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Resumo 

 

A estimulação cerebral profunda é uma terapia comprovada para doenças 

neurodegenerativas que afetam o movimento, como a doença de Parkinson. Esta 

envolve a colocação de um dispositivo capaz de estimular regiões cerebrais ao enviar 

impulsos elétricos para elétrodos implantados nessas regiões. Apesar do seu conceito-

base permanecer praticamente inalterado desde as primeiras aplicações, avanços 

tecnológicos recentes abriram a possibilidade de ajustar a terapia  às necessidades do 

paciente, em tempo-real. Este paradigma, cunhado de adaptativo, contrapõe-se ao 

convencional, em que os parâmetros de estimulação são selecionados por clínicos 

especializados e ajustados periodicamente. Pelo contrário, os sistemas adaptativos 

utilizam mecanismos retroativos, onde um algoritmo recebe como input biomarcadores 

que refletem os estados momentâneos do paciente e gera um output de parâmetros de 

estimulação. 

Atualmente, a maioria da investigação debruça-se sobre a procura de 

biomarcadores ideais – i.e., aqueles que refletem inequivocamente estados patológicos 

– quer na clínica quer fora dela. Pensa-se que o campo elétrico cerebral e a motricidade 

dos pacientes possam conter estes biomarcadores. Contudo, existe uma carência de 

ferramentas dedicadas para levar a bom porto o empreendimento. Assim, esta 

dissertação distribui-se em três vertentes: primeiro, o desenvolvimento de um sistema 

wearable capaz de registar e analisar sinais motores; segundo, a criação de um conjunto 

de ferramentas computacionais para a análise de dados crónicos (captados fora da 

clínica); e, por último, a aplicação dessas ferramentas em dados clínicos de uma forma 

orientada para a investigação. A execução de todas estas vertentes exigiu uma revisão 

literária abrangente e interdisciplinar, uma vez que os métodos utilizados incluem 

domínios que vão desde a eletrónica e processamento de sinal até à estatística e 

aprendizagem automática. 

 No final, todas os objetivos foram alcançados. Foi desenvolvido um wearable em 

forma de luva capaz de registar dados motores e de quantificar a intensidade de 

sintomas parkinsonianos. Desenvolveu-se um vasto leque de ferramentas 

computacionais para a análise de dados crónicos, com posterior integração numa 
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toolbox. E, finalmente, a aplicação destas ferramentas gerou resultados preliminares, 

que aguardam futura validação e promovem novas linhas de investigação. 
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Abstract 

 
Deep brain stimulation is a well-established therapy for movement disorders, such as 

Parkinson’s disease, that involves the placement of a neurostimulation device, which 

sends electrical impulses through electrodes implanted in the brain. Although the DBS 

concept remains mostly unchanged since its first applications, recent technological 

advances have unravelled the possibility of tailoring the therapy to the patient’s needs in 

real-time. This paradigm, called adaptive deep brain stimulation, contrasts with the 

conventional approach where the stimulation parameters are set by highly trained 

clinicians and must be periodically adjusted. Instead, adaptive systems rely on a 

feedback mechanism, where biomarkers that reflect the patient’s ongoing states serve 

as the input of an algorithm that changes the stimulation parameters. 

Current research still revolves around finding the ideal biomarkers – i.e., those 

that unequivocally reflect pathological states – both in clinical and non-clinical settings. 

The brain’s electrical field and the patient’s motor signals are thought to harbour such 

biomarkers. However, there is still a lack of dedicated tools for the enterprise. Therefore, 

the aim of this thesis was threefold: first, the development of a wearable system capable 

of recording and analysing motor signals; second, the creation of a set of computational 

tools for the analysis of chronic (outside the clinic) data; and third, the application of some 

of the developed tools in clinical data to provide a framework for further research. All 

these required a comprehensive and interdisciplinary literature review, for the used 

methods encompass domains that range from electronics and signal processing to 

statistics and machine-learning. 

In the end, the three goals were successfully achieved. A wearable glove system 

made of off-the-shelf components could record, store, and quantify the symptomatic 

intensity of motor activity. A wide array of visuo-analytical tools was devised for chronic 

data analysis and integrated in an extensive toolbox. And, finally, the application of these 

tools yielded some preliminary results that wait for further validation and set future lines 

of research.  
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“To be sure, a part of the impulse to science is simply curiosity, 
 to hold the unheld and watch the unwatched. 

We are all children in the unknown.”  
 

– The Origins of Consciousness in the Breakdown  
of the Bicameral Mind, Julian Jaynes. 
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Chapter 1 

Introduction 

1.1 Context and Motivation 

Parkinson’s disease (PD) is a neurodegenerative disease that is becoming increasingly 

prevalent worldwide [1]. Although its cardinal symptoms are movement-related, the lives 

of the patients are also affected in non-motor ways. While medication is still the standard 

therapeutic approach for minimising its impact, electrical stimulation-based therapies 

have gained considerable attention in the past decades [17]. Deep brain stimulation 

(DBS) is a well-established surgical treatment that involves the insertion of an electrode 

in the subthalamic nucleus, and the ensuing electrical stimulation of the region. DBS has 

shown tremendous potential in the alleviation of the intensity and frequency of the PD 

symptomatology [18]. Notwithstanding, the underlying technology is far from perfect, and 

has seen considerable improvements in the last couple of years. 

 The DBS conventional approach consists in the manual feeding of continuous 

stimulation parameters (e.g., current amplitude, frequency, and pulse-width) into the 

implanted pulse generator, and subsequent evaluation of their efficacy in reducing the 

symptoms. This evaluation is frequently based on subjective metrics, such as the Unified 

Parkinson Disease Rating Scale (UPDRS). Despite providing some relief to the patients, 

this approach is clearly limited, insofar as it lacks out-clinical coverage (for the evaluation 

is done in clinically controlled environments) and the adequate sensitivity to situational 

changes (i.e., significant changes within a patient’s life or in the disease’s progression), 

which demand additional parameter-tuning sessions. Hence arises the need for new 

DBS paradigms. 

 Adaptive closed-loop DBS (aDBS) is a field as active as it is recent in the DBS 

research landscape. Its main goal is to provide optimal therapeutic results by adjusting 

the stimulation parameters in real-time, according to the patient’s own physiology [36]. 

An aDBS system relies on three pillars: the patient’s biomarkers (input), a set of 

stimulation parameters (output), and an algorithm that transforms the given biomarkers 

in the adequate stimulation parameters.  
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A useful biomarker must be quantifiable and reflect ongoing changes within the 

patient’s state. To comply with the first requisite, it is crucial to implement objective 

quantitative metrics in the evaluation of Parkinsonian symptoms, wherever subjective 

judgement still prevails. Wearable technologies emerge as a suitable solution for this 

task [102]. In fact, the past few years have shown the feasibility of such technologies, 

namely on tremor analysis. Conversely, the second requisite is somewhat harder to fulfil, 

for the research is still at an early stage. This is particularly true with respect to the 

exploration of chronic biomarkers – i.e., those that work both in the clinic and in the real-

world. Indeed, chronic long-term aDBS has still a long way to go.  

Recent technological advances in the DBS devices made the concurrent 

recording of the brain’s electrical field possible [120]. Since then, several studies have 

unveiled the potential of using brain signals as biomarkers for aDBS systems, even 

though most were exclusively applied in clinical settings. After going through a 

conventional DBS clinical session – which culminates with the selection of the adequate 

stimulation settings – the patient returns to his daily routine. Given that Parkinsonian 

symptomatology evolves over time, these session intermissions present a major 

opportunity to assess not only potential chronic biomarkers, but also the effect of daily 

activities or states (events) on these signals. 

1.2 Objectives 

The central goal of this thesis is to create computational tools for the analysis of 

electrophysiological data in DBS. In particular, for the analysis of outside the clinic, or 

chronic, data. Given that this data is dependent on a subjective choice of stimulation 

parameters, this thesis also sets up as a goal the development of a wearable system 

capable of recording the patient’s motricity, and objectively assessing symptom intensity. 

Finally, the lack of research concerning chronic data fosters the intent of applying some 

of the developed tools in a research-oriented manner.  

To fulfil the first two goals, specific marks were established: 

• Design visual and analytical tools, for further integration in a toolbox that is being 

developed by the NCN lab. 

• Build a wearable device from scratch. 

• Design a Graphical user Interface (GUI), for the recording and storing of motor 

data. 
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• Develop functions that quantitatively assess the tremor and rigidity intensities of 

the recorded data. 

To meet the final goal, four research questions were formulated and tackled 

separately. The questions and their underlying logic are explained later in the document. 

1.3 Contributions 

The proposed work had the following main contributions: 

• The enrichment of the toolbox that is being developed by the NCN lab for the 

analysis of data obtained from the Medtronic’s PerceptTM + BrainSenseTM 

system. 

• The creation of a wearable system and a GUI that can be used during clinical 

sessions to record motor signals. 

• The development of functions for tremor and rigidity quantification – the second 

of which is novel, to the best of our knowledge. 

• The establishment of preliminary results and guidelines in the study of chronic 

DBS data. 

1.4 Document Structure 

This document is structured in two parts. The first part is comprised by Chapters 1 and 

2, which contain, respectively, the introduction and a state-of-the-art overview on the 

topics that this thesis elaborates upon: a) the impact of Parkinson’s disease and its 

pathophysiology; b) the deep brain stimulation therapy and its current paradigms; c) 

hardware and software technologies involved in adaptive deep brain stimulation 

therapies.  

The second part contains the bulk of the practical work, encompassing Chapters 

3, 4 and 5. In Chapter 3, one finds the methodology used to achieve a wearable glove 

system for tremor and rigidity quantification, as well as some preliminary results on its 

application. Chapter 4 explores novel ways to interpret the out-clinical data of PD patients 

with implanted DBS devices, and displays some potentially useful analytical tools. 

Finally, Chapter 5 concludes this liminal work and forecasts the next steps in the creation 

of robust adaptive deep brain stimulation systems.  
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Chapter 2 

Literature Review 

This chapter outlines important aspects of the three main areas addressed in this work: 

Parkinson’s disease, deep brain stimulation, and wearables and computational tools for 

adaptive stimulation technologies. 

2.1 Parkinson’s Disease 

Parkinson’s disease (PD) is the fastest growing neurodegenerative disease in the world 

[1] and the second most prevalent, just behind Alzheimer’s disease [2]. Nonetheless, the 

epidemiological literature concerning its incidence, prevalence and mortality is not 

unanimous. In 2016, the Global Burden of Disease Study (GBD) reported 6 million global 

cases [1], whereas in 2020, a different study estimated the worldwide prevalence as 9.4 

million [3]. In any case, the general increase in life expectancy suggests that these 

figures will more than double by 2040 [4]. 

2.1.1 Pathophysiology 

PD is mainly characterised by the loss of dopaminergic innervation that connects the 

substantia nigra in the midbrain to the striatum – putamen and caudate nucleus, 

structures that regulate movement (see Figure 1). The expansive nature of this 

neurodegeneration accounts for the heterogeneity of the disorder. In other words, even 

though the afflicted share a disruption in the dopamine levels, the symptomatology and 

rate of progression vary from patient to patient.  

Although the exact cause of the neurodegeneration remains unknown, both 

genetic and environmental factors seem to play a role in the development of PD [5]. With 

respect to the latter, while the exposure to pesticides and heavy metals have been 

reported to increase the likelihood of the disease [6], smoking and caffeine consumption 

are associated with its decrease [7]. Additionally, ageing, medication side effects and 

traumatic brain injury are also linked with its appearance.  

Most people with PD develop the disease after the age of 60, but about 5% to 

10% experience an early onset, before the age of 50. Genetic factors are usually 

associated with the latter group. 
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2.1.2 Symptoms and Quality of Life 

PD is known to cause a substantial reduction in the quality of life (QoL) of the patients in 

three main domains: motor symptoms, non-motor symptoms and treatment side effects. 

The early stages of PD are usually characterised by a significant decrease in QoL due 

Table 1 – Parkinsonian symptomatology. Adapted from [11]. 

 

 

 

 

Figure 1 – Dopaminergic pathways. The nigrostriatal pathway is represented in yellow. 
Dopamine travels from the substantia nigra to brain regions – that include the caudate 
nucleus, the globus pallidus, and the thalamus – responsible for balance and movement 
control. From [8]. 
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to non-motor symptoms, such as depression, anxiety, pain, olfactory dysfunction, 

memory loss and sleep problems. The appearance of motor symptoms tends to succeed 

these early stages, and it is at this point that most of the clinical diagnoses are made – 

and, consequently, the antiparkinsonian therapies start. Both the cardinal and the less 

common features of the disease are summarised in Table 1. 

When treatment is initiated, the QoL of the patient often stabilises for the first 18 

months. Nevertheless, the deterioration of QoL follows a slow but steady rhythm 

thereafter [9]. At advanced disease stages, more than 40% of the afflicted develop 

dementia [10].  

2.1.3 Current Treatments 

Since a cure for PD is yet to be found, current treatments focus on alleviating symptoms, 

so that the patients can maintain an active lifestyle and a normal life expectancy. These 

treatments include medication, diet, exercise, and, as a last resort, deep brain 

stimulation. 

 The main therapy for PD consists in the taking of levodopa, a dopaminergic drug. 

This drug stimulates the dopamine production, replenishing the receding supply of this 

neurotransmitter. Yet, it also causes some adverse side effects, such as nausea, 

confusion, and sleepiness [12]. For this reason, patients tend to complement the therapy 

with medications that minimise those side effects (e.g., carbidopa), reduce the amount 

of levodopa needed, and minimize other specific symptoms. It is worth noting that once 

this type of therapy starts, a patient should never stop taking levodopa without medical 

consent, for its abstinence may result in serious side effects, including breathing 

difficulties and inability to move [13]. 

 Concurrently, people with PD can undergo physical, occupational, and speech 

therapies, which may help with the motor symptoms and the decline in mental functions. 

A healthy diet, frequent massages and yoga are also common strategies at their 

disposal. 

Unfortunately, notwithstanding the toil of daily ingestion, most of the drugs lose 

efficacy in the long-term [14]. In fact, the majority of patients starts to have complications 

after 5 years of therapy, including the emergence of levodopa-induced dyskinesias [15] 

– which are involuntary, erratic, writhing movements of the face, arms, legs or trunk –, 

and the so-called “on-off fluctuations”, in which periods of effective symptom reduction 

alternate with periods of its exacerbation [16]. This is particularly problematic for early-

onset patients, that are still expected to live for decades. For these, deep brain 
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stimulation poses an unvaluable alternative. This therapy involves a surgical procedure, 

where electrodes are inserted into part of the brain, and connected to a small electrical 

device implanted in the chest. In a nutshell, the device generates electrical pulses and 

stimulates the specific areas in the brain that are mainly associated with the 

manifestation of the cardinal symptoms. The next section explores this therapy in detail. 

2.2 Deep Brain Stimulation 

Deep brain stimulation (DBS) is regarded as an effective, long-term treatment for PD 

[17][18], as well as for other movement disorders like essential tremor [19] or dystonia 

[20]. 

Despite having its electrical, chemical, and other neural-network influences 

thoroughly studied over the last decades, it remains unclear exactly how DBS leads to 

changes in the Parkinsonian symptomatology. Most studies highlight the role of DBS in 

the inhibition and excitation of the cells and fibres located closest to the electrodes 

[21][22]. As illustrated in Figure 2, this can happen either by directly interfering with the 

 

 

Figure 2 – Local effects of DBS. Inhibition of neuronal-cell bodies (−) and the excitation (+) 
of neighbouring axons. Stimulated astrocytes release calcium, which may lead to a release 
of glutamate (GLUT) and adenosine (ADO), as well as local increase in cerebral blood flow. 
Adapted from [16]. 
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firing patterns of individual neurons [23] or by triggering the release of calcium ions of 

astrocytes [24] – which in turn, promote the local release of neurotransmitters - in the 

basal ganglia. Subsequently, these changes can affect other brain regions, via the 

thalamocortical circuits and other pathways shown in Figure 3. 

The increasing incidence of neurological disorders and the growing awareness 

of DBS as an effective therapy – which is clear by recent supportive government policies 

and laws – have propelled the DBS global market in the last couple of years. Presently, 

the DBS global market for PD surpasses the $800 million mark and is expected to reach 

$1.9 billion (109) by 2028 [26]. Notwithstanding, the DBS journey was neither short nor 

obstacle-free, as one will see in the next section. 

2.2.1 History of DBS 

Although one can make the case that the roots of modern DBS stretch back to 

experiences of the late 19th and early 20th centuries – where clinicians were using 

electrodes to explore the functions of various brain areas and identify the appropriate 

regions for ablative therapy [27] – the first reported use of a stereotactic device happened 

in the late-1940s (Figure 4). The next decades brought several technological 

enhancements to the device. However, it was only in the 1980s that the next big step 

was taken. The advent of lithium batteries allowed the production of neurostimulators 

that could last several years after implantation, while providing the necessary levels of 

stimulation.  

 

 

 

Figure 3 – Parallel Circuit Model of the Basal Ganglia. The activated motor circuit is 
exemplified. Normal arrows represent excitatory projections and flat arrows inhibitory 
projections. Adapted from [25]. 
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While these technological increments were taking place, structural changes in 

the medical devices’ regulation – which was now under the purview of the American 

Food and Drug Administration (FDA) agency and other international regulation bodies – 

put DBS therapies in a dicey position. Although the skills and expertise necessary to 

incorporate the technology into working therapies existed, the new regulatory system 

required robust clinical assessments of efficacy and safety, due to its invasiveness. This 

was a problem, since neurostimulation treatments still lacked assessment tools to 

quantify the improvement on the conditions being treated. It was only in 1987 that this 

problem was cracked, when a consortium of movement specialists established the 

Movement Disorder Society and created the Unified Parkinson’s Disease Rating Scale 

(UPDRS) – a five-part scale system that determines the severity of all the different 

aspects of the Parkinsonian symptomatology [28]. 

Having a standardised tool that enabled patients to be compared before and 

during treatment and across the globe, DBS was now amenable to undergo clinical trials. 

In 1997, FDA approved unilateral DBS for extreme cases of essential tremor and PD, 

but there were still some concerns about long-term adverse effects regarding subtle 

neurological changes. It would take a couple more years of sponsored trials to broaden 

the therapy to more general PD cases in the United States of America, a landmark finally 

achieved in 2002. 

 

 

 

Figure 4 – Timeline of the DBS technology development. From [29]. 
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Since then, the appearance of multiple manufacturers of DBS technology 

generated a new wave of technological improvements, namely the introduction of 

electrode designs that can shape the stimulation field, and the ability to simultaneously 

stimulate and record the brain – which plays a central role in the creation of closed-loop 

DBS systems. 

2.2.2 The DBS Device 

 

Nowadays, a DBS implant is composed of two parts: a thin wire lead (<1.5mm in 

diameter) with multiple electrodes at the tip, and a pulse generator. These parts are 

connected by a wire that traverses the neck subcutaneously. While the first is responsible 

for registering and delivering the electrical signals to the brain, the latter stores the 

information, communicates with external devices, and generates the electrical pulses for 

 

 

Figure 5 – Electrode and IPG implantation in DBS. The lead is implanted in either the 
subthalamic nucleus or the internal segment of the globus pallidus. The lead passes through 
a burr hole in the skull and is connected, under the skin of the scalp and neck, to an impulse 
generator that is placed at the interior chest wall. From [16]. 
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the stimulation. Since these parts have different target sites, the DBS surgery is divided 

into two portions. 

The two most common DBS target sites for the lead in PD are the subthalamic 

nucleus (STN) and the globus pallidum internus (GPi) [30], both regions of the basal 

ganglia-thalamic circuit (see Figure 3). Conversely, the pulse generator is implanted 

under the skin near the collarbone area, as seen in Figure 5. 

Current electrode configurations use segmented rings with 4 or 8 contacts, 

varying in terms of contact length and inter-contact spacing. This type of configuration 

(see Figure 6) allows the customization of the stimulation field, which proves to be an 

effective way of reducing the current threshold for beneficial and adverse effects of DBS, 

as well as a strategy for compensating small inaccuracies in lead placement [31]. 

 

2.2.3 Existing DBS Technologies 

Currently, there are three main manufacturers of implantable DBS devices: Boston 

Scientific, Medtronic, and Abbott. All three have already introduced to the market 

electrodes capable of both stimulating the surrounding tissue and recording its electric 

field, as well as directional leads. Moreover, a new generation of devices with 

rechargeable batteries has entered the market recently, which claim to prolong the 

 

 

Figure 6 – Concept of directional DBS. Instead of using all 3 segmented contacts of a 
directional electrode in the same location, one can steer the current flow away from the 
‘sour’ spot by activating only 1 or 2 of the segmented contacts which are oriented towards 
the ‘sweet’ spot. From [31]. 
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battery longevity by 3-fold (up to 15 years). Medtronic’s PerceptTM device is one of the 

most recent and complex [32]. A significant feature is its ability to record the patient’s 

data outside the clinical environment. 

All these companies have also created their own software platforms. These 

platforms are mainly Patient-Specific Visualization Tools – they allow the change of the 

stimulation parameters and can display the lead orientation or the stimulating field in 3D 

representations. Indeed, these platforms are optimised to facilitate DBS in general. 

However, and even though some include an option of programming stimulation routines, 

they still lack the necessary tools for closing the therapeutic loop (see section 2.2.4). 

Finally, Medtronic has a simple mobile app (Figure 7) that allows the registering 

of events (e.g., taking medication, feeling well or off, falling, etc.) by the patients with the 

PerceptTM device, outside the clinic. This app is connected to the implant, via Bluetooth, 

and can command the device to take a snapshot of the brain signal. 

2.2.4 Conventional DBS and Closed-Loop Adaptive DBS 

Though the DBS concept remains almost unchanged since its first application, recent 

advances in neurophysiology, neuroimaging and neural engineering have uncovered a 

new paradigm: tailoring DBS to a patient’s real-time needs.  

 The conventional approach to DBS, where the stimulation settings are manually 

fed into the controller device and then evaluated by the clinician during outpatient visits, 

 

 

 

Figure 7 – Medtronic’s software platform and mobile app for PerceptTM. The software 
devices can communicate with the implantable pulse generator, via Bluetooth. From [32]. 

 

 

 



13 
 

are quite limited. First, it relies on continuous stimulation (cDBS), which has been 

associated with adverse side effects (such as dysarthria and postural instability) and 

habituation – i.e., the narrowing of the therapeutic window [33]. Second, cDBS is 

incapable of differentiating symptom intensity and/or daily activities. This results in 

periods of stimulation in the absence of symptoms and in situations (that were not 

anticipated in the clinic) where it may cause discomfort or pain. Additionally, it also 

causes a significant drainage of the neurostimulator batteries, prompting avoidable 

replacement surgeries [34]. 

For those reasons, conventional DBS is being replaced by strategies that 

automatically optimise these parameters, while considering other important factors such 

as power consumption and disease severity progression. Closed loop adaptive DBS 

(aDBS) systems have been hypothesised for decades but only now are some of them 

being brought to fruition. The aim of these systems is quite straightforward: provide 

optimal therapeutic results by adjusting the stimulation parameters in real-time, using the 

patient’s own physiological signals [30][35] - [37]. 

The development of a valid aDBS system relies on three pillars: the choosing of 

the biomarkers (input variables), the selection of the output parameters, and the 

development of an algorithm that translates the first into the second. Each will be 

explored in the next section. 

2.3 The aDBS System 

2.3.1 Biomarkers 

The aDBS system must receive one or more biomarkers as control variables. These 

biomarkers should reflect ongoing changes in the patient’s clinical state. Since there is 

a high symptom variability across the afflicted, this is a challenging step, for distinct 

combinations of biomarkers may work better for different patients. 

2.3.1.1 Local Field Potentials 

Local field potentials (LFP) represent the collective activity of a neuronal population and 

carry information about their state of synchrony (see Figure 8A). The synchronous 

activity of the neural tissue is commonly described according to the frequency of 

oscillation. These frequencies are grouped into different bands, which are described in 

Table 2.  
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An exaggerated synchronisation of neuronal activity has been observed in the 

beta band, around both the pallidal and subthalamic regions, in PD patients [38] - [40]. 

Furthermore, it has been shown that these hypersynchronous activities are correlated 

with motor sign severity [135], usually assessed with the Unified Parkinson’s Disease 

 

 

Figure 8 – LFP Recordings from DBS electrodes. (A) Correlated synaptic activity results in the 
LFP signal. Within correlated regions, an increase in the population radius produces a linear 
increase in the amplitude of the LFP. Outside of the correlated volume, there is no significant 
increase in the LFP amplitude. (B) For a monopolar recording (red electrode only), the LFP 
amplitude increases linearly with an increase in the population radius and does not converge 
to a maximum value. However, a bipolar recording (red electrode-blue electrode) limits the 
amplitude and spatial reach of the LFP recording. Adapted from [47]. 

 

 

 

 

Table 2  – LFP frequency bands described in PD literature. 

Designation Frequency (Hz) Description 

Delta 0-3 Deep, dreamless sleep; no physical awareness 

Theta 4-8 
Mediation, REM sleep, reduced consciousness; 

non-motor domains 

Alpha 8-12 
Relaxed state, awake but drowsy; non-motor 

domains 

Beta 13-35 
Mental activity; conscious perception, attention; 

prokinetic 

Gamma 31-200 
Heightened perception; extreme attention; 
processing large amounts of information; 

prokinetic 

High 
frequency 
oscillations 

>200 Associated with prokinetic activity in the STN 
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Rating Scale part III (UPDRS-III) – a rating tool used to gauge the course of PD in 

patients, where segment III evaluates the motor abilities [28]. These findings are also 

corroborated by the fact that using dopaminergic medication decreases beta band 

activity and improves akinesia, bradykinesia, and rigidity [41]. Interestingly, it has been 

reported that the presence of dyskinesias is inversely correlated with beta band activity 

[42]. 

Other bands of neuronal activity are also thought to be potential biomarkers, such 

as the theta band and the so-called high-frequency oscillations (HFO) at ~250 Hz, for 

tremor detection [43][44]; and the gamma band, for hyperkinetic symptoms [45]. It is also 

worth noting that these bands are affected by daily-life activities, which makes the 

isolation of disease-related signals even more difficult [46]. 

The use of LFPs as input for aDBS is advantageous, since there is no need for 

additional hardware – the signal acquisition can be done by non-stimulating contacts of 

the implant. However, LFPs are affected by the stimulation pulses – and the literature 

has yet to converge on what constitutes a stimulation artefact and what derives from 

effective neurological changes. 

2.3.1.2 Motor Biomarkers 

Electromyography (EMG) or surface electromyography (sEMG) devices and inertial 

measurement units (IMU) are used not only in the detection and quantification of tremor, 

but also in its prediction [34][48].  

Tremor is present in most PD cases, mainly occurring in stable positions as rest 

tremor or in postural positions as postural tremor (see Figure 9). These two types of 

tremors have different, albeit overlapping, characteristic frequency ranges. A third type 

of tremor, but less common, is kinetic or action tremor, which happens during voluntary 

limb movement and has higher frequency ranges. The tremor frequency ranges 

described in the literature are summarised in Table 3.  

Frequency analysis seems inseparable from tremor assessment or 

quantification. In fact, the most common metrics used to quantify tremor are the RMS 

value and the power of the signal in or around the dominant frequency. On another note, 

different machine learning approaches have successfully been used to estimate the 

severity of tremor. 
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Concurrently, sEMG and IMU sensors can also be used in the quantification of 

rigidity [50]. Approximately 9 in 10 PD patients frequently experience rigidity episodes 

[51]. Rigidity in PD (see Figure 10) is commonly described as an opposition to the 

movement of the arms or legs beyond what would result from normal ageing or arthritis. 

When compared to the other Parkinsonian cardinal symptoms, rigidity is deemed as the 

hardest to objectively evaluate. While sEMG can directly measure the muscular activity 

– reason why it is deemed as the most reliable measurement technique –, accelerometry 

 

 

Figure 9 – Representation of rest tremor (left) and postural tremor (right). From [49]. 

 

 

Table 3 – Frequency of rest, postural and action tremors in PD. 

Tremor 

Author 
Rest Postural Action 

Massano & Bhatia [53] 3-6 Hz 6-8 Hz  

Vaillacourt & Newell [54] 

4-6 Hz 

5-12 Hz  

Heida, Wentink & Marani [55] 4-9 Hz 8-12 Hz 

Basu et al. [48] 7-11 Hz  

Baumann [56] 
4-7 Hz 

  

Ferrigno et al. [57] 5-8 Hz 9-13Hz 

Buijink et al. [58] 4-9 Hz   
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and gyroscopy rely on indirect metrics to quantify the patients’ rigidity. Among these are 

the angular velocity, range of motion, and torque [50]. 

Although both tremor and rigidity are good indicators of the severity of the 

symptoms, there is still a lack of chronic aDBS systems that incorporate them in real-

world settings. The necessary additional equipment as well as the continuous device 

communication can make their use in such settings impractical, uncomfortable, and 

battery unfriendly. Moreover, studies suggest that, to integrate a reliable aDBS system, 

they must be paired with brain signals [52]. 

2.3.1.3 Other Potential Biomarkers 

Cortical signals such as electrocorticography (ECoG) are widely studied for epilepsy 

seizure detection. In fact, closed-loop systems for epilepsy patients are already 

commercially available for chronic implants [60]. One hallmark of PD is the hyperactivity 

of the cortico-basal pathways, where exaggerated beta-gamma phase-amplitude 

coupling (PAC) is observed [61][62].  An advantage of recording the cortical signals lies 

on the fact that there is a low sensitivity for stimulation artifacts – the recording area is 

far from the stimulation site. 

Besides electrophysiological signals, stimulation-evoked dopamine responses 

have been proposed as a control variable for aDBS. Experiments in rodents, showed 

that DBS caused measurable fluctuations in dopamine levels [63]. However, the 

 

 

Figure 10 – Representation of a rigidity test in the radiocarpal joint (cogwheel 
phenomenon). Adapted from [59]. 
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relationship between neurotransmitter levels and symptomatology are still dim and need 

further studying. 

2.3.2 Stimulation Parameters 

The parametrization of the output stimulation signal is the probably the main challenge 

for the development of aDBS systems. While the existence of several different options 

to modulate the stimulation provides a landscape of opportunities, it also makes research 

more difficult. In fact, the literature can seem conflicting at times, when concurring studies 

alternate multiple parameters and end up with different conclusions. The next sections 

contain an overview of these parameters. 

2.3.2.1 Current vs. Voltage 

There are two ways of stimulating the nervous system: constant current and constant 

voltage. While the first maintains the current intensity between the electrode and the 

surrounding tissue by varying the voltage (according to the interface’s impedance), the 

latter fixes the voltage levels and generates a dynamic current, which is linearly 

dependent on the electrode-brain impedance. Although both alternatives have shown 

therapeutic effect on PD patients, the capacitive components in the electrode-brain 

interface provoke differences in the volume of tissue activated (VTA), and possibly in 

their effects.  

While the first DBS applications relied on the constant voltage mode – mainly 

because the device was developed from a cardiac pacemaker – constant-current 

stimulation has been the preferred mode in the past decades. A possible reason for 

preferring this type of stimulation is that the electrode-brain impedance changes over 

time, especially in the first months after surgery [64]. 

2.3.2.2 Monopolar vs. Bipolar 

The stimulation can also be monopolar or bipolar. In the first, the stimulating contact in 

the brain acts as the cathode and the pulse generator’s contact with the chest wall as 

the anode, whereas, in the latter, both poles are in the brain. More specifically, there are 

different types of bipolar pulses, as shown in Figure 11. Despite sharing many 

similarities, the monopolar and bipolar modes differ in some fundamental ways. It has 

been reported that impedances are generally greater during bipolar stimulation. This 

results in a smaller VTA (see Figure 8B), which in turn leads to higher thresholds for both 

symptomatic efficacy and potential side effects [66]. Interestingly, although bipolar 

stimulation needs higher current amplitudes to achieve the same VTA of monopolar 
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stimulation, it seems to be more energetically efficient than monopolar in long-term 

implanted patients [66]. 

2.3.2.3 Pulse Modulation 

Regardless of the mode of stimulation chosen, the electrical pulse has three changeable 

parameters: amplitude, frequency, and pulse-width (see Figure 12). Most aDBS systems 

in PD until now are based on automatic amplitude modulation (AM) [36]. A possible 

reason may be the fact that current amplitude directly influences the VTA in the brain. 

By increasing the amplitude, we are also increasing the chance of activating a region 

that will alleviate the symptoms. However, this can also be said for regions that provoke 

adverse side-effects. Thankfully, this problem can be overcome by combining AM with 

directional DBS.  

Besides amplitude modulation, aDBS systems can explore frequency or pulse-

width variations. While low-frequency stimulation tends to worsen the cardinal symptoms 

of PD, high frequencies have shown promising therapeutic benefits [67][68]. However, 

some studies have shown suboptimal results in some patients at certain high frequencies 

[69], which suggests that frequency modulation may prove itself useful in the tailoring of 

this therapy. It is also hypothesised that pulse-width modulation provides clinical benefits 

 

 

Figure 11 – Examples of pulses used for functional electrical stimulation. Adapted from 
[65]. 
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by exciting brain sites more selectively, while still increasing therapeutic windows (the 

difference in amplitude between the first meaningful improvement and the first intolerable 

or persistent side effect) and using less energy [70][71]. 

2.3.2.4 Directional Steering & Bilateral Stimulation  

Another major stimulation paradigm is current steering, which consists in the delivery of 

different current pulses through different contacts on the same electrode, allowing the 

 

 

Figure 12 – Functional electrical stimulation parameters. Adapted from [65]. 

 

 
 

 

 

Figure 13 – Current steering in DBS electrodes. Interleaving stimulation refers to the 
alternation of different stimulation settings. Multiple level stimulation enables multiple 
neural targets to be stimulated, along the electrode trajectory. With directional stimulation, 
current can be directed or ‘shaped’ according to local anatomy or clinical symptoms. 
Adapted from [29]. 
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shaping of the electric field, as in directional DBS or multilevel DBS (see Figure 13). The 

new electrode designs permit the electric field to steer both along its axis and 

orthogonally. A special type of current steering is interleaving stimulation, which consists 

in the alternation of two “programs” through the different contacts. It has been suggested 

that this method of stimulation reduces side effects in some cases [72].  

It is known that every person has a unique brain anatomy. In fact, even within a 

person, one finds such differences between hemispheres: numerous studies have 

shown that hemispheric asymmetries are ubiquitous [73]. In other words, they occur in 

almost all neurological functions. Thus, in the same way that current steering explores 

the use of different stimulation parameters within the same electrode, aDBS systems can 

evaluate and adjust the stimulation per hemisphere, as in bilateral stimulation [75]. 

2.3.3 Algorithms 

 

 

Figure 14 – Schematic representation of a conventional adaptive deep brain stimulation algorithm 
compared to a machine learning-based adaptive deep brain stimulation system. (A) The control 
algorithm is a simple threshold detection of a predefined feature: the brain state (e.g., pathological 
or non-pathological state) is predicted, and translated into a control command, such that the DBS 
stimulation parameters are adapted. (B) Machine learning-based adaptive deep brain stimulation can 
use multimodal features to decode a variety of brain states (e.g., classification for decoding of tremor 
or regression for indication of severity of bradykinesia in PD) and translate them into adequate 
stimulation parameters. Adapted from [75]. 
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There are two major groups of algorithms in aDBS: the conventional and the machine-

learning based. And, even though the overall aDBS loop remains the same, as illustrated 

in Figure 14, the overall implications of their use are significantly different. 

2.3.3.1 Conventional Algorithms 

As previously mentioned, the most common approach in aDBS involves automatic 

amplitude modulation (AM). There are three main paradigms in AM: ON/OFF, gradual, 

and continuous (see Figure 15).  

In ON/OFF systems the amplitude alternates between a predefined amplitude 

(and fixed frequency and pulse width) and zero. In conventional algorithms, the transition 

between these two states is triggered when the recorded signals exceed or go below a 

certain threshold [76]. Furthermore, ON/OFF systems can implement other stimulation 

 

 

Figure 15 – The different types of amplitude modulation. (A) In the ON/OFF paradigm, the 
stimulation occurs when the input signals exceed a certain threshold. (B) In the gradual 
paradigm, it increases or decreases stepwise when input signal exceeds or does not exceed 
a certain threshold respectively. (C) In the continuous paradigm, the stimulation amplitude 
is modulated according to the strength of the input signal. From [36]. 
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features such as ramping onsets [77] (to avoid abrupt changes in voltage) or phase-

dependent stimulation [78] (in which a stimulus is applied with a fixed latency to an input 

signal). Gradual AM systems have multiple amplitude steps – with minimal, maximal and 

step amplitudes predefined – that can increase or decrease also via thresholds. Finally, 

continuous AM uses the input signal as the output, after rescaling it to a predefined range 

[79]. 

A major limitation of the conventional algorithms is that they lack the required 

symptom- and situational-specificity. In other words, different symptoms or activities 

(e.g., sitting, walking, and sleeping) may demand different thresholds – and these 

algorithms are scarcely able to make such distinctions.  

2.3.3.2 Machine-learning based Algorithms 

The advent of machine-learning revolutionised the scientific landscape, pervading 

nowadays every field of research. However, due to the recentness of the aDBS field, its 

application is still relatively unexplored.  

When compared to conventional algorithms, machine-learning techniques show 

the highest potential in achieving highly personalised treatments [95], for they allow the 

recognition of different and more complex patterns of neuronal and motor activity. Yet, 

they do not come without disadvantages. While thresholding can be promptly applied 

without requiring much data, ML models must be curated in an offline state (during which 

the training and validation stages occur) and tend to require larger amounts of data – 

resulting in time-consuming individual training sessions [75]. 

 During model training, features are extracted from the training data. These 

features can be manually selected – a recurrent situation when a field’s literature 

converges towards an agreement. Otherwise, unsupervised learning allows the most 

relevant features to be selected. The predictive model, either for classification or 

regression, is obtained by optimising the parameters that transform input features into 

known outputs. Once the model yields satisfactory performance metrics on the training 

data, the learned parameters can be directly applied to the features of new data. A model 

in which training and testing performances remain similar is considered good. 

Some studies have developed ML models that use LFPs in aDBS systems, both 

in animals [92] and humans [91]. Moreover, ML is also being employed in the recognition 

of behavioural activities [86][87] – a limitation of conventional aDBS algorithms. The used 

ML models vary from simple Support Vector Machines (SVM) or Linear Regressions (LR) 

to more complex hierarchical Multi-kernel Learning (MKL) and Convolutional Neural 
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Networks (CNN). Some of the developed ML-based algorithms for aDBS are shown in 

Table 4. 

 

 

 

Figure 16 – Representation of a machine-learning pipeline. During model training, features 
are extracted from the training data. The prediction model, either for classification or 
regression, is based on optimized parameters that transform input features into predicted 
model output. During training, parameters are optimized. Once the model yields satisfactory 
performance metrics on training data, the learned parameters can be directly applied to new 
input features for test set model predictions. A good decoding model is a model in which 
training and testing performances remain similar. From [75]. 

 

 
 

 
 

 Table 4 – Examples of machine-learning based algorithms in the aDBS literature. 

Method References 

Support Vector Machine (SVM) [84] [85] [86] [87] [89] [91] [92] 

Random Forest (RF) [80] 

Logistic Regression (LR) [82] [90] 

Decision Tree (DT) [81] 

K-Nearest Neighbours (KNN) [93] 

Hidden Markov Model (HMM) [89] 

Gaussian Mixture Model (GMM) [84] 

Neural Networks (NN) [81] [83] [94] 

Convolutional Neural Networks (CNN) [88] 

Multiple Kernel Learning (MKL) [86] [87] 
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Finally, it is also worth mentioning that ML algorithms can be used beyond the loop 

of aDBS systems. In fact, they prove to be useful for DBS in general, namely in the 

prediction of the optimal treatment regimens for PD patients. In one study, a ML model 

estimated the optimal stimulation and medication dosage based on patient-specific 

details, such as the preoperative response to levodopa [96], while in another it used 

preoperative patient and disease characteristics to predict the best stimulation frequency 

out of two alternatives [97].  

2.4 Wearables in aDBS 

Since the cardinal symptoms of PD are motor, wearables that can successfully detect 

and quantify them go hand-in-hand with aDBS [98][99]. Wearables are considered 

minimally or non-invasive electronic devices that detect, analyse, and transmit 

information concerning either body signals or ambient data [100]. Most of the wearable-

based aDBS systems rely heavily on machine-learning approaches for distinguishing 

symptoms from voluntary movements [36][101]. In order to understand how these 

technologies can integrate the feedback mechanism of the aDBS framework, first we 

must comprehend how they reflect the ongoing changes within the patient. In other 

words, how effective and consistent is the characterization of the Parkinsonian 

symptoms. 

2.4.1 Wearables for Tremor Analysis 

Tremor is perhaps the most studied and well-documented symptom in PD. In fact, 

beyond tremor, no other PD symptom has yet been systematically used with success on 

wearable aDBS systems.  As was previously shown in Table 3, there are three types of 

tremor: rest, postural and kinetic (action). The most common monitoring systems for 

tremor involve the use of inertial measurement unit (IMU) sensors – which include 

accelerometers, gyroscopes, and sometimes magnetometers. These sensors are 

usually placed in the upper limbs, more concretely in the wrists or fingers. An alternative 

to IMU-based wearable systems are the EMG-based systems, that rely on electrodes 

that can be placed in the posterior and anterior arm. Regardless of the type of sensor 

chosen, tremor assessment is usually based on rhythmicity and frequency analysis. 

Some of the existing wearable systems implemented for tremor analysis in the literature 

are summarised in Table 5. 

On a sidenote, some wearables can also assume a therapeutic role in tremor 

suppression [107]. 
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2.4.2 Wearables for Rigidity Analysis 

Rigidity is, perchance, the hardest cardinal symptom to evaluate [108]. While EMG 

sensors are the most suitable for its detection and quantification – because they allow 

the direct monitoring of muscular tone –, other types of sensors, such as IMUs, 

potentiometers and torque motors, have been used with the same intent. Besides 

muscular tone, the most relevant parameters in the evaluation of rigidity are angular 

velocity (measured by the gyroscopes), range of motion (ROM) and torque (measured 

by potentiometers and torque motors).  

 

Table 6 – Examples of wearable systems used for rigidity analysis. 

Reference Method 
Placement on 

body 
Parameters 

[109] 
Torque motor 

Electromyography 
Wrist 

Position, Torque 
Range of motion 

[108] 
Accelerometer, gyroscope, and 

magnetometer 
Upper limb 

Total power 
Smoothness 
Fatigability 

[110] Accelerometer and gyroscope Hand 
Average angular velocity 
Average angular velocity 

peak value 

 

 

 

Table 5 – Examples of wearable systems used for tremor analysis. Based on [102]. 

Reference Method 
Placement on 

body 
Parameters 

[34] 
Electromyography 

Accelerometer and gyroscope 
Upper limbs 

Frequency of the peak 
power 

[103] Accelerometer (in smartphone) Unknown 

Maximum amplitude 
acceleration 

Peak power, median 
power and power 

distribution of 
acceleration 

[104] Accelerometer and gyroscope Index finger Amplitude 

[105] Accelerometer 
Upper and 
lower limbs 

Root mean square of 
acceleration 

[94] 
Electromyography 

Accelerometer 
Forearm 

Index finger 

Frequency of the peak 
power, peak power 

Entropy, Recurrence Rate 

[106] 
Accelerometer, gyroscope, and 

magnetometer 
All body 

Root mean square of 
angular displacement 
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 A tell-tale of the difficulty in the assessment of rigidity is the fact that the used 

protocols vary significantly between studies, as well as the sensor placements. Some of 

these attempts are summarized in Table 6. 

2.4.3 Wearables for Other Symptoms 

Bradykinesia, another cardinal symptom of PD, can be defined as “slowness in the 

initiation and execution of movement”. This slowness can be experienced at several 

levels, namely in fine motor coordination (e.g., handwriting [113]), changes in walking, 

episodes of freezing, and difficulty turning in bed or rising in a chair. While rigidity can 

also be a cause of slowness – for it generally affects the muscular engagement – 

bradykinesia deals with the motor velocity per se. Numerous studies have employed 

wearables, often IMUs, in the quantitative evaluation of this symptom [111][112]. 

The study of gait is also well-established in the PD literature, for it represents one 

of the highest vulnerabilities in a patient – i.e., the risk of falling, and, consequently, 

acquiring long-term disabilities. The two most common gait disorders are shuffling gait, 

where the patient exhibits a bent posture and tends to take very small steps, and freezing 

of gait, where he is frequently incapable of taking any. Nowadays, there are several 

mobile apps that use the smartphone’s accelerometer to monitor the changes of walking 

patterns (e.g., step length and step frequency) [114]. IMUs are also extensively used for 

this purpose [115]. Moreover, gait analysis can rely on motion sensing technology, such 

as camera-based optical motion-capture systems [116], or on piezoelectrical devices 

[117]. 

Finally, there are multi-modal wearable systems capable of assessing multiple 

symptoms, depending on the task [102][118].  

2.5 Computational Tools for aDBS 

Despite the significant technological advances in the DBS field, the clinicians still play a 

vital role in the interface between said technologies and human application. While they 

bear the moral responsibility of keeping up to date with their fields, it is not reasonable 

to expect them to know the intricacies of any given novel device or algorithm. Thus, it is 

crucial to provide them with clear instructions of use and with intuitive tools, in the form 

of software applications. 

Before the integration of automatised aDBS systems in a clinical environment, 

one must develop first clinically validated systems. And, for that, signal analysis tools are 
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required. Medtronic has laid the foundations in the creation of valid aDBS systems with 

its investigational prototype research-only system (Activa™ PC+S-Nexus D3) [119].  

More recently, in 2021, the company initiated a randomized study [120] using the 

state-of-the-art neurostimulator PerceptTM PC, which extends the study and treatment to 

outside the clinic. This study involves several medical facilities, throughout the US and 

Europe. The recent nature of the Percept™ PC device + BrainSenseTM Technology is 

reflected on the lack of dedicated, extensive, and fully functional computational tools for 

the analysis of the data it generates. In fact, up to the time of delivery of the present 

thesis, only two open-source toolboxes have been reported: Perceive Toolbox and 

Percept Toolbox. It is worth stressing that none of these are incorporated in a graphical 

user interface (GUI) – i.e., they come as a bundle of functions. Both are further explored 

in the next sections. 

2.5.1 Perceive Toolbox 

The Perceive Toolbox was developed for research purposes, using custom-written 

scripts in MATLAB, by W. J. Neumann’s group (Interventional & Cognitive 

Neuromodulation, Charité Berlin, Germany). The toolbox (v.02, available on 

https://github.com/neuromodulation/perceive) has the following main functionalities: 

• Opens the .json files generated by the BrainSenseTM system and creates new 

folders to allocate the data, in data files corresponding to the specific aspects of 

the recording session (e.g., Calibration, Streaming, Survey, etc.). 

• Converts the data files to other formats, so that they can be used in other 

programming languages. 

• Removes ECG-related artifacts. 

• Plots raw signals. 

• Converts time domain signals to the frequency domain. 

The toolbox has been used in a study that characterised diurnal fluctuations in 

beta amplitude in PD patients under cDBS [121]. 

2.5.2 Percept Toolbox 

The Percept Toolbox (available on 

https://github.com/YohannThenaisie/PerceptToolbox) was designed by Y. Thenaisie et 

al. (Lausanne University Hospital Barth Keulen, Switzerland), also using MATLAB. Its 

features include: 

https://github.com/neuromodulation/perceive
https://github.com/YohannThenaisie/PerceptToolbox
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• The extraction of the data contained in the .json files generated by the 

BrainSenseTM system. 

• Conversion from time domain to frequency domain. 

• Several plotting options (raw signal, spectrogram, power spectrum, etc.). 

A report that explored the potentialities and pitfalls of the Percept™ + 

BrainSense™ system used the toolbox for data analysis [122]. 

2.6 Perspectives on Current Work & Critical 

Appreciation 

The galloping advances in the aDBS research field are not yet reflected on the clinical 

scene. There, conventional forms of DBS, alongside old methods of subjective symptom 

evaluation, still prevail. Thus, the gradual conversion of the first to aDBS systems must 

be accompanied by the transformation of the second into objective methods of 

quantification. The versatility and reported feasibility of wearables allows the second of 

these transformations to take place (especially in the case of Parkinsonian tremor), even 

in an open-loop framework. Indeed, the introduction of reliable wearable systems in the 

clinic would not only exempt the clinicians from the risk of misevaluating the intensity of 

a symptom (which, in an open-loop framework, could result in the selection of suboptimal 

stimulation parameters), but also encourage their trust in future automatised systems, 

where wearables play a complementary role. Expanding on this idea, wearables can 

pave the road to the normalisation of probabilistic maps of clinical response (i.e., basing 

the stimulation routines of a patient on previously catalogued responses of patients with 

similar physiological profiles), through ML-based algorithms.  

Nonetheless, before the dissemination of aDBS therapeutic systems, several 

challenges must be overcome. A handful of them stand at the level of biomarker 

selection. So far, the top contender pertains to the LFPs – i.e., the beta band power 

[16][38]. However, recent studies deem other bands of activity as equally or more 

relevant for some symptoms. Moreover, the LFPs are affected by the stimulation pulses 

and the literature has yet to properly depict what constitutes an artefact and what stems 

from actual neurological changes. Finally, the scarcity of outside the clinic data entails 

the lack of robust chronic biomarkers – for aDBS systems must be capable of navigating 

through the patients’ everyday actions while differentiating pathological from non-

pathological activities. Further studying of physiological data in chronic environments 

must happen before some of these problems can be solved.  
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The choosing of the type of control algorithm also presents some challenges. 

While conventional algorithms (thresholding being by far the most popular) are relatively 

easier to implement, they are devoid of situation-specificity and incapable of detecting 

temporal-dynamics (e.g., patterns of LFP activity that have pathological manifestations 

in a delayed fashion). The use of ML-based algorithms seems to tackle these issues. 

Nevertheless, large datasets will, most likely, be needed. Computational tools that 

integrate comprehensive visual and analytical functionalities may facilitate the handling 

of large datasets and, consequently, the creation of ML models. Moreover, if on a 

graphical user interface (GUI), these tools could help non-data scientists (or clinicians) 

in their practice. 

Finally, even the hardware will require improvements, namely on the re-

chargeability and memory fronts. The latter is of the utmost importance, for large 

amounts of high-resolution data may be necessary to achieve optimal therapeutic 

performances. Some electronic alternatives, such as memristors and other 

neuromorphic devices, have been put forward recently [123]. These types of devices 

promise to reduce the computational and energetic costs, while maintaining the 

therapeutic efficacy. On this score, only the future will tell.
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Chapter 3 

Wearable Glove System 

One of the goals of this thesis was to provide the clinicians with a wearable system that 

could record and store the patient’s motor activity, while also providing objective metrics 

for the quantification of Parkinsonian symptoms. Despite the advancements in DBS 

technology of the past few years, the clinicians still rely on the UPDRS-III scale to 

evaluate the symptoms intensity. It is true that this scale played a pivotal role in the 

implementation of DBS as a therapy, nonetheless it is a subjective tool, insofar as it 

strictly relies on human judgement. The automatization of this process would, thereby, 

reduce human errors and biases, while also constituting a first step in the creation of 

future autonomous aDBS systems. 

Wearable systems that perform accelerometry and gyroscopy are already 

available in the market. However, most of them are expensive, not easily adaptable to 

clinical use, and/or limited to specific applications. Since we aspired to keep the costs 

low and the setup as versatile as possible, we created our own system using off-the-

shelf components: a textile fishing glove, Velcro stripes, two MPU-6050 integrated 

sensors, and an Arduino Mega2560. As for software, the system relied on the Arduino 

IDE (with additional libraries) and MATLAB.  

 

 

Figure 17 – Main and alternative setups of the wearable system. Light and long wires 
connect the sensors to the Arduino board.  (A) In the main setup, the sensors are attached 
to a fishing textile glove by small Velcro squares. (B) In the alternative setup, the sensors are 
attached to Velcro stripes that go round the finger and hand. 
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3.1 Setup 

The setup in Figure17A allows the attachment and detachment of the integrated sensors 

to the glove, enabling the assessment of tremor and rigidity either in the left or right 

hands. This represents an asset, for the symptom intensity may be unsymmetric (as the 

disease’s progression in the brain) and easier to discern on one side. Special attention 

was given to the stability of the docking between sensor and glove. Several tests were 

made to ensure a tight mechanical coupling and, consequently, good quality recordings. 

An alternative setup was devised (see Figure 17B), for the cases where the glove does 

not fit the patient. 

3.2 Hardware 

3.2.1 Arduino Mega2560 

There are many Arduino boards commercially available, which differ not only in features 

and design, but also in their footprint and processing capabilities. Most Arduino boards 

are based on the ATMEGA AVR microcontroller, which offers both digital and analog 

pins as well as pulse width modulated (PWM) outputs. Additionally, all boards can be 

programmed with an open-source software named “Arduino”, a C-based programming 

language. 

For the present work, the Arduino Mega2560 was chosen for a couple of reasons. 

First and foremost, it has two ports for I2C communication, with built-in pull-up resistors, 

 

 

Figure 18 – An Arduino Mega2560 board. 
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allowing us to simply connect each sensor to a port. Second, it uses a more capable 

processor. Finally, it can run on 5V, the recommended voltage source for most of the 

sensors. To protect the board, we acquired an acrylic enclosure, specifically designed 

for Mega2560. 

3.2.2 MPU-6050 

MPU-6050 is a Micro Electro-Mechanical System (MEMS), consisting of a 16-bit analog 

to digital converter, that can also solve complex calculations. It contains a 3-axis 

accelerometer and a 3-axis gyroscope: the first measures the acceleration of the body 

along each of the three axes; the latter assesses its angular velocity, also in the three 

axes. 

While tremor is generally present at the hand level, it also occurs, at a finer level, 

in the thumb and index-fingers, causing the so-called “counting money” or “pill rolling” 

movement, shown in Figure 20. Most studies employ only one sensor, either in the index-

 

 

Figure 19 – A MPU6050 sensor. The orientation and polarity of rotation are written in the 
chip. 

 

 
 
 
 

 

 

Figure 20 – Illustration of “pill-rolling” movement. From [124]. 
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finger or in the back of the hand, depending on the task involved. Since we wanted our 

system to be versatile, we opted for a 2-sensor system that incorporates both the 

locations: thereby, reducing the chances of losing some valuable information and 

expanding the range of motor tasks at our disposal. 

GY-25, a different type of integrated sensor, was also considered during the 

preliminary stages of the work. While it had its advantages over MPU-6050, such as: 

 Smaller size (11.5mm × 15.5mm vs. 15.5mm × 20.2mm).  

 Ability to communicate via I2C or Serial (instead of just I2C). 

 Capability of calculating the orientation (Euler angles). 

, it also had serious disadvantages: 

 No address pin (that would allow an easy differentiation between two sensors). 

 No personalised Arduino library (as in the case of MPU-6050). 

 I2C and power supply pins on opposite sides of the chip (higher restriction of 

movement when connected to wires). 

Given the relevance of the disadvantages of the GY-25, it was decided not to use 

this integrated sensor in the final version of the wearable glove system. 

 

 

Figure 21 – I2C communication scheme. The MPU6050s are connected to the Arduino board 
at the pins indicated by the arrows. The pull-up resistors (PR) are intrinsic to the board. The 
MPU6050s’ VCC and GND wires are wielded together and connected to the board’s 5V and 
GND pins. One of the MPU6050 has the address pin connected to the VCC pin. 
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3.2.3 I2C Wiring Diagram 

The I2C protocol can connect up to 127 devices via bus and it only requires two data 

wires: SDA and SCL. When the device configured as master wants to communicate with 

a slave it sends pulses through the SDA line, synchronized by the clock carried in the 

SCL line. The transmitted data includes the address of the slave (7 bits), and the 

remaining bits specify whether the master wants to read or write. In the present case, 

the Mega2560 board is the master and each MPU6050 is a slave.  

By default, both MPU6050 sensors have the same address. To generate different 

addresses, we connected the ADD pin to the VCC pin in one of the sensors. The scheme 

shown in Figure 21 displays how the different hardware components communicate. It is 

worth noting that the pull-up resistors are intrinsic to the Mega2560 board.  

3.3 Software 

3.3.1 Arduino IDE 

Arduino IDE is the official software to write and upload code to the Arduino boards. It is 

an open-source software that can be directly downloaded from the official Arduino 

website (https://www.arduino.cc/en/software). It is easy to use and contains numerous 

libraries and built-in examples. The version used in this thesis was 1.8.19. 

Any Arduino code must have two main functions: setup() and loop(). The first 

runs only once, and is used to configure pins, initialise variables, set timers, and establish 

connection with other devices. The latter runs repeatedly and includes all the processes 

and conditions that we want to execute or evaluate. 

In the present case, the setup function is used to:  

● Initialise variables, including the sensors – making use of extra libraries 

(Wire and MPU6050). 

● Establish the I2C communication between the MPU-6050 sensors and 

the Mega2560 board. 

● Open the Serial communication between the Mega2560 and the desktop, 

sending metadata (sampling frequency and sensor ranges). 

● Set a timer to guarantee a sampling frequency of 100 Hz. 

Section 3.3.1.1. contains a more detailed explanation of the libraries used. 

Conversely, the loop function is used to: 

● Fetch the data from the sensors. 

https://www.arduino.cc/en/software
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● Send the data via Serial port, whenever a condition is met. 

This condition is dependent on an interrupt routine, which is further explored in 

Section 3.3.1.2. Additionally, a function was created to keep the loop code as concise as 

possible. This function concatenates the values fetched from the sensors in a single 

string, so that it they can be sent via Serial port at one go. 

3.3.1.1 Libraries 

The Arduino IDE includes by default several useful functionalities, ranging from 

mathematical operations to analog and digital communication. These functionalities are 

all part of libraries. And just like most programming platforms, the Arduino environment 

can be extended through the use of additional libraries.  

 Besides the base-libraries, the present wearable glove system uses two extra 

ones: Wire and MPU6050. The first allows the device to communicate via I2C protocol; 

the second, designed by Electronic Cats [125], is specifically made to facilitate the use 

of MPU-6050 sensors (i.e., no need for “hard-coding”). 

3.3.1.2 Timer & Interrupt Routine 

Most Arduino models come with a 16 MHz clock, the Mega2560 included. Furthermore, 

they also come with timer functions, which are essentially counters. These timers are 

controllable, insofar as we can prescale them and change them in runtime.   

Interrupts are one of the most useful features of Arduino programs, especially for 

solving timing problems [126]. An Interrupt Service Routine (ISR) is carried over, 

whenever a set timer reaches its limit or meets a certain condition, causing the main 

program to halt until the routine finishes.  

In order to achieve a sampling rate of 100 Hz, we only need to guarantee that the 

Arduino sends the data in 10ms intervals. With that in mind, a timer was designed to 

interrupt every 10ms and change the state of a Boolean variable, used in a condition of 

the main loop. Whenever the condition is met, the fetched data is sent via Serial port and 

the Boolean variable changes to its original state, waiting for the next interrupt. 

3.3.2 MATLAB 

MATLAB is a high-level programming language and interactive environment with several 

built-in functions, ranging from basic arithmetic to interface development. Furthermore, 

it can be enhanced by extra libraries, that can be downloaded from the official website 

(https://www.mathworks.com/).  Its versatility and its extensive graphical capabilities 

https://www.mathworks.com/
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make it widely used as a computational tool in scientific projects. The version used in the 

present thesis was R2022a. 

3.3.2.1 Data acquisition 

The MATLAB routine starts by establishing a connection with the Arduino board and 

receiving some metadata: the upcoming sampling frequency, the accelerometer range, 

and the gyroscope range were 100 Hz, ±4g and ±1000° 𝑠−1, respectively.  

Then, the routine executes a call-back function that opens a graphical user 

interface (GUI) and displays the data in real-time. This processing stage is described in 

section 3.3.2.2, and the GUI’s functionalities in section 3.3.2.3.  

3.3.2.2 Real-time Processing 

The data acquired from the Arduino is first converted to acceleration and angular velocity 

based on the sensors’ range settings: 
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Afterwards, the total acceleration and total angular velocities are calculated, 

using Eq. 3 and 4. 
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One of the goals of the application was to give the user a visual cue that the 

sensors are working properly. To accomplish that we decided to introduce a 3D plot, 

where the orientation of a given sensor could be seen in real-time. The orientation of an 

object can be given by its angular position, or its Euler angles (see Figure 22). To obtain 

these angles, one could use data from either the accelerometer or the gyroscope. The 

accelerometer can do this by determining the position of the gravity vector (g-force), and 

the gyroscope by integrating the angular velocity over time. However, as it happens, the 

accelerometer measurements are very susceptible to disturbances by small forces, 

being only reliable on the long-term. Conversely, the gyroscope is very reliable on the 

short-term, but tends to drift, because of the integration over time.  
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One can solve this problem by using the data of both accelerometer and 

gyroscope, either in a Kalman filter or in a complementary filter. While the first is more 

robust, it is also harder to implement without magnetic field data [128] – which is not 

present at the MPU-6050. For those reasons, we opted for the latter. 

The complementary filter looks as follows, for the 𝑖-th Euler angles: 
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, with 𝐴 = 0.968 ∧  ∆𝑡 =
1

𝐹𝑆
. 

Although this filter generates a good approximation of the real orientation, it 

suffers from two problems. The first is known as the “gimbal lock problem” and happens 

when the pitch is ±90°: due to the way the rotation matrices are calculated, the object 

loses one degree of freedom and generates “false” rotations on the 2D plane [129]. The 

second problem involves the drift in yaw. Since this value cannot be calculated from the 

acceleration measurements (or there would not be a referential axis), it inherits the 

disadvantage of using only the gyroscope data. 

 

 

 

Figure 22 – Euler angles and polarity of rotations. From [127]. 
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Another goal of the application was to display in real-time the dominant frequency 

and the relative power of the band where the PD characteristic tremor occurs – 4 to 12 

Hz. Thus, for every 10 samples, the dominant frequency is extracted by: 

1) Obtaining the power-spectral density estimate vector, using the periodogram 

function expressed in Eq. 6. 

2) Getting the frequency correspondent to the maximum value of the power-

spectral density estimate vector. 

 

 �̂�(𝑓) =  
∆𝑡

𝑁
∙ |∑ ℎ𝑛𝑥𝑛𝑒

−𝑗2𝜋𝑓∆𝑡𝑛𝑁−1
𝑛=0  |

2
  ,    −1/2∆𝑡 < 𝑓 ≤ 1/2∆𝑡 (6) 

 

, where ∆𝑡 is the sampling interval and ℎ𝑛 is a window function. In this case, the window 

function used is the Hamming – a function that minimises the ripple that results from the 

time-frequency conversion of a finite signal, giving a more accurate idea of the original 

signal's frequency spectrum. Mathematically, it can be expressed by [130]: 

 

 ℎ(𝑛) =  𝛼 + (1 − 𝛼) cos [(
2𝜋

𝑁
) 𝑛]  ,      𝛼 = 0.54 (7) 

 

Finally, the relative power metric is obtained with: 

 

 
𝑃𝑟𝑒𝑙 = 

𝑃𝑡𝑟𝑒𝑚𝑜𝑟
𝑃𝑡𝑜𝑡𝑎𝑙

  (8) 

 

, where 𝑃𝑡𝑜𝑡𝑎𝑙 is the average total power of the signal (3-50 Hz) and 𝑃𝑡𝑟𝑒𝑚𝑜𝑟 the average 

power of the Parkinsonian tremor characteristic frequency band (4-12 Hz). The power is 

obtained by integrating the periodogram function in the wanted band. It is worth noting 

that 𝑃𝑡𝑜𝑡𝑎𝑙 discards the 0-3 Hz range to remove the gravity’s effect and potential aperiodic 

or low-frequency (often volitional) movements. 

3.3.2.3. Recording GUI 

When developing an application, usability is of the utmost importance, especially when 

its main users are not required to know but a few results. With that in mind, a GUI was 

designed (see Figure 23). 

The recording window has four plots, a pair for each sensor. Each pair is 

comprised by an orientation plot and a total acceleration plot. The first allows the user to 

visually assess if there are any problems with the corresponding sensor. A mismatch 
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between the orientation of the physical sensor and its plotted counterpart is an indication 

that something is wrong. In this case, the recording should be aborted, and the sensors 

reset or replaced. The latter plot displays the total acceleration, calculated with Eq. (3), 

the dominant frequency and the power in the frequency band associated with 

Parkinsonian tremor. These values are continuously updated, and the total acceleration 

line is shown in blocks of 5 seconds. This allows the clinician to see some of the previous 

total acceleration values without constant distortion of the x-axis.  

The application also allows the user to write the patient’s ID, which later is 

automatically integrated in the filename of the data saved during the session. 

Additionally, the user can specify the current section of the protocol. This information is 

stored along with the recordings. Whenever the user stops a recording, a dialog box 

appears asking whether he wants to save it or not. Regardless of his choice, the plots 

are refreshed, and a new recording can be started, if he pleases.  

 

 

Figure 23 – Graphical user interface of the developed application for real-time data acquisition. 
The orange box highlights the graphs that display the orientation and some relevant information 
about the incoming data. Within these, the red boxes highlight the power of the displayed signal 
in the Parkinsonian tremor frequency range, and the dominant frequency within this range, if there 
is one. In the green box, the user can write the patient’s ID and select the session’s section of the 
current recording. The information is stored along the data. The user can start and stop a recording, 
using the buttons in the purple box. When the stop button is pressed, a dialog box asks whether 
the recording should be saved or discarded. The black button closes the window. 
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3.4 Post-Recording Analysis 

The wearable glove system saves the recorded signals in .mat files. This allows the data 

to be aligned with concurrent recordings (namely, LFPs) and further analysed. Tremor 

and rigidity are two Parkinsonian cardinal symptoms that can be inferred from these 

signals. The following sections describe the methods devised to extract the tremor and 

rigidity intensities from the data. It is worth noting that the characteristics of the applied 

filters were chosen to match the ones used in a toolbox that is being developed by the 

NCN lab.  

3.4.1 Tremor Analysis 

A 5th-order band-pass Butterworth filter in the band of 3–13 Hz is applied to the total 

acceleration signal, to exclude frequencies outside the Parkinsonian tremor frequency 

band. The tremor intensity is calculated in blocks of 5.12 seconds, i.e., 512 points of data 

collected as the sampling rate is set at 100 Hz. Each block is further divided in 8 sub-

windows, each containing 64 data points.  

 Two adjacent sub-windows make up a set, so each block of 5.12 seconds 

contains 7 overlapping sets. To determine the tremor intensity in each block, the average 

of the dominant frequency’s magnitude of the 7 sets within the block is calculated: 

 

Τrem =
1

7
 ∑ 𝜏𝑛

𝑁=7

𝑛=1

 (9) 

 

, where 𝜏𝑛 denotes the dominant’s frequency magnitude for set n. Alternatively, the 

median of the dominant frequency’s magnitudes is also calculated. 

The final step is the normalization of the tremor intensity to a well-defined scale, 

determined during clinical validation. This scale is attained by comparing the analytical 

tremor with the clinician’s subjective classification. 

3.4.2 Rigidity Analysis 

The rationale behind the rigidity metric is the assumption that the cogwheeling effect has 

a specific impact on the angular velocity signal: whilst a high-amplitude repetitive motion 

in a non-rigid subject resembles a sinusoidal wave, in a rigid subject the signal contains 

more oscillations of smaller amplitudes over the sinusoidal wave, due to the ratcheting 

nature of the motion.  
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A 5th-order band-pass Butterworth filter, with cut-off frequencies of 0.25 Hz and 6 

Hz is applied to the total angular velocity signal to eliminate the baseline velocity offsets 

and high frequency noise. This high cut-off frequency was determined in an iterative 

process, that aimed to maximise the relative difference of a used parameter (number of 

peaks) between rigid samples and non-rigid samples.  

Subsequently, the signal is divided in blocks of 5.12 seconds, just like in the 

tremor analysis. For each block, the function starts by calculating the dominant frequency 

(𝐷𝑓𝑟𝑒𝑞) of the basal movement, using the periodogram function (see Eq. 6). Then, the 

number of peaks (𝑁𝑝) is obtained via search of local maxima in the filtered signal 

(MATLAB’s function “findpeaks”). Finally, the rigidity is calculated in the following 

manner: 

 
Rig =  

𝑁𝑝

𝐷𝑓𝑟𝑒𝑞
 (10) 

Ideally, for a non-rigid subject, the number of peaks should match the duration of 

the block multiplied by the movement’s dominant frequency and constitute the 0th-

percentile. Nevertheless, like in the tremor’s case, the rigidity intensity is ultimately 

normalised to a scale, which is obtained by matching the clinician’s evaluation with the 

function’s output. 

3.5 Results 

3.5.1 Validation Protocol 

The developed glove system was intended to be validated in a clinical environment. For 

that reason, a simple but complete protocol was designed. This protocol is divided in 4 

sections, which are further described in Table 7. 

 

Table 7 – Protocol for wearable glove system validation. 

Section Duration Description 

1 – Rest 3 min 
Patient maintains his upper limb relaxed 

on a solid surface. 

2 – Movement of the wrist 1 min 
Patient flexes the wrist in the y-z plane. 

Aided, if necessary. 

3 – Finger tapping 1 min 
Patient taps the thumb with its index 

finger. Aided, if necessary. 

4 - Rigidity 3 min 
Supination and flexion of the upper limb. 

Aided, if necessary. 
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As is common practice, the validation would establish a comparison between the 

system’s objective metrics and the ones it aims to replace – the clinician’s subjective 

scale. However, due to some constraints, namely the short span for the completion of 

this work and the logistics involved in scheduling a patient’s consultation, the validation 

process could not take place in the clinic. In alternative, we tried to emulate the relevant 

symptoms, while also providing control measurements to establish comparisons. 

A typical tremor recording consisted in an initial 10 seconds where an artefact 

was created (either by tapping on the chest or on the table), followed by a step increase 

 

 

Figure 24 – Examples of analytical results for emulated tremor. The plots contain the filtered 
total accelerations of both sensors (finger and dorsal) and the tremor intensities, calculated with 
(A) the average and (B) the median of the dominant frequency’s magnitudes. 
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of the total acceleration’s amplitude in blocks of 20 seconds. This process was aided by 

the GUI’s total acceleration plots in order to maintain the amplitude constant and the 

frequency within the Parkinsonian characteristic range. The generated artefact served to 

main purposes: seeing its effects on the analytical metrics and testing the function that 

enables the alignment of the neurostimulator and wearables recorded signals. 

Conversely, a typical rigidity recording was comprised by a period of 30 seconds of 

unrestrained supination and flexion of the upper limb followed by another 30 seconds of 

the same movement but with a counterforce (to create the rigidity effect).  

3.5.2 Validation 

As previously stated, the tremor intensity was calculated in two different ways: one used 

the average of the dominant frequency’s magnitudes of a given block, while the other 

employed the median. The application of both methods is illustrated in Figure 24. 

Regardless of the method, the evolution of the tremor intensity was consistent 

with the increase in total acceleration amplitude. One of the main differences between 

average and median usage was the fact that the artefact (~6 seconds) resulted in an 

increase of the calculated tremor intensity in the first, but not in the latter. In fact, one can 

see a similar phenomenon in the blocks containing an amplitude step transition – e.g., 

the 80 seconds block shows a tremor intensity that is between the intensities of the 

 

 

Figure 25 – Example of analytical results for emulated rigidity. The plots contain the filtered total 
angular velocities of both sensors (finger and dorsal) and the respective rigidity intensities. The first 
30 seconds correspond to the motion without opposition and the last 30 seconds result from its 
introduction. 
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previous block and of the following one for the average, but not for the median. Regarding 

the tremor intensity scale, it is worth noting that the 100th-percentile was manually chosen 

for illustrative purposes. Only the clinical validation step will allow its adequate 

determination. 

 

The application of the rigidity quantification method is illustrated in Figure 25. The 

transition between the first (without opposition) and second (with opposition) periods can 

be discerned around the 30-second mark. Overall, the first periods had lower rigidity 

intensities than the second. However, some exceptions are reported – e.g., the ones 

pertaining to the dorsal sensor’s signal in Figure 25, where two blocks of the first period 

revealed high rigidity values and one block of the second period had low rigidity. In this 

respect, it is worth noting that in this recording the dorsal sensor’s signal is not as smooth 

as the finger one. Similarly to the tremor’s case, the 0th and 100th percentile of the 

intensity scale were manually chosen for illustrative purposes. 

3.6 Discussion 

The developed wearable system is portable, versatile, and user-friendly. It provides an 

intuitive GUI that tracks the orientation of the sensors in real-time, while displaying 

relevant information about the incoming data. The way in which the orientation is updated 

constitutes a minor limitation. Although it provides a reliable approximation of the real 

sensor orientation changes, it suffers from two problems: the gimbal lock problem and 

drift in the yaw. Fortunately, these problems are not inevitable, and the use of 

quaternions is being considered in future versions of the GUI. 

Regarding the analytical functions, while the one used for tremor quantification 

relies on well-studied parameters (for tremor is the most successfully characterised PD 

symptom in the literature; see Table 5), the one used for the rigidity is innovative, as far 

as we can tell. Studies that propose new methods for rigidity quantification often resort 

to velocity parameters, obscuring the distinction between rigidity and bradykinesia. In 

this respect, the developed method aims to be velocity invariant (and does not take 

velocity into account), by removing possible offsets of the total angular velocity signal 

with a filter and normalising the number of counted peaks based on the frequency of the 

movement. 

A major limitation of the presented work is the lack of clinical validation at the time 

of submission. Due to the limited time window for its conclusion, the functions were 
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tested with subjects that tried to emulate the symptoms. While one should acknowledge 

that the emulated symptoms may not be totally representative of the real symptoms, 

tremor seemed the one emulated with greater success. In this regard, the method that 

employed the median seemed the most robust, being insensitive to non-periodic 

artefacts. As for the rigidity quantification, the results show some potential, albeit the 

lessened confidence on its emulation. 

All in all, the developed system tool shows good potential for clinical support and 

data analysis. Moreover, it provides a framework that can easily be enhanced with further 

functionalities. Among these, machine-learning models offer an interesting prospect of 

real-time symptom predictability, allowing the transition to systems that are adaptive in 

the true sense of the term. 

3.7 Conclusions 

The need to complement the brain signals and the lack of objective methods to quantify 

Parkinsonian symptoms in the clinic encouraged the development of a wearable system 

with these capabilities. The developed system has two main features: the real-time 

display and storage of motor signals, and the post-processing analysis. The first was 

materialized in an intuitive GUI, that can track the sensors orientation and give relevant 

information about the incoming data. The second consisted in a set of functions capable 

of reading and analysing the stored data. More concretely, these functions focused on 

the quantification of tremor and rigidity – the last of which was quantified in a novel way.  

Overall, despite lacking clinical validation at the time of writing, the analytical 

functions showed good quantifying potential, especially in the tremor’s case. Lastly, the 

developed system set up a framework that can be enriched by new functionalities, 

solving problems or needs that may emerge from clinical use. 
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Chapter 4 

Chronic Data Analysis 

The central goal of this thesis was to create visual and analytical tools for chronic DBS 

electrophysiology data. As already explained in section 2.2.3 and 2.5., Medtronic has a 

neurostimulator device, named Percept, capable of sensing and storing the patient’s 

LFPs, with a system coined BrainSenseTM Technology. The data storage feature is a 

recent improvement that enables the research of out-clinical (chronic) data, even though 

its resolution is vastly inferior to the one obtained during the clinical sessions.  

In most facilities, the sessions still employ the conventional DBS approach: the 

patient is sent home with a set a of stimulation parameters that were manually chosen 

by the clinicians. The fact that these parameters persist until a new session, allied with 

the storage capability of the Percept, poses an excellent opportunity to test the therapy 

effects on real-world environments. In addition, while at home, the patients have the 

option to instruct the storage of LFPs during states or events predefined by the clinicians. 

Since these states can include symptoms or scheduled activities (such as medication), 

the analysis of the stored data has also the potential to bring forward chronic biomarkers. 

Hence, besides the creation of the mentioned tools, this thesis also set itself up to tackle 

some research questions. 

As with the wearable system, MATLAB was the chosen programming language 

for this chapter. The main reason for this was the fact that some of the developed 

functions would be (and have been) integrated on an extensive analytical toolbox – 

specifically designed for the Percept + BrainSenseTM system – that is being made in that 

language by the NCN lab. 

4.1 BrainSenseTM Dataset 

The present work relied on a dataset directly provided by clinicians who are following 

patients implanted with the BrainSenseTM system. The data was anonymised and 

provided under an established protocol that was approved by the ethics committee of 

Centro Hospitalar Universitário de São João (CHUSJ). Although this dataset contains 

features for clinical purposes, this work focused on the ones used in outside the clinic 

environments. Data from outside the clinic, or chronic data, can be of two types: event-
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related or continuous. The next sections describe each of these. A fully detailed 

characterization of the dataset is in section 4.1.3. 

4.1.1 Event 

The BrainSenseTM Event feature enables the neurostimulator to take LFP snapshots, 

whenever a clinician-defined event occurs, in the following manner: 

1) Still in the clinic, the clinician activates this feature and creates up to 4 types of 

events (e.g., taking of medication, feeling good, feeling stuck, dyskinesia), 

indicating which events should trigger the snapshot. 

2) Outside the clinic, whenever the patient reports an event that should be 

snapshotted (by selecting it on the mobile application), the neurostimulator 

records 30 seconds of LFP data at 250 Hz, converting it to the frequency domain 

and storing the average frequency domain content (Fast Fourier Transform, 

FFT). Each snapshot comprises 100 pairs of values, covering a range from 0 to 

96.68 Hz. 

The neurostimulator can only store up to 900 events (i.e., 450 per hemisphere, if 

bilateral) and 400 LFP snapshots (i.e., 200 per hemisphere), overwriting older data if the 

limit is exceeded. 

4.1.2 Continuous 

The BrainSenseTM Timeline feature allows the neurostimulator to continuously record 

LFP activity, the moment a patient leaves the clinic until his return. This is how it works: 

1) Still in the clinic, the clinician activates this feature and specifies a band 

approximately 5 Hz wide, which he deems to be of interest – generally 

containing frequency peaks. 

2) Outside the clinic, LFP raw signals are measured at 250 Hz, converted to the 

frequency domain and the power of the specified band is calculated. 

3) Every 10 minutes, the average value of the LFP power and the stimulation 

amplitude are stored in the neurostimulator memory. 

Since there is a 60-day limit in the storage capacity of the neurostimulator, at the 

61st day the 1st day’s data starts to be overwritten, and so on. 

4.1.3 Dataset Characteristics 

A summary of the most relevant dataset features can be found in Table 8. All 6 patients 

have continuous data from out-clinical periods. The ranges in which the LFP power is 
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recorded are approximately 5 Hz wide and contain the frequency peaks of the patient. 

These frequency peaks can vary from period to period. Although all patients reported 

events, only patients 4,6 and 7 have the associated LFP snapshots.  

On a final note, it should be mentioned that most of the analyses were centred 

on patient 6, for two reasons. First, artefacts were detected on the right hemispheres of 

patients 4 and 7. Second, within the patients with available event snapshots, patient 6 is 

the only one that does not have an extremely unbalanced event type distribution. 

4.2 Main Research Questions 

As was mentioned in section 2.3.2.4, every hemisphere is anatomically and functionally 

unique. Considering the goal of aDBS – i.e., the personalisation of the DBS therapy to 

the patient’s physiology –, one could, then, intuitively deduce that the therapy should be 

confined to the hemispherical level. The first research question arose from this intuition: 

(1) Do the event profiles of a given hemisphere share an identifying baseline? 

 

Table 8 – Relevant characteristics of the dataset. 

Patient 

Number of out-
clinical periods 

with continuous 
recording 

Peak frequency 
(Hz) 

Date range 
Number of event 

snapshots (1) 

1 6 −(2) 
27/01/2020-
21/02/2020 

− 

2 4 −(2) 
30/07/2020-
12/02/2021 

− 

4 4 
L: 19.53/18.55 

R: 21.48/18.55(3) 
06/04/2021-
12/05/2021 

M: 56 
D: 2 

5 2 −(2) 
13/04/2021-
14/05/2021 

− 

6 2 
L: 14.65/16.60 
R: 12.70/15.63 

28/05/2021-
09/07/2021 

M: 85 
FS/R: 40 
FW: 30 
D: 17 

7 1 
L: 9.77 

R: 9.77(3) 
04/06/2021-
09/07/2021 

M: 39 
FS/R: 1 

FW: 119 
D: 3 

(1) M – Medication; FS/R – Feeling stuck/rigid; FW – Feeling well; D – Dyskinesias 
(2) Not used 
(3) Artefact present 
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As section 4.4.1.2 suggests, this question may be answered positively. With the 

intuition confirmed, the existence of a hemispherical baseline begged for further 

questioning. A potential line of inquiry resided in the evolution of this baseline, especially 

knowing that the Parkinsonian symptomatology changes over time. Following this logic, 

section 4.4.1.3 addressed the questions: (2) Does the baseline change over time? And, 

if so, how, and why? 

Having the hemispherical baseline’s dynamics described, one could not help but 

wonder if the differentiation of events could be done within these baselines. Or, in the 

form of a question: (3) Can the events be differentiated through the hemispherical 

baseline? Section 4.4.1.4 explored this scenario. 

 Finally, making full use of the chronic data, one aspired to see how the 

continuously acquired LFP power was related to the sporadic event snapshots, and if 

the first corroborated with some of the results obtained from previous questions. ‘(4) Can 

event-related data be inferred by the LFP power signal?’ was, thus, the last main 

research question of the thesis. 

4.3 Methods 

To answer some of these questions, mathematical and statistical methods were used. 

The next subsections contain a brief description of the most relevant methods. 

4.3.1 Dimensionality Reduction 

Principal-Component Analysis (PCA) is a statistical procedure commonly used for 

dimensionality reduction in exploratory data analysis [131]. Conceptually, it minimises 

the effects of correlated/redundant variables, while promoting the formation of an 

independent set. PCA projects each data sample to a new coordinate system, such that 

the first principal component (where the first coordinate lies) corresponds to the direction 

that maximises the variance of the projected data. The 𝑖-th principal component is the 

direction orthogonal to the previous 𝑖 − 1 principal components that maximises the data 

variance.  

❖ Consider a data matrix with size N x P, where P is the number of variables within 

a data sample and N the number of data samples. The PCA transformation can 

be thought as the multiplication of the data matrix by a P x L, where L is the 

number of new dimensions (principal components) and P the number of weights 

(one for each variable within a data sample).  
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4.3.2 Machine-Learning Classifiers 

Machine-learning methods were extensively used throughout the work. More precisely, 

Support Vector Machine (SVM), Decision Tree (DT), and K-Nearest Neighbours (KNN) 

classifiers were compared.  

❖ SVM is one of the most popular ML algorithms used by data scientists. In a 

nutshell, SVM searches for the best decision boundaries that separate any two 

classes with the highest generalization ability [132]. These boundaries are called 

hyperplanes. For a set of p-dimensional data points, the algorithm seeks (𝑝 − 1)-

dimensional hyperplanes. If the search is successful, the data is said to be 

linearly separable. For datasets that are not linearly separable, SVM offers some 

powerful transformation techniques, such as kernels. Kernels project the data to 

 

 

Figure 26 – Scheme of the steps involved in the creation of ML-based predictive models.  
The scheme has five main steps: pre-processing, algorithm selection, hyperparameter 
optimization, training, and testing. Pre-processing can include dimensionality reduction 
methods. The hyperparameters of SVM, DT and KNN are optimised with Bayesian and cross-
validation algorithms. The tuned algorithms are trained and tested on several data partitions.   
Adapted from [133]. 
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new dimensions, allowing the algorithm to find linear hyperplanes in a higher-

dimensional space. 

❖ DT is a powerful and popular ML tool for classification problems. It can be thought 

of as a tree-like structure, where each node denotes a test on an attribute of the 

data, each branch represents an outcome of a test, and each leaf node contains 

a class label [132]. The algorithm tries to identify the optimal split points within 

the tree, in a recursive manner. The algorithm is generally tweaked to find smaller 

trees preferable over larger trees, for the latter are more susceptible to overfitting. 

❖ KNN is one of the simplest and easier to understand ML algorithms. One can 

think of it as an analogy-maker. Mostly used for classification purposes, KNN 

classifies a new data point based on the similarity with previously stored data 

points [132]. For a set of p-dimensional data points, the algorithm calculates the 

p-dimensional distances between the new unlabelled point and all labelled points. 

The K closest points are used to label the new point. A disadvantage of this 

algorithm is that it does not truly “learn” any features from the data and just stores 

a training dataset for further comparisons. This results in increased inefficiency, 

as the dataset grows. 

The use of any of these learners required an optimization process, as illustrated 

in Figure 26. During optimization, a Bayesian optimization algorithm was applied to each 

learner, in conjunction with a 5-fold cross-validation method, to decide the optimal 

hyperparameters. Then, the tuned algorithms were trained with a training set, applied to 

a holdout set (test set) and evaluated. This last step was repeated for multiple data 

partitions. It is important to note that a change in the pre-processing methods (first step) 

entailed the repetition of all the subsequent steps. 

4.3.2 Classifier Performance Evaluation 

The F1-score is an evaluating metric, used in binary classification problems, that 

combines precision and recall. 

 

 
𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ∙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 (11) 

, with: 

 
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (12) 

 
𝑟𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (13) 
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, where 𝑇𝑃 denotes the number of points correctly labelled with the positive class, 𝐹𝑃 the 

number of points wrongly labelled with the positive class, and 𝐹𝑁 the number of points 

incorrectly labelled with the negative class.  

In multi-class classification problems where all the classes are equally important, 

macro averaging is recommended [134]. The macro-averaged F1-score is calculated by 

taking the arithmetic mean of all the per-class F1-scores: 

 

 
𝑀𝑎𝑐𝑟𝑜 𝐹1 𝑠𝑐𝑜𝑟𝑒 =

1

𝑁
∙ ∑𝐹1 𝑠𝑐𝑜𝑟𝑒𝑛

𝑁

𝑛=1

 (14) 

 

, where 𝑁 denotes the total number of classes. 

4.4 Results and Discussion 

4.4.1 Event Analysis 

4.4.1.1 Exploration 

Since there is still a literature gap concerning chronic data, especially event-related data, 

this work kicked off with an exploratory mindset. In other words, several ideas were 

tested besides the ones instantiated in the main research questions. Many of these ideas 

gave rise to visuo-analytical tools, some of which are illustrated in Figure 27. 

The analysis of a patient’s circadian data (represented by Figure 27A and Figure 

27B) may be useful to detect temporal patterns in the frequency and valence of the 

reported events. Moreover, it might also provide information on the patient’s routine and 

compliance with his treatment. For example, several >24h intervals between consecutive 

medications are suggestive that the patient frequently forgets to report (given that 

medication is usually taken 3-5 times a day). Additionally, one can also analyse the 

frequency of event co-registrations (episodes where the patient reports multiple events 

in a short span of time). 

As for the FFT profiles, one can study the power of the events in different 

frequency bands, either with relation to the stimulation amplitude (see Figure 27C) or 

throughout time. The fact that the events are recorded in both hemispheres, in bilaterally 

implanted patients, can also give rise to a hemispherical comparative study of the 

captured FFTs, as in Figure 27D. Furthermore, one can also explore the differences 
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between FFT profiles of different event types. This can be done in several ways, some 

of which: average FFT plotting (Figure 27E), frequency band power comparison, 

correlation analysis, etc. 

 

 

Figure 27 – Some examples of the developed functions for event-related data analysis. All the 
examples are from the same patient. (A) Histograms that represent the distribution of each event 
type, throughout the day. (B) Histogram that gives the elapsed time between reported 
medications. (C) Total power of the events based on the stimulation amplitude at the moment 
of capture. (D) A 3D representation of the event-FFTs containing the correlation, covariance, and 
coherence between hemispheres. (E) Mean FFT profile for each event type. M – Medication; FS 
– Feeling stuck; FW – Feeling well; D – Dyskinesias. 
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Most importantly, all these analyses may be combined in the generation of clinical 

profiles, that could in the future allow the mapping of the clinical responses (i.e., adapting 

a patient’s the therapy using combinations of previous profiles from other patients). 

4.4.1.2 Hemispherical Baseline 

(1) Do the event profiles of a given hemisphere share an identifying baseline? 

To answer the first research question, we analysed all the available LFP snapshots. The 

idea was to find if FFT profiles from the same hemisphere would share a particular 

baseline. Initially, we decided to use visual representations of the data. Given that each 

data sample has 100 dimensions (100 frequency-magnitude pairs) and that we were 

 

 

Figure 28 – 3D representations of hemispherical events after PCA. (A) Each 3D graph 
contains the PCA-projected FFT data from an individual. Blue points represent events from 
the left hemisphere, and orange points from the right hemisphere. (B) Graph that contains 
all the events in (A). Each colour represents a single hemisphere (N=6). 
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unsure of whether some frequency bands could be ignored, we decided to feed a PCA 

algorithm with the entire profile. 

Thereupon, 3-dimensional representations of the first three principal components 

of the FFTs were made for each patient. For every graph of Figure 28A, events (points) 

from the same hemisphere tended to group in the 3-dimensional space. The fact that the 

clustering is more pronounced in patients 4 and 7, is probably due to stimulation artefacts 

that were detected on the right hemispheres of both patients. While these groupings 

corroborated the existence of hemispherical “baselines”, we also wanted to see if these 

baselines maintained their uniqueness between patients. For that, we applied the same 

dimensionality reduction and visualisation methods to the whole dataset. The obtained 

representation (see Figure 28B) suggested, as well, a clustering between events of the 

same patient’s hemisphere. 

These visual cues prompted a second step in the analysis: the creation of 

predictive models. For that, SVM, Decision Tree, and KNN classifiers were chosen as 

learners for the same profiles (the input included the 100 frequency-magnitude pairs). 

As previously mentioned, these classifiers were first optimized with all the available data, 

in order to obtain the most fitting hyperparameters. Only then were the learner’s 

performances evaluated in multiple iterations. Each iteration started by splitting the data 

in training and testing sets, in a 70:30 ratio. Given that the number of events per patient 

(and, consequently, per hemisphere) varied significantly, the split forced the 

aforementioned ratio for all classes (hemispheres) and all the learning algorithms took 

the class frequencies as the prior probabilities. The overall weighted F1-scores are 

summarised in Table 9. 

All three classifiers achieved very high performances. KNN was the leading 

learner, with an overall macro F1-score of 0.99. These results show that event FFT 

profiles from the same hemisphere share some traits that can be easily identified – 

therefore, supporting the existence of hemispherical baselines. 

Table 9 – Performance metrics of ML algorithms for hemisphere classification. The results 
are for the hemispheres of patients 4, 6, and 7. The values are under the form of mean ± 

std (N=1000). 

ML Algorithm Macro F1-score 

Support Vector Machine 0.95 ± 0.02 
Decision Tree 0.96 ± 0.02 

K-Nearest Neighbours 0.99 ± 0.01 
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4.4.1.3 Baseline Temporal Evolution 

(2) Does the baseline change over time? And, if so, how, and why? 

The second research question was tackled with a different approach. First, we created 

3D representations of all the events of each hemisphere, throughout time. The goal was 

to see if one could visually spot any changes in the event FFT profiles over time. Knowing 

that the stimulation amplitude can affect the LFP signals, we also plotted the stimulation 

amplitude evolution (see Figure 29).  

A careful examination of the plots revealed that a significant change in the FFT 

profiles was coincident with the readjustment of the stimulation amplitude. In Figure 29, 

this change was most patent in the peak frequency shift on the 10-15 Hz range. In fact, 

the shift was more pronounced where the change in stimulation amplitude was higher 

(for this patient, the shift is not as clear in the left hemisphere, where the stimulation 

amplitude change was from 0.5 to 1 mA).  

To verify the effect of the stimulation amplitude on the hemisphere’s baseline, we 

employed the same methodology used in the first research question. For each 

hemisphere, we created a 3D representation of the three principal components of the 

respective events, labelling each according to the concurrent stimulation amplitude (see 

 

 

Figure 29 – 3D representation of the FFT profile temporal evolution. The stimulation 
amplitude is layered as a red line on the time-frequency plot. The data is from the right 
hemisphere of P6. FFT profiles are shown in the 4-40 Hz range. 
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Figure 30). Given that the discerned change was at the 10-15 Hz range, we also tested 

feeding the PCA algorithm with a narrower frequency band (4-40 Hz).  

Noticing the clustering tendency, we proceeded with the creation of predictive 

models. Classes (stimulation amplitudes) with less than 5 values were ignored, because 

their quantity was deemed insufficient. The same types of classifiers and optimization 

 

 

Figure 30 – 3D representations of events labelled according to stimulation amplitude, after 
PCA. All graphs contain data from patient 6. Each 3D graph contains the PCA-projected FFT 
data from a hemisphere. Different colours represent different stimulation amplitudes. The 
PCA algorithm was fed with the event-FFT profiles in the (A) 0-96 Hz and (B) 4-40 Hz ranges. 

 

 
 

 
 

  

Table 10 – Performance metrics of ML algorithms for stimulation amplitude classification. 
The results are from patient 6. The values are under the form of mean ± std (N=1000). 

Hemisphere ML Algorithm 
F1-score 

0-96 Hz 4-40 Hz PCA (0-96 Hz) 

Right 

SVM 0.97 ± 0.02 0.97 ± 0.03 0.97 ± 0.03 
DT 0.93 ± 0.05 0.89 ± 0.06 0.88 ± 0.05 

KNN 0.97 ± 0.03 0.96 ± 0.03 0.96 ± 0.03 

Left 

SVM 0.93 ± 0.04 0.89 ± 0.04 0.90 ± 0.05 
DT 0.84 ± 0.08 0.86 ± 0.06 0.77 ± 0.09 

KNN 0.88 ± 0.05 0.89 ± 0.04 0.88 ± 0.05 
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methods were used. The 4-40 Hz range and the principal components that explained at 

least 95% of the variance in the whole FFT range (0-96 Hz) were also used to feed the 

classifiers, in addition to the whole FFT profiles. The obtained results are summarised 

and compared in Table 10. 

Although all three classifiers had high performance metrics, SVM turned out to 

be the most reliable across hemispheres. The results show that feeding the algorithm 

with the entire FFT profiles was not significantly different from feeding it with only the 4-

40 Hz range, or with the new dimensions obtained with PCA. This suggests that the 

stimulation amplitude has a concrete effect on the hemispherical baseline and that it 

mainly occurs within the 4-40 Hz frequency range. 

4.4.1.4 Event Type Differentiation 

(3) Can the events be differentiated through the hemispherical baseline? 

A visual analysis of the FFT profiles prompted the response to the third question. Figure 

31 shows the mean and standard deviation values of the FFT profiles for each event 

type in patient 6. As previously stated, this patient had two periods of out-clinical 

recordings. Given that the stimulation amplitudes of both hemispheres varied from one 

period to another – changing the hemispherical baseline as suggested by section 4.4.1.3 

–, we individually analysed each of the periods. A meticulous examination of the Figure 

31 showed that the event-generic FFT profiles were very similar throughout the whole 

range (shared baseline), except in the alpha/low-beta range – where the mean ampltiude 

of the dyskinesias is lower than the others. However, when plotted with the standard 

deviations (31B), the generic profiles overlapped. Hence, a different analysis was made 

to further verify this differences.  

 We calculated the power in several frequency bands for each event. Then, the 

obtained results were plotted according to the event type, as illustrated by Figure 32. 

From these, two main observations were extracted. First, medication had generally the 

highest variance – which was not suprising, given that it is the only event that is 

scheduled and does not directly depend on the patient symptoms (although this is not 

always the case, as one explains in section 4.5). Second, beta was the only band where 

the dyskinesias power was consistently lower (p < 0.05) throughout the hemispheres 

(though the beta subrange differs between periods A and B) – which is in accordance 

with the literature that states that beta activity is inversely correlated with the presence 

of dyskinesias [42].  
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Figure 31 – FFT profiles of the four event types. All graphs contain data from patient 6, where (A) 
corresponds to the first out-clinical period and (B) the second. The plots in (i) contain the means of 
the four event types in each hemisphere. The plots in (ii) illustrate the mean and standard deviation 
values of medication (blue), feeling stuck (red), feeling well (yellow), and dyskinesias (purple) events 
in the 4-30 Hz frequency range of each hemisphere.  
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With these observations in mind, we decided to see if predictive models were 

capable of distinguishing dyskinesias from the rest of the events, with and without 

medication. The tested algorithms, SVM and DT, were fed with the power in five 

frequency bands: theta (θ, 4-7 Hz), alpha (α, 8-12 Hz), low-beta (low-β, 13-20 Hz), high-

beta (high-β, 21-35 Hz), and gamma (γ, 31-96 Hz). The results are summarised in Table 

11. 

 

 

 

 



63 
 

 

 

 

 

Figure 32 – Power in various frequency bands for four different hemisphere baselines. All graphs 
contain data from patient 6, where (A) corresponds to the first out-clinical period and (B) the 
second. Each graph has the minimum, 25th percentile, median, 75th, and maximum values for the 
four types of events: M – Medication; FS – Feeling stuck; FW – Feeling well; D – Dyskinesias. The 
frequency ranges are, respectively: θ+α (yellow), β(purple), low-β(green), high-β(blue), and γ(red). 
The asterisk marks the instances where dyskinesias are statistically different from at least one other 
event type (p<0.05). 
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Overall, SVM learners were more robust than the DT learners, for the latter did 

not perform as well in period B. The fact that the performance increased when medication 

events were discarded corroborates the stochastic nature of medication – i.e., it 

introduces randomness to the dataset. It is also worth mentioning that the standard 

deviations are significantly high. This happens because the number dyskinesias (positive 

class) cases is very small, and the misclassification of one of these strongly affects the 

F1-score metric. 

 

4.4.2 Event & Continuous Analysis 

4.4.2.1 Exploration 

Similarly to the analysis of event-related data, an exploratory phase complemented the 

answering of the main research question of this section. Some of the developed functions 

are illustrated in Figure 33. 

The use of continuous data enables the creation of temporal representations, 

such as the one in Figure 33A. Here, one can observe the circadian evolution of the LFP 

power in the form of peaks and valleys: in both hemispheres the power drops significantly 

during the nights and increases throughout the days. Interestingly, the power tends to 

reach its daily maximum just before the drop at night. This drop most likely reflects the  

 

Table 11 – Performance metrics of ML algorithms for dyskinesias binary classification. The 
results are from patient 6. The values are under the form of mean ± std (N=1000). 

Period Hemisphere 
ML 

Algorithm 

F1-score 

Power bands 
(with medication) 

Power bands 
(without medication) 

(A) 
28/05/2021-
03/06/2021 

Right 
SVM 0.80 ± 0.09 0.84 ± 0.12 

DT 0.84 ± 0.10 0.84 ± 0.14 

Left 
SVM 0.73 ± 0.11 0.90 ± 0.09 

DT 0.78 ± 0.10 0.90 ± 0.10 

(B)  
03/06/2021-
09/07/2021 

Right 
SVM 0.63 ± 0.03 0.70 ± 0.07 

DT −* 0.60 ± 0.07 

Left 
SVM −* 0.71 ± 0.08 

DT −* 0.67 ± 0.11 

*Less than 0.5 
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time at which the patient falls asleep, for the brain’s activity is known to drop significantly 

in frequency bands other than delta during sleep. In this respect, the LFP power may 

 

 

Figure 33 – Representations of LFP Power temporal evolution. All graphs contain data from patient 
6. (A) Plot that contains the LFP power of both hemispheres in a 5-day period. (B) Pair of plots that 
contain the LFP power and stimulation amplitude of both hemispheres. (C) Dyskinesias occurrences 
alongside the LFP power of both hemispheres. 
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reflect potential disruptions on the patient’s circadian rhythm. Besides the circadian 

analysis, the figure (33B) illustrates how a change in the baseline amplitude of the LFP 

power signal is coincident with the variation of the stimulation amplitudes – a 

phenomenon also patent in the event snapshots (see section 4.4.1.3). Lastly, in Figure 

33C, one can see when the reported events occurred alongside the continuously 

acquired power. 

4.4.2.2 Correlation between Event Power and Continuous LFP Power 

(4) Can event-related data be inferred by the LFP power signal? 

 

 

 

Figure 34 – LFP Power evolution with triggered events. All graphs contain data from patient 6. The left 
hemisphere is represented by the blue lines and the right hemisphere by the orange lines. Each graph 
fixes the events at the 0-minute mark and displays the LFP power within the ±1 hour vicinity. The four 
event types are: M – Medication; FS – Feeling stuck; FW – Feeling well; D – Dyskinesias. The black lines 
represent the interpolated LFP power means of the respective events. 
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An event-triggered analysis was the starting point to the answer to the last main research 

question. By grouping the events according to their type and outlining the respective LFP 

power in the events’ vicinities, one obtained the graphs in Figure 34. Two key 

observations can be made about these. First, the LFP power in the left hemisphere is 

appreciably higher than in the right hemisphere. The second observation has to do with 

the fact that the LFP power around the dyskinesias is lower than around other types of 

 

 

Figure 35 – Correlation between continuous LFP power and the power of multiple frequency bands. 
The plots contain data from patients 4,6, and 7. The frequency bands are from the top to the bottom: 
theta and alpha (4-12 Hz), low-beta (13-20 Hz), high-beta (21-35 Hz), and gamma (31-96 Hz). 
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events, especially in the left hemisphere. This is compatible with the results of section 

4.4.1.4, where the same patient’s dyskinesias had lower power in the beta band. 

Having a qualitative match between the power of some events and the near LFP 

power elicited the possibility of a quantitative match. To test this through, we decided to 

plot the correlation between the last LFP power value before the event and the power of 

several frequency bands of the event, in multiple patients. The obtained results are 

illustrated in Figure 35. 

Except for the right hemisphere of patient 7, the power of the bands that 

contained the frequency peaks (around which the continuous LFP power was recorded, 

see Table 8) were strongly correlated (r > 0.75) to the LFP power: in this case, the low- 

and high-beta bands for P4; the low-beta band for P6; and the alpha and theta bands for 

P7. Interestingly, the right hemisphere of patient 4 shows strong correlations for all the 

frequency bands. The probable cause of both anomalies is the presence of artefacts on 

these hemispheres. In any case, these results are indicative that even an LFP signal with 

very low-resolution may contain relevant information about the state of a patient. 

4.5 Limitations & Future Work 

This work has some limitations, such as the reduced amount of data, which can be 

regarded as the major one. This is especially true for section 4.4.1.4 where only one 

patient (6) had enough event variety for a detailed analysis. Fortunately, the NCN lab 

expects a new batch of data to arrive soon. This increase in data will not only allow the 

validation of the obtained results, but also make a wider array of analyses available. For 

example, it would be interesting to compare data from periods where the stimulation 

amplitudes are the same in one or both hemispheres – i.e., studying the effect of 

contralateral stimulation or of the disease progression on the FFT profiles. Furthermore, 

one could compare periods with and without stimulation. This may provide a clear view 

on the optimal stimulation timing for maximising or minimising the frequency and intensity 

of any given event – allowing the creation of simple, but efficient, ON/OFF adaptive 

systems. 

Concerning the patients, the inclusion of the type of PD (akinetic-rigid vs. tremor 

dominant) may be an important factor to consider, as suggested by [135]. As for the 

events, a distinction between scheduled medication and SOS medication could be useful 

because the latter is associated with deleterious states (such as, feeling stuck or 

dyskinesias) and could provide a new framework for the study of medication events. 
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Given the constraint on the number of events, one should also reflect on the adequacy 

of the chosen events. Perhaps, events where symptoms are manifest should be 

prioritised over subjective states. In this respect, different research centres could 

promote a convergence on event selection and the cross-validation of results, by 

engaging with each other. 

On a different note, the comparison between intra-operative and chronic 

recordings may also be an interesting line of research. The reason for that is the fact that 

the implanted lead can suffer minor displacements throughout time, which, in turn, can 

provoke changes in the FFT profiles. Thus, the intra-operative recordings could provide 

a mapping of these profiles for several locations and orientations. 

4.6 Conclusions 

The need of visuo-analytical tools for the chronic data obtained with the recent 

Medtronic’s PerceptTM + BrainSenseTM Technology system fuelled the present thesis. 

Furthermore, the opportunity of exploring uncharted territory – for the literature is still 

scarce in this domain – encouraged the use of some the developed tools in a research-

oriented manner. In fact, four research questions were formulated and tackled 

throughout this work. Each question produced relevant findings, which are summarised 

in the following answers:  

1) Do the event profiles of a given hemisphere share an identifying baseline? 

The results supported the existence of hemispherical baselines and strengthened 

the idea that aDBS should operate at the hemispherical level.  

2) Does the baseline change over time? And, if so, how, and why? 

The results showed that different stimulation amplitudes generate different 

hemispherical baselines, with higher variations resulting in more notorious 

changes of the FFT profiles. However, the reasons for these changes or degree 

to which these are due to stimulation artefacts could not be inferred. 

3) Can the events be differentiated through the hemispherical baseline? 

The results suggest that event differentiation may be possible. Dyskinesias were 

successfully differentiated from other types of events, with the main differences 

residing in the beta activity. Notwithstanding, a generalization of this 

phenomenon could not be made, for the analysis was limited to just one patient. 
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4) Can event-related data be inferred by the LFP power signal? 

The results showed that the continuous LFP power is highly correlated with the 

event power in the frequency band in which it is continuously acquired.  

The work had some limitations, most of which derived from the size of the dataset. 

Overall, both the developed tools and the findings foster the analysis of new data and 

the opening of new lines of research, that otherwise would have to wait until adequate 

tools were created. 
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Chapter 5 

Conclusion 

Despite the recent technological advancements on the hardware and software fronts, the 

DBS field is yet to create robust adaptive systems that work both in- and outside the 

clinical settings. A major step towards these systems lies on the choice of reliable 

biomarkers. Current knowledge posits the existence of potential biomarkers in both LFPs 

and the patient’s motricity. In fact, the latter is commonly used to evaluate the efficacy of 

the DBS stimulation protocol during clinical sessions. However, this process still relies 

on subjective metrics. Thus, it becomes necessary to develop systems for the acquisition 

and objective analysis of these motor signals. 

To fulfil this need, a wearable system was developed from scratch. This system 

has two main features: a GUI that allows the user to record and see information about 

the patient’s motor data in real-time, and a bundle of functions for posterior analysis of 

the recorded data. These functions mainly focus on the quantification of tremor and 

rigidity, two of the Parkinsonian cardinal symptoms. While the quantification of tremor 

uses known parameters, a novel way for rigidity quantification is proposed. Overall, the 

functions showed great potential for the forthcoming clinical validation step. 

Besides the development of a wearable system, this work focused on a more 

challenging need. Devices with data storage capacity recently enabled the research of 

chronic data. Yet, current analytical toolboxes do not make use of all the available data, 

nor are they suited for non-data-scientists use. To fill this gap, several visuo-analytical 

tools were developed and integrated in an extensive toolbox. The lack of research 

concerning event-related data further encouraged the application of these tools in a 

research-oriented manner. Therefore, four research questions were formulated. 

All the questions were successfully addressed. While some of the findings are in 

accordance with previous studies – namely that aDBS should actuate not at the patient, 

but at the hemispherical level, or that the beta band may be a good biomarker for 

dyskinesias – the other findings are not well-portrayed in the literature. In this regard, the 

collection of further data plays a vital role not only in their validation, but also in the 

establishment of new lines of research. 
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All in all, this work seized the opportunity to fill multiple needs with one deed, by 

building tools that can easily be integrated in future aDBS systems, whilst laying the 

groundwork for the further study of chronic DBS data.  

Future work 

As fruitful as this work might have been, there are some aspects that await further 

improvement. Concerning the developed wearable system, different methods for 

updating the orientation of the sensors – namely the use of quaternions – should be 

considered for future versions of the application. Also, at the time of writing, the NCN lab 

is waiting for the scheduling of clinical sessions, so that the system can be validated with 

patients manifesting Parkinsonian symptoms. New functionalities are also on the table, 

such as quantification methods for additional symptoms, or the use of machine-learning 

models in real-time symptom prediction.  

 As for the study of chronic data, information regarding the patient – such as the 

subtype of PD or the longevity of the medication therapy – may be valuable in future 

studies. Moreover, an extensive analysis on the event landscape should be performed, 

so that the most adequate can be selected. But, more importantly, larger datasets should 

be used. On this score, new data is being provided soon to the NCN lab. This will enable 

the improvement of the developed tools and the creation of new ones, along with the 

opening of new lines of research, such as the study of “on-off” states, contralateral 

stimulation, and disease progression. 

Finally, one cannot help but to envision the joining of the two pieces of this thesis: 

the creation of aDBS systems that incorporate the developed wearable and the captured 

chronic data, in real-world environments. For instance, the wearable could trigger the 

snapshot feature of the neurostimulator, overruling the patient’s need to self-report.  But, 

for this to become a reality, a lot of hard work lies ahead.  
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