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Resumo

Os "Field-programmable gate arrays" (FPGA) ganharam uma popularidade significativa nos úl-
timos anos devido à sua flexibilidade, alto desempenho e eficiência energética. Isto é particu-
larmente importante pois existe uma procura crescente de computação de alto desempenho e a
proliferação de aplicações embebidas. Ferramentas de Síntese de Alto Nível, do inglês "High-
Level Synthesis" (HLS), permitem aos programadores escrever software em linguagens de pro-
gramação de alto nível, tais como C/C++, e gerar automaticamente circuitos de hardware que
podem ser implementados em FPGA. Este processo oferece muitos benefícios, incluindo a ca-
pacidade de conceber circuitos de hardware de forma mais eficiente e rápida, a capacidade de
aproveitar o conhecimento e as capacidades dos programadores de software, e a capacidade de
alcançar um alto desempenho em FPGA. Embora as ferramentas HLS tenham melhorado nos úl-
timos anos, numerosos estudos demonstraram que a passagem de uma linguagem de alto nível,
do inglês "High-Level Language" (HLL), para uma linguagem de descrição de hardware, do in-
glês "Hardware Description Language" (HDL) pode muitas vezes resultar num pior desempenho
em relação a implementações que são executadas num processador convencional. Como o uso de
FPGA traz alguns benefícios fundamentais, é necessário investigar técnicas capazes de tornar este
processo mais eficiente. O principal objectivo deste trabalho é expor e propor técnicas eficientes,
mais especificamente, especialização de código, que é uma técnica importante para optimizar o
desempenho de sistemas de hardware concebidos com HLS e implementados em FPGA. Para al-
cançar os nossos objectivos, foram analisadas algumas das abordagens mais recentes que incluem
técnicas como a avaliação parcial, a multiversão, algoritmos de alocação de recursos, e abordagens
de co-projeto de software e hardware. As abordagens analisadas foram capazes de demonstrar a
sua eficácia quando aplicadas a um FPGA alvo, utilizando ferramentas de alto nível. Para facilitar
a compreensão da nossa abordagem, expomos alguns dos seus principais benefícios e desafios,
exemplificamos um caso de aplicação simples e real, e apresentamos uma primeira abordagem
que não só permite a identificação de uma série de etapas de implementação, mas também permite
a avaliação da sua eficácia.
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Abstract

Field-programmable gate arrays (FPGAs) have gained significant popularity in recent years due
to their flexibility, high performance, and energy efficiency. This is particularly important as there
is an increasing demand for high performance computing and the proliferation of embedded ap-
plications. High Level Synthesis (HLS) tools allow programmers to write software in high-level
programming languages such as C/C++ and automatically generate hardware circuits that can
be implemented in FPGAs. This process offers many benefits, including the ability to design
hardware circuits more efficiently and quickly, the ability to leverage the knowledge and skills of
software programmers, and the ability to achieve high performance on FPGAs. Although HLS
tools have advanced rapidly in recent years, numerous studies have shown that moving from an
High Level Languages (HLL) to Hardware Description Languages (HDL) can often result in worse
performance than when implementations are run on a conventional processor. As the use of FP-
GAs brings some fundamental benefits, it is necessary to investigate techniques capable of making
this process more efficient. This work’s main objective is to expose and propose efficient tech-
niques, more specifically, code specialization, which is an important technique to optimize the
performance of hardware systems designed with HLS and implemented in FPGAs. To achieve
our objectives, some of the most recent approaches that include techniques such as partial evalua-
tion, multiversioning, resource allocation algorithms, and hardware software co-design approaches
were analyzed. The analyzed work has shown the effectiveness of some techniques when applied
to a target FPGA using high-level tools. To facilitate the understanding of our approach, we ex-
pose some of its main benefits and challenges, exemplify a simple, real-world application case,
and present a first approach that not only allows the identification of a series of implementation
steps but also allows the evaluation of its effectiveness.

iii



iv



Acknowledgments

The past five years of my life have been a time of growth, learning, and personal development,
but they have also been defined by obstacles and failures. Knowing that this chapter of my life is
drawing to a close, I cannot help but feel a feeling of accomplishment and relief as I write these
acknowledgments. This project has been a significant element of this journey, and I am happy
for the opportunity to work on it. As I reflect on the past, I recall the people who have always
supported me. Their consistent support, encouragement, and guidance have been invaluable, and
I would want to use this opportunity to acknowledge them.

I would want to acknowledge my family’s unwavering support throughout my academic life.
It has not been easy to be a student, especially in terms of financial and emotional support. I am
so grateful for the sacrifices they have made to help me.

I am grateful to my boyfriend. During the ups and downs of this period, he has been a contin-
uous source of support and encouragement, and I will be eternally thankful for his presence in my
life.

I would want to thank my friends and colleagues, who have supported, assisted, and kept me
inspired throughout the years. Their assistance and companionship were essential to my academic
success.

I acknowledge my supervisor’s, Professor João Cardoso, guidance, patience, and constant sup-
port over the duration of this project. His expertise and constructive feedback helped me improve
my work and develop my skills.

Vitória Alexa Maciel Correia

v



vi



“Start Somewhere.”

Unknown

vii



viii



Contents

1 Introduction 1
1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Goals and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Dissertation’s Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 State of the Art 5
2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Field-Programmable Gate Array . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 High Level Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.3 Code optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.4 Code Specialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.5 Value Profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.6 Partial Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.7 Multiversioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 Related approaches using HLS with a target FPGA . . . . . . . . . . . . 10
2.2.2 Partial Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.3 Multiversioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Approach Description 19
3.1 Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 The San Diego Vision Benchmark Suite: Map Disparity . . . . . . . . . . . . . . 21
3.3 Taskmark (working title) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 Gprof and Gprof2dot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.5 Value Counter Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.6 Multiversion: Relationship with the degree of similarity . . . . . . . . . . . . . 24
3.7 Design Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.7.1 Vitis HLS 2022.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.7.2 Vivado 2022.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.7.3 PYNQ™-Z2 board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.8 Motivation Example: Pow Function . . . . . . . . . . . . . . . . . . . . . . . . 27
3.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Benchmark Analysis and Optimizations 31
4.1 k-Nearest Neighbors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1.1 kNN Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

ix



x CONTENTS

4.1.2 kNN Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2 Disparity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2.1 Disparity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.2 Disparity Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5 Experimental Results 61
5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2 HLS Synthesis Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2.1 Pow function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.2.2 k-Nearest Neighbors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.2.3 Disparity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.3 Analysis of the Relationship between Degree of Similarity and Performance in
Multiversion Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.3.1 Relative Percentage of Resources Used . . . . . . . . . . . . . . . . . . 75
5.3.2 Presentation and Analysis of the Results . . . . . . . . . . . . . . . . . . 76

5.4 Value Counter Monitor: Extended Version . . . . . . . . . . . . . . . . . . . . . 78
5.5 Analysis on code changes to be made for automation . . . . . . . . . . . . . . . 81

5.5.1 Specialized Versions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.5.2 Multiversion Versions . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.6 Global Approach Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.6.1 Benchmark Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.6.2 Profiling and Monitoring Variable Values . . . . . . . . . . . . . . . . . 83
5.6.3 Specialized and Multiversion Versions . . . . . . . . . . . . . . . . . . . 84
5.6.4 Design Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.6.5 Relationship between Degree of Similarity and Performance in Multiver-

sion Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.6.6 Contributions to the Monitoring Library . . . . . . . . . . . . . . . . . . 86

5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6 Conclusion 89
6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.3.1 Automating Transformations for Specialized Version Development . . . 92
6.3.2 Automating the Choice of the Versions composing the Multiversion Versions 92
6.3.3 Using Benchmarks for Further Research . . . . . . . . . . . . . . . . . . 92
6.3.4 Study on the Impact of Large-Scale Specializations of powf and sqrtf . . 92
6.3.5 Study on the Suitable Tool for Assessing the Relationship between Simi-

larity and Resource Utilization . . . . . . . . . . . . . . . . . . . . . . . 93
6.3.6 Impact Study of Multiversion Versions for Different Benchmark Scenarios 93

References 95



List of Figures

3.1 Approach workflow Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 "monitor" library hashtable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 "monitor" library state diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4 AC results example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.5 Design Flow Main Stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1 Disparity Benchmark Profiling Results. . . . . . . . . . . . . . . . . . . . . . . 44
4.2 Histogram of variable "diff", from computeSAD function, possible values and

number of ocurrences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.1 Results of executing the disparity algorithm for each substitution policy without
limiting the value range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2 Results of simulating the disparity algorithm for each substitution policy with a
value range between [-10,10] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

xi



xii LIST OF FIGURES



List of Tables

2.1 Related approaches main characteristics . . . . . . . . . . . . . . . . . . . . . . 16

3.1 Examples of scenarios that may occur in pow() function specialization . . . . . . 28
3.2 Versions of the pow function and their transformations. . . . . . . . . . . . . . . 30

4.1 Possible scenarios for kNN algorithm. . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 HLS directives applied to the kNN algorithm. . . . . . . . . . . . . . . . . . . . 42
4.3 Disparity possible scenarios and respective input data sizes. . . . . . . . . . . . . 43
4.4 HLS directives applied to the Disparity algorithm. . . . . . . . . . . . . . . . . . 57

5.1 Total available resources of the Zynq-7000 SoC XC7Z020-1CLG400C FPGA,
present in the PYNQ™-Z2 board. . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2 Results after pow versions simulations of the values referring to the execution time
with a target of 10ns and uncertainty of 2.70 ns. (single-precision float (SPF);
maximum frequency (Fmax); multiversion (MV); specialized (SPEC)) . . . . . . 63

5.3 Speedups resulting from comparing the number of latency cycles of each pow
version against the generic version v1, and the related specialized (SPEC) version. 64

5.4 Result number of resources used by each pow version after synthesis. . . . . . . 65
5.5 Comparison of the number of resources used by each pow version compared to the

generic version (%). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.6 Results of the area-delay product (ADP) of each pow version and their comparison

(%) with the generic version, v1. . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.7 Results after kNN versions simulations of the values referring to the execution

time with a target of 5 ns and uncertainty of 1.35 ns. (maximum frequency (Fmax);
multiversion (MV); specialized (SPEC)) . . . . . . . . . . . . . . . . . . . . . . 68

5.8 Speedups resulting from comparing the number of latency cycles of each kNN
version against the kNN generic version v2, and the related specialized (SPEC)
version. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.9 Result number of resources used by each kNN version after HLS synthesis. . . . 69
5.10 Comparison of the number of resources used by each kNN version compared to

the generic version (%). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.11 Results of the area-delay product (ADP) of each kNN version and their compari-

son (%) with the generic version, v2. . . . . . . . . . . . . . . . . . . . . . . . . 70
5.12 Results after Disparity versions simulations of the values referring to the execu-

tion time with a target of 10 ns and uncertainty of 2.70 ns. (maximum frequency
(Fmax); multiversion (MV); specialized (SPEC)) . . . . . . . . . . . . . . . . . 72

5.13 Speedups resulting from comparing the number of latency cycles of each Dispar-
ity version against the Disparity generic version v1, and the related specialized
(SPEC) version. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

xiii



xiv LIST OF TABLES

5.14 Result number of resources used by each Disparity version after synthesis. . . . . 74
5.15 Comparison of the number of resources used by each Disparity version compared

to the generic version (%). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.16 Results of the area-delay product of each Disparity version and their comparison

(the generic version, v1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.17 Results obtained for Disparity from the analysis of the degree of similarity be-

tween each of the two possible combined individual versions and the correspond-
ing results of the multiversion versions . . . . . . . . . . . . . . . . . . . . . . . 76

5.18 Results obtained for Disparity from clusters resulting from the analysis of the de-
gree of similarity between each of the two possible combined individual versions
and the corresponding results of the multiversion versions . . . . . . . . . . . . . 76

5.19 Results obtained for kNN from the analysis of the degree of similarity between
each of the two possible combined individual versions and the corresponding re-
sults of the multiversion versions . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.20 Results obtained for kNN from clusters resulting from the analysis of the degree
of similarity between each of the two possible combined individual versions and
the corresponding results of the multiversion versions . . . . . . . . . . . . . . . 77

5.21 Resulting parameter values indicating the total number of values assigned to the
monitored variable that entered the hashtable and the total number of values sub-
stituted in the table of simulating the disparity algorithm for each substitution policy 79

5.22 Resulting parameter values indicating the total number of values assigned to the
monitored variable that entered the hashtable and the total number of values substi-
tuted in the table of simulating the disparity algorithm for each substitution policy
with a value range between [-10,10] . . . . . . . . . . . . . . . . . . . . . . . . 80



Listings

2.1 Partial Evaluation Example: original function . . . . . . . . . . . . . . . . . . . 8
2.2 Partial Evaluation Example: specialized function . . . . . . . . . . . . . . . . . 9
3.1 Example of using the pow() function in the C programming language . . . . . . . 28
3.2 Example of the application of specialization with multiversioning with respect to

pow() function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.1 Original code (v1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

xv



xvi LISTINGS



Abbreviations

ADP Area-Delay Product
AO Adaptive Optimization
AP All Programmable
BF Belief Function
BRAM Block Random Access Memory
CLB Configurable Logic block
CPU Central Processing Unit
DAE Decoupled Access Execution
DSL Domain-Specific Language
DSP Digital Signal Processing
ELM Extreme Learning Machine
FF Flip-Flop
FPGA Field-Programmable Gate Array
GNU GNU’s Not Unix
GPU Graphics Processing Unit
HDL Hardware Description Language
HLL High-Level Language
HLS High-Level Synthesis
HW Hardware
LSTM Long-Short-Term Memory
PE Partial Evaluation
PGO Profile-Guided Optimization
PL Programmable logic
PP&R Post-place and route
QoR Quality of Results
RTL Register-Transfer Level
SAD Sum of Absolute Differences
SD-VBS San Diego Vision Benchmark Suite
SoC System-on-Chip
SPF Single-Precision-Float
SVM Support Vector Machine
SW Software
VCM Value Counter Monitor

xvii





Chapter 1

Introduction

In this chapter, the context and motivation behind the problem addressed in this work is introduced.

The main objectives of the work and the way the dissertation is organized are also described.

1.1 Context

As the complexity of digital circuits has increased over time, there is currently a tendency to focus

on specific hardware applications, which allows a more efficient and faster execution of software

programs on the hardware as a whole [1]. As a result, manual hardware design has become more

complex, and the use of Hardware Description Languages (HDL), such as Verilog [2] and VHDL

[2], has become more prevalent.

Field-programmable gate arrays (FPGAs) [3] are reprogrammable hardware devices, which

have come to prominence over the last few years as computational accelerators (see, e.g. [4]), and

by offering a number of key benefits, such as their higher performance compared to conventional

software (Central Processing Unit, CPU), in certain situations, at lower costs, with better energy

efficiency, and by being commercially available to a wide range of users.

Thus, FPGAs have been growing as a new platform in different areas, which include their use

in autonomous vehicle driving [5], computer vision [6], automation and safety technology at work

[7], in cybernetics [8, 9], automation in vehicles [10, 11, 12], medical equipment [6], computer

hardware, networking, digital communication [13, 14] and radio devices [15], bioinformatics [6],

voice recognition technology [16], secure communication systems, and a variety of scientific,

medical and other electronic products.

The advantages of using FPGAs, however, continue to be influenced by HDLs, used to specify

their computational data path as well as their detailed programming. The use of HDLs, despite

being able to provide efficient designs, is inefficient in terms of human efficiency, i.e., a great

deal of knowledge is required by developers about hardware design, and even then, there is a

high propensity for errors [4]. In this context, i.e., making the development process simpler for

software programmers/developers, High Level Synthesis (HLS) [17, 18] tools have emerged, (see,

e.g., [19, 20, 21]).

1



2 Introduction

High Level Synthesis (HLS) [17, 18] provides an automated design process that, starting from

an abstract behavioral specification, similar to software, generates an equivalent register-transfer

level (RTL) structure capable of generating a circuit, which implements the input behavioral speci-

fication [22]. In other words, an HLS tool takes as input a function written in a high-level language

(HLL) such as C/C++, and converts it to a RTL HDL kernel, thus being able to automatically gen-

erate an FPGA accelerator. HLL implementations can be developed more quickly and succinctly,

which lowers the likelihood of programmer mistakes and increases readability and reuse of the

code.

Although HLS tools have advanced rapidly in recent years, numerous studies have shown that

switching from an HLL to HDL can often result in worse performance than when implementations

are run on a conventional processor. In addition, there is input code that is, as yet, not synthesizable

with current HLS tools, such as the use of pointers, memory management and recursion.

As an attempt to address such issues, the makers of the technology have released a collec-

tion of best practices and programming, inside this guidelines, to help programmers maximize

the potential of the HLS tools. Researchers have shown the benefit of rewriting code, typically

manually, in line with these directives [4], according to the HLS tool and target FPGA. However,

there are cases where using the aforementioned guidelines has no effect or, in some cases, even

worse results [4]. Furthermore, the task of manually rewriting the code is complex, time consum-

ing, error prone, can only be performed by programmers specialized in hardware knowledge and

also requires a great effort in order to optimize the synthesis, taking into account the operating

frequency, parallelization and energy efficiency.

As a result, and taking into account the benefits of using FPGA implementations, industry and

research communities are focusing on the development of tools used as supplementary steps in the

design process, in particular, code optimization and code specialization techniques for HLS and

FPGAs, in order to overcome these challenges.

1.2 Motivation

In order to significantly improve energy efficiency, future processors should include architectural

support for customization, allowing systems to adapt to various application domains [23]. In

particular, it is expected that future architectural designs will make extensive use of accelerators

in hardware, such as FPGAs, given the opportunities they entail. However, such architectures

still present numerous challenges, namely the task of refactoring, specializing and optimizing

code in HLL, for hardware. The reality is that, despite recent advances, our understanding of

how programmers perform code specialization in the real world derives mainly from research that

focuses on a small number of software projects [24].

Thus, our main motivation comes from the impact of customization via code specialization in

hardware and lack of information regarding the same process, taking into account the advantages



1.3 Goals and Objectives 3

introduced by FPGA implementations integrating specialized execution flows. It is, therefore, im-

portant to try to expose, explore and develop efficient application code specialization techniques,

in a HLL, in particular, via HLS tools and targeting FPGAs.

1.3 Goals and Objectives

Given the aspects presented above, the main objective of this work is to propose efficient tech-

niques for specializing the application input code, C, so that it becomes more suitable for the target

HLS tool and FPGA and performance is improved. In some cases, multiversioning techniques are

be used to guarantee the existence of very efficient accelerators in more common scenarios, but

with the ability to accelerate the application in the context of other scenarios. All this depends on

the identification of the most common scenarios, which can be done by profiling the code.

In summary, it is expected that this work achieves increased performance improvements by

reviewing current techniques for efficient C code for HLS (as well as the possibility of discovery

of new techniques), proposing efficient specialization techniques.

1.4 Dissertation’s Structure

This dissertation consists of four chapters and is organized as follows:

• Chapter 2, Realated Work, presents some background regarding better-known optimization

techniques, and discusses studies already carried out on several specialization techniques for

code in HLL. In this way, based on previous studies, it is possible to obtain a perspective on

existing techniques and what they involve, facilitating learning and giving an idea of which

methods can be applied in our proposal, and what results to expect from them;

• In Chapter 3, Approach Description, our approach is presented, emphasising its principal

stages and components. Its underlying concepts and principles are explored, along with its

integration with high-level optimization and synthesis tools.

• In Chapter 4, Benchmark Analysis and Optimizations, a study of benchmarks is conducted

in order to identify potential areas to apply specialization techniques. Examining the re-

sults of multiple benchmarks also allows us to identify optimization opportunities, e.g., for

reducing energy consumption, increasing speed, or enhancing scalability, and establish the

optimal strategy for our application.

• In Chapter 5, Experimental Results, the main goal is to describe the experimental setup and

expose, analyse, and justify the results achieved by the proposed approach when applied to

the benchmarks.

• Finally, in Chapter 6, Conclusions, an overview of the results obtained from the work carried

out, a review of our approach, our contributions and, finally, future work are addressed.
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Chapter 2

State of the Art

This chapter aims to address the topics considered relevant for understanding the problems pre-

sented in Chapter 1 and covers the research and analysis conducted on the most recent approaches

and solutions related to the dissertation’s main topics. It is organized into three main sections:

• Section 2.1: where a brief introduction is carried out on some important concepts for the

understanding of the work to be carried out;

• Section 2.2: where work done on existing compilation techniques that specialize the C input

application code to become more suitable for HLS and the target FPGA is discussed;

• Section 2.3: where a review on the concepts covered in the previous two points is carried

out.

2.1 Background

Several key concepts that are necessary for a better understanding of the subject matter of this

paper are introduced in this section.

2.1.1 Field-Programmable Gate Array

An FPGA [3] is a type of reprogrammable hardware device that is used in a wide range of elec-

tronic systems and devices. It consists of an array of configurable logic blocks (CLBs) and inter-

connects that can be programmed by the user to implement a wide range of digital circuits and

systems. The resources of an FPGA are the programmable logic blocks (such as Lookup tables

(LUTs), and Flip-Flops), input/output blocks, and programmable connections that make up the

device. Some contemporary FPGAs also provide block random access memory (BRAM) which

provides a more significant data armazenament and digital signal processing (DSP) components.

FPGAs have several advantages over other types of programmable hardware devices, and in re-

cent years, they have gained prominence as computational accelerators [4], managing to provide

higher performance than conventional software (CPU) in several situations. The main advantages

5
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of FPGAs, in relation to previous ones, include: greater flexibility, higher speed, determinism,

energy efficiency, re-programmability, parallelism, which in turn allows to improve performance,

and customizability, considering that FPGAs can be customized for specific applications, allowing

users to optimize their designs for their specific needs. For these reasons, they are commonly used

in a wide range of applications, including high-performance computing, communications [13, 14],

networking [8, 9], aerospace, military [12], medical [6], automotive [11], and industrial systems

[7].

FPGAs are, however, still limited by the complexity and detail of the HDLs, used to specify

their computational data path.

2.1.2 High Level Synthesis

HLS tools [17, 18] arise in the context of making the use of HDLs a simpler development process

for software programmers/developers. HLS [17, 18] is a design methodology for automatically

generating hardware implementations of programs written in high-level languages like C or C++.

HLS tools analyze the program and automatically generate specialized hardware implementations

of the program’s functions and algorithms, which can be synthesized into hardware circuits using

HDLs, such as VHDL or Verilog.

In recent years, HLS has been increasingly studied by industry because it offers several ad-

vantages over traditional design methodologies, such as RTL design, higher productivity, quality,

portability, and design exploration. Even though HLS tools have come a long way in recent years,

more research and development is still needed in this area so that the change from a high-level

language to an HDL is more efficient and leads to better performance than when implementations

run on a regular processor.

2.1.3 Code optimizations

Code optimization is the process of improving the performance, efficiency, and reliability of a

program by modifying its code without changing its functionality.

In the context of HLS, code optimization involves using HLS tools to automatically optimize

the hardware implementations of a program that are generated by the HLS tool. This can involve

a wide range of techniques, including improving the algorithms used in the program, reducing the

amount of memory and other resources used by the hardware implementation, and improving the

utilization of the FPGA and other hardware resources. The specific optimizations that are used

depend on the target FPGA and the goals of the optimization.

There are several types of code optimizations that can be performed in the context of HLS.

Some of the main types of code optimizations in HLS include:

• Loop pipelining [25]: This technique involves breaking a loop into smaller parts and running

each part in parallel, which increases the amount of parallelism;
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• Loop unrolling [26]: This technique involves duplicating the body of a loop and then un-

rolling it. This reduces the overhead of the loop control logic;

• Data flow optimization [27]: This technique involves identifying data dependencies in the

hardware implementation and then rearranging the hardware loops to improve data flow. It

reduces the amount of data that needs to be stored in memory;

• Function inlining [28]: This optimization technique involves replacing a function call with

the body of the function itself, thereby reducing function call and return overheads and

allowing the compiler to perform further optimization of the code within the function;

• Data Reuse [29]: Data reuse is a code optimization technique that involves reusing the same

data in multiple computations rather than storing and accessing it multiple times, reducing

the amount of memory and other resources that are used by the program, and allowing

hardware circuits to operate more efficiently.

2.1.4 Code Specialization

When developing a function, programmers may sometimes declare a variable that turns out to be

"quasi-invariant" [30] or even constant. In such cases, the variable can be assigned to a literal

value as soon as it is appropriate. This may eliminate the overhead added by computation and

helps the compiler detect the variable value at compile time. This last advantage, can facilitate the

implementation of other optimizations such as constant propagation, constant folding, dead code

elimination, loop unrolling, and pipelining [31, 28].

There are two types of specialization: dynamic and static specialization. Static specialization

makes use of data that is expected to be used frequently, while dynamic specialization uses the

actual values at runtime [31]. Code specialization is performed more effectively at runtime due to

the unavailability of input values. The main difficulties related to specialization are: 1) detecting

which variables are interesting to specialize and their values, and 2) minimizing the number of

variables to specialize while maintaining a generic code and having good performance results

[32].

Code specialization in the context of HLS is a technique that allows designers to write more

general, high-level code, such as C or C++, for their digital circuits and then use HLS tools to

automatically generate lower-level, more efficient RTL code that can be used to program target

hardware, such as FPGAs. This approach can help speed up the design process and make it more

flexible, as it allows designers to focus on the high-level functionality of their circuits without

worrying so much about the low-level details. In addition, code specialization can help improve

the performance and energy efficiency of the resulting hardware by allowing HLS tools to explore

a larger space of possible RTL implementations and choose the one that is best suited for the target

hardware platform.

There are several types of code specialization techniques that can be used in the context of

HLS. Some examples of code specialization techniques in HLS include: parameter specialization,
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loop specialization, path specialization, architecture specialization, mode specialization, data type

specialization, memory specialization, and task specialization. The specific techniques that are

used depend on the target FPGA and the optimization objectives.

2.1.5 Value Profiling

Value profiling [33] is a technique for analyzing and collecting data regarding the distribution of

a program’s inputs or values during its execution (during runtime) in order to improve its perfor-

mance.

This is achieved by repeatedly executing the program and collecting data on the inputs, vari-

ables, and expressions whose values are calculated by the program. This data can then be used to

direct the optimization process by identifying numbers and areas of the code that are often used

and run, responsible for the majority of the computation, and where performance improvements

are anticipated to have the most impact. With this data, it is possible to develop code variations

that are optimized for the most frequent inputs or values.

This technique could have a substantial impact on the context of code specialization in HLS

tools for FPGAs, since the collected information can be used to drive the code specialization

process by optimizing the implementation for the most frequent values. By focusing the imple-

mentation on the most frequent values, the design can be optimized for both performance and area,

resulting in a more effective FPGA implementation. Moreover, value profiling can help uncover

performance bottlenecks in the code, which can then be solved via code specialization.

2.1.6 Partial Evaluation

According to [34], partial evaluation of a computer program is, by definition, the "specialization

of a general program based on its operating environment into a more efficient program".

Partial evaluation is a technique in which the computation is evaluated with respect to the

value of a particular operand. That is, instead of treating an operand as a variable, its value

becomes "fixed" [35, 28]. This can be useful in situations where a function or program is called

multiple times with the same arguments, as it allows partial evaluation to be performed once the

resulting simplified function or program is used in subsequent calls, saving computational time

and resources.

Based on the example in [34] and [28], let us imagine a function, f , that takes two arguments,

a and b, i.e., f (a,b), as shown in listing 2.1.

1 i n t f ( i n t a , i n t b ) { re turn b * ( a − b ) + a ; }

Listing 2.1: Partial Evaluation Example: original function



2.2 Related Work 9

Now suppose we want to use this function several times in our program, but always with the

same value for b, for example, b = 2. In this case, we can do a partial evaluation of the function f

to generate a new specialized function g (see listing 2.2):

1 i n t g ( i n t a ) { re turn 3 * a − 4 ; }

Listing 2.2: Partial Evaluation Example: specialized function

This transformation can save computational time and resources since function g becomes sim-

pler and more efficient than function f for this specific set of input arguments.

In the context of HLS, partial evaluation is a technique that can be used to optimize the gener-

ated RTL code by simplifying it for a particular set of input arguments. This can be useful because

the high-level code that is input to an HLS tool is often more general and abstract, and may not

make use of all the input arguments available in a particular application.

2.1.7 Multiversioning

Multiversion is a well-known technique in code optimization for generating code that can adapt

to a changing execution context: at compile-time, numerous versions of the original code are

generated as the consequence of distinct optimization modifications. When the resultant code

is executed, decisions are taken at runtime to select the appropriate version based on particular

criteria, such as input data or runtime behavior. There are numerous approaches to implement

multiversion, depending on the system’s unique requirements and limits.

When all future execution contexts are known, static multiversion, i.e. several versions gen-

erated during compilation, can be efficient. These execution contexts may be associated with the

hardware execution platform on which the code is actually executed or with target attributes of

the code that influence the validity or performance of the generated versions. This method be-

comes unworkable when execution contexts are largely unknown at compile time and cannot be

predicted. The same holds true for specialization and unpredictable values. The generation of

runtime versions of code where execution contexts are evidently understood might be one solu-

tion to these limits. Nonetheless, this method requires multiple time-consuming steps: profiling,

analysis, transformation, and just-in-time compilation. Runtime multiversioning can be especially

advantageous due to the fact that parameter values are frequently unknown at compile time and

only discovered during execution.

2.2 Related Work

Code specialization, in the context of HLS, is a technique used to optimize the hardware imple-

mentation generated for a specific target device. It involves selecting and customizing hardware

components and optimizing their interconnections based on the requirements and constraints of

the target device. In recent years, there has been an increase in the use of code specialization tech-

niques in HLS for FPGA targets. These techniques aim to improve the performance and resource
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utilization of the generated hardware implementation and can be applied at various stages of the

HLS flow, including instruction selection and other optimizations.

This section is mainly aimed at discussing the work presented on some of the most recent

approaches in compilation techniques for code specialization using HLS and a target FPGA, which

include the use of machine learning-based optimization methods and the incorporation of domain-

specific knowledge in the optimization process. Additionally, techniques will be addressed, which,

despite presenting a view directed towards software performance improvement and not particularly

on HLS tools or the use of hardware devices, may have utility for the development of new ideas

for solution formulation and technique development.

2.2.1 Related approaches using HLS with a target FPGA

HeteroRefactor

Lau et al. [36] make an innovative end-to-end proposal, known as HeteroRefactor, which com-

bines dynamic invariant analysis, automated refactoring, and selective offload for FPGAs.

HeteroRefactor focuses mainly on the following HLS refactoring techniques: rewriting a re-

cursive data structure to a finite-sized array, reducing the bit-width of integers, and tuning variable-

width floating-point operations. These techniques are based on the expectation that dynamic

a-priori analysis improves FPGA synthesizability, resource efficiency, and input-dependent of-

floading can guarantee correctness. For rewriting recursive data structures, the HeteroRefactor

implementation is based on the ROSE [37] compiler framework. Whereas to reduce the bit-width

of integers, it uses an approach based on the dynamic invariant detection tool, Daikon [38] using

Kvasir [38] as a C/C++ front-end. The implementation of these first two types of refactorings is

performed in a similar way for selective offloading, using a guard condition check. For floating-

point operations, on the other hand, a dynamic analysis was performed that provides a probabilistic

guarantee that the loss of precision is within a certain limit, this is because unlike the bit-width

reduction of integers, when the bit-width of floating point variables is reduced, it can lead to a loss

of precision.

HeteroRefactor consists of three main steps, which occur in the following order:

1) After a programmer implements his kernel code, code is then executed on existing tests

where it is verified the existence of FPGA-specific dynamic invariants, i.e., bit-width needed for

floating-point and integer variables, stack size and recursive data structures;

2) From the information obtained in 1), it automatically refactors the kernel in order to make

programs HLS compatible, and at the same time, optimize the clock frequency and resource usage

of the accelerator.

3) If the input fits the dynamic invariant, selectively offloads computation from the CPU to the

FPGA, ensuring the preservation of correctness behavior. Otherwise, it keeps the computation on

the CPU.
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To evaluate this approach, ten diverse and suitable for different situations programs were

used as benchmarks. The kernels were generated from C/C++ and targeted a Xilinx Virtex Ul-

traScale+XCVU9p FPGA [39] on a VCU1525 reconfigurable acceleration platform [40]. Using

Vivado Design Suite 2018.03 [41] the refactored programs are synthesized for RTL.

Based on experimental results, it was concluded that HeteroRefactor is able to automate the

transformation (no need to change the code) of a recursive program into an HLS compatible ver-

sion, identifying the empirical limit for the size of the recursive data structure, avoiding the effort

of an experienced FPGA programmer. Furthermore, for recursive programs, the results showed

that this approach had a great impact in reducing the resource usage of the target FPGA.

AnyHLS

It is common for programmers to write pragma-annotated C/C++ programs to define a hardware

architecture of an application. Given that, each hardware vendor uses its own set of specific prag-

mas and the challenge of portability between different vendors arises. Additionally, the difficulty

of using pragmas in a modular way (as they are resolved by the preprocessor) or performing proper

abstractions, contributes to the difficulty of using existing HLS languages.

Thus, in [42] is presented AnyHLS, which unlike existing HLS approaches, focuses mainly on

the challenges mentioned above by synthesizing FPGA designs in a modular and abstract way. To

do so, it resorts to exploiting concepts of partial evaluation and programming language features

(higher-order types and functions). AnyHLS is built on top of AnyDSL [43]. AnyDSL provides

partial evaluation, which means there is no need to modify the compiler when adding support

for a new application domain as developers can design custom control structures. AnyDSL is a

compilation framework able to create high-performance, domain-specific libraries (DSLs) [44],

and provides the Impala [34] language. Impala allows programmers to evaluate their programs

partially at compile time by controlling the partial evaluator through filters. In addition, it provides

syntactic sugar for invoking certain higher-order functions/generators , which are very powerful

when combined with partial evaluation. In this paper, using the Impala functional language and its

partial evaluation it has been possible to realize the abstractions required for FPGA synthesis in the

form of a library. The partial evaluation is necessary to combine the abstractions and remove the

respective overheads. After optimization of the user application based on a library of abstractions

and partial evaluation, the AnyDSL compiler [43] synthesizes the optimized HLS code (C++ or

OpenCL) from a given functional description of an algorithm. Subsequently, the generated code

is input to the selected HLS tool.

To evaluate this approach, seven programs were used as benchmarks, diversified and according

to the image processing application domain. The generated HLS codes were compiled using Intel

FPGA SDK [45] for OpenCL 18.1 [45] and Xilinx Vivado HLS 2017.2 [41] targeting Cyclone V

GT 5CGTD9 FPGA [46] and Zynq XC7Z020 FPGA [47], respectively. The results of AnyHLS,

after PP&R ( post-place and route), were compared with the results of other domain-specific

approaches, Halide-HLS [48] and Hipacc [49].
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This approach, besides solving the challenge of portability (avoiding, in the source code,

vendor-specific pragmas) and modularity, shows that the combination of high-order abstractions

and partial evaluation is powerful enough to make the design of a library with different HLS com-

pilers as targets. Furthermore, when compared to other DSLs (Hipacc and Halide-HLS), AnyHLS

was able to generate equally efficient designs without creating a backend compiler entirely, out-

performing them in terms of productivity.

FPGA-based SVM acceleration

Tsoutsouras et al. [6] present a systematic, two-level methodology and prototype structure for

developing high-performance FPGA-targeted hardware Support Vector Machine SVM accelerator

projects. The initial step of optimization in the presented methodology entails restructuring the

SVM source code to expose greater levels of data- and instruction-level parallelism. According to

the authors of the article, this level of optimization involves "reorganizing the data and instruction

relationships in the source code to enable a greater degree of parallel execution." To expose more

parallelism in the code, this may require techniques such as loop pipelining, loop unrolling, array

split, and array reshaping, among others. This level of optimization is crucial because it permits the

SVM code to be tailored to the exact hardware platform on which it will be deployed. By exposing

additional parallelism in the code, the hardware accelerator can use the parallelism existing in the

SVM algorithm and potentially achieve greater performance than with a non-specialized version

of the code.

At level one of optimization, they also concentrate on minimizing hardware resource use. In

order to investigate the design space of multiple hardware architectures and configurations that can

implement SVM algorithms, they use an HLS tool. They employ a set of parameters, including

area, power, and performance, to assess the efficiency of the developed hardware projects.

At level two of optimization, they use the results from level one to select the most efficient

hardware design in terms of execution time for the SVM algorithms. In addition, they explain

strategies for fine-tuning the hardware’s design to increase its efficiency.

This methodology targets SVM-based system-on-chip systems, notably Zynq [47], which of-

fers an ARM Cortex-A9 and SVM fabric. All layers of accelerator optimization are performed

using the Vivado-HLS tool [41], which gives the user directive-based control over the synthesis

process. A case study of an ECG-based arrhythmia detection flow proved the efficiency of this

methodology for producing efficient accelerator designs.

In general, this methodology can result in very efficient SVM accelerator implementations

that deliver great performance with less area than manually optimized designs. Therefore, the

application of this methodology can be advantageous for code specialization in the context of

hardware acceleration.
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2.2.2 Partial Evaluation

As described in Section 2.1.6, partial evaluation is a technique that optimizes the performance of

a program by evaluating it with some of its inputs predetermined.

Dong et al. [50] suggested a new hierarchical activity recognition method based on the theory

of belief functions (BFs) [51, 52]. The theory of belief functions provides a mathematical frame-

work for the representation and manipulation of uncertain data. It is a non-probabilistic approach

to uncertainty based on the concept of a mass of beliefs, which expresses the degree of confi-

dence that an event will occur. The theory of belief functions is especially relevant for dealing

with complex systems and circumstances when knowledge is incomplete or ambiguous. Using

approximations or heuristics, partial evaluation approaches can be utilized to optimize system per-

formance by decreasing the computational burden of belief function calculations. This can be

accomplished by precalculating and storing certain features of the belief function computations in

a table or other data structure for reuse at runtime. The method provided in [50] employs a long-

short-term memory (LSTM) model [53] to classify specified activities and a confusion matrix to

determine similarities between each pair of activities. On the basis of hierarchical clustering [54],

the activities are then structured into a hierarchical structure, and an Extreme Learning Machine

(ELM) model [55] is trained for each non-leaf node. During the testing phase, a novel, efficient,

tree-based matching rule is proposed to combine the findings of all ELMs that have been trained.

UCI Smartphone [56] and mHealth [57] datasets are used to evaluate the hierarchical activity

recognition algorithm presented. The results demonstrated this method surpassed all advanced

algorithms.

The authors in [44] offer a technique for shallow embedding domain-specific languages (DSLs)

into a host language via online partial evaluation [58]. The partial evaluation technique is intended

to enhance the efficiency of DSLs implemented with shallow embedding by providing optimized

host language code that can be performed directly, as opposed to interpreting or compiling the DSL

code each time it is executed. The authors implement this technique by combining static analysis

with runtime analysis. They begin by conducting a static analysis of the DSL code to determine

which areas can be partially assessed and which cannot. This is accomplished by examining the

DSL code’s types and dependencies at compile-time. This partial evaluation technique analyzes

the DSL code at runtime in order to generate the optimal host language code. The generated code

for the host language is then compiled and executed, avoiding the need to interpret or compile

the DSL code each time it is executed. Using several case studies, the authors demonstrate the

efficiency of this technique and discuss its challenges and limitations, such as the difficulty of

statically analyzing the DSL code to determine which portions can be partially evaluated and the

overhead of generating and compiling the optimized host language code.

2.2.3 Multiversioning

Lazcano et al. [59] designed a memoized speculative loop optimizer, a technique that aims

to improve code by detecting computationally costly loops and executing numerous versions of
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these loops in parallel. The objective is to discover the quickest version of the loop for the current

hardware setup and record the result for future reference. A multiversion runtime technique was

created as an extension of the Speculative Polyhedral Loop Optimizer (Apollo) framework [60,

61] to enable specialization and execution of many versions. The proposed multiversion runtime

system is divided into two distinct phases: training and operation. During the training phase,

modifications are made to the loop core, and the optimal version is chosen depending on runtime.

Based on the kernel settings, this version is kept and indexed (memoized). In the operational

phase, the saved version is re-released anytime the identical parameters are detected, resulting in

optimal performance without the need for additional analysis or transformation. If a kernel with

changed parameters is released, a new training phase is initiated.

Using heuristic methods, the method presented in [62] selects a minimal collection of repre-

sentative optimization alternatives (function versions) for multiversioning structures while avoid-

ing performance loss across accessible datasets and code size explosion. The method employs a

novel mapping mechanism that utilizes decision trees or machine learning-based rule induction

techniques to efficiently select the optimal code version at runtime depending on dataset features

and to minimize selection overhead. This allows the production of static self-adjusting binaries

or adaptive libraries that may modify their behavior and adapt to changing runtime settings with-

out the need for complex recompilation structures. Thus, this methodology might efficiently pick

the best versions of code at runtime while minimizing selection overheads, resulting in increased

performance and code size efficiency, as well as higher adaptability and flexibility in comparison

to standard static compilation techniques. The authors evaluated their strategies using the Open64

compiler [63].

"Multiversioning with Dynamic Access Edition" (SMVDAE) is the term given by the authors

to a novel strategy proposed in [64]. This innovative approach aims to convert sequential code

automatically at compile time in order to enable energy-efficient execution via decoupled access

execution (DAE) [65]. This multiversion technique generates many access versions of a software

application, ranging from lightweight versions that may be less efficient at preloading cached

data to more complicated versions that may be more efficient but incur greater overhead. The

optimal access version is chosen dynamically at runtime, thus bypassing the restrictions of static

analysis. The main advantages of SMVDAE are the fact that it can effectively explore the space of

optimized access versions at runtime, since multiversion is performed statically, and the fact that

dynamic selection of the optimized version incurs minimum overhead. The method also contains

a mechanism for identifying memory access patterns to determine which access phases are most

effective for each task, which is useful for optimizing code in general.

"Cooperative Profile-Guided Optimization" [66] is a new technique that includes a new mul-

tiversion approach and code specialization method that can improve the performance of GPUs in

interactive applications. This technique combines Profile-Guided Optimization (PGO) and Adap-

tive Optimization (AO). Cooperative PGO, like AO, functions most effectively in the context of

a just-in-time (JIT) compilation virtual machine, as it is based on the dynamic construction of

instrumented program variations for the collecting of profile data. Cooperative PGO, like PGO,
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employs previously gathered runtime profiles to guide future compilations. With Cooperative

PGO, programmers do not need to guess which inputs are representative for their applications.

Cooperative PGO considerably increases the number of versions that may be compared, which is

the primary distinction between this method and conventional multi-versioning methods.

A methodology for implementing a RegionSeeker framework together with its extension Mul-

tiversioning has been developed in [67], which adds to the advancement of the HW/SW co-design

field. The authors present effective solutions to the problem of choosing automatically which

portions of an application should be synthesized to HW, given a particular area budget. The

RegionSeeker-identified accelerators regularly beat those obtained by data stream-level methods

and solely evaluating function-level possibilities, regardless of application size or area limits. The

multiversioning strategy expands the initial set of possibilities by offering numerous optimized

variants. Given an initial set of HW accelerators, i.e. a set of regions determined using the Re-

gionSeeker framework, several variants of each area with the same functionality can be generated.

Each version may utilize one or a mix of the optimizations determined by the writers.

Cardoso et al. [28] discuss the use of autotuning techniques to maximize the performance of a

program automatically by modifying parameters or factors that affect program performance. This

can be accomplished offline (i.e. statically at compile-time) utilizing heuristics and profiling to

guide parameter settings for compile-time optimizations and code transformations, or online (i.e.

dynamically at runtime) utilizing a combination of static analysis and profiling to create models

and make code execution decisions. In the context of multiversion approaches, autotuning can

be used to generate and tune several versions of a program for specific hardware and software

platforms, thereby enhancing the performance of the program on those systems. Autotuning can

be used within the framework of code specialization to generate and optimize automatically spe-

cialized versions of a program for particular input data or use cases. It is crucial to note that the

efficacy of autotuning might vary depending on the application and platform being used, and that

autotuning can be time-consuming and demand large computational resources.

2.3 Summary

In recent years, research into code optimization techniques for HLS and FPGA targets has in-

creased. One of the primary advantages of code specialization for HLS and FPGA targets is that

it permits designers to tailor the performance of their hardware systems for certain applications

and/or workloads. This can be particularly beneficial for applications with demanding perfor-

mance requirements, such as those found in multimedia, communications, and high-performance

computing. Code specialization can also be used to reduce the size and complexity of hardware

systems, which is useful for applications with resource limitations such as power, area, or cost.

In Section 2.2, we discussed the work presented on some of the most recent compilation tech-

niques for code specialization using HLS and targeting FPGAs, as well as techniques that, despite

presenting a vision aimed at enhancing software performance, can be useful for the development

of new ideas for formulating solutions and developing other approaches. After analyzing the
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Table 2.1: Related approaches main characteristics

Approach Specialization techniques Included features Main results

[36] HeteroRefactor
Dynamic invariants,

automated refactoring,
selective offloading for FPGA

Recursive Programs: reduction of programmer effort,
and BRAM by 83%, increase of frequency by 42%;

Integers: reduction of FF by 25%, look-up-tables by 21%,
BRAM by 41% and DSP by 52%;

Floating Point: With an acceptable loss of precision of 10^-4
and 95% confidence, reduction of FF by 61%, LUT by 39% and DSP by 50%.

[42] AnyHLS
Functional abstractions
with Partial evaluation

With Xilinx Vivado: less resource usage,
latency and better performance than other DSL approaches;

With Intel FPGA SDK for OpenCL:
AnyHLS achieves similar performance to Hipacc,

but outperforms it in multikernel applications,
which means AnyHLS optimizes interkernel dependencies better.

[6]
FPGA-based

SVM acceleration

Systematic two-level methodology:
Code Restructuring for HLS

(Loop, Memory Partitioning and ILP)
and Design Space Exploration

of HLS Directives

SVM accelerator designs achieving latency
gains of up to 98.78 % in respect to

Vivado-HLS default optimized solution;
Using ECG analysis and Arrhythmia detection,

target Zynq programmable SoC
utilizing the optimized SVM accelerator design

outperforms pure software implementations
in numerous single or dual core

target platforms, achieving speedups, which range from 10× up to 78×.

[59]
Runtime

Multi-versioning
and Specialization

Optimizing transformations are applied on-the-fly
( polyhedral optimizing and parallelizing loop transformations);

Multi-versioning runtime; Memoization optimizer;

On both systems, significant speedups are
obtained for the majority of loop kernels

and issue sizes. A minor slowdowns can be
seen for a few kernels, though.

[62]
static multiversioning

approach with
dynamic version

Traditional iterative compilation techniques
(using collective optimizations);

heuristic; machine learning techniques

Was possible to effectively prune a large number
of versions optimized for different datasets.

This is achieved without considerable performance
loss nor code size explosion.

This techniques can improve the overall
performance of static programs or libraries

with low run-time overhead.

[64]
Multiversioned Decoupled

Access-Execute
SMVDAE

Significantly reduces the energy expenditure of
irregular or memory-bound applications and even yields
slight performance boosts. Overall, achieves over 20%
on average energy-delay-product (EDP) improvements

(energy over 15% and performance over 5%) across
14 benchmarks from SPEC CPU 2006

and Parboil benchmark suites,
with peak EDP improvements surpassing 70%.

[66] Cooperative PGO
Mix between Profile-guided,

adaptative optimizations for code specialization
and Multi-versioning dynamically

A PGO that exploits likely zeros is particularly
effective, achieving an average speedup of 5%,

with a maximum speedup of 15%, over a highly-tuned baseline.

[67]
RegionSeeker

MuLTiVersioning
Compiler-driven methodology

RegionSeeker MuLTiVersioning offers 1.8x
speedup over the total run-time of the

jpeg application compared to SW execution and up to 65x speedup on the parts
of the computation that are synthesized into HW.

Moreover, compared to single
version approaches it achieves 2-6x

speedup over the run time of the selected
regions.

[50]
Hierarchical Activity

Recognition Based on Belief
Functions Theory (Partial Evaluation)

Hierarchical activity recognition method based
on Belief Functions (BFs) theory:

first use Long-Short Term Model (LSTM)
and then determine the similarities

between each pair of activities through a confusion matrix

Compared with several algorithms,
the results prove that the approach has a superior
performance over all the advanced algorithms.

[44]
Online partial evaluator

for continuation-passing style languages

Continuation-passing style
(CPS)-based language Impala

together with a novel online partial evaluator

Produces highly specialized and efficient
code for CPUs as well as GPUs that matches the

performance of hand-tuned expert code.

approaches in Section 2.2, it was possible to summarize their most significant characteristics in

twelve aspects. Table 2.1 illustrates the three characteristics considered most essential for this

initial phase of the project. This strategy permits the comparison of the aforementioned methods

and, as a result, the research of our solution.

Through the examination of these methods, it was feasible to determine some of their limi-

tations and underutilized capabilities. Using high-level tools, [42, 36, 6] were able to demon-

strate their efficiency when applied to a target FPGA. However, despite the increase in research in

this field, there is still a lack of information addressing the application of specialization targeting

hardware. The majority of available information is derived mostly from studies focusing on a

small number of software projects [59, 62, 64, 66, 67, 28, 50, 44]. Both partial evaluation and

multiversioning techniques [59, 62, 64, 66, 67, 28, 50, 44], employed in software development

projects, could be utilized to enhance the performance of hardware circuits developed using HLS

tools. However, implementing these techniques can be challenging and may necessitate a sub-

stantial amount of design effort in order to obtain desirable outcomes. The requirement to strike a
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balance between performance and resource use is another important obstacle. FPGAs have limited

resources that must be managed carefully to achieve good performance, and HLS tools must bal-

ance the use of these resources with the need to achieve performance improvements. Additionally,

it is essential to support a wide range of apps and platforms, which can be difficult due to the

varying performance needs and resource limits of each application.

In conclusion, the current state-of-the-art indicates that there is still more work to be done

in this field; consequently, one of our aims will be to expose, study, and develop effective code

specialization approaches using HLS tools and targeting FPGAs.
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Chapter 3

Approach Description

As described in Chapter 1, the primary objective of this study is to propose an approach for spe-

cializing the input application code so that it is better suited for generating more efficient hardware

accelerators via HLS and targeting FPGAs.

The purpose of this Chapter is to describe the proposed strategy, emphasising its principal

stages and components. The approach’s underlying concepts and principles are explored, along

with its integration with high-level optimization and synthesis tools such as Xilinx’s Vitis HLS

[68]. The steps involved in the approach’s workflow are presented, from benchmark selection and

analysis to the development and evaluation of optimized versions.

Section 3.1 describes the adopted workflow, as illustrated in Figure 3.1, as well as the cat-

egories of tools that may be beneficial in each process phase. In Sections 3.2 through 5.5, the

proposed tools for each phase are described in terms of their functionalities and specific contribu-

tions. Section 3.8 concludes with a very simple practical example that serves as motivation and

demonstrates just a part of the potential offered by the application of this approach.

With this information, it is hoped to provide a comprehensive review of the proposed approach,

emphasising its significance and benefits in code optimization and the generation of efficient hard-

ware accelerators.

3.1 Workflow

In order to achieve the primary objectives of this project, it is essential to propose a strategy that

allows not only the identification of a series of steps for implementing our approach but also the

evaluation of its efficiency. The diagram representing the workflow is presented in Figure 3.1. The

workflow is divided into three main phases: collection of the necessary information to select the

required techniques for specialization and multiversion; application and analysis of the techniques

in an appropriate environment; and, finally, evaluation of the techniques on a FPGA.

The first part is aimed at gathering all the necessary information to be able to carry out the

work and to be able to choose appropriate benchmarks. A good selection of benchmarks can

help to understand the trade-offs between various optimization techniques and resource usage

19
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Figure 3.1: Approach workflow Diagram

strategies, as well as identify the most efficient procedures for certain applications and platforms.

The second part starts by analysing the input application code, each benchmark, and identifying the

key performance indicators of the code to help determine whether specialization techniques can be

used. Each change made should ensure that the behaviour of the program is maintained. To carry

out the task of analysis, profiling tools and libraries capable of code variables monitoring were

used. Considering the chosen specialization technique, other optimizations and other techniques

like multiversion can be applied. Tools capable of detecting similarities between different versions

of benchmarks could be useful to help in the choice of which versions should be grouped to create

a multiversion version. The chosen HLS tool, Vitis HLS 2022.2 [68], is then used to assess the

impact of the modifications made. This process is systematically replicated for different solutions.

It is also essential to select a suitable reference to properly compare and evaluate the performance

of each version of the algorithms. In the next phase, the same tests are implemented in practice

on the PYNQ™-Z2 [69, 70] board, and the results are reported and analysed.

In general, the optimization of certain functions and variables should be based on a thorough

examination of the target system’s characteristics and the algorithm’s requirements. This strategy

gives a starting point for potential performance improvements, but it is essential to adapt it to the

specific circumstances and do performance tests to evaluate the effects of optimizations.
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3.2 The San Diego Vision Benchmark Suite: Map Disparity

It is essential to select an appropriate benchmark for properly compare and evaluate the perfor-

mance of systems and algorithms. A good selection of benchmarks can aid in comprehending the

trade-offs between various optimization techniques and resource usage methods, as well as iden-

tifying the most efficient procedures for certain applications and platforms. We use benchmarks

from The San Diego Vision Benchmark Suite (SD-VBS) [71] for our study, which is a collection of

computer vision applications extracted from the computer vision domain.

SD-VBS consists of nine benchmarks, however we have chosen only one, Map Disparity [71],

to act as a support for this project’s initial phase. The Map Disparity technique computes depth

information for scene objects based on a pair of stereo pictures captured from slightly different

places. It is commonly employed in robotic vision systems for applications such as cruise control,

pedestrian identification, and collision avoidance. The implementation of Map Disparity is based

on Depth Perception, and computes dense disparity by operating on each pixel of the image. From

the perspective of a programmer, disparity possesses program properties such as regular mem-

ory accesses, and predictable workload, making it a programmer-friendly parallelization method

whose performance is limited only by the ability to bring data to the processor.

3.3 Taskmark (working title)

Taskmark (working title) [72] is an ongoing collection of task-intensive applications optimal for

heterogeneous CPU and FPGA systems, maintained by Tiago Santos and coworkers and accessi-

ble at [72]. The primary objective of the authors is to provide pure source code and compilation

instructions, as well as embedded input data (i.e., header files), so that the code can be analysed

and synthesised with HLS tools with minimal effort. Taskmark provides the K-Nearest Neighbours

benchmark (kNN) for this activity. kNN is a well-known algorithm for classification and regres-

sion tasks in supervised machine learning. It classifies new data based on how closely it resembles

previously classified training data. kNN is extensively used in numerous disciplines, including

medicine, security, and speech recognition. Due to its computational complexity in tasks such as

pattern recognition and image classification, it is frequently employed for benchmark analysis and

performance optimization with large datasets. Its simplicity facilitates code optimization strategy

comparisons.

3.4 Gprof and Gprof2dot

In this work, the GNU tool Gprof [73] and the Gprof2dot script [74] are used to analyse and profile

the benchmarks’ behaviour. These tool is well-known and is used to evaluate the performance of

C/C++ programs.

Gprof, a component of the GNU toolkit (GNU Profiler), plays a crucial role in the collection

of program runtime data. It generates a report that displays the amount of time spent on each
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function of the code. Using metrics such as cumulative time, number of function calls, and other

pertinent data, it is possible to determine which sections of the code occupy the most runtime and

which critical areas are most likely to benefit from optimization.

Gprof2dot can be used to make performance analysis more visual and intuitive, making it

simpler to comprehend the profiling data and identify potential areas for improvement using the

profiling data generated by Gprof. It converts the Gprof data into DOT graph format (callgraph).

This graphical representation facilitates comprehension of the program’s function hierarchy and

main call paths.

In conclusion, Gprof and Gprof2dot provide a clear view of the performance of the code,

making it simpler to comprehend the relationships between functions and more effectively target

improvements.

3.5 Value Counter Monitor

The ability to monitor variables and intermediate values in calculations is a very useful technique

during the analysis phase of the program, particularly when there are a large number of variables

and complex calculation operations involved.

Monitoring variables and intermediate values is applicable in a variety of contexts and can

facilitate the identification of code performance challenges. In machine learning, computer vision,

and image processing, for instance, complex computations are frequently comprised of intermedi-

ate variables whose values are typically constants and zero. By monitoring and identifying these

variables, we can simplify the operations involving these zero values, accelerate the code, and

save a significant amount of computational resources by avoiding superfluous operations in these

regions.

The article "PGZ: Automatic Zero-Value Code specialization" [75] introduces a technique,

which is based on the concept of monitoring intermediate values and variables in calculations and

identifying the ones that are zero. In this technique, a program is executed multiple times with

various inputs, and its variables’ values are monitored and recorded during each execution. Using

such information and zero value specialization, it is possible to identify patterns and determine

which intermediate values are zero. This implementation has demonstrated significant perfor-

mance enhancements across a variety of program types, demonstrating that this technique is an

useful instrument for code optimization.

In this project, we utilise the "monitors" library previous developed in the SPECS group by

our colleague Pedro Pinto. This library includes a "Value Counter Monitor" (VCM) that counts the

number of occurrences of one or more values assigned to a specific variable by using a hash table.

Figure 3.3 illustrates how the library works. When the vcm_init function is called, a new "vcm"

(value counter monitor) and hashtable are constructed for the user-specified variable "a" during

program execution. Then, anytime the vcm_inc function is called for the new "vcm," it means

that the "a" variable gets a value. This value could or could not be contained in the hashtable. If

the value is already present, it is used as a key in the table to access the number of its occurrences
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1 234
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Figure 3.2: "monitor" library hashtable

and increase it by one. If the value does not yet exist in the table, it is either ignored if the table

is fully populated or a new entry is created for that value. In the end of the program, a histogram

showing the occurrence of each value assigned to that variable is generated. Figure 3.2 represents

the diagram that exemplifies how the library hashtable works.

Create "vcm" for 
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space
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HashTable has space

vcm_destroy("vcm")

Figure 3.3: "monitor" library state diagram

In this project, we extended the "monitors" library. In the initial version of the "monitors"

library, the user could specify the maximum number of distinct values that could be stored to a

variable in the hashtable. However, when the variable under evaluation has a number of occur-

rences of different values higher than the maximum limit of occurrences that could be stored and

counted in the table, only the first occurrences, corresponding to the maximum number defined,

are counted. The remaining occurrences are discarded.
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To improve this functionality, it was decided to incorporate the substitution policies FIFO

(First-In, First-Out), LRU (Least Recently Used), LFU (Least Frequently Used), MRU (Most Re-

cently Used), and RANDOM in the library. The user may choose which one to employ for each

monitored variable or parameter. These substitution policies enable the "monitors" library to man-

age the table’s limited space in an efficient manner, ensuring that occurrences of more relevant

values are retained while less relevant values are substituted. When the maximum limit is reached,

the FIFO policy replaces the oldest value inserted into the table with the occurrence of a new value.

With the LRU policy, it is possible to replace the value that has been accessed the longest, i.e., the

value that has been accessed the least recently, when the maximum limit is reached. The LFU pol-

icy prioritises the removal of values with fewer occurrences by replacing the least frequently used

value when the maximum limit is reached. In contrast to the LRU policy, the MRU policy replaces

the most recently accessed value when the utmost limit is reached. Using the rand() function, the

RANDOM policy selects a random value between 0 and the utmost number of elements that can

be present in the table, and then substitutes the corresponding value in the table.

In addition to the substitution policies, two parameters have been added that can determine the

total number of values assigned to the monitored variable, and the total number of values substi-

tuted in the table. These parameters enable a more accurate comparison of the various substitution

policies and their efficiency in table management.

It was also made possible for the user to select a range of values from which to determine the

possible values associated with the monitored variable. This feature enables the user to establish

more precise and specific data analysis criteria. As seen in Section 5.4 of Chapter 5, this is espe-

cially useful when working with large data sets in which the variable being monitored can take on

a broad range of values. By limiting the scope to the relevant values, the user saves time and effort

interpreting the results, resulting in a more efficient analysis and a more thorough comprehension

of the data under consideration.

3.6 Multiversion: Relationship with the degree of similarity

During the development of this study, we explored if there is a correlation between the degree of

similarity between different individual versions and the results obtained when applying a version

that employs the multiversion technique of these versions. By investigating this relationship, we

hope to determine whether the similarity between versions of an algorithm can serve as a reli-

able indicator of expected performance when using the multiversion technique, as well as how

to efficiently select and combine versions. If we observe that similarity between versions consis-

tently yields similar results when employing the multiversion technique, this will strengthen the

dependability and utility of this strategy as an algorithm optimization technique.

This idea was inspired by the research conducted in [76]. The research employs data mining

in software code to identify patterns applicable to the design of hardware cores. However, be-

cause of the large number of samples and the imprecise definition of code features for mining, the

researchers propose the use of three techniques: Normalised Compression Distance, Neighbour
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Figure 3.4: AC results example

Joining, and the Fast Newman algorithm. These techniques are combined to produce DAMICORE,

a novel approach for data mining in code repositories. DAMICORE works with various forms of

code representation and can identify significant similarities at the level of source code. Exper-

iments demonstrated that DAMICORE can indicate the fusion of software kernels, resulting in

smaller FPGA cores than when each kernel is implemented separately. This research contributes

to the advancement of knowledge in the field of software implementation in hardware by empha-

sising the significance of version similarity analysis and its connection to efficient FPGA resource

utilisation. It is important to note, however, that although the results obtained are encouraging, ad-

ditional research is required to deepen the understanding of this relationship and investigate other

variables that may affect FPGA resource utilisation in various software versions.

We use the AC [77] tool to conduct this research. AC is a tool for detecting instances of pla-

giarism in source code written in languages such as C, C++, Java, Python, and VHDL. AC uses

the Normalised Compression Distance as the primary similarity measure. This tool, which can

detect similarities between different versions of source code, can be used to compare the special-

ized versions generated by the multiversion technique with the original versions and determine the

degree to which they are similar. In addition, it provides visualisation capabilities that enable a

more in-depth analysis of similarities discovered. The results can be presented in tables, colour

tables, and graphs, including clusters and trees, as illustrated in Figure 3.4. This facilitates the

identification of patters and relationships between code versions, aids in validating the results and

comprehending the effects of the performed optimizations.
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3.7 Design Flow

Several design stages are required to convert C language input code into FPGA designs. The main

stages are represented in Figure 3.5.

Following the necessary guidelines and constraints for HLS, the first stage is to write the C

language code that implements the desired functionality. The C code is then compiled using an

HLS tool. HLS converts C code into an equivalent hardware description, mapping C constructs

into logical elements and hardware structures suitable for FPGAs. HLS provides a number of

optimization options that can be used to enhance performance and resource utilisation on the

FPGA. It is essential to perform functional verification on the transformed code after HLS to

ensure that it retains the same functionality as the original C code.

The following stage involves generating the IP using the HLS tool. The IP is a description

of the hardware block produced by HLS. It encapsulates the implemented functionality and is

reusable for future FPGA applications. Using the generated IP, the Xilinx design tool Vivado

is used to implement the FPGA design. Vivado enables the configuration and integration of IP,

the definition of timing and routing constraints, and the compilation of the FPGA-programmable

bitstream file. After implementation and routing are completed successfully, Vivado generates the

bitstream file. The bitstream contains all of the information required to configure the FPGA for

the final design, including the logic element parameters and interconnections. The final step is to

program the generated bitstream into the target FPGA, PYNQ™-Z2 board. After programming the

target FPGA, it is necessary to conduct tests to ensure that the program functions as anticipated.

Figure 3.5: Design Flow Main Stages

3.7.1 Vitis HLS 2022.2

Xilinx’s Vitis HLS [68] is a HLS framework that automatically generates hardware implementations

of code written in high-level languages, like C or C++. We use version 2022.2 of Vitis HLS, which

brings a number of enhancements and additional functionality over earlier iterations.
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Overall, Vitis HLS 2022.2 is an effective tool for creating hardware accelerators and other

specialized hardware circuits from high-level applications. The performance, effectiveness, and

dependability of hardware designs may be enhanced by a variety of its features and capabilities.

3.7.2 Vivado 2022.2

Vivado [78] is a suite of tools developed by Xilinx for the design and development of FPGA-

based digital systems. It offers a variety of features and functionality to assist designers in the

implementation of complex hardware solutions.

The Vivado suite consists of a number of tools that span various stages of the design flow,

ranging from HDL code synthesis to physical implementation and FPGA device programming.

Vivado is compatible with a variety of Xilinx FPGA devices, including the Virtex family, Artix,

Kintex, and Zynq series, which combine programmable logic with processors. In addition, Vivado

offers a variety of analysis, debugging, and optimization tools, such as the Vivado Power Analyzer

for power consumption analysis, the Vivado Logic Analyzer for real-time debugging, and the

Vivado IP Catalogue, which provides a vast selection of predefined IP blocks.

This project uses the Vivado 2022.2 release.

3.7.3 PYNQ™-Z2 board

In this work, we use PYNQ-Z2 [69, 70], a development board based on the Xilinx Zynq-7000 All

Programmable System-on-Chip (AP SoC). It is meant to be used with the Python programming

language to construct high-level applications that take advantage of the hardware acceleration ca-

pabilities of the Zynq AP SoC [79]. The Xilinx Zynq-7000 All Programmable System-on-Chip (AP

SoC) utilized in the PYNQ-Z2 development board comprises a dual-core ARM Cortex-A9 proces-

sor. The ARM Cortex-A9 is a high-performance and low-power processor capable of regulating the

operation of the board, communicating with external devices, and processing data. The PYNQ-Z2

board is frequently used for a variety of applications such as machine learning, image and video

processing, and embedded system development. The Zynq AP SoC provides a versatile architec-

ture for installing custom hardware accelerators, making it particularly well suited for applications

needing high-performance computing or hardware acceleration.

3.8 Motivation Example: Pow Function

Consider the math.h library’s pow() function. Listing 3.1 shows a function using pow() to calculate

the value of a number a raise to a number b and return its result to a variable c.

The first step in specializing this function is to identify the dynamic variables as well as the

static variables that might be used for the specialization. Following the identification of the vari-

ables, where the specialization may be applied, three types of potential situations emerge:

1. Situations where there is only one specialization since the a and/or b take only one value in

the execution of the program;
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1 # i n c l u d e <math . h>
2 double c a l c u l a t e _ p o w ( double a , double b )
3 {
4 c = pow ( a , b ) ;
5 re turn c ;
6 }

Listing 3.1: Example of using the pow() function in the C programming language

2. Situations where several specializations may exist given that a and/or b take several values

in the execution of the program;

3. Situations where several specializations may exist since a and/or b take more often some

values in the program execution and there is the need to ensure that they can take any value.

In Table 3.1 several scenarios are presented, which most falls under situation 1), and their

specializations resulting expressions. It is important to be aware of the typical tradeoff between

size and speed. In this case, the size of the residual program grows along with the value of the

input b, and for a large b, specialization may be undesirable.

In relation to situations 2) and 3), scenarios may arise where a variable has multiple values,

for instance, b = 1 sometimes and b = 3 other times. In such cases, a multiple versioning strategy,

known as Multiversioning, can be used to generate several versions of a function or algorithm

automatically, each one optimized for a different set of circumstances or operational requirements.

Therefore, based on the precise entries and the program’s operational requirements, the appropriate

version of the function to use is chosen automatically at runtime. In [28], a possible scenario within

this situation is exemplified, in which a conditional test, if(), is used to check the program state

and call the appropriate filter, taking into account the existing version.

Several versions of the pow function, each with a distinct specialization, can be derived from

the scenarios presented in Table 3.1. The functionalities of a few of the conceivable versions are

displayed in Table 3.2. These versions include specialized versions (SPEC), versions with mul-

tiversion (MV), and versions where we know the function’s parameters are single-precision float

(SPF). In Section 5.2.1 of Chapter 5, the results analysis after HLS of each version’s latency and

speedup are presented in detail in Tables 5.2 and 5.3; resources used and percentage compari-

son with the generic version are presented in Tables 5.4 and 5.5; and values corresponding to the

Table 3.1: Examples of scenarios that may occur in pow() function specialization

Scenario Input Value Specialized Code
1 a = 1 c = 1
2 b = 1 c = a
3 b = 3 c = a * a * a
4 b = 0.5 c = sqrt(a)
5 b = -0.5 c = inv(sqrt(a))
6 a,b in single-precision-float c = powf(a,b)
7 a,c in single-precision-float, b = 0.5 c = sqrtf(a)
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1 # i n c l u d e <math . h>
2 double c a l c u l a t e _ p o w ( double a , double b )
3 {
4 i f ( b == 1) c = a ;
5 e l s e i f ( b == 3) c = a * a * a ;
6 e l s e c = pow ( a , b ) ;
7
8 re turn c ;
9 }

Listing 3.2: Example of the application of specialization with multiversioning with respect to
pow() function

Area-Delay product and respective percentage comparison with the generic version are presented

in Table 5.6.

In short, when comparing the specialized versions to the generic version, a reduction or main-

tenance of latency cycles are observed. Versions 2 and 5 do not necessitate additional latency

cycles, resulting in substantial accelerations. The versions v3_SPEC_b3, v6_SPEC_ab_spf, and

v7_SPEC_ac_spf_b05 outperform the generic version by a factor of 6.62x, 2.26x, and 4.53x, re-

spectively. In the majority of specialized versions, resource consumption is reduced by more than

60%. This suggests that the program could profit from specialization and justifies the use of the

multiversion optimization strategy. Additionally, the multiversion versions demonstrated faster or

comparable performance to the generic version. The multiversion strategy incorporates the ad-

vantages of generic and specialized versions, enabling the selection of the version that is most

effective for each set of conditions.

Although, for instance, the expression c = pow(a,b) makes the code more understandable for

a programmer, it might be detrimental to performance due to the additional function call overhead.

Additionally, executing the operation inline rather than using the function enables the compiler to

perform additional optimizations, including loop unrolling. It is very simple to identify the pow()

specializations, but not all of them are valid for this transformation, and if the algorithm has a

large number of them, invalid filtering events may become problematic.

This example, despite being very simple and generic, provides a number of specializations

features that can occur in a variety of applications.

3.9 Summary

This chapter explored the proposal for an approach to specialize application input code in order to

generate more efficient hardware accelerators. The developed approach is described, emphasising

its major phases and components and exploring into the concepts and principles underlying them.

The adopted workflow is described in Section 3.1. It is divided into three major phases: in-

formation acquisition, application and analysis of techniques in an appropriate environment, and

evaluation of techniques on an FPGA. The appropriate selection of benchmarks is emphasised

as a crucial aspect of comprehending trade-offs and identifying the most effective procedures.
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Table 3.2: Versions of the pow function and their transformations.

Version Specialization Functionality
v1_SPEC_gen Generic c = pow(a,b)
v2_SPEC_b1 SPEC: b = 1 c = a
v3_SPEC_b3 SPEC: b = 3 c = a * a * a
v4_SPEC_b05 SPEC: b = 0.5 c = sqrt(a)
v5_SPEC_a1 SPEC: a = 1 c = 1

v6_SPEC_ab_spf SPEC: a, b single-precision-float c = powf(a,b)
v7_SPEC_ac_spf_b05 SPEC: a, c single-precision-float, b = 0.5 c = sqrtf(a)

v8_MV_b1 MV: b = 1 || Generic if(opt == 1) c = a; else c = pow(a,b);
v9_MV_b3 MV: b = 3 || Generic if(opt == 1) c = a * a * a; else c = pow(a,b);

v10_MV_b05 MV: b = 0.5 || Generic if(opt == 1) c = sqrt(a); else c = pow(a,b);
v11_MV_b1_b3 MV: b = 1 || b = 3 || Generic if(opt == 1) c = a; else if(opt == 2) c = a * a * a; else c = pow(a,b);

v12_MV_a1 MV: a = 1 || Generic if(opt == 1) c = 1; else c = pow(a,b);
v13_MV_spf_b05 MV spf: b = 0.5 || spf Generic if(opt == 1) c = 1; else c = pow(a,b);

Taskmark’s kNN benchmark (working title) and SD-VBS’s Disparity benchmark were chosen for

this endeavour. The chapter also discusses the use of tools such as Gprof for code analysis and

profiling, as well as the "monitors" library for monitoring variables and intermediate values dur-

ing program analysis. The technique used in [75] is mentioned as a strategy for identifying null

values and optimizing code based on these patterns. A modification was also made to the "moni-

tors" library in order to save time and effort when interpreting the results, make the analysis more

effective, and provide a more thorough comprehension of the data under consideration.

A correlation between the degree of similarity between various individual versions and the

results obtained when a version employing the multiversion technique of these versions is applied

is also evaluated. This study is conducted with the assistance of AC, a tool for detecting instances

of plagiarism in source code. This research was motivated by [76], in which data extraction from

software code was used to identify patterns pertinent to the design of hardware cores.

The design flow is presented in Section 3.7, which is an essential stage in the process of

optimizing code for FPGAs. It is comprised of a series of sequential stages that transform the

source code into an FPGA-implementable hardware design. After creating specialized versions

for each benchmark, the next stage is to test them using the Vitis HLS and obtain the results. This

procedure is repeated systematically for various solutions. Vitis HLS enables the exploration of

various architectures and configurations in order to acquire an optimized design, as well as the

specification of performance and area constraints to direct the hardware synthesis.

The next stage, following the synthesis, is the Vivado-based physical implementation of the

design. When executing the design flow, it is essential to take into account the characteristics

and limitations of the PYNQ™-Z2 board, which was selected for use. The chapter concludes

with a straightforward practical example that demonstrates some of the potential offered by the

approach’s application. In Chapter 5, the results are presented and analysed.



Chapter 4

Benchmark Analysis and Optimizations

Benchmarking is one of the most important way for engineers to figure out how well hardware

and software systems work. Through benchmark analysis, it is possible to measure how well

an algorithm works in different situations, such as with different inputs and different sizes of

data. This enables developers to discover and optimize important code regions, resulting in more

efficient and scalable solutions.

Benchmark analysis is particularly significant in the context of code specialization for FPGAs

utilizing HLS tools, since it enables the identification of critical code sections that can then be tar-

geted for specialization. It is possible to determine memory access patterns, data sizes, and other

code properties that directly impact performance. This information is vital for selecting the best

specialization approaches and adjusting the synthesis settings of the tool. Consequently, bench-

mark analysis is a vital step in ensuring that the specialized code is both resource and performance

efficient.

In this chapter, a study of benchmarks is conducted in order to identify potential areas to

apply specialization techniques. Examining the results of multiple benchmarks also allows us to

identify optimization opportunities, for e.g. for reducing energy consumption, increasing speed,

or enhancing scalability, and establish the optimal strategy for our application.

Section 4.1 analyses the kNN benchmark, which is mentioned in Section 3.3 of Chapter 3.

The transformations that resulted in the various versions of the algorithm are presented, as well as

the Vitis HLS tool directives that were applied to each of them. The same approach takes place in

Section 4.2.1 for the SD-VBS disparity algorithm, which was previously introduced in Section 3.2

of Chapter 3.

4.1 k-Nearest Neighbors

K-Nearest Neighbors (kNN) [80] is a supervised machine learning algorithm primarily used for

classification and regression problems that can, e.g., classify a new instance of data based on its

proximity to previously classified training data. Due to its effectiveness, ease of comprehension,

and implementation, this algorithm is used in many fields, including medicine, finance, marketing,

31
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security, and speech recognition, among others. This algorithm’s use requires distance calculations

and result ordering, which can be computationally intensive. As a result, this algorithm is a good

candidate for benchmark analysis, as optimizing its performance is applicable to a variety of ap-

plications due to its frequent use with large datasets. Its simplicity facilitates benchmark analysis

and comparisons between various code optimization strategies.

4.1.1 kNN Analysis

In this study, we use the kNN algorithm from Taskmark (working title) [72], which is a collection

of heavy-duty applications optimal for CPU and FPGA systems with heterogeneous processing

architectures.

The kNN utilized incorporates the kNN_Predict function. This function was regarded as the

top function in Vitis HLS due to its computationally intensive characteristics. The kNN_Predict

function contains the training data training_X and training labels training_Y, as well as a query

datapoint queryDatapoint and the minimum and maximum values for each feature in the train-

ing data. It also contains the kNN implementation parameters n_features, n_testing, n_training,

k, bestDistances, bestPointsIdx, and n_classes. Invoking kNN_MinMaxNormalize, the function

normalizes the query reference point using min-max normalization (scaling the feature values to

the range [0, 1]). kNN_InitBest is then used to initialize bestDistances and bestPointsIdx, setting

all bestDistances values to DBL_MAX and all bestPointsIdx values to −1. Next, for each training

datapoint, the function computes the Euclidean distance between the query datapoint and the train-

ing datapoint, and uses kNN_UpdateBestCaching to update the bestDistances and bestPointsIdx

sets if the distance is smaller than any of the current bestDistances values. The function then

uses kNN_VoteBetweenBest to total the occurrences of each class among the k-nearest neighbors

and returns the class that appears most frequently. The kNN_UpdateBestCaching implementation

reduces the number of iterations required to discover the two largest values in bestDistances by

utilizing caching. This is accomplished by keeping note of the indices of the worst and second

worst distances observed thus far and updating these values as necessary while iterating the array.

4.1.2 kNN Optimizations

In this section, a number of versions of the kNN algorithm resulting from transformations aimed

at code specialization and optimization for execution on FPGAs using HLS tools are analysed.

The key distinctions between each version in terms of optimization strategies are highlighted. It is

discussed how each version attempts to enhance performance by reducing the number of latency

cycles, decreasing resource consumption, and enhancing the use of specific functions.

All the different simulation scenarios utilised by the kNN algorithm are listed in Table 4.1.

This study focuses on the scenarios WI_K3_F and WI_K20_F. Consequently, the transformations

conducted are tailored to the specific characteristics of these scenarios.
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Table 4.1: Possible scenarios for kNN algorithm.

Scenario ID Dataset Data type #Features #Samples Training #Samples Testing K Accuracy
WI_K3_F wisdm float 43 4336 1082 3 68.02%
WI_K3_D wisdm double 43 4336 1082 3 68.02%
WI_K20_F wisdm float 43 4336 1082 20 68.76%
WI_K20_D wisdm double 43 4336 1082 20 68.76%
GA_K20_F GA float 100 8004 1996 20 50.50%
GA_K20_D GA double 100 8004 1996 20 50.50%
GB_K20_F GB float 100 40002 9998 20 51.17%
GB_K20_D GB double 100 40002 9998 20 51.17%

Original version (v1)

The original version of kNN utilised includes a high degree of specialization in terms of the pa-

rameters used, such as N_TRAINING, N_TESTING, N_FEATURES, N_CLASSES, and K, which

were previously declared as constants. These constants differ solely based on the scenario speci-

fied before to program execution, guaranteeing that the algorithm works in general, regardless of

scenario.

Generic version (v2)

As previously stated, the first version of the kNN algorithm already had a high level of specializa-

tion when compared to other kNN algorithms. As a result, it would not be an appropriate basis for

comparison with other kNN versions. Based on this thought, an alternative, more generic version

was created in which the parameters were not previously established as constants. Listings 4.1 and

4.2 depicts an example of a change made from the original form to the generic version, respec-

tively.

All subsequent versions of the kNN algorithm were derived from the generalised version. This

strategy allows for the exploration of various configurations and the adjustment of parameters

for each individual version. Because the base version was adaptable, it was feasible to imple-

ment transformations and optimizations with greater freedom, adjusting the algorithm to diverse

contexts and individual requirements. This concept of producing versions derived from the gener-

alised version provides a systematic and comparative approach to evaluating the performance and

efficiency of each kNN algorithm modification.
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Listing 4.1: Original code (v1)

1 void kNN_Pred i c tA l l (DATA_TYPE t r a i n i n g _ X [ N_TRAINING ] [ N_FEATURES ] ,
2 CLASS_TYPE t r a i n i n g _ Y [ N_TRAINING ] ,
3 DATA_TYPE t e s t i n g _ X [ N_TESTING ] [ N_FEATURES ] , CLASS_TYPE t e s t i n g _ Y [ N_TESTING ] ,
4 DATA_TYPE min [N_FEATURES ] , DATA_TYPE max [N_FEATURES ] )
5 {
6 i n t i ;
7 f o r ( i = 0 ; i < N_TESTING ; i ++)
8 {
9 t e s t i n g _ Y [ i ] = kNN_Predic t ( t r a i n i n g _ X , t r a i n i n g _ Y , t e s t i n g _ X [ i ] ,

10 min , max ) ;
11 }
12 }

Listing 4.2: Generic code (v2)

13 void kNN_Pred i c tA l l (DATA_TYPE * t r a i n i n g _ X , CLASS_TYPE * t r a i n i n g _ Y ,
14 DATA_TYPE * t e s t i n g _ X , CLASS_TYPE * t e s t i n g _ Y , i n t k , DATA_TYPE *min ,
15 DATA_TYPE *max , i n t n _ f e a t u r e s , i n t n _ t e s t i n g , i n t n _ t r a i n i n g ,
16 double * b e s t D i s t a n c e s , i n t * b e s t P o i n t s I d x , i n t n _ c l a s s e s )
17 {
18 i n t i ;
19 f o r ( i = 0 ; i < n _ t e s t i n g ; i ++)
20 {
21 t e s t i n g _ Y [ i ] = kNN_Predic t ( t r a i n i n g _ X , t r a i n i n g _ Y ,
22 &t e s t i n g _ X [ i * n _ f e a t u r e s ] , min , max , n _ f e a t u r e s , n _ t e s t i n g , n _ t r a i n i n g ,
23 k , b e s t D i s t a n c e s , b e s t P o i n t s I d x , n _ c l a s s e s ) ;
24 }
25 }

Version with specialization k = 3 (v3)

The parameter K determines how many near-training examples should be considered when clas-

sifying a new data point based on the kNN algorithm. By employing a specialization of K, it is

possible to optimize the resulting circuit, thereby decreasing the number of resources required to

implement the circuit, which leads to a decrease in circuit size, latency, and power consumption.

This can be especially important in embedded systems with limited resources, where resource ef-

ficiency is a significant concern. Nevertheless, specialization to a particular K value may reduce

circuit flexibility (e.g., adapting to different inputs or changing system requirements). The spe-

cific value of K must be selected with care, taking into consideration the problem’s characteristics

and the system’s constraints [81]. In this instance, since we know that k can always have a fixed

value, such as 3, specializing k to 3 may be a good choice, as doing so can reduce the algorithm’s

complexity, resulting in a more straightforward and resource-efficient implementation.

The functions kNN_UpdateBestCaching and kNN_VoteBetweenBest are critical to this algo-

rithm; therefore, their specialization with k = 3 in mind can result in significant performance
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gains. In The transformations applied in kNN_UpdateBestCaching, which can be seen in 4.3 and

4.4 , have simplified the code by eliminating the for loop used to determine the k nearest neighbors

and replacing it with a series of direct comparisons specific to the case where k = 3. In addition,

the function now returns only the distance value of the farthest point discovered, which is the sec-

ond worst among the k nearest neighbors, thus eliminating the need to store and sort the k nearest

neighbors.

Listing 4.3: kNN_UpdateBestCaching (v2)

26 double kNN_UpdateBestCaching ( double q u e r y D i s t a n c e , i n t query Idx , i n t k ,
27 double * b e s t D i s t a n c e s , i n t * b e s t P o i n t s I d x )
28 {
29 double w o r s t O f B e s t = 0 ;
30 i n t w o r s t O f B e s t I d x = −1;
31 double secondWors tOfBes t = 0 ;
32 i n t secondWors tOfBes t Idx = −1;
33
34 i n t i ;
35 f o r ( i = 0 ; i < k ; i ++)
36 {
37 i f ( w o r s t O f B e s t < b e s t D i s t a n c e s [ i ] )
38 {
39 secondWors tOfBes t = w o r s t O f B e s t ;
40 secondWors tOfBes t Idx = w o r s t O f B e s t I d x ;
41
42 w o r s t O f B e s t = b e s t D i s t a n c e s [ i ] ;
43 w o r s t O f B e s t I d x = i ;
44 }
45 e l s e i f ( secondWors tOfBes t < b e s t D i s t a n c e s [ i ] )
46 {
47 secondWors tOfBes t = b e s t D i s t a n c e s [ i ] ;
48 secondWors tOfBes t Idx = i ;
49 }
50 }
51
52 i f ( q u e r y D i s t a n c e < w o r s t O f B e s t )
53 {
54 b e s t D i s t a n c e s [ w o r s t O f B e s t I d x ] = q u e r y D i s t a n c e ;
55 b e s t P o i n t s I d x [ w o r s t O f B e s t I d x ] = q u e r y I d x ;
56 }
57 re turn ( q u e r y D i s t a n c e > secondWors tOfBes t ) ? q u e r y D i s t a n c e
58 : secondWors tOfBes t ;
59 }

Listing 4.4: k3NN_UpdateBestCaching (v3)

60 double kNN_UpdateBestCaching ( double q u e r y D i s t a n c e , i n t query Idx ,
61 double * b e s t D i s t a n c e s , i n t * b e s t P o i n t s I d x )
62 {
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63 i f ( q u e r y D i s t a n c e < b e s t D i s t a n c e s [ 0 ] )
64 {
65 i f ( q u e r y D i s t a n c e < b e s t D i s t a n c e s [ 1 ] )
66 {
67 i f ( q u e r y D i s t a n c e < b e s t D i s t a n c e s [ 2 ] )
68 {
69 b e s t D i s t a n c e s [ 0 ] = b e s t D i s t a n c e s [ 1 ] ;
70 b e s t P o i n t s I d x [ 0 ] = b e s t P o i n t s I d x [ 1 ] ;
71 b e s t D i s t a n c e s [ 1 ] = b e s t D i s t a n c e s [ 2 ] ;
72 b e s t P o i n t s I d x [ 1 ] = b e s t P o i n t s I d x [ 2 ] ;
73 b e s t D i s t a n c e s [ 2 ] = q u e r y D i s t a n c e ;
74 b e s t P o i n t s I d x [ 2 ] = q u e r y I d x ;
75 }
76 e l s e
77 {
78 b e s t D i s t a n c e s [ 0 ] = b e s t D i s t a n c e s [ 1 ] ;
79 b e s t P o i n t s I d x [ 0 ] = b e s t P o i n t s I d x [ 1 ] ;
80 b e s t D i s t a n c e s [ 1 ] = q u e r y D i s t a n c e ;
81 b e s t P o i n t s I d x [ 1 ] = q u e r y I d x ;
82 }
83 re turn b e s t D i s t a n c e s [ 0 ] ;
84 }
85 e l s e
86 {
87 b e s t D i s t a n c e s [ 0 ] = q u e r y D i s t a n c e ;
88 b e s t P o i n t s I d x [ 0 ] = q u e r y I d x ;
89 }
90 }
91 re turn q u e r y D i s t a n c e ;
92 }

In the function kNN_VoteBetweenBest, the code was modified by removing the histogram and

loops used to count class votes. These changes can be verified in 4.5 and 4.6. Instead, the function

performs a series of tests using only the three nearest points (k = 3) to determine the most popular

class. By making k = 3 and getting rid of the histogram and for loops, the code can be simplified

and result in more efficient hardware implementations.

Listing 4.5: kNN_VoteBetweenBest (v2)

93 CLASS_TYPE kNN_VoteBetweenBest ( i n t * b e s t P o i n t s I d x , CLASS_TYPE * t r a i n i n g _ Y ,
94 i n t k , i n t n _ c l a s s e s )
95 {
96 CLASS_TYPE * h i s t o g r a m = c a l l o c ( n _ c l a s s e s , s i z e o f (CLASS_TYPE ) ) ;
97
98 i n t i ;
99

100 f o r ( i = 0 ; i < k ; i ++)
101 {
102 i n t b e s t I d x = b e s t P o i n t s I d x [ i ] ;
103 CLASS_TYPE c l = t r a i n i n g _ Y [ b e s t I d x ] ;
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104 h i s t o g r a m [ ( i n t ) c l ] + + ;
105 }
106
107 CLASS_TYPE m o s t P o p u l a r = −1;
108 i n t mos tPopu la rCoun t = −1;
109
110 f o r ( i = 0 ; i < n _ c l a s s e s ; i ++)
111 {
112 i f ( h i s t o g r a m [ i ] > mos tPopu la rCoun t )
113 {
114 mos tPopu la rCoun t = h i s t o g r a m [ i ] ;
115 m o s t P o p u l a r = (CLASS_TYPE) i ;
116 }
117 }
118
119 re turn m o s t P o p u l a r ;
120 }

Listing 4.6: k3NN_VoteBetweenBest(v3)

121 CLASS_TYPE kNN_VoteBetweenBest ( i n t * b e s t P o i n t s I d x , CLASS_TYPE * t r a i n i n g _ Y ,
122 i n t n _ c l a s s e s )
123 {
124 i f ( t r a i n i n g _ Y [ b e s t P o i n t s I d x [ 0 ] ] == t r a i n i n g _ Y [ b e s t P o i n t s I d x [ 1 ] ] )
125 re turn t r a i n i n g _ Y [ b e s t P o i n t s I d x [ 0 ] ] ;
126 e l s e i f ( t r a i n i n g _ Y [ b e s t P o i n t s I d x [ 0 ] ] == t r a i n i n g _ Y [ b e s t P o i n t s I d x [ 2 ] ] )
127 re turn t r a i n i n g _ Y [ b e s t P o i n t s I d x [ 0 ] ] ;
128 e l s e i f ( t r a i n i n g _ Y [ b e s t P o i n t s I d x [ 2 ] ] == t r a i n i n g _ Y [ b e s t P o i n t s I d x [ 1 ] ] )
129 re turn t r a i n i n g _ Y [ b e s t P o i n t s I d x [ 1 ] ] ;
130 e l s e
131 {
132 i f ( t r a i n i n g _ Y [ b e s t P o i n t s I d x [ 0 ] ] < t r a i n i n g _ Y [ b e s t P o i n t s I d x [ 1 ] ] &&
133 t r a i n i n g _ Y [ b e s t P o i n t s I d x [ 0 ] ] < t r a i n i n g _ Y [ b e s t P o i n t s I d x [ 2 ] ] )
134 re turn t r a i n i n g _ Y [ b e s t P o i n t s I d x [ 0 ] ] ;
135 e l s e i f ( t r a i n i n g _ Y [ b e s t P o i n t s I d x [ 1 ] ] < t r a i n i n g _ Y [ b e s t P o i n t s I d x [ 0 ] ] &&
136 t r a i n i n g _ Y [ b e s t P o i n t s I d x [ 1 ] ] < t r a i n i n g _ Y [ b e s t P o i n t s I d x [ 2 ] ] )
137 re turn t r a i n i n g _ Y [ b e s t P o i n t s I d x [ 1 ] ] ;
138 e l s e
139 re turn t r a i n i n g _ Y [ b e s t P o i n t s I d x [ 2 ] ] ;
140 }
141 }

Those modifications can result in increased hardware resource utilization efficiency and de-

creased latency. However, specialization to k = 3 means that this version of the function will only

operate for that particular value of k. Any other value of k will necessitate a new implementation

of the function.
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Version with Multiversion k = 3 (v4)

In certain circumstances, it may be beneficial to make use of multiple versions of the same algo-

rithm, as is the case with the Multiversion technique. One example of this kind of scenario is when

various iterations of the algorithm have significant differences in terms of both the resources they

employ and the latency they experience.

Listing 4.7 show the changes done on the TOP function. These modifications seek to provide

a multiversion version in which option 1 (opt = 1) selects the specialized version for k = 3, while

option 2 (opt!= 1) selects the generalised version.

In general, the specialized version for k = 3 can provide a significant performance advantage

over a more generic version that works with any value of k. Due to the fact that kNN for k = 3

requires a different set of operations than kNN for other values of k, it is feasible to optimize the

implementation and reduce execution time by specializing the algorithm for this specific value of

k. However, the more generic version of kNN can be beneficial in situations where the value of k

is unknown in advance, allowing for greater flexibility. By generating a version with multiversion,

we enable the HLS system to autonomously select the best implementation based on the specified

value of k. This can result in a more efficient implementation in terms of hardware resources and

execution time than a single version that endeavors to handle all possible values of k. Multiple

versions can, however, increase code complexity and maintenance difficulty, as well as hardware

resource usage and latency.

Listing 4.7: Multiversion code (v4)

142 CLASS_TYPE kNN_Predic t (DATA_TYPE * t r a i n i n g _ X , CLASS_TYPE * t r a i n i n g _ Y ,
143 DATA_TYPE * q u e r y D a t a p o i n t , DATA_TYPE *min ,
144 DATA_TYPE *max , i n t n _ f e a t u r e s , i n t n _ t e s t i n g ,
145 i n t n _ t r a i n i n g , i n t k , double * b e s t D i s t a n c e s ,
146 i n t * b e s t P o i n t s I d x , i n t n _ c l a s s e s , i n t o p t )
147 {
148 CLASS_TYPE v o t e R e s u l t ;
149
150 kNN_MinMaxNormalize ( min , max , q u e r y D a t a p o i n t , n _ f e a t u r e s ) ;
151
152 i f ( o p t == 1) v o t e R e s u l t = knn_k3 ( t r a i n i n g _ X , t r a i n i n g _ Y , q u e r y D a t a p o i n t ,
153 n _ f e a t u r e s , n _ t r a i n i n g ) ;
154 e l s e v o t e R e s u l t = knn_k ( b e s t D i s t a n c e s , b e s t P o i n t s I d x , n _ f e a t u r e s ,
155 n _ t e s t i n g , n _ t r a i n i n g , k , n _ c l a s s e s , t r a i n i n g _ X ,
156 t r a i n i n g _ Y , q u e r y D a t a p o i n t ) ;
157
158 re turn v o t e R e s u l t ;
159 }
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Version with k, N_FEATURES, N_TRAINING, and N_TESTING specialization (v5)

We saw in the previous section that specializing the variable k allows for optimization of the

resulting circuit, allowing us to reduce the number of resources required to implement it, resulting

in a smaller circuit, lower latency, and lower power consumption. Aside from specializing k to a

fixed value of 3, in this version we also specialize N_FEATURES, N_TRAINING, and N_TESTING

parameters.

The number of features present in the training and testing data is represented by N_FEATURES.

It is used to traverse the training and testing data and establish the dimension of the feature vectors.

The size of the training set, i.e., the number of samples used to train the kNN algorithm, is repre-

sented by N_TRAINING. To perform classification, the algorithm computes the distance between

a test instance and all training instances. N_TESTING is the size of the test set, which contains

the samples for which the kNN algorithm should perform classification based on the training set’s

information. To identify the predicted class, the algorithm computes the distance between each

test case and the training instances.

Here we consider the scenario were N_FEATURES, N_TRAINING, and N_TESTING have con-

stant values 43, 4336, and 1082, respectively. These specializations for the variables N_FEATURES,

N_TRAINING, and N_TESTING do not provide a transformation as significant as the specializa-

tion of k = 3, as shown in the examples presented in Listing 4.8. However, this does not exclude

them from contributing to performance and efficiency gains in the kNN algorithm. For example,

knowing the exact number of features, training samples, and test samples in advance allows the

compiler to perform specific optimizations, removing the need for additional logic to handle vari-

able values, such as adjusting the sizes of vectors and matrices used in the algorithm to avoid

unnecessary memory allocations and faster data access. Furthermore, the specialization of these

variables enables the compiler to perform more precise static analysis, potentially resulting in

optimizations such as loop unrolling or vectorization that can enhance code performance.

Listing 4.8: Code transformation example for v5

160 void kNN_Pred i c tA l l (DATA_TYPE * t r a i n i n g _ X , CLASS_TYPE * t r a i n i n g _ Y ,
161 DATA_TYPE * t e s t i n g _ X , CLASS_TYPE * t e s t i n g _ Y ,
162 DATA_TYPE *min , DATA_TYPE *max )
163 { ( . . . )
164 f o r ( i = 0 ; i < N_TESTING ; i ++)
165 {
166 t e s t i n g _ Y [ i ] = kNN_Predic t ( t r a i n i n g _ X , t r a i n i n g _ Y ,
167 &t e s t i n g _ X [ i *N_FEATURES ] , min , max ) ;
168 }
169 }
170
171 CLASS_TYPE kNN_Predic t (DATA_TYPE * t r a i n i n g _ X , CLASS_TYPE * t r a i n i n g _ Y ,
172 DATA_TYPE * q u e r y D a t a p o i n t , DATA_TYPE *min ,
173 DATA_TYPE *max )
174 { ( . . . )
175
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176 f o r ( i = 0 ; i < N_TRAINING ; i ++)
177 { ( . . . )
178 f o r ( j = 0 ; j < N_FEATURES ; j ++)
179 {
180 DATA_TYPE f e a t u r e = q u e r y D a t a p o i n t [ j ] ;
181 double d i f f = f e a t u r e − t r a i n i n g _ X [ i *N_FEATURES+ j ] ;
182 d i s t a n c e += d i f f * d i f f ;
183 }
184 ( . . . )
185 }
186 ( . . . )
187 }

In short, these variables are critical for the kNN algorithm’s operation since they affect the

feature space, the amount of data available for training and testing, and have a direct impact on

distance calculation and determining the expected class for test cases. The development of a

version with a specialization of them can be considered a useful study since it may contribute

to the optimization of the resultant circuit by decreasing size, latency, and power consumption,

improving memory utilisation, and simplifying code.

Version with Multiversion k, N_FEATURES, N_TRAINING, and N_TESTING (v6)

Similarly to Section 4.1.2, using numerous versions of the same algorithm may be advantageous

by establishing a version with Multiversion, in this case generated from version 5 (v5).

The proposed improvements are comparable to those given to Listing 4.7.These improvements

aim to give a multiversion version, with option 1 (opt = 1) selecting the specialized version for k

= 3, N_FEATURES = 43, N_TRAINING = 4336, and N_TESTING = 1082, and option 2 (opt !=

1) selecting the generalised version.

As previously stated, the customised version can provide a significant performance boost over

a more generic version that can be used in any application. Because kNN requires a different

set of operations for the variables in question than kNN for other circumstances, it is possible to

optimize the implementation and minimise execution time by specializing the algorithm for the

constant values of these variables. The generic version of kNN, on the other hand, can be useful in

circumstances where the values of the variables are unknown at the outset, allowing for additional

flexibility.

We enable the HLS system to generate a multiversion implementation that includes an input

parameter to select on of the implementations depending on the supplied value . This can lead to

a more efficient implementation in terms of hardware resources and runtime than a single version

that attempts to handle all conceivable variable values. Multiple versions, on the other hand, might

increase code complexity and maintenance difficulty, as well as hardware resource utilisation and

delay.
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Additional Versions (v7-v17)

The purpose of the additional versions is to enhance the investigation into the possible existence of

a correlation between the degree of similarity between various individual versions and the number

of resources required for a version using the multiversion technique for the same versions. Version

v7_fp consists of only specializing the variables N_FEATURES, N_TRAINING, and N_TESTING,

using the same strategy as the previous sections for the constant values of the WI_K3_F scenario,

as presented in Section 4.1.2.

In addition, versions 8 through 17 were developed using the multiversion technique. These

versions comprise all conceivable combinations between two individual versions, as well as the

clusters suggested by the chosen similarity detection tool.

Vitis HLS Directives

Listing 4.9 shows pseudocode that has been labelled to show where the relevant HLS directives

[82] have been applied. Each label in Table 4.2 is properly characterised, with the HLS directives

used in each section of the code specified. The primary HLS directives utilised are loop trip-

count, pipelining, loop unroll, and inlining, all of which play an important part in improving the

algorithm’s performance and efficiency.

Listing 4.9: Labeled kNN pseudocode)

188 Label01_UBC : double kNN_UpdateBestCaching ( ( . . . ) )
189 { ( . . . )
190 Label02_UBC_for : f o r ( i = 0 ; i < k ; i ++) { ( . . . ) } ( . . . )
191 }
192 Label03_IB : void kNN_In i tBes t ( ( . . . ) )
193 { ( . . . )
194 L a b e l 0 4 _ I B _ f o r : f o r ( i = 0 ; i < k ; i ++) { ( . . . ) }
195 }
196 Label05_VBB : CLASS_TYPE kNN_VoteBetweenBest ( ( . . . ) )
197 { ( . . . )
198 Label06_VBB_for : f o r ( i = 0 ; i < k ; i ++) { ( . . . ) } ( . . . )
199 Label07_VBB_for : f o r ( i = 0 ; i < n _ c l a s s e s ; i ++) { ( . . . ) } ( . . . )
200 }
201 Label08_MMN : void kNN_MinMaxNormalize ( ( . . . ) )
202 { ( . . . )
203 Label09_MMN_for : f o r ( i = 0 ; i < n _ f e a t u r e s ; i ++) { ( . . . ) }
204 }
205 Label10_kNN_P : CLASS_TYPE kNN_Predic t ( ( . . . ) )
206 { ( . . . )
207 Label11_kNN_P_for : f o r ( i = 0 ; i < n _ t r a i n i n g ; i ++)
208 { ( . . . )
209 Label12_kNN_P_for : f o r ( j = 0 ; j < n _ f e a t u r e s ; j ++) { ( . . . ) } ( . . . )
210 } ( . . . )
211 }
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Table 4.2: HLS directives applied to the kNN algorithm.

Label TOP Inlining
Loop

Tripcount
(max)

Loop
Unroll

Pipelining
(II)

Label01_UBC - yes - - -
Label02_UBC_for - - 3 - 1

Label03_IB - yes - - -
Label04_IB_for - - 3 yes 1
Label05_VBB - yes - - -

Label06_VBB_for - - 3 - 1
Label07_VBB_for - - 6 - 1

Label08_MMN - yes - - -
Label09_MMN_for - - 43 - 16

Label10_kNN_P yes yes - - -
Label11_kNN_P_for - - 4336 - -
Label12_kNN_P_for - - 43 - 4

The loop tripcount directive allows to provide the maximum, minimum or exact number of

loop iterations, which the compiler can use to conduct static optimizations and improve code

performance. The pipelining directive allows different iterations to run in parallel. This strat-

egy improves overall performance by maximising the usage of available hardware resources and

increasing system throughput. The loop unroll directive is used to expand a loop into several iter-

ations by unrolling it. This minimises loop overhead, such as branch instructions, and allows the

compiler to take use of optimization opportunities like speculative execution and data parallelism

more effectively. Finally, the inlining directive instructs the compiler to replace function calls

with the function’s actual content, avoiding function call overhead and allowing for more efficient

execution.

These HLS directives were applied to all algorithm versions in order to optimize performance,

latency, and resource usage. By carefully employing these directives, it is feasible enhance the

potential of the hardware underneath it and significantly increase the performance of the kNN

algorithm.

4.2 Disparity

In this work, we also study the Disparity Benchmark, which is one of several benchmarks included

in the San Diego Vision Benchmark Suite [71].

Comparing the images acquired by two slightly offset cameras yields stereo images for dis-

parity estimation. The objective of this algorithm is to identify a match between the pixels of the

two images and then calculate the disparity, which is a measure of the difference in the object’s

position between the two cameras. This can be used to calculate the scene’s depth, an essential

problem in computer vision applications such as autonomous vehicle navigation, object or obstacle

recognition, and robotics.
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Table 4.3: Disparity possible scenarios and respective input data sizes.

Scenario Input Data Size
WUXGA 2.3M pixels
FULLHD 2.0M pixels (1080p format)

VGA 300k pixels
CIF 100k pixels

QCIF 25k pixels
SQCIF 12.5k pixels

SIM Execution time around 6-10 million cycles
SIM_FAST Execution time around 2-4 million cycles

TEST Execution time around 10k-100k cycles

The algorithm employs sliding window cross-correlation, which compares windows in corre-

sponding horizontal positions on the left and right images. The window with the smallest sum of

absolute differences is chosen as the most likely match, and the disparity is computed as the hor-

izontal difference between the coordinates of the window in the left image and the corresponding

window in the right image. For each possible horizontal offset between the two stereo images, the

algorithm is executed to determine the optimal disparity for each pixel in the left image. The output

of the algorithm is an image of disparity, where the whiter pixels represent greater disparities.

Disparity is a computationally intensive benchmark and therefore presents a significant per-

formance optimization challenge, particularly when implemented in hardware.

4.2.1 Disparity Analysis

Implemented in C, the disparity algorithm attempts to calculate the disparity between two stereo

images using the SAD (Sum of Absolute Differences) method. All the different simulation sce-

narios used by the Disparity algorithm are listed in Table 4.3. This study mainly focuses on the

SIM and FULLHD scenarios. Therefore, the transformations performed are adapted to the specific

characteristics of these scenarios.

The algorithm’s primary function is getDisparity, which accepts the images Ileft and Iright,

the window size, win_sz, and the maximum shift, max_sz, and returns the disparity in retDisp.

The function iterates over the possible displacements (from 0 to max_shift) and uses the corre-

lateSAD_2D function to conduct the SAD correlation between the images. After each correlation

calculation, the findDisparity function determines and retains the minimum disparity for each po-

sition in retDisp. Other auxiliary functions are also called within the function correlateSAD_2D,

including computeSAD, which calculates the absolute difference between pixels of the images and

stores the result in SAD; padarray2 and padarray4, which perform edge filling in the images; in-

tegralImage2D2D, which calculates the integral image for SAD; and finalSAD, which calculates

the final value of SAD.

Figure 4.1 depicts an analysis about the distribution of program execution time across func-

tions and subroutines when scenario FULLHD input data are utilized, as determined by the results
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obtained from the Gprof code profiler. According to the provided data, the function getDispar-

ity can be considered the top function because it appears first in the function call analysis (call

graph) and accounts for 99.9% of the time invested. The profiler also reveals that the program

spent the majority of its time (54.97%) executing the finalSAD function. This indicates that this

function would profit the most from code optimization and specialization. The finalSAD function

computes the sum of absolute differences (SAD) for each image position. It accepts as input the

image represented by the integralImg2D2D structure, the window size, win_sz, and an array for

storing the SAD result, retSad. The function traverses all image positions using two nested for

loops. The outer loop traverses columns, whereas the interior loop traverses rows. The SAD is

calculated at each position using a specific formula. Some parts of the function can be targeted

for specialization to enhance its performance, such as the iteration loops, which can be analysed

to identify data access patterns and optimize cache memory access.

Figure 4.1: Disparity Benchmark Profiling Results.

integralImage2D2D was the next most time-intensive function, consuming 20.42 % of the

total time after finalSAD. findDisparity accounted for 8.38% of the total time while padarray4

accounted for 6.82%. Similar to the finalSAD function, it is possible to optimize these functions

by reducing the number of required operations, considering the structure and characteristics of

the images, avoiding unnecessary copies and index manipulations, improving data access, and de-

creasing read/write latency in memory. The remaining functions enumerated in the profiler output

required less time. The functions correlateSAD_2D, iSetArray, and computeSAD accounted for

2.62%, 1.05%, and 4.19 percent, respectively, of the total time. The remaining functions accounted

for less than 1% of the total time. Typically, the disparity algorithm requires intensive computa-

tions and operations on data arrays. Utilising monitoring tools such as "Value Counter Monitor,"

as described in Section 3.5 of Chapter 3, would be advantageous. Through the monitoring tool

"Value Counter Monitor," it was possible to conduct a more in-depth analysis of certain algorith-

mic variables and intermediate values. It was determined that there are variables with constant

values in the SIM scenario. The win_sz variable, rows, and cols with respective constant values of
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4, 58, and 76 stand out. These variables are responsible for a significant number of operations and

iterations in the disparity algorithm, so they play a crucial role. In addition to the variables men-

tioned previously, it was observed that some intermediate values of the algorithm are frequently

allocated the value zero, as is the case in the cited article [75]. Figure 4.2 displays the histogram of

the diff variable of the computeSAD function, which was provided by the monitoring utility. These

variables will be examined in greater depth in Section 4.2.2. This type of information is crucial

because it permits the specialization of these values, thereby simplifying and avoiding unneces-

sary operations, optimizing the code, making the processing more efficient and faster, reducing the

computational load, and enhancing the algorithm’s overall performance. In addition, it is essential

to emphasise that possible specializations should always be evaluated in relation to the problem’s

requirements and the characteristics of the data.

Figure 4.2: Histogram of variable "diff", from computeSAD function, possible values and number
of ocurrences.

4.2.2 Disparity Optimizations

In this section, several versions of the Disparity algorithm resulting from transformations aimed

at specialization and optimization of the code for execution on FPGAs using HLS tools will be

analysed. The main distinctions between each version in terms of optimization strategies will

be highlighted. How each version attempts to improve performance by reducing the number of

latency cycles, decreasing resource consumption and improving the use of specific functions will

be discussed.
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Generic version (v1)

In the original version of the algorithm disparity used, only minor changes were made to make the

code compatible and suitable for the version of the vitis HLS tool used. Some limitations of the tool

regarding certain types of code, which led to these changes, are the use of features like pointers

to functions and dynamic memory allocation. It is important to consult the official documentation

for detailed information about supported features and possible limitations of the tool.

All subsequent versions of the disparity algorithm have been derived from the generalised

version. This strategy allows the exploration of various configurations and the adjustment of pa-

rameters for each individual version. Since the base version was adaptive, it was possible to

implement transformations and optimizations with greater freedom, adjusting the algorithm to

various contexts and individual needs. This concept of producing versions derived from the gen-

eralised version allows a systematic and comparative approach to evaluating the performance and

effectiveness of each modification of the algorithm.

Specialized version for win_sz = 4 (v2)

The win_sz parameter specifies the size of the window utilised during disparity matching. This

window determines the number of pixels compared between stereo images for disparity calcula-

tion. The significance of this parameter is dependent on the algorithm’s precision and efficacy. A

larger value for win_sz enables more precise matching, but at the expense of an increase in com-

putational complexity. A lesser value, on the other hand, may result in a quicker but potentially

less accurate match. Therefore, the appropriate selection of the win_sz parameter depends on the

desired trade-off between precision and efficacy in the context of the particular application.

Significant benefits can be gained by setting the win_sz parameter to a constant value and tak-

ing advantage of its particular characteristics. By having a fixed value for win_sz, it is possible

to eliminate the logic of manipulating this variable parameter and allocate only what is required

for this fixed size, resulting in simpler code and less use of FPGA resources, such as memory or

processing units. It is possible to implement prepossessing or caching strategies that are optimal

for that particular value. These techniques can be used to enhance data access during algorithm ex-

ecution, resulting in a performance boost. For instance, one can perform computations in advance

or cache pertinent information so that the required data is readily accessible when the algorithm

requires it. This reduces data access latency and accelerates processing as a whole, enhancing the

algorithm’s performance.

However, specialization in a particular value of win_sz may reduce the circuit’s flexibility and

generalizability. The algorithm may not be appropriate for images with distinct characteristics,

limiting its applicability in other contexts or situations. When operating with a fixed value of

win_sz, sufficient memory must be allocated to store the window of that size. In some instances,

this can lead to redundant memory consumption if the algorithm is executed with smaller con-

texts. The specific value of win_sz should be chosen with caution, taking into consideration the

problem’s characteristics and the system’s limitations.
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We previously saw in Section 4.2.1, with the help of the monitoring tool, that for the SIM

scenario, this parameter is always assigned a constant value of 4.

The objective of this version of the algorithm is to evaluate the results after the win_sz param-

eter has been set to a constant value of 4. In order to accomplish this, the parameter was initially

defined as the constant WIN_SZ with the value 4, allowing the elimination of the win_sz variable

argument in all functions that utilise it and the simplification of certain operations, as demonstrated

in Listing 4.11. In addition, the specialization of the win_sz variable primarily benefits loops that

traverse the dimensions of matrices, such as in Listings 4.10 and 4.11, because the loop is executed

more efficiently and optimally for the constant value of win_sz.

By implementing these modifications, it is possible to optimize the code by exploiting the

properties and structures of the data, thereby reducing the number of operations and enhancing

the algorithm’s performance. These modifications can also improve the utilisation of hardware

resources and reduce latency. Note, however, that specialization to a fixed value of win_sz, such as

win_sz = 4, makes the function valid only for that specific value, necessitating a new implementa-

tion if a different value is required.

Listing 4.10: Disparity code win_sz transformations: original version)

212 void g e t D i s p a r i t y ( I2D* I l e f t , I2D* I r i g h t , i n t win_sz , i n t m a x _ s h i f t , ( . . . ) )
213 { ( . . . )
214 i n t h a l f _ w i n _ s z , rows , c o l s ; ( . . . )
215 h a l f _ w i n _ s z = win_sz / 2 ; ( . . . )
216
217 i f ( win_sz > 1)
218 { ( . . . ) }
219 e l s e
220 { ( . . . ) } ( . . . )
221 retSAD . h e i g h t = rows − win_sz ;
222 retSAD . wid th = c o l s − win_sz ; ( . . . )
223
224 f o r ( k =0; k< m a x _ s h i f t ; k ++)
225 {
226 corre la teSAD_2D (& I l e f t P a d d e d , &I r i g h t P a d d e d , &I r ig h t_ mo ve d , win_sz , k ,
227 &SAD, &i n t e g r a l I m g , auxRS ) ; ( . . . )
228 }
229 }
230
231 void f ina lSAD ( F2D* i n t e g r a l I m g , i n t win_sz , F2D* retSAD )
232 { ( . . . )
233 f o r ( j =0 ; j <( endC− win_sz ) ; j ++) { f o r ( i =0 ; i <( endR− win_sz ) ; i ++) { ( . . . ) }}
234 ( . . . )
235 }

Listing 4.11: Disparity code win_sz transformations: version 2)

236 void g e t D i s p a r i t y ( I2D* I l e f t , I2D* I r i g h t , i n t m a x _ s h i f t , I2D* r e t D i s p )
237 { ( . . . )
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238 i n t h a l f _ w i n _ s z , rows , c o l s ; ( . . . )
239 h a l f _ w i n _ s z = 2 ; ( . . . )
240
241 retSAD . h e i g h t = rows −WIN_SZ_4 ;
242 retSAD . wid th = c o l s −WIN_SZ_4 ; ( . . . )
243
244 f o r ( k =0; k< m a x _ s h i f t ; k ++)
245 {
246 corre la teSAD_2D (& I l e f t P a d d e d , &I r i g h t P a d d e d , &I r ig h t_ mo ve d , k ,
247 &SAD, &i n t e g r a l I m g , auxRS ) ; ( . . . )
248 }
249 }
250
251 void f ina lSAD ( F2D* i n t e g r a l I m g , F2D* retSAD )
252 { ( . . . )
253 f o r ( j =0 ; j <( endC−WIN_SZ_4 ) ; j ++){ f o r ( i =0 ; i <( endR−WIN_SZ_4 ) ; i ++){ ( . . . ) }}
254 ( . . . )
255 }

Multiversion version for win_sz = 4 (v3)

Multiple versions of the same algorithm, as is the case with the multiversion technique, may be

advantageous under specific conditions.

In this version, an attempt is made to provide a two-version version, where the option 1 (opt =

1) selects the specialized version for win_sz = 4 and the option 2 (opt != 1) selects the generalised

version. The modifications applied to the TOP function getDisparity are displayed in Listing 4.12.

These modifications aim to provide a multiversion version in which the option 1 (opt = 1) selects

the specialized version for win_sz = 4 and the option 2 (opt != 1) option selects the generalised

version.

Listing 4.12: Disparity code Multiversion (v3))

256 void g e t D i s p a r i t y ( I2D* I l e f t , I2D* I r i g h t , i n t win_sz , ( . . . ) , i n t o p t )
257 { ( . . . )
258 i f ( o p t == 1)
259 {
260 retSAD . h e i g h t = rows −WIN_SZ_4 ;
261 retSAD . wid th = c o l s −WIN_SZ_4 ;
262 f o r ( k =0; k< m a x _ s h i f t ; k ++)
263 {
264 correlateSAD_2D_MV(& I l e f t P a d d e d , &I r i g h t P a d d e d , &I r ig h t_ mo ve d , k ,
265 &SAD, &i n t e g r a l I m g , auxRS ) ; ( . . . )
266 }
267 }
268 e l s e
269 {
270 retSAD . h e i g h t = rows − win_sz ;
271 retSAD . wid th = c o l s − win_sz ;
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272 f o r ( k =0; k< m a x _ s h i f t ; k ++)
273 {
274 corre la teSAD_2D (& I l e f t P a d d e d , &I r i g h t P a d d e d , &I r ig h t _mo ve d , win_sz ,
275 k , &SAD, &i n t e g r a l I m g , auxRS ) ; ( . . . )
276 }
277 }
278 }

As previously mentioned, producing a version with multiversion may enable the HLS sys-

tem to select the optimal implementation based on the specified value of the specific parameter.

This could result in a more efficient implementation in terms of hardware resources and execu-

tion time than one version that attempts to accommodate all possible parameter values. Multiple

versions can however increase code complexity and maintainability, as well as hardware resource

consumption and latency.

Zero-utilisation versions (v4-v8)

The disparity algorithm involves a series of intensive calculations and operations on data matrices,

which, as we saw in Section 4.2.1 through the monitoring tool Value Counter Monitor, involve

parameters, variables, or intermediate values to which values are assigned with a higher frequency

than others and even frequently constant. It was determined that the majority of these parameters

are typically designated the value zero in the SIM scenario. The purpose of the v4-v8 versions is

to investigate the effect of parameter specialization in an effort to optimize the algorithm.

As most of the parameters in concern are assigned their values at runtime, setting them to

constant values may compromise the algorithm’s functionality. In the aforementioned versions, we

will therefore employ the multiversion technique, in which there will always be a generic option

that conforms to the different possible values of the parameters. This allows us to guarantee the

algorithm’s adaptability and proper operation regardless of the values of its parameters. It was

decided to investigate separately the impact of specializing these parameters in each function that

uses them, resulting in versions v4–v7. Version v4 specializes the brows variable in the function

padarray4, which the monitoring tool revealed to have a constant value of zero. Its restriction to a

constant value of zero facilitated the simplification of an operation, as shown in Listings 4.13.

Listing 4.13: Disparity version 4 code transformation: padarray4)

279 ORIGINAL :
280 void p a d a r r a y 4 ( I2D* inMat , I2D* borderMat , i n t d i r , I2D* paddedArray )
281 { ( . . . )
282 bRows = borderMat −> d a t a [ 0 ] ; ( . . . )
283 newRows = rows + bRows ; ( . . . )
284
285 i f ( d i r == 1) { ( . . . ) }
286 e l s e
287 { f o r ( i =0 ; i <rows −bRows ; i ++)
288 f o r ( j =0 ; j < c o l s − bCols ; j ++)
289 s u b s r e f ( paddedArray , ( bRows+ i ) , ( bCols + j ) ) = s u b s r e f ( inMat , i , j ) ;
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290 } ( . . . )
291 }
292
293 VERSION 4 :
294 void p a d a r r a y 4 ( I2D* inMat , I2D* borderMat , i n t d i r , I2D* paddedArray )
295 { ( . . . )
296 bRows = borderMat −> d a t a [ 0 ] ; ( . . . )
297 newRows = rows ; ( . . . )
298
299 i f ( d i r == 1) { ( . . . ) }
300 e l s e
301 { f o r ( i =0 ; i < rows ; i ++)
302 f o r ( j =0 ; j < c o l s − bCols ; j ++)
303 s u b s r e f ( paddedArray , i , ( bCols + j ) ) = s u b s r e f ( inMat , i , j ) ;
304 } ( . . . )
305 }

In the function finalSAD, it was determined that the majority of intermediate values that were

part of the operation that resulted in the variable subsref(retSAD,i,j) were designated the value

zero the majority of the time during execution. As can be seen in Listing 4.14, in version 5 these

parameters are again specialized to a constant value of 0, allowing the algorithm to be simplified.

Listing 4.14: Disparity version 5 code transformation: finalSAD)

306 ORIGINAL :
307 void f ina lSAD ( F2D* i n t e g r a l I m g , i n t win_sz , F2D* retSAD )
308 { ( . . . )
309 f o r ( j =0 ; j <( endC− win_sz ) ; j ++)
310 f o r ( i =0 ; i <( endR− win_sz ) ; i ++) s u b s r e f ( retSAD , i , j ) = s u b s r e f (
311 i n t e g r a l I m g , ( win_sz + i ) , ( j + win_sz ) ) + s u b s r e f ( i n t e g r a l I m g , ( i + 1 ) , ( j +1)) −
312 s u b s r e f ( i n t e g r a l I m g , ( i + 1 ) , ( j + win_sz ) ) − s u b s r e f ( i n t e g r a l I m g , ( win_sz + i ) ,
313 ( j + 1 ) ) ; ( . . . )
314 }
315
316 VERSION 5 :
317 void f ina lSAD ( F2D* i n t e g r a l I m g , i n t win_sz , F2D* retSAD )
318 { ( . . . )
319 f o r ( j =0 ; j <( endC− win_sz ) ; j ++)
320 { f o r ( i =0 ; i <( endR− win_sz ) ; i ++)
321 { i f ( s u b s r e f ( i n t e g r a l I m g , ( i + 1 ) , ( j + 1 ) ) == 0 && s u b s r e f ( i n t e g r a l I m g ,
322 ( i + 1 ) , ( j + win_sz ) ) == 0 && s u b s r e f ( i n t e g r a l I m g , ( win_sz + i ) , ( j + 1 ) ) ==
323 0) s u b s r e f ( retSAD , i , j ) = s u b s r e f ( i n t e g r a l I m g , ( win_sz + i ) , ( j + win_sz ) ) ;
324 e l s e s u b s r e f ( retSAD , i , j ) = s u b s r e f ( i n t e g r a l I m g , ( win_sz + i ) ,
325 ( j + win_sz ) ) + s u b s r e f ( i n t e g r a l I m g , ( i + 1 ) , ( j +1)) − s u b s r e f ( i n t e g r a l I m g ,
326 ( i + 1 ) , ( j + win_sz ) ) − s u b s r e f ( i n t e g r a l I m g , ( win_sz + i ) , ( j + 1 ) ) ;
327 }
328 } ( . . . )
329 }
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Analysing the results acquired using the variable monitoring tool, we notice in Figure 4.2 that

the diff variable has values assigned to it most of the time as 0, 1, 2, -1, and -2. Based on this

analysis, additional conditions were added to this modified version in order to handle the common

diff values, as shown in Listing 4.15.

Listing 4.15: Disparity version 6 code transformation: computeSAD)

330 ORIGINAL :
331 void computeSAD ( I2D * I l e f t , I2D* I r i g h t _mo ve d , F2D* SAD)
332 { ( . . . )
333 f o r ( i =0 ; i <rows ; i ++)
334 { f o r ( j =0 ; j < c o l s ; j ++)
335 { d i f f = s u b s r e f ( I l e f t , i , j ) − s u b s r e f ( I r i g h t_ mo ve d , i , j ) ;
336 s u b s r e f (SAD, i , j ) = d i f f * d i f f ;
337 }
338 } ( . . . )
339 }
340
341 VERSION 6 :
342 void computeSAD ( I2D * I l e f t , I2D* I r i g h t _mo ve d , F2D* SAD)
343 { ( . . . )
344 f o r ( i =0 ; i <rows ; i ++)
345 { f o r ( j =0 ; j < c o l s ; j ++)
346 { d i f f = s u b s r e f ( I l e f t , i , j ) − s u b s r e f ( I r i g h t_ mo ve d , i , j ) ;
347 i f ( d i f f == 0) s u b s r e f (SAD, i , j ) = 0 ;
348 e l s e i f ( d i f f == 1 | | d i f f == −1) s u b s r e f (SAD, i , j ) = 1 ;
349 / / e l s e i f ( d i f f == 2 | | d i f f == −2) s u b s r e f ( SAD , i , j ) = 4;
350 e l s e s u b s r e f (SAD, i , j ) = d i f f * d i f f ;
351 }
352 } ( . . . )
353 }

These modifications seek to, again, take advantage of the frequent value patterns in diff and

simplify operations, thereby reducing the number of required calculations. By removing redundant

operations and simplifying the conditions, we can reduce the algorithm’s computational load and

enhance its performance. In terms of efficacy and efficiency, simplifying a multiplication-based

operation, such as the computeSAD function, can have significant effects. In general, multiplica-

tions require more computational resources than additions and subtractions. We can avoid unnec-

essary multiplications by specializing the function and simplifying the SAD calculation based on

the common diff values. By reducing the number of multiplications, we decrease the consump-

tion of hardware resources, lower the total computational load, and as a result, enhance execution

time. In version 7, the integralImage2D2D function performs the transformations using a process

analogous to that of version 5, as shown in Listing 4.16.

Listing 4.16: Disparity version 7 code transformation: IntegralImage2D2D)

354 ORIGINAL :
355 void i n t eg ra l Image2D2D ( F2D* SAD, F2D* i n t e g r a l I m g )
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356 { ( . . . )
357 f o r ( i =1 ; i < n r ; i ++) f o r ( j =0 ; j <nc ; j ++) s u b s r e f ( i n t e g r a l I m g , i , j ) =
358 s u b s r e f ( i n t e g r a l I m g , ( i −1 ) , j ) + s u b s r e f (SAD, i , j ) ;
359
360 f o r ( i =0 ; i < n r ; i ++) f o r ( j =1 ; j <nc ; j ++) s u b s r e f ( i n t e g r a l I m g , i , j ) =
361 s u b s r e f ( i n t e g r a l I m g , i , ( j − 1 ) ) + s u b s r e f ( i n t e g r a l I m g , i , j ) ; ( . . . )
362 }
363
364 VERSION 7 :
365 void i n t eg ra l Image2D2D ( F2D* SAD, F2D* i n t e g r a l I m g )
366 { ( . . . )
367 f o r ( i =1 ; i < n r ; i ++) f o r ( j =0 ; j < nc ; j ++)
368 { i f ( s u b s r e f ( i n t e g r a l I m g , ( i − 1 ) , j ) == 0 && s u b s r e f (SAD, i , j ) == 0 )
369 s u b s r e f ( i n t e g r a l I m g , i , j ) = 0 ;
370 e l s e s u b s r e f ( i n t e g r a l I m g , i , j ) = s u b s r e f ( i n t e g r a l I m g , ( i −1 ) , j ) +
371 s u b s r e f (SAD, i , j ) ;
372 }
373
374 f o r ( i =0 ; i < n r ; i ++) f o r ( j =1 ; j < nc ; j ++)
375 { i f ( s u b s r e f ( i n t e g r a l I m g , i , ( j − 1 ) ) == 0 && s u b s r e f ( i n t e g r a l I m g , i , j ) == 0)
376 s u b s r e f ( i n t e g r a l I m g , i , j ) = 0 ;
377 e l s e s u b s r e f ( i n t e g r a l I m g , i , j ) = s u b s r e f ( i n t e g r a l I m g , i , ( j − 1 ) ) +
378 s u b s r e f ( i n t e g r a l I m g , i , j ) ;
379 } ( . . . )
380 }

Version 8 incorporates all previous versions.

By eliminating superfluous operations and simplifying the conditions, it should be possible

to reduce the algorithm’s computational burden and enhance its performance. In addition, this

strategy may result in a more efficient use of hardware resources, which may lead to increased

efficiency and decreased latency.

Specialized version for constant number of rows and cols (v9)

The variables rows and cols are essential to the disparity algorithm, as they represent the dimen-

sions of the data matrix on which the algorithm is operating and are required to correctly iterate

over the matrix elements and perform calculations and operations. The monitoring tool, in Sec-

tion 4.2.1, revealed that these variables are assigned constant values of 58 and 76, respectively, in

the SIM scenario. Version 9 seeks to study the effects of specialization of the rows and cols vari-

ables for these constant values. In order to accomplish this, the ROWS and COLS parameters were

initially defined as constants, allowing the elimination of the rows and cols variable arguments in

all functions that use them and the simplification of certain operations, as shown in Listings 4.17

and 4.18.

Listing 4.17: Disparity code transformations example: original)

381 void cor re la teSAD_2D ( I2D* I l e f t , I2D* I r i g h t , I2D* I r i g h t _mo ve d , i n t win_sz , ( . . . ) )
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382 { i n t rows , c o l s ; ( . . . )
383
384 rows = I r i gh t_ mo ved −> h e i g h t ;
385 c o l s = I r i gh t_ mo ved −> wid th ;
386
387 f o r ( i =0 ; i < rows * c o l s ; i ++) a s u b s r e f ( I r i gh t_ mo ved , i ) = 0 ; ( . . . )
388 }
389 void computeSAD ( I2D * I l e f t , I2D* I r i g h t _mo ve d , F2D* SAD)
390 { i n t rows , c o l s , i , j , d i f f ;
391
392 rows = I l e f t −> h e i g h t ;
393 c o l s = I l e f t −> wid th ;
394
395 f o r ( i =0 ; i <rows ; i ++)
396 { f o r ( j =0 ; j < c o l s ; j ++){ ( . . . ) }} ( . . . )
397 }

As was the case with the specialization of the win_sz parameter, one advantage of the special-

ization of these variables to a constant value is the ability to apply specific optimization techniques

to this fixed size. For instance, it is feasible to perform preprocessing or optimize cache settings

for this particular capacity, resulting in enhanced performance. In addition, specialization can sim-

plify code and reduce the intricacy of iterations, resulting in decreased resource consumption and

a more effective implementation. A significant disadvantage of specialization is the restriction of

the algorithm to a single matrix size. specialization restricts the algorithm’s adaptability, making

it less generic and applicable to various application scenarios.

Listing 4.18: Disparity code transformations example: v9)

398 void cor re la teSAD_2D ( I2D* I l e f t , I2D* I r i g h t , I2D* I r i g h t _mo ve d , i n t win_sz , ( . . . ) )
399 { ( . . . ) / / prodRowsCols = rows * c o l s
400 f o r ( i =0 ; i < prodRowsCols ; i ++) a s u b s r e f ( I r i g h t _m ove d , i ) = 0 ; ( . . . )
401 }
402 void computeSAD ( I2D * I l e f t , I2D* I r i g h t _mo ve d , F2D* SAD)
403 { ( . . . )
404 f o r ( i =0 ; i <ROWS; i ++)
405 { f o r ( j =0 ; j <COLS ; j ++) { ( . . . ) }
406 } ( . . . )
407 }

By specializing the rows and columns variables to a constant value, it is possible to obtain

optimization and performance benefits, but at the expense of code flexibility and reusability in

various contexts. The decision regarding whether or not to specialize these variables should be

based on the specific requirements of the undertaking at hand.

Multiversion version for version 9 (v10)

In this version, as in previous versions, an attempt is made to provide a two-version version in

which option 1 (opt = 1) selects the specialized version 9, in this case for rows = 58 and cols =
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76, and option 2 (opt!= 1) selects the generalised version. Similar modifications are required as

those in Listing 4.12.

As previously mentioned, producing a version with multiversion may enable the HLS system

to select the optimal implementation based on the specified value of the relevant parameter. This

could result in a more efficient implementation in terms of hardware resources and execution

time than a single variant that attempts to accommodate all possible parameter values. Multiple

versions can, however, increase code complexity and maintainability, as well as hardware resource

consumption and latency.

Specialized version for constant number of rows, cols and win_sz (v11)

In the preceding sections, we observed that specializing for constant values the parameters win_sz,

rows and cols separately makes possible an overall improvement in code performance, optimiza-

tion of the resulting circuit, and a reduction in the amount of resources required to implement

it, resulting in a smaller circuit, lower latency, and lower power consumption. The purpose of

this version is to analyze the situation where the values of the three parameters are specialized to

constants.

Multiversion version for version 11 (v12)

In this version, as in previous versions, an attempt is made to give a two-version version, with

option 1 (opt = 1) selecting the specialized version 11, in this case for win_sz = 4, rows = 58, and

cols = 76, and option 2 (opt!= 1) selecting the generalist version. The modifications required are

identical to those shown in Listing 4.12.

Additional Versions (v13-v17)

The objective of the additional versions is to further our investigation towards the possible exis-

tence of a correlation between the degree of similarity between various individual versions and the

number of resources required for a version that employs the multiversion technique for the same

versions. Versions 13 through 17 were created using the multiversion technique. These versions

cover all possible combinations between two individual versions, as well as the clusters suggested

by the chosen similarity detection tool.

Vitis HLS directives

Listing 4.19 displays pseudocode that has been labeled to indicate where the required HLS direc-

tives [82] have been applied. Each label in Table 4.4 is properly described, with the HLS direc-

tives applied in each portion of the code. The major HLS directives utilized are loop tripcount,

pipelining, and inlining, all of which help to improve the algorithm’s performance and efficiency.

Section 4.1.2 has already characterised these directives.

Listing 4.19: Labeled Disparity pseudocode)
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408 Label01_gD : void g e t D i s p a r i t y ( ( . . . ) )
409 { ( . . . )
410 Labe l02_gD_for : f o r ( i =0 ; i < n r ; i ++) {
411 Labe l03_gD_for : f o r ( j =0 ; j <nc ; j ++) { ( . . . ) } } ( . . . )
412 Labe l04_gD_for : f o r ( i =0 ; i < n r ; i ++) {
413 Labe l05_gD_for : f o r ( j =0 ; j <nc ; j ++) { ( . . . ) } } ( . . . )
414 Labe l06_gD_for : f o r ( i =0 ; i <1 ; i ++) {
415 Labe l07_gD_for : f o r ( j =0 ; j <2 ; j ++) { ( . . . ) } } ( . . . )
416
417 i f ( win_sz > 1) { ( . . . ) }
418 e l s e { ( . . . )
419 Labe l08_gD_for : f o r ( i =0 ; i < I l e f t P a d d e d . h e i g h t ; i ++) {
420 Labe l09_gD_for : f o r ( j =0 ; j < I l e f t P a d d e d . wid th ; j ++) { ( . . . ) } } ( . . . )
421 Labe l10_gD_for : f o r ( i =0 ; i < I r i g h t P a d d e d . h e i g h t ; i ++) {
422 Labe l11_gD_for : f o r ( j =0 ; j < I r i g h t P a d d e d . wid th ; j ++) { ( . . . ) } } } ( . . . )
423 Labe l12_gD_for : f o r ( i =0 ; i <rows ; i ++) {
424 Labe l13_gD_for : f o r ( j =0 ; j < c o l s ; j ++) { ( . . . ) }
425 } ( . . . )
426 Labe l14_gD_for : f o r ( i =0 ; i <rows ; i ++) {
427 Labe l15_gD_for : f o r ( j =0 ; j < c o l s ; j ++) { ( . . . ) } } ( . . . )
428 Labe l16_gD_for : f o r ( i =0 ; i <rows ; i ++) {
429 Labe l17_gD_for : f o r ( j =0 ; j < c o l s ; j ++) { ( . . . ) } } ( . . . )
430 Labe l18_gD_for : f o r ( k =0; k< m a x _ s h i f t ; k ++) { ( . . . ) }
431 }
432
433 Label01_crSAD : void cor re la teSAD_2D ( ( . . . ) ) { ( . . . )
434 Label02_crSAD_for : f o r ( i =0 ; i <rows * c o l s ; i ++) ( . . . ) }
435
436 Label01_II2D2D : void i n t eg ra l Image2D2D ( F2D* SAD, F2D* i n t e g r a l I m g )
437 { ( . . . )
438 Labe l02_I I2D2D_for : f o r ( i =0 ; i <nc ; i ++) ( . . . )
439
440 Labe l03_I I2D2D_for : f o r ( i =1 ; i < n r ; i ++)
441 Labe l04_I I2D2D_for : f o r ( j =0 ; j <nc ; j ++) { ( . . . ) }
442 Labe l05_I I2D2D_for : f o r ( i =0 ; i < n r ; i ++)
443 Labe l06_I I2D2D_for : f o r ( j =1 ; j <nc ; j ++) ( . . . )
444 }
445
446 Label01_p2 : void p a d a r r a y 2 ( ( . . . ) )
447 { ( . . . )
448 L a b e l 0 2 _ p 2 _ f o r : f o r ( i =0 ; i <newRows ; i ++) {
449 L a b e l 0 3 _ p 2 _ f o r : f o r ( j =0 ; j <newCols ; j ++) { ( . . . ) } }
450 L a b e l 0 4 _ p 2 _ f o r : f o r ( i =0 ; i <rows ; i ++)
451 L a b e l 0 5 _ p 2 _ f o r : f o r ( j =0 ; j < c o l s ; j + + ) ( . . . )
452 }
453
454 Label01_p4 : void p a d a r r a y 4 ( ( . . . ) )
455 { ( . . . )
456 i f ( d i r ==1)
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457 { L a b e l 0 2 _ p 4 _ f o r : f o r ( i =0 ; i <rows ; i ++)
458 L a b e l 0 3 _ p 4 _ f o r : f o r ( j =0 ; j < c o l s ; j + + ) ( . . . )
459 } e l s e {
460 L a b e l 0 4 _ p 4 _ f o r : f o r ( i =0 ; i <rows −bRows ; i ++)
461 L a b e l 0 5 _ p 4 _ f o r : f o r ( j =0 ; j < c o l s − bCols ; j ++) ( . . . )
462 } ( . . . )
463 }
464
465 Label01_cSAD : void computeSAD ( ( . . . ) )
466 { ( . . . )
467 Label02_cSAD_for : f o r ( i =0 ; i <rows ; i ++)
468 { Label03_cSAD_for : f o r ( j =0 ; j < c o l s ; j ++) { ( . . . ) } } ( . . . )
469 }
470
471 Label01_fSAD : void f ina lSAD ( ( . . . ) )
472 { ( . . . )
473 Label02_fSAD_for : f o r ( j =0 ; j <( endC− win_sz ) ; j ++)
474 { Label03_fSAD_for : f o r ( i =0 ; i <( endR− win_sz ) ; i + + ) { ( . . . ) } } ( . . . )
475 }
476
477 Label01_fD : void f i n d D i s p a r i t y ( ( . . . ) )
478 { ( . . . )
479 L a b e l 0 2 _ f D _ f o r : f o r ( i =0 ; i < n r ; i ++)
480 { Label03_fD : f o r ( j =0 ; j <nc ; j + + ) { ( . . . ) } } ( . . . )
481 }

The HLS directives have been implemented to all versions of the algorithm to improve per-

formance, latency, and resource use. It is feasible to maximize the capability of the underlying

hardware and considerably improve the performance of the algorithm disparity by properly imple-

menting these directives.

4.3 Summary

This chapter conducts a study of the benchmarks adopted for the development of this work. The

analysis of benchmarks allows the identification and optimization of crucial code regions, resulting

in solutions that are more effective and scalable. For each benchmark, algorithm features and

profiling results are provided. In consideration of this initial analysis, the potential transformations

that will give allow the development of the various versions of each algorithm are presented and

justified, as are the Vitis HLS tool directives that were applied to each of them. It is discussed

how each version attempts to improve performance by decreasing the number of latency cycles,

decreasing resource consumption, and enhancing the utilisation of particular functions.

kNN requires distance calculations and result ordering, which can be computationally inten-

sive, making it a suitable benchmark for this investigation. Its simplicity makes it simple to anal-

yse, without the need for profiling tools, and enables comparisons between various code optimiza-

tion strategies. Its TOP function is knn_predict due to its computationally intensive characteris-
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Table 4.4: HLS directives applied to the Disparity algorithm.

Label TOP Inlining
Loop

Tripcount
(max)

Pipelining
(II) Label TOP Inlining

Loop
Tripcount

(max)

Pipelining
(II)

Label01_gD yes yes - - Label05_II2D2D_for - - 58 6
Label02_gD_for - - 54 1 Label06_II2D2D_for - - 76 6
Label03_gD_for - - 72 1 Label01_p2 - yes - -
Label04_gD_for - - 54 1 Label02_p2_for - - 58 1
Label05_gD_for - - 72 1 Label03_p2_for - - 76 1
Label06_gD_for - - 54 1 Label04_p2_for - - 54 1
Label07_gD_for - - 72 1 Label05_p2_for - - 72 1
Label08_gD_for - - 54 1 Label01_p4 - yes - -
Label09_gD_for - - 72 1 Label02_p4_for - - 58 1
Label10_gD_for - - 58 1 Label03_p4_for - - 76 1
Label11_gD_for - - 76 1 Label04_p4_for - - 58 1
Label12_gD_for - - 58 1 Label05_p4_for - - 76 1
Label13_gD_for - - 76 1 Label01_cSAD - yes - -
Label14_gD_for - - 58 1 Label02_cSAD_for - - 58 1
Label15_gD_for - - 76 1 Label03_cSAD_for - - 76 1
Label16_gD_for - - 8 1 Label01_fSAD - yes - -
Label01_crSAD - yes - - Label02_fSAD_for - - 72 2

Label02_crSAD_for - - 4408 1 Label03_fSAD_for - - 54 2
Label01_II2D2D - yes - - Label01_fD - yes - -

Label02_II2D2D_for - - 76 1 Label02_fD_for - - 54 10
Label03_II2D2D_for - - 58 6 Label02_fD_for - - 72 10
Label04_II2D2D_for - - 76 6 - - - - -

tics. Table 4.1.2 lists the various simulation scenarios than can be used in this kNN algorithm, but

the transformations conducted are specific to the particular characteristics of the WI_K3_F and

WI_K20_F scenarios. It was necessary to develop a more generalised version of this algorithm

for use with the HLS tool, as the initial version was already highly specialized. Thus, we have

a sufficient foundation for generating additional versions and comparing them. specializations of

parameters such as k, N_FEATURES, N_TRAINING and N_TESTING are the starting point of the

transformations that generate the remaining versions. The parameter k is given special considera-

tion due to the fact that, for the scenario in question, it can always have a fixed value of 3, which

is a very small value in comparison to the other parameters’ potential specializations. A special-

ization of k = 3 can originate a substantial amount of transformations in the essential functions

like kNN_UpdateBestCaching and kNN_VoteBetweenBest, which may result in substantial perfor-

mance improvements. Taking into consideration the specialized versions, the remaining versions

are the result of the application of the multiversion technique, some of which were suggested by

the code similarity analysis tool described in Section 3.6, Chapter 3. Loop tripcount, pipelining,

loop unrolling, and inlining are the primary directives used by HLS tool to enhance the efficacy

and efficiency of this algorithm in its various implementations.

The primary objective of the Disparity algorithm is to identify a match between the pixels of

the two images and then calculate disparity, a measure of the difference in object position between

the two cameras. It is a computationally intensive algorithm, providing a significant challenge for

performance optimization, especially when implemented in hardware. Table 4.2.1 lists the vari-

ous simulation scenarios utilised by the disparity algorithm. The conducted transformations are

modified according to the particular characteristics of the SIM and FULLHD scenarios. Profiling

these programs required the use of the Gprof and G2prof tools due to their increased size and
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complexity. According to the data provided by the tools, the function getDisparity is the most

important as it occupies the first position in the function call analysis (call graph) and is responsi-

ble for 99.9% of the time invested. The profiler also reveals that the function finalSAD consumed

the second majority of the program’s time (54.97%). This indicates that code optimization and

specialization would also be most advantageous for this function. Some portions of the function

could be targeted for specialization in order to improve its performance by reducing the number

of required operations, taking into account the structure and characteristics of the images, avoid-

ing unnecessary copies and index manipulations, enhancing data access, and reducing read/write

latency in memory.

To make the code compatible and suitable for the version of the vitis HLS tool used, only

minimal modifications were made to the original version of the disparity algorithm. From this ver-

sion, all succeeding versions of the disparity algorithm were derived. Since the base version was

adaptive, it was possible to implement transformations and optimizations with greater flexibility,

adapting the algorithm to various contexts and individual requirements while also permitting a

systematic and comparative evaluation of the performance and efficacy of each algorithm modifi-

cation. As the disparity algorithm requires intensive calculations and operations on data matrices,

monitoring instruments such as the "Value Counter Monitor" described in Section 3.6 of Chapter 3

were found advantageous. Using this monitoring tool, it was feasible to conduct a more compre-

hensive analysis of particular algorithmic variables and intermediate values. The variables win_sz,

rows, and cols are distinguished by their constant values of 4, 58, and 76, respectively, in SIM

scenario. In the disparity algorithm, these variables are responsible for a significant number of

operations and iterations, so they played a crucial role in the developing of some specialized ver-

sions. In addition, it was observed that some intermediate values of the algorithm are frequently

allocated the value zero, as the example described in the article [75]. From this concept, zero-based

versions were developed. This type of information is vital because it permits the specialization of

these values, thereby simplifying and avoiding unnecessary operations, optimizing the code, mak-

ing the processing more efficient and faster, reducing the computational burden, and enhancing

the algorithm’s overall performance. Taking into account the specialized versions, the remaining

versions are the result of the multiversion technique, some of which were suggested by the code

similarity analysis tool described in Section 3.6, Chapter 3. As mentioned previously, generating a

version with multiversion may enable the HLS system to select the optimal implementation based

on the value of the specified parameter. This could lead to a more efficient implementation in

terms of hardware resources and execution time than a version that attempts to accommodate all

possible parameter values. Multiple versions can, however, increase the code’s complexity and

maintainability, as well as hardware resource consumption and latency. The HLS directives used

were loop tripcount, pipelining, and inlining. They play a significant role in enhancing the efficacy

and efficiency of the algorithm.

In general, the selected benchmarks for our analysis exhibit substantial room for enhancement

and provide useful diversity in their structures and modes of operation. It is crucial to emphasise
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that potential specializations should always be evaluated with regard to of the problem’s require-

ments and the characteristics of the data.
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Chapter 5

Experimental Results

This chapter’s main goal is to describe the experimental setup and expose, analyse, and justify

the results acquired by the proposed approach when applied to the benchmarks described in Sec-

tion 3.8 of Chapter 3 and in Chapter 4.

Section 5.1 describes the setup for the experiment used to generate the subsequent sections’

results. The purpose of this description is to ensure the reproducibility and openness of the experi-

ments. The obtained results for the pow, kNN, and Disparity benchmarks are presented, analysed,

and justified in Section 5.2. The results are organised by pertinent metrics such as execution

time, resource utilisation (FFs, BRAMs, DSPs, and LUTs), and area-delay product (ADP) and pre-

sented in tables. These metrics provide a comprehensive view of the performance, efficiency, and

resource usage of approach-optimized versions. Section 5.3 presents the results of the study pre-

sented in Section 3.6 of Chapter 3 about the relationship between the resource usage resulting from

multiversion versions and the degree of similarity of the versions that compose them. Section 5.4

presents the results of the extension made to the "monitors" library, also referred in Section 3.5 of

Chapter 3.

Section 5.6 concludes with an evaluation of the obtained results and a comparison with those

reported in the state-of-the-art. We include a discussion of the principal conclusions and findings

regarding the benefits and limitations of the proposed approach. We a focus on the performance

enhancements achieved, the resource utilisation efficiency, and potential improvement areas for

future research.

5.1 Experimental Setup

This research was conducted on a LAPTOP-HTC0Q8HI equipped with an Intel(R) Core(TM) i7-

8750H processor and 16 GB of RAM. Targeting the Zynq-7000 SoC XC7Z020-1CLG400C FPGA,

optimized versions of the benchmarks were simulated and synthesised using Xilinx’s Vitis HLS

2022.2 tool. The simulation and synthesis reports provided essential information, which includes

the estimated latency, the number of clock cycles required for correct operation, the maximum

frequency, and the estimated usage of resources such as BRAMs, LUTs, DSPs, and FFs. The total
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Table 5.1: Total available resources of the Zynq-7000 SoC XC7Z020-1CLG400C FPGA, present
in the PYNQ™-Z2 board.

LUTs FFs RAM
(36 Kb)

DSP
(25x18 mux) PLLs Programmable

input/output pins
Total

Resources
85000 53200 560 220 5 200 139185

available resources of the Zynq-7000 SoC XC7Z020-1CLG400C FPGA, present in the PYNQ™-

Z2 board are presented in Table 5.1.

The results obtained are used to compare each optimized version to its associated generic

or original version, using metrics such as speedup, percentage of resources used, and area-delay

product. Speedup indicates the degree to which the optimized variant outperforms its generic

or original equivalent. The percentage of resources utilised represents the efficiency with which

available hardware resources are utilised in comparison to the respective original or generic ver-

sions. The area-delay product is a metric that takes into consideration both the implementation’s

area (resources) and latency.

These metrics and analysis tools are essential for evaluating the performance, efficiency, and

viability of the approach’s optimized versions. They permit an objective and comparative analysis,

which facilitates the identification of significant enhancements.

5.2 HLS Synthesis Results

This section presents and analyses the results obtained by applying the proposed approach to

the selected benchmarks. These benchmarks include the motivating example, the pow function,

the kNN algorithm implementation from the SPEC group, as well as Disparity from the SD-VBS

group.

The optimized versions of each benchmark are compared to the original or generic versions of

the same, taking into account metrics like execution time, latency cycles, resource utilisation, and

area-delay product. We consider the modifications made by the optimized versions and examine

their impact on performance, including the reduction of latency cycles and the more effective use

of hardware resources.

Through this comprehensive analysis of the results, we hope to provide a clear and substanti-

ated view of the performance and benefits obtained by the proposed approach, enabling a proper

evaluation of its efficacy in the optimization of selected benchmarks.

5.2.1 Pow function

The results of the synthesis regarding the latency cycles and number of resources utilised by each

version of the pow function are presented in Tables 5.2 and 5.4, respectively. In Tables 5.3 and 5.5,

the comparison of speedups and resource usage percentages relative to the generic version v1 can

also be verified. Section 3.8 of Chapter 3 previously presented this program and its respective

versions.
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Table 5.2: Results after pow versions simulations of the values referring to the execution time with
a target of 10ns and uncertainty of 2.70 ns. (single-precision float (SPF); maximum frequency
(Fmax); multiversion (MV); specialized (SPEC))

Version Functionality Estimated
(ns)

Latency
(#cycles)

Fmax
(MHz)

v1_gen Generic 7.29 86 137.19
v2_SPEC_b1 SPEC b = 1 0 0 NA
v3_SPEC_b3 SPEC b = 3 6.72 13 NA
v4_SPEC_b05 SPEC b = 0.5 5.17 56 NA
v5_SPEC_a1 SPEC a = 1 0 0 NA

v6_SPEC_ab_spf SPEC a,b SPF 7.01 38 142.59
v7_SPEC_ac_spf_b05 SPEC a,c SPF b = 0.5 6.24 19 NA

v8_MV_b1 MV opt = 1: b = 1 0 0 NA
MV opt = 2: generic 7.29 80 137.19

v9_MV_b3 MV opt = 1: b = 3 6.72 13 148.83
MV opt = 2: generic 7.29 81 137.19

v10_MV_b05 MV opt = 1: b = 0.5 5.17 56 193.31
MV opt = 2: generic 7.29 80 137.19

3*v11_MV_b1_b3 MV opt = 1: b = 1 0 0 NA
MV opt = 1: b = 3 6.72 13 148.83

MV opt = 3: generic 7.29 80 137.19
v12_MV_a1 MV opt = 1: a = 1 0 0 NA

MV opt = 2: generic 7.23 34 138.23
v13_MV_spf_b05 MV opt = 1: spf b = 0.5 6.24 19 160.33

MV opt = 2: powf 7.01 34 142.59
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Table 5.3: Speedups resulting from comparing the number of latency cycles of each pow version
against the generic version v1, and the related specialized (SPEC) version.

Version Functionality Speedup
v vs v1 MV vs related SPEC

v1_gen Generic 1 -
v2_SPEC_b1 SPEC b = 1 - -
v3_SPEC_b3 SPEC b = 3 6.62 -

v4_SPEC_b05 SPEC b = 0.5 1.54 -
v5_SPEC_a1 SPEC a = 1 - -

v6_SPEC_ab_spf SPEC a,b SPF 2.26 -
v7_SPEC_ac_spf_b05 SPEC a,c SPF b = 0.5 4.53 -

v8_MV_b1 MV opt = 1: b = 1 - 0.00
MV opt = 2: generic 1.08 1.08

v9_MV_b3 MV opt = 1: b = 3 6.62 1.00
MV opt = 2: generic 1.06 1.06

v10_MV_b05 MV opt = 1: b = 0.5 1.54 1,00
MV opt = 2: generic 1.08 1.08

v11_MV_b1_b3 MV opt = 1: b = 1 - 0.00
MV opt = 1: b = 3 6.62 1.00

MV opt = 3: generic 1.08 1.08
v12_MV_a1 MV opt = 1: a = 1 - 0.00

MV opt = 2: generic 2.53 2.53
v13_MV_spf_b05 MV opt = 1: spf b = 0.5 4.53 1.00

MV opt = 2: powf 2.53 1.12

Compared to the generic version, the number of latency cycles resulting from the specialized

versions (SPEC) decreased or remained the same for all versions. As anticipated, versions 2 and 5

no longer necessitate any latency cycles for execution, allowing for a significant acceleration. We

also highlight the v3_SPEC_b3 version, which shows a speedup of 6.62x compared to the base

version v1_gen, indicating that the specialization for the case b = 3 provides a significant perfor-

mance boost; the v6_SPEC_ab_spf and v7_SPEC_ac_spf_b05 versions, which show a speedup of

2.26x and 4.53x, respectively, compared to the base version v1_gen, indicating that the specializa-

tion for the use of single-precision floating point numbers (SPF) and the replacement of the pow

function by the powf and sqrtf functions bring a significant improvement in performance.

As for the number of resources used by the specialized versions, we observe a reduction of

over 60 %, with the preponderance being over 96 %. Given the positive results of the specialized

versions compared to the generic version, it can be concluded that the program has the poten-

tial to benefit from specialization, and it is therefore appropriate to investigate the multiversion

optimization strategy.

In comparison to the v1_gen version, the multiversion (MV) versions exhibit an increase

or maintenance of specific speedups. As anticipated, option 1 (opt = 1) versions v8_MV_b1,

v11_MV_b1_b3, and v12_MV_a1 do not reach a latency cycle to execute, indicating that the

speedup would reach immeasurable values. Additionally, we can highlight the v12_MV_a1 version

with a speedup of 2.53x and the v13_MV_spf_b05 variant with a speedup of 1.12x. Regarding the

use of resources, a minor percentage increase was observable when comparing the total resources
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Table 5.4: Result number of resources used by each pow version after synthesis.

Version Functionality BRAM DSP FF LUT URAM Total
v1_gen Generic 30 54 14624 13484 0 28192

v2_SPEC_b1 SPEC b = 1 0 0 0 0 0 0
v3_SPEC_b3 SPEC b = 3 0 11 420 665 0 1096
v4_SPEC_b05 SPEC b = 0.5 0 0 57 249 0 306
v5_SPEC_a1 SPEC a = 1 0 0 0 0 0 0

v6_SPEC_ab_spf SPEC a,b SPF 7 14 5269 5431 0 10721
v7_SPEC_ac_spf_b05 SPEC a,c SPF b = 0.5 0 0 84 106 0 190

v8_MV_b1 MV b = 1 / generic 30 54 14757 13555 0 28396
v8.1 v1 + v2 30 54 14624 13484 0 28192

v9_MV_b3 MV b = 3 / generic 30 65 15177 14219 0 29491
v9.1 v1 + v3 30 65 15044 14149 0 29288

v10_MV_b05 MV b = 0.5 / generic 30 54 14813 13882 0 28779
v10.1 v1 + v4 30 54 14681 13733 0 28498

v11_MV_b1_b3 MV b = 1 / b = 3 / generic 30 65 15183 14253 0 29531
v11.1 v1 + v2 + v3 30 65 15044 14149 0 29288

v12_MV_a1 MV a = 1 / generic 30 54 14757 13555 0 28396
v12.1 v1 + v5 30 54 14624 13484 0 28192

v13_MV_spf_b05 MV SPF b = 0.5 / generic 7 14 5352 5574 0 10947
v12.1 v1 + v7 30 54 14708 13590 0 28382

used by the generic version to the total resources used by the specific versions that correspond to

the specialized versions of each multiversion. The exception is v13_MV_spf_b05, for which the

total number of resources has decreased by 61.17 % in comparison to the generic version. This is

a very satisfactory result given that the total number of resources used in the specific versions that

are compatible with this multiversion version (v1 and v7) increased by 0.67 % in comparison to

the generic version.

Multiversion is advantageous in this instance because it can incorporate the advantages of

the generic and specialized versions while avoiding their disadvantages. The specialized versions

are highly optimized for a particular set of conditions, which may render them ineffective under

alternate circumstances. The generic version is intended for use across a broad spectrum of con-

ditions, but is less effective in a specific set of conditions than the specialized versions. Using the

multiversion technique, several specialized versions are built for different sets of conditions and

combined into a single version, enabling the program to select the most effective version for each

set of conditions. This indicates that the multiversion version can compete with the expert version,

obtaining virtually the same minimum latency and resource utilisation values as the expert version

under conditions that match the optimization parameters.

In this study, versions that use the powf or sqrtf functions instead of the pow and sqrt func-

tions, because the function parameters are assumed to be in single-precision float, produced su-

perior results. Due to the difference in precision of calculations conducted, the powf function

is less resource-intensive than the pow function. The pow function is designed to operate with

double-precision floating-point numbers, which require more bits to represent numbers. This ad-

ditional precision leads to more complex calculations and necessitates more computational re-
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Table 5.5: Comparison of the number of resources used by each pow version compared to the
generic version (%).

Version Functionality Comparison of resources usage with v1 (%)
BRAM DSP FF LUT URAM Total

v2_SPEC_b1 SPEC b = 1 w/o resources w/o resources w/o resources w/o resources - w/o resources
v3_SPEC_b3 SPEC b = 3 w/o resources -79.63 -97.13 -95.07 - -96.11
v4_SPEC_b05 SPEC b = 0.5 w/o resources w/o resources -99.61 -98.15 - -98.91
v5_SPEC_a1 SPEC a = 1 w/o resources w/o resources w/o resources w/o resources - w/o resources

v6_SPEC_ab_spf SPEC a.b SPF -76.67 -74.07 -63.97 -59.72 - -61.97
v7_SPEC_ac_spf_b05 SPEC a.c SPF b = 0.5 w/o resources w/o resources -0.99 -0.99 - -99.33

v8_MV_b1 MV b = 1 / generic 0.00 0.00 0.91 0.53 - 0.72
v8.1 v1 + v2 0.00 0.00 0.00 0.00 - 0.00

v9_MV_b3 MV b = 3 / generic 0.00 20.37 3.78 5.45 - 4.61
v9.1 v1 + v3 0.00 20.37 2.87 4.93 - 3.89

v10_MV_b05 MV b = 0.5 / generic 0.00 0.00 1.29 2.95 - 2.08
v10.1 v1 + v4 0.00 0.00 0.39 1.85 - 1.09

v11_MV_b1_b3 MV b = 1 / b = 3 / generic 0.00 20.37 3.82 5.70 - 4.75
v11.1 v1 + v2 + v3 0.00 20.37 2.87 4.93 - 3.89

v12_MV_a1 MV a = 1 / generic 0.00 0.00 0.91 0.53 - 0.72
v12.1 v1 + v5 0.00 0.00 0.00 0.00 - 0.00

v13_MV_spf_b05 MV SPF b = 0.5 / generic -76.67 -74.07 -63.40 -58.66 - -61.17
v12.1 v1 + v7 0.00 0.00 0.57 0.79 - 0.67

sources, including latency cycles and memory usage. In contrast, the powf function is optimized

for single-precision floating-point numbers, whose numerical representation requires fewer bits.

The computations performed by the powf function are therefore less complex and demand fewer

computational resources than those performed by the pow function.

The results of the area-delay product are presented in Table 5.6, reinforcing the conclusions

drawn from the previously examined tables.

In summary, the specialized variants of the pow function provide significant speedups and a

reduction in total resource usage when compared to the generic base version in specific scenarios.

In terms of performance and efficiency, the applied specializations are advantageous, as they sim-

plify computations and eliminate superfluous calls to the pow function. However, it is essential

to keep in mind that these enhancements may differ based on the characteristics of the input data

and the optimization options chosen. Performance and calculation precision requirements of the

project dictate which variant of the pow function should be utilised.

5.2.2 k-Nearest Neighbors

In Chapter 4, the kNN benchmark is presented and analysed, together with the relevant versions

built from it, taking into account their importance and impact on the study’s aims. Tables 5.7

and 5.9 show the results of each of the analysed versions’ simulation and synthesis in terms of

execution time and resource utilisation. Tables 5.8 and 5.10 allow us to compare these results in

terms of speedups and percentage of resources consumed in comparison to the generic version of

the algorithm (v2_gen). The versions considered are all based on the WI_K3_F scenario, presented

in Chapter 4, and include the original version (v1_SPEC_orig), the generic version (v2_gen), the

version specialized for k = 3 (v3_SPEC_k3), the version specialized for k = 3 using the multiver-

sion technique (v4_MV_k3), the specialized version for k = 3, N_FEATURES = 43, N_TRAINING

= 4336, N_TESTING = 1082 (v5_SPEC_kfp), and the version using the multiversion technique for
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Table 5.6: Results of the area-delay product (ADP) of each pow version and their comparison (%)
with the generic version, v1.

Version Functionality Total
Resources

Latency
Cycles ADP Comparison

of ADP with v1 (%)
v1_gen Generic 28192 86 2424512 -

v2_SPEC_b1 SPEC b = 1 0 0 0 -100.00
v3_SPEC_b3 SPEC b = 3 1096 13 14248 -99.41

v4_SPEC_b05 SPEC b = 0.5 306 56 17136 -99.29
v5_SPEC_a1 SPEC a = 1 0 0 0 -100.00

v6_SPEC_ab_spf SPEC a.b SPF 10721 38 407398 -83.20
v7_SPEC_ac_spf_b05 SPEC a,c SPF b = 0.5 190 19 3610 -99.85

v8_MV_b1 MV opt = 1: b = 1 28396 0 0 -100.00
MV opt = 2: generic 80 2271680 -6.30

v9_MV_b3 MV opt = 1: b = 3 28192 13 366496 -84.88
MV opt = 2: generic 81 2283552 -5.81

v10_MV_b05 MV opt = 1: b = 0.5 28779 56 1611624 -33.53
MV opt = 2: generic 80 2302320 -5.04

v11_MV_b1_b3 MV opt = 1: b = 1 29531 0 0 -100.00
MV opt = 1: b = 3 13 383903 -84.17

MV opt = 3: generic 80 2362480 -2.56
v12_MV_a1 MV opt = 1: a = 1 28396 0 0 -100.00

MV opt = 2: generic 34 965464 -60.18
v13_MV_spf_b05 MV opt = 1: spf b = 0.5 10947 19 207993 -91.42

MV opt = 2: powf 34 372198 -84.65

the specialized version where k = 3, N_FEATURES = 43, N_TRAINING = 4336, N_TESTING =

1082 (v6_MV_kfp).

Regarding the number of latency cycles resulting from simulations of the specialized versions

(SPEC), there was a significant decrease for all versions compared to the generic version, with

versions v3_SPEC_k3 and v5_SPEC_kfp enhancing the most, as the decrease in latency cycles

results in a speedup of approximately 1110x for both. In terms of the number of resources used by

the specialized versions, there is an increase of approximately 343% between the generic version,

v2_gen, and the original entirely specialized version, v1_orig. Again, versions v3_SPEC_k3 and

v5_SPEC_kfp stand out, resulting in an approximately 80% and 81% reduction in the total number

of resources utilised, which can have a direct impact on lowering expenses and energy efficiency.

The results obtained for both versions, both for speedups and percentage of resource utilisation

relative to the generic version v2_gen, indicate that the transformation with the greatest impact on

the algorithm is k = 3, given that the only difference between the two versions is the specialization

of the variables N_FEATURES, N_TRAINING, and N_TESTING, as verified in Section 4.1.2 of

Chapter 4. The results from versions v3_SPEC_k3 and v5_SPEC_kfp are consistent with expecta-

tions, considering that in the generic implementation, the algorithm logic must be able to handle

any value of k, which can lead to computational overload and increased resource usage, whereas

in the specialized implementation, the logic is simplified and accelerated for a specific value of

k, resulting in lower latency and more efficient resource usage. One of the most notable changes

made in the specialized versions of kNN compared to the generic version was the removal of the

histogram in the kNN_VoteBetweenBest function, which proved to be a bottleneck in the hardware
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Table 5.7: Results after kNN versions simulations of the values referring to the execution time
with a target of 5 ns and uncertainty of 1.35 ns. (maximum frequency (Fmax); multiversion (MV);
specialized (SPEC))

Version Functionality Estimated
(ns)

Latency
(#cycles)

Fmax
(MHz)

v1_SPEC_orig SPEC: original 4.23 95708 236.29
v2_gen generic 3.64 772545 274.42

v3_SPEC_k3 SPEC: k = 3 3.64 696 274.43
v4_MV_k3 MV opt = 1: k = 3 3.64 696 274.42

MV opt = 2: Generic 3.64 772551 274.43

v5_SPEC_kfp SPEC: k && N_FEATURES
&& N_TRAINING && N_TESTING

3.64 696 274.43

v6_MV_kfp MV opt = 1: k && N_FEATURES
&& N_TRAINING && N_TESTING

3.64 696 274.42

MV opt = 2: generic 3.64 772545 274.43

Table 5.8: Speedups resulting from comparing the number of latency cycles of each kNN version
against the kNN generic version v2, and the related specialized (SPEC) version.

Version Functionality Speedup
v vs v2 MV vs related SPEC

v1_SPEC_orig SPEC: original 8.07 -
v2_gen generic 1.00 -

v3_SPEC_k3 SPEC: k = 3 1109.98 -
v4_MV_k3 MV opt = 1: k = 3 1109.98 1.00

MV opt = 2: generic 1.00 1.00

v5_SPEC_kfp SPEC: k && N_FEATURES &&
N_TRAINING && N_TESTING 1109.98 -

v6_MV_kfp MV opt = 1: k && N_FEATURES &&
N_TRAINING && N_TESTING 1109.98 1.00

MV opt = 2: generic 1.00 1.00
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Table 5.9: Result number of resources used by each kNN version after HLS synthesis.

Version Functionality DSP FF LUT Total
v1_SPEC_orig SPEC: original 26 13411 8112 21549

v2_gen generic 13 2123 2724 4860
v3_SPEC_k3 SPEC: k = 3 2 392 573 967
v4_MV_k3 MV: k = 3 || generic 13 2391 2799 5203

v4.1 v2 + v3 15 2515 3297 5827

v5_SPEC_kfp SPEC: k && N_FEATURES &&
N_TESTING && N_TRAINING 2 367 538 907

v6_MV_kfp MV: (k && N_FEATURES &&
N_TESTING && N_TRAINING ) || generic 13 2224 3065 5302

v6.1 v2 + v5 15 2490 3262 5767

implementation of the algorithm.

Given the considerable differences between the generic version (v2_gen) and the specialized

versions v3_SPEC_k3 and v5_SPEC_kfp, it is possible to conclude that the specializations bene-

fited the algorithm’s implementation. Given this, it was justifiable to study the multiversion opti-

mization technique for both versions in order to optimize and make the hardware implementation

of kNN flexible.

All of the multiversion (MV) versions increase or maintain specific speedups over the generic

v2_gen version and related specialized versions. Options 1 (opt = 1) of versions v4_MV_k3 and

v6_MV_kfp, as expected, stand out by achieving a speedup of roughly 1110x relative to the generic

version, as do the equivalent specialized variants. Still on the MV versions, we observe a 7% in-

crease in total resource utilisation compared to the generic version, v2_gen, for the v4_MV_k3

version and a 9% increase for the v6_MV_kfp version. Despite this slight increase in the percent-

age of total resource usage, Table 5.10 shows that the results for the sum of the specialized and

generic versions that correspond to the specialized versions of each multiversion have a percentage

increase that is more than twice as high as the versions with multiversion. This means that versions

with multiversion consume fewer resources than the sum of the separate related versions. This is

due to resource optimization, resource sharing, and overlap elimination. Some parts of the code,

for example, are executed in parallel, or specific processing units are shared. When compared

to the some of the separated versions, these strategies allow for more efficient use of available

resources, resulting in higher performance and resource savings. As a result, there is an advantage

to using multiversion versions, which can compete with the corresponding specialized versions

while achieving nearly the same latency and resource utilisation value as the generic version.

The results obtained support the notion that multiversion is preferable in this scenario since it

can combine the benefits of generic and specialized versions while avoiding their drawbacks. The

specialized versions are highly tailored for a specific set of circumstances but may be unsuccessful

in other situations. The generic version is intended for usage in a variety of conditions, but it is

less successful in a subset of conditions than the specialized versions. Using the multiversion tech-

nique, numerous specialized versions for distinct sets of conditions can be created and combined

into a single version, allowing the program to choose the most effective version for each set of
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Table 5.10: Comparison of the number of resources used by each kNN version compared to the
generic version (%).

Version Functionality Comparison of resources usage with v2 (%)
DSP FF LUT Total

v1_SPEC_orig SPEC: original 100.00 531.70 197.80 343.40
v3_SPEC_k3 SPEC: k = 3 -84.62 -81.54 -78.96 -80.10
v4_MV_k3 MV: k = 3 || generic 0.00 12.62 2.75 7.06

v4.1 v2 + v3 15.38 18.46 21.04 19.90

v5_SPEC_kfp SPEC: k && N_FEATURES &&
N_TESTING && N_TRAINING

-84.62 -82.71 -80.25 -81.34

v6_MV_kfp MV: (k && N_FEATURES && N_TESTING
&& N_TRAINING) || generic

0.00 4.76 12.52 9.09

v6.1 v2 + v5 15.38 17.29 19.75 18.66

Table 5.11: Results of the area-delay product (ADP) of each kNN version and their comparison
(%) with the generic version, v2.

Version Functionality Total
Resources

Latency
cycles ADP Comparison of

ADP with v2 (%)
v1_SPEC_orig SPEC: original 21549 95708 2062411692 -45.07

v2_gen generic 4860 772545 3754568700 -
v3_SPEC_k3 SPEC: k = 3 967 696 673032 -99.98
v4_MV_k3 MV opt = 1: k = 3 5203 696 3621288 -99.90

MV opt = 2: generic 772551 4019582853 7.06

v5_SPEC_kfp SPEC: k && N_FEATURES &&
N_TESTING && N_TRAINING

907 696 631272 -99.98

v6_MV_kfp MV opt = 1: (k && N_FEATURES &&
N_TESTING && N_TRAINING )

5302 696 3690192 -99.90

MV opt = 2: generic 772545 4096033590 9.09
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conditions.

Table 5.11 also includes the area-delay product data, which supports the conclusions drawn

from the previous tables. The maximum operational frequency (Fmax MHz) stayed close to 274

MHz in all iterations.

In summary, the results of the HLS synthesis and comparison of various versions of the kNN

algorithm show that, with the exception of the original v1_SPEC_orig version, the specialized

versions show performance improvements, providing significant speedups and a decrease in total

resource utilisation compared to the generic base version. This can improve energy efficiency

and reduce the resulting circuit area. The multiversion optimization technique was successful

because it was able to combine the benefits of generic and specialized versions while avoiding

their drawbacks. It is crucial to note, however, that these improvements may vary depending on

the parameters of the chosen case, the input data, and the optimization options chosen.

5.2.3 Disparity

In Chapter 4, the Disparity Benchmark is presented and analysed, as are the relevant versions de-

veloped from it, taking into account their importance and impact on the objectives of the study.

Tables 5.12 and 5.14 present the simulation and HLS synthesis results of each of the analysed

versions in terms of execution time and resource usage. Tables 5.13 and 5.15 allow us to com-

pare these results in terms of speedups and percentage of resources consumed in relation to the

generic version of the algorithm. The versions considered are all based on the SIM scenario pre-

sented in Chapter 4 and include the original/generic version (v1_orig), the version specialized for

win_sz = 4 (v2_SPEC_w4), the respective version using the multiversion technique (v3_MV_w4),

the versions that take advantage of the results obtained through the variable monitoring tool

(v4_p4, v5_fSAD, v6_cSAD, v7_II2D and v8_all), the version specialized for the number of rows

and columns (v9_SPEC_r_c), and the respective version that uses the multiversion technique

(v10_MV_r_c), and finally the version that specializes win_sz, the number of rows and columns

(v11_SPEC_r_c_w), and the respective multiversion version (v12_MV_r_c_w).

In relation to the number of latency cycles that resulted from the simulations of the specialized

versions (SPEC), it can be seen that all of them present a decrease in comparison to the generic

version, v1_orig, but the difference is, for the most part, not very significantly different. The most

notable versions were v9_SPEC_r_c and v11_SPEC_r_c_w, where a decrease in latency cycles

results in a speedup of approximately 2.4x for both.

With the exception of v9_SPEC_r_c and v11_SPEC_r_c_w, which use approximately 26%

and 41% fewer resources than the generic version, v1_orig, there is a slight rise in the num-

ber of resources used by the specialized versions in comparison to the generic version, v1_orig.

v9_SPEC_r_c, which specializes in the size of images (rows x cols), has a significantly greater

impact on the number of latency cycles and resource usage than v2_SPEC_w4, which special-

izes only in the window size, when applied to the Disparity algorithm. By fixing the dimen-

sions of the images, unlike in the win_sz specialization, a greater number of loops are opti-

mized, reducing a greater number of operations and enhancing the algorithm’s efficiency. This
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Table 5.12: Results after Disparity versions simulations of the values referring to the execution
time with a target of 10 ns and uncertainty of 2.70 ns. (maximum frequency (Fmax); multiversion
(MV); specialized (SPEC))

Version Functionality Estimated (ns) Latency (#cycles) Fmax (MHz)

v1_orig generic 7.26 937456 137.82
v2_SPEC_w4 SPEC: win_sz = 4 7.26 898038 137.82
v3_MV_w4 MV opt 1: win_sz = 4 7.26 906359 137.82

MV opt 2: generic 7.26 906359 137.82
v4_p4 Zeros: padarray4 7.26 906360 137.82

v5_fSAD Zeros: finalSAD 7.26 906360 137.83
v6_cSAD Zeros: computeSAD 7.26 906360 137.83
v7_II2D Zeros: IntegralImage 7.26 901768 137.83
v8_all Zeros: all functions 7.26 901768 137.84

v9_SPEC_r_c SPEC: row & col 7.26 398280 137.82
v10_MV_r_c MV opt 1: row & col 7.26 398280 137.82

MV opt 2: generic 7.26 906360 137.82
v11_SPEC_r_c_w SPEC: row & col & win_sz 7.26 389925 137.83
v12_MV_r_c_w MV opt 1: row & col & win_sz 7.26 389941 137.82

MV opt 2: generic 7.26 906360 137.82

results in a greater direct decrease in latency and an improved utilisation of hardware resources.

Therefore, it makes perfect sense that the specialized version that combines both specializations,

v11_SPEC_r_c_w, performed slightly better than v9_SPEC_r_c, which only specializes in image

size. Given the significant differences between the generic version, v1_orig, and the specialized

versions, v9_SPEC_r_c and v11_SPEC_r_c_w, it is possible to conclude that the algorithm’s im-

plementation benefites from the specializations. In light of this, it was appropriate to investigate

the multiversion optimization technique for both versions in order to optimize and increase the

flexibility of the hardware implementation.

All multiversion versions (MV) reduce the number of latency cycles necessary for their oper-

ation in comparison to the original version, v1_orig. As anticipated, the options 1 (opt = 1) of the

v10_MV_r_c and v12_MV_kfp versions achieve a speedup of approximately 2.4x compared to the

generic version, just like the equivalent specialized variants. In addition, the MV versions exhibit

a rise in total resource usage compared to the original version, v1_orig. Despite this increase in

the percentage of total resource usage, Table 5.15 shows that the results for the sum of the spe-

cialized and generic versions corresponding to the specialized versions of each multiversion have

a greater percentage increase in resource usage relative to the generic version than versions with

multiversion. This indicates that the multiversion versions utilise fewer resources than the sum of

the resources utilised by the individual versions. This is due to the optimization of resources, the

sharing of resources, and the elimination of overlaps. Some parts of the code, for instance, are

executed in parallel, and certain processing units are shared. These strategies make more efficient

use of available resources than some of the distinct versions, resulting in improved performance

and cost savings. Consequently, there is an advantage to utilising multiversion versions, which

can compete with their corresponding specialized counterparts and achieve nearly the same la-
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Table 5.13: Speedups resulting from comparing the number of latency cycles of each Disparity
version against the Disparity generic version v1, and the related specialized (SPEC) version.

Version Functionality Speedup
v vs v1 MV vs related SPEC

v1_orig generic 1.00 -
v2_SPEC_w4 SPEC: win_sz = 4 1.04 -
v3_MV_w4 MV opt 1: win_sz = 4 1.03 0.99

MV opt 2: generic 1.03 1.03
v4_p4 Zeros: padarray4 1.03 -

v5_fSAD Zeros: finalSAD 1.03 -
v6_cSAD Zeros: computeSAD 1.03 -
v7_II2D Zeros: IntegralImage 1.04 -
v8_all Zeros: all functions 1.04 -

v9_SPEC_r_c SPEC: row & col 2.35 -
v10_MV_r_c MV opt 1: row & col 2.35 1.00

MV opt 2: generic 1.03 1.03
v11_SPEC_r_c_w SPEC: row & col & win_sz 2.40 -
v12_MV_r_c_w MV opt 1: row & col & win_sz 2.40 1.00

MV opt 2: generic 1.03 1.03

tency and resource utilisation as the generic version. As mentioned in Section 5.2.2, the obtained

results support the notion that multiversion is preferable in this scenario because it can combine

the benefits of the generic and specialized versions while avoiding their drawbacks.

There were no small improvements in latency cycles in the versions that deal with the treatment

of zeros, v4_p4 through v8_all, as compared to the generic version, v1_orig. There was just

a slight rise in speedups, indicating a minor boost in performance. Although the multiversion

technique used in these versions requires the use of conditionals throughout the runtime to select

the appropriate behaviour based on parameter values, adding complexity to the code, it could have

resulted in an increase in latency cycles due to the conditional checks required during execution,

which did not occur. Furthermore, in terms of total resource usage, there was a slight increase in

the number of resources compared to the generic version, due to the need to allocate additional

memory to store information related to the specific treatment of zeros, but it was significantly

lower compared to the other MV versions, which involve more significant code modifications and

more intensive optimizations. These results are satisfactory given that these versions must use the

multiversion approach to function correctly since the parameter values are assigned at runtime.

These findings emphasise the need of carefully determining which optimizations are most

effective in a specific situation. For this benchmark and scenario, although the benefit was not as

expressive as in the MV versions, and there was also a slight increase in the number of resources, it

was possible to reduce the number of latency cycles, indicating an improvement in the algorithm’s

efficiency.

Table 5.16 also provides the area-delay product data, which validates the preceding tables’

results. In all iterations, the maximum operating frequency (Fmax MHz) remained close to 138

MHz.

In summary, the results of the synthesis and comparison of various versions of the disparity
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Table 5.14: Result number of resources used by each Disparity version after synthesis.

Version Functionality BRAM DSP FF LUT Total
v1_orig generic 255 53 7839 10289 18436

v2_SPEC_w4 SPEC: win_sz = 4 288 62 8268 10308 18926
v3_MV_w4 MV: winsz || generic 319 65 10196 13136 23716

v3.1 v1 + v2 543 115 16107 20597 37362
v4_p4 Zeros: padarray4 319 55 8047 10521 18942

v5_fSAD Zeros: finalSAD 319 55 8371 10807 19552
v6_cSAD Zeros: computeSAD 319 55 8111 10595 19080
v7_II2D Zeros: IntegralImage 319 58 8379 11140 19896
v8_all Zeros: all functions 319 58 8767 11524 20668

v9_SPEC_r_c SPEC: row & col 302 36 5105 8211 13654
v10_MV_r_c MV: row || col 319 78 12301 17764 30462

v10.1 v1 + v9 557 89 12944 18500 32090
v11_SPEC_r_c_w SPEC: row & col & win_sz 288 22 3738 6888 10936
v12_MV_r_c_w MV: row & col & winsz || generic 319 69 11397 16741 28526

v12.1 v1 + v11 543 75 11577 17177 29372

Table 5.15: Comparison of the number of resources used by each Disparity version compared to
the generic version (%).

Version Functionality Comparison of resources usage with v1 (%)
BRAM DSP FF LUT Total

v2_SPEC_w4 SPEC: win_sz = 4 12.94 16.98 5.47 0.18 2.66
v3_MV_w4 MV: winsz || generic 25.10 22.64 30.07 27.67 28.64

v3.1 v1 + v2 112.94 116.98 105.47 100.18 102.66
v4_p4 Zeros: padarray4 25.10 3.77 2.65 2.25 2.74

v5_fSAD Zeros: finalSAD 25.10 3.77 6.79 5.03 6.05
v6_cSAD Zeros: computeSAD 25.10 3.77 3.47 2.97 3.49
v7_II2D Zeros: IntegralImage 25.10 9.43 6.89 8.27 7.92
v8_all Zeros: all functions 25.10 9.43 11.84 12.00 12.11

v9_SPEC_r_c SPEC: row & col 18.43 -32.08 -34.88 -20.20 -25.94
v10_MV_r_c MV: row || col 25.10 47.17 56.92 72.65 65.23

v10.1 v1 + v9 118.43 67.92 65.12 79.80 74.06
v11_SPEC_r_c_w SPEC: row & col & win_sz 12.94 -58.49 -52.32 -33.05 -40.68
v12_MV_r_c_w MV: row & col & winsz || generic 25.10 30.19 45.39 62.71 54.73

v12.1 v1 + v11 112.94 41.51 47.68 66.95 59.32
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Table 5.16: Results of the area-delay product of each Disparity version and their comparison (the
generic version, v1.

Version Functionality Total
Resources

Latency
cycles ADP Comparison of

ADP with v1 (%)
v1_orig generic 18436 937456 17282938816 0.00

v2_SPEC_w4 SPEC: win_sz = 4 18926 898038 16996267188 -1.66
v3_MV_w4 MV opt 1: win_sz = 4 23716 906359 21495210044 24.37

MV opt 2: generic 906359 21495210044 24.37
v4_p4 Zeros: padarray4 18942 906360 17168271120 -0.66

v5_fSAD Zeros: finalSAD 19552 906360 17721150720 2.54
v6_cSAD Zeros: computeSAD 19080 906360 17293348800 0.06
v7_II2D Zeros: IntegralImage 19896 901768 17941576128 3.81
v8_all Zeros: all functions 20668 901768 18637741024 7.84

v9_SPEC_r_c SPEC: row & col 13654 398280 5438115120 -68.53
v10_MV_r_c MV opt 1: row & col 30462 398280 12132405360 -29.80

MV opt 2: generic 906360 27609538320 59.75
v11_SPEC_r_c_w SPEC: row & col & win_sz 10936 389925 4264219800 -75.33
v12_MV_r_c_w MV opt 1: row & col & win_sz 28526 389941 11123456966 -35.64

MV opt 2: generic 906360 25854825360 49.60

algorithm show that, with the exception of version v2_SPEC_w4, the specialized versions show

performance improvements, providing significant increases in speedup and a decrease in total

resource usage relative to the generic base version. This can enhance energy efficiency, lower

the resultant circuit size, and cut overall expense. The multiversion optimization approach was

effective because it was able to mix the benefits of the generic and specialized versions while

avoiding their limitations. It is important to note, however, that these gains may vary based on the

case specifications, input data, and optimization strategies used.

5.3 Analysis of the Relationship between Degree of Similarity and
Performance in Multiversion Technique

During the development of this study, the opportunity arose to research whether there is a corre-

lation between the degree of similarity between different specialized and generic versions and the

number of resources required for a version using the multiversion technique for the same versions.

This section aims to present and analyse the results obtained from this research.

5.3.1 Relative Percentage of Resources Used

As the goal of this study is to explore if there is a correlation between the degree of code simi-

larity between different specialized and generic versions and the amount of resources needed to

make a multiversion version of them, it wouldn’t make sense to do the same calculation for all

multiversion versions against the same generic version, as was done in the previous section. This

is because there are multiversion versions made up of only very specialized versions, whose com-

bined resources use much less than those of a generic version. We wouldn’t have an adequate way
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Table 5.17: Results obtained for Disparity from the analysis of the degree of similarity between
each of the two possible combined individual versions and the corresponding results of the multi-
version versions

Version Functionality Similarity
Total

Resources
SPEC 1

Total
Resources

SPEC 2

Total
Resources

MV

Total
Resources

SUM
(SPECs)

MV
Relative %
Resources

(min SPEC)

Rank
Similarity

Rank
Total

Resources
MV

Rank MV
Relative %
Resources

(min SPEC)
v13_MV_9_11 v9 + v11 0.15 13654 10936 19109 24590 33.24 6 6 5
v10_MV_1_9 v1 + v9 0.22 18436 13654 30462 32090 52.38 5 1 3
v3_MV_1_2 v1 + v2 0.25 18436 18926 23716 37362 14.13 4 5 6

v12_MV_1_11 v1 + v11 0.25 18436 10936 28526 29372 59.89 3 3 1
v17_MV_2_11 v2 + v11 0.26 18926 10936 26824 29862 53.20 2 4 2
v16_MV_2_9 v2 + v9 0.30 18926 13654 28866 32580 46.69 1 2 4

to compare a multiversion version with a generic version since the specialized versions that con-

stitute the multiversion version are selected to improve performance by using their own features.

For this study, a metric was used to figure out the relative percentage of resources used by

the multiversion version compared to the smaller number of resources used by the corresponding

individual versions over the total number of resources used by all individual versions. This metric

assesses the relative gain in terms of resource reductions that the multiversion version offers in

comparison to the individual specialized versions. The higher the metric’s final value, the greater

the resource savings, and hence the better the performance of the multiversion version in terms of

efficient resource usage.

5.3.2 Presentation and Analysis of the Results

The results obtained for the Disparity and kNN benchmarks, respectively, from the analysis of the

degree of similarity between each of the two possible combined individual versions and the cor-

responding results of the multiversion versions are presented in Tables 5.17 and 5.19. Tables 5.18

and 5.20 present the results obtained for the Disparity and kNN benchmarks, respectively, of the

multiversion versions suggested by the clusters created by the AC tool through the existing indi-

vidual versions.

The "Similarity" column indicates the degree of similarity between the two individual versions

that led to the multiversion version. The closer the number is to 1, the less similar it is. The "MV

Relative % Resources" column displays the relative percentage of resources used by the multi-

version version relative to the shortest number of resources used by the corresponding combined

versions as a proportion of the total number of resources used by all combined versions.

Table 5.18: Results obtained for Disparity from clusters resulting from the analysis of the degree
of similarity between each of the two possible combined individual versions and the corresponding
results of the multiversion versions

Version Functionality Similarity
Total

Resources
SPEC 1

Total
Resources

SPEC 2

Total
Resources

SPEC 3

Total
Resources

SPEC 4

Total
Resources

MV

Total
Resources

SUM
(SPECs)

MV
Relative %
Resources

(min SPEC)

Rank
Similarity

Rank
Total

Resources
MV

Rank
MV

Relative %
Resources

(min SPEC)
v13_MV_9_11 v9 + v11 0.15 13654 10936 - - 19109 24590 33.24 3 3 3

v14_MV_9_11_1 v9 + v11 + v1 0.25 13654 10936 18436 - 35536 43026 57.17 2 2 1
v15_MV_9_11_1_2 v9 + v11 + v1 + v2 0.30 13654 10936 18436 18926 45416 61952 55.66 1 1 2



5.3 Analysis of the Relationship between Degree of Similarity and Performance in Multiversion
Technique 77

Table 5.19: Results obtained for kNN from the analysis of the degree of similarity between each of
the two possible combined individual versions and the corresponding results of the multiversion
versions

Version Functionality Similarity
Total

Resources
SPEC 1

Total
Resources

SPEC 2

Total
Resources

MV

Total
Resources

SPEC 1 + SPEC 2

MV
Relative %
Resources

(min SPEC)

Rank
Similarity

Rank
Total

Resources
MV

Rank
MV Relative

%
Resources

(min SPEC)
v8_MV_2_7 v2 + v7 0.11 4860 4670 9973 9530 55.65 10 1 5
v13_MV_3_5 v3 + v5 0.13 967 907 1869 1874 51.33 9 10 6
v9_MV_1_2 v1 + v2 0.24 21549 4860 6181 26409 5.00 8 2 7
v12_MV_1_7 v1 + v7 0.25 21549 4670 5906 26219 4.71 7 3 8
v6_MV_2_5 v2 + v5 0.32 4860 907 5302 5767 76.21 6 5 2
v4_MV_2_3 v2 + v3 0.36 4860 967 5203 5827 72.70 5 6 4
v11_MV_1_5 v1 + v5 0.34 21549 907 1956 22456 4.67 4 9 9
v14_MV_3_7 v3 + v7 0.34 967 4670 5447 5637 79.47 3 4 1
v15_MV_5_7 v5 + v7 0.35 907 4670 4962 5577 72.71 2 7 3
v10_MV_1_3 v1 + v3 0.37 21549 967 2016 22516 4.66 1 8 10

From Tables 5.17 and 5.19, we can verify that, in some instances, there might be a correlation

between the similarity rank and the rank of the multiversion versions’ percentage resource usage.

When the degree of similarity between individual versions increases (higher similarity rank), the

total number of resources in the corresponding multiversion versions decrease (higher rank). Sim-

ilarly, in some instances, when the degree of similarity between the individual versions increases

(higher similarity rank), the relative percentage of resources used by the multiversion versions

increases, resulting in greater resource savings.

This pattern is also evident in the data presented in Tables 5.18 and 5.20. This could indicate

that the use of the clusters suggested by the AC tool would be a good indicator of what multiversion

versions would be more advantageous to create. However, the conducted study does not provide

enough case studies to conclude that such a correlation exists. In the same table, we can also see

that versions that combine more than two versions typically achieve a relative percentage of saved

resources that is comparable to or higher than versions that only combine two versions, such as

version v15_MV_9_11_1_2 in table 5.18, which combines versions v9, v11, v1, and v2 and has a

relative percentage of saved resources of 55.66 %. This suggests that even when combining more

than two versions with a certain degree of similarity, we can still have a significant effect on the

resource utilisation of the multiversion versions.

In addition, we can confirm that the results of all tables indicate that the use of resources was

significantly reduced in all multiversion versions generated compared to the respective combined

versions, particularly for the versions generated from the clusters suggested by the AC tool. Not

Table 5.20: Results obtained for kNN from clusters resulting from the analysis of the degree of
similarity between each of the two possible combined individual versions and the corresponding
results of the multiversion versions

Version Functionality Similarity
Total

Resources
SPEC 1

Total
Resources

SPEC 2

Total
Resources

SPEC 3

Total
Resources

SPEC 4

Total
Resources

SPEC 5

Total
Resources

MV

Total
Resources

SUM
(SPECs)

MV
Relative %
Resources

(min SPEC)

Rank
Similarity

Rank
Total

Resources
MV

Rank
MV

Relative %
Resources

(min SPEC)
v8_MV_2_7 v2 + v7 0.11 4860 4670 - - - 9973 9530 55.65 4 2 1
v13_MV_3_5 v3 + v5 0.13 967 907 - - - 1869 1874 51.33 3 4 2

v16_MV_1_2_7 v1 + v2 + v7 0.25 21549 4860 4670 - - 9129 31079 14.35 2 3 4
v17_MV_2_7_3_5_1 v2 + v7 + v3 + v5 + v1 0.35 4860 4670 967 907 21549 12376 32953 34.80 1 1 3
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only does this imply that, depending on the situation, it may be advantageous to employ techniques

such as multiversion, but also that similarity detection tools may be useful in determining which

versions to combine.

Ideally, the multiversion technique would be able to identify the presence of similar patterns

and structures and eliminate redundancies, thereby making it possible, among others, to reduce the

required amount of resources when the combined versions are extremely similar and contain nu-

merous identical code portions. The results obtained thus far indicate that the degree of similarity

between the combined versions could potentially have an effect on the use of resources in versions

with multiversion, but they are insufficient to demonstrate a causal relationship between the two.

This lack of correlation can be attributed to the nature of the tool employed, which measured the

degree of similarity based on the entire code of the combined versions rather than the portions of

the code that may actually result in the consumption of more resources. When optimizing code

for FPGAs, it is essential to consider not only the superficial similarity of the code, but also its

intrinsic properties, which may impact resource utilisation. These characteristics include memory

access patterns, arithmetic operations, and the use of multiplexers, among other factors that have

a direct effect on FPGA resource utilisation.

In consideration of these limitations, it is crucial to interpret the results obtained thus far with

caution and to continue investigating more exhaustive approaches for evaluating the relationship

between the similarity of specialized versions and resource utilisation by multiversion versions.

To gain a more comprehensive understanding of the relationship between the degree of similarity

and resource usage by multiversion versions, it is necessary to develop a strategy that incorporates

more granular metrics. This will allow for a more comprehensive understanding of the factors that

influence the performance and efficiency of multiversion versions.

5.4 Value Counter Monitor: Extended Version

We extended our colleague Pedro Pinto’s "monitors" library, which he had built in the SPECS

group, as mentioned in Section 3.5 of Chapter 3. This section’s major purpose is to provide and

analyse the outcomes of the library’s extended version.

The SIM scenario and the disparity algorithm’s "diff " variable were used to test the implemen-

tations. This variable was chosen because of its large range of values and number of assignments,

making it perfect for studying and comparing the various replacement policies. There are 35264

assignments to the variable "diff " in total. The tests were carried out with a maximum of 10

hashtable entries.

Figure 5.1 and Table 5.21 show the results of simulating the disparity algorithm for each

substitution policy without limiting the value range, as well as the resulting parameter values

indicating the total number of values assigned to the monitored variable that entered the hashtable

and the total number of values substituted in the table. The "ORIG" column contains the original

library "monitors" values prior to the changes.
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Figure 5.1: Results of executing the disparity algorithm for each substitution policy without limit-
ing the value range

Using these tables, we can see that each replacement policy has a distinct behaviour, resulting

in different value distribution patterns. The FIFO approach results in a fairly uniform distribution

of occurrences with no apparent pattern in the "diff " values. The LFU policy has a higher con-

centration of occurrences in a smaller number of distinct values, indicating that these values are

frequently read and stored in the hashtable. For values recently allocated to the "diff " variable, the

MRU policy reflects a higher frequency of occurrences. The RAND (Random) policy produces a

random distribution of occurrences with no discernible pattern in the "diff " values. The value 0 is

the value having the greatest number of occurrences in all policies. The substitution differences

demonstrate the efficiency of each substitution policy in maintaining the most relevant values in

the hashtable. All of the substitution rules result in fewer overall substitutions than the original li-

brary. The LRU, LFU, and MRU policies are intended to keep more relevant data in the hashtable,

which explains why they have the highest value, minimising the total number of replacements and

implying a higher efficiency in hashtable use. The FIFO policy replaces the oldest values first,

regardless of their frequency of usage, which explains why there are more replacements.

Figure 5.2 and Table5.22 provide the outcomes of the same procedure but with a range of val-

ues supplied to the monitored variable ranging from -10 to 10. These numbers were chosen based

on the study of the variable "diff " performed in Section 4.2.1, where the original library "moni-

tors" was used with a hashtable containing a maximum of 100 entries. This analysis produced a

histogram that revealed a larger concentration of occurrences among these values. We direct our

Table 5.21: Resulting parameter values indicating the total number of values assigned to the mon-
itored variable that entered the hashtable and the total number of values substituted in the table of
simulating the disparity algorithm for each substitution policy

Parameters FIFO LRU LFU MRU RAND ORIG
# Total Values 24425 24063 22395 23785 24496 25819
# Total Substitutions 24415 24053 22385 23775 24486 25809
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Table 5.22: Resulting parameter values indicating the total number of values assigned to the mon-
itored variable that entered the hashtable and the total number of values substituted in the table of
simulating the disparity algorithm for each substitution policy with a value range between [-10,10]

Parameter FIFO LRU LFU MRU RAND ORIG
# Total Values 6458 6735 5344 6428 6468 7564
# Total Substitutions 6448 6725 5334 6418 6458 7554

analysis to a certain range of interest by reducing the range of values provided to the monitored

variable, where the original library revealed a larger concentration of occurrences. This allows us

to investigate the performance of the substitution strategies more precisely and compare the results

across library versions.

Figure 5.2: Results of simulating the disparity algorithm for each substitution policy with a value
range between [-10,10]

We can see from these tables that some policies, like LFU and MRU, have a higher number of

occurrences for values close to zero, but others, like FIFO and LRU, have a more uniform distribu-

tion over the range. As shown in Table 5.21, the quantities of assigned values and substitutions are

similar across substitution policies. This shows that, even with the limited value range, all policies

performed similarly in terms of the number of substitutions.

In comparison to the results obtained without limiting the range of values assigned to the mon-

itored variable, we find that by limiting the range of values assigned to the monitored variable, the

results focus on the most relevant and significant values for the analysis, and the number of entries

and substitutions in the table decreases. This leads to a more accurate and direct understanding

of the behaviour of replacement policies within that specific range, as well as potential savings in

computational resources, both storage and processing.

It is crucial to note, however, that whether a limited or infinite range is used depends on

the aims of the analysis and the characteristics of the system under study. Each approach pro-

vides unique insights and may be appropriate in specific situations. The replacement policy that is
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utilised in a system is determined by a number of criteria, including system characteristics, per-

formance needs, resource availability, and unique hardware constraints. Because each application

is unique, there is no single policy that is best in all circumstances. Experiments and extensive

analysis are recommended to evaluate the performance of each policy with respect to the system

requirements.

This study of the results in the tables helped us to understand how the various substitution

policies behave in terms of value distribution and substitution quantity, both in situations with

and without range restrictions. This aids in evaluating the relative performance of substitute poli-

cies and comprehending how they can alter the outcomes of work accomplished. The functions

introduced in the "monitors" library allowed for the exploration of various data management ap-

proaches and the improvement of monitoring efficiency, making it more versatile and adaptive to

a variety of changing monitoring requirements and circumstances.

5.5 Analysis on code changes to be made for automation

There are numerous benefits to automating an approach, including efficiency, accuracy, and con-

sistency. In addition, automation permits scalability, cost reduction, and enhanced work quality.

By eliminating repetitive manual duties, developers are able to concentrate on higher-value activ-

ities, thereby increasing their productivity and supporting innovation.

In order to automate the process of code specialization for FPGAs, a comprehensive analysis of

the required modifications to the original source code is required. These modifications are required

to acquire optimized versions for the FPGA platform of interest. In this section, the primary

considerations and modifications that must be made to the original code in order to automate the

process of specialization are discussed.

5.5.1 Specialized Versions

Identifying critical regions that may be candidates for specialization is the first step in analysing

code changes. Typically, these regions contain portions of code that consume a considerable quan-

tity of resources or cause performance bottlenecks. Through static analysis and/or profiling tech-

niques, these regions can be identified and their suitability for specialization determined. In ad-

dition to the previously mentioned performance analysis tools, a library capable of monitoring

variables can be of great value. This library enables the monitoring of variable behaviour during

code execution and the identification of access and usage patterns. This data is helpful for identi-

fying opportunities for specialization, such as eliminating redundant computations or optimizing

data structures.

We observed that for both benchmarks, algorithm-critical parameters with constant values

were identified, increasing the possibility of automating the specialization procedure. For example,

the value of k for kNN, as presented in Section 4.1.2, and the values of rows and columns for

Disparity, as presented in Section 4.2.1. Given that the value of these parameters is always set

at the beginning of the algorithm and used later for various operations such as loop iteration,
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the development of a code transformation capable of traversing the algorithm’s source code and

modifying the variables according to the desired values for the various existing scenarios would

be advantageous. To specialize, in many cases requires to replace all instances of a variable with

a particular value.

There are, however, cases that necessitate manual intervention, such as some of the transfor-

mations performed for kNN algorithm.

5.5.2 Multiversion Versions

The process of selecting the versions that would comprise the multiversion versions was one of

the stages of this project. Initially, this decision was based solely on the degree of specialization

between specialized and generic versions. Later, the opportunity arose, based on the article [76],

to determine if there is a correlation between the degree of similarity between various specialized

versions and the number of resources required for a version that uses the multiversion technique

for the same versions. The remaining multiversion versions were created with the tool’s recom-

mendations for detecting similarity between versions in mind.

If the results of this study indicated that there was a correlation between the degree of similarity

between different specialized versions and the number of resources required for a version that uses

the multiversion technique for the same versions, it would be beneficial to use the results of the tool

for similarity detection between versions, such as the degree of similarity between versions, and

attempt to automate this process. The plan is to employ a strategy comparable to that described

in [59, 62]. Define a threshold for the degree of similarity between versions, for instance, to

determine which versions would result in an efficient multiversion, and use a script or tool capable

of reading this data to perform the automated analysis, classify the parameter configurations, and

select those that meet the defined criteria. The outcome would be a recommended inventory of

parameter settings for the multiversion version.

Depending on the selection criteria and the data involved, the actual process of automation

may be more complex. In addition, it is essential to continuously validate and adjust the automated

process based on the system’s actual results and feedback.

5.6 Global Approach Evaluation

Essential to identifying specific contributions, validating their significance, identifying limitations,

and contextualising the work within the scientific field is assessing the overall performance of the

developed approach and comparing it to the state-of-the-art of this work. This analysis provides

a solid foundation for highlighting the approach’s value and originality and communicating its

significance to the research community. This section seeks to perform a comprehensive evaluation

of our work’s structure, identify its limitations, and compare it to the state of the art presented in

Chapter 2.

Our work focuses on exposing, exploring, and developing efficient specialization and multi-

version techniques for application code in an HLL, in particular using HLS tools and targeting
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FPGAs. Most existing approaches investigate projects aimed at optimizing code for software,

such as [59, 62, 64, 66, 67, 28], or on optimizing code using HLS tools and targeting FPGAs that

only use specialization and multiversion techniques as a supplement. To simplify this task, we

proposed an approach that not only enables the identification of a series of steps for implementing

our solution, but also the evaluation of its efficiency.

5.6.1 Benchmark Selection

Evaluation of the selection of benchmarks is essential to the development of a research project. As

with [42], the selected benchmarks belong to the image processing application domain. Although

they were sufficient for evaluating the performance of our approach, we discovered a deficiency

in the representation of various types of operations, which limited the investigation of prospective

specializations. A pertinent example is the identification of variables that can be assigned a zero

value or have a higher probability of being zero, which would simplify processes and result in

better performance. Contrary to what was observed in [75], our results did not demonstrate the

same level of gratification because this specialization could not be applied to a broad range of

situations. Therefore, it would be advantageous to explore more benchmarks, as in [42, 36, 6], so

that one can explore a broader spectrum of specializations. This strategy could uncover patterns

that can be automated, thereby providing valuable insights for future development.

5.6.2 Profiling and Monitoring Variable Values

Similar to [42, 62], we used static runtime and analysis to identify specializations and generate

optimized code. The benchmark disparity is more complex and extensive, necessitating the use of

profiling tools to facilitate the identification of the critical code regions and the evaluation of each

version’s runtime consumption. Profiling made it possible to acquire detailed information about

the performance of the code during execution and to identify the functions that consumed the most

time. With this information, it was possible to conduct specific optimizations at the code’s critical

points, resulting in an increase in its efficiency. Furthermore, following the same idea used in

[36], in which the Daikon using Kvasir was used for dynamic invariant detection, we used the

"monitors" library.

The library’s "monitors", Section 3.5, allowed us to analyse the behaviour of variables during

the program’s execution and to identify patterns or trends that influence the selection of specializa-

tion strategies. This library uses a hashtable to store variable values and assignment counts. This

strategy of storing pertinent information during program execution is consistent with the concept

of partial evaluation described in [50], in which computation and/or variable characteristics are

stored for later reuse. Both strategies seek to reduce computational load and enhance program

performance.
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5.6.3 Specialized and Multiversion Versions

On the foundation of the data obtained from profiling (Gprof ) and variable monitoring ("monitor"

library), statically specialized versions of each benchmark were developed. This approach of iden-

tifying specific features of the code and optimizing based on them is comparable to HeteroRefactor

[36], in which specific dynamic invariants, such as the requisite bit-width for variables, are iden-

tified. Our analysis enabled us to determine the most advantageous specializations and assess

their effect on performance and resource usage. Most of these transformations are static constant

specializations that replace variable references with their corresponding constant values during

compilation or code interpretation.

There are, however, certain cases that require manual intervention, such as the transformations

conducted for version v3_SPEC_k3 of the kNN algorithm. The modifications made to the kNN

algorithm’s kNN_UpdateBest_Caching function, which can be seen in Listings 4.3 and 4.4, sim-

plified the code by eliminating the loop used to determine the k nearest neighbours and replacing

it with a sequence of specific direct comparisons when k = 3. In addition, the function now returns

only the distance value of the most distant discovered point, which is the second worst among the

k nearest neighbours, thereby eradicating the need to store and sort the k nearest neighbours. The

code for the function kNN_VoteBetweenBest was altered by removing the histogram and the loops

used to tally the class votes. These modifications can be analysed in Listings 4.5 and 4.6. In spite

of this, the function conducts a series of experiments using only the three closest points (k = 3) to

determine the most popular class. By setting k equal to three and removing the histogram and for

loops, the code can be simplified, leading to more efficient hardware implementations. This type

of simplification and specialization is also utilised in HeteroRefactor, which rewrites recursive

data structures as arrays of finite size and adjusts floating-point operations with variable width.

Similar to those used in the article [6], metrics such as speedup, percentage of resources used,

and ADP were applied to generic variants of each benchmark. These metrics facilitate the eval-

uation and analysis of results, enabling a quantitative comparison of the performance, resource

utilisation, and efficacy of the specialized version and the generic version. The comparison with

the generic version provides a benchmark for evaluating the impact of specializations, which is an

advantage. The standard implementation of the generic version is not optimized for any particular

scenario. By comparing this version to the specialized version, it is possible to assess the perfor-

mance increase, efficiency, and precision attained by the specialization. After synthesis, the results

of these specializations are very positive, especially in cases where the specialized variables have

a greater impact, constant presence, or influence on the algorithms, such as the case of k for kNN,

as seen in Section 4.1.2, and the number of rows and columns, for the disparity case, in Section

4.2.2. These specializations eliminated the need to retrieve the variable’s value at runtime, which

can result in more efficient and quicker code overall. specialization of variables into constants is

one strategy used to reduce program runtime and enhance its performance.

The transformations that resulted in the versions presented in Section 4.2.2 do not produce

satisfactory synthesis results compared to the others, most likely due to the small number of op-
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erations that could be simplified, such as multiplications, which reduce the use of additional re-

sources and computational load overall. It is believed that for a benchmark with more operations

that could benefit from that optimizations, the outcomes would be much more significant.

In contrast to [59, 64, 66, 67] approaches, the multiversions whose synthesis results were

analysed were generated statically from combinations of the specialized version and the respec-

tive generic version of the algorithm and each version is selected at runtime based on the "opt"

variable. The results were positive overall as, despite a slight increase in the percentage of total

resource utilisation, they demonstrate that the results of the sum of the specialized and generic ver-

sions that correspond to the specialized versions of each multiversion have a percentage increase

that is more than twice that of the multiversion versions, while achieving nearly the same latency

and resource utilisation as the generic version. As a result of resource sharing and the reduction of

overlaps, there was resource optimization.The obtained results support the notion that multiversion

is preferable in these circumstances because it can combine the benefits of generic and specialized

versions while avoiding their drawbacks. It is essential to note, however, that these enhancements

may vary depending on the case parameters, input data, and optimization options chosen.

5.6.4 Design Flow

The design flow used was similar to that of the studies carried out in [36, 42, 6], with the exception

of the tools used. In order to analyse the impact of the performance that each version would have

on the target FPGA board, PYNQ™-Z2 , the Vitis HLS tool, version 2022.2, were used. The tool

enabled logic synthesis and the application of additional optimization techniques to enhance the

performance, footprint, and energy efficiency of the synthesised circuit. The process of high-level

synthesis entails an iterative cycle in which the design is refined by repeating the previous steps.

5.6.5 Relationship between Degree of Similarity and Performance in Multiversion
Technique

Using the AC tool [77], a correlation between the resources resulting from the HLS synthesis of

multiversion versions and the degree of similarity between the versions that constitute them was

investigated. This research was motivated by [76]. To conduct this study, a metric was employed

that computes the relative percentage of resources used by the multiversion version relative to the

minimum number of resources used by the specialized versions over the total number of resources

used by all specialized versions. This metric enables a comparison of the relative resource savings

offered by the multiversion version versus the individual specialized versions.

This study provided some understanding on the effectiveness of multiversion versions and the

significance of specialized version selection.

The results obtained thus far, imply that the degree of similarity between the specialized ver-

sions may have an effect on resource utilisation in the multiversion versions, but are insufficient to

prove a direct correlation between the two.
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This lack of correlation, in addition to possibly resulting from the absence of case studies, can

be attributed to the nature of the utilised tool, which measured the degree of similarity based on

the entire code of the specialized versions and not the portions of the code that may actually result

in the consumption of more resources. Although the results are not ideal, it was discovered that

versions combining more than two versions can achieve a relative percentage of saved resources

nearly equal to or higher than versions combining only two versions, indicating that even when

combining more than two specialized versions with up to a certain degree of similarity, we can

still have a significant impact on the version’s resource usage. In addition, the results indicate

that there was a significant reduction in resource usage between the multiversion versions and the

respective specialized versions, particularly for the versions derived from the clusters suggested by

the AC tool. Not only does this imply that, depending on the circumstance, it may be advantageous

to employ techniques such as multiversion, but also that similarity detection tools may be useful

in determining which versions to combine.

5.6.6 Contributions to the Monitoring Library

In this project, we had the opportunity to expand the "monitors" library created by our colleague

Pedro Pinto in the SPECS group. The substitution policies FIFO, LRU, LFU, MRU, and RANDOM

have been implemented. The user can choose which one to use for each variable or parameter to

be monitored, enabling efficient management based on the user’s preferences.

In addition to the substitution policies, two parameters were implemented that can count the

total number of values assigned to the monitored variable that entered the hashtable and the total

number of values substituted in the table. These parameters enable a more accurate comparison of

the various substitution policies and their efficacy in table management.

It has also been made possible for the user to select a range of values within which the pos-

sible values assigned to the monitored variable must be located. This feature enables the user to

establish more precise and specific data analysis criteria. This results in a more precise and direct

understanding of the behaviour of the substitution policies within that specific range, and it may

also contribute to savings in storage and processing computational resources.

5.7 Summary

This chapter presented the experimental setup and presented, analysed, and justified the results

obtained by the proposed approach when applied to the benchmarks described in Section 3.8

of Chapter 3 and Chapter 4. Furthermore, the results of the study on the relationship between

the resource usage resulting from the multiversion versions and the degree of similarity of their

versions are also presented, as well as the results concerning the extension of the "monitors"

library. Finally, an analysis of the code changes to be made for automation is carried out in

Section 5.5 and a general analysis of the approach results is made in Section 5.6.

In order to ensure the reproducibility and openness of the experiments, the experimental setup

is presented in Section 5.1. The investigation was carried out on a LAPTOP-HTC0Q8HI equipped
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with an Intel(R) Core(TM) i7-8750H processor and 16 GB of RAM. Targeting the Zynq-7000 SoC

XC7Z020-1CLG400C FPGA, optimized versions of the benchmarks were simulated and synthe-

sised using the Xilinx’s Vitis HLS 2022.2 tool.

The results obtained from each optimized version were compared with the generic or origi-

nal version of the respective benchmark, using metrics such as speedup, percentage of resources

used, and area-delay product, allowing a comprehensive view of the performance, efficiency, and

resource usage of the optimized versions of the approach.

The results obtained for the motivational example of the pow function and benchmarks kNN

and Disparity are presented, analysed, and justified in Section 5.2. In summary, specialized vari-

ants of the pow function provide significant speed increases and a reduction in total resource usage

when compared to the generic base version in specific scenarios. This can improve energy effi-

ciency, reduce the resulting circuit area, and lower total expenditure. Compared to the respective

original or generic version, the multiversion (MV) versions have increased or maintained spe-

cific accelerations. However, they consume less than half the resources of the sum of the related

versions separately, which means a more efficient use of available resources, resulting in better

performance and resource savings. It is essential to keep in mind that these improvements may

differ based on the characteristics of the input data and the chosen optimization options.

Regarding the analysis of the relationship between the degree of similarity and performance

in the multiversion technique, a metric capable of assessing the relative gain in terms of resource

reduction that the multiversion version offers compared to the individual specialized versions was

used. The results obtained so far indicate that the degree of similarity between the combined

versions can potentially have an effect on resource utilisation in multiversion versions, but are

insufficient to demonstrate a causal relationship between the two. However, it was found that

even when combining more than two versions with a certain degree of similarity, we can have

a significant effect on the resource use of multiversion versions. Moreover, the results indicate

that resource utilisation was significantly reduced in all generated multiversion versions compared

to the respective combined versions, in particular for the versions generated from the clusters

suggested by the AC tool.

The extension of the "monitors" library explores different data management approaches and

improves monitoring efficiency by making it more flexible and adaptable to different variable

monitoring requirements and scenarios.

In Section 5.5, the main considerations and modifications to be made to the original code to

enable the automation of the specialization process are discussed.

Finally, Section 5.6 concludes with an evaluation of the results obtained and a comparison

with those reported in the state of the art. The main conclusions and results regarding the benefits

and limitations of the proposed approach are discussed. The results obtained throughout the work

were overall satisfactory and provided insight into the possible impact of applying techniques such

as code specialization and multiversion for FPGAs using HLS tools. The study of the relationship

between features and similarity highlighted the importance of proper selection of specialized ver-

sions to obtain an optimized multiversion. The contributions to the variable monitoring library
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allowed us to explore different monitoring approaches and adapt the tool to the specific needs of

the project.



Chapter 6

Conclusion

This chapter presents an overview of the work performed and its outcomes. The main contributions

are also discussed, as are potential future improvements.

6.1 Overview

Code specialization for high-level synthesis tools and FPGAs has been a complex and pertinent

research topic, with the potential to considerably boost system performance and efficiency. The

primary objective of this dissertation was to propose efficient code specialization techniques that

would make code more suitable for synthesis in HLS tools and execution in FPGAs, resulting in

significant enhancements. In some instances, multiversioning techniques were utilised to assure

the existence of highly efficient accelerators in common scenarios and the ability to accelerate the

application in other scenarios.

We identified existent gaps and unused capabilities in the context of code specialization for

HLS and FPGAs through a comprehensive review of the state-of-the-art. This enabled us to com-

prehend the significance and limitations of current techniques. Despite the increase in research

in this area, there is still an absence of techniques that exploit the potential of specialization tech-

niques, particularly hardware-driven specialization. Based on this knowledge, we proposed a code

specialization approach, which is described in Chapter 3 using a diagram that is divided into three

main phases: information acquisition, application and analysis of techniques in an appropriate en-

vironment, and FPGA evaluation. The identification of this workflow enabled the determination of

a series of implementation stages for our strategy and the evaluation of its efficacy. Following the

phase of data collection, we researched techniques for capturing pertinent information about the

behaviour of the selected benchmarks, kNN and Disparity, and identifying the critical regions of

their codes. We utilised analysis and profiling tools such as Gprof, as well as techniques based on

"Value profiling" methodologies, such as the use of variable monitoring tools like the "monitors"

library. This enabled us to identify memory access patterns, data dependencies, and performance

constraints that could be optimized. Analysing the benchmarks enabled the identification and op-

timization of crucial portions of the code, resulting in more efficient and scalable solutions that

89
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allowed for a more exhaustive analysis of certain algorithmic variables and intermediate values. In

the techniques application phase, customised versions of each benchmark were developed based

on the information obtained in the preceding phase. Our analysis enabled us to determine the most

advantageous specializations and assess their effect on performance and resource consumption.

Most of these transformations are static specializations of constants that supplant variable refer-

ences with their corresponding constant values during compilation or code interpretation. There

are, however, very specific and complex circumstances in which manual intervention was neces-

sary. Metrics such as speedup, percentage of resources consumed, and ADP were used in com-

parison to generic implementations of each benchmark. These metrics facilitated the evaluation

and analysis of results, enabling a quantitative evaluation of the performance, resource utilisation,

and effectiveness of the specialized versions in comparison to the generic version. The results of

the synthesis of these specializations, using the Vitis HLS tool to target board are highly positive,

especially in cases where the specialized variables have a greater impact and constant presence or

influence on the algorithms. These specializations were able to eliminate the need to recover the

variable value at runtime, which may result in code that utilises its resources more efficiently and

quickly. The multiversions whose synthesis results were analysed were statically generated from

the combinations of the specialized version and the respective generic version of the benchmark

and were selected at runtime based on an "opt" variable. Despite a slight increase in the percent-

age of total resource utilisation, the results were generally beneficial, as they indicate that the sum

of the specialized and generic versions that correspond to the specialized versions of each multi-

version has a percentage increase that is more than twice that of the multiversion versions while

achieving nearly the same latency and resource utilisation as the generic version. Due to resource

sharing and the elimination of overlaps, there was consequent resource optimization. The obtained

results support the notion that multiversion is preferable in these circumstances, as it can combine

the advantages of the generic and specialized versions while avoiding their disadvantages. It is

essential to note, however, that these enhancements may vary depending on the case parameters,

input data, and optimization options chosen.

Additionally, a study was conducted to determine the correlation between resource utilisation

resulting from multiversion versions and the degree of similarity between their versions. Although

preliminary results did not establish a clear causal relationship between these two factors, it was

observed that the combination of versions with varying degrees of similarity can affect resource

utilisation in multiversion versions, resulting in significant cost savings compared to combined

versions.

Furthermore, the library of monitors was expanded by investigating various data management

approaches and enhancing the monitoring’s efficacy, making it more flexible and adaptable to

different requirements and variable monitoring scenarios.

Although the results obtained have been encouraging, we recognise that there are still ob-

stacles to overcome and possibilities for future research. Code-to-hardware specialization is an

ever-evolving field with multiple potential paths of research. In conclusion, this dissertation pre-

sented an approach for code specialization using HLS tools and targeting FPGAs and demonstrated
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its potential to enhance the overall efficacy of systems. The results acquired support the practi-

cability and applicability of this approach and suggest paths for future research and development.

With continued progress in this area, it is anticipated that code specialization will become increas-

ingly efficient and extensively adopted in hardware designs, driving significant advances in high

performance computing.

6.2 Contributions

In this dissertation, we highlight the use of hardware accelerators, such as FPGAs, as an oppor-

tunity to increase performance and the need to address the challenges that their use presents. We

expose existing code optimization options in this context, which include specialization and mul-

tiversion techniques, and highlight the scarcity of information on the use of code specialization

in hardware designs. We were able to propose and describe an efficient approach for application

code specialization in HLL, C, in order to make it more suitable for the use of synthesis tools

in HLS and execution in FPGAs, resulting in significant performance enhancements. Multiver-

sioning techniques were also employed to assure the existence of highly efficient accelerators in

common scenarios as well as the application’s ability to be accelerated in other scenarios. In this

approach, we emphasise the significance of benchmark selection and analysis. We discussed the

use of code analysis and profiling tools, as well as the "monitors" library for monitoring variables

and intermediate values during program execution. In addition, a study was conducted on the

correlation between the resource utilisation resulting from multiversion versions and the degree

of similarity of their versions, which could be helpful in determining which versions should be

chosen to generate multiversion versions. A library extension consisting of the implementation of

substitution policies, parameters that count the number of values inserted in its hashtable as well

as the number of substitutions in it, and an option to restrict the range of values that can enter the

table was also added to the "monitors" library. These contributions made it possible to explore

and compare various substitution policies, thereby expanding the library’s functionalities and ap-

plication scope, thereby making it more flexible and adaptable to various monitoring requirements

and scenarios. In conclusion, this work contributes to the advancement of code specialization in

hardware designs by exposing and exploring existing techniques and providing an effective ap-

proach to explore code specialization, seeking to fill the existing gap in the literature regarding

code specialization in hardware, which has been widely studied in software designs and paving

the way for the optimization of computing systems based on HLS and FPGAs and propelling the

field forward.

6.3 Future work

While this work provided promising outcomes and demonstrated the viability of the proposed

approach for code specialization using HLS tools and targeting FPGAs, there are still numerous
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opportunities for future research and enhancements. In this chapter we present some of these

opportunities.

6.3.1 Automating Transformations for Specialized Version Development

The automation of the transformations required for specialized version development is an area

of interest. While critical regions and opportunities for specialization have been identified, the

process would benefit from exploring automated approaches that can traverse the source code,

identify candidate regions, and efficiently implement the necessary transformations. This may

necessitate the development of tools capable of analysing the code and modifying variables and

parameters based on scenario-specific values.

6.3.2 Automating the Choice of the Versions composing the Multiversion Versions

The process of selecting the versions that would comprise the multiversion versions was one of the

stages of this project. Although we used manual strategies and similarity detection tools between

versions to facilitate the selection of which versions should comprise a multiversion version, there

is still room for improvement and automation in this process. It would be interesting to investigate

further whether there is a correlation between the degree of similarity between different special-

ized versions and the result of the number of resources for a version composed of them using the

multiversion technique. Based on this research, scripts or tools capable of recommending parame-

ter settings for the multiversion version could be developed, taking into account predefined criteria

such as the degree of similarity between specialized versions. For instance, defining a threshold for

the degree of similarity between versions to determine which of them would result in an effective

multiversion would be one way to achieve this.

6.3.3 Using Benchmarks for Further Research

While the benchmarks chosen for this study were sufficient for evaluating performance and op-

portunities for specialization, there is room to expand the range of benchmarks and allow for addi-

tional research. In order to investigate a broader range of specializations, it would be advantageous

to include benchmarks that represent various operations and situations. This could uncover addi-

tional patterns that could be automated and provide valuable insights for the approach’s continued

development.

6.3.4 Study on the Impact of Large-Scale Specializations of powf and sqrtf

A specific interesting study might be carried out to explore the impact of large-scale specializations

of functions. For example, due to the difference in the precision of the computations, we observed

that the use of the powf/sqrtf function as opposed to the pow/sqrt function resulted in improved

performance and a more efficient use of resources. It would be interesting to research in depth
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the impact of this kind of specializations in various scenarios and identify situations in which the

replacement of such functions can result in significant performance and efficiency improvements.

6.3.5 Study on the Suitable Tool for Assessing the Relationship between Similarity
and Resource Utilization

To gain a more comprehensive understanding of the correlation between the degree of similarity

between specialized versions and resource utilisation in multiversion versions, it is necessary to

investigate more appropriate tools. Until now, we have measured similarity based on the entire

code of the expert versions. Nonetheless, it is essential to consider intrinsic characteristics that

may influence resource utilisation, such as memory access patterns, arithmetic operations, and

multiplexer utilisation. It would be beneficial to develop a strategy that incorporates more granular

metrics in order to gain a more comprehensive comprehension of the factors that influence the

performance and efficiency of multiversion versions.

6.3.6 Impact Study of Multiversion Versions for Different Benchmark Scenarios

Lastly, an additional study could be conducted to assess the influence of multiversion versions

for various benchmark scenarios. In the present work, we developed multiversion versions for

specific benchmark scenarios, but it would be interesting to investigate multiversion versions that

support multiple benchmark scenario types. This would enable for a more thorough analysis of

the results after HLS synthesis and provide additional insight into the performance and efficacy of

multiversion versions in various situations.
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