements to the quality and fidelity of the generated

images throughout the training. This will allow the model to consistently and continuously con-

verge towards the desired outcome, thereby maximizing the model’s potential and attaining better

results.

4.3.2 Influence of learning rate scheduler

Upon training and applying the obtained models in image generation, the FID scores across the 4

models were calculated and their evolution is depicted in figure 4.8, in comparison to the baseline.

The minimum values obtained by each model are further specified in table 4.4, along with the

corresponding epoch in which the value was attained.



CycleGAN-based Echocardiography Image Quality Enhancement 32

Figure 4.8: FID scores obtained by models 3 to 6 across all 20 epochs compared to the baseline

Through the analysis of the FID values across the 4 models, it can be concluded that Model

3, which presented a lower decay rate in both the generator and discriminator, obtained higher

and more inconsistent values, suggesting that the model was not converging as expected. Simi-

larly, model 6, which also evolved with a relatively low decay rate, attained slightly better results,

however still inconsistent and higher than the baseline in most of its epochs. This improvement

suggested that a higher decay rate could improve the FID score, which was then observed in Mod-

els 4 and 5.

Both models 4 and 5 succeeded in attaining convergence and remaining below the baseline

value. Model 4 achieved better results of all 4 models, with a minimum score of 21.539 in contrast

with its corresponding baseline of 27.440. This value was obtained in its 20th epoch, indicating

that the model was continuously progressing and converging towards lower values and therefore

attaining its objective.

FID Epoch
Model 3 26.660 4
Model 4 21.539 20
Model 5 22.332 15
Model 6 22.602 5

Table 4.4: Minimum FID scores attained by each model and respective epochs

The visual enhancement of the original images by Model 4 is further illustrated in figure 4.9.

As previously discussed, the generated images present a higher noise ratio, which could be a

potential negative aspect. Nevertheless, the images acquired higher contrast which allows for a

better delineation of the heart structure and chamber delimitation. This improvement is valuable

to achieve more accurate results in segmentation and diagnosis.
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Figure 4.9: Comparison between the original images, on the left, and their respective enhanced
versions by Model 4, on the right

The results obtained indicated that the incorporation and tuning of a learning rate scheduler

was crucial in improving the model’s overall convergence and performance. During the experi-

mental process, the model achieved significant improvements regarding its FID score throughout

the different epochs, indicating the successful enhancement of the generated images. The FID

score reduction demonstrates that the model effectively learned the underlying features and struc-

tures of the input data, highlighting the increased proximity of lower quality images to higher

quality ones.

The improved performance of the model can be attributed to the learning rate scheduler’s

capacity of dynamically adjusting the learning rate of each network independently throughout the

training phase. By gradually reducing the learning rate throughout the epochs, the model could

effectively achieve optimization whilst avoiding overshooting or becoming trapped in suboptimal

solutions.
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Despite attaining favorable and improved results, future research is possible by further tuning

different learning rate schedulers or exploring the combination of multiple optimization techniques

in order to improve the performance of CycleGAN for echocardiography image enhancement.

4.4 Conclusions

This chapter aims to conclude the cycleGAN development for echocardiographic image enhance-

ment. In order to improve the model’s performance, several modifications and adaptations were

explored, ranging from a rigorous organization and preprocessing of the dataset to the application

and tuning of an adequate learning rate scheduler.

The model architecture, loss functions, and hyperparameters were modified and adapted through-

out the training phase. The incorporation of medium quality images during training and therefore

increasing training data has attained positive results and shown to be crucial in model training. In

order to improve convergence and avoid becoming trapped in local optima, a learning rate sched-

uler was also applied to gradually and dynamically adjust the learning rate of each network during

training. Carefully altering the learning rate scheduler, as well as applying other modifications in

the architectural context, led to significant increases in the model’s performance.

The quantitative evaluation was conducted using the FID score. This method allowed for

a quantitative assessment of the enhanced images, using original high quality testing images as

reference. With an initial baseline score of 27.440 using the full testing set and a lowest value

achieved during experimentation of 21.539, the generated images became visually and quantita-

tively closer to real high quality images, emphasising the effectiveness of the proposed methods.

While promising results have been attained, future research and improvement is possible and

crucial for its expansion. The exploration of alternative model architectures and loss functions

could potentially achieve more positive outcomes. Furthermore, dataset changes could enhance

the model’s capabilities to work with a wider range of echocardiographic images, such as incor-

porating additional training data from a wider and more diverse dataset.

The major purpose of this section of the study was to enhance the quality of echocardiographic

images using a generative adversarial network, which led to visibly positive results, reinforcing

the potential of cycleGAN in improving medical images. The accuracy and fidelity of the en-

hanced pictures has significantly improved as a consequence of the adjustments and adaptations

performed. These outcomes lay the foundation for future investigation and development of image

enhancing tools for cardiac diagnosis. Therefore, with continued efforts and expansion of this

field, it is anticipated that automated echocardiographic image enhancement techniques will be

crucial in enhancing patient care and results in the cardiovascular health sector.



Chapter 5

Echocardiographic Quality
Enhancement in Automatic
Segmentation

Automatic segmentation algorithms employ various advanced computational techniques aiming

to automatically delineate specific structures. In automatic echocardiography segmentation, the

objective consists on accurately and precisely delineating the boundaries of cardiac structures,

contributing to an improvement on medical analysis and diagnosis.

Through the utilization of sophisticated image processing and machine learning methodolo-

gies, these algorithms analyze the pixel-level information present in the echocardiographic images.

They aim to identify and differentiate the specific anatomical regions of interest within the cardiac

structures, thereby allowing an accurate delineation and localization of these regions.

These tasks are generally performed by physicians, which can be time consuming, highlight-

ing the need for complementary or full automatic analysis tools. Despite the attempts to enhance

these automatic methods, the image quality remains a significant limitation that diminishes their

success rate. In this regard, the application of image enhancement techniques emerges as a valu-

able approach to address this challenge.

This chapter encompasses the application of the models derived from this research to auto-

matic segmentation algorithms, aiming to enhance the quality of the segmentation task. Its focus

will be the integration of enhanced echocardiography sequences, improved using the model devel-

oped in section 3, into the EchoNet-Dynamic [29] framework, a video-based automatic segmen-

tation algorithm, aiming to evaluate the impact of enhanced data on the accuracy of left ventricle

segmentation.

The methodology and integration process will be thoroughly analysed along its results, which

will be compared to the performance of automatic segmentation in the original sequences. This

analysis aims to assess the impact of image quality enhancement in improving the accuracy and

reliability of cardiac function assessment using automatic segmentation such as EchoNet-Dynamic

framework.

35
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5.1 Methodology

The present section aims to delve into the methodology employed along with its limitations.

The resources and experimental settings will be extensively explored, providing a comprehen-

sive overview of the methodology adopted, highlighting its strengths, limitations, and the context

in which the study was conducted.

5.1.1 Automatic LV Segmentation

The field of cardiac function assessment has traditionally relied on human experts, whose as-

sessments are limited in scope and subject to inter-observer variability. In order to address these

limitations, several studies have been conducted, from which EchoNet-Dynamic [29], a video-

based deep learning algorithm, can be highlighted as an effective approach example. The author’s

contribution therefore lies in validating and exploring the integration of enhanced images within

the existing EchoNet-Dynamic framework.

Developed by Ouyang et. al, EchoNet-Dynamic aims to automate critical tasks such as left

ventricle segmentation, ejection fraction estimation and cardiomyopathy assessment. EchoNet-

Dynamic achieved high accuracy in left ventricle segmentation with a Dice similarity coefficient

of 0.92. Moreover, it attained a mean absolute error of 4.1% regarding ejection fraction prediction

while also reliably classifying heart failure with reduced ejection fraction, reaching an area under

the curve of 0.97. The algorithm’s performance remains effective when applied to an external

dataset, with a mean absolute error of 6.0% in ejection fraction prediction and an area under the

curve of 0.96 in classifying heart failure with reduced ejection fraction.

Dataset Analysis and Specifications

The dataset used in the development of EchoNet-Dynamic [29] comprises 10,030 echocardiogra-

phy videos obtained from 10,030 unique individuals between 2016 and 2018 at Stanford Health

Care. Each video corresponds to an apical four-chamber view extracted from a full resting echocar-

diogram study, capturing the heart from different angles and using various image acquisition tech-

niques. The videos were randomly divided into training (7,465 videos), validation (1,277 videos),

and testing (1,288 videos) sets.

In order to safeguard patient privacy and remove any identifiable information, a meticulous

data curation process was implemented. Therefore, an automated preprocessing workflow was

employed, performing tasks such as the cropping and masking of videos to eliminate elements

such as text, electrocardiogram readings, respirometer information, and data beyond the scanning

sector.

Model Architecture

EchoNet-Dynamic [29] was developed and trained using Python and the PyTorch library. The

model employed the Deeplabv3 architecture for semantic segmentation, with a base architecture
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of a 50-layer residual net. It was trained using stochastic gradient descent optimizer and minimized

pixel-level binary crossentropy loss.

In order to incorporate spatiotemporal convolutions, Ouyang et. al tested three different model

architectures: R3D, MC3, and R2+1D. Ultimately, the R2+1D architecture, which decomposes the

spatiotemporal convolutions, was selected for EchoNet-Dynamic due to its stronger performance.

The R3D architecture considered spatial and temporal dimensions jointly, while the MC3 and

R2+1D architectures found a middle ground between two-dimensional and full three-dimensional

convolutions.

For ejection fraction prediction, the authors aimed to train the models as a way to minimize the

squared loss between the predicted and true ejection fraction values. Stochastic gradient descent

optimizer with an initial learning rate of 0.0001, momentum of 0.9, and a batch size of 16 was

used for training, with the learning rate decaying by a factor of 0.1 every 15 epochs.

During training, video clips of 32 frames were generated by sampling certain frames with a

sampling period of 2. Data augmentation techniques, such as padding each training video clip and

taking random crops of the original frame size, were employed by the authors so as to increase

the dataset size while also introducing diversity. The model’s architecture is schematized in figure

5.1.

Figure 5.1: Echonet model architecture [29]

5.1.2 Evaluation Metrics

In order to numerically assess the efficiency of the enhanced images in automatic cardiac seg-

mentation, quantitative evaluation metrics such as the Dice similarity coefficient (DICE), Mean

absolute deviation (MAD) and Hausdorff Distance (HD) were applied.

The DICE coefficient aims to quantify the overlapping of two sets of binary masks, in this

context, the segmented regions obtained from the enhanced images and the real annotations, as

illustrated in figure 5.2. The DICE value ranges from 0 to 1, where a score of 0 indicates no over-

lapping between both sets, while a score of 1 represents a perfect overlap. Therefore, the higher

the score, the closer the results from the generated images align with the ground truth annotations,
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indicating a higher accuracy. Thus, this evaluation metric allows for a quantitative assessment

of the enhancement performed by the cycleGAN models while also assessing its capability of

preserving the original cardiac structure, which remains a key point given the specificity of the

data.

Figure 5.2: Dice Coefficient diagram [14]

To further assess the model’s performance variation regarding original and enhanced data, two

additional evaluation metrics were employed, these being the Hausdorff Distance (HD) and Mean

Absolute Deviation (MAD).

The HD aims to measure the dissimilarity between two sets of points, and therefore quantifying

the maximum distance between corresponding points between the generated segmentation and its

ground truth, as schematized in figure 5.3. Therefore, a lower HD score indicates a shorter

distance and consequently a better overlap with the ground truth.

Figure 5.3: HD diagram [34]

Similarly, MAD measures the average absolute difference between the corresponding points

in the generated segmentation and its ground truth. It provides a quantitative assessment of the

general accuracy of the segmentation, where a lower MAD score indicates a closer match to the

ground truth. It is calculated as follows, where n represents the number of data points, xi refers to

each individual data point, and x̄ represents the mean of the data set.

MAD =
1
n

n

∑
i=1

|xi − x̄|



5.2 Experiments 39

5.2 Experiments

The resulting data from the application of cycleGAN in echocardiography image enhancement was

integrated in the Echonet-dynamic model. It aimed to test its efficiency in automatic segmentation

tools, thus seeking further evaluation and testing its performance in a practical context.

Therefore, automatic left ventricular segmentation was tested on low and medium quality se-

quence videos from the CAMUS [23] dataset, comprising the end diastolic and end systolic frames

for each sequence, in order to understand the efficiency of the developed methods. Automatic seg-

mentation was initially applied to the unmodified sequences, followed by their counterparts en-

hanced by model 3, which had proven to be the most efficient among the developed models in the

previous section. A total of 50 low or medium quality sequences from the testing set were used.

The segmentation model, Echonet-dynamic, used pretrained weights to automatically generate the

left ventricular segmentations for each sequence frame. The annotations from the CAMUS dataset

were utilized in order to establish the groundtruth for each sequence, and therefore evaluate the

results’ accuracy.

5.3 Results and Discussion

Following the application of both original and enhanced sequences in Echonet-dynamic, an auto-

matic segmentation was predicted for each image, as illustrated in figure 5.4.
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Figure 5.4: Automatic segmentation performed by Echonet-Dynamic in original images (left) and
their respective enhanced versions (right). The red mask represents the groundtruth and the yellow
contour the predicted segmentation

The segmentation results were then quantitatively evaluated by calculating the DICE, MAD

and HD scores, in order to evaluate its efficiency and improvement.

The DICE values obtained from the generated images compared to the original data are por-

trayed in table 5.1 and its distribution is pictured in figure 5.5. The overall DICE values calculated

by the model in different stages are indicated, comprising both the end of systole and the end of

diastole. Additionally, both the highest and lowest values attained are highlighted in the table,

effectively delineating the range within which the results were observed. Through its analysis, it is

observed that the DICE score of the generated images consistently exhibited higher values across

the different categories, attaining an overall improvement of approximately 14.06% relatively to

the original images.
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Figure 5.5: DICE distribution across patient data

Original Generated
Overall Dice Value 0.7335 0.8367

Overall End of Diastole Dice Value 0.7426 0.8291
Overall End of Systole Dice Value 0.7204 0.8469

Highest Dice Value Attained 0.8417 0.9439
Lowest Dice Value Attained 0.5399 0.6998

Table 5.1: Dice similarity coefficient comparison between original and generated images

Furthermore, MAD and HD scores were also calculated for the same samples. The average

values achieved for MAD are indicated in table 5.2 and its distribution is depicted in figure 5.6.

Figure 5.6: MAD scores distribution across patient data

Similarly, the HD average values are described in table 5.3 and its respective distribution is

illustrated in figure 5.7.
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Original Generated
Average End of Systole MAD 1.486 0.846
Average End of Diastole MAD 1.652 1.121

Table 5.2: Average MAD values comparison between original and generated images

Figure 5.7: HD scores distribution across patient data

Original Generated
Average End of Systole HD 3.242 2.176
Average End of Diastole HD 3.249 2.557

Table 5.3: Average HD values comparison between original and generated images

Similarly to the DICE results, the sequences enhanced by Model 3 attained better results for

both MAD and HD metrics across both systole and diastole stages. Through the usage of quality

improved sequences, the MAD value suffered an average reduction of 43.02% regarding the end

of systole and 31.99% for the end of diastole. Similarly, the HD metric achieved a reduction of

32.82% for the end of systole and 21.29% for end of diastole. This indicates a stronger simi-

larity of the predicted segmentation to the ground truth, highlighting the ability of the model to

automatically determining the cardiac anatomy when employing enhanced images. These results

underline the potential of cycleGAN-based image enhancement techniques in the application of

automatic segmentation tools, aiding its efficiency and contributing to more accurate results.

5.4 Conclusions

This chapter aimed to explore the application of a cycleGAN-based image enhancement model

to improve the quality of echocardiography images for automatic segmentation purposes. The

original images contain inherent limitations which can affect the performance of segmentation
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algorithms, remaining a major drawback regarding their efficiency. By applying the proposed

image enhancement model, the quality of the input images was significantly improved.

The results obtained from the application of the enhanced sequences to Echonet-dynamic

demonstrated the effectiveness of the image improvement approach. The enhanced images led

to increased segmentation results, closer to the ground truth values, in comparison to the original

ones, addressing the challenge of image quality as a major obstacle in automatic segmentation

algorithms.

The outcomes of this study highlight the potential of using CycleGAN-based image enhance-

ment techniques to enhance echocardiography images and improve the performance of subsequent

segmentation algorithms. The advancements achieved positively contribute to the field of cardiac

image analysis, while the improved image quality obtained through this technique holds important

implications for the accurate and reliable assessment of cardiac function.

Despite the positive results attained, future research is crucial to the continuous development

of the field. Further improvements could be achieved by refining the image enhancement model,

exploring different architectures and investigating the impact of enhanced images on other cardiac

imaging tasks. Overall, this research and application demonstrates the promising role of image

enhancement in overcoming image quality limitations in automatic segmentation techniques and

advancing the field of echocardiography analysis.



Chapter 6

Conclusion and Future Work

6.1 Conclusions

This dissertation had as its primary objective the improvement of the quality and interpretability

of echocardiography images, which hold major importance in the diagnosis and monitoring of var-

ious cardiac conditions. In order to achieve this, a cycleGAN approach was employed. Through

extensive experimentation, variables such as different training data and learning rate schedulers,

were tested and thoroughly evaluated, as long as their impact in the model’s performance. The

findings have indicated a successful enhancement of the images, with a clear visual improvement,

showing improved clarity and sharpness overall, and an FID decrease of 21.48% compared to

the baseline. Moreover, the integration of the enhanced images into an automatic segmentation

algorithm was conducted, measuring the viability of the improved images in a practical setting.

This experiment led to positive results, improving the accuracy and efficiency in automatic cardiac

structure delineation. Overall, this research contributes substantially to the field of echocardiog-

raphy image analysis by presenting a comprehensive framework for image enhancement and its

application in automatic segmentation. The developed CycleGAN model has the capacity to in-

crease the accuracy and efficiency of cardiac analysis, thereby benefiting patients and healthcare

professionals in the diagnosis of cardiovascular pathologies.

6.2 Future Work

This research therefore represents a significant stride in addressing the challenges associated with

echocardiography image quality and automatic segmentation. However, further investigations and

improvements remain viable avenues for future exploration. Subsequent studies could delve into

additional variables, such as diverse network architectures or advanced loss functions, in order to

further enhance the performance of the CycleGAN model. A gathering of different datasets could

also play a crucial role in model training, allowing the model to broaden its adaptation abilities and

acquire a broader spectrum of information, improving its generalization capabilities. This would

allow for a more comprehensive understanding of the underlying patterns within the existing data

44
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and therefore enhancing its data handling capacity. Additionally, a further exploration and tuning

of the learning rate scheduler could potentially lead to improved results, by enhancing convergence

and achieving a better balance overall. The iterative process of experimentation and optimization

is crucial for maximizing the performance of the model and achieving better results in future

applications.
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