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Resumo

A área da condução autónoma tem visto um aumento em investimento e investigação à medida
que as empresas trabalham para alcançar a automação total da condução. Uma parte importante
de tal sistema é a unidade de perceção, que se centra na segmentação do ambiente em redor
do carro e é normalmente implementada com redes neuronais convolucionais. No entanto, as
abordagens existentes baseadas em redes neuronais contêm limitações, como a sua capacidade de
generalização – a rede falha em fazer os ajustes apropriados ao analisar uma situação que não
apareceu no conjunto de dados usado para a treinar. Uma possível explicação é que a rede não tem
conhecimento do domínio intrínseco da tarefa.

Esta dissertação procura melhorar as capacidades de generalização das redes neuronais de seg-
mentação introduzindo conhecimento do domínio ordinal através de funções de custo aumentadas
que penalizam a rede quando as restrições ordinais são quebradas. Duas categorias de funções
de custo para segmentação ordinal foram estudadas: (1) intra-píxel, onde cada píxel é tratado
individualmente, com a promoção de unimodalidade na sua distribuição probabilística; e (2) espa-
cial, onde cada píxel é considerado no contexto da sua vizinhança e a superfície de contacto entre
classes não ordinalmente adjacentes é minimizada.

Para avaliar o impacto dos métodos em domínios de condução autónoma, os modelos foram
treinados com o conjunto de dados BDD100K e testados em dois cenários principais: (1) no
conjunto de dados BDD100K; e (2) num domínio fora de distribuição, através do conjunto de da-
dos Cityscapes, de forma a avaliar a sua capacidade de generalização. Foram obtidos resultados
promissores – os métodos ordinais alcançaram melhorias máximas no coeficiente de Dice com
um valor absoluto de 1.5% (4% em termos relativos) no conjunto de dados BDD100K e um valor
absoluto de 5.3% (15.7% em termos relativos) no domínio fora de distribuição. Estes resultados
indicam o potencial benefício de incorporar consistência ordinal de forma a melhorar as capaci-
dades de aprendizagem e generalização dos modelos de segmentação semântica para condução
autónoma.

Palavras-Chave: Segmentação ordinal. Segmentação semântica. Conhecimento de domínio.
Rede neuronal profunda. Condução autónoma. Análise de cena. Aprendizagem profunda.
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Abstract

Autonomous driving has seen a surge in investment and research as companies work to achieve full
driving automation. One major part of such a system is the perception unit, which centers around
scene parsing, commonly implemented with convolutional neural networks. However, existing
neural network approaches contain limitations, such as their generalization ability – the networks
fail to make appropriate adjustments when parsing situations outside their training domain. An
explanation is that the neural network does not intrinsically have domain knowledge of the task.

This dissertation tackles the lack of generalization ability in semantic segmentation neural
networks by introducing ordinal domain knowledge through augmented loss functions that penal-
ize the network when ordinal constraints are broken. Two categories of loss functions for ordinal
segmentation were studied: (1) pixel-wise, where each pixel is treated individually by promot-
ing unimodality in its probability distribution; and (2) spatial, where each pixel is considered in
the context of its neighborhood and the contact surface between non-ordinally adjacent classes is
minimized.

To evaluate the impact of the methods in autonomous driving domains, the models were
trained with the BDD100K dataset and tested in two main scenarios: (1) on the BDD100K dataset;
and (2) in an out-of-distribution domain, through the Cityscapes dataset, to evaluate their gen-
eralization ability. Promising results were obtained – the ordinal methods achieved maximum
improvements in the Dice coefficient with an absolute value of 1.5% (4% in relative terms) on
the BDD100K dataset and an absolute value of 5.3% (15.7% in relative terms) in the out-of-
distribution domain. These findings indicate the potential of incorporating ordinal consistency to
enhance the learning capabilities and generalizability of autonomous driving semantic segmenta-
tion models.

Keywords: Ordinal segmentation. Semantic segmentation. Domain knowledge. Deep neural
network. Autonomous driving. Scene parsing. Deep learning.
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Chapter 1

Introduction

The present chapter introduces the dissertation topic. Section 1.1 goes over the autonomous driv-

ing context. Section 1.2 motivates the problem to be researched. Section 1.3 defines the objectives

for the work to be carried out. Section 1.4 provides an overview of the dissertation document

structure.

1.1 Context

The latest global road safety reports of the World Health Organization show that every year, ap-

proximately 1.3 million people lose their lives due to road accidents. Over half of this number

is among vulnerable road users – pedestrians, cyclists, and motorcyclists. Furthermore, the same

reports show that road accidents are the leading cause of death for children and young adults aged

5 to 29. [1, 2]

Other studies report that around 94% of road accidents are a result of driver error, e.g., internal

and external distractions, driving too fast for conditions, driving too fast for the curve, misjudg-

ment of gaps or the speed of others, overcompensation, lack of sleep, and more. [3]

If an automated alternative replaced the human driver, many unnecessary deaths could poten-

tially be prevented, given the high percentage of road accidents due to human error. This is one

of the main motivations behind autonomous vehicles – a vision that has seen a surge in invest-

ment and research from both academia and industry. Beyond safety, autonomous vehicles can

potentially improve road congestion, parking, and travel comfort. [4]

The Society of Automotive Engineers (SAE) provides a taxonomy with detailed definitions

for six levels of driving automation, ranging from no driving automation (level 0) to full driving

automation (level 5) [5]. A suitable visualization of these levels can be consulted in Figure 1.1.

Currently, there are various level 2 driving automation certified vehicle offerings, such as vehicles

from Tesla, Hyundai, Ford, and more1. At this level the driver must remain alert and is required

1https://www.jdpower.com/cars/shopping-guides/levels-of-autonomous-driving-exp
lained.

1

https://www.jdpower.com/cars/shopping-guides/levels-of-autonomous-driving-explained
https://www.jdpower.com/cars/shopping-guides/levels-of-autonomous-driving-explained


Introduction 2

to actively supervise the technology. Recently, Honda became the world’s first automaker to of-

fer a level 3 autonomous driving certified vehicle2. In contrast, Mercedes-Benz became the first

automaker to have a level 3 autonomous driving system certified anywhere in the United States3.

The jump from level 2 to level 3 is significant, as starting from level 3, the driver is no longer re-

quired to monitor the environment. However, the car will ask for the driver’s intervention if some

problem or a more complex situation arises.

Figure 1.1: SAE levels of driving automation4 [5].

A crucial part of such a system is the perception sub-system, which provides the car with

information about the surrounding environment. This information retrieval process centers around

scene parsing – semantically segmenting the environment around the car – and object detection,

using the data from its sensors, normally a combination of RGB cameras and LiDAR [6]. When

it comes to semantic segmentation, the main focus of this dissertation, the current state-of-the-art

approaches generally use deep neural networks with an encoder-decoder architecture [7, 8, 9].

The work of this thesis is supported and executed as part of the project THEIA – Auto-

mated Perception Driving (POCI-01-0247-FEDER-047264), a partnership between the Univer-

sity of Porto and Bosch Portugal, which has as its main purpose the research and development of

intelligent perception algorithms for autonomous vehicles.

2https://www.autox.com/news/car-news/worlds-first-certified-level-3-autonomou
s-car-to-hit-streets-of-japan-109099/.

3https://www.freethink.com/hard-tech/drive-pilot.
4Adapted from Vox, https://www.vox.com/2016/9/19/12966680/department-of-transportat

ion-automated-vehicles.

https://www.autox.com/news/car-news/worlds-first-certified-level-3-autonomous-car-to-hit-streets-of-japan-109099/
https://www.autox.com/news/car-news/worlds-first-certified-level-3-autonomous-car-to-hit-streets-of-japan-109099/
https://www.freethink.com/hard-tech/drive-pilot
https://www.vox.com/2016/9/19/12966680/department-of-transportation-automated-vehicles
https://www.vox.com/2016/9/19/12966680/department-of-transportation-automated-vehicles


1.2 Motivation 3

1.2 Motivation

Existing scene parsing approaches contain limitations. One of the issues is their lack of general-

ization ability, which means that the network fails to make appropriate predictions when parsing a

situation that did not occur in the dataset used in its training [10]. An explanation for this reality

is that perhaps the neural network model does not have the necessary intrinsic domain knowledge

of the task – it failed to accurately infer high-level relations from the data used to train it. For

example, it does not know that the lane markings only make sense inside the lane, that both the

sky and lane are contiguous, etc.

One extreme instance showcasing the lack of generalization described in the previous para-

graph is the existence of adversarial examples. Adversarial examples are ‘natural images with

visually imperceptible perturbations added’ [11, p. 1]. When the original and the adversarial ex-

ample are fed into the neural network, they result in completely different outputs. An example

is given in Figure 1.2, where adding noise to an initially correctly classified image results in a

completely different prediction, even though the modified image looks the same as the original

when seen by a human.

Figure 1.2: Classifier fooled by an adversarial example5.

Deep neural networks are like black boxes, i.e., humans have no control over the representa-

tions they learn, leading to the characteristics described above. This is a problem for autonomous

driving, an area where these mechanisms are safety-critical6. By helping the network learn higher-

level concepts, these risks can possibly be mitigated and its reliability improved.

1.3 Objectives

As motivated by the previous section, this dissertation proposes to address the black-box nature

and lack of generalization in deep neural networks. It seeks to infuse the resulting model with

the appropriate autonomous driving knowledge to represent higher-level concepts by introducing

domain knowledge during training.
5https://openai.com/blog/adversarial-example-research/
6https://www.businessinsider.com/tesla-stops-tunnel-pileup-accidents-driver-say

s-fsd-enabled-video-2023-1

https://openai.com/blog/adversarial-example-research/
https://www.businessinsider.com/tesla-stops-tunnel-pileup-accidents-driver-says-fsd-enabled-video-2023-1
https://www.businessinsider.com/tesla-stops-tunnel-pileup-accidents-driver-says-fsd-enabled-video-2023-1


Introduction 4

The work was divided into two stages. Stage one was characterized as an exploratory phase

centered around the literature review. The objectives were to:

1. Study how domain knowledge is introduced into deep neural networks;

2. Explore different applications of domain knowledge introduction to various problem do-

mains;

3. Explore ordinal problems and methods as an example of domain knowledge.

Stage two was characterized as a development phase centered around conceiving and evaluat-

ing novel scene parsing methods for autonomous driving. The objectives were to:

1. Adapt ordinal segmentation to an autonomous driving context;

2. Propose novel ordinal segmentation methods and metrics, focusing on spatial characteris-

tics;

3. Evaluate the results with appropriate performance baselines based on current state-of-the-art

approaches, focusing on the generalization ability of the resulting models, i.e., evaluation

through domain shift and dataset scale variation.

1.4 Document Structure

This document is composed of six chapters:

• Chapter 1, Introduction – introduces the dissertation topic, delineating the context, motiva-

tion, and objectives behind the work;

• Chapter 2, Background Knowledge – introduces concepts that are essential to the under-

standing of the work carried out;

• Chapter 3, State of the Art – reviews the current state-of-the-art literature on the introduction

of domain knowledge, ordinal problems, and autonomous driving datasets;

• Chapter 4, Introducing Domain Knowledge to Scene Parsing in Autonomous Driving –

delineates the proposal of the adaptation of ordinal segmentation to autonomous driving

and novel ordinal segmentation methods and metrics;

• Chapter 5, Results – displays and analyses the experimental results, evaluating them with

respect to the defined baselines;

• Chapter 6, Conclusions – reviews the work carried out and concludes the document by

suggesting ideas that could be explored in the future.



Chapter 2

Background Knowledge

The present chapter approaches deep learning topics essential for the complete understanding of

the work carried out. Section 2.1 describes the most common architectures, loss, and metrics

for semantic segmentation with deep neural networks. Section 2.2 defines regularization in the

context of deep learning.

2.1 Semantic Segmentation with Deep Neural Networks

Semantic segmentation is the task of attributing a semantic label to each of the pixels in an image,

resulting in a segmentation map (Figure 2.1).

Figure 2.1: Semantic segmentation applied to autonomous driving [12].

Most state-of-the-art DNN semantic segmentation approaches employ an encoder-decoder ar-

chitecture. This type of architecture is based on downsampling (done by the encoder) followed by

upsampling (done by the decoder). The downsampling step results in an internal representation of

the image contents, which is used by the decoder to construct the segmentation map.

2.1.1 Architectures

The following paragraphs describe three of the most widely used encoder-decoder semantic seg-

mentation architectures.

5
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Fully Convolutional Network (FCN) As the name suggests, FCN (Figure 2.2) is an exclusively

convolutional DNN. This is achieved by converting a classification CNN, through the replacement

of its dense layers with convolutional layers, and then appending a 1×1 convolution for predicting

scores for segmentation classes. This allows for variable image input sizes. Variants of FCN add

links from lower layers to higher ones, which help the network retain location information and

provide more refined predictions. This architecture uses a single-layer decoder. [7]

Figure 2.2: FCN architecture [7].

SegNet The SegNet (Figure 2.3) architecture is very similar in concept to the U-Net. However,

in SegNet, only the pooling indices are transferred from the encoder to the decoder, and not the

entire feature map, which results in less memory usage [9].

Figure 2.3: SegNet architecture [9].

U-Net The U-Net (Figure 2.4) builds upon FCN, by adding multiple upsampling layers with

learnable filters (resulting in a symmetric encoder-decoder), as well as skip connections between

analogous steps of the encoder to the decoder in order for location information to be preserved

[8, 13]. This was the architecture used in this dissertation work.
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Figure 2.4: U-Net architecture [8].

2.1.2 Loss Function

Cross entropy is one of the most commonly used loss functions for image classification and seg-

mentation problems. This was the main loss function used in this dissertation work. Defining

cross entropy for a semantic segmentation problem,

CE(yyyn, p̂ppn) =− 1
H ×W

H

∑
i=1

W

∑
j=1

K

∑
k=1

1(yn,i, j = k) log(p̂n,k,i, j), (2.1)

where p̂ is the model output as probabilities, in shape (N,K,H,W ), where N is the batch size, K

is the number of classes, and (H,W ) are, respectively, the height and width of each segmentation

mask; y is the ground truth segmentation map, in shape (N,H,W ), where each value yn,i, j corre-

sponds to the ground truth class k ∈ [1..K] of the pixel at position (i, j) of observation n; and 1(x)

is the indicator function of x.

It is clear that cross-entropy maximizes the probability of the ground truth class for each pixel

in the observation, ignoring the prediction for the other classes. This is a potential area where new

loss functions can improve, by restricting the probabilities of the non-ground truth class according

to domain knowledge on the task.

2.1.3 Metrics

The Dice coefficient is one of the most popular sample set similarity statistics used for image

segmentation,

Dice(A,B) =
2|A∩B|
|A|+ |B|

, (2.2)
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where A and B are two sample sets. When using Boolean data, as with image segmentation, the

coefficient can be calculated as:

Dice =
2TP

2TP+FP+FN
, (2.3)

where TP, FP, and FN are the amount of true positive, false positive, and false negative pixels for

the given sample and ground truth segmentation masks. Other metrics exist that are variations on

Dice, like the Jaccard index, or intersection over union,

Jaccard(A,B) =
|A∩B|
|A∪B|

(2.4)

2.2 Regularization for Deep Learning

Regularization can be defined as ‘any supplementary technique that aims at making the model

generalize better, i.e., produce better results on the test set’ [14, p. 1]. Taxonomies of existing

regularization methods have been proposed. One such taxonomy splits methods into regularization

via [14]:

• data – the DNN learns from data, therefore, regularization via data can be employed by

applying some transformation to the training data, e.g., feature extraction, pre-processing,

data augmentation, etc;

• network architecture – ‘a network architecture [...] can be selected to have certain proper-

ties or match certain assumptions in order to have a regularizing effect’ [14, p. 6];

• error function – the choice of the loss function can have a regularizing effect, e.g., cross-

entropy, mean squared error;

• regularization term – by adding a regularization term ‘independent of the targets’ [14, p. 9]

to the loss function, one can ‘encode other properties of the desired model, to provide in-

ductive bias (i.e., assumptions about the mapping other than the consistency of outputs with

targets)’ [14, p. 9]. Equation 2.5 is an example of a loss function with the added regulariza-

tion term, where Ltargets could be the cross-entropy loss function, for example. This term can

be introduced along with a meta parameter, λ , which controls its influence on the overall

loss;

L(yyy, p̂pp) = Ltargets(yyy, p̂pp)+λLregularization_term(p̂pp) (2.5)

• optimization – the optimization process can also be a source of regularization, e.g., with

the choice of algorithm (SGD, Adam, etc) or other practices (dropout, weight decay, etc).



Chapter 3

State of the Art

The present chapter reviews the current literature on the topics of the introduction of domain

knowledge to deep neural networks and autonomous driving. Section 3.1 defines the concept of

the introduction of domain knowledge to deep neural networks. Section 3.2 showcases various

examples of how domain knowledge is introduced to deep neural networks. Section 3.3 explores

the introduction of domain knowledge through ordinality, in the context of ordinal problems. Sec-

tion 3.4 discusses state-of-the-art autonomous driving datasets.

3.1 Introduction of Domain Knowledge to Deep Neural Networks

The introduction of domain knowledge to deep neural networks is centered around providing the

neural network with knowledge of the problem domain that it would otherwise not be able to infer

or would hardly infer from the training process.

Deep neural networks learn from data, and learning just from looking at the dataset may result

in incorrect assumptions. This is similar to what would happen if a person were to learn to play

a game just by looking at the history of plays and game states, without any other context (i.e.,

the game rules). Therefore, by introducing domain knowledge, one can guide the DNN in its

understanding of the task and help bridge the relationship between the data and its context.

The research on this task centers mostly around how to precisely encode this knowledge and

provide it in a way that positively influences the network’s results [15, 16]. Several ways of

categorizing domain knowledge have been proposed:

• The authors of [15] divide the introduction of domain knowledge to DNNs into three cate-

gories, differentiated by where in the network the knowledge is injected, and consequently

how it is encoded: ‘through changes to the input, the loss function, and the architecture of

DNNs’ [15, p. 1]. These categories map nicely to three of the categories in the regulariza-

tion taxonomy analyzed in Section 2.2, respectively, regularization via data, regularization

term, and architecture;

9
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• The authors of [16] worked on the representation of domain knowledge for Deep Neural

Networks, dividing it into two categories: (1) as logical constraints, including propositional

logic and first-order logic; and (2) as numerical constraints, including the loss function

(e.g., the addition of loss terms), constraints on weights (e.g., transfer learning, priors), and

regularization (this article does not seem to adopt a broad definition of regularization as the

one shown in Section 2.2, referring mostly to loss regularization).

Taking the above information and the knowledge acquired in Section 2.2 into account, the

following definition can be produced:

Definition 1. Introduction of Domain Knowledge to Deep Neural Networks is the usage

of regularization techniques to include some domain knowledge in the model resulting from the

DNN’s training.

Many works achieve state-of-the-art results in specific deep learning tasks by applying regular-

ization techniques to the neural network to reflect some domain knowledge of the task at hand. In

many cases, that fact is not explicitly acknowledged in the text. We can extend these affirmations

to say that every deep learning work incorporates domain knowledge.

Therefore, it is important to establish a distinction between low-level and high-level domain

knowledge:

• Low-level domain knowledge – is the kind that is used in every deep learning work, re-

gardless of the specific high-level domain of its application – e.g., the usage of a CNN for an

image classification task, the optimization algorithm used, the usage of dropout [17], the ac-

tivation function (e.g., mapping the value of an artificial neuron to an output between 0 and

1), etc. Considering the regularization taxonomy by [14], this type of domain knowledge

would be more characteristic of the error function and optimization regularizations;

• High-level domain knowledge – is more intentional and stems from the specific application

of the neural network – e.g., the rules of a game [18], the regions of a face most relevant to

emotion recognition [19], the ordinal arrangement of classes [20] (e.g., lane markings only

make sense inside a road lane), the inherent constraints between two related tasks [21], etc.

Considering the regularization taxonomy by [14], this type of domain knowledge would be

more characteristic of the data, regularization term, and architecture regularizations – these

are also the three domain knowledge introduction categories proposed by [15].

This document more closely explores high-level domain knowledge applications and ideas.

However, in this State of the Art chapter, some examples of low-level domain knowledge are also

provided.
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3.2 Domain Knowledge Introduction Techniques

Considering the works introduced in Section 3.1, and the regularization taxonomy shown in Sec-

tion 2.2, a categorization of domain knowledge introduction techniques can be provided: (1) aug-

mented loss function; (2) architecture; and (3) input data. Figure 3.1 shows a visualization of the

categorization in the context of a neural network.

Architecture Regularization

input hidden layers

loss

output

Loss Regularization

Input Data Regularization

Figure 3.1: Categorization of domain knowledge introduction [14, 15, 16].

The following subsections will describe each of these categories in detail, while providing

examples of their application in existing publications or real-world problem domains.

3.2.1 Augmented Loss Function

The loss in DNNs corresponds to the cost of the current record prediction, i.e., how much it strayed

from the ground truth, and it is the goal of the learning process to minimize it. For each prediction

the loss, after its calculation, is backpropagated through the network, updating its weights and

biases.

By augmenting the loss function through the addition of a regularization term, one can control

what the network learns – the goal being to not only learn about the correspondence between input

and output, Lground_truth, but also about the rules of why that correspondence exists, i.e., domain

knowledge, that can help the network generalize to previously unseen inputs. This is done by

defining the regularization term, Ldomain_knowledge, as the error between the network’s prediction

and some piece of domain knowledge. That term may or may not require the ground truth labels

and is usually introduced along with a meta parameter, λ , that controls its influence on the loss

function. The following is an example of the structure of an augmented loss function, L,

L(yyy, p̂pp) = Lground_truth(yyy, p̂pp)+λLdomain_knowledge(yyy, p̂pp) (3.1)

One category of problems with an abundance of domain knowledge is rule-based problems.

These types of problems have declarative solutions, and there is expert knowledge about their

constraints that could be injected into a DNN – helping it learn the rules behind finding suitable
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outputs for the given inputs beyond simply learning mappings from inputs to outputs. DNN ap-

proaches to solving these types of problems have been explored. One such approach leverages

Semantic Based Regularization (SBR) through the addition of a regularizing term to the training

loss, which penalizes predictions that violate the problem’s constraints [18], resulting in the loss,

L(x,y) = Lcross_entropy(y, f (x))+λLSBR(x), (3.2)

where x is the input sample, y is the ground truth, f is the network function, and LSBR is the

regularization term,

LSBR(x) = (C(x)− f (x))2, (3.3)

where C may encode multiple constraints over the network input.

Constraint problems are an example of problems with a very exact and defined domain knowl-

edge – their constraints. Contrastingly, emotion recognition can benefit from including a more

abstract type of domain knowledge, using L1 and total variation regularization loss regularization

terms [19]. The resulting loss is as follows:

L(yyy, p̂pp) = Lclassification(yyy, p̂pp)+λLfacial_parts(p̂pp), (3.4)

where Lclassification is the classification loss that corresponds to the categorical cross-entropy loss

and trains the model to predict the labels, and Lfacial_parts is the domain knowledge injecting regu-

larization term,

Lfacial_parts(p̂pp) = Lsparsity(p̂pp)+ γLcontiguity(p̂pp), (3.5)

where Lsparsity is the L1 regularization loss, Lcontiguity is the total variation regularization loss,

and γ is controls the relative weight of these two terms. These regularization terms were in-

ferred from domain knowledge characteristic from emotion recognition tasks: the sparsity term

from ‘just small and disjoint facial regions are relevant for the recognition task’ [19, p. 6] and the

contiguity term from the knowledge that the ‘activations of x̂ [should] be smooth and spatially

localized’ [19, p. 6].

3.2.2 Architecture

All DNNs are inherently restricted by their architecture. CNNs, for example, are a specialized ar-

chitecture often used for DNNs dealing with bi-dimensional visual data, where the domain knowl-

edge dictates that convolutions are operations capable of extracting meaningful information and

providing adequate properties. They are therefore restricted by the use of convolutions, their pa-

rameters, and various other architectural characteristics.

Parameter Sharing ‘Parameter sharing has enabled CNNs to dramatically lower the number of

unique model parameters and significantly increase network sizes without requiring a correspond-
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ing increase in training data. It remains one of the best examples of how to effectively incorporate

domain knowledge into the network architecture.’ [22, p. 251]

Multi-task A multi-task architecture allows a DNN to output predictions for more than one

task. If the tasks are sufficiently related, something that comes from the domain knowledge of the

tasks, then the shared representation learned by the network for both tasks will probably be more

generalizable than if a dedicated DNN handled each task. During training, the DNN is forced to

abstract higher-level concepts to converge. [23, 24, 25]

Ordinal Output A DNN’s architecture also restricts the range of outputs it can provide. For

example, the output layer of the DNN can be forced to provide ordinal output [26]. The case of

ordinal problem domains will be explored in detail in Section 3.3.1.

3.2.3 Input Data

The data fed to a DNN sets the stage for the rest of the learning process. Therefore, it must be

adequately pre-processed and encoded. One such example is the usage of data augmentation, i.e.,

augmenting the data to cover more possible scenarios (e.g., in image-related tasks: image rotation

and flip, brightness variation, warping, etc). Another example, in an ordinal classification domain,

is to encode the ordinal target as a cumulative distribution [27] – something that will be explored

in detail in Section 3.3.1.

The case of audio analysis illustrates the use of domain knowledge in the pre-processing

and data encoding steps. Before being fed to a CNN, stereo audio is commonly converted to

mono, and the pulse-code modulated audio data (time domain representation) is encoded as a

mel-transformed spectrogram (time-frequency domain representation) [28]. This is part of audio

analysis domain knowledge since spectrograms are classically used in audio analysis tasks due to

enabling better feature extraction. Despite this, new forms of input data regularization can be de-

veloped for every domain. The performance of DNNs for audio scene classification has shown to

improve by employing another time-frequency representation, Constant-Q-Transform, motivated

by the domain knowledge that ‘the human auditory system is approximately “constant” in most of

the audible frequency range, and also the fundamental frequencies of the tones in Western music

are geometrically spaced along the standard 12-tone scale’ [29, p. 2].

3.2.4 Case Study: Domain Knowledge applied to Lane Estimation

The introduction of domain knowledge to DNNs normally employs various techniques without

being limited to one. In this section, a case study of domain knowledge applied to lane estimation

is reviewed.
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The authors of [21] propose a domain knowledge-infused multi-task learning framework that

provides a solution to road lane estimation. The proposed model has two direct outputs: (1) lane

segmentation and (2) lane boundaries. Additionally, two more indirect outputs are generated: (3)

from the (direct) output of lane segmentation, the corresponding (indirect) lane boundaries are

calculated, and (4) from the (direct) output of lane boundaries, the corresponding (indirect) lane

segmentation is calculated. These indirect outputs are also used to train the DNN, serving as a way

to introduce the inherent geometric constraints between the two tasks, something that has been

ignored by previous approaches [21]. They encode these constraints by adding two regularising

terms to the loss calculation, depicted in Figure 3.2:

1. Boundary-aware Loss – the loss of the (indirect) lane boundaries calculated from the (di-

rect) lane segmentation prediction when compared with the lane boundary ground truth;

2. Area-aware Loss – the loss of the (indirect) lane segmentation calculated from the (direct)

lane boundary prediction when compared with the lane segmentation ground truth.

Figure 3.2: Loss for geometrically constrained lane estimation [21].

The authors argue that using multi-task architectures produces better segmentation and that

the indirect outputs help make it more consistent. The addition of these loss regularization terms

helps the neural network learn the relationship between the lane boundaries and the lane itself (i.e.,

the lane boundaries are the contour of the lane).

This approach complements the augmented loss function with a custom multi-task architec-

ture, shown in Figure 3.3. As lane segmentation and boundary prediction tasks are strongly related,

the model can benefit from a shared representation materialized as a shared encoder component.

Then, each of the outputs is assembled by an individual decoder. Furthermore, the individual

decoders are connected by a link encoder that allows them to share information.
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Figure 3.3: Multi-task architecture for geometrically constrained lane estimation [21].

3.3 Ordinal Problems

There is a variety of research works that seek to imbue DNNs with ordinal domain knowledge

when it comes to ordinal problem domains. This section reviews the current literature on DNN

solutions to two categories of ordinal problems – ordinal classification and ordinal segmentation.

3.3.1 Ordinal Classification

Ordinal classification is the task of classifying an image as one of K ordered classes, where

C1 ≺ C2 ≺ . . . ≺ CK , as opposed to nominal classes in the case of classic classification.

The following subsections explore the ordinal encoding and unimodality-promoting methods.

Ordinal Encoding An architectural way of introducing ordinality using classical machine learn-

ing methods is training K − 1 binary classifiers, {D2,D3, . . . ,DK}, where each classifier, Dk, dis-

tinguishes between classes C<k and C≥k [30]. The results from each classifier are then aggregated,

resulting in the ensemble’s output, i.e., the class prediction.

When using DNNs, this ordinal encoding can be achieved by having multiple outputs in one

single neural network instead of multiple classifier networks. Each output corresponds to one of

the classifiers and makes the same binary decision. Another way involves regularizing only the

input data by encoding the ordinal distribution in the ground truth labels [27]. Defining k⋆ as the

ground truth class for a given sample, this input data encoding, as opposed to the generic one-hot

encoding, which encodes each class as 1(k = k⋆), encodes each class as 1(k < k⋆).

Unimodality The promotion of unimodality in the distribution of the model output probabilities

has achieved good results in ordinal classification tasks [26, 31, 32]. This can be advantageous in

ordinal problems because the model should be more uncertain between ordinally adjacent classes.

Figure 3.4 shows the difference between multimodal and unimodal distributions.

To promote unimodal output probability distributions, various approaches involve architec-

tural restrictions, which restrict the network output and use binomial or Poisson probability dis-

tributions in order to convert it to class probabilities [26, 31]. The CO2 augmented loss function
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Figure 3.4: Example of possible multimodal and unimodal output probability distributions for a
given pixel.

allows unimodality to be achieved without any architectural changes, doing so by penalizing the

network for each non-unimodal output inconsistency [32],

CO2(yn, p̂ppn) = CE(yn, p̂ppn)+λO2(yn, ŷyyn), (3.6)

where O2 is the regularization term,

O2(yn, p̂ppn) =
K−1

∑
k=1

1(k ≥ yn)ReLU(δ + p̂n,k+1 − p̂n,k)

+
K−1

∑
k=1

1(k ≤ yn)ReLU(δ + p̂n,k − p̂n,k+1),

(3.7)

where δ is an imposed margin, assuring that the difference between consecutive probabilities is at

least δ , and ReLU is defined as ReLU(x) = max(0,x).

3.3.2 Ordinal Segmentation

Ordinal segmentation is the task of segmenting an image such that there is an explicit order be-

tween the output classes. For example, in an ordinal segmentation problem with three distinct

classes, C ∈ [1..3], there may be defined an ordering such that C1 ⊃ C2 ⊃ C3, therefore, an area

segmented as C1 can only possibly have a direct boundary with areas segmented as C2, whereas C2

can have boundaries both with C1 and C3 (Figure 3.5). Three methodologies that can be used for

ordinal segmentation were identified in the literature: ordinal encoding, pixel-wise consistency,

and parameter sharing and decision boundary parallelism [20].

Ordinal Encoding The ordinal encoding from ordinal classification can be adapted for segmen-

tation problems by similarly encoding the ground truth masks at a pixel level [20]. Defining k⋆

as the ground truth class for a given pixel, each class Ck of the same pixel will be encoded as
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C3

C2

C1

Figure 3.5: Example of a segmentation mask for an ordinal problem with three distinct classes,
such that C ∈ [1..3] and C1 ⊃C2 ⊃C3.

1(k < k⋆). Figure 3.6 shows an example of the resulting ordinal representation of the ground truth

masks for an ordinal segmentation problem.

(a) image

(b) nominal masks

(c) ordinal masks

Figure 3.6: Example of ground-truth masks using the ordinal and nominal representation [20].

Pixel-Wise Consistency Using ordinal encoding does not guarantee that the output probabilities

are monotonous, i.e., the probability of ordinal class k, Pk, may be less than Pk+1. The consistency

of the output class probabilities can be achieved by using,

P(C+
k+1) = P(C+

k+1|C
+
k )P(C

+
k ), (3.8)

where P(C+
k+1|C

+
k ) is the (k+1)-th output of the network and P(C+

k ) is the corrected probability

of class k [20].
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Decision Boundary Parallelism The previous methods do not hold spatial consistency con-

straints, i.e., two adjacent pixels can be predicted as non-ordinally adjacent classes. Spatial con-

sistency can be promoted by removing the intersection between the decision hyperplanes, i.e., by

considering a model with common slope coefficients and individual bias terms for each of the

outputs [20].

3.3.2.1 Datasets

Various biomedical datasets appropriate for ordinal segmentation, i.e., where there is a clear or-

dering between classes, were identified from the literature [20]. Table 3.1 displays an overview of

those datasets that could be obtained, and Figure 3.7 shows, for each of them, a sample image and

the corresponding segmentation mask.

Dataset # Images # Classes

Breast Aesthetics [33] 120 4
Cervix-MobileODT [34] 1480 5
Mobbio [35] 1817 4
Teeth-ISBI [36] 40 5
Teeth-UCV [37] 100 4

Table 3.1: A selection of appropriate biomedical datasets for ordinal segmentation.

Figure 3.7: Image and mask samples for each of the biomedical datasets in Table 3.1, in the same
order.

3.4 Datasets for Autonomous Driving

As autonomous driving is an active area of research, there are multiple datasets with driving scenes

that offer semantic segmentation labels, such as: BDD100K [38], Cityscapes [12], KITTI [39],
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nuScenes [40], Waymo [41], and others. For the purpose of the work carried out in this disserta-

tion, the BDD100K and Cityscapes datasets will be introduced in greater detail.

BDD100K The BDD100K dataset is a multi-task, large-scale, and diverse dataset, obtained in

a crowd-sourcing manner. Its images are split into two sets, each supporting a different subset of

tasks: (1) 100K images – 100 000 images with labels for the object detection, drivable area, and

lane marking tasks, with a train/validation/test split of 70 000/10 000/20 000 images, and (2) 10K

images – 10 000 images with labels for the semantic segmentation, instance segmentation, and

panoptic segmentation tasks, with a train/validation/test split of 7 000/1 000/2 000 images. The

10K dataset is not a subset of the 100K, but there is considerable overlap. Figure 3.8 shows an

example of an annotated image from the dataset.

Figure 3.8: Annotated driving scene from the BDD100K dataset [38].

Cityscapes The Cityscapes dataset is a large-scale and diverse dataset, with scenes obtained

from 50 different cities. It provides 5 000 finely annotated images, with a train/validation/test split

of 1 975/500/1 525. Figure 3.9 shows an example of an annotated image from the dataset.

Figure 3.9: Annotated driving scene from the Cityscapes dataset [12].



Chapter 4

Introducing Domain Knowledge to
Scene Parsing in Autonomous Driving

The present chapter details the research work that was carried out. Section 4.1 briefly introduces

and bridges the research topic from the introduction of domain knowledge to ordinal segmentation.

Section 4.2 describes the autonomous driving semantic segmentation problem and how it can be

transposed to an ordinal domain. Section 4.3 proposes novel ordinal segmentation metrics and

spatial losses, including their generalization to hierarchies with arbitrary ordinal relations.

4.1 Introduction

Current autonomous driving DNN-based semantic segmentation solutions suffer from a lack of

generalization ability. This is a critical issue for the safe real-world application of these algorithms,

which have the potential to save thousands of lives. Could introducing domain knowledge to

DNNs improve their reliability?

Various ideas for domain knowledge that could be introduced were analyzed, resulting in the

choice of ordinal segmentation. Through ordinal segmentation, the network can benefit from the

following knowledge:

1. The ordinal relation between different objects, e.g., the lane marks and the lane itself – the

lane marks are inside the lane;

2. The model should not output high probabilities to pairs of object classes that are not similar,

e.g., indecision between car/truck is understandable but not between car/person;

3. The relative placement of objects, e.g., the sky or the sidewalk.

Consequently, the central research question for the work carried out during this dissertation

is: could ordinal segmentation improve the generalization ability and reliability of DNNs in an

autonomous driving domain?

The next section explores how autonomous driving can be thought of as an ordinal problem.

20
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4.2 Semantic Segmentation in Autonomous Driving as an Ordinal
Problem

When analyzing an autonomous driving scene (e.g., Figure 4.1), we can, a priori, derive that,

usually:

• The vehicles will be on the road or in parking spaces;

• The drivable area will be on the road;

• The ego lane will be in the drivable area;

• The sidewalk will be on either side of the road;

• The pedestrians will either be on the sidewalk or the road;

• The remainder of the environment surrounds the road.

Figure 4.1: Driving scene from the BDD100K dataset [38].

There will always be a variety of scenarios where these affirmations will either be wrong or not

enough to describe what is happening accurately. However, helping the DNN infer this knowledge

from the training could improve its reliability.

Let us describe the concrete application of ordinal segmentation to the autonomous driving

dataset BDD100K [38]. Table 4.1 contains the classes for the semantic segmentation and drivable

area tasks. Each of these tasks uses a different variant of the dataset: semantic segmentation uses

the 10K (10 000 images), and drivable area uses the 100K (100 000 images). These two datasets

can be intersected and originate a dataset that supports both tasks simultaneously – BDDInter-

sected – which contains 2 976 annotated images.

Ordinal relations must be derived from the classes in the dataset to obtain an ordinal seg-

mentation task. Tables 4.2, 4.3 and 4.4 introduce, respectively, the reduced, wroadagents and

wroadagents_nodrivable ordinal segmentation mask setups, including the ordinal relationship be-

tween classes in the form of trees. For mask setups wroadagents and wroadagents_nodrivable

(Tables 4.3 and 4.4), some abstract classes can also be derived, i.e., classes that are the grouping
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Index Class Name

0 road
1 sidewalk
2 building
3 wall
4 fence
5 pole
6 traffic light
7 traffic sign
8 vegetation
9 terrain
10 sky
11 person
12 rider
13 car
14 truck
15 bus
16 train
17 motorcycle
18 bicycle

255 unknown

Index Class Name

0 direct
1 alternative
2 background

Table 4.1: BDD100K classes for the semantic segmentation (left) and drivable area (right) tasks.
On the left, unknown means any object that was not annotated. On the right, direct means the ego
lane, and alternative means the remaining lanes. [38]

of objects with similar characteristics and whose masks are the union of their children’s. In each

table, abstract classes are demarked with an A and have their class name in italic. Figures 4.2,

4.3 and 4.4 show, respectively, the reduced, wroadagents and wroadagents_nodrivable ordinal

segmentation mask setups for the autonomous driving scene in Figure 4.1.

4.3 Ordinal Segmentation

In this section, novel ordinal segmentation methods will be proposed. The proposal is split into

pixel-wise and spatial methods, including appropriate evaluation metrics.

Sections 4.3.1 and 4.3.2 consider hierarchies with a single ordinal relation path, i.e., C1 ⊃
C... ⊃CK , where K is the total number of classes. Arbitrary tree ordinal relations (hierarchies) are

discussed in Section 4.3.3.

4.3.1 Pixel-Wise Ordinal Segmentation

Pixel-wise ordinal segmentation methods encompass those methods that act on a pixel level, i.e.,

they impose restrictions on the pixel taking into account its own characteristics and disregarding
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Index and Or-
dinal Relation

Class Name Corresponding Classes (Semantic
Segmentation)

Corresponding
Classes (Drivable
Area)

1
2

3
4
5

6
7

unknown
environment
road
sidewalk
road agents

drivable area
ego lane

unknown
every class not directly represented
road
sidewalk
person, rider, motorcycle, bicycle,
car, truck, bus, train
-
-

-
-
-
-
-

alternative
direct

Table 4.2: reduced ordinal segmentation mask setup for the BDD100K dataset.

unknown
environment
road
sidewalk
road agents
drivable area
ego lane

Figure 4.2: reduced mask for the BDD100K driving scene in Figure 4.1.

the context of the neighboring pixels. Such methods include the ordinal pixel encoding and pixel-

wise consistency methods discussed in the state-of-the-art analysis [20].

In an ordinal segmentation problem, for a given pixel, the network should conceptually be

more uncertain about the classes that are ordinally closer to the output class – that either precede

or succeed it. Therefore, actively promoting the output of unimodal pixel probability distribu-

tions, as seen in Section 3.3.1 with ordinal classification, could help the network in the ordinal

segmentation task. The following sections propose the adaptation of the unimodal pixel percent-

age metric and CO2 augmented loss function introduced in Section 3.3.1 from classification to

ordinal segmentation. The adaptation is straightforward – treat each pixel in the output map as its

own classification problem.
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Index and Ordinal
Relation

Class Name Corresponding Classes (Semantic
Segmentation)

Corresponding
Classes (Driv-
able Area)

1
2

3
4
5A

6A
7
8

9A
10
11

12A
13
14
15
16

17
18

unknown
environment
road
sidewalk
road agents
human
person
rider
two wheels
motorcycle
bicycle
others
car
truck
bus
train
drivable area
ego lane

unknown
every class not directly represented
road
sidewalk
-
-
person
rider
-
motorcycle
bicycle
-
car
truck
bus
train
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
alternative
direct

Table 4.3: wroadagents ordinal segmentation mask setup for the BDD100K dataset. To refer to
the version of this mask without abstract classes, wroadagents_noabstract can be used.

unknown
environment
road
sidewalk
person
rider
motorcycle
bicycle
car
truck
bus
train
drivable area
ego lane

Figure 4.3: wroadagents mask for the BDD100K driving scene in Figure 4.1.
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Index and Ordinal Re-
lation

Class Name Corresponding Classes (Semantic
Segmentation)

1
2

3
4
5A

6A
7
8

9A
10
11

12A
13
14
15
16

unknown
environment
road
sidewalk
road agents
human
person
rider
two wheels
motorcycle
bicycle
others
car
truck
bus
train

unknown
every class not directly represented
road
sidewalk
-
-
person
rider
-
motorcycle
bicycle
-
car
truck
bus
train

Table 4.4: wroadagents_nodrivable ordinal segmentation mask setup for the BDD100K dataset.
To refer to the version of this mask without abstract classes, wroadagents_nodrivable_noabstract
can be used.

unknown
environment
road
sidewalk
person
rider
motorcycle
bicycle
car
truck
bus
train

Figure 4.4: wroadagents_nodrivable mask for the BDD100K driving scene in Figure 4.1.
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4.3.1.1 Percentage of Unimodal Pixels Metric

To evaluate the effect of the unimodality-enforcing method, a straightforward metric is proposed:

the percentage of Unimodal Pixels (UP) in the model output,

UP(p̂ppn) =
1

H ×W

H

∑
i=1

W

∑
j=1

1

([
K−2

∑
k=1

1(diff(p̂ppn,:,i, j,k)−diff(p̂ppn,:,i, j,k+1) ̸= 0)

]
≤ 1

)
, (4.1)

where diff(PPP,k) is the sign of the first-order difference between the probability of two consecutive

classes,

diff(PPP,k) = sgn(Pk −Pk+1), (4.2)

where PPP is a probability vector with shape K, and k is the class for which to calculate the difference.

In Equation 4.1, the indicator function highlighted in blue is equal to 1 when there is at most

a single change in the sign of the first-order difference in the current pixel’s class probability

distribution and 0 otherwise, i.e., when the current pixel’s probability output is unimodal. Taking

the example from Figure 3.4, the calculation of the indicator function for pixel (a) results in 0,

while the calculation for pixel (b) results in 1. Averaging the sum of the results of that function

over every pixel over the total number of pixels results in the UP metric.

As this metric is not itself differentiable, a different loss function must be devised to promote

unimodal pixel probability distributions during training.

4.3.1.2 CO2 Augmented Loss Function for Segmentation

The adaptation for segmentation of the CO2 augmented loss function, a state-of-the-art unimodality-

promoting loss for ordinal classification, is proposed,

CO2(yyyn, p̂ppn) = CE(yyyn, p̂ppn)+λO2(yyyn, p̂ppn), (4.3)

where O2 is the regularization term,

O2(yyyn, p̂ppn) =
1

H ×W

H

∑
i=1

W

∑
j=1

[
K−1

∑
k=1

1(k ≥ yn,i, j)ReLU(δ + p̂n,k+1,i, j − p̂n,k,i, j)

+
K−1

∑
k=1

1(k ≤ yn,i, j)ReLU(δ + p̂n,k,i, j − p̂n,k+1,i, j)

]
,

(4.4)

where δ is an imposed margin, assuring that the difference between consecutive probabilities is

at least δ [32] and ReLU is defined as ReLU(x) = max(0,x). This equation is similar to the one

shown for classification in Section 3.3.1.
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4.3.2 Spatial Ordinal Segmentation

Spatial ordinal segmentation methods, as opposed to pixel-wise, consider the spatial nature of a

segmentation problem, leveraging the context of each given pixel’s neighborhood in the applied

constraints. Such methods include the decision boundary parallelism method [20] discussed in the

state-of-the-art analysis, Section 3.3.2.

As detailed in Section 3.3.2, in an ordinal segmentation problem, an area segmented as Ck can

only possibly have a direct boundary with areas segmented as Ck+1 and Ck−1. Therefore, the spa-

tial methods work to minimize the contact surface between the segmented areas of non-ordinally

adjacent classes. However, in a 2D projection of the real world, the absolute minimization of these

contact surfaces may not be the best solution since occlusions and different perspectives may orig-

inate legitimate contact between non-ordinally adjacent classes. A relaxed application of these

methods will therefore result in the best outcome. Figure 4.5 shows a hypothetical example of

how the spatial ordinal constraints can be broken in the model output.

k=1

k=2
k=3

k=1

k=2
k=3

(a) ground truth mask (b) hypothetical non-constrained model output

Figure 4.5: Hypothetical example of how the contact surface ordinal constraints can be broken in
the model output.

The following sections introduce a metric for the contact surface between non-ordinally ad-

jacent classes and three variations of augmented loss functions that seek to minimize it. These

losses require an ordinal problem with K ≥ 3 because no spatial constraints are broken with less

than three classes.

4.3.2.1 Contact Surface Metric

The percentage of ordinally invalid inter-class jumps between adjacent pixels was chosen as a

metric for the contact surface between the masks of non-ordinally adjacent classes. Ordinally valid

jumps are considered to be jumps between classes whose ordinal distance equals 1. If the ordinal

distance between the classes of adjacent pixels exceeds 1, then that is an ordinally invalid jump.

This requires that each pixel and its immediate neighborhood be examined during calculation.
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Defining the Contact Surface (CS) metric,

CS(ŷyyn) =
1
2

[
∑

H
i=1 ∑

W
j=11(dx(ŷyyn)i, j > 1)

∑
H
i=1 ∑

W
j=11(dx(ŷyyn)i, j > 0)

+
∑

H
i=1 ∑

W
j=11(dy(ŷyyn)i, j > 1)

∑
H
i=1 ∑

W
j=11(dy(ŷyyn)i, j > 0)

]
, (4.5)

where ŷyy = argmaxK
k=1(p̂pp) with shape (N,H,W ), where each value equals the index of the respec-

tive pixel’s predicted class, k ∈ [1..K], which corresponds to its ordinal ordering index, and dx

and dy are the ordinal index variation, i.e., ordinal distance, from the current pixel (i, j) to the

neighborhood, respectively, through the x and y axis,

dx(ŷyyn)i, j = |ŷn,i, j − ŷn,i, j+1| (4.6)

dy(ŷyyn)i, j = |ŷn,i, j − ŷn,i+1, j| (4.7)

As this metric is not itself differentiable, a different loss function must be devised to promote

spatially consistent segmentation mask outputs during training.

4.3.2.2 Contact Surface Loss Using Neighbor Pixels

One approach to minimize the contact surface metric is penalizing the prediction of two adjacent

pixels of non-ordinally adjacent classes. An approach similar to the contact surface metric can

be followed. However, instead of the ordinal distance between the classes of adjacent pixels, a

differential indicator depicting how wrong the prediction is must be obtained. This indicator can

be calculated by multiplying the output probabilities of non-ordinally adjacent classes with an

offset of one pixel in each direction – if the network predicts two adjacent pixels, then it will have

a high value that must be minimized at that location. Figure 4.6 showcases an example of the

calculation of part of the loss between two non-ordinally adjacent classes, k = 0 and k = 3. Each

of the values in the output probability map of k = 0 (a) will be multiplied by the values of the

immediately adjacent pixels (to the right and bottom) in the output probability map of class k = 3

(b). For example, the multiplications of 0.8 by 0 (the probability for k = 3 of the pixel to its right)

and 0.9 (the probability for k = 3 of the pixel to its bottom) will be added, resulting in the local

loss value of 0.72, seen in matrix (c).

This principle results in the augmented loss function, LCSNP,

LCSNP(yyyn, p̂ppn) = CE(yyyn, p̂ppn)+λCSNP(p̂ppn), (4.8)

where λ is a meta parameter that controls the influence of the regularization term, and CSNP is
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0 0 0

0.2 0.8 0

0 0 0

0 0 0

0 0.1 0

0 0.9 0

(a) (b)

0 0

0.02 0.72

(c)

Figure 4.6: Visualization of the calculation of the CSNP loss between two non-ordinally adjacent
classes. Matrixes (a) and (b) are the probability maps for classes k = 0 and k = 3 of a given sample.
These two matrixes show the output of two adjacent pixels with high probability, highlighted in
bold. As this breaks the spatial ordinal constraints, it results in a high value in the resulting loss,
depicted in bold in matrix (c).

the CSNP (Contact Surface Neighbor Pixels) term,

CSNP(p̂ppn) =
1

K2 −3K +2

K

∑
k1,k2=1

[
1(|k2 − k1| ≥ 2)

|k2 − k1|−1
H ×W

H

∑
i=1

W

∑
j=1

1
2
(

p̂n,k1,i, j × p̂n,k2,i+1, j + p̂n,k1,i, j × p̂n,k2,i, j+1
)]

,

(4.9)

where the portion in blue equals the number of pairs (k1,k2) ∈ [1..K] such that |k2 − k1| ≥ 2.

Moreover, the portion in red is the ordinal distance between k2 and k1, which is used as a weight

for the loss calculated between the two classes, such that the loss between more ordinally distant

classes has a higher impact in the overall loss. A PyTorch implementation of this loss can be

consulted in Appendix A.1.

4.3.2.3 Contact Surface Loss Using the Distance Transform

Another approach is leveraging the distance transform, an image map where each pixel represents

that pixel’s distance, calculated with the customizable distance function d, to the nearest non-zero

pixel in the target image. Defining the distance transform (DT) of the output probability map of

class k,

DT(p̂ppn,k)p1 = min
p2:p̂n,k,p2≥δ

d(p1, p2), (4.10)

where p = (i, j) and δ is the threshold parameter that selects the high-confidence pixels, allowing

the distance transform to be calculated for a high-certainty version of the output segmentation

mask.

By calculating the approximated differentiable distance transform [42] of each output class

probability map, the approximate distance between each pair of non-ordinally adjacent class masks

in the output can be obtained, and the model trained to maximize it. This distance can be obtained

by calculating the average of the non-zero values after multiplying the class probabilities map with

the opposing class’s distance transform. Figure 4.7 illustrates the calculation of part of the loss
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between two non-ordinally adjacent classes, k = 0 and k = 3. For example, in the figure, to obtain

the approximate distance between the masks of the two classes, the probability map of class k = 0

is multiplied by the distance transform of the output map for k = 3. The resulting values will

be maximized during training, causing the model to predict the masks of non-ordinally adjacent

classes increasingly further apart.

0.1 0 0 0

0 0 0 0

0 0 0.6 0.8

0 0.55 0.9 0.9

(a)

0.9 0.8 0 0

0.8 0 0 0

0 0 0 0

0 0 0 0.1

(b)

0 0 1 2

0 1 2 3

1 2 3 4

2 3 4 5

(c)

0 0 0 0

0 0 0 0

0 0 1.8 3.2

0 1.65 3.6 4.5

(d)

Figure 4.7: Visualization of the calculation of the CSDT loss between two non-ordinally adjacent
classes. Matrixes (a) and (b) are the probability maps for classes k = 0 and k = 3 of a given sample.
These two matrixes show the pixels with high probability, using the threshold δ = 0.5, highlighted
in bold. Matrix (c) is the distance transform for the thresholded probability map of class k = 3
from matrix (b) – each cell corresponds to that cell’s Manhattan distance to the closest pixel in
the output probability map with a probability greater than 0.5. The approximated distance from
the mask of class 0 to the mask of class 3, i.e., the value that the network should maximize, is the
average of the non-zero values in matrix (d).

This principle results in the augmented loss function, LCSDT,

LCSDT(yyyn, p̂ppn) = CE(yyyn, p̂ppn),+λCSDT(p̂ppn), (4.11)

where λ is a meta parameter that controls the influence of the regularization term and CSDT is the

CSDT (Contact Surface Distance Transform) term,

CSDT(p̂ppn) =
−1

K2−3K+2
2

K

∑
k1,k2=1

[
1(k2 − k1 ≥ 2)(|k2 − k1|−1)(

p̂ppn,k1
×DT(p̂ppn,k2

)+ p̂ppn,k2
×DT(p̂ppn,k1

)
)]

,

(4.12)
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where the portion in blue is the number of pairs (k1,k2) ∈ [1..K] such that k2 − k1 ≥ 2. Moreover,

as with the CSNP loss, the ordinal distance between k2 and k1, in red, is used as a weight for the

loss calculated between the two classes, such that the loss between more ordinally distant classes

has a higher impact in the overall loss.

At this stage, the CSDT term maximizes the distance between the masks of the pairs of non-

ordinally adjacent classes indefinitely. This is problematic because this may cause exploding

distances, drawing the masks away from each other and possibly completely deviating from the

ground truth. This can be solved by limiting the distance transform to a maximum distance, γ .

This way, the loss only penalizes masks closer to each other than the γ value. This results in the

update distance transform,

DT(p̂ppn,k)
γ
p1
= min(DT(p̂ppn,k)p1 ,γ), (4.13)

where γ is the maximum distance at which the contact surface loss term is applied, and in the

updated CSDT2 term,

CSDT2(p̂pp) =
−2

K2 −3K +2

K

∑
k1,k2=1

[
1(k2 − k1 ≥ 2)(|k2 − k1|−1)(

p̂ppk1
×DT(p̂ppn,k2

)γ + p̂ppk2
×DT(p̂ppn,k1

)γ

)] (4.14)

A PyTorch implementation of this loss can be consulted in Appendix A.2.

4.3.2.4 Semi-Supervised Learning

As the proposed spatial losses are unsupervised, i.e., they do not need ground truth labels to

be calculated, they can be used with unlabeled data, which allows them to be used for semi-

supervised learning. Being able to use unlabeled images is advantageous in the case of image

segmentation, where labeled segmentation masks require large amounts of effort to be made. With

semi-supervised learning, each training epoch can process a mixture of labeled and unlabeled

samples, maximizing the neural network’s learning.

4.3.3 Adaptation of Ordinal Segmentation to Arbitrary Hierarchies

Only hierarchies with a single ordinal relation path have been considered for now. The proposed

methods must be adapted to apply ordinal segmentation to autonomous driving, a domain with

arbitrary ordinal relation paths.

4.3.3.1 Ordinality Trees

Firstly, an arbitrary hierarchy needs to provide the methods with the ordinal relations that motivate

the ordinal constraints. These relations can be encoded through trees, as was shown in Section 4.2.

Therefore, the ordinality tree of an arbitrary hierarchy is the tree encoding of the ordinal relations

in that hierarchy.
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1
2

3
4
5
6

7

Figure 4.8: Ordinality tree for the reduced mask setup of the BDD100K autonomous driving
dataset (shown in more detail in Table 4.2).

Figure 4.8 shows the ordinality tree for the reduced mask setup of the BDD100K autonomous

driving dataset. From this tree, the following ordinal relation paths can be derived:

• C1 ⊃C2 ⊃C3 ⊃C4

• C1 ⊃C2 ⊃C3 ⊃C5

• C1 ⊃C2 ⊃C3 ⊃C6 ⊃C7

In this example, the constraints that should be upheld are:

C1 ⊃C2 ⊃C3 ∧ C3 ⊃C4 ∧ C3 ⊃C5 ∧ C3 ⊃C6 ⊃C7 (4.15)

The simplified versions of the proposed ordinal segmentation metrics and losses assumed that

each class index corresponds to that class’s ordinal index, i.e., its position in the ordinal relation

path. In arbitrary hierarchies, however, the class’s ordinal index corresponds to its level in the

ordinality tree, and there may be multiple classes at the same level. Furthermore, no ordinal

constraint can be applied between two classes that are not part of the same ordinal relation path

because there is no information about the relation between classes in this situation.

Therefore, the adaptation of the proposed methods focuses on selecting the relevant ordinal

relation paths and applied constraints. Let us define ORP(p̂ppn,k) as the set of the ordinal rela-

tion paths that include class k, where each path is encoded as an ordered probability vector of

each class’s corresponding output probability and OC(p̂ppn,k) as the set of the ordinal constraints

resulting from the paths including k, each constraint encoded in the same way as each path. Com-

putationally, these functions can be implemented using a tree traversal algorithm, e.g., depth-first

search. Returning to the reduced mask example,

ORP(p̂pp)reduced = {[p̂k=1, p̂k=2, p̂k=3, p̂k=4], [p̂k=1, p̂k=2, p̂k=3, p̂k=5], [p̂k=1, p̂k=2, p̂k=3, p̂k=6, p̂k=7]}
(4.16)

OC(p̂pp)reduced = {[p̂k=1, p̂k=2, p̂k=3], [p̂k=3, p̂k=4], [p̂k=3, p̂k=5], [p̂k=3, p̂k=6, p̂k=7]} (4.17)
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ORP(p̂pp,k = 5)reduced = {[p̂k=1, p̂k=2, p̂k=3, p̂k=5]} (4.18)

OC(p̂pp,k = 5)reduced = {[p̂k=1, p̂k=2, p̂k=3, p̂k=5]} (4.19)

Furthermore, let us define the auxiliary functions:

• oidx(k) – retrieves the ordinal index of class k. For example, in the tree from Figure 4.8,

oidx(6) = 4;

• shareorp(k1,k2) – equals 1 if k1 and k2 share at least an ordinal relation path, and 0 otherwise.

For example, in the tree from Figure 4.8, shareorp(7,5) = 0 and shareorp(2,4) = 1.

4.3.3.2 Pixel-Wise Ordinal Segmentation

Ordinal Encoding Defining k⋆ as the ground truth class for a given pixel, each class Ck of the

same pixel will be encoded as 1(shareorp(k,k⋆)∧oidx(k)< oidx(k⋆)).

Pixel-Wise Consistency In arbitrary hierarchies, the consistency of the output class probabilities

can be achieved by using,

P(C+
k1
) =

K

∑
k2=1

1(shareorp(k1,k2)∧oidx(k1)−oidx(k2) = 1)P(C+
k1
|C+

k2
)P(C+

k2
), (4.20)

where P(C+
k1
|C+

k2
) is the corresponding output of the network and P(C+

k1
) is the corrected probability

of class k1.

Percentage of Unimodal Pixels Metric A given pixel’s probability distribution is considered

unimodal if it is unimodal with respect to every ordinal relation path pertaining to that pixel’s

output class.

UP′(p̂ppn, ŷyyn)=
1

H ×W

K

∑
k=1

H

∑
i=1

W

∑
j=1

1(k = ŷn,i, j) ∏
PPP∈ORP(p̂ppn,:,i, j,k)

1

([
|PPP|−2

∑
n=1

1(diff(PPP,n)−diff(PPP,n+1) ̸= 0)

]
≤ 1

)
(4.21)

CO2 Augmented Loss Function for Segmentation The O2′ term should have its ordinal term

calculated for each ordinal constraint to uphold while using the class ordinal index to evaluate the

ordinal relation between classes instead of the original class index.
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O2′(yyyn, p̂ppn) =
1

H ×W

K

∑
k=1

H

∑
i=1

W

∑
j=1

(
1(k = yn,i, j) ∑

PPP∈OC(p̂ppn,:,i, j,k)

[
|PPP|−1

∑
n=1

1(oidx(Pn)≥ oidx(k))ReLU(δ +Pn+1 −Pn)

+
|PPP|−1

∑
n=1

1(oidx(Pn)≤ oidx(k))ReLU(δ +Pn −Pn+1)

])
(4.22)

4.3.3.3 Spatial Ordinal Segmentation

Contact Surface Metric The contact surface metric is the percentage of ordinally valid jumps

between ordinally related classes, i.e., classes that share at least an ordinal relation path. The

ordinal distance between classes is calculated using their ordinal index.

CSdx(ŷyyn)
′
i, j = 1(shareorp(ŷn,i, j, ŷn,i, j+1))

∣∣oidx(ŷn,i, j)−oidx(ŷn,i, j+1)
∣∣ (4.23)

CSdy(ŷyyn)
′
i, j = 1(shareorp(ŷn,i, j, ŷn,i+1, j))

∣∣oidx(ŷn,i, j)−oidx(ŷn,i+1, j)
∣∣ (4.24)

CS(ŷyyn)
′ =

1
2

[
∑

H
i=1 ∑

W
j=11(CSdx(ŷyyn)

′
i, j > 1)

∑
H
i=1 ∑

W
j=11(CSdx(ŷyyn)

′
i, j > 0)

+
∑

H
i=1 ∑

W
j=11(CSdy(ŷyyn)

′
i, j > 1)

∑
H
i=1 ∑

W
j=11(CSdy(ŷyyn)

′
i, j > 0)

]
(4.25)

Contact Surface Loss Using Neighbor Pixels The CSNP′ term is calculated between the pairs

of classes that share at least an ordinal relation path and uses each class’s ordinal index in order to

calculate ordinal distances instead of the original class index.

CSNP′(p̂ppn) =
1

∑PPP∈OC(p̂ppn)
|PPP|2 −3|PPP|+2

K

∑
k1,k2=1

[
1(|oidx(k2)−oidx(k1)| ≥ 2∧ shareorp(k1,k2))

|oidx(k2)−oidx(k1)|−1
H ×W

H

∑
i=1

W

∑
j=1

1
2
(p̂n,k1,i, j × p̂n,k2,i+1, j + p̂n,k1,i, j × p̂n,k2,i, j+1)

]
(4.26)

Contact Surface Loss Using the Distance Transform Like the CSNP′ term, the CSDT′ is

calculated between the pairs of classes that share at least an ordinal relation path and uses each

class’s ordinal index in order to calculate ordinal distances instead of the original class index.
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CSDT2′(p̂ppn) =
−2

∑PPP∈OC(p̂ppn)
|PPP|2 −3|PPP|+2

K

∑
k1,k2=1

[
1(oidx(k2)−oidx(k1)≥ 2∧ shareorp(k1,k2))

(|oidx(k2)−oidx(k1)|−1)
(

p̂ppn,k1
×DT(p̂ppn,k2

)γ + p̂ppn,k2
×DT(p̂ppn,k1

)γ

)]
(4.27)



Chapter 5

Results

The present chapter shows and analyzes the results obtained by the proposed methods. Section 5.1

describes the experimental setup used throughout the research work. Section 5.2 shows and an-

alyzes the experimental results for the biomedical datasets. Section 5.3 shows and analyzes the

experimental results for the autonomous driving datasets, including the dataset scale variation and

semi-supervised learning experiments.

5.1 Experimental Setup

The performance of the proposed methods was validated on five real-life biomedical datasets,

described in Section 3.3.2.1, and one autonomous driving dataset, BDD100K [38], with out-of-

distribution testing on the Cityscapes [12] dataset, described in Section 3.4. For the BDD100K

training, two configurations of the dataset were considered: (1) BDD10K, which was described in

Section 3.4, and (2) BDDIntersected, which was described in Section 4.2.

Throughout this chapter, all of the results were obtained using the UNet architecture [8] with

four groups of convolution blocks (each consisting of two convolution and one pooling layers) for

each of the encoder and decoder portions1. All datasets were normalized with a mean of 0 and a

standard deviation of 1 after data augmentation, consisting of random rotation, random horizontal

flips, random crops, and random brightness and contrast. The networks were optimized for a

maximum of 200 epochs, in the case of the biomedical datasets and a maximum of 100 epochs, in

the case of the autonomous driving datasets, using the Adam [43] optimizer with a learning rate of

1e-4 and a batch-size of 16. Early stopping was used with a patience of 15 epochs. After a train-

test split of 80-20%, a 5-fold training strategy consisting of 4 training folds and one validation fold

was applied for each training dataset. For each fold, the best-performing model on the validation

dataset was selected. An NVIDIA Tensor Core A100 GPU with 40GB of RAM and an NVIDIA

RTX A2000 with 12GB of RAM were used to train the networks.

1An open-source PyTorch implementation of the UNet architecture was used, https://github.com/miles
ial/Pytorch-UNet.

36
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In this chapter, the metrics to be focused on are: (1) the Dice coefficient, which evaluates

the methods with respect to the ground truth labels; (2) the contact surface, which evaluates the

methods with respect to the spatial ordinal constraints; and (3) the percentage of unimodal pixels

metrics, which evaluates the methods with respect to the pixel-wise ordinal constraints. Additional

results with different metrics, such as the Jaccard index and the mean absolute error, can be found

in Appendix B. The models trained with the cross-entropy loss and with the state-of-the-art ordinal

segmentation methods by Fernandes et al. [20], described in Section 3.3.2, were chosen as the

performance comparison baselines.

The methods to be evaluated had their parameterization, including the range of regularization

term weights (λ ), empirically determined. These methods are:

• The semantic segmentation adaptation of the CO2 augmented loss function, with the im-

posed margin δ = 0.05, as recommended by the authors, Section 4.3.1.2;

• The proposed ordinal spatial losses, CSNP, Section 4.3.2.2, and CSDT2, with the dis-

tance transform threshold δ = 0.5 and the maximum regularization distance γ = 10, Sec-

tion 4.3.2.3;

• The mix of pixel-wise and spatial methods, through the CO2 + CSNP loss function, which

includes both the CO2 and CSNP regularization terms.

To evaluate the statistical significance of the different results for each method and λ value

combination, Welch’s t-test was applied. For each dataset, the method with the best average of the

results for each fold was selected (it can be the minimum or maximum, depending on the metric).

Then, the best average was tested against the results of the other methods on the same dataset,

using a significance level of 10% (one-sided). The t-test results can be seen in the tables referenced

throughout this chapter, where the values in bold represent those values whose difference from the

best mean was not statistically significant.

5.2 Experimental Results for the Biomedical Datasets

Tables 5.1, 5.2 and 5.3 display, respectively, the Dice coefficient, contact surface, and percentage

of unimodal pixels metrics for the results from each of the models trained with the five biomedical

datasets. Figures 5.3, 5.4 and 5.5 show the same results in a comparison plot. Each plot uses

dynamic y axis view limits to improve the visibility of the results.

Baselines The baseline ordinal segmentation methods generally do not perform as well as the

cross-entropy loss regarding the Dice coefficient, Table 5.1. The pixel-wise consistency method

is the closest, as it results, at a maximum, in an absolute 0.7% (0.9% in relative terms) drop in

Dice performance and barely surpasses the cross-entropy in the Breast Aesthetics dataset. Regard-

ing ordinal metrics, Tables 5.2 and 5.3, the methods do not seem to impact the contact surface.

Still, they result in a higher percentage of unimodal pixel predictions, especially the pixel-wise

consistency and decision boundary parallelism methods.
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Fernandes et al. report absolute gains in the Dice coefficient, compared with their baseline,

of up to 30% [20]. However, this is due to the usage of the sigmoid activation function in their

baseline, which is not appropriate for multi-class segmentation problems but was used due to also

being used with the ordinal methods. The decision boundary parallelism shows particularly weak

results due to expected optimization difficulties in determining the additional bias terms. However,

they seem to improve the contact surface metric, Table 5.2, for the cases where they optimize well,

such as with the Cervix-MobileODT and Mobbio datasets.

Pixel-Wise Method Regarding the Dice coefficient, Figure 5.3, for every dataset, there are λ

values where the CO2 loss either comes very close or surpasses cross-entropy performance, hav-

ing maximum absolute gains of 0.6% (0.8% in relative terms). As expected, because the CO2

method inherently promotes ordinal pixel probability distributions, CO2 excels in the percentage

of unimodal pixels metric, Figure 5.5, nearing 100% for all datasets at high λ values. Due to the

specificities of the Cervix-MobileODT and Mobbio datasets, the λ value required to achieve rele-

vant improvements to this metric is much larger than for the others. Therefore, these were the only

datasets trained with λ = 1000 and λ = 10000. Additionally, this pixel-wise method improves

ordinal spatial consistency, as can be seen by the reduction in the contact surface metric for high λ

values, Figure 5.4, bringing it to values close to 0%. A highlight is that this method can improve

ordinal constraint consistency without too high a penalization in the Dice coefficient metric.

Spatial Methods For the λ values of 0.1 and 1, the CSDT2 loss achieves better Dice coefficient

values (with the exception of the Mobbio dataset) while resulting in a lower contact surface when

compared with the CSNP loss, Figures 5.3 and 5.4. However, for higher λ values, the CSNP loss

achieves a much lower contact surface percentage without much variation in the Dice coefficient.

Therefore, the choice between these two losses for spatial ordinal segmentation is application

dependent, but the CSNP loss should achieve more stable Dice coefficient results with a higher

degree of regularization. Surprisingly, promoting spatially consistent output masks results in a

higher percentage of unimodal pixels (with the exception of the Cervix-MobileODT and Mobbio

datasets, but in this case, the results may not be indicative since the absolute variation in the

metric values is not significative, being less than 1%), Figure 5.5. As the promotion of the pixel-

wise constraints also resulted in improvements in the contact surface metric, this suggests that the

spatial and pixel-wise constraints are complementary in ordinal problem domains.

Figures 5.1 and 5.2 show, respectively, sample model inference masks for the CSNP and

CSDT2, where it is possible to discern the impact of those losses at high λ values. In both cases,

it is possible to see that at the highest λ value, both losses manage to include a sclera border

between the iris and the background, making it so that there are no infractions of the ordinal spatial

constraints, i.e., there is no contact surface between non-ordinally adjacent classes. The CSDT2

loss, however, manages to achieve a thicker border, which is controlled by the γ parameter. This

parameter controls the maximum distance between non-ordinally adjacent classes at which the

regularization is applied.



5.2 Experimental Results for the Biomedical Datasets 39

Mixture of Pixel-Wise and Spatial Methods The combination of the CO2 and CSNP losses

does not seem to result in a significant difference in performance. Regarding the Dice coefficient,

the mixture of the two methods appears more stable with the variation of the λ value. In the

ordinal metrics, the junction of the two is a compromise, not being as good as either but offering

some balance.

(a) Ground Truth (b) Cross Entropy

(c) CSNP, λ = 1.0 (d) CSNP, λ = 10.0 (e) CSNP, λ = 100.0

Figure 5.1: Sample model inference outputs for the CSNP loss with the Mobbio dataset compared
with the ground truth and cross-entropy. Segmentation mask (e) is an example of excessive regu-
larization, where the model includes a sclera border (dark gray) between the background (black)
and the iris (light gray), which does not exist in the ground truth.
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(a) Ground Truth (b) Cross Entropy

(c) CSDT2, λ = 0.1 (d) CSDT2, λ = 1.0 (e) CSDT2, λ = 10.0

Figure 5.2: Sample model inference outputs for the CSDT2 loss with the Mobbio dataset compared
with the ground truth and cross-entropy. Segmentation mask (e) is an example of excessive regu-
larization, where the model includes a sclera border (dark gray) between the background (black)
and the iris (light gray), which does not exist in the ground truth.
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Figure 5.3: Dice coefficient (macro average) results for the biomedical datasets (higher is better).
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Figure 5.4: Contact surface results for the biomedical datasets (lower is better).
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Figure 5.5: Percentage of unimodal pixels results for the biomedical datasets (higher is better).
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Cross-Entropy Ordinal Segmentation (Fernandes et al. [20])

- Ordinal
Encoding

Pixel-Wise
Consistency

Decision Boundary
Parallelism

Breast Aesthetics 999333...888±±±000...444 82.4±4.3 999333...999±±±000...555 17.0±1.1
Cervix-MobileODT 777777...000±±±000...666 75.4±0.8 76.3±0.6 61.8±1.2
Mobbio 93.8±0.1 93.5±0.2 93.7±0.1 93.3±0.1
Teeth-ISBI 777444...000±±±111...222 14.0±7.4 73.7±0.7 15.6±0.9
Teeth-UCV 90.2±0.4 66.8±5.7 89.7±0.5 32.5±0.1

CO2

λ = 0.1 λ = 1.0 λ = 10.0 λ = 100.0 λ = 1000.0 λ = 10000.0

Breast Aesthetics 999333...999±±±000...444 999444...222±±±000...555 999333...999±±±000...333 999333...666±±±000...444
Cervix-MobileODT 777666...999±±±000...555 777666...888±±±000...555 75.4±1.4 75.5±1.3 777666...444±±±111...000 777777...222±±±000...333
Mobbio 93.8±0.1 93.6±0.1 93.7±0.2 93.6±0.1 94.0±0.0 999444...111±±±000...000
Teeth-ISBI 777444...222±±±000...555 777444...111±±±111...000 777444...666±±±000...888 72.4±0.6
Teeth-UCV 999000...666±±±000...333 90.4±0.2 999000...888±±±000...333 999000...666±±±000...666

CSNP

λ = 0.1 λ = 1.0 λ = 10.0 λ = 100.0

Breast Aesthetics 999333...888±±±000...555 999333...888±±±000...555 93.5±0.7 93.0±0.4
Cervix-MobileODT 76.2±1.1 76.4±0.6 777666...666±±±111...000 73.7±0.5
Mobbio 93.8±0.0 93.8±0.1 93.6±0.1 93.5±0.1
Teeth-ISBI 777444...000±±±000...666 777444...999±±±111...111 777444...999±±±000...444 62.1±7.1
Teeth-UCV 90.1±0.2 90.1±0.4 999000...555±±±000...333 90.2±0.1

CSDT2

λ = 0.1 λ = 1.0 λ = 10.0

Breast Aesthetics 999444...000±±±000...555 999444...000±±±000...444 92.9±1.0
Cervix-MobileODT 777666...999±±±000...777 777666...777±±±000...777 74.0±0.4
Mobbio 93.7±0.1 93.6±0.1 92.9±0.2
Teeth-ISBI 777444...111±±±111...222 777555...000±±±111...111 666888...000±±±777...333
Teeth-UCV 90.3±0.3 90.2±0.4 89.3±0.4

CO2 + CSNP

λ = 0.1 λ = 1.0 λ = 10.0 λ = 100.0

Breast Aesthetics 999444...000±±±000...222 999333...777±±±000...444 999333...777±±±000...333 93.6±0.2
Cervix-MobileODT 777777...333±±±000...777 76.3±0.6 75.0±1.0 75.6±0.8
Mobbio 93.8±0.1 93.8±0.1 93.6±0.1 93.7±0.1
Teeth-ISBI 777444...222±±±000...666 777444...777±±±111...000 777333...888±±±111...222 72.2±1.3
Teeth-UCV 999000...444±±±000...666 89.7±0.6 999000...555±±±000...333 89.8±0.5

Table 5.1: Dice coefficient (macro average) results for the biomedical datasets (higher is better).
The values highlighted in bold are the best-achieved results for the dataset in the corresponding
line, as determined through Welch’s t-test.
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Cross-Entropy Ordinal Segmentation (Fernandes et al. [20])

- Ordinal
Encoding

Pixel-Wise
Consistency

Decision Boundary
Parallelism

Breast Aesthetics 0.18±0.17 1.78±1.80 0.25±0.14 89.32±12.82
Cervix-MobileODT 14.49±3.08 15.44±1.21 15.77±1.25 7.27±1.05
Mobbio 12.29±0.39 11.95±0.63 12.31±0.44 000...000000±±±000...000000
Teeth-ISBI 29.98±3.50 85.28±9.71 29.86±1.16 100.00±0.00
Teeth-UCV 6.99±1.13 64.29±12.47 9.71±1.14 100.00±0.00

CO2

λ = 0.1 λ = 1.0 λ = 10.0 λ = 100.0 λ = 1000.0 λ = 10000.0

Breast Aesthetics 0.25±0.09 0.20±0.13 0.25±0.09 0.17±0.09
Cervix-MobileODT 14.35±0.35 12.09±1.16 5.40±1.75 1.36±0.47 1.30±0.39 1.08±0.29
Mobbio 12.47±0.44 11.82±0.39 5.45±1.31 2.75±0.45 3.26±0.49 4.16±0.19
Teeth-ISBI 29.93±0.55 26.34±1.21 22.57±1.04 7.02±1.20
Teeth-UCV 6.02±1.12 5.54±1.95 2.97±0.63 1.03±0.33

CSNP

λ = 0.1 λ = 1.0 λ = 10.0 λ = 100.0

Breast Aesthetics 0.22±0.16 0.26±0.23 0.05±0.02 000...000000±±±000...000000
Cervix-MobileODT 14.20±1.84 11.92±2.20 6.92±0.75 000...000444±±±000...000111
Mobbio 12.26±0.31 11.46±0.30 7.02±0.25 0.00±0.00
Teeth-ISBI 30.41±1.72 28.39±1.19 26.37±0.73 000...333777±±±000...444000
Teeth-UCV 8.08±1.29 7.34±1.43 2.30±0.83 000...000333±±±000...000333

CSDT2

λ = 0.1 λ = 1.0 λ = 10.0

Breast Aesthetics 0.28±0.20 0.17±0.14 000...000000±±±000...000000
Cervix-MobileODT 13.56±1.44 12.22±2.87 0.57±0.28
Mobbio 12.40±0.49 10.72±0.85 0.02±0.01
Teeth-ISBI 29.11±1.01 28.00±1.27 11.51±3.50
Teeth-UCV 5.50±0.88 3.57±0.56 0.30±0.13

CO2 + CSNP

λ = 0.1 λ = 1.0 λ = 10.0 λ = 100.0

Breast Aesthetics 0.28±0.12 0.22±0.19 0.04±0.01 000...000111±±±000...000111
Cervix-MobileODT 14.50±2.40 11.40±1.16 3.34±0.50 1.11±0.49
Mobbio 12.00±0.18 11.54±0.33 4.37±1.39 4.41±0.73
Teeth-ISBI 31.22±2.62 27.53±0.92 21.74±0.80 10.37±1.26
Teeth-UCV 6.95±1.11 5.43±0.83 1.79±0.43 0.67±0.38

Table 5.2: Contact surface results for the biomedical datasets (lower is better). The values high-
lighted in bold are the best-achieved results for the dataset in the corresponding line, as determined
through Welch’s t-test.
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Cross-Entropy Ordinal Segmentation (Fernandes et al. [20])

- Ordinal
Encoding

Pixel-Wise
Consistency

Decision Boundary
Parallelism

Breast Aesthetics 6.2±0.5 3.7±0.6 38.7±19.2 55.9±1.4
Cervix-MobileODT 1.0±0.2 1.1±0.4 1.1±0.3 18.3±9.0
Mobbio 0.8±0.1 0.7±0.1 0.8±0.1 5.2±5.7
Teeth-ISBI 9.6±3.2 0.0±0.0 7.5±3.6 0.1±0.1
Teeth-UCV 18.0±1.6 8.0±3.3 16.0±4.2 3.5±0.1

CO2

λ = 0.1 λ = 1.0 λ = 10.0 λ = 100.0 λ = 1000.0 λ = 10000.0

Breast Aesthetics 6.3±0.5 8.1±2.0 999000...333±±±111222...555 999999...666±±±000...222
Cervix-MobileODT 0.9±0.4 1.2±0.6 0.9±0.3 3.9±1.2 71.6±8.4 999888...999±±±000...444
Mobbio 0.7±0.1 1.0±0.2 0.8±0.1 2.2±0.5 11.0±2.4 999777...333±±±222...333
Teeth-ISBI 10.0±3.3 15.3±3.7 90.4±0.6 999777...222±±±000...222
Teeth-UCV 18.6±2.3 27.9±3.3 96.8±0.9 999888...777±±±000...222

CSNP

λ = 0.1 λ = 1.0 λ = 10.0 λ = 100.0

Breast Aesthetics 6.3±0.7 6.0±0.6 9.0±4.7 16.0±17.0
Cervix-MobileODT 1.0±0.2 0.8±0.4 0.2±0.1 0.0±0.0
Mobbio 0.9±0.2 0.6±0.1 0.4±0.1 0.0±0.0
Teeth-ISBI 9.7±3.8 11.2±4.4 17.2±2.2 34.7±12.3
Teeth-UCV 19.2±5.3 19.6±2.4 25.7±5.1 43.4±11.9

CSDT2

λ = 0.1 λ = 1.0 λ = 10.0

Breast Aesthetics 6.4±0.6 6.2±1.2 13.2±12.3
Cervix-MobileODT 0.9±0.2 0.4±0.1 0.1±0.0
Mobbio 0.7±0.2 0.3±0.1 0.0±0.0
Teeth-ISBI 9.8±2.9 11.7±2.8 38.1±7.1
Teeth-UCV 19.7±3.2 20.7±3.1 34.7±14.7

CO2 + CSNP

λ = 0.1 λ = 1.0 λ = 10.0 λ = 100.0

Breast Aesthetics 6.7±0.7 8.6±2.0 56.3±7.4 51.9±16.4
Cervix-MobileODT 1.2±0.2 0.7±0.1 0.2±0.1 0.0±0.0
Mobbio 0.8±0.1 0.9±0.0 0.2±0.0 0.0±0.0
Teeth-ISBI 9.2±2.7 15.5±4.0 85.2±3.6 93.1±1.4
Teeth-UCV 19.2±1.9 28.9±3.2 73.3±6.2 81.1±13.0

Table 5.3: Percentage of unimodal pixels results for the biomedical datasets (higher is better). The
values highlighted in bold are the best-achieved results for the dataset in the corresponding line,
as determined through Welch’s t-test.
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5.3 Experimental Results for the Autonomous Driving Datasets

Tables 5.6, 5.7 and 5.8 display, respectively, the Dice coefficient, contact surface, and percentage

of unimodal pixels metrics for the results from each of the models trained with the BDD100K

dataset. Figures 5.6, 5.7 and 5.8 show the same results in a comparison plot. Each plot uses

dynamic y axis view limits to improve the visibility of the results.

Out-of-Distribution Testing (OOD) To evaluate whether the inclusion of the ordinal domain

knowledge improved the neural network’s generalization ability, the models trained on the BDD100K

dataset were subsequently tested on the Cityscapes dataset. This allows an evaluation that is closer

to a real-world scenario.

The Cityscapes dataset was chosen because its annotations share similarities with the BDD100K’s.

The model with which out-of-distribution testing was performed was trained with the wroada-

gents_nodrivable mask setup from Table 4.4. Table 5.4 shows how the corresponding mask setup

was achieved with the Cityscapes dataset.

Index and Ordinal Re-
lation

Class Name Corresponding Classes (Cityscapes)

1
2

3
4
5A

6A
7
8

9A
10
11

12A
13
14
15
16

unknown
environment
road
sidewalk
road agents
human
person
rider
two wheels
motorcycle
bicycle
others
car
truck
bus
train

unknown
every class not directly represented
road, parking, rail track
sidewalk
-
-
person
rider
-
motorcycle
bicycle
-
car
truck, caravan, trailer
bus
train

Table 5.4: wroadagents_nodrivable ordinal segmentation mask setup for the Cityscapes dataset.

Abstract and Non-Abstract Mask Setups Section 4.2 introduced the reduced (Table 4.2),

wroadagents (Table 4.3), and wroadagents_nodrivable (Table 4.4) BDD100K mask setups, of

which the last two were introduced with abstract classes. The abstract classes help group subjects

with similar characteristics, with the rationale that it may help the network be more undecided

between similar classes, e.g., more undecided between a bike and a motorcycle than between
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a car and a bike. However, due to the nature of the proposed methods, these masks with ab-

stract classes only can be used with the ordinal segmentation methods proposed by Fernandes et

al. [20], described in Section 3.3.2. For usage with the proposed methods, the versions of the

wroadagents family of masks with no abstract classes will be used – wroadagents_noabstract and

wroadagents_nodrivable_noabstract. Table 5.5 summarizes the mask setups to be evaluated in

this section.

K Abstract Classes Datasets Tasks

- - BDDIntersected BDD10K Cityscapes Semantic
Segmentation

Drivable
Area

reduced 7 ✓ ✓ ✓
wroadagents_noabstract 14 ✓ ✓ ✓
wroadagents_nodrivable_noabstract 12 ✓ ✓ ✓

wroadagents 18 ✓ ✓ ✓ ✓
wroadagents_nodrivable 16 ✓ ✓ ✓ ✓

Table 5.5: Summary of the autonomous driving mask setups introduced in Section 4.2. The first
three mask setups can be used with any proposed method. The last two can only be used with the
semantic segmentation methods proposed by Fernandes et al. [20].

Baselines The baseline ordinal segmentation methods generally do not perform as well as the

cross-entropy loss regarding the Dice coefficient, Table 5.6. They get the closest to the cross-

entropy with the BDDIntersected dataset and the reduced and wroadagents_noabstract masks. In

the other BDD10K and Cityscapes (OOD) datasets, these ordinal methods achieve, in absolute

terms, 1% to 2% lower Dice coefficient results. The baseline ordinal segmentation methods do

not meaningfully influence the ordinal metrics, keeping the contact surface results, Table 5.7, at

the same levels and slightly improving the percentage of unimodal pixels results, Table 5.8, with

the wroadagents family of target masks. Using mask setups with abstract masks did not result in

meaningful variations in the Dice coefficient results but worsened the ordinal metrics performance.

Pixel-Wise Method The CO2 loss function results in multiple models surpassing the cross-

entropy baseline’s Dice coefficient when using the wroadagents family of masks at multiple λ

values, with a maximum absolute gain, when testing with BDD10K, of 1.5% (4% in relative

terms), Figure 5.6. With the reduced mask, it gets close but does not improve on the results of

cross-entropy. The Dice results for CO2 are stable until λ = 10, which means that the ordinal

constraints can be applied without hurting the performance of the resulting models, but have a

steep drop at λ = 100. When testing in an out-of-distribution scenario with Cityscapes, the CO2

loss achieves relevant results, resulting in a maximum absolute gain of 4.2% (11.5% in relative

terms) at λ = 10, which means that using this loss helps the model generalize better to previously

unseen scenarios. It is also interesting that at λ = 1 the Dice results with the BDD10K dataset
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are better than at Dice λ = 10, but with Cityscapes, the opposite happens – the model resulting

from λ = 10 generalizes better but also has more difficulties when seeing images from the dataset

it was trained with. Figure 5.9 shows a comparison between the model output of the cross-entropy

and CO2 (λ = 10) losses in out-of-distribution inference. Regarding ordinal constraints, higher λ

values result in a lower contact surface between non-ordinally adjacent classes, Figure 5.7 and, as

expected, a higher percentage of unimodal pixel probability distributions, Figure 5.8.

Spatial Methods The spatial losses generally slightly underperform when compared with cross-

entropy, but some λ values result in better Dice coefficient values, Figure 5.6. The CSNP loss

has more stable λ values, while the CSDT2 loss results in steep decreases starting at λ = 100.

Neither of the losses results in significant improvements in an out-of-distribution testing scenario

with Cityscapes. As expected, the usage of either loss results in a lower contact surface between

non-ordinally adjacent classes, Figure 5.7, and a higher percentage of unimodal pixel probability

distributions, Figure 5.8, at higher λ values.

Mixture of Pixel-Wise and Spatial Methods The combination of the CO2 and CSNP losses

does not seem to result in a significant difference in performance. In the ordinal metrics, joining

the two results in better adherence to the ordinal constraints – generally, the contact surface values

are lower, and the percentage of unimodal pixels values are higher than either of the separate

losses, with exceptions at some λ values.
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Figure 5.6: Dice coefficient (macro average) results for the autonomous driving datasets (higher
is better).
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Figure 5.7: Contact surface results for the autonomous driving datasets (lower is better).
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Figure 5.8: Percentage of unimodal pixels results for the autonomous driving datasets (higher is
better).
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Cross-Entropy Ordinal Segmentation (Fernandes et al. [20])

- Ordinal
Encoding

Pixel-Wise
Consistency

Decision Boundary
Parallelism

BDDIntersected (reduced) 71.2±0.5 777111...222±±±111...000 777111...555±±±000...555 777111...666±±±000...444
BDDIntersected (wroadagents_noabstract) 37.1±0.8 36.2±0.6 37.1±0.9 36.6±1.1
BDD10K (wroadagents_nodrivable_noabstract) 38.1±1.1 36.2±0.4 35.3±0.8 36.9±0.2
Cityscapes (OOD / wroadagents_nodrivable_noabstract) 36.0±1.1 34.6±0.3 34.2±1.0 35.1±0.4

BDDIntersected (wroadagents) 333666...555±±±000...666 35.7±0.4 35.7±0.6
BDD10K (wroadagents_nodrivable) 35.9±0.4 333666...777±±±111...222 333777...111±±±000...666
Cityscapes (OOD / wroadagents_nodrivable) 333444...555±±±000...333 333444...555±±±000...888 333444...777±±±000...777

CO2

λ = 0.01 λ = 0.1 λ = 1.0 λ = 10.0 λ = 100.0

BDDIntersected (reduced) 71.0±0.3 70.8±0.5 70.4±1.0 68.4±1.1 64.5±1.9
BDDIntersected (wroadagents_noabstract) 36.8±0.5 36.7±0.9 333888...666±±±000...888 333777...888±±±111...000 28.6±0.3
BDD10K (wroadagents_nodrivable_noabstract) 38.1±0.6 333999...111±±±000...444 333888...999±±±000...666 333888...222±±±111...222 29.4±0.4
Cityscapes (OOD / wroadagents_nodrivable_noabstract) 35.8±0.5 36.4±1.1 38.1±0.8 444000...222±±±000...555 32.7±1.4

CSNP

λ = 0.01 λ = 0.1 λ = 1.0 λ = 10.0 λ = 100.0

BDDIntersected (reduced) 70.8±0.9 71.0±0.9 70.8±1.1 71.2±0.6 70.0±0.4
BDDIntersected (wroadagents_noabstract) 37.2±0.9 37.6±0.4 333888...111±±±000...555 333888...000±±±000...444 37.2±0.9
BDD10K (wroadagents_nodrivable_noabstract) 36.6±1.1 333888...222±±±111...111 37.4±0.6 37.3±0.9 37.3±1.1
Cityscapes (OOD / wroadagents_nodrivable_noabstract) 34.5±0.8 35.6±1.6 34.9±0.8 35.8±1.1 35.5±1.2

CSDT2

λ = 0.1 λ = 1.0 λ = 10.0 λ = 100.0

BDDIntersected (reduced) 70.4±0.6 70.3±1.3 68.7±1.1 55.5±11.0
BDDIntersected (wroadagents_noabstract) 37.0±0.9 37.2±0.9 36.8±1.3 22.3±9.9
BDD10K (wroadagents_nodrivable_noabstract) 333888...222±±±111...222 37.7±0.6 36.8±0.9 33.2±0.9
Cityscapes (OOD / wroadagents_nodrivable_noabstract) 36.5±1.4 36.1±0.2 34.8±0.8 32.0±0.7

CO2 + CSNP

λ = 0.1 λ = 1.0 λ = 10.0 λ = 100.0

BDDIntersected (reduced) 777111...999±±±000...222 70.5±0.5 70.1±1.1 64.1±2.2
BDDIntersected (wroadagents_noabstract) 37.0±1.1 333888...555±±±000...999 36.8±0.8 27.3±0.8
BDD10K (wroadagents_nodrivable_noabstract) 37.8±0.9 333999...222±±±000...444 36.1±0.9 29.0±0.6
Cityscapes (OOD / wroadagents_nodrivable_noabstract) 36.2±0.8 37.8±0.7 39.3±0.4 32.3±0.9

Table 5.6: Dice coefficient (macro average) results for the autonomous driving datasets (higher is
better). The smaller-sized results in the first table fragment are for the mask setups with abstract
classes, which are only able to be used with the ordinal segmentation methods by Fernandes
et al. [20]. The values highlighted in bold are the best-achieved results for the dataset in the
corresponding line, as determined through Welch’s t-test.



5.3 Experimental Results for the Autonomous Driving Datasets 51

Cross-Entropy Ordinal Segmentation (Fernandes et al. [20])

- Ordinal
Encoding

Pixel-Wise
Consistency

Decision Boundary
Parallelism

BDDIntersected (reduced) 55.91±3.46 51.55±3.61 54.49±0.72 50.61±2.12
BDDIntersected (wroadagents_noabstract) 47.83±2.22 46.05±2.32 45.81±2.03 46.83±1.39
BDD10K (wroadagents_nodrivable_noabstract) 51.22±2.13 47.97±2.41 49.77±1.90 48.18±1.58
Cityscapes (OOD / wroadagents_nodrivable_noabstract) 59.34±1.96 56.77±2.10 57.81±2.40 58.02±2.38

BDDIntersected (wroadagents) 555333...777111±±±333...666000 555555...999777±±±333...555666 555444...777222±±±222...777777
BDD10K (wroadagents_nodrivable) 555888...111888±±±222...000444 666000...555444±±±222...666000 62.70±1.51
Cityscapes (OOD / wroadagents_nodrivable) 666666...333999±±±111...555555 666555...999555±±±444...111777 70.79±2.12

CO2

λ = 0.01 λ = 0.1 λ = 1.0 λ = 10.0 λ = 100.0

BDDIntersected (reduced) 54.91±2.45 54.55±3.14 51.16±4.11 35.73±4.54 16.81±1.75
BDDIntersected (wroadagents_noabstract) 45.51±3.91 50.14±2.22 47.79±1.90 36.29±1.92 28.91±2.55
BDD10K (wroadagents_nodrivable_noabstract) 49.84±1.92 50.50±2.55 49.45±2.37 48.61±1.78 24.92±4.72
Cityscapes (OOD / wroadagents_nodrivable_noabstract) 57.38±4.62 58.75±4.49 59.11±3.55 61.36±1.40 27.89±6.37

CSNP

λ = 0.01 λ = 0.1 λ = 1.0 λ = 10.0 λ = 100.0

BDDIntersected (reduced) 55.14±2.05 56.45±1.41 51.75±1.90 49.12±2.03 4.93±0.90
BDDIntersected (wroadagents_noabstract) 49.94±1.77 48.11±3.16 47.78±2.18 45.07±1.29 36.92±1.59
BDD10K (wroadagents_nodrivable_noabstract) 48.63±3.37 50.27±1.16 48.92±1.46 47.45±3.72 21.89±3.90
Cityscapes (OOD / wroadagents_nodrivable_noabstract) 58.03±2.08 57.21±2.33 56.42±1.23 56.87±3.40 21.57±4.79

CSDT2

λ = 0.1 λ = 1.0 λ = 10.0 λ = 100.0

BDDIntersected (reduced) 54.51±3.22 49.73±2.19 19.73±1.70 000...000000±±±000...000000
BDDIntersected (wroadagents_noabstract) 47.01±1.10 46.58±1.10 40.78±1.66 000...000111±±±000...000111
BDD10K (wroadagents_nodrivable_noabstract) 50.93±1.41 49.55±1.16 40.92±1.30 000...000111±±±000...000111
Cityscapes (OOD / wroadagents_nodrivable_noabstract) 60.23±2.55 59.11±2.16 49.09±3.23 000...000111±±±000...000111

CO2 + CSNP

λ = 0.1 λ = 1.0 λ = 10.0 λ = 100.0

BDDIntersected (reduced) 52.82±2.59 46.76±2.27 33.79±3.24 14.39±2.24
BDDIntersected (wroadagents_noabstract) 48.47±1.51 47.91±1.86 37.38±2.43 9.16±1.11
BDD10K (wroadagents_nodrivable_noabstract) 48.67±2.09 48.43±1.74 44.59±1.59 9.21±2.45
Cityscapes (OOD / wroadagents_nodrivable_noabstract) 57.46±1.96 57.65±3.94 55.47±1.94 8.14±3.76

Table 5.7: Contact surface results for the autonomous driving datasets (lower is better). The
smaller-sized results in the first table fragment are for the mask setups with abstract classes, which
are only able to be used with the ordinal segmentation methods by Fernandes et al. [20]. The
values highlighted in bold are the best-achieved results for the dataset in the corresponding line,
as determined through Welch’s t-test.



Results 52

Cross-Entropy Ordinal Segmentation (Fernandes et al. [20])

- Ordinal
Encoding

Pixel-Wise
Consistency

Decision Boundary
Parallelism

BDDIntersected (reduced) 2.7±1.7 0.5±0.2 1.4±0.4 1.2±0.4
BDDIntersected (wroadagents_noabstract) 2.4±1.8 0.4±0.2 10.2±5.2 2.5±1.1
BDD10K (wroadagents_nodrivable_noabstract) 32.3±5.8 33.0±6.3 35.7±4.6 28.7±3.4
Cityscapes (OOD / wroadagents_nodrivable_noabstract) 23.0±11.4 27.2±6.9 28.7±7.8 20.2±5.0

BDDIntersected (wroadagents) 0.1±0.1 000...333±±±000...111 0.2±0.1
BDD10K (wroadagents_nodrivable) 0.0±0.0 000...222±±±000...111 000...111±±±000...111
Cityscapes (OOD / wroadagents_nodrivable) 0.1±0.0 000...666±±±000...222 000...555±±±000...333

CO2

λ = 0.01 λ = 0.1 λ = 1.0 λ = 10.0 λ = 100.0

BDDIntersected (reduced) 3.4±1.8 4.2±3.0 15.6±6.0 888999...111±±±111111...444 99.9±0.0
BDDIntersected (wroadagents_noabstract) 1.5±0.5 1.6±0.7 11.7±3.6 71.7±8.5 99.2±0.1
BDD10K (wroadagents_nodrivable_noabstract) 32.8±3.4 36.1±7.7 41.9±6.5 75.9±3.0 99.6±0.1
Cityscapes (OOD / wroadagents_nodrivable_noabstract) 22.6±5.4 25.5±10.2 35.9±6.3 69.9±4.1 99.5±0.2

CSNP

λ = 0.01 λ = 0.1 λ = 1.0 λ = 10.0 λ = 100.0

BDDIntersected (reduced) 1.7±1.1 3.2±1.8 6.5±5.9 18.8±7.7 39.6±18.0
BDDIntersected (wroadagents_noabstract) 6.0±5.0 1.0±0.5 3.7±2.4 11.5±7.0 46.0±17.6
BDD10K (wroadagents_nodrivable_noabstract) 28.2±3.1 31.7±1.5 30.2±2.8 48.9±1.3 88.8±2.4
Cityscapes (OOD / wroadagents_nodrivable_noabstract) 16.0±6.0 23.2±7.9 17.5±2.6 38.1±3.5 89.0±5.2

CSDT2

λ = 0.1 λ = 1.0 λ = 10.0 λ = 100.0

BDDIntersected (reduced) 1.6±1.1 5.4±4.0 46.0±5.9 55.1±12.9
BDDIntersected (wroadagents_noabstract) 0.7±0.3 6.8±4.7 28.7±5.3 42.6±7.1
BDD10K (wroadagents_nodrivable_noabstract) 34.4±2.5 35.4±3.0 67.0±4.4 96.4±0.5
Cityscapes (OOD / wroadagents_nodrivable_noabstract) 24.9±2.1 25.5±5.4 59.1±5.6 97.2±0.6

CO2 + CSNP

λ = 0.1 λ = 1.0 λ = 10.0 λ = 100.0

BDDIntersected (reduced) 6.4±3.6 17.7±5.1 72.6±16.0 111000000...000±±±000...000
BDDIntersected (wroadagents_noabstract) 3.8±2.1 12.7±5.9 61.9±13.6 111000000...000±±±000...000
BDD10K (wroadagents_nodrivable_noabstract) 29.8±3.2 49.9±7.4 85.3±2.0 111000000...000±±±000...000
Cityscapes (OOD / wroadagents_nodrivable_noabstract) 20.4±3.2 47.1±10.6 88.4±3.9 111000000...000±±±000...000

Table 5.8: Percentage of unimodal pixels results for the autonomous driving datasets (higher is
better). The smaller-sized results in the first table fragment are for the mask setups with abstract
classes, which are only able to be used with the ordinal segmentation methods by Fernandes
et al. [20]. The values highlighted in bold are the best-achieved results for the dataset in the
corresponding line, as determined through Welch’s t-test.



5.3 Experimental Results for the Autonomous Driving Datasets 53

(a) (b) (c) (d)
Input image Ground truth Cross-entropy prediction CO2 (λ = 10.0) prediction

Figure 5.9: Comparison of the influence of cross-entropy and CO2 (λ = 10.0) losses on model
output in out-of-distribution inference. It can be seen that the CO2 loss output (d) more accurately
identifies pedestrians, two-wheel vehicles, and riders when compared with the cross-entropy loss
output (c).
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5.3.1 Generalization through Dataset Scale Variance

In order to evaluate whether the inclusion of domain knowledge during the training of the mod-

els would help the network learn better with scarce data, an experiment that consisted of vary-

ing the scale of the dataset used to train the models was performed. In order to also evaluate

the results with the Cityscapes out-of-distribution domain, the BDD10K mask used to train was

wroadagents_nodrivable_noabstract. For each method, the best-performing lambda in the out-of-

distribution scenario was selected, the rationale being that those models are the best at generalizing

to unseen scenarios, which is useful when training with low amounts of data. For the CO2 and

CSNP losses, λ = 10.0 was used, and for the CSDT2 loss, λ = 0.1 was used.

Figures 5.10, 5.11 and 5.12 show, respectively, the comparison plots for the Dice coefficient,

contact surface, and percentage of unimodal pixels metrics for the results from each of the models

trained with varying BDD10K dataset scales. Each plot uses dynamic y axis view limits to improve

the visibility of the results.

When testing with the BDD10K dataset, the CO2 and CSNP methods achieve better Dice co-

efficient results at scales 0.25 and 0.5 when compared with the cross-entropy baseline, Figure 5.10,

which suggests that, indeed, these losses help the network learn better when data is scarce. Es-

pecially when using the CO2 loss, resulting in absolute gains of 1.2% (5.7% in relative terms) in

the Dice coefficient performance at scale 0.25 over cross-entropy. CO2 continues beating cross-

entropy Dice performance through scales 0.1 and 0.05.

Cross-entropy generalizes better than the spatial methods when testing with the Cityscapes

dataset in an out-of-distribution scenario for lower scales. However, the CO2 loss continues to

generalize better than the cross-entropy throughout all scales, achieving a maximum absolute gain

of 5.3% (15.7% in relative terms) in the Dice coefficient at scale 0.75. Still, it can be seen that the

generalization ability of CO2 decreases faster than its own performance on BDD10K – training

with fewer data has a higher impact on the model’s generalization ability.

Regarding the ordinal metrics, the scale variance does not significantly affect the variation of

the contact surface metric, Figure 5.11. In the percentage of unimodal pixels metric, Figure 5.12,

the CO2 loss better maintains its performance at lower scale levels than the other methods.
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Figure 5.10: Dice coefficient (macro average) results for the autonomous driving datasets scale
variation experiments (higher is better).
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Figure 5.11: Contact surface results for the autonomous driving datasets scale variation experi-
ments (lower is better).



Results 56

0.05 0.1 0.25 0.5 0.75 1
Dataset Scale

0

20

40

60

80
Pe

rc
en

ta
ge

of
U

ni
m

od
al

Pi
xe

ls Cross Entropy (Cityscapes - OOD)

Cross Entropy (BDD10K)

CO2 (Cityscapes - OOD)

CO2 (BDD10K)

CSNP (Cityscapes - OOD)

CSNP (BDD10K)

CSDT (Cityscapes - OOD)

CSDT (BDD10K)

Figure 5.12: Percentage of unimodal pixels results for the autonomous driving datasets scale vari-
ation experiments (higher is better).

5.3.2 Semi-Supervised Learning

In order to evaluate whether using the unsupervised CSNP and CSDT2 losses with a mixture of

labeled and unlabeled samples would result in additional inference performance gains, a semi-

supervised learning (SSL) experiment was conducted. BDD100K is a good dataset for this ex-

periment because it contains 10K images annotated for semantic segmentation and 100K without

semantic segmentation labels, as described in Section 3.4. These unlabeled images can potentially

improve the network’s learning by being used to train it with unsupervised losses. To execute this

experiment, a new modified version of the BDD100K dataset was created. This version of the

dataset comprises 8 000 labeled images and around 1 300 unlabeled images. The 8 000 labeled

images are used to compose the test and validation folds to evaluate the network mainly on the

ground truth. This results in a training split of 5 120 labeled + 1 300 unlabeled images, a validation

split of 1 280 labeled images, and a test split of 1 600 labeled images.

Tables 5.9, 5.10 and 5.11 display, respectively, the Dice coefficient, contact surface, and per-

centage of unimodal pixels metrics for the results from each of the models trained with semi-

supervised learning on the custom dataset with varying λ values. Figures 5.13, 5.14 and 5.15

show the same results in a comparison plot. Each plot uses dynamic y axis view limits to improve

the visibility of the results.

Overall, the unsupervised usage of the spatial ordinal segmentation losses did not result in

improvements to the Dice coefficient metric results, Figure 5.13, decreasing it by around 2 to 4%
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in absolute terms for low λ values and with a steep decrease starting at λ = 10. There were no

improvements over the supervised learning results regarding the ordinal metrics.
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Figure 5.13: Dice coefficient (macro average) results for the autonomous driving datasets semi-
supervised learning experiments (higher is better).
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Figure 5.14: Contact surface results for the autonomous driving datasets semi-supervised learning
experiments (lower is better).
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Figure 5.15: Percentage of unimodal pixels results for the autonomous driving datasets semi-
supervised learning experiments (higher is better).
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Cross-Entropy

BDD10K (wroadagents_nodrivable_noabstract) 333888...111±±±111...111
Cityscapes (OOD / wroadagents_nodrivable_noabstract) 333666...000±±±111...111

CSNP

λ = 0.001 λ = 0.01 λ = 0.1 λ = 1.0 λ = 10.0 λ = 100.0

BDD10K (SSL / wroadagents_nodrivable_noabstract) 35.0±0.5 32.9±1.6 33.8±1.9 35.2±1.5 32.6±1.0 30.0±1.3
Cityscapes (OOD / SSL / wroadagents_nodrivable_noabstract) 34.0±0.8 31.2±1.5 32.3±2.1 34.4±1.5 32.1±1.1 29.8±1.7

CSDT2

λ = 0.001 λ = 0.01 λ = 0.1 λ = 1.0 λ = 10.0 λ = 100.0

BDD10K (SSL / wroadagents_nodrivable_noabstract) 34.7±3.0 35.8±0.6 35.2±1.1 33.3±0.9 24.9±1.3 25.1±0.9
Cityscapes (OOD / SSL / wroadagents_nodrivable_noabstract) 31.6±3.2 34.3±1.0 33.9±0.4 33.5±0.6 24.0±0.7 24.7±1.0

Table 5.9: Dice coefficient (macro average) results for the autonomous driving datasets semi-
supervised learning experiments (higher is better). The values highlighted in bold are the best-
achieved results for the dataset in the corresponding line, as determined through Welch’s t-test.

Cross-Entropy

BDD10K (wroadagents_nodrivable_noabstract) 51.22±2.13
Cityscapes (OOD / wroadagents_nodrivable_noabstract) 59.34±1.96

CSNP

λ = 0.001 λ = 0.01 λ = 0.1 λ = 1.0 λ = 10.0 λ = 100.0

BDD10K (SSL / wroadagents_nodrivable_noabstract) 55.00±3.06 50.16±1.21 52.55±3.80 48.09±2.78 37.18±2.88 0.09±0.02
Cityscapes (OOD / SSL / wroadagents_nodrivable_noabstract) 60.34±6.93 53.00±3.47 56.54±5.53 54.83±4.10 40.53±1.24 0.01±0.00

CSDT2

λ = 0.001 λ = 0.01 λ = 0.1 λ = 1.0 λ = 10.0 λ = 100.0

BDD10K (SSL / wroadagents_nodrivable_noabstract) 51.78±1.40 50.18±1.92 50.73±2.47 41.81±1.68 2.17±1.70 000...000000±±±000...000000
Cityscapes (OOD / SSL / wroadagents_nodrivable_noabstract) 52.00±5.92 57.53±5.33 58.75±3.01 46.14±5.15 1.99±1.76 000...000000±±±000...000000

Table 5.10: Contact surface results for the autonomous driving datasets semi-supervised learning
experiments (lower is better). The values highlighted in bold are the best-achieved results for the
dataset in the corresponding line, as determined through Welch’s t-test.
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Cross-Entropy

BDD10K (wroadagents_nodrivable_noabstract) 32.3±5.8
Cityscapes (OOD / wroadagents_nodrivable_noabstract) 23.0±11.4

CSNP

λ = 0.001 λ = 0.01 λ = 0.1 λ = 1.0 λ = 10.0 λ = 100.0

BDD10K (SSL / wroadagents_nodrivable_noabstract) 42.1±6.2 29.7±10.8 32.6±10.9 43.1±1.3 71.0±4.4 95.5±1.1
Cityscapes (OOD / SSL / wroadagents_nodrivable_noabstract) 33.3±10.7 21.4±12.0 24.3±8.3 35.8±2.5 71.1±9.5 97.4±0.6

CSDT2

λ = 0.001 λ = 0.01 λ = 0.1 λ = 1.0 λ = 10.0 λ = 100.0

BDD10K (SSL / wroadagents_nodrivable_noabstract) 30.5±10.3 38.5±5.6 39.1±5.8 47.8±7.0 78.4±4.5 111000000...000±±±000...000
Cityscapes (OOD / SSL / wroadagents_nodrivable_noabstract) 22.1±10.5 28.6±9.5 28.1±8.7 37.1±10.5 70.6±9.3 111000000...000±±±000...000

Table 5.11: Percentage of unimodal pixels results for the autonomous driving datasets semi-
supervised learning experiments (higher is better). The values highlighted in bold are the best-
achieved results for the dataset in the corresponding line, as determined through Welch’s t-test.
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5.4 Discussion

A comparison between the biomedical and autonomous driving datasets results concludes that

the biomedical results are significantly better in terms of the Dice coefficient performance – the

performance gains with the autonomous driving datasets are still positive, but not as large, since

these datasets are considerably more complex, with a greater variety of scenarios and segmentation

classes.

The pixel-wise CO2 method performed well in both the biomedical and autonomous driving

datasets, especially when considered in an out-of-distribution domain – it could potentially be

applied in a real-world scenario in order to improve the generalization capabilities of perception

algorithms.

The spatial methods CSNP and CSDT2 in their current form may not be applicable, at least at

high regularization weights, to the autonomous driving scenario. The scene perspective from the

car makes it so that there is a large amount of valid contact surface between non-ordinally adjacent

classes. Adaptations of these methods that consider this type of contact could be devised in the

future. However, in the biomedical datasets, these methods had a good performance, with their

greatest difficulty being the existence of occlusions.

As was seen, the choice of λ value, i.e., regularization weight, is critical for the performance

of the proposed methods. Because of this, in order to be applied to different domains, there should

be an empirical study of the influence of the lambda value in the segmentation performance in

that specific domain and the choice of a value that is a balance between the ordinal metrics and

the Dice coefficient, i.e., a value that promotes some unimodality and spatial consistency but also

does not hurt Dice performance to the point where it is unusable.

Finally, it can be seen that the Dice values for the autonomous driving datasets are under-

whelming (less than 50%), and the proposed algorithms, when solely used, although they result in

some Dice performance gain, were not enough to substantially increase it. Therefore, in the real

world, it would be desirable to use algorithms that are not solely based on RGB image segmenta-

tion but that use a combination of sensors, like LiDARs.



Chapter 6

Conclusions

The present chapter concludes the dissertation document. Section 6.1 revisits and summarizes

the key conclusions from the work carried out. Section 6.2 delineates future work that could be

explored in the context of ordinal segmentation and autonomous driving.

6.1 Final Remarks

This dissertation explores the proposition that introducing domain knowledge to deep neural net-

works used for scene parsing in autonomous driving can improve their generalization capabilities,

making them more robust, reliable, and safer to employ in real-world scenarios. With this in mind,

the focus of the work was: (1) the development of novel ordinal segmentation loss functions, which

seek to imbue the networks with ordinal constraints during training; and (2) the transposition of

autonomous driving to an ordinal domain, including the adaptation of the proposed methods to

domains with arbitrary ordinal hierarchies.

Two categories of loss functions for ordinal segmentation were studied: (1) pixel-wise, where

each pixel is treated individually by promoting unimodality in its probability distribution; and

(2) spatial, where each pixel is considered in the context of its neighborhood and the contact

surface between non-ordinally adjacent classes is minimized. The following losses were proposed:

(1) the pixel-wise adaptation of the CO2 loss for segmentation; (2) the spatial CSNP loss, which

considers only the immediate neighbor pixels; and (3) the spatial CSDT loss, which considers the

global neighborhood. In addition, two metrics were proposed to evaluate the network output’s

ordinal consistency: (1) the percentage of unimodal pixels and (2) the contact surface between the

segmentation masks of non-ordinally adjacent classes.

The proposed methods were initially validated with five biomedical datasets, where it was

clear, by analyzing the ordinal metrics, that their usage resulted in more ordinally consistent mod-

els and a good amount of ordinal consistency was achieved without a major negative impact on

the Dice coefficient results. To evaluate the impact of the methods in autonomous driving do-

mains, they were trained with the BDD100K dataset and tested in two different scenarios: (1) on
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the BDD100K dataset; and (2) in an out-of-distribution domain, through the Cityscapes dataset,

to evaluate their generalization ability. Furthermore, two additional experiences were conducted

– the models were trained with: (1) scaled-down versions of the BDD100K dataset, to evaluate

how the network learns with scarce data; and (2) semi-supervised learning, to evaluate if using the

methods with a mixture of labeled and unlabeled samples would improve the network’s learning.

It was observed that promoting spatial constraints, beyond improving the spatial metric, also

results in improvements in the pixel-wise metric and vice-versa. It was also clear that at high

lambda values, all methods suffer from over-regularization – the applied ordinal constraints are

excessive and result in predictions that deviate too much from the ground truth.

The CO2 pixel-wise loss achieved the best overall results compared with cross-entropy,

achieving a maximum Dice coefficient absolute improvement of 1.5% (4% in relative terms)

when testing with BDD100K. In an out-of-distribution domain, the models trained with this loss

achieved absolute gains of 4.2% (11.5% in relative terms), which proves that it helps the model

generalize better to unseen situations. When trained with reduced-scale versions of the BDD10K

dataset, the loss obtained maximum absolute improvements of 1.2% (5.7% in relative terms) when

tested with the BDD10K dataset and of 5.3% (15.7% in relative terms) when tested in an out-of-

distribution domain.

The CSNP and CSDT spatial losses served their purpose in reducing the contact surface

between non-ordinally adjacent classes but may not apply to various real-world scenarios with

occlusions and unexpected perspectives. These particularities make it so that contact between

non-ordinally adjacent masks is sometimes valid. Still, the proposed methods only break these

scenarios at high lambda values, making them useful for promoting ordinal consistency at low

regularization weights.

In conclusion, incorporating ordinal consistency into autonomous driving scene parsing mod-

els showed promising results, including developing generalizable models that exhibit improved

learning capabilities with limited data availability.

6.2 Future Work

In terms of future directions for research in the topic of this dissertation, the division into two

primary categories is suggested: (1) the development of ordinal segmentation methods; and (2) the

exploration of ordinality applied to autonomous driving domains.

Regarding ordinal segmentation, the following areas have the potential for further investiga-

tion:

• Development of more flexible spatial ordinal segmentation methods, allowing for limited

contact between non-ordinally adjacent classes, such as in the case of occlusions and differ-

ent perspectives.
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• Exploration of an unsupervised adaptation of the CO2 loss, enabling its application in semi-

supervised learning scenarios, and the evaluation of its performance.

• Development of novel methods that leverage ordinal constraints not necessarily consisting

of augmented loss functions.

In the realm of autonomous driving and ordinality, the following topics can be explored:

• Usage of datasets containing more ordinal relations, such as those incorporating segmented

road markings.

• Experimentation with novel ordinal mask setups.

These preliminary ideas lay the foundation for future work. Furthermore, it is essential to

consider the exploration of novel approaches for the introduction of domain knowledge, which

could enhance the reliability of these algorithms and facilitate the safer application of deep learning

perception pipelines in real-world scenarios.
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Appendix A

PyTorch Code Samples for the
Proposed Loss Regularization Terms

A.1 CSNP

def CSNP(P, K):

loss = 0

count = 0

# for each pair of non-ordinally adjacent classes

for k1 in range(K):

for k2 in range(K):

if abs(k2 - k1) <= 1:

continue

# more weight to more ordinally distant classes

ordinal_multiplier = abs(k2 - k1) - 1

dx = P[:, k1, :, :-1] * P[:, k2, :, 1:]

dy = P[:, k1, :-1, :] * P[:, k2, 1:, :]

loss += ordinal_multiplier * (torch.mean(dx) + torch.mean(dy)) / 2

count += 1

if count != 0:

loss /= count

return loss
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A.2 CSDT2

def CSDT2(P, K, threshold=.5, max_dist=10.):

loss = 0

count = 0

activations = 1. * (P > threshold)

DT = distance_transform(activations)

# cap the maximum distance at 10

max_dist_DT = (DT >= max_dist) * max_dist

# select the values with a distance < 10

DT *= DT < max_dist

# add the capped values

DT += max_dist_DT

# for each pair of non-ordinally adjacent classes

for k1 in range(K):

for k2 in range(k1 + 2, K):

# more weight to more ordinally distant classes

ordinal_multiplier = abs(k2 - k1) - 1

d_k1, d_k2 = DT[:, k1], DT[:, k2]

p_k1, p_k2 = P[:, k1], P[:, k2]

calc = p_k1 * d_k2 + p_k2 * d_k1

calc = calc[calc != 0]

loss += ordinal_multiplier * torch.mean(calc)

count += 1

if count != 0:

loss /= count

loss /= max_dist

loss *= -1 # maximize

return loss



Appendix B

Additional Metrics for the
Experimental Results

B.1 Biomedical Datasets

0.1 1 10 100
λ

87

88

89

90

Ja
cc

ar
d

In
de

x
(m

ac
ro

av
er

ag
e)

Breast Aesthetics

0.1 1 10 100 1000 10000
λ

61

62

63

64

65

66
Cervix-MobileODT

0.1 1 10 100 1000 10000
λ

87.0

87.5

88.0

88.5

89.0

Mobbio

0.1 1 10 100
λ

45

50

55

60

Ja
cc

ar
d

In
de

x
(m

ac
ro

av
er

ag
e)

Teeth-ISBI

0.1 1 10 100
λ

80.5

81.0

81.5

82.0

82.5

83.0

83.5

84.0
Teeth-UCV

Cross Entropy
CO2
CSNP
CSDT
CO2 + CSNP

Figure B.1: Jaccard index (macro average) results for the biomedical datasets (higher is better).
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Figure B.2: Mean absolute error results for the biomedical datasets (lower is better). Displayed
values are multiplied by 102, in order to facilitate analysis.



B.1 Biomedical Datasets 73

Cross-Entropy Ordinal Segmentation (Fernandes et al. [20])

- Ordinal
Encoding

Pixel-Wise
Consistency

Decision Boundary
Parallelism

Breast Aesthetics 888999...111±±±000...666 76.2±3.5 888999...111±±±000...777 10.6±0.6
Cervix-MobileODT 666444...888±±±000...666 63.1±0.8 64.2±0.7 52.4±1.3
Mobbio 88.6±0.2 88.1±0.3 88.4±0.2 87.8±0.2
Teeth-ISBI 555999...999±±±111...555 8.2±5.1 59.5±1.0 10.4±0.9
Teeth-UCV 82.3±0.6 52.6±5.8 81.6±0.8 27.2±0.2

CO2

λ = 0.1 λ = 1.0 λ = 10.0 λ = 100.0 λ = 1000.0 λ = 10000.0

Breast Aesthetics 888999...111±±±000...777 888999...666±±±000...777 888999...222±±±000...444 88.7±0.6
Cervix-MobileODT 666444...777±±±000...555 64.5±0.6 63.2±1.3 63.3±1.3 666444...333±±±111...000 666555...111±±±000...333
Mobbio 88.6±0.1 88.3±0.1 88.3±0.3 88.3±0.1 88.9±0.1 888999...111±±±000...000
Teeth-ISBI 666000...333±±±000...777 666000...000±±±111...333 666000...555±±±111...111 57.9±0.8
Teeth-UCV 888333...000±±±000...555 82.7±0.3 888333...444±±±000...555 888333...000±±±000...999

CSNP

λ = 0.1 λ = 1.0 λ = 10.0 λ = 100.0

Breast Aesthetics 888999...000±±±000...888 888888...999±±±000...888 88.5±1.0 87.6±0.6
Cervix-MobileODT 64.0±1.1 64.2±0.6 666444...444±±±111...000 61.6±0.4
Mobbio 88.6±0.1 88.6±0.1 88.3±0.2 88.1±0.2
Teeth-ISBI 555999...999±±±000...888 666111...000±±±111...333 666111...111±±±000...666 48.2±6.0
Teeth-UCV 82.3±0.3 82.2±0.7 888222...999±±±000...444 82.4±0.2

CSDT2

λ = 0.1 λ = 1.0 λ = 10.0

Breast Aesthetics 888999...333±±±000...777 888999...333±±±000...666 87.7±1.4
Cervix-MobileODT 666444...777±±±000...888 666444...555±±±000...777 62.0±0.3
Mobbio 88.5±0.2 88.3±0.2 87.1±0.3
Teeth-ISBI 666000...111±±±111...666 666111...222±±±111...222 53.9±7.0
Teeth-UCV 82.5±0.5 82.5±0.6 80.9±0.6

CO2 + CSNP

λ = 0.1 λ = 1.0 λ = 10.0 λ = 100.0

Breast Aesthetics 888999...333±±±000...444 888888...888±±±000...666 88.8±0.5 88.7±0.4
Cervix-MobileODT 666555...222±±±000...888 64.2±0.7 62.9±1.0 63.5±0.8
Mobbio 88.5±0.2 88.5±0.1 88.3±0.2 88.4±0.1
Teeth-ISBI 666000...111±±±000...777 666000...777±±±111...333 59.5±1.5 57.8±1.6
Teeth-UCV 888222...888±±±111...000 81.6±1.0 888222...999±±±000...555 81.8±0.9

Table B.1: Jaccard index (macro average) results for the biomedical datasets (higher is better).
The values highlighted in bold are the best-achieved results for the dataset in the corresponding
line, as determined through Welch’s t-test.
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Cross-Entropy Ordinal Segmentation (Fernandes et al. [20])

- Ordinal
Encoding

Pixel-Wise
Consistency

Decision Boundary
Parallelism

Breast Aesthetics 222...555±±±000...222 14.2±2.1 4.4±0.6 26.9±1.0
Cervix-MobileODT 555...999±±±000...222 6.1±0.1 555...999±±±000...111 10.7±1.3
Mobbio 1.4±0.0 1.5±0.0 1.4±0.0 3.5±0.7
Teeth-ISBI 111333...111±±±000...444 30.8±0.5 17.4±0.3 30.1±0.2
Teeth-UCV 666...777±±±000...333 25.4±1.4 11.1±0.5 29.3±0.3

CO2

λ = 0.1 λ = 1.0 λ = 10.0 λ = 100.0 λ = 1000.0 λ = 10000.0

Breast Aesthetics 222...555±±±000...222 222...555±±±000...333 6.9±0.4 11.9±1.5
Cervix-MobileODT 555...999±±±000...222 6.3±0.1 10.4±0.3 16.0±0.3 23.7±0.4 28.0±0.2
Mobbio 1.4±0.0 1.5±0.0 7.9±0.0 9.0±0.1 11.5±0.1 15.7±0.6
Teeth-ISBI 13.2±0.3 13.3±0.3 17.1±0.6 24.7±0.9
Teeth-UCV 7.0±0.4 7.2±0.2 11.5±0.2 19.5±1.3

CSNP

λ = 0.1 λ = 1.0 λ = 10.0 λ = 100.0

Breast Aesthetics 222...555±±±000...222 222...555±±±000...222 222...555±±±000...222 3.5±0.2
Cervix-MobileODT 555...999±±±000...222 6.2±0.3 555...999±±±000...222 666...000±±±000...222
Mobbio 1.4±0.0 1.4±0.0 1.4±0.0 111...333±±±000...000
Teeth-ISBI 13.4±0.3 111333...111±±±000...444 111222...777±±±000...333 15.7±1.1
Teeth-UCV 7.1±0.5 666...888±±±000...333 666...555±±±000...222 7.2±0.2

CSDT2

λ = 0.1 λ = 1.0 λ = 10.0

Breast Aesthetics 222...444±±±000...222 222...555±±±000...222 2.7±0.2
Cervix-MobileODT 555...999±±±000...222 666...000±±±000...222 6.1±0.1
Mobbio 1.4±0.0 1.4±0.0 1.5±0.0
Teeth-ISBI 111333...444±±±000...666 111222...888±±±000...444 14.6±1.0
Teeth-UCV 7.0±0.4 666...888±±±000...222 7.4±0.2

CO2 + CSNP

λ = 0.1 λ = 1.0 λ = 10.0 λ = 100.0

Breast Aesthetics 222...444±±±000...222 2.6±0.1 5.1±0.2 9.6±1.0
Cervix-MobileODT 555...999±±±000...222 6.1±0.2 8.5±0.1 13.6±0.4
Mobbio 1.4±0.0 1.5±0.0 4.0±0.0 18.5±0.1
Teeth-ISBI 13.5±0.6 111222...888±±±000...666 15.7±0.4 21.3±1.1
Teeth-UCV 666...777±±±000...444 7.3±0.3 9.7±0.4 16.7±0.8

Table B.2: Mean absolute error results for the biomedical datasets (lower is better). Displayed
values are multiplied by 102, in order to facilitate analysis. The values highlighted in bold are
the best-achieved results for the dataset in the corresponding line, as determined through Welch’s
t-test.
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B.2 Autonomous Driving Datasets
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Figure B.3: Jaccard index (macro average) results for the autonomous driving datasets (higher is
better).
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Figure B.4: Mean absolute error results for the autonomous driving datasets (lower is better).
Displayed values are multiplied by 102, in order to facilitate analysis.
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Cross-Entropy Ordinal Segmentation (Fernandes et al. [20])

- Ordinal
Encoding

Pixel-Wise
Consistency

Decision Boundary
Parallelism

BDDIntersected (reduced) 57.2±0.6 555777...333±±±111...111 555777...666±±±000...666 57.5±0.5
BDDIntersected (wroadagents_noabstract) 29.5±0.7 29.1±0.4 222999...888±±±000...666 29.3±0.8
BDD10K (wroadagents_nodrivable_noabstract) 31.7±0.7 30.7±0.4 29.9±0.6 31.2±0.2
Cityscapes (OOD / wroadagents_nodrivable_noabstract) 29.5±0.9 28.9±0.4 28.7±0.9 29.4±0.4

BDDIntersected (wroadagents) 222222...888±±±000...333 22.3±0.2 22.2±0.3
BDD10K (wroadagents_nodrivable) 22.8±0.3 222333...111±±±000...666 222333...333±±±000...333
Cityscapes (OOD / wroadagents_nodrivable) 222111...777±±±000...333 222111...444±±±000...444 222111...555±±±000...444

CO2

λ = 0.01 λ = 0.1 λ = 1.0 λ = 10.0 λ = 100.0

BDDIntersected (reduced) 57.0±0.3 56.7±0.6 56.3±1.0 54.1±1.2 50.0±2.1
BDDIntersected (wroadagents_noabstract) 29.3±0.4 29.3±0.6 333000...444±±±000...666 29.0±1.0 21.2±0.2
BDD10K (wroadagents_nodrivable_noabstract) 31.6±0.5 333222...333±±±000...444 333222...000±±±000...444 30.8±1.0 22.9±0.5
Cityscapes (OOD / wroadagents_nodrivable_noabstract) 29.2±0.4 29.6±1.1 333111...000±±±000...777 333111...666±±±000...666 24.6±1.4

CSNP

λ = 0.01 λ = 0.1 λ = 1.0 λ = 10.0 λ = 100.0

BDDIntersected (reduced) 56.8±0.9 57.0±0.9 56.9±1.2 57.3±0.6 56.2±0.4
BDDIntersected (wroadagents_noabstract) 222999...777±±±000...777 333000...000±±±000...333 333000...333±±±000...555 333000...333±±±000...333 29.6±0.7
BDD10K (wroadagents_nodrivable_noabstract) 30.7±0.7 333111...888±±±000...888 31.2±0.3 31.1±0.6 31.2±0.8
Cityscapes (OOD / wroadagents_nodrivable_noabstract) 28.3±0.5 29.1±1.4 28.6±0.9 29.6±0.8 29.3±1.0

CSDT2

λ = 0.1 λ = 1.0 λ = 10.0 λ = 100.0

BDDIntersected (reduced) 56.4±0.6 56.2±1.4 54.6±1.2 42.6±8.6
BDDIntersected (wroadagents_noabstract) 29.5±0.6 222999...777±±±000...777 29.5±1.0 17.6±7.5
BDD10K (wroadagents_nodrivable_noabstract) 333111...777±±±000...888 31.4±0.4 30.8±0.6 27.6±0.6
Cityscapes (OOD / wroadagents_nodrivable_noabstract) 29.9±1.2 29.7±0.3 28.7±0.6 26.2±0.6

CO2 + CSNP

λ = 0.1 λ = 1.0 λ = 10.0 λ = 100.0

BDDIntersected (reduced) 555888...000±±±000...222 56.4±0.6 56.2±1.2 49.9±2.3
BDDIntersected (wroadagents_noabstract) 29.4±0.9 333000...333±±±000...777 28.0±0.7 19.9±0.7
BDD10K (wroadagents_nodrivable_noabstract) 31.4±0.6 333222...222±±±000...444 29.0±0.6 22.5±0.6
Cityscapes (OOD / wroadagents_nodrivable_noabstract) 29.8±0.5 30.7±0.8 30.5±0.3 23.9±0.9

Table B.3: Jaccard index (macro average) results for the autonomous driving datasets (higher is
better). The smaller-sized results in the first table fragment are for the mask setups with abstract
classes, which are only able to be used with the ordinal segmentation methods by Fernandes
et al. [20]. The values highlighted in bold are the best-achieved results for the dataset in the
corresponding line, as determined through Welch’s t-test.
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Cross-Entropy Ordinal Segmentation (Fernandes et al. [20])

- Ordinal
Encoding

Pixel-Wise
Consistency

Decision Boundary
Parallelism

BDDIntersected (reduced) 7.1±0.4 7.8±0.6 7.0±0.3 7.3±0.3
BDDIntersected (wroadagents_noabstract) 3.8±0.1 3.9±0.1 3.6±0.1 3.7±0.1
BDD10K (wroadagents_nodrivable_noabstract) 2.8±0.1 2.9±0.1 3.0±0.1 2.9±0.1
Cityscapes (OOD / wroadagents_nodrivable_noabstract) 3.2±0.1 3.2±0.1 3.2±0.1 3.2±0.2

BDDIntersected (wroadagents) 333...000±±±000...222 222...999±±±000...111 333...000±±±000...222
BDD10K (wroadagents_nodrivable) 2.3±0.0 222...222±±±000...111 222...222±±±000...000
Cityscapes (OOD / wroadagents_nodrivable) 222...666±±±000...111 222...555±±±000...111 222...555±±±000...111

CO2

λ = 0.01 λ = 0.1 λ = 1.0 λ = 10.0 λ = 100.0

BDDIntersected (reduced) 6.9±0.2 7.3±0.4 7.6±0.5 9.9±0.4 15.7±0.7
BDDIntersected (wroadagents_noabstract) 3.7±0.1 3.7±0.1 3.7±0.1 5.0±0.3 8.3±0.2
BDD10K (wroadagents_nodrivable_noabstract) 2.9±0.1 2.8±0.1 3.1±0.2 4.0±0.2 7.3±0.3
Cityscapes (OOD / wroadagents_nodrivable_noabstract) 3.5±0.2 3.3±0.1 3.6±0.3 4.3±0.2 7.6±0.6

CSNP

λ = 0.01 λ = 0.1 λ = 1.0 λ = 10.0 λ = 100.0

BDDIntersected (reduced) 7.1±0.4 7.0±0.1 7.2±0.5 666...666±±±000...333 666...333±±±000...222
BDDIntersected (wroadagents_noabstract) 3.5±0.2 3.7±0.1 3.7±0.2 333...555±±±000...222 333...444±±±000...111
BDD10K (wroadagents_nodrivable_noabstract) 3.1±0.1 2.8±0.2 2.9±0.1 2.8±0.1 222...666±±±000...000
Cityscapes (OOD / wroadagents_nodrivable_noabstract) 3.6±0.2 333...222±±±000...333 3.3±0.1 3.1±0.1 333...000±±±000...111

CSDT2

λ = 0.1 λ = 1.0 λ = 10.0 λ = 100.0

BDDIntersected (reduced) 7.2±0.2 7.1±0.4 6.9±0.4 8.4±1.1
BDDIntersected (wroadagents_noabstract) 3.7±0.2 3.6±0.2 333...444±±±000...222 4.9±0.9
BDD10K (wroadagents_nodrivable_noabstract) 2.9±0.1 3.0±0.1 2.7±0.1 2.9±0.1
Cityscapes (OOD / wroadagents_nodrivable_noabstract) 3.3±0.2 3.4±0.1 333...111±±±000...111 3.1±0.1

CO2 + CSNP

λ = 0.1 λ = 1.0 λ = 10.0 λ = 100.0

BDDIntersected (reduced) 6.5±0.2 7.5±0.2 9.3±0.4 13.5±0.7
BDDIntersected (wroadagents_noabstract) 3.8±0.1 3.6±0.1 5.0±0.1 8.0±0.2
BDD10K (wroadagents_nodrivable_noabstract) 3.0±0.1 3.1±0.1 4.5±0.1 7.1±0.3
Cityscapes (OOD / wroadagents_nodrivable_noabstract) 3.3±0.1 3.6±0.2 4.6±0.1 7.4±0.5

Table B.4: Mean absolute error results for the autonomous driving datasets (lower is better). Dis-
played values are multiplied by 102, in order to facilitate analysis. The smaller-sized results in
the first table fragment are for the mask setups with abstract classes, which are only able to be
used with the ordinal segmentation methods by Fernandes et al. [20]. The values highlighted in
bold are the best-achieved results for the dataset in the corresponding line, as determined through
Welch’s t-test.
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B.2.1 Dataset Scale Variance
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Figure B.5: Jaccard index (macro average) results for the autonomous driving datasets scale vari-
ation experiments (higher is better).
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Figure B.6: Mean absolute error results for the autonomous driving datasets scale variation exper-
iments (lower is better).
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B.2.2 Semi-Supervised Learning
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Figure B.7: Jaccard index (macro average) results for the autonomous driving datasets semi-
supervised learning experiments (higher is better).
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Figure B.8: Mean absolute error results for the autonomous driving datasets semi-supervised
learning experiments (lower is better).
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Cross-Entropy

BDD10K (wroadagents_nodrivable_noabstract) 333111...777±±±000...777
Cityscapes (OOD / wroadagents_nodrivable_noabstract) 222999...555±±±000...999

CSNP

λ = 0.001 λ = 0.01 λ = 0.1 λ = 1.0 λ = 10.0 λ = 100.0

BDD10K (SSL / wroadagents_nodrivable_noabstract) 28.5±0.4 27.1±1.3 27.8±1.5 29.1±1.3 27.3±0.8 25.5±0.9
Cityscapes (OOD / SSL / wroadagents_nodrivable_noabstract) 27.6±0.6 25.4±1.5 26.1±1.7 222888...444±±±111...000 26.6±0.8 25.1±1.2

CSDT2

λ = 0.001 λ = 0.01 λ = 0.1 λ = 1.0 λ = 10.0 λ = 100.0

BDD10K (SSL / wroadagents_nodrivable_noabstract) 28.4±2.2 29.1±0.7 29.0±0.9 27.7±0.5 20.2±1.6 20.2±0.9
Cityscapes (OOD / SSL / wroadagents_nodrivable_noabstract) 25.4±2.5 27.9±0.9 27.8±0.4 27.8±0.5 19.6±1.0 20.2±0.9

Table B.5: Jaccard index (macro average) results for the autonomous driving datasets semi-
supervised learning experiments (higher is better). The values highlighted in bold are the best-
achieved results for the dataset in the corresponding line, as determined through Welch’s t-test.

Cross-Entropy

BDD10K (wroadagents_nodrivable_noabstract) 2.8±0.1
Cityscapes (OOD / wroadagents_nodrivable_noabstract) 3.2±0.1

CSNP

λ = 0.001 λ = 0.01 λ = 0.1 λ = 1.0 λ = 10.0 λ = 100.0

BDD10K (SSL / wroadagents_nodrivable_noabstract) 3.3±0.2 3.4±0.2 3.3±0.2 2.9±0.2 222...777±±±000...111 2.7±0.1
Cityscapes (OOD / SSL / wroadagents_nodrivable_noabstract) 3.4±0.1 3.6±0.2 3.6±0.2 3.1±0.1 222...888±±±000...111 2.9±0.1

CSDT2

λ = 0.001 λ = 0.01 λ = 0.1 λ = 1.0 λ = 10.0 λ = 100.0

BDD10K (SSL / wroadagents_nodrivable_noabstract) 3.1±0.3 3.2±0.2 3.0±0.1 2.9±0.2 4.1±0.5 4.0±0.3
Cityscapes (OOD / SSL / wroadagents_nodrivable_noabstract) 3.5±0.3 3.3±0.2 3.1±0.1 3.0±0.2 4.1±0.4 3.9±0.3

Table B.6: Mean absolute error results for the autonomous driving datasets semi-supervised learn-
ing experiments (lower is better). Displayed values are multiplied by 102, in order to facilitate
analysis. The values highlighted in bold are the best-achieved results for the dataset in the corre-
sponding line, as determined through Welch’s t-test.
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