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Resumo

Os avanços tecnológicos aumentaram o poder computacional e as capacidades dos sistemas, permi-
tindo-lhes responder às necessidades da sociedade, contribuindo para a sustentabilidade e melhoria
da qualidade de vida. No entanto, a subsequente vaga massiva de dados desafia as soluções ex-
istentes de processamento e armazenamento de dados. A implementação de conceitos como a
Cidade Inteligente, e especificamente a sua análise da mobilidade urbana, apoiada nas Tecnolo-
gias de Informação e Comunicação (TIC), é um campo de investigação dependente de dados espa-
ciotemporais recolhidos a partir de diversas fontes, desde sensores do mundo real a resultados de
simulação, trazendo ao de cima desafios técnicos relativos às características e natureza dos dados,
nomeadamente as dimensões de tempo e espaço associadas, os grandes tamanhos de ficheiros que
as simulações podem gerar e o fluxo constante de dados resultantes do funcionamento contínuo de
sensores.

Foi realizada uma revisão da literatura para inferir sobre o estado da arte, focando em duas
facetas. Uma Revisão Sistemática da Literatura foi realizada para estudar o uso de bases de dados
no contexto das Cidades Inteligentes, evidenciando o papel essencial que desempenham na gestão
e processamento de grandes quantidades de dados oriundos de várias fontes. Para além disso,
também foi realizada uma pesquisa exploratória não exaustiva sobre métodos de redução de dados
e sua aplicação no contexto das Cidades Inteligentes, particularmente em simulações de tráfego,
revelando-se uma lacuna na literatura.

Este trabalho visa identificar e avaliar estratégias eficientes de armazenamento e processa-
mento de dados usando dados de simulação de tráfego como caso de estudo, sendo sugeridas de-
terminadas estratégias de redução de dados (remoção de dados não essenciais, redução de precisão
e codificação em delta e variações). As suas eficiências comparativas são analisadas investigando-
se se os seus benefícios superam as suas desvantagens, usando métricas específicas (por exemplo,
tamanho dos dados e tempos de resposta ao seu acesso em armazenamento), fornecendo infor-
mações sobre o seu desempenho em possíveis usos, dos quais a análise de dados por meio de
visualização é um exemplo.

Uma API simples e várias experiências foram projetadas de modo a testar as estratégias de
redução de dados implementadas, quer isoladas, quer combinadas entre si, em dois cenários difer-
entes (volumes de dados distintos). Os resultados foram apresentados e analisados, explorando-se
possíveis causas, destacando-se, a título de exemplo, o impacto positivo da redução da precisão
quando combinada com outros métodos.
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Abstract

Technology advancements have boosted computational power and system capabilities, allowing
them to respond to societal needs, contributing to sustainability and quality of life improvements.
However, the subsequent massive data surge challenges existing data processing and storage solu-
tions.

The implementation of concepts like the Smart City, and specifically its analysis of urban mo-
bility, supported by Information and Communication Technologies (ICT), is a field of research
dependent on spatiotemporal data gathered from a diversity of sources, ranging from real-world
sensors to simulation outputs, bringing to the top technical challenges concerning the character-
istics and nature of the data, namely the associated time and location dimensions, the large file
sizes that simulations can generate, and the constant influx of data resulting from the continuous
operation of sensors.

A literature review was carried out to infer about the state-of-the-art, focusing on two facets.
A Systematic Literature Review was conducted to study database usage in the Smart Cities con-
text, evidencing their essential role in managing and processing vast amounts of data generated
from various sources. Furthermore, a non-exhaustive exploratory research was also performed
on data reduction methods and their application in the Smart Cities context, particularly in traffic
simulation, revealing a gap in the literature.

This work aims to identify and evaluate efficient data storage and processing strategies using
traffic simulation data as a case study. Selected data reduction strategies (removal of non-essential
data, precision reduction and delta encoding, and variations) are suggested. Their comparative
efficiencies are analyzed by investigating whether their benefits outweigh their drawbacks, using
specific metrics (e.g., data size, and retrieval response times from storage), providing insight into
their performance in possible data uses, of which data analysis through visualization is an example.

A simple API and several experiments were designed to test the implemented data reduc-
tion strategies, standalone or combined, over two different scenarios (distinct data volumes). The
results have been presented and analyzed, exploring possible causes for those outcomes, highlight-
ing, e.g., the positive impact of precision reduction when combined with other methods.

Keywords: Data Reduction; Urban Mobility; Traffic Simulation; Spatiotemporal Data; Relational
Database.
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Chapter 1

Introduction

Contents
1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Document Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

This chapter introduces the problem at hand, providing the context and motivation of this

dissertation and the goals that this work proposes to accomplish. Section 1.1 (p. 1) describes

the context of this work and Section 1.2 (p. 2) presents the motivation behind it. Subsequently,

Section 1.3 (p. 3) outlines the goals of this work. Finally, Section 1.4 (p. 3) details the document’s

structure.

1.1 Context

The continuous innovations in technology have been on par with the challenges the world of today

faces, having a fundamental impact on many facets of society as we know it.

Nowadays, cities are where more than 80% of the global GDP is generated [7] and where

most people live. It is expected that as close as 2030, the world population will reach the 8.5

billion mark and by 2050 the 9.7 billion, most of this growth centered around the urban areas

[8]. It is in this context that appeared the wide-ranging and rather abstract Smart City concept,

which can be viewed as the use of Information and Communication Technologies (ICT) to answer

quickly to new challenges, deciding on the economic, social, and environmental policies regarding

sustainable urban development and populations well-being [9].

On this basis, there has been a digital transformation where the evolution of the Internet of

Things (IoT) has been fundamental to the feasibility of the diverse Smart City initiatives that

depend on the collection and analysis of data. In this sense, and concerning M2M (machine-to-

machine) applications alone (e.g., connected home and car applications), it is estimated that the

1
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number of connections will grow 2.4-fold (when comparing to the data from 2018) to 14.7 billion

by the year 2023 [10].

Considering the broad spectrum of IoT devices, Smart Cities collect every second (real-time)

substantial amounts of data that can either be structured, semi-structured, or not structured at all.

Velocity, Volume, and Variety are the core characteristics of this Big Data [11], an inclusive term

that has been having its usage, definition, and scope contested, namely regarding the necessary

and sufficient attributes that can objectively classify data as Big Data [12].

It is in this challenging data environment that is inherent to the Smart Cities context that the

research project DynamiCITY (Fostering Dynamic Adaptation of Smart Cities to Cope with Crises

and Disruptions) emerges, being this dissertation incorporated within it, contributing to its overall

objectives and findings.

1.2 Motivation

Using large volumes of data in Smart Cities, with particular attention within the urban mobil-

ity domain, brings several challenges. Experimenting with real-life road networks is costly and

time-consuming. Simulators represent an alternative without the constraints of the real systems,

allowing experimentation and exploration of various scenarios. Besides, to infer the effectiveness

of measures to implement, it is necessary to collect, process, store, and analyze the data, which

justifies why these areas of research have been flourishing. It can be mentioned the developments

in data collection (for example, frameworks and architectures that connect actuators and sensors,

addressing interoperability) and analysis (mining), empowered by cloud solutions, artificial intel-

ligence, machine learning algorithms, and technologies such as Hadoop1 and Spark2 [13].

Storage solutions considered, both relational and non-relational database management sys-

tems, can be adequate. Depending on the specific requirements of the situation, there is a tendency

to adopt non-relational alternatives as opposed to relational ones in real-life systems because, in

numerous contexts, with a focus on unstructured or semi-structured data scenarios, their flexibility,

scalability, and performance in large volumes are higher than their relational counterparts.

As simulations become increasingly more complex and detailed, the data that originates from

them grows, and, with it, limitations arise: computationally more demanding analysis required to

extract value from the data and increased costs associated with data storage as two examples. The

minimization of these disadvantages can be achieved at a variety of different levels. A careful

choice of the database to store the data, as mentioned previously, is of crucial importance, and

even before storing the data, efficient data management strategies can be used to manipulate the

data to different extents reducing it while attempting to preserve its essential information through

compression, aggregation, filtering, among others, interfering with characteristics such as detail

level, encoding, dimensionality, formats (e.g., lossless or lossy compression). Thus, data reduction

improves data storage efficiency (size and access speed) and, consequently, the data analysis side.

1https://hadoop.apache.org/
2https://spark.apache.org/
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1.3 Goals

Of the many mentioned ways to efficiently handle data from a Smart Cities and mobility sim-

ulation context, this dissertation focuses on simulation output data, aiming to contribute to the

state-of-the-art by understanding the impact that a select group of data reduction strategies has,

both individually and in combination with each other, in data storage and processing, identifying

the advantages and drawbacks of their application.

To achieve this objective, different methods are implemented, combined, and tested in simula-

tion outcomes, with size and time-related metrics recorded and analyzed.

1.4 Document Structure

This chapter establishes the dissertation’s purpose, explaining its context, motivation, the problem

that it proposes to solve, and general goals. This document is composed of several other chapters,

which are structured as follows:

• Chapter 2 (p. 5), State-of-the-Art, presents the current state of research of the dissertation

scope.

• Chapter 3 (p. 25), Problem Statement, explores the problem under study, presenting the

hypothesis and derived research questions and providing an overview of the methodology

used.

• Chapter 4 (p. 29), Methodology, explores in more detail the work elaborated, disclosing

the considered scenarios, evaluation metrics, and analyzing the obtained results.

• Chapter 5 (p. 39), Experimental Work, features the experimental tests elaborated, describ-

ing them and presenting their results and analyses.

• Chapter 6 (p. 51), Conclusions, summarizes the work developed.
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State-of-the-Art
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In this chapter, state-of-the-art regarding databases in the Smart Cities context is described via

a Systematic Literature Review (SLR). Section 2.1 (p. 5) introduces and explains some concepts

mentioned throughout this work. Section 2.2 (p. 8) elaborates on the methodology used to gather

relevant literature, and in Section 2.3 (p. 9), the results of the search are presented, followed by a

distribution over categories (Section 2.4, p. 10), and analysis (Section 2.5, p. 10). State-of-the-art

of data reduction in an urban mobility simulations context is discussed in Section 2.6 (p. 20).

Conclusions of the review and apparent literature gaps are conveyed in Section 2.7 (p. 22), and an

evaluation of the threats to the validity of the literature review is conducted (Section 2.8, p. 22).

2.1 Background

2.1.1 Relational Databases

Relational databases are the most widely used type of database management system [14], having

a long history of use. They are designed to store data in a structured format, organizing data

into tables, with each row representing a record and each column representing a field in that

record, and establish relationships between tables through the use of keys [15]. Some of the

5
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most relevant advantages of Relational Database Management Systems (RDBMS) are the support

of ACID constraints (atomicity, consistency, isolation, durability), the use of a single standardized

language across different RDBMS, and simplicity of implementation and design. However, these

systems aren’t perfect, being their major disadvantages related to poor scalability, inability to

handle exponential data growth, high setup, and maintenance costs, and lack of means to handle

unstructured data[16]. Some examples are MySQL, Microsoft SQL Server, and PostgreSQL.

2.1.2 Non-relational Databases

Non-relational systems are designed to improve the performance of database queries by provid-

ing the ability to create flexible schemas and ensuring scalability as needed [17], trading consis-

tency and security for high availability and performance. Considering the vast range of NoSQL

databases, there can be identified four main categories[16]:

• Key-value store databases - based on a hash table where each key is a unique identifier

pointing to a value or group of values. Support for structured and unstructured data and

scalability over consistency. Examples: Redis, Riak, Voldemort, Memcached.

• Document store databases - data stored based on two attributes - key and document, com-

monly in a string, URI, or path, and XML, PDF, or JSON formats, respectively. Similar to

relational databases but schemaless, they are more flexible and less adequate for situations

where normalizations and relations are abundant. Examples: MongoDB, Couchbase.

• Column family store databases - data stored in column families as rows with columns as-

sociated with a row key, with equivalent function and a primary key of an RDBS relation.

Highly flexible, scalable, and suitable for data mining and analytic applications. Examples:

Cassandra, HBase, and Google’s Big Table.

• Graph databases - data stored in the form of schemaless graphs (graph theory), being a

collection of nodes (objects, entities) and edges (relationships). Especially efficient for

semi-structured data, graph databases respect ACID constraints while having faster query

performance than relational databases. Examples: Neo4J, FlockDB.

Other less popular categories are, for instance, multi-model (combination of some of the pre-

vious classes), multi-dimensional (multi-dimensional array approach), and time series (for data

records part of a flow of data).

Originally, NoSQL databases had several downsides related to geospatial data, e.g., basic spa-

tial functions, but as time went by, this domain witnessed significant research growth, bringing

with it many innovations and improvements that mitigate their deficiencies[18].
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2.1.3 Simulation Environment - SUMO

SUMO1 (Simulation of Urban MObility) is the traffic simulator which output data is addressed in

the work. SUMO is a popular open-source microscopic and continuous traffic simulation package

for large networks, supporting many multimodal traffic elements, from traffic lights to different

types of vehicles.

Some of SUMO’s other features are the possibility for real-time manipulation of the simulation

via TraCI (SUMO’s API), portability (being implemented in C++ and Python and compatible

with Windows, Linux, and macOS), and support for a range of networks import formats (e.g.,

OpenStreetMap2).

2.1.4 Data Processing and Reduction

Nowadays, we live in a data-driven society, where most of what we see and interact with on a

daily basis, from social media to IoT devices, passing through traffic simulators, can generate

vast amounts of data. Its collection and subsequent analysis have become of great importance for

science, engineering, business, and many other facets of everyday life, having a crucial role in

decision-making scenarios.

Massive quantities of raw data in themselves are not useful. The DIK (data, information,

knowledge) pyramid (or DIKW if we consider a higher level - wisdom) is a model that can de-

scribe the transformation of data where the lowest level corresponds to the raw collected data. By

providing meaning, the data can be elevated to information (data structured with semantics) and

afterward upgraded to knowledge.

The concept of data processing falls into this context. An always-growing range of different

data handling methods can be used to facilitate comprehension and extraction of useful informa-

tion from crude data. The sources, characteristics of the data, and desired goals are determinant to

the process or combination of strategies and techniques that are most appropriate, differing on a

case-by-case basis. The following is a non-comprehensive and overlapping list of data processing

types/methods examples:

• Batch processing - data volumes (usually large) scheduled to be processed at once periodi-

cally.

• Real-time and stream processing - commonly found to be coupled. Data is processed as

soon as it is received (real-time) in a continuous flow of data elements that are ordered in

time (stream).

• Cloud, distributed and parallel processing - scalability-oriented where the data is handled in

subsets over multiple processors simultaneously (in parallel) and/or in cloud-based servers.

MapReduce3 is an example of a parallel data processing tool.

1https://www.eclipse.org/sumo/
2https://www.openstreetmap.org/
3https://research.google/pubs/pub62/
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The notion of data processing, analysis, and visualization often accompanies data reduction.

For instance, professionals in the fields of scientific visualization and related data analysis may be

dependent on some factors, such as storage space and data transfer speed, over which they may not

have control, being a possible bottleneck to their productivity. To illustrate, slower data transfers

result in less responsive visualizations.

Data reduction is a process that proposes minimizing these troubling aspects by decreasing

the data size to lower both the storage capacity needed to store it and the speed at which the I/O

operations are carried out (as a result of less data in each transmission). Some of the many data

reduction techniques:

• Dimensionality reduction - condenses data into a lighter and simpler format at the cost of a

lower number of attributes and variables.

• Compression - data is encoded in less demanding formats. Data compression can be lossless

or lossy, whether the compressed data can be reverted (decompressed) to its original state

(original data) or not.

• Clustering - can be interpreted as a dimensionality reduction technique that groups similar

elements in clusters.

• Sampling - selection of a data subset that is smaller in volume but retains the fundamental

characteristics of the more extensive data set.

2.2 Methodology

This Literature Review is divided into two parts, being one a Systematic Literature Review (SLR)

with the goal of better grasping what, how, and in which circumstances database technologies

are being applied to the Smart Cities context, and the other to obtain a generalized and high-

level understanding in the topic of data reduction methods. The choice of a Systematic Literature

Review (that followed an iterative approach) is justified by its reproducibility, objectiveness, and

structured manner of gathering and analyzing relevant literature. The same was not considered

for the other literature review subject due to the apparent extensiveness of pertinent works on that

domain.

Research questions were defined to provide guidelines. Based on these guidelines, search

queries were constructed and applied to the considered data sources, suffering progressive re-

finement and, consequently, narrowing the scope of the search. Later, the relevant results were

collected, filtered, categorized, and analyzed.

2.2.1 SLR Research Questions

In an SLR, survey research questions (SRQ) are fundamental to inferring the state-of-the-art and

possible gaps in the literature. The following questions were formulated:
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SRQ1: What are the most predominant databases in Smart Cities environments?

SRQ2: What are the Smart Cities domains where these databases are used?

SRQ3: What factors make a database suitable for use in an urban mobility simulation setting?

2.2.2 SLR Search Query Refinement

The search process was made with a query that went through numerous adjustments, starting at

"smart cities databases" (which retrieved very general and unrelated results) and ending

at the one that had the desired specificity:

("smart city" OR "smart cities" OR "urban mobility" OR "traffic

simulation") AND ("SQL" OR "NoSQL")

2.2.3 SLR Databases searched

Preliminary ad-hoc exploratory searches were carried out in the Google Scholar search engine and

the Engineering Village platform. Yet, all publications analyzed and filtered in the Systematic

Literature Review were found in the Engineering Village database Inspec due to its user-friendly

search and comprehensive and assumed as trustworthy content encompassing a vast collection of

databases that, in turn, cover journals and conference proceedings across a wide range of topics, as

well as search filtering and customization options. Some of the specific databases within Inspec’s

coverage where relevant literature was found are Springer Link, ScienceDirect, and IEEE Xplore.

2.3 SLR Search Results Filtering

The search results were refined according to the following pipeline:

1. Initial results - input of the query string (Section 2.2.2, p. 9) in the chosen database (Section

2.2.3, p. 9)

2. Filter 1 - publications older than 2016 were discarded as they may provide approaches

that are not appropriate for today’s world needs or outperformed by newer solutions made

possible by the ever-increasing computational power and progressive digital transformation.

3. Evaluation 1 - manual relevance evaluation in four levels (relevant, not completely rele-

vant, not completely irrelevant, and irrelevant) mainly based on the abstract and conclusion

chapter. Relevant is a result that mentions the use of databases in a smart city context.

4. Filter 2 - works labeled as irrelevant are not considered past this point.

5. Evaluation 2 - in-depth analysis of the contents of each article with binary evaluation (either

relevant or not), detecting papers that appeared pertinent but, in reality, were not directed

to the domain of focus of the SLR. Relevancy at this checkpoint implies mention in the

publication of some details regarding database usage, for instance, the specific database

management system utilized or the role of the database in the complete system.
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6. Filter 3 - results deemed of interest proceed to categorization.

2.4 SLR Results Categorization

After the filtering process, the final results comprised 36 documents, all connected to the Smart

City and databases domains but differing greatly in scope. Therefore, the publications were di-

vided into the following categories:

1. Databases evaluation and comparisons (Section 2.5.1, p. 11) - comprehending works

where single databases are assessed on metrics such as query speed and scalability for spe-

cific use cases, and papers where several databases were studied across a multitude of fac-

tors, ranging from performance to the ability to handle multiple data types.

2. Hybrid database solutions (Section 2.5.2, p. 13) - more than one database technology

is present in the working developed structure, each taking responsibility over a part of the

system, e.g., a NoSQL database for data input, and SQL for a subset of critical data, taking

advantage of the strengths of both parts.

3. Database usage in a Smart City application (Section 2.5.3, p. 16) - examples of Smart

City applications across different domains and diverse data requirements, where the data

storage is not the primary focus, but where the selection of an appropriate database can

constitute a relevant factor in the impact of the created platform or service.

4. SQL-NoSQL conversion (Section 2.5.4, p. 17) - encompassing works that propose data

conversion approaches that allow data previously stored in relational databases to be moved

to non-relational alternatives (e.g., to a document-oriented system), motivated by the ever-

changing data needs, a product of the digital transformation.

5. Database enhancements/extensions (Section 2.5.5, p. 17) - including publications sug-

gesting improvements to database systems (e.g., adding support for data types) or presenting

new data management systems based on one or more pre-existing databases.

6. Data Optimization (Section 2.5.6, p. 19) - techniques applied to data to improve processing

or query performance via dimensionality reduction in a specific database.

An overview of each category and its associated documents are presented in Table 2.1. Their

respective analysis is presented later, in Section 2.5 (p. 10).

2.5 SLR Results Analysis

In this section, the findings of the Systematic Literature Review are analyzed. For each of the

previously described categories, the selected publications are summarized, focusing on the relevant

aspects of the present work.
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Table 2.1: Publications’ distribution across categories.

Category References

Databases evaluation and comparisons [1, 19, 20, 21, 22, 23, 24, 25, 26]
Hybrid database solutions [2, 3, 27, 28, 29, 30, 4, 31]

Database usage in a Smart City application [32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42]
SQL-NoSQL conversion [43, 44]

Database enhancements/extensions [5, 45, 46, 47]
Data optimization [6, 48]

2.5.1 Databases evaluation and comparisons

Several of the works found compare and/or evaluate data stores.

[23] covers three categories of NoSQL databases - document, column, and distributed main

memory key-value - setting side by side MongoDB, Cassandra, and Redis when it comes to their

performance and fitness for use in large-scale analysis of real-world hydraulic power systems

sensory data logs.

From a first query that focused on the key lookup performance, the use of a primary key yielded

approximate and good results across all three systems (in Cassandra and Redis, consistent hashing

techniques handled the index provided, while in MongoDB, the technique used was range-based

hashing). The second task, a range query, made evident some differences. Redis was the best-

performing system, followed by MongoDB and Cassandra. The techniques used by MongoDB

(range-based hashing method and in-memory B-tree indexing) are more efficient for the use case

than the inverted index used by Cassandra, and both fall short of the benefits that the in-memory

data structures of Redis represent at the cost of persistency.

Similarly, in [1], MongoDB, Redis, and Cassandra are studied, as well as Neo4j. These four

NoSQL databases, all of the different subtypes, had their performance, scalability, accuracy, and

complexity evaluated (Figure 2.1) for Smart City data lake management. For that effect, ex-

periments were conducted using 10 SQL queries combined with functions and operations (e.g.,

selection, insertion, update).

The testing done indicates that despite all examined databases having high performance, for

extensive volumes of data, the most stable of the four analyzed is MongoDB. Concerning scal-

ability, Redis and Cassandra present themselves as better options. In the accuracy department,

MongoDB and Redis stand out, and complexity is handled moderately well by all four, with Mon-

goDB, Cassandra, and Neo4j beating Redis slightly.

Swapping one of the databases (Redis for HBase) and changing the environment to the health-

care domain leads to the work presented in [19] that refers to the concept of Tele-Rehabiliation as

a Service, which can generate Big Data from the activity of remote rehabilitation devices, which

needs to be posteriorly processed. The performance of MongoDB, Cassandra, Neo4j, and HBase

was tested with data from a Lokomat (robotic treadmill) dataset via three different queries that

were executed several times, obtaining results with confidence intervals of 95%.
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Figure 2.1: Structure of the study, reprinted from [1]

The trials were conducted considering each of the database management systems as a stan-

dalone configuration on a single server and show that the performance of MongoDB, Neo4j, and

HBase improves after the first time a query is executed due to cached data, opposing to Cassan-

dra, which processes all data every time. Overall, for the use cases presented, MongoDB was the

fastest NoSQL database implementation. With the increase in the number of observations, Cas-

sandra exhibited decreasing performance, and HBase response times were constant with cached

data and increased linearly without. Neo4j’s cached performance was superior up to 1000 obser-

vations, degrading considerably with higher numbers, and MongoDB tops the group as the best

solution for 10000 observations.

Worthy of note is the fact that the authors of the article point out possible improvements that

would be possible with alternative distributed configurations of the system tested and highlight

the first query execution time (also MongoDB favored) as the most important metric from the

perspective of the patient in the described robotic rehabilitation scenario.

Taking Neo4j out of the equation, we are left with Cassandra, HBase, and MongoDB, which

are the databases that [22] zeros in. The distributed management of high-volume remote sensing

image data is studied by applying the suggested architecture, which includes a storage method that

divides image data into blocks based on a pyramid map (multi-resolution design that separates

different zoom layers, each made of blocks), being then these fragments stored in the NoSQL

databases.

Comparisons between Cassandra, HBase, and MongoDB across different configurations showed

that, regarding cluster size, the increase in the number of nodes of the system improved perfor-

mance across the board, especially in Cassandra, which retained its speedup linearity throughout

the tests. Concerning the scalability of the size of the data, identical results were achieved with

Cassandra as the top performer of the three, being the bandwidth of the network connection iden-

tified as the performance limiter (bottleneck).

Focusing on the comparison between Cassandra and HBase is [21], where a scalable Hadoop-

based architecture that is able to deal with a range of different applications and data streams in
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various formats is proposed for Smart City management. Apache HBase and Cassandra were

tested for real-time processing (one of the parts of the architecture) together with the SQL query

engines Phoenix and Presto, respectively, and HBase with Phoenix was found to display better

scalability potential. In contrast, Cassandra with Prestos showed the fastest performance of the

two combinations.

Also within the scope of Smart Cities for a project named CityAction, the capabilities and

internal mechanisms of Cassandra to store substantial amounts of sensory data were evaluated,

being used, for that purpose, the Yahoo Cloud Serving Benchmark (YCSB) [20].

The architecture and horizontal scalability (increase in the number of nodes with consequently

reduced execution time expected) were the focal points of the work, being executed two YCSB

workloads comprising of parallel reads, scans, and inserts with a varying number of user requests.

The experiment results show that Cassandra is faster in simple operations (e.g., get) while not

being as efficient in executing scans. It is also possible to conclude that Cassandra’s capable of

managing multiple requests and provides high scalability (although hardware-limited), distributing

the load across network nodes, which can represent network overheads.

Some relational systems were also found in some works that focus on evaluation and compar-

isons.

[24] opposes MongoDB, Neo4j, and PostgreSQL in a use case connected to Geographical

Information Systems (GIS): search queries on geotagged data (taken from OpenStreetMap and

tagged by users for this matter). [25] chose MongoDB as well but put it against MySQL for IoT

devices records across the selected queries.

In the first article, testing showed that, despite not affecting user experience, MongoDB was

the best, followed by PostgreSQL. Neo4j obtained an abnormally high running time which was

subsequently identified to be caused by the Cypher query platform, affecting the usefulness of the

work.

The comparison between MongoDB and MySQL in property, aggregation, and spatial queries

in [25] demonstrates the performance advantages of NoSQL approaches relative to relational sys-

tems in most scenarios (property and spatial queries) while only being slightly less performant in

the aggregation query.

Worthy of mention is the work developed in [26], where combinations of MySQL, Cassan-

dra, MongoDB, and Hadoop Distributed File System (HDFS) are tested against synthetic (static

or sensor data) and real IoT (CityPulse road traffic) datasets in the proposed multi-store query

processing system (MusQ). The most interesting outcome for our purposes, in both two data store

combinations (static + sensor databases) and three data stores (two static + one sensor or vice-

versa), was the importance of MongoDB (as sensor database) for the positive query performance

of the system.

2.5.2 Hybrid database solutions

In [2], the proposed solution attempts to address the limits of database management systems that

traditionally use SQL for handling time-discretized geospatial data, limiting the real-time data
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access and analysis of the data. The storage architecture described (Figure 2.2) innovates on the

dataflow of change information management, coupling three databases by taking advantage of

the change element. The three components are a main-memory database (MMDB), a relational

database (RDB), and a distributed file system (DFS).

Figure 2.2: Hybrid storage architecture framework, reprinted from [2]

The MMDB (Redis) is responsible for managing the latest real-time input data for query and

preprocessing, synchronizing it afterward in batches with permanent storage. The DFS (Mon-

goDB) stores the constantly growing amounts of spatio-temporal data for possible further future

data mining, making use of a large cardinal compound shard key (ascending key and search key),

balancing index maintenance costs, and read and write operations. The RDB (MySQL) handles the

information extracted from the input data, allowing constant time semantic queries via an inverted

index created from extracted data features.

The feasibility of the hybrid database organization and management proposition is successfully

tested in a case study related to geographic video surveillance (GeoVideo), justifying its support

for real-time Geographic Information Systems (GIS) applications.

More within the scope of urban mobility is the system proposed in [3]. Implemented for

smart street lights, the approach consists of one Web-based cloud management platform, a set of

edge devices, and the function for real-time lighting control, achieving low-latency, security, and

data-throughput requirements, including an API for historical data query.

The architecture described takes advantage of MongoDB and Redis in many of its modules.

MongoDB usage focuses on storing each user’s information and authorization privileges, device

scheduling, and historical data. A Redis database container is used to keep two key-value pairs

of user data with the purpose of speeding up subsequent requests after the permission checks.

Furthermore, Redis is also where device data regarding configurations for real-time transmissions

and authentication is stored. One of the workflows described in the article is the one in Figure 2.3

where both MongoDB and Redis have a role in the user login: the account and password provided

are checked with the user data in MongoDB and, afterward, the session information is added to

the Redis cache.
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Figure 2.3: Request authentication workflow (browser), reprinted from [3]

Within the scope of IoT, in [28], an architecture comprising of sensors, programmable or not

gateways, and servers with the purpose of optimizing critical pattern detection on evolving data is

proposed. The discussed system is a compound of two interlinked subsystems - one non-relational,

the other relational - performing each of them a different task.

Similarly to [2], the non-relational database is chosen to be a kind of bulk storage, in this case,

denominated "All Data Server", receiving all the data coming from the sensors that can be used at

a later date. In turn, the relational database ("Critical Data Server") only stores what is considered

critical data, which is a subset of the data (defined beforehand by an administrator) detected in the

gateways that is resorted to for detecting what are described as critical patterns (e.g., potentially

alarming changes in blood pressure or in a certain gas concentration).

These choices result in the ability to store any data type in the "All Data Server" (NoSQL)

while having high data processing speed in the more restrictive Critical Data Server (SQL), where

a pattern detection algorithm is run periodically to extract critical patterns instead of being run

on every insertion of data, which results in a reduction of the number of queries needed. This

last approach (pattern detection algorithms run when data is inserted in the SQL DBMS) was

previously studied in [29] in an identical system architecture. Note that in neither of the articles is

there mention of the concrete database systems utilized, being addressed only as SQL and NoSQL.

Another hybrid approach for the IoT context is presented in [4]. A distributed storage sensor

data management system that connects MySQL with HBase (i.e., a relational database with a

distributed column-oriented NoSQL database) is suggested to tackle requirements of high-volume

sensor data storage, real-time monitoring and statistical analysis, as well as security and reliability

for business settings. A migration module is also implemented in order to periodically relocate

data from MySQL to HBase.

The architecture of the system can be observed in Figure 2.4. MySQL stores the most up-

to-date sensor data that is most relevant for real-time data monitoring purposes, while HBase is

the storage of high volumes of historical data. The migration of data between the two systems

is mediated by Sqoop (currently a retired tool that efficiently handled the transfer of mass data

between Hadoop, on top of which HBase is built, and structured databases, e.g., relational ones).
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Figure 2.4: Architecture of the storage framework, reprinted from [4]

Verification of the designed system is conveyed through a set of experiments that point to

better upload data performance when comparing the distributed system to a pure MySQL strategy

while detaining good query performance that is only minimally impacted by the data size.

Some other articles where two databases in the same system are mentioned (but with lesser

importance for the work presented as a whole in the publications) are [30], [31], and [27]. In the

first, Amazon S34 (key-value database) and MongoDB are used in a pipeline to handle air quality

data that is later used to make predictions by applying machine learning models to the datasets.

[31] is an e-commerce system based on a service-oriented architecture that uses Redis (in the

cache server, improving the responsiveness of the application) and MySQL (storing, for example,

shopping cart and products related data, being its tables based on the domain and business objects).

Lastly, in [27], an e-health framework is presented where sensor data is sent primarily to an SQLite

database in an "IoT Hub" and then forwarded to a Cassandra cluster for possible future uses.

2.5.3 Database usage in Smart City applications

The general use of databases in Smart City-related applications was the most prevalent category

in the search results. Many database management systems, from relational to non-relational, inte-

grate various fields for diverse purposes.

Among the relational approaches, MySQL, SQL Server (Spatial), and MariaDB were inte-

grated as storage for data originating from sensors that track the temperature and humidity [35, 39],

spatio-temporal data - allowing graphical visualization of health data [38], and energy outage sta-

tus [36]-, as an integrated database to be used by various mobile Smart City applications [33], or

simply storing data from monitoring and control activities [37].

Regarding non-relational databases, Cassandra and MongoDB were used as support for equally

varied contexts of ranging complexities: IoT data collection architectures dealing with time-series

4https://aws.amazon.com/s3/
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data [32], upholding a foundation for image processing and deep learning in smart recipe recom-

mendation [40], spatio-temporal data analysis [34], and urban mobility dynamics processing [41]

and prediction [42].

2.5.4 SQL-NoSQL conversion

The importance of databases in businesses nowadays, managing huge amounts of data from var-

ious sources, and the limitations of relational database management systems brought up the need

to replace the existing (mainly) relational systems with their non-relational equivalents.

In [43], a reverse engineering methodology for converting from a SQL environment to NoSQL

is presented, being demonstrated using PostgreSQL (SQL) and Cassandra (NoSQL) in a Python

application. The described approach follows an ETL (Extract, Transform, Load) data integration

process workflow. First, the data is extracted from the relational database, obtaining a characteri-

zation of the relational model (tables, attributes, relationships).

Then, the mappings (i.e., the linking between attributes of the relational and column-oriented

non-relational model) are defined. The intrinsic disadvantage that the absence of joins in NoSQL

databases imposes is mitigated by the column-oriented model, allowing attributes that were ini-

tially separate in different tables to be kept together. Powering this transformation is a reverse

engineering process. The logical model of the database is determined from the physical model,

and a set of rules is described to guide the process of deriving the conceptual model. Lastly, the

created structure and the data are loaded to the destination database, i.e., Cassandra.

The solution introduced in [44] is divided into two phases, and the non-relational database

chosen is MongoDB. The approximations that can be noted between JSON objects and rows in

tables point to the possibility of transforming tables into JSON files. MongoDB stores data in the

form of JSON (or Binary JSON) files as collections and can take advantage of Mongoose5 to define

the schemas of the documents to be stored, encompassing most of the relational components,

making it appropriate as the destination system.

In the first phase of the operation, using a set of rules, the data structure and the data semantics

are converted to JSON and JavaScript programs, conforming to the target document meta-model

derived from the original relational system. Then, the second phase follows. The data that was

initially stored in the relational tables is transformed so that it obeys the models defined in the

previous phase, ending this stage with the loading of the data into JSON files by applying the

outputs of the first part of the procedure.

2.5.5 Database enhancements/extensions

The authors of [5] propose a Data Meta-Model (DMM) that focuses on the spatial-temporal fea-

tures and outlines a "ten-tuple" information structure to offer a unified, spatially-enhanced descrip-

tion of point observation data. Along with it, MongoSOS was also designed (and implemented),

5https://mongoosejs.com/
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being a NoSQL distributed storage sensor observation service (SOS) that is based on the Mon-

goDB database that allows point observation instant sharing (see Figure 2.5).

Figure 2.5: MongoSOS architecture, reprinted from [5]

Testing the DMM meant the development of a prototype that took advantage of MongoSOS

that, compared to the presented competition (52north Sensor Observation Service), achieved greater

performance in the operations tested (insertions and access of navigation and positioning data), es-

pecially in the insertion of large volumes of data.

MongoDB was also the focus in [47], where a design using Remote Direct Memory Access

(RDMA) operations is shown. The performance losses that the transmission of data within the

Transport Layer via Boost. Asio (C++ library for network and low-level I/O) entails were ana-

lyzed, and benchmarks were run comparing the default and the RDMA-based MongoDB imple-

mentations. The Yahoo Cloud Serving Benchmark (as in [20]) was used to generate workloads

that ended up demonstrating, with its high performance, lower latency, higher throughput, and ef-

ficient memory usage, the success with which the proposed RMDA-based MongoDB tackled the

data transmission limitations.

Based on PostgreSQL (with spatial support via the PostGIS extension), a prototype was imple-

mented in [45], illustrating the presented framework for a parallel-distributed network-constrained

moving objects database (PD-NMOD) that supported efficient parallel processing of SQL queries

over moving objects, and location tracking by way of frequent location updates.

Experiments were carried out using real taxi GPS trajectory data (and corresponding trans-

portation network), testing a plethora of queries regarding their performance - which increases
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with the number of moving objects database nodes that make up the distributed database system -

confirming the efficiency, effectiveness, and scalability claims.

In [46], a data management system based on HBase and Phoenix, named SP-Phoenix, is in-

troduced to handle massive spatial data. It inherits the advantages of both systems, being scalable,

fault-tolerant, and efficient in spatial range and proximity queries due to the use of several el-

ements, of which geohash-based indexes and server-side filtering are examples. Evaluation of

SP-Phoenix was done using synthetically generated data of large dimensions, being experiments

done regarding insertion throughput, spatial range, and kNN queries performance.

2.5.6 Data optimization

The scarcity of solutions for the spatial-awareness needs when storing and processing big geo-

referenced data among the most prevalent existing solutions is addressed in [6]. In this paper,

the spotlight is on the spatial data partitioning strategies and their respective impact on spatial

query processing performance, resulting in the development of not only spatial-aware partitioning

methods but also spatial-aware query optimizations, both for MongoDB and with the goal of

improving its Quality of Service (QoS).

Regarding the spatial-aware partitioning strategies, incoming spatial objects are processed by

a geohash encoder, complementing each of them with a composite partition key referencing a

timestamp and a geohash (a geocoding element), in a process entitled Geospatial-Aware consistent

hash Partitioner (GAP) - Figure 2.6. The resulting objects are then allocated to the respective

partitions, the spatial data locality preservation guaranteed while avoiding the need to repartition

the data on every input.

Figure 2.6: Geospatial-Aware Partitioner (GAP), reprinted from [6]
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This work also proposes proximity (using MapReduce) and geohash-based containment query

optimizations. The former utilizes a method that executes proximity queries as MapReduce tasks

(taking into account points around the point of interest, incorporating geohashes, and creating a

MongoDB compatible query), while the latter attempts to measure the benefit of the designed

GAP partitioning strategy, using a custom filter. The techniques were tested, overall conveying

good performance when compared to alternative state-of-the-art solutions.

Also applied to MongoDB, in [48], improvements to the performance of spatial computation

were proposed (sharding scheme and spatial join optimizer), outperforming the baseline perfor-

mance of plain MongoDB.

In summary, the article describes an approach where the center of attention is on reducing

the dimensionality of spatial data representation and the search space before applying spatial join

operators via filters. Sharding is a method of distributing data across several partitions or shards,

being the sharding key, in this case, a geohash string, which allows the data to keep its geometrical

meaning by grouping objects that are near each other together. The created spatial join optimizer

benefits from the novel partitioning scheme and spatial-aware indexing, extending the capabilities

of MongoDB with emphasis on scenarios where spatial joins are used, such as containment and

proximity spatial queries.

2.6 Data Reduction

Alongside the increase of possible sources of data (higher volumes of data - Big Data) and com-

puting power comes the importance of data transfer that reveals itself as a bottleneck to areas such

as data analysis and machine learning [49].

Reducing the amount of data represents a trivial way of improving performance for data-

intensive tasks, of which data analysis and machine learning are examples. As a consequence,

data reduction is a domain that has been progressively explored in the literature, highlighting the

scientific data analysis context, many times associated with visualization.

In this direction, [50] features the division of data reduction techniques into five categories

based on the degree of information lost, one of the properties mentioned of data reduction meth-

ods (the others being error tolerance, size, and memory limits, and progressive data access). Three

of the five categories are related to compression differing in the ability to reconstruct the original

data from the reduced representation, while the other two are mesh reduction and derived repre-

sentations. As the name entails, mesh reduction can be applied to meshes, providing decreased

data size that is fixed a priori by keeping the mesh’s essential points or regions, approaching the

essentials of derived representations, which in turn are a group of techniques that generate substi-

tute representations and discard the original data. Lossy compression is mostly oriented towards

the data size reduction, being useful in scenarios where a transformation to a lower bit represen-

tation, for example, does not significantly affect the final result (e.g., visualization). On the other

hand, both truly and near-lossless compression types excel in integer data (and text in the case

of truly lossless), existing nonetheless compressors for floating-point data that, in the case of the
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near-lossless compression, induce approximation errors. Delta encoding fits in the compression

techniques group. Focusing on transmitting the changes between successive versions of data in-

stead of the original data, it is commonly used in various scenarios, from version control systems

to video and audio compression, and it has been approached in the literature from a diverse range

of perspectives, e.g., from extending the HTTP protocol in [51] to writer identification problems

in [52], passing through genome sequencing data deduplication [53].

Several works have been carried out applying compression to the temporal dimension. [54]

proposes algorithms that guarantee, at the cost of unknown storage requirements, a temporal com-

pression of data with full temporal resolution and fixed degree of accuracy that perform favorably

when compared with SZ and wavelets compression methods in high temporal frequency data. [55]

also addresses wavelet compression, suggesting the integration of the time dimension, demonstrat-

ing the trade-offs between storage space, data accuracy, temporal resolution, and memory footprint

and run time.

Works such as [56] and [49] study the impact of data precision and resolution. [56] advocates

the use of a hierarchy that combines both precision and resolution of scalar attributes in a tree

data structure by starting with a resolution tree and adding the precision factor afterward. In turn,

[49] analyzes and weighs the advantages and disadvantages of precision and resolution in a data

analysis and visualization context by using data streams (consisting of data packets of consistent

sizes) and controlling their contents (number of packets), obtaining results that show the benefits of

the combination of precision and resolution reductions for the same data budget and the variability

of these improvements depending on the tasks performed.

2.6.1 Data Reduction in Traffic Simulations

The development of visualization solutions, many times within Geographic Information Systems

(GIS), is a topic found in the literature [57, 58] as visualization represents an important tool for

data analysis of simulation outputs, being scarce the publications where data reduction takes the

spotlight.

The urban mobility and traffic domains follow the same trend. Applied to traffic data, there

are many works presenting, for example, platforms that enhance cooperation through simulation

output sharing and comparisons between outputs, [59], and big data processing frameworks [60,

61, 62]. The raw data sources range from real-time sensors to traffic simulations and from high

to low volumes of data (gigabytes vs. kilobytes), and the workflows described cover parallelism,

distributed and cloud processing based on the use of technologies such as Apache Spark, Hadoop,

HBase, and the MapReduce programming paradigm. In [61], some situations are described where

reducing the volume of data transferred to the client was one of the factors taken into account.

However, there exists virtually no reference to concrete ways of optimizing the storage of data

through some degree of preprocessing methods of reduction, i.e., through other means than, for

instance, the time sorting of vehicle records described in [61] that benefit certain types of queries.

Therefore, the study of the impact of data processing before storage via data reduction methods in

a traffic mobility environment presents itself as a subject worthy of research work.
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2.7 Conclusions

The thirty-six publications examined show the popularity of NoSQL databases in Smart Cities en-

vironments, highlighting, among them, MongoDB and Cassandra. Nonetheless, relational databases

are also very capable options and are used on several occasions (MySQL being the most common

among the analyzed works), serving, for instance, as a term of comparison or support for the stor-

age of processed (more structured) data. Furthermore, a diversity of database combinations were

found in the hybrid approaches discovered.

Database management systems are widely used across a variety of Smart City areas, from e-

health and surveillance systems to less critical applications such as thermal comfort monitoring.

Smart City urban mobility-related publications were not found abundant. Nevertheless, works

dealing with data with approximate characteristics (real-time spatio-temporal or geospatial) were

ample, representing a parallel for urban mobility simulation scenarios.

Regarding the data reduction aspect, many techniques, strategies, and variations exist depend-

ing on their application, characteristics of the data, and goals to be achieved.

Provided the analysis, it is possible to conclude that there are opportunities to improve the

state-of-the-art regarding the storage and processing of urban mobility simulation data, highlight-

ing data reduction techniques to decrease space requirements.

2.8 Validity Threats

Considering the Systematic Literature Review segment, even though the search outcomes pre-

sented are the by-product of a Systematic Literature Review approach, the results’ quality might

have been affected by some factors that can threaten the SLR’s validity. The identified considera-

tions should be taken into account:

1. Outside the considered date range for the publications, there could be relevant articles that

ended up being ruled out.

2. Translating research questions into keywords can result in various search strings, and there

may be alternatives to the ones considered that better represent the information needs, thus

retrieving better results.

3. The manual relevance evaluation of results is subjective, possibly resulting in some exclu-

sions that others would find pertinent to the subject.

4. By only considering the Engineering Village database Inspec, some relevant publications

may have been left out of the search space if they were not part of the journal, conference

proceedings, or other databases Inspec covers.

These threats also can be applied to the data reduction part, adding that it is very possible that,

as it was also a less in-depth study due to the more embracing domain, some very relevant works

may have been simply missed.
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2.9 Summary

This chapter starts by providing some background helpful information for the contents of the work

in Section 2.1 (p. 5). Section 2.2 (p. 8) details the Systematic Literature Review that was carried

out, namely the research questions, search query, and databases used for the search. Section 2.3 (p.

9) describes the filtering process and Section 2.4 (p. 10) the grouping of the works in categories,

which is followed by a more in-depth analysis of the relevant literature in Section 2.5 (p. 10).

Afterward, a higher-level study on the state-of-the-art of data reduction is presented Section 2.6

(p. 20). In Section 2.7 (p. 22), a gap in the state-of-the-art was evidenced regarding the usage of

data reduction strategies in an urban mobility simulations context.

Lastly, possible threats to the validity of the performed literature review process are presented

in Section 2.8 (p. 22).
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This chapter describes the problem this work proposes to tackle. Section 3.1 (p. 25) presents

the literature limitations. Section 3.2 (p. 26) indicates the desiderata to address, Section 3.3 (p. 26)

defines the scope and focus of the work, and in Section 3.4 (p. 26), the hypothesis is introduced,

along with the research questions (Section 3.5, p. 27). Finally, in Section 3.6 (p. 28), an overview

of the development and evaluation methodology is presented.

3.1 Current Issues

In Chapter 2 (p. 5), it is analyzed the current state-of-the-art concerning database management

systems in Smart City environments, namely the types of databases and functions they perform,

as well as a variety of processing methods that can be applied to the raw data.

Urban mobility planning plays an important matter in today’s Smart City management policies.

Simulators are a vital tool for its success, eliminating many real-life constraints and extending the

range of scenarios that can be studied and experimented upon. However, in the case of Eclipse

SUMO (Simulation of Urban MObility) simulator, the data analysis aspect is not very extensive.

SUMO can provide output files for every simulation that it executes but is unable to read those

files at a later date to allow, for instance, a detailed visual analysis of the data or to provide that

information to an external entity. Useful features such as moving forward and backward between

simulation time steps are not possible, being other means necessary for this purpose.
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In this regard, to be able to use in the future the outputs to observe the simulation execution,

it is necessary to process and store that data. However, close to no mention of the analysis of

processing possibilities and subsequent associated storage concerning traffic data simulation was

found, suggesting a gap in the literature waiting to be explored.

3.2 Desiderata

Aiming to provide insight on the subject of processing strategies applied to traffic simulation

spatiotemporal data, this work aims toward fulfilling the following desiderata:

D1: Implement data reduction strategies, allowing a more efficient data storage.

D2: Compare the performance of data reduction strategies, to understand advantages,

disadvantages and appropriate usage scenarios.

D3: Provide an API so that given SUMO simulation output files data can be stored, and the

corresponding data can be retrieved efficiently upon request.

3.3 Scope

The scope of the work is the analysis of the performance impact of data reduction strategies in

traffic simulation output spatiotemporal data. Investigating the consequences of each approach in

metrics such as data size and retrieval response times from storage is the focus, as these are impor-

tant factors for a better experience when analyzing data. The target audience, broadly speaking,

is the Smart Cities research community focusing on urban traffic planning professionals, namely

traffic engineers, that could benefit from simulation data analysis improvements.

3.4 Hypothesis

In order to achieve the goals mentioned in Chapter 1.3 (p. 3), the work was guided by the following

hypothesis:

Data reduction strategies, namely identifying and removing non-essential data, pre-

cision reduction, and delta encoding, can benefit simulation data storage and access

performance while entailing costs that don’t outweigh the benefits.

It is reasonable to assume that data reduction methods can provide performance increases

regarding database storage usage or higher data access speed. Still, their possible drawbacks (e.g.,

higher processing times) can’t be forgotten either, having the potential to cancel out the positive

effects of their use. Clarifying the strategies mentioned in the hypothesis, the removal of non-

essential data refers to data whose absence does not harm the quality of the overall data; precision

reduction represents a decrease in the level of detail of the data; delta encoding consists in focusing

on the changes between successive data elements instead of the original data values.
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3.5 Research Questions (RQ)

A set of research questions were elaborated to guide the research and further deepen the general

ideas in the previously presented hypothesis. Their answers will lead to the validation or refusal

of the hypothesis.

RQ1: What data can be considered non-essential, and what are the storage space impacts

and respective processing time cost to remove that data?

Data that can be removed without interfering with the overall usefulness represents a direct

way of lowering the necessary storage space. Filtering out those cases of non-essential data may

represent processing costs that are negligible when compared to a baseline (case where all data is

stored), making it an appealing method or significant enough that the trade-off between time and

space needs to be taken into account on a case-by-case basis.

RQ2: What are the storage space impact and respective processing time costs if data values

have their precision reduced?

Reduction of precision is a strategy that can lower data sizes at the cost of rounding errors.

Nonetheless, it can also prove not useful depending on the compromises that it may represent. For

instance, high enough rounding errors have the potential to render datasets useless for further us-

age, while small ones can improve the performance of the system by contributing to lower transfer

times.

RQ3: What are the storage space impact and respective processing time cost if data values

are stored not as their original values but as variations relative to a previous instant (delta)?

When values are constant or show little variation over time, storing the differences between

consecutive instants instead of the values themselves may represent an effective way to compress

the data. Applicability is, therefore, dependent on the extent of the data variability on top of the

associated processing costs.

RQ4: How do the storage space and respective processing time get affected by modifying

RQ3 by calculating the variation relative to a regularly changing reference point instead of always

considering the previous element as the reference?

Storing differences between consecutive instants assumes that a previous instant is the refer-

ence point for the next. If that reference point is updated at fixed intervals and not every time,

the number of overall operations of the algorithm will be lower, perhaps translating into a visible

performance improvement.

RQ5: Does the combination of RQ2 with RQ3 and RQ4 produce better results than their

original formulations?
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A by-product of precision reduction operations is homogenization. Two values that were visi-

bly different can be converted into the same one by rounding, nullifying the existing value dispar-

ities, and smoothing the previous variations.

RQ6: When interval traffic data in a database is accessed, what are the trade-offs between

retrieving all data at once and subdividing that operation into multiple consecutive and lighter

requests?

A single request to obtain all data may be unbearable for certain data sizes, either due to time

or memory constraints. On the other hand, a subdivision in smaller requests may represent a bet-

ter solution in terms of memory management but worse from a speed perspective due to overheads.

RQ7: Does the combination of RQ2 with RQ6 represent a performance improvement over the

standard RQ6?

Precision reduction can contribute to smaller data sizes which, in turn, are associated with

faster data transfers, mitigating time and memory-related limitations.

3.6 Methodology

In an attempt to confirm the hypothesis and provide answers to the research questions, a pipeline

was implemented where the raw data starts in the form of XML SUMO simulation output file and

is then parsed, processed, and stored in a database (PostgreSQL with the PostGIS extension). A

client is then able to retrieve the data via the endpoints of an API.

Different test scenarios varying in complexity (i.e., simulations of different complexities that,

by consequence, generate distinct simulation data loads) were designed to compare the perfor-

mance of each data processing strategy, covering time costs, storage requirements, and data access

speed, depending on the method tested. For each of the experiments carried out, the baselines

considered correspond to the scenarios where the processing strategies were not applied.

3.7 Summary

Following the issues found in the literature, the desiderata and scope of the work were presented.

The hypothesis, derived research questions, and methodology were elaborated, materializing the

end goals of the dissertation.
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In this chapter, the work developed is more thoroughly explored. In Section 4.1.1 (p. 30), there

is a brief explanation regarding the data flow from its generation according to different scenarios,

followed by processing using data reduction methods and later storage. Then, in Section 4.1.3 (p.

33), the considered data reduction strategies are detailed, followed by the metrics that will be used

to evaluate them (Section 4.2, p. 36).

4.1 Methodology

The following subsections will detail the flow of the data from its generation to its storage, which,

at a very high level, can be represented by Figure 4.1. An API was implemented, allowing sim-

ulation output parsing and storage and specific data access to the database (further details at later

moments).

Figure 4.1: Simplified representation of data flow
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4.1.1 Data sources

In this work, as previously mentioned, the focus is traffic simulation data, which implies that sim-

ulations are the point of origin of the data. In this specific case, SUMO was the simulator that was

used to run the simulations representing the scenarios to be tested. To be run, each simulation re-

quires a set of mandatory files, with others being optional. The main component is a configuration

file (see 4.1), identifiable by its extension (*.sumocfg or *.sumo.cfg). In the input section, there is

the path to the network file and the route file(s). The network file is the file that describes the traf-

fic elements of a map, including the roads and intersections where the simulated vehicles travel,

being a network considered, on a broader level, a directed graph where each (unidirectional) edge

represents a road and each node a junction. In turn, the route files specify the routes that vehi-

cles can take within the simulated network, containing information about the sequence of edges

or junctions a vehicle follows to navigate from its origin to its destination. Additional files may

also be provided, complementing either the input elements (e.g., traffic light programs, variable

speed signs, bus stops) or output elements, which was the case for the output data considered in

this work - edge-based emissions. The output section details the types of data (and names of files)

to output simulation data (in this case, it was left empty), and in the time segment, it is possible

to specify the time interval associated with the data that will be saved. There is also a gui section

(graphical interface settings), which was omitted as it isn’t as relevant as the other parts of the file.

1 <?xml version="1.0" encoding="iso-8859-1"?>

2 <configuration xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="http://sumo.sf.net/xsd/sumoConfiguration.xsd

\%22\%3E

3 <input> <!-- Input files required to run the simulation -->

4 <net-file value="[NETWORK FILE PATH]"/>

5 <route-files value="[ROUTES/TRIPS FILE PATH]"/>

6 <additional-files value="[FILE PATH]"/>

7 </input>

8

9 <output>

10 [DESIRED OUTPUTS, e.g., <emission-output value="[FILE PATH]" />]

11 </output>

12

13 <time>

14 <begin value="[START TIME]" />

15 <end value="[END TIME]" />

16 </time>

17 </configuration>

Listing 4.1: Barebones structure of a SUMO simulation configuration file

A simulation can be run in SUMO via the command sumo -c [CONFIGURATION FILE],

creating the output XML file(s) according to the configuration. In this study, the two scenarios

(edge-based emission data files) considered had as their basis the same network file (10.1 MB).
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The same number of files were used for each of the scenarios, differing in their size and time span

(begin time at 0 seconds and end time at 600 and 3600 seconds, respectively, divided into intervals

of 200 seconds). The following is the list of files and respective sizes, the first one relative to the

first scenario and the second size displayed pertaining to the second scenario: bus.rou.xml (396.8

kB, 4.9 MB), motorcycle.rou.xml (1.1 MB, 988.5 kB), motorcycle.trips.xml (481.6 kB, 3.6 MB),

passenger.rou.xml (4.9 MB, 61.8 MB), passenger.trips.xml (1.5 MB, 18.9 MB), truck.rou.xml (3.9

MB, 24.4 MB), truck.trips.xml (836.5 kB, 5.3 MB). For illustration purposes, in 4.2, there is a

small sample of data regarding *.trips.xml and *.rou.xml. The simulation input route files used are

available in Zenodo1.

1 <!-- trips -->

2 (...)

3 <routes xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="http://sumo.dlr.de/xsd/routes_file.xsd">

4 <vType id="bus_bus" vClass="bus"/>

5 <trip id="bus0" type="bus_bus" depart="0.00" departLane="best" from="1177262"

to="-1047315"/>

6 <trip id="bus1" type="bus_bus" depart="0.92" departLane="best" from="1019722"

to="-1811060"/>

7 (...)

8 <routes/>

9

10 <!-- routes -->

11 (...)

12 <routes xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="http://sumo.dlr.de/xsd/routes_file.xsd">

13 <vType id="bus_bus" vClass="bus"/>

14 <vehicle id="bus0" type="bus_bus" depart="0.00" departLane="best">

15 <route edges="1177262 1411220 1177256 1019705 1019706 1019718 1063681

1063682 1063509 1062243 1062244 1047385 1051036 1051037 1051038 1051039

-1799613 -1799612 -1799611 -1047316 -1047315"/>

16 </vehicle>

17 <vehicle id="bus1" type="bus_bus" depart="0.92" departLane="best">

18 <route edges="1019722 1051047 1051051 1051053 1019992 2027240 1189956

1401468 1401469 1175992 1176007 1176008 1175978 1175979 1175973 1175974

1188042 1187994 1187995 1187966 1038026 1936552 1254022 1214664

1214665 1214220 1019576 1063944 1063921 1122621 1122616 1122617 1020008

2006681 1016646 2842001 2841998 1016645 1265040 2020470 1187444

1516936 1743656 1810036 1810037 1336745 1336746 1336747 -1927666

-1927663 -1702197 1033915 1033917 1639799 1743655 1658047 1694231

-1811060"/>

19 </vehicle>

20 (...)

21 <routes/>

1SUMO input route files used for experimental testing in Master’s dissertation, DOI: 10.5281/zenodo.8111602
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Listing 4.2: Data examples in trips and routes input XML files

4.1.2 Data processing and storage

As mentioned previously, running a simulation generates the edge-based emission XML file, fol-

lowing the structure shown in Listing 4.3. The final goal is to store the simulation data in a

database, so the XML file needs to be processed. For that effect, a node package was used:

node-expat2, that, when compared with other alternatives (sax-js, node-xml, libxmljs),

it provides better performance and a broader range of features. It is a wrapper for the Expat3

parser, a stream-oriented XML parser library written in C characterized by its flexibility and per-

formance, managing memory efficiently, and, by consequence, excelling in scenarios where files

have dimensions that make it impossible to have them fully loaded in memory.

1 <?xml version="1.0" encoding="UTF-8"?>

2 (...)

3 <meandata xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="http://sumo.dlr.de/xsd/meandata_file.xsd">

4 <interval begin="0.00" end="200.00" id="0">

5 <edge id="-1018425" sampledSeconds="18.97" CO_abs="507.548096" CO2_abs="

368896.428375" HC_abs="5.117649" PMx_abs="60.380983" NOx_abs="

3101.150091" fuel_abs="116068.075388" electricity_abs="0"

6 CO_normed="51.970338" CO2_normed="37773.114004" HC_normed="0.524021"

PMx_normed="6.182705" NOx_normed="317.541963" fuel_normed="

11884.779322" electricity_normed="0"

7 traveltime="17.81" CO_perVeh="476.593572" CO2_perVeh="346398.042154"

HC_perVeh="4.805532" PMx_perVeh="56.698446" NOx_perVeh="2912.016049

" fuel_perVeh="108989.274437" electricity_perVeh="0"/>

8 (...)

9 </interval>

10 (...)

11 </meandata>

Listing 4.3: Edge emissions output file structure

Detailing node-expat inner workings and usage, the parser emits several different events,

being the most relevant ones for this work the ’startElement’, ’endElement’, and ’end’,

corresponding to the detection of elements and end of the file. Therefore, event handlers were

implemented, grouping the data of all edges of a time interval. It is at this stage where data re-

duction techniques are applied, i.e., the focus of this work, which will be thoroughly addressed

later (Section 4.1.3, p. 33). Afterward, when the parser detects the end of the respective in-

terval in the XML file, the data is saved to a PostgreSQL database across several tables of which
2https://github.com/astro/node-expat
3https://libexpat.github.io/
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edge_time_value is the most relevant, having its structure (as well as some example data to fa-

cilitate comprehension) depicted in 4.1 (dictionary of names-values of attributes presented for ease

of understanding; in this work, an ordered list of values was used for representation due to storage

saving reasons). This microservice consisting of file parsing, followed by storage of the data, is

available via the implemented API, more specifically via the endpoint /output/[id]?config=

[config], where id is the id of the simulation (alias for simulation folder name), and config is

a 5-digit binary-like ordered sequence, selecting the desired combination of strategies. From left

to right: original (no strategy), precision reduction, delta encoding, delta keyframe encoding, zero

values removal (further clarification on the strategies in a later subsection - Section 4.1.3, p. 33).

As an illustration, 01100 represents a configuration where precision reduction and delta encoding

are the strategies to be applied to the simulation file data.

Table 4.1: Table edge_time_value schema

id data timeId edgeMapId edgeFeatureId

4654329 "id":"-1018425",(...),"C0_abs":"368900",(...) 709 6 -1018425

4654330 "id":"-1018426",(...),"C0_abs":"737123",(...) 709 6 -1018426

(...) (...) (...) (...) (...)

4670847 "id":"-1018426",(...),"C0_abs":"0",(...) 710 6 -1018425

4670848 "id":"-1018426",(...),"C0_abs":"912527",(...) 710 6 -1018426

4.1.3 Data reduction strategies

In total, four individual reduction strategies were considered in this work in view of saving on

database storage space and, as a consequence, improving database data access performance, as

querying smaller amounts of data is faster by default.

4.1.3.1 Zero values Removal (Z)

The simplest of the strategies is the removal of data that does not provide any relevant information,

being its omission insignificant to the overall usefulness of the data. This is done at the edge level,

being possible cases where intervals are stored as an empty object if all edges in that interval were

deemed not valuable (see 1). An edge is considered insignificant if every attribute (excluding its

id) has a value of 0. The process of detection of such cases of "empty" edges would normally

require verifying each attribute of each edge. However, in the specific case of the type of output

considered (edge-based traffic measures), a value of "0.00" for the attribute sampledSeconds

implies that no data was collected. Thus, this detail allows the verification of only a single field

per edge, representing a relevant improvement.
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Algorithm 1 Zero Removal Algorithm

Require: interval, the interval whose edges are to be evaluated

1: for each edge ∈ interval.edges do
2: if edge.sampledSeconds ̸= 0 then
3: interval.edges← interval.edges\ edge

4: end if
5: end for

4.1.3.2 Delta encoding (D)

Delta encoding consists in storing data in the form of differences of sequential (deltas) data, ben-

efiting from situations where consecutive values are relatively close to each other. In this case,

the concept of a delta is at the interval level, i.e., differences are calculated between the edges

of intervals X and X - 1 (the previous one), as there is only a maximum of one occurrence of a

specific edge (identifiable by its id) per interval. This suggests that in contexts where value oscil-

lations aren’t sudden and occur over time, the data required to represent the original values in this

encoding is smaller in size.

The exception to the values representing the difference relative to the previous interval is the

first interval which does not have a past reference point, being its original value stored. The general

logic for the delta encoding algorithm implemented can be seen in 2.

Algorithm 2 Delta encoding Algorithm

1: function CALCULATEDELTAS(interval, previousInterval)

2: for each edge ∈ interval.edges do
3: interval← getDeltas(edge, prevEdge) ▷ where edge and prevEdge have same ids

4: end for
5: return interval

6: end function
Require: interval, the interval whose edges are to be evaluated

7: prevInterval, tempInterval← null,null

8: if ¬prevInterval then ▷ When there is no previous interval

9: prevInterval← interval

10: else
11: tempInterval← interval ▷ Temporarily storing current interval

12: interval← calculateDeltas(interval, prevInterval)

13: prevInterval← interval ▷ Current interval will be considered as previous in the next

iteration

14: end if
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4.1.3.3 Delta Keyframe encoding (DK)

Delta encoding is based on the differences between consecutive intervals. The technique denom-

inated here, Delta Keyframe encoding, has the same underlying idea differing only in the update

criteria of the reference ("previous") interval (see 3). Instead of updating it every time interval,

that change is only executed each N iterations, and when an update happens, the "original" new

reference values are the ones stored for that interval, representing a slightly less computationally

intensive approach, that is plausible to be more appropriate on cases where variations on the values

of edge attributes over time are more subtle.

Algorithm 3 Delta Keyframe encoding Algorithm

Require: interval, the interval whose edges are to be evaluated

Require: N, constant determining the frequency of the updates

1: prevInterval← null

2: counter← N

3: if counter = N then
4: prevInterval← interval

5: counter← 0

6: else
7: counter← counter+1

8: interval← calculateDeltas(interval, prevInterval) ▷ Same method call as previous

technique

9: end if

4.1.3.4 Precision Reduction (PR)

This strategy attempts to reduce the data size by reducing the number of digits necessary to rep-

resent a value of an attribute in the scientific notation at the cost of a rounding error. The imple-

mented algorithm was obtained through trial and error and is based on the idea that the logarithmic

function is capable of detecting the magnitude of values and, therefore, determining the number

of digits that is possible to omit without incurring significant rounding errors (for this work, a

rounding ratio under 10% is considered acceptable, i.e., the absolute value of the division of the

subtraction of the rounded value from the original one by the original value results in a value under

0.1). In calculateDigits (see below), this concept of magnitude detection through the log

function is applied. For values under 1, the logarithm takes negative values, tending to −∞, being

a lower threshold of -1 enforced.

calculateDigits(x) =

 f loor(logx+1)−2 if x≥ 1

max( f loor( 1
logx +3)−2,−1) if 0 < x < 1

Pseudocode of the implemented algorithm can be observed in 4.
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Algorithm 4 Precision reduction Algorithm

Require: interval, the interval whose edges are to be evaluated

1: for each edge ∈ interval.edges do
2: for each value, property ∈ edge.properties do
3: nAbs← abs(value)

4: nIntegerDigits← f loor(nAbs).toString.length

5: if nAbs ̸= 0 then
6: nDigitsToErase← calculateDigits(nAbs)

7: exponent← nIntegerDigits−nDigitsToErase−1

8: value← value.toExponential(exponent)

9: end if
10: end for
11: end for

By itself, this precision reduction method does not provide an improvement since, on one hand,

a possible string representation of values is considerably worse regarding space requirements when

compared to a numeric encoding and, on the other, the numeric representation, due to how the data

is stored in the database (the data itself is kept under a column of type double precision[]),

implies that every element is stored in the same way despite, for instance, being or not an integer.

Nonetheless, it is plausible that it may improve performance in other cases, e.g., when combined

with the previous techniques: Zero values Removal and Delta or Delta Keyframe encoding. If

values are rounded, they may become closer to each other or identical, which can result in a

situation where two edges are considered alike and, as a consequence, a case where the Zero

values Removal strategy can be applied.

4.2 Evaluation Methodology

To discuss the quality of the proposed techniques, a set of experiments was designed seeking to

evaluate their usefulness and efficiency by allowing comparisons between situations where differ-

ent strategies are applied, not only standalone but also in combinations among themselves and also

with a baseline, i.e., the case where there was no processing of the data besides its extraction from

the simulation data output file. For this evaluation, the following metrics were considered:

• Run time - not only of the techniques themselves but also of the whole processing step, i.e.,

from the moment the file is opened as a fs.ReadStream object until the parser detects its

end ("end" event). The getTime method of the Date4 data type was used.

• Database space usage - queried the database table using psycopg2, a Python-PostgreSQL

database adapter package, using the method pg_table_size(TABLE_NAME) to obtain

4https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date
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its size, allowing direct comparison of the data reduction strategies on storage space effi-

ciency.

• Database access - simulation of (sequences of) real database requests via an API GET end-

point, recording request time, waiting time (time to first byte - TTFB), download time, over-

all time, and content size. Python was the technology used for this purpose, highlighting the

modules http and time.

A basic statistical analysis (minimum-maximum, median, average, and standard deviation)

was conducted for each experiment and metric. Metric differences between experiments were

tested with non-parametric statistical tests (Mann-Whitney U Test for two experiments, and Kruskal-

Wallis Test for more than two experiments) whenever the metric of at least one experiment did not

respect the normal distribution according to the Shapiro-Wilk Test. For the rare situations where

the metrics for all experiments in comparison did respect the normal distribution, it was possible to

use the parametric test (Two Independent Sample T Test). Regardless of the test performed, it was

concluded that there was a statistically significant difference between the experiments whenever

the p-value was equal to or less than 0.05 (5%). Statistical analysis was performed in IBM SPSS

Statistics v295.

Regarding the scenarios chosen, as mentioned in 4.1.1, two distinct contexts were considered

(one with higher traffic density and time span than the other) in attempts to increase the robustness

and generalizability of the results gathered, as higher traffic simulations translate to more exten-

sive data volumes available for collection, therefore inferring the applicability of the methods to

more complex and demanding contexts. Also, to reinforce the validity of the results, each of the

experiments (and for each scenario) was executed 30 times to minimize uncontrollable factors,

such as system resources allocation, background processes, and memory management, that can

cause variations and outliers in the measurements of metrics, such as run times quantification.

5https://www.ibm.com/products/spss-statistics
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Experimental Work
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In this chapter, the experiments elaborated in order to answer the research questions are in-

troduced. Firstly, the experimental setup serving as the basis for the experiments is detailed in

Section 5.1 (p. 39), followed by the experiments themselves, where a comprehensive description

of each test is presented (Section 5.2, p. 39) along with its results (Section 5.3, p. 41). For each

experiment, the respective analysis of the results is showcased. Then, some threats to the valid-

ity of the results are presented (Section 5.4, p. 48), followed by some research question-oriented

remarks.

5.1 Experimental Setup

The experiments were performed on a laptop equipped with an 11th Gen Intel(R) Core(TM) i7-

1165G7 @ 2.80 GHz, 16.0 GB of LPDDR4X RAM @ 4266MHz, running Ubuntu 22.04.2 LTS,

and the technology stack used was containerized through the use of Docker (version 23.0.5). All

experiments were performed with the laptop connected to a power source and with a database

starting state comprised of the minimum amount of data stored, i.e., edge_time_value table

empty unless stated otherwise.

5.2 Experiments

The experiments were divided into two groups, respecting two different dimensions that the work

can be divided into "from output file to database" (experiments 1 through 5, inclusive) and "data

39
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access from a user" perspectives (the remaining experiments). In general terms, the first one has as

the starting point a data XML file and ends with information stored in the database. On the other

hand, in the second group, the database already contains the data, and the experiments replicate

data access operations from an end user (e.g., a data visualization service, or simply a person) that

wants to retrieve the data present in the database.

5.2.1 Group 1

For each scenario, every experiment was run 30 times in succession. A single run starts with a

call of an API GET endpoint, specifying in the request the data file to consider, i.e., the scenario

to assess (due to the fact that each scenario corresponds to one XML file), and the configuration

of the test, i.e., what strategy or combination of strategies that are to be applied. Regarding the

endpoint’s inner workings, the specified file is progressively parsed, and each interval is saved

after going through processing (application of the strategies selected). The response obtained by

the client comprises a JSON object containing performance data (metrics): start and end times of

the run, processing start and end times (indicating the duration impact on the overall run of the

strategies selected), the number of intervals, and edges parsed, and data size per interval sent to

be stored in the database. Then, there exists a 20-second gap that ensures all data has been saved,

before querying the database on the size of the table in question, to which the starting state of

the database is restored (through table truncation), being ready for the iteration (run). Afterward,

having all the iterations elapsed, the JSON files are combined into a single csv file that is used for

analysis purposes, whether by itself or combined with others.

Experiment 1 (E1) - consists in storing the original data relative to the edge attributes and their

values in an ordered string array, eliminating the need to store for each interval for each

edge the correspondence between the attribute name and respective value.

Experiments 2 (E2) - the data is stored without the application of any of the strategies mentioned

in the previous chapter (in 4.1.3), and the values of the attributes are stored as a double

precision array of ordered values, abstracting the correspondence between the names of the

attributes and their respective values. Thus, experiment 2 differs from 1 in the data type

considered for each value: string vs. double.

Experiment 3 (E3) - attempts to assess the performance of the Zero values Removal strategy

(detailed in 4.1.3.1).

Experiments 4.1/4.2 (E4) - experiments 4.X put to the test the performance of the Delta encoding

strategy (detailed in 4.1.3.2) when applied by itself and together with a previous reduction

of the data precision (4.1.3.4) - 4.1 and 4.2, respectively.

Experiments 5.1/5.2 (E5) - experiments 5.X put to the test the performance of the Delta Keyframe

encoding approach (detailed in 4.1.3.3) when used as a standalone method and when com-

bined with a prior precision reduction of the data (4.1.3.4) - 5.1 and 5.2, respectively.
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5.2.2 Group 2

Similarly to group 1, each experiment is tested for each scenario 30 times in succession. In this

group of experiments, a run starts with a call to an API GET endpoint, detailing the experiment to

perform, i.e., indicating if all intervals are to be retrieved at once via a single request or multiples

requests where each one corresponds to one interval, respectively, /output/[id]/interval/

edges or /output/[id]/interval/[begin]/edges, where id is an identifier for data in

storage, and begin is the start of the interval to retrieve. The endpoint passes the request to

the database, performing a SELECT operation to fetch the coveted data, operating over that data

stream if a precision reduction is due, or simply directing it to the client. Once the response of the

GET request is received, metrics related to the request are appended to a csv file that is later used

to analyze the results.

This group of experiments contemplates the following tests:

Experiments 6.1/6.2 (E6) - access to interval data from the database in a single request with (6.1)

and without (6.2) an intermediate reduction of data precision (4.1.3.4) that is performed on

the retrieved database data before redirecting it to the client.

Experiments 7.1/7.2 (E7) - access to interval data from the database in successive requests, one

for each interval, with (7.1) and without (7.2) an intermediate reduction of data precision

(4.1.3.4) that is performed on the retrieved database data before redirecting it to the client.

5.3 Results and Analysis

In this section, the results of the previously described experiments are presented and analyzed for

each of the scenarios for each group.

5.3.1 Group 1 - E1-E5

For this group, the specific data points collected were the following:

• Size-related: size of the table edge_time_value in the database after each experiment

and reported size of the typeorm object for each interval, i.e., the size of the object before

calling the save function which loads the data to the database, and the overall sum of the

interval object sizes.

• Time-related: total time (starting at output file opening and ending at its closure), the

processing time for each interval, i.e., time taken to apply the strategies selected, and the

overall sum of the processing times of intervals.

Regarding size-related metrics, the obtained results can be found primarily in Appendix A,

but also in tables 5.1 and 5.3 for scenario 1 (smaller data volume), and tables 5.2 and 5.4 for

the second scenario (denser traffic across a broader time frame). Comparing the first experiment
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with the second one, the theoretical advantages of the double data type are evident relative to

a string representation: a 26% or 35% decrease in storage requirements, depending on the

scenario, despite the data provided to typeorm (to be saved in the database) in both cases having

equal size (sum of interval objects).

Experiment 3 represents an improvement over number 2, requiring about 33% less space in

the less demanding scenario and only 6% less space in the other one (research question 1). Based

mainly on the analysis of the size of each of the intervals, but also recalling the fact that in exper-

iment 2, there is no data reduction strategy applied while in experiment 3, Zero values Removal

is used, it is possible to infer that this difference is the result of the natural characteristics of the

simulation. In a SUMO traffic simulation, if we assume that we are collecting data from the start

(which is the case in the scenario here contemplated), we are faced with several roads containing

no vehicles (i.e., without data collected) that tends to decrease relative to the initial state. This is

reinforced by the fact that most gains compared to the "original values" case are concentrated in

the first interval. The difference in the saved space between the two scenarios may be related to

the simulation themselves and the length of time separating both scenarios. The first one has three

intervals, and the second has 18. Thus, it is plausible to assume that at least part of the disparity

between the results may be due to the less impact that a single (starting) interval has on, the bigger

picture regarding the more demanding scenario (number 2).

Experiments 4.1, 4.2, 5.1 and 5.2 have all approximate database space requirements, being

slightly worse than those of the Zero values Removal strategy test in both scenarios, pointing to

the ineffectiveness of the Delta encoding strategy in the size reduction of this kind of data (research

question 3). These results may be explained by assuming volatility in the data, i.e., consecutive

time intervals do not share the same values for the attribute. Nonetheless, despite the worse results

when taking into consideration the "base case" (experiment 2, where no changes to the data are

made) in that measurement, some remarks can be stated. Comparing versions 1 and 2 of the

experiments, it is possible to notice an improvement of 24% (4.X) and 29% (5.X) for scenario

1, 38% (4.X) and 35% (5.X) for scenario 2, respectively, on the size of the interval data sent to

be stored. This may suggest that the volatility mentioned as a reason for the ineffectiveness of

the base technique is relatively small and that by performing approximations, those oscillations

diminish or become nonexistent. Besides, the larger impact on the biggest of the two volumes of

data (scenario 2) may indicate that the higher the density of the data, the higher the percentage

reduction that can be achieved through the Precision Reduction technique (research question 2).

The discrepancies in the improvements (from experiment 4.2 to 5.2 a 5% increase in scenario 1

and a decrease of 3% in scenario 2) may be a consequence of the intrinsic characteristics of the

simulations (e.g. vehicle routes), verifiable in further research with a more comprehensive set of

scenarios.

Overall, this Precision Reduction strategy (research question 2) which, as mentioned previ-

ously, is the only difference between the two versions of each experiment, appears to represent a

good method to reduce the type of simulation data being considered, not translating to the actual

database storage usage due to the fact that a number, despite not having any decimal places (as a
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result of the precision reduction) is stored in the same way as one that does, given the data structure

in use (double precision array).

An overview of the evolution (per interval) of the interval object size for scenario two can be

seen in Figure A.1 (scenario one, due to only having three intervals, was deemed not appropri-

ate for this type of representation). To note the periodic spikes in experiments 5.1 and 5.2 - in

concordance with their theoretical behavior -, as well as the considerable size differences between

experiments 4.2 and 5.2, and the rest, emphasizing the impact of the precision reduction (research

question 5).

Table 5.1: Database size (in bytes) for table edge_time_value after each experiment run -
scenario 1

N Min-Max Mdn M SD p (a)

Exp 1 30 16228352 16228352 0

H(6) = 209.000
p < .001

Exp 2 30 12058624 12058624 0
Exp 3 30 8060928 8060928 0

Exp 4.1 30 12263424 12263424 0
Exp 4.2 30 12247040 12247040 0
Exp 5.1 30 12574720 12574720 0
Exp 5.2 30 12574720 12574720 0

(a) Kruskal-Wallis H Test significance value.

Table 5.2: Database size (in bytes) for table edge_time_value after each experiment run -
scenario 2

N Min-Max Mdn M SD p (a)

Exp 1 30 120668160 120668160 0

H(6) = 209.000
p < .001

Exp 2 30 77881344 77881344 0
Exp 3 30 72884224 72884224 0

Exp 4.1 30 80502784 80502784 0
Exp 4.2 30 80486400 80486400 0
Exp 5.1 30 80674816 80674816 0
Exp 5.2 30 80707584 80707584 0

(a) Kruskal-Wallis H Test significance value.

Focusing on the time cost that is inherent to extracting data from the initial file, applying to it

data reduction strategies, and saving it to the database, the experiments’ outcomes are summarized

in tables 5.5 and 5.7 for the first scenario, and 5.6 and 5.8 for the other.

Establishing a comparison between the three first experiments, it can be noted a significant

difference between the results of the total time and the total (strategy) processing times (time from

when the output data file was open for reading until its end and the sum of times that are related to

the processing of data when applying the reduction techniques) - see Figures A.2, A.3, and Figures

5.1 and A.4. In scenario 1, while the average total processing time is identical, varying only 1 or
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Table 5.3: Interval object size sum for each experiment (in bytes) - scenario 1

N Min-Max Mdn M SD p

Exp 1 30 5583957 16228352 0

H(6) = 209.000
p < .001

Exp 2 30 5583957 5583957 0
Exp 3 30 4470092 4470092 0

Exp 4.1 30 5427090 5427090 0
Exp 4.2 30 4097653 4097653 0
Exp 5.1 30 5191900 5191900 0
Exp 5.2 30 3662324 3662324 0

(a) Kruskal-Wallis H Test significance value.

Table 5.4: Interval object size sum for each experiment (in bytes) - scenario 2

N Min-Max Mdn M SD p

Exp 1 30 44479901 44479901 0

H(6) = 209.000
p < .001

Exp 2 30 44479901 44479901 0
Exp 3 30 43127499 43127499 0

Exp 4.1 30 40423777 40423777 0
Exp 4.2 30 25097412 25097412 0
Exp 5.1 30 41355837 41355837 0
Exp 5.2 30 26752127 26752127 0

(a) Kruskal-Wallis H Test significance value.

2 milliseconds on average, a difference that may even be dismissed if taken as consequences

of uncontrollable factors (e.g. accuracy of time measurements, background processes affecting

performance), on the results of the total time this disparity is visible between the experiments 1
and 2 and experiment 3. A plausible cause may be the resulting data size which in experiments

1 and 2 is considerably higher, therefore requiring more time to save to the database. The same

tendency is present in scenario 2: total times are close between experiments 1 and 2 whereas

experiment 3 is more time efficient (research question 1). A contrast of less than 4% can be

observed among them regarding the processing time.

Experiments 4.1, 4.2 time-related evaluation metrics results point to higher processing times

(42% and 23% more for the respective scenarios) and consequently to higher total times when

employing precision reduction in both scenarios (research questions 3 and 5). This may be ex-

plained as the added cost of the rounding algorithm, which becomes a less impactful factor on the

collective time in bigger data contexts. The experiments 5.1 and 5.2 follow the same pattern, being

the impact of rounding the values a boost of 9% and 11% (first and second scenarios) in the total

processing time, suggesting that a periodic reference change on delta calculation (Keyframe Delta

encoding) may not only achieve the better-resulting data sizes but also at a better run time which

does not appear to be, at least as great, influenced by the starting data volume (research questions

4 and 5).
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An overview of the evolution (per interval) of the interval processing time for scenario two

can be seen in Figure A.5 (scenario one, due to only having three intervals, was deemed not

appropriate for this type of representation). Worthy of mention are the spikes in experiments 4.X
and 5.X, from the first (0) to the second interval (1), according to the corresponding delta encoding

algorithm described behavior, and the proximity of experiments 1, 2 and 3.

Table 5.5: Total run time - scenario 1

N Min-Max Mdn M SD p (a)

Exp 1 30 7371-8355 7669 7671.53 227.498

H(6) = 188.155
p < .001

Exp 2 30 6402-8563 7924 7886.67 350.490
Exp 3 30 5131-5698 5226 5258.87 118.454

Exp 4.1 30 8577-9164 8853 8842.00 141.280
Exp 4.2 30 9147-10828 9446 9530.80 354.253
Exp 5.1 30 8105-9380 8613 8637.47 281.236
Exp 5.2 30 8318-9513 8922 8864.57 270.665

(a) Kruskal-Wallis H Test significance value.

Table 5.6: Total run time - scenario 2

N Min-Max Mdn M SD p (a)

Exp 1 30 43731-69305 64446 63816.90 4225.613

H(6) = 192.854
p < .001

Exp 2 30 60046-67701 64409.5 64633.13 1573.008
Exp 3 30 52675-60925 58509.5 57721.90 2170.222

Exp 4.1 30 70742-79304 76371.5 76286.80 1652.928
Exp 4.2 30 71129-87878 83531 83250.40 3006.117
Exp 5.1 30 65492-73209 70473.5 69985.47 1856.832
Exp 5.2 30 60106-77194 73654 73113.67 2762.740

(a) Kruskal-Wallis H Test significance value.

Table 5.7: Total strategies processing time - scenario 1

N Min-Max Mdn M SD p (a)

Exp 1 30 111-164 118 121.73 12.668

H(6) = 183.067
p < .001

Exp 2 30 111-129 117 118.03 4.687
Exp 3 30 115-134 119 120.27 4.394

Exp 4.1 30 991-1290 1033 1101.73 115.889
Exp 4.2 30 1333-1790 1562 1561.57 73.753
Exp 5.1 30 1115-1220 1143.50 1146.63 24.477
Exp 5.2 30 1195-1383 1233.50 1250.93 51.855

(a) Kruskal-Wallis H Test significance value.
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Table 5.8: Total strategies processing time - scenario 2

N Min-Max Mdn M SD p (a)

Exp 1 30 1016-1208 1050 1058.57 33.944

H(6) = 196.221
p < .001

Exp 2 30 1046-1135 1081 1084.33 19.742
Exp 3 30 1032-1139 1095 1094.30 20.428

Exp 4.1 30 12689-14036 13383.5 13489.80 324.440
Exp 4.2 30 14144-17241 16509.5 16587.50 571.860
Exp 5.1 30 9358-11109 10020.5 10094.50 387.038
Exp 5.2 30 9625-11732 11277.5 11247.63 346.984

(a) Kruskal-Wallis H Test significance value.

Figure 5.1: Processing and Total time ratio - scenario 1

5.3.2 Group 2 - E6-E7

The recorded measurements are request time (curl:time_connect in milliseconds, TCP three-

way handshake from the client’s point of view), waiting time (which can be understood as being

the time to first byte, TTFB, also measured in milliseconds), content size (in bytes), download and

total times (both in milliseconds as well).

Scenario 1 and 2 findings can be found mostly in Appendix B, but also in tables 5.9 and 5.11,

and 5.10 and 5.12. Comparing experiment 6.1 with 6.2, i.e., the impact that data reduction via

rounding has on the size of data that is transferred to the client (research question 2), for the first

scenario, it is possible to verify that request and waiting times are similar in the two situations, be-

ing higher for the first run, possibly as a consequence of the initial connection handshake, whereas

the following runs may be using the already open connection for a faster response. When it comes
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to the content size, by reducing the precision, the data volume transmitted is 47% lower at the cost

of a slightly higher download time (around 8%), which is the result of the extra load that execution

of the data reduction algorithm entails. Refer to Figures 5.2 and 5.3 for a visual representation of

that trade-off for scenario 1, or to the Appendix B, Figures B.1 and B.2 for the case of scenario

2. The variation of the total time, as the name suggests, reflects the variations of the other time

metrics.

The same tendencies transpire for experiments 7.X in both scenarios. The higher request and

waiting times are differences to take into account between 6.X and 7.X (research question 6).

These dissimilarities could be attributed to several factors. The storage of the interval details in

a separate table may introduce an excessive overhead when a query that requires an interval time

filter (WHERE clause) is performed. Besides, contrary to experiments 6.1 and 6.2, the consecutive

requests are always different (as on 7.X every run consists of a sequence of requests that are the

successive intervals), which might nullify possibly existing caching mechanisms. Furthermore,

the general increased times between scenarios are assumed to be a result of the difference in data

volume.

Figure 5.2: Sum of request content sizes - scenario 1

Overall, the experiments suggest that precision reduction is a positive trade-off of sizeable

improvements in the data sizes to be transmitted at the cost of minor extra time to execute the

algorithm (research question 7), and that access to simulation data stored in the database through

interval requests, i.e., one request per interval, entails an overhead but does not appear to be size-

able enough to reject the possibility that for certain use cases where the interval data needs are

separated by gaps (e.g. second interval only needed 5 seconds after the first one), it is more suit-

able than the alternative option where all data is requested at once, representing overall less time

but a higher upfront load.
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Figure 5.3: Average Download Times - scenario 1

Table 5.9: Response content size - scenario 1

N Min-Max Mdn M SD p (a)

Exp 6.1 30 3407347 3407347 0
H(3) = 119.000

p < .001
Exp 6.2 30 1813566 1813566 0
Exp 7.1 30 3407347 3407347 0
Exp 7.2 30 1813566 1813566 0

(a) Kruskal-Wallis H Test significance value.

Table 5.10: Response content size - scenario 2

N Min-Max Mdn M SD p (a)

Exp 6.1 30 30671289 30671289 0
H(3) = 119.000

p < .001
Exp 6.2 30 15604377 15604377 0
Exp 7.1 30 30671289 30671289 0
Exp 7.2 30 15604377 15604377 0

(a) Kruskal-Wallis H Test significance value.

5.4 Validity Threats

This subsection has as its objective to point out any threats that might have influenced the work

developed, in particular, the results and derived conclusions. Possible factors that pose a threat to

the validity of the results are the following:

Hardware and environment - it is possible that the hardware and environmental conditions may
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Table 5.11: Response download time - scenario 1

N Min-Max Mdn M SD p (a)

Exp 6.1 30 338.236-484.813 355.554 365.476 29.923
H(3) = 60.671

p < .001
Exp 6.2 30 378.803-440.805 389.298 396.066 16.208
Exp 7.1 30 339.587-498.451 350.792 360.604 31.432
Exp 7.2 30 379.696-467.085 401.917 412.819 23.613

(a) Kruskal-Wallis H Test significance value.

Table 5.12: Response download time - scenario 2

N Min-Max Mdn M SD p (a)

Exp 6.1 30 2679.052-3908.519 2755.155 2949.700 342.647
H(3) = 61.250

p < .001
Exp 6.2 30 3149.105-4356.138 3633.634 3612.680 277.274
Exp 7.1 30 2879.469-3796.519 2975.359 3107.211 251.769
Exp 7.2 30 3330.003-4095.097 3663.255 3619.627 253.185

(a) Kruskal-Wallis H Test significance value.

have had an impact on the outcomes, influencing, e.g., running times. For instance, it is

plausible to consider both a situation where the CPU momentarily boosted its clocks and

another of decreased performance due to thermal throttling (a mechanism to prevent over-

heating by lowering performance). It was in an attempt to minimize these factors that 30

runs were conducted for each experiment, as well as a statistical analysis to achieve a certain

level of confidence in the results.

Reproducibility challenges - the specific hardware and software configurations of the system

may prove an obstacle to reproducing the experiments accurately, thus limiting the ability

to validate or verify the results.

Implementation - the implementation of the algorithms and the design of the experiments may

not have been the most optimal, leaving room for further improvements. Furthermore, it is

possible that the metrics considered were not the most effective in attempting to prove the

hypothesis and answer the derived research questions.

5.5 Research Questions-oriented remarks

The experiments carried out had the objective of answering the research questions (RQs) intro-

duced in Section 3.5, p. 27 and, by extension, validating the suggested hypothesis (Section 3.4, p.

26). A concise list of remarks for each of the research questions is presented:

RQ1: What data can be considered non-essential, and what are the storage space impacts

and respective processing time cost to remove that data?
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Tackled with the Zero values Removal strategy and put into practice in experiment 3 in partic-

ular. Showed overall very significant improvements both at a size and time cost level compared to

a scenario where no strategies were used.

RQ2: What are the storage space impact and respective processing time cost if data values

have their precision reduced?

The Precision Reduction strategy addresses this question and, as explained in Section 4.1.3.4

(p. 35), by itself does not provide any database storage improvements. Nonetheless, other experi-

ments suggest that it can reduce the size of data to be transmitted at a reasonable time cost.

RQ3: What are the storage space impact and respective processing time cost if data values

are stored not as their original values but as variations relative to a previous instant (delta)?

Experiment 4.1 handles this topic with the Delta encoding strategy, which proved ineffective

at reducing data sizes while entailing heavy processing time costs.

RQ4: How do the storage space and respective processing time get affected by modifying

RQ3 by calculating the variation relative to a regularly changing reference point instead of always

considering the previous element as the reference?

The Delta Keyframe encoding strategy answers this question through experiment 5.1, showing

performance results approximate to those of Delta encoding, proving itself also not fit for reducing

data size while carrying substantial processing costs.

RQ5: Does the combination of RQ2 with RQ3 and RQ4 produce better results than their

original formulations?

Experiments 4.2 and 5.2 provide the variations where precision reduction is applied, showing

size reduction improvements on the data to be stored compared to the base algorithm versions at a

relatively low time cost, even though the final database space required remained identical.

RQ6: When interval traffic data in a database is accessed, what are the trade-offs between

retrieving all data at once and subdividing that operation into multiple consecutive and lighter

requests?

Experiments 6.1 and 7.1, respectively, illustrate both situations, revealing higher overall times

for the second one. Still, depending on the use case, it may be considered more appropriate than

the first situation (all data at once).

RQ7: Does the combination of RQ2 with RQ6 represent a performance improvement over the

standard RQ6?

Experiments 6.2 and 7.2 add the precision reduction component, presenting significant size

savings in transmitted data with an added relatively low time cost.
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In the previous chapter, the experimental results obtained were presented and analyzed. This

chapter focuses on presenting the conclusions of the work developed (Section 6.1, p. 51), and in

Section 6.2, p. 52, some possibilities for future work are detailed.

6.1 Conclusions

Technological advancements have kept pace with the challenges of today’s world, which has seen

its population increase and has profoundly impacted many aspects of society. In this context, the

concept of a Smart City emerged. It is seen as using Information and Communication Technologies

(ICT) to address new challenges and make decisions on economic, social, and environmental

policies that promote urban sustainability and enhance citizens’ quality of life.

One of the many aspects covered by the term Smart City is the urban mobility domain. Urban

mobility analysis requires diverse sources of spatiotemporal data, from real-world sensors to sim-

ulation outputs, which poses technical challenges. These challenges include the time and location

dimensions, velocity of data, and large simulation file sizes.

The literature review evidenced the importance of databases and data processing in enabling

future uses in the context of the current ever-increasing data volumes. Moreover, it revealed a lack

of research focusing on reduction of data originating from urban mobility traffic simulations.

This dissertation addresses that gap in the literature by implementing some data reduction

strategies that attempt to optimize storage space utilization and data access performance and eval-

uating their performance in an effort to test the presented hypothesis (Section 3.4, p. 26), which

was then deconstructed into a set of research questions (Section 3.5, p. 27). Experiments were

designed and carried out using the developed API, confronting the research questions, and their

results were presented and analyzed. Non-essential value removal proved effective as a standalone

51
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strategy both in time and size-related metrics, while delta/keyframe delta encoding obtained better

space results when combined with the precision reduction method. Despite these results providing

valuable insight to confirm the hypothesis, during the development of the work, other combina-

tions of ideas that were deemed worthy of testing to further solidify the conclusions of this study

emerged. However, due to time-related constraints, they were forced to be left as possibilities for

future work.

Overall, and despite the identified shortcomings, we believe that this work is a valuable contri-

bution to the state-of-the-art, as it addresses storage and processing efficiency in a traffic simulation

data context, which was found to represent a less developed domain in the literature.

6.2 Future Work

Data reduction is a very encompassing field, and only a very small segment was tackled in this

dissertation. As a direct next step, future work could represent further experimentation, using

other combinations of the strategies implemented that weren’t able to be tested for this work, such

as the combination of Precision Reduction and Delta Encoding variations with the Zero values

Removal algorithm, and varying the order of application of the data reduction strategies. Other

studies could focus on a specific method, for instance, analyzing the impact of different frequen-

cies of variation of the reference point in the Delta Keyframe encoding algorithm, or compare

other precision reduction alternatives. Additionally, further testing the obtained results with other

simulation scenarios, especially in the sense of higher complexity extending further in time and/or

being characterized by heavier traffic conditions, could be carried out, as well as the development

of other strategies and comparison with the ones covered in this work.
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Appendix A

Group 1

A.1 Space

A.1.1 Interval Object Size in bytes

A.1.1.1 Scenario 1

Table A.1: Interval 0

N Min-Max Mdn M SD p (a)

Exp 1 30 1595670 1595670 0

H(6) = 209.000

p < .001

Exp 2 30 1595670 1595670 0

Exp 3 30 1065167 1065167 0

Exp 4.1 30 1595683 1595683 0

Exp 4.2 30 1353119 1353119 0

Exp 5.1 30 1624742 1624742 0

Exp 5.2 30 1383178 1383178 0

(a) Kruskal-Wallis H Test significance value.
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Table A.2: Interval 1

N Min-Max Mdn M SD p (a)

Exp 1 30 1950668 1950668 0

H(6) = 209.000

p < .001

Exp 2 30 1950668 1950668 0

Exp 3 30 1634979 1634979 0

Exp 4.1 30 1950681 1950681 0

Exp 4.2 30 1950681 1950681 0

Exp 5.1 30 1734794 1734794 0

Exp 5.2 30 1117978 1117978 0

(a) Kruskal-Wallis H Test significance value.

Table A.3: Interval 2

N Min-Max Mdn M SD p (a)

Exp 1 30 2037619 2037619 0

H(6) = 209.000

p < .001

Exp 2 30 2037619 2037619 0

Exp 3 30 1769946 1769946 0

Exp 4.1 30 1880726 1880726 0

Exp 4.2 30 1176141 1176141 0

Exp 5.1 30 1831364 1831364 0

Exp 5.2 30 1161168 1161168 0

(a) Kruskal-Wallis H Test significance value.

A.1.1.2 Scenario 2

Table A.4: Interval 0

N Min-Max Mdn M SD p (a)

Exp 1 30 2275346 2275346 0

H(6) = 209.000

p < .001

Exp 2 30 2275346 2275346 0

Exp 3 30 2146414 2146414 0

Exp 4.1 30 2275361 2275361 0

Exp 4.2 30 1762597 1762597 0

Exp 5.1 30 2305420 2305420 0

Exp 5.2 30 1792656 1792656 0

(a) Kruskal-Wallis H Test significance value.
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Table A.5: Interval 1

N Min-Max Mdn M SD p (a)

Exp 1 30 2409854 2409854 0

H(6) = 209.000

p < .001

Exp 2 30 2409854 2409854 0

Exp 3 30 2341313 2341313 0

Exp 4.1 30 2409869 2409869 0

Exp 4.2 30 1828930 1828930 0

Exp 5.1 30 2127413 2127413 0

Exp 5.2 30 1281021 1281021 0

(a) Kruskal-Wallis H Test significance value.

Table A.6: Interval 2

N Min-Max Mdn M SD p (a)

Exp 1 30 2436965 2436965 0

H(6) = 209.000

p < .001

Exp 2 30 2436965 2436965 0

Exp 3 30 2375940 2375940 0

Exp 4.1 30 2168378 2168378 0

Exp 4.2 30 1298092 1298092 0

Exp 5.1 30 2153641 2153641 0

Exp 5.2 30 1299815 1299815 0

(a) Kruskal-Wallis H Test significance value.

Table A.7: Interval 3

N Min-Max Mdn M SD p (a)

Exp 1 30 2449088 2449088 0

H(6) = 209.000

p < .001

Exp 2 30 2449088 2449088 0

Exp 3 30 2388956 2388956 0

Exp 4.1 30 2193264 2193264 0

Exp 4.2 30 1311988 1311988 0

Exp 5.1 30 2176007 2176007 0

Exp 5.2 30 1317900 1317900 0

(a) Kruskal-Wallis H Test significance value.
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Table A.8: Interval 4

N Min-Max Mdn M SD p (a)

Exp 1 30 2447073 2447073 0

H(6) = 209.000

p < .001

Exp 2 30 2447073 2447073 0

Exp 3 30 2379244 2379244 0

Exp 4.1 30 2201943 2201943 0

Exp 4.2 30 1319958 1319958 0

Exp 5.1 30 2477147 2477147 0

Exp 5.2 30 1860889 1860889 0

(a) Kruskal-Wallis H Test significance value.

Table A.9: Interval 5

N Min-Max Mdn M SD p (a)

Exp 1 30 2447303 2447303 0

H(6) = 209.000

p < .001

Exp 2 30 2447303 2447303 0

Exp 3 30 2375099 2375099 0

Exp 4.1 30 2207083 2207083 0

Exp 4.2 30 1324745 1324745 0

Exp 5.1 30 2207070 2207070 0

Exp 5.2 30 1324732 1324732 0

(a) Kruskal-Wallis H Test significance value.

Table A.10: Interval 6

N Min-Max Mdn M SD p (a)

Exp 1 30 2457210 2457210 0

H(6) = 209.000

p < .001

Exp 2 30 2457210 2457210 0

Exp 3 30 2385875 2385875 0

Exp 4.1 30 2214467 2214467 0

Exp 4.2 30 1332349 1332349 0

Exp 5.1 30 2228811 2228811 0

Exp 5.2 30 1348157 1348157 0

(a) Kruskal-Wallis H Test significance value.



A.1 Space 63

Table A.11: Interval 7

N Min-Max Mdn M SD p (a)

Exp 1 30 2465520 2465520 0

H(6) = 209.000

p < .001

Exp 2 30 2465520 2465520 0

Exp 3 30 2392796 2392796 0

Exp 4.1 30 2223862 2223862 0

Exp 4.2 30 1340025 1340025 0

Exp 5.1 30 2242928 2242928 0

Exp 5.2 30 1361564 1361564 0

(a) Kruskal-Wallis H Test significance value.

Table A.12: Interval 8

N Min-Max Mdn M SD p (a)

Exp 1 30 2465723 2465723 0

H(6) = 209.000

p < .001

Exp 2 30 2465723 2465723 0

Exp 3 30 2388987 2388987 0

Exp 4.1 30 2229234 2229234 0

Exp 4.2 30 1344131 1344131 0

Exp 5.1 30 2495797 2495797 0

Exp 5.2 30 1851266 1851266 0

(a) Kruskal-Wallis H Test significance value.

Table A.13: Interval 9

N Min-Max Mdn M SD p (a)

Exp 1 30 2472729 2472729 0

H(6) = 209.000

p < .001

Exp 2 30 2472729 2472729 0

Exp 3 30 2394533 2394533 0

Exp 4.1 30 2234024 2234024 0

Exp 4.2 30 1347878 1347878 0

Exp 5.1 30 2234011 2234011 0

Exp 5.2 30 1347865 1347865 0

(a) Kruskal-Wallis H Test significance value.
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Table A.14: Interval 10

N Min-Max Mdn M SD p (a)

Exp 1 30 2479762 2479762 0

H(6) = 209.000

p < .001

Exp 2 30 2479762 2479762 0

Exp 3 30 2399006 2399006 0

Exp 4.1 30 2240606 2240606 0

Exp 4.2 30 1352331 1352331 0

Exp 5.1 30 2250587 2250587 0

Exp 5.2 30 1368942 1368942 0

(a) Kruskal-Wallis H Test significance value.

Table A.15: Interval 11

N Min-Max Mdn M SD p (a)

Exp 1 30 2492130 2492130 0

H(6) = 209.000

p < .001

Exp 2 30 2492130 2492130 0

Exp 3 30 2414146 2414146 0

Exp 4.1 30 2246684 2246684 0

Exp 4.2 30 1355479 1355479 0

Exp 5.1 30 2263845 2263845 0

Exp 5.2 30 1381596 1381596 0

(a) Kruskal-Wallis H Test significance value.

Table A.16: Interval 12

N Min-Max Mdn M SD p (a)

Exp 1 30 2508757 2508757 0

H(6) = 209.000

p < .001

Exp 2 30 2508757 2508757 0

Exp 3 30 2435706 2435706 0

Exp 4.1 30 2251069 2251069 0

Exp 4.2 30 1356280 1356280 0

Exp 5.1 30 2538831 2538831 0

Exp 5.2 30 1854562 1854562 0

(a) Kruskal-Wallis H Test significance value.



A.1 Space 65

Table A.17: Interval 13

N Min-Max Mdn M SD p (a)

Exp 1 30 2519734 2519734 0

H(6) = 209.000

p < .001

Exp 2 30 2519734 2519734 0

Exp 3 30 2446617 2446617 0

Exp 4.1 30 2258328 2258328 0

Exp 4.2 30 1362577 1362577 0

Exp 5.1 30 2258315 2258315 0

Exp 5.2 30 1362564 1362564 0

(a) Kruskal-Wallis H Test significance value.

Table A.18: Interval 14

N Min-Max Mdn M SD p (a)

Exp 1 30 2532044 2532044 0

H(6) = 209.000

p < .001

Exp 2 30 2532044 2532044 0

Exp 3 30 2463358 2463358 0

Exp 4.1 30 2264923 2264923 0

Exp 4.2 30 1364667 1364667 0

Exp 5.1 30 2277540 2277540 0

Exp 5.2 30 1384885 1384885 0

(a) Kruskal-Wallis H Test significance value.

Table A.19: Interval 15

N Min-Max Mdn M SD p (a)

Exp 1 30 2533120 2533120 0

H(6) = 209.000

p < .001

Exp 2 30 2533120 2533120 0

Exp 3 30 2458900 2458900 0

Exp 4.1 30 2263567 2263567 0

Exp 4.2 30 1361521 1361521 0

Exp 5.1 30 2281007 2281007 0

Exp 5.2 30 1393084 1393084 0

(a) Kruskal-Wallis H Test significance value.
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Table A.20: Interval 16

N Min-Max Mdn M SD p (a)

Exp 1 30 2535884 2535884 0

H(6) = 209.000

p < .001

Exp 2 30 2535884 2535884 0

Exp 3 30 2459666 2459666 0

Exp 4.1 30 2269593 2269593 0

Exp 4.2 30 1366747 1366747 0

Exp 5.1 30 2565958 2565958 0

Exp 5.2 30 1853525 1853525 0

(a) Kruskal-Wallis H Test significance value.

Table A.21: Interval 17

N Min-Max Mdn M SD p (a)

Exp 1 30 2551659 2551659 0

H(6) = 209.000

p < .001

Exp 2 30 2551659 2551659 0

Exp 3 30 2480943 2480943 0

Exp 4.1 30 2271522 2271522 0

Exp 4.2 30 1367117 1367117 0

Exp 5.1 30 2271509 2271509 0

Exp 5.2 30 1367104 1367104 0

(a) Kruskal-Wallis H Test significance value.
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Figure A.1: Interval Object Sizes - scenario 2

A.2 Time

A.2.1 Total Run Time, in ms

A.2.1.1 Scenario 1

N Min-Max Mdn M SD p (a)

Exp 1 30 7371-8355 7669 7671.53 227.498
H(2) = 66.281

p < .001
Exp 2 30 6402-8563 7924 7886.67 350.490

Exp 3 30 5131-5698 5226 5258.87 118.454

(a) Kruskal-Wallis H Test significance value.

N Min-Max Mdn M SD p (b)

Exp 4.1 30 8577-9164 8853 8842.00 141.280 Z = -6.639

p < .001Exp 4.2 30 9147-10828 9446 9530.80 354.253

(b) Mann-Whitney U Test significance value.
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N Min-Max Mdn M SD p (c)

Exp 5.1 30 8105-9380 8613 8637.47 281.236 t(58) = -3.187

p = .002Exp 5.2 30 8318-9513 8922 8864.57 270.665

(c) Two independent sample T test significance values.

A.2.1.2 Scenario 2

N Min-Max Mdn M SD p (a)

Exp 1 30 43731-69305 64446 63816.90 4225.613
H(2) = 55.381

p < .001
Exp 2 30 60046-67701 64409.5 64633.13 1573.008

Exp 3 30 52675-60925 58509.5 57721.90 2170.222

(a) Kruskal-Wallis H Test significance value.

N Min-Max Mdn M SD p (b)

Exp 4.1 30 70742-79304 76371.5 76286.80 1652.928 Z = -6.224

p < .001Exp 4.2 30 71129-87878 83531 83250.40 3006.117

(b) Mann-Whitney U Test significance value.

N Min-Max Mdn M SD p (b)

Exp 5.1 30 65492-73209 70473.5 69985.47 1856.832 Z = -5.751

p < .001Exp 5.2 30 60106-77194 73654 73113.67 2762.740

(b) Mann-Whitney U Test significance value.

A.2.2 Total Processing Time (sum of interval processing in ms)

A.2.2.1 Scenario 1

N Min-Max Mdn M SD p (a)

Exp 1 30 111-164 118 121.73 12.668
H(2) = 4.772

p = .092
Exp 2 30 111-129 117 118.03 4.687

Exp 3 30 115-134 119 120.27 4.394

(a) Kruskal-Wallis H Test significance value.
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N Min-Max Mdn M SD p (b)

Exp 4.1 30 991-1290 1033 1101.73 115.889 Z = -6.654

p < .001Exp 4.2 30 1333-1790 1562 1561.57 73.753

(b) Mann-Whitney U Test significance value.

N Min-Max Mdn M SD p (b)

Exp 5.1 30 1115-1220 1143.50 1143.50 24.477 Z = -6.439

p < .001Exp 5.2 30 1195-1383 1233.50 1250.93 51.855

(b) Mann-Whitney U Test significance value.

Figure A.2: Processing time sum - scenario 2

A.2.2.2 Scenario 2

N Min-Max Mdn M SD p (a)

Exp 1 30 1016-1208 1050 1058.57 33.944
H(2) = 35.636

p = .092
Exp 2 30 1046-1135 1081 1084.33 19.742

Exp 3 30 1032-1139 1095 1094.30 20.428

(a) Kruskal-Wallis H Test significance value.
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N Min-Max Mdn M SD p (b)

Exp 4.1 30 12689-14036 13383.5 13489.80 324.440 Z = -6.653

p < .001Exp 4.2 30 14144-17241 16509.5 16587.50 571.860

(b) Mann-Whitney U Test significance value.

N Min-Max Mdn M SD p (b)

Exp 5.1 30 9358-11109 10020.5 10094.50 387.038 Z = -6.195

p < .001Exp 5.2 30 9625-11732 11277.5 11247.63 346.984

(b) Mann-Whitney U Test significance value.

Figure A.3: Processing time sum - scenario 2
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Figure A.4: Processing and Total time ratio - scenario 2

A.2.3 Processing Time per interval in ms

A.2.3.1 Scenario 1

Table A.22: Interval 0

N Min-Max Mdn M SD p (a)

Exp 1 30 32-60 34 35.20 5.248

H(6) = 177.502

p < .001

Exp 2 30 32-37 34 34.23 1.165

Exp 3 30 34-47 36 36.17 2.291

Exp 4.1 30 33-41 35 35.27 1.680

Exp 4.2 30 63-85 69 69.40 5.035

Exp 5.1 30 59-79 63 63.03 3.567

Exp 5.2 30 87-123 92 94.60 7.744

(a) Kruskal-Wallis H Test significance value.
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Table A.23: Interval 1

N Min-Max Mdn M SD p (a)

Exp 1 30 36-65 38 39.13 5.015

H(6) = 187.358

p < .001

Exp 2 30 36-42 38 38.47 1.432

Exp 3 30 38-44 40 40.27 1.258

Exp 4.1 30 307-574 326 402.50 114.004

Exp 4.2 30 512-927 820 814.43 63.454

Exp 5.1 30 515-573 531.5 533.43 11.343

Exp 5.2 30 548-631 565 571.50 21.197

(a) Kruskal-Wallis H Test significance value.

Table A.24: Interval 2

N Min-Max Mdn M SD p (a)

Exp 1 30 42-79 45 47.40 7.103

H(6) = 185.658

p < .001

Exp 2 30 41-57 43.5 45.33 3.708

Exp 3 30 42-54 43 43.83 43.83

Exp 4.1 30 643-696 663 663.97 16.091

Exp 4.2 30 617-872 663 677.73 52.800

Exp 5.1 30 524-580 553 550.17 16.028

Exp 5.2 30 551-659 578.5 584.83 27.784

(a) Kruskal-Wallis H Test significance value.

A.2.3.2 Scenario 2

Table A.25: Interval 0

N Min-Max Mdn M SD p (a)

Exp 1 30 45-56 49.5 49.53 2.224

H(6) = 171.638

p < .001

Exp 2 30 43-62 51 52.03 4.986

Exp 3 30 45-59 51 51.50 2.751

Exp 4.1 30 43-77 49 50.50 5.877

Exp 4.2 30 105-147 115.5 117.77 11.007

Exp 5.1 30 89-113 94 94.13 4.257

Exp 5.2 30 133-217 146.5 150.40 14.604

(a) Kruskal-Wallis H Test significance value.
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Table A.26: Interval 1

N Min-Max Mdn M SD p (a)

Exp 1 30 45-68 47 48.77 4.352

H(6) = 190.705

p < .001

Exp 2 30 46-67 49 49.90 4.596

Exp 3 30 46-67 52 52.53 3.082

Exp 4.1 30 327-697 619.5 615.43 59.835

Exp 4.2 30 839-1474 1195.5 1185.03 138.909

Exp 5.1 30 590-847 633 660.60 72.673

Exp 5.2 30 698-884 805.5 802.27 47.969

(a) Kruskal-Wallis H Test significance value.

Table A.27: Interval 2

N Min-Max Mdn M SD p (a)

Exp 1 30 57-83 62.5 64.13 5.772

H(6) = 186.903

p < .001

Exp 2 30 49-79 67 65.93 5.458

Exp 3 30 49-59 51 52.33 2.963

Exp 4.1 30 644-943 800 806.60 55.501

Exp 4.2 30 705-1157 962.5 961.50 78.748

Exp 5.1 30 576-960 730 742.87 63.069

Exp 5.2 30 649-924 789 794.20 43.260

(a) Kruskal-Wallis H Test significance value.

Table A.28: Interval 3

N Min-Max Mdn M SD p (a)

Exp 1 30 56-74 64 63.83 4.771

H(6) = 180.926

p < .001

Exp 2 30 58-92 65 66.30 7.221

Exp 3 30 48-86 70 68.50 6.485

Exp 4.1 30 627-904 817 817.60 59.392

Exp 4.2 30 679-1054 983.5 964.57 73.878

Exp 5.1 30 648-807 746 740.53 40.974

Exp 5.2 30 630-981 802.5 806.83 57.121

(a) Kruskal-Wallis H Test significance value.
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Table A.29: Interval 4

N Min-Max Mdn M SD p (a)

Exp 1 30 55-100 60 62.33 8.446

H(6) = 180.926

p < .001

Exp 2 30 49-78 62 63.00 5.186

Exp 3 30 49-83 65 65.43 5.204

Exp 4.1 30 629-910 785.5 781.47 50.037

Exp 4.2 30 724-1121 946.5 963.33 68.659

Exp 5.1 30 98-133 117 116.87 6.458

Exp 5.2 30 145-230 178 179.83 12.219

(a) Kruskal-Wallis H Test significance value.

Table A.30: Interval 5

N Min-Max Mdn M SD p (a)

Exp 1 30 54-71 59 60.10 3.745

H(6) = 180.136

p < .001

Exp 2 30 56-76 60.5 61.93 4.495

Exp 3 30 59-96 62.5 64.47 7.473

Exp 4.1 30 666-910 768 779.97 48.744

Exp 4.2 30 707-1372 920 955.77 107.788

Exp 5.1 30 607-854 736.5 742.07 50.426

Exp 5.2 30 699-929 809 808.30 46.043

(a) Kruskal-Wallis H Test significance value.

Table A.31: Interval 6

N Min-Max Mdn M SD p (a)

Exp 1 30 56-73 61 61.30 4.450

H(6) = 177.854

p < .001

Exp 2 30 56-80 64 64.80 6.424

Exp 3 30 50-86 61 62.20 5.610

Exp 4.1 30 742-919 792 797.10 45.813

Exp 4.2 30 687-1109 943.5 955.63 82.136

Exp 5.1 30 619-841 735 738.23 47.529

Exp 5.2 30 667-937 788.5 797.70 48.982

(a) Kruskal-Wallis H Test significance value.
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Table A.32: Interval 7

N Min-Max Mdn M SD p (a)

Exp 1 30 55-88 63.5 63.73 7.497

H(6) = 178.637

p < .001

Exp 2 30 58-81 65 66.10 5.750

Exp 3 30 47-79 68 67.87 7.347

Exp 4.1 30 712-901 787.5 790.97 43.713

Exp 4.2 30 725-1141 959 964.77 83.786

Exp 5.1 30 658-847 731 738.30 51.503

Exp 5.2 30 687-1004 814 819.43 57.663

(a) Kruskal-Wallis H Test significance value.

Table A.33: Interval 8

N Min-Max Mdn M SD p (a)

Exp 1 30 54-87 58 60.07 7.674

H(6) = 191.948

p < .001

Exp 2 30 56-77 61 62.07 5.044

Exp 3 30 55-86 64 64.30 6.024

Exp 4.1 30 705-1033 754.5 774.20 68.146

Exp 4.2 30 724-1075 918 924.63 68.884

Exp 5.1 30 107-127 114.5 114.90 6.025

Exp 5.2 30 151-185 172 172.77 6.730

(a) Kruskal-Wallis H Test significance value.

Table A.34: Interval 9

N Min-Max Mdn M SD p (a)

Exp 1 30 54-67 58.5 59.03 3.548

H(6) = 181.725

p < .001

Exp 2 30 55-82 61 62.00 6.187

Exp 3 30 56-71 64 64.23 4.014

Exp 4.1 30 738-1006 789.5 811.90 73.460

Exp 4.2 30 788-1105 928 928.17 62.048

Exp 5.1 30 658-887 722 729.70 46.962

Exp 5.2 30 682-861 775 773.70 36.460

(a) Kruskal-Wallis H Test significance value.
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Table A.35: Interval 10

N Min-Max Mdn M SD p (a)

Exp 1 30 54-69 59 58.60 3.223

H(6) = 182.447

p < .001

Exp 2 30 56-70 60 60.00 3.151

Exp 3 30 55-71 59 59.90 3.942

Exp 4.1 30 719-1088 797.5 811.17 68.670

Exp 4.2 30 728-1127 920.5 939.83 69.706

Exp 5.1 30 676-772 705 711.67 26.773

Exp 5.2 30 674-916 780 788.97 42.650

(a) Kruskal-Wallis H Test significance value.

Table A.36: Interval 11

N Min-Max Mdn M SD p (a)

Exp 1 30 53-74 57 58.17 5.350

H(6) = 178.682

p < .001

Exp 2 30 53-65 57 58.33 3.827

Exp 3 30 56-66 58.5 59.00 2.560

Exp 4.1 30 714-899 788 802.27 51.813

Exp 4.2 30 729-1041 911 917.17 60.731

Exp 5.1 30 662-883 698.5 715.13 50.225

Exp 5.2 30 661-955 794 787.57 59.353

(a) Kruskal-Wallis H Test significance value.

Table A.37: Interval 12

N Min-Max Mdn M SD p (a)

Exp 1 30 53-73 60.5 60.70 4.340

H(6) = 191.475

p < .001

Exp 2 30 52-74 57 58.27 4.616

Exp 3 30 55-66 62 61.47 3.329

Exp 4.1 30 707-1059 781 803.07 85.451

Exp 4.2 30 863-1048 939 939.60 50.608

Exp 5.1 30 109-125 113 114.33 3.880

Exp 5.2 30 154-190 174 174.07 6.502

(a) Kruskal-Wallis H Test significance value.
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Table A.38: Interval 13

N Min-Max Mdn M SD p (a)

Exp 1 30 53-88 57 58.67 7.317

H(6) = 185.981

p < .001

Exp 2 30 53-74 58.5 60.20 5.122

Exp 3 30 57-71 63 63.17 3.649

Exp 4.1 30 726-871 802 792.57 43.194

Exp 4.2 30 891-1150 964 975.30 72.827

Exp 5.1 30 682-805 734 739.27 34.923

Exp 5.2 30 678-957 804.5 808.97 48.631

(a) Kruskal-Wallis H Test significance value.

Table A.39: Interval 14

N Min-Max Mdn M SD p (a)

Exp 1 30 53-67 57 57.43 3.683

H(6) = 178.451

p < .001

Exp 2 30 52-68 57 57.47 3.256

Exp 3 30 57-87 59 60.43 5.532

Exp 4.1 30 739-980 796 809.00 66.779

Exp 4.2 30 901-1111 973 971.30 49.433

Exp 5.1 30 665-1069 726.5 753.77 83.763

Exp 5.2 30 654-835 792 789.73 32.335

(a) Kruskal-Wallis H Test significance value.

Table A.40: Interval 15

N Min-Max Mdn M SD p (a)

Exp 1 30 53-76 57 57.80 5.108

H(6) = 178.893

p < .001

Exp 2 30 53-77 58 58.87 5.257

Exp 3 30 54-67 56.5 57.10 2.670

Exp 4.1 30 743-944 789 800.70 45.390

Exp 4.2 30 883-1057 974.5 964.20 48.554

Exp 5.1 30 656-846 728.5 739.93 52.922

Exp 5.2 30 647-1084 795 803.50 64.663

(a) Kruskal-Wallis H Test significance value.
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Table A.41: Interval 16

N Min-Max Mdn M SD p (a)

Exp 1 30 51-63 57 56.33 3.010

H(6) = 191.438

p < .001

Exp 2 30 53-69 58.5 59.10 3.633

Exp 3 30 54-85 56 58.00 6.368

Exp 4.1 30 736-1013 804.5 826.93 71.197

Exp 4.2 30 897-1230 979.5 993.53 73.404

Exp 5.1 30 108-151 111 114.07 8.473

Exp 5.2 30 166-214 174 176.03 9.946

(a) Kruskal-Wallis H Test significance value.

Table A.42: Interval 17

N Min-Max Mdn M SD p (a)

Exp 1 30 53-68 57.5 58.03 3.538

H(6) = 181.436

p < .001

Exp 2 30 53-85 57 58.03 5.939

Exp 3 30 54-76 61 61.87 4.439

Exp 4.1 30 742-952 804 818.37 48.989

Exp 4.2 30 874-1091 964.5 965.40 50.670

Exp 5.1 30 716-864 787 788.13 33.850

Exp 5.2 30 769-859 815.5 813.37 20.344

(a) Kruskal-Wallis H Test significance value.
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Figure A.5: Interval Times - scenario 2
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Appendix B

Group 2

B.1 Space

B.1.1 Request Content Size in bytes

B.1.1.1 Scenario 1

N Min-Max Mdn M SD p (b)

Exp 6.1/7.1 30 3407347 3407347 0 Z = -7.681

p < .001Exp 6.2/7.2 30 1813566 1813566 0

(b) Mann-Whitney U Test significance value.

B.1.1.2 Scenario 2

N Min-Max Mdn M SD p (b)

Exp 6.1/7.1 30 30671289 30671289 0 Z = -7.681

p < .001Exp 6.2/7.2 30 15604377 15604377 0

(b) Mann-Whitney U Test significance value.

81
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Figure B.1: Sum of request content sizes - scenario 2

B.2 Time

B.2.1 Request Time in ms

B.2.1.1 Scenario 1

N Min-Max Mdn M SD p (a)

Exp 6.1 30 .143766-.198364 .162124 .163563 .013594

H(3) = 90.759

p < .001

Exp 6.2 30 .133514-.303506 .152230 .159756 .032645

Exp 7.1 30 .440359-.626087 .484824 .494988 .039137

Exp 7.2 30 .453710-.722169 .488877 .511471 .060523

(a) Kruskal-Wallis H Test significance value.

N Min-Max Mdn M SD p (b)

Exp 6.1 30 .143766-.198364 .162124 .163563 .013594 Z = -2.233

p = .026Exp 6.2 30 .133514-.303506 .152230 .159756 .032645

(b) Mann-Whitney U Test significance value.
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N Min-Max Mdn M SD p (b)

Exp 7.1 30 .440359-.626087 .484824 .494988 .039137 Z = -.983

p = .325Exp 7.2 30 .453710-.722169 .488877 .511471 .060523

(b) Mann-Whitney U Test significance value.

B.2.1.2 Scenario 2

N Min-Max Mdn M SD p (a)

Exp 6.1 30 .154495-.249147 .177741 .183113 .020835

H(3) = 90.964

p < .001

Exp 6.2 30 .152349-.271320 .172377 .180054 .026500

Exp 7.1 30 2.912521-3.567457 3.181100 3.153372 .148107

Exp 7.2 30 2.850294-3.430605 3.054857 3.072294 .157954

(a) Kruskal-Wallis H Test significance value.

N Min-Max Mdn M SD p (b)

Exp 6.1 30 .154495-.249147 .177741 .183113 .020835 Z = -1.323

p = .186Exp 6.2 30 .152349-.271320 .172377 .180054 .026500

(b) Mann-Whitney U Test significance value.

N Min-Max Mdn M SD p (c)

Exp 7.1 30 2.912521-3.567457 3.181100 3.153372 .148107 t(58) = 2.051

p = .045Exp 7.2 30 2.850294-3.430605 3.054857 3.072294 .157954

(c) Two independent sample T test significance value.

B.2.2 Waiting Time in ms

B.2.2.1 Scenario 1

N Min-Max Mdn M SD p (a)

Exp 6.1 30 .752925-6.464958 1.085877 1.267099 1.016371

H(3) = 78.214

p < .001

Exp 6.2 30 .625371-6.578207 1.034140 1.215116 1.034620

Exp 7.1 30 1.975297-9.782552 2.359628 2.719187 1.398781

Exp 7.2 30 1.982450-9.096145 2.483367 2.686913 1.253114

(a) Kruskal-Wallis H Test significance value.
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N Min-Max Mdn M SD p (b)

Exp 6.1 30 .752925-6.464958 1.085877 1.267099 1.016371 Z = -.532

p = .595Exp 6.2 30 .625371-6.578207 1.034140 1.215116 1.034620

(b) Mann-Whitney U Test significance value.

N Min-Max Mdn M SD p (b)

Exp 7.1 30 1.975297-9.782552 2.359628 2.719187 1.398781 Z = -.281

p = .779Exp 7.2 30 1.982450-9.096145 2.483367 2.686913 1.253114

(b) Mann-Whitney U Test significance value.

B.2.2.2 Scenario 2

N Min-Max Mdn M SD p (a)

Exp 6.1 30 .978470-3.908396 1.147509 1.256490 .517454

H(3) = 96.269

p < .001

Exp 6.2 30 .988483-6.537437 1.568437 2.682567 1.845590

Exp 7.1 30 12.067795-27.870893 14.135242 14.824176 2.830726

Exp 7.2 30 12.627125-27.068853 14.839053 15.130846 2.560299

(a) Kruskal-Wallis H Test significance value.

N Min-Max Mdn M SD p (b)

Exp 6.1 30 .978470-3.908396 1.147509 1.256490 .517454 Z = -5.160

p < .001Exp 6.2 30 .988483-6.537437 1.568437 2.682567 1.845590

(b) Mann-Whitney U Test significance value.

N Min-Max Mdn M SD p (b)

Exp 7.1 30 12.067795-27.870893 14.135242 14.824176 2.830726 Z = -1.094

p = .274Exp 7.2 30 12.627125-27.068853 14.839053 15.130846 2.560299

(b) Mann-Whitney U Test significance value.
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B.2.3 Download Time in ms

B.2.3.1 Scenario 1

N Min-Max Mdn M SD p (b)

Exp 6.1 30 338.236331-484.812974 355.553746 365.476234 29.922942 Z = -4.864

p < .001Exp 6.2 30 378.803014-440.805435 389.298081 396.066323 16.208381

(b) Mann-Whitney U Test significance value.

N Min-Max Mdn M SD p (b)

Exp 7.1 30 339.586496-498.450756 350.791692 360.604079 31.431560 Z = -5.648

p < .001Exp 7.2 30 379.695892-467.085123 401.916980 412.818630 23.613157

(b) Mann-Whitney U Test significance value.

B.2.3.2 Scenario 2

N Min-Max Mdn M SD p (b)

Exp 6.1 30 2679.052-3908.519 2755.155 2949.700 342.647 Z = -5.515

p < .001Exp 6.2 30 3149.105-4356.138 3633.634 3612.681 277.274

(b) Mann-Whitney U Test significance value.

N Min-Max Mdn M SD p (b)

Exp 7.1 30 2879.469-3796.519 2975.359 3107.211 251.769 Z = -5.071

p < .001Exp 7.2 30 3330.003-4095.097 3663.255 3619.627 253.185

(b) Mann-Whitney U Test significance value.
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Figure B.2: Average Download Times - scenario 2

B.2.4 Total Time in ms

B.2.4.1 Scenario 1

N Min-Max Mdn M SD p (a)

Exp 6.1 30 339.293-491.476 356.687 366.907 30.779

H(3) = 60.574

p < .001

Exp 6.2 30 379.940-447.687 390.513 397.441 16.837566

Exp 7.1 30 342.487-508.859 353.373 363.818 32.739

Exp 7.2 30 382.331-476.801 404.819 416.017 24.291

(a) Kruskal-Wallis H Test significance value.

N Min-Max Mdn M SD p (b)

Exp 6.1 30 339.293-491.476 356.687 366.907 30.779 Z = -4.849

p < .001Exp 6.2 30 379.940-447.687 390.513 397.441 16.838

(b) Mann-Whitney U Test significance value.

N Min-Max Mdn M SD p (b)

Exp 7.1 30 342.489-508.859 353.373 363.818 32.739 Z = -5.648

p < .001Exp 7.2 30 382.331-476.801 404.819 416.017 24.291

(b) Mann-Whitney U Test significance value.
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B.2.4.2 Scenario 2

N Min-Max Mdn M SD p (a)

Exp 6.1 30 2680.367-3910.032 2756.440 2951.139 342.649

H(3) = 61.133

p < .001

Exp 6.2 30 3150.870-4357.904 3635.504 3615.543 276.656

Exp 7.1 30 2898.937-3812.759 2995.315 3125.189 251.691

Exp 7.2 30 3349.239-4111.768 3686.119 3637.830 252.254

(a) Kruskal-Wallis H Test significance value.

N Min-Max Mdn M SD p (b)

Exp 6.1 30 2680.367-3910.032 2756.440 2951.139 342.649 Z = -5.515

p < .001Exp 6.2 30 3150.870-4357.904 3635.504 3615.543 276.656

(b) Mann-Whitney U Test significance value.

N Min-Max Mdn M SD p (b)

Exp 7.1 30 2898.937-3812.759 2995.315 3125.189 251.691 Z = -5.071

p < .001Exp 7.2 30 3349.239-4111.768 3686.119 3637.830 252.254

(b) Mann-Whitney U Test significance value.
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