

Identifying
References to
Legal Literature in
Portuguese
Superior Court
Decisions

Fábio Miguel Pereira Nogueira
Master's Degree in Network and
Information Systems Engineering
Computer Science Department
2023

Supervisor

Fernando Silva, Full Professor,
Faculty of Sciences of the University of Porto

Co-supervisor
Maria Raquel Guimarães, Associate Professor
Faculty of Law of the University of Porto / CIJ

Aos meus queridos pais, David e Rosa, cujo apoio inabalável e esforços incansáveis
tornaram possível que eu pudesse escrever estas palavras. A vossa orientação e

sacrifícios altruístas têm sido inestimáveis. Serão sempre um pilar no meu sucesso.
Obrigado por tudo. Amo-vos.

i

Sworn Statement

I, Fábio Miguel Pereira Nogueira, enrolled in the Master Degree in Network and Information
Systems Engineering at the Faculty of Sciences of the University of Porto hereby declare, in
accordance with the provisions of paragraph a) of Article 14 of the Code of Ethical Conduct of
the University of Porto, that the content of this dissertation report reflects perspectives, research
work and my own interpretations at the time of its submission.

By submitting this dissertation report, I also declare that it contains the results of my own
research work and contributions that have not been previously submitted to this or any other
institution.

I further declare that all references to other authors fully comply with the rules of attribution and
are referenced in the text by citation and identified in the bibliographic references section. This
dissertation report does not include any content whose reproduction is protected by copyright
laws. I am aware that the practice of plagiarism and self-plagiarism constitute a form of academic
offense.

Fábio Miguel Pereira Nogueira

30th of June, 2023

iii

Acknowledgements

First and foremost I would like to express my heartfelt appreciation to Professor Fernando Silva.
This thesis has benefited greatly from his exceptional coordination, meticulous proofreading, and
unwavering support. I am deeply thankful for his guidance and belief in my abilities as a working
student striving to complete this thesis within this year.

Furthermore, I would like to extend my appreciation to Professor Maria Raquel Guimarães.
Her expertise in complex legal verbiage and providing essential information on the field was
instrumental in shaping this work. I also want to specially thank Sylwia Bugla, from INESC
TEC, for her tireless efforts in sentence validation, beyond her support. A special mention goes
to Engineer Augusto Ribeiro for his help gathering and providing the authors’ list from the
FDUP’s platform.

I would also like to take this opportunity to express my profound gratitude to my closest family.
Their unwavering support, encouragement, and love have been the driving force behind my
accomplishments. I am eternally grateful to my my parents for everything, to my brother Rafael
for being not only a sibling but also a friend, and to my girlfriend Joana for her unwavering
support and understanding throughout this challenging journey.

I am also indebted to all of my friends who have played an integral role in my (not only) academic
life. I would like to extend my sincere thanks to Francisco, André, Rui, Rúben, and countless
others who have provided support, companionship, and encouragement. Each one of them holds
a special place in my heart, and their friendship has enriched my life immeasurably.

Lastly, I would like to acknowledge every single person who has believed in me. Their faith in my
abilities have been a constant source of motivation. I would also like to express my gratitude to
those who may have doubted me, as their skepticism has pushed me to prove myself and reach
new heights. I firmly believe that it is through the challenges and obstacles we face that we grow
and evolve, and for that, I am immensely grateful.

v

Abstract

The decision-making process by judges in the court of law is often influenced by academic legal
writings. Hence, their decisions may include references to legal books, research articles and other
academic writings. The creation of a citation index based on the jurisprudence of higher courts,
possibly organized according to the thematic areas of research, makes it possible to evaluate
the impact of the scientific production of jurists who dedicate their careers to the study of Law,
namely professors, researchers or graduate students.

The automatic identification of citations in texts is a complex problem. Not only is it necessary
to delimit the reference made to legal academic writings in the text, but it is also necessary
to identify the authorship by associating it with one or more know authors. This leads to the
problem of disambiguating names. The references produced in a text do not always follow the
same pattern, and there may be multiple ways of referring to the same author. When abbreviated
forms of names are used, the same abbreviation may correspond to two or more different authors,
making it difficult to credit the citation of a publication to its true author.

This dissertation tackles the problem of automatically identifying citations, or references, to
academic legal writings in superior court decisions and crediting them to their authors. Our
proposal is to solve this problem by creating a digital infrastructure using non-relational databases
to manage reference information, creating algorithms to identify and clean up possible references
within a document, and associating them with authors or researchers.

Our contributions include the development of an algorithm based on author names and citation
patterns in legal contexts, an algorithm based on grammar rules from NLP’s Named-Entity
Recognition that uses chunks created from legal context, and finally a learning algorithm based
on a transformer architecture, capable of identifying citations to legal documents within pre-
processed sentences extracted from supreme court decisions. We also present an Information
Extraction technique based on grammar rules to fetch metadata on a given citation. Performance
results are provided for all citation identification strategies.

Keywords: Text Mining, Citation Identification, Citation Extraction, Data Mining, NoSQL,
Natural Language Processing, Transformer Architecture.

vii

Resumo

É comum um tribunal fundamentar a sua decisão em citações de trabalhos de investigação
produzida por juristas. A criação de um índice de citações com base na jurisprudência dos
tribunais superiores, eventualmente organizado em função das áreas temáticas de investigação,
possibilita a avaliação do impacto da produção científica dos juristas que dedicam a sua carreira
ao estudo do Direito, nomeadamente docentes, investigadores ou estudantes de pós-graduação.

A identificação automática de citações em textos é um problema complexo. Não só é necessário
delimitar no texto a referência que é feita a outros trabalhos, como é necessário associar a um
ou mais autores deparando-nos frequentemente com o problema de desambiguar nomes. As
referências produzidas num texto nem sempre seguem o mesmo padrão, podendo haver múltiplas
formas de referir um mesmo autor. Quando são usadas formas abreviadas de nomes, pode
dar-se a situação de uma mesma abreviação poder corresponder a dois ou mais autores distintos,
dificultando a tarefa de creditação da citação de uma publicação ao seu verdadeiro autor.

Esta dissertação aborda o problema da identificação automática de citações, ou referências, a
textos jurídicos académicos em decisões de tribunais superiores e da atribuição de créditos aos
seus autores. A nossa proposta é resolver este problema através da criação de uma infraestrutura
digital usando bases de dados não relacionais para gerir a informação de referência, criando
algoritmos para identificar e limpar possíveis referências dentro de um documento, e associando-as
a autores ou investigadores.

Os nossos contributos incluem o desenvolvimento de um algoritmo baseado em nomes de autores
e padrões de citação em contextos jurídicos, um algoritmo baseado em regras gramaticais do
Reconhecimento de Entidades Nomeadas da PNL que utiliza chunks criados a partir do contexto
jurídico e, finalmente, um algoritmo de aprendizagem baseado numa arquitetura transformadora,
capaz de identificar citações a documentos jurídicos em frases pré-processadas extraídas de
decisões do Supremo Tribunal. Apresentamos também uma técnica de extração de informação
baseada em regras gramaticais para obter metadados sobre uma dada citação. São apresentados
resultados de desempenho para todas as estratégias de identificação de citações.

Palavras-Chave: Text Mining, Citation Identification, Citation Extraction, Data Mining,
NoSQL, Natural Language Processing, Transformer Architecture.

ix

Contents

Sworn Statement iii

Acknowledgements v

Abstract vii

Resumo ix

Contents xiv

List of Tables xv

List of Figures xviii

Listings xix

Acronyms xxi

1 Introduction 1

1.1 Context and Motivation . 1

1.2 Main goals . 2

1.3 Contributions . 4

1.4 Dissertation structure . 4

2 Background and Related Work 7

2.1 Data and Text Mining . 7

xi

2.2 Data Mining Pipeline . 8

2.3 Data Preprocessing and Preparation . 10

2.4 Non-relational Databases - NoSQL . 12

2.4.1 Types of Non-relational Databases . 12

2.4.2 Different cases of NoSQL databases . 12

2.5 Natural Language Processing and Large Language Models 13

2.5.1 NLP Techniques . 14

2.5.2 NLP Technologies . 15

2.6 Transformer architecture . 16

2.6.1 BERT - Bidirectional Encoder Representations from Transformers 17

2.6.2 GPT - A State-of-the-Art Language Model 19

2.6.3 Other Models and Applications . 20

2.7 Related Work . 20

2.7.1 Citeseer - An Automatic Citation Indexing System 20

2.7.2 CiteSeerX . 21

2.8 Summary . 22

3 Data Preparation and Preprocessing 23

3.1 Data Gathering - Web Scrapper . 23

3.1.1 Technologies Background . 24

3.1.2 Extraction . 25

3.2 Data preparation . 25

3.3 Database Architecture . 26

3.4 Data Preprocessing . 31

3.4.1 Data Preparation and Tokenization . 31

3.4.2 Data Preparation to Sentence Divider . 32

3.4.3 Authors’ Data . 32

3.5 Summary . 34

xii

4 Identification of references to legal literature 35

4.1 Sentence Tokenization . 36

4.2 Data preparation for extraction . 38

4.2.1 Output of identified references . 39

4.2.2 BERT . 40

4.3 Summary . 43

5 References Extraction 45

5.1 Extraction Tool Preparation . 45

5.2 Grammar structure for chunk identification . 47

5.3 Citation information extraction . 50

5.4 Summary . 51

6 Results 53

6.1 Citation Identification Results Analysis . 53

6.1.1 Identification based on patterns and researcher’s names 54

6.1.2 Identify by grammar rules . 56

6.1.3 BERT . 58

6.1.4 Conclusions . 60

6.2 Presenting extracted data . 61

6.3 Summary . 62

7 Conclusion and Future work 63

7.1 Future Work . 63

A Auxiliary Tables 65

B Auxiliary Graphs 77

C Auxiliary Code Samples 79

xiii

D Auxiliary Images 81

References 83

xiv

List of Tables

3.1 Renaming fields from raw dataset to new dataset 26

3.2 Database Architecture - Publication . 27

3.3 Database Architecture - Reference . 28

3.4 Database Architecture - Author . 29

3.5 Database Architecture - Publication-Author . 29

4.1 Example text and its transformation into tokens and attention mask 40

A.1 HTML Requests Header for Web Scrapping Algorithm 65

A.2 Example of patterns in european portuguese legal literature for citations 66

A.3 Mac-Morpho’s lexical tags and its grammar class 67

A.4 Example of paires "Word-Tag" used in the custom Mac-Morpho list 68

A.5 Citation identification from authors’ names and patterns (Raw) 69

A.6 Citation identification from authors’ names and patterns (All names) 70

A.7 Citation identification from authors’ names and patterns (All names and less
Patterns) . 71

A.8 Citation identification from authors’ names (All names), and Grammar Rules . . 72

A.9 Citation identification from Grammar Rule’s Patterns 73

A.10 Citation identification from BERT, iteration 1 . 74

A.11 Citation identification from BERT, iteration 2 . 75

A.12 Citation identification from BERT, iteration 3 . 76

xv

List of Figures

1.1 Project’s Pipeline . 4

1.2 Dissertation’s Pipeline . 5

2.1 Cross Industry Standard Process for Data Mining (CRISP-DM) 9

2.2 A 2-D customer data plot with respect to customer locations in a city, showing
three data clusters. Outliers may be detected as values that fall outside of the
cluster sets. 11

2.3 Comparison of BERT, OpenAI GPT and ELMo 17

2.4 Model structure of the label-masked language model. "N-MASK" is a mask token
containing negative label information. 18

3.1 Project’s Pipeline: Data Preparation Stage . 23

3.2 DGSI’s URL Structure . 25

3.3 Database schema involving all tables and relations 30

3.4 Architecture of the Punkt System . 33

4.1 Project’s Pipeline: Citation Identification Stage 35

4.2 Graph plot relating identification via patterns first and names first. 37

4.3 Tokenization process pipeline visualizer . 41

4.4 Token IDs’ array as a tensor object and their respective class 41

4.5 Validation calculations to process training’s accuracy, precision, recall and specificity. 42

5.1 Project’s Pipeline: Metadata Extraction Stage 45

5.2 Segmentation and Labeling at both the Token and Chunk Levels 48

xvii

5.3 Citation Rule architecture . 49

5.4 Citation’s Chunk Tree Example from Python’s draw tool 50

6.1 Project’s Pipeline: Information Presenting Stage 53

6.2 Comparison of validators metrics between different approaches on citation identi-
fication . 57

6.3 Boxplot on sentence length distribution for all 7434 lines gathered 58

6.4 Comparison of validator’s metrics between different iterations of BERT’s dataset 59

6.5 Comparison of computational times between different iterations of BERT’s dataset 59

6.6 Comparison of validator’s metrics between different epochs’ values on the same
iteration of BERT’s dataset . 60

6.7 Comparison of times to identify citations in 20 documents between different
approaches to the citation identification problem 61

B.1 Graph plot relating identification via patterns first and names first. 77

B.2 Boxplot on sentence length distribution for all 121 lines with citation gathered . 78

D.1 DGSI’s URL Structure . 81

xviii

Listings

C.1 BERT Training . 79
C.2 BERT Validation . 79
C.3 BERT Usage . 80

xix

Acronyms

BERT Bidirectional Encoder Representations
from Transformers

CoNLL Conference on Computational
Natural Language Learning

CNN Convolutional Neural Networks

DM Data Mining

GLUE General Language Understanding
Evaluation

GPT Generative Pretrained Transformer

TM Text Mining

LaMDA Language Model for Dialogue
Applications

LLM Large Language Model

NLP Natural Language Processing

NoSQL Not only SQL

RNN Recurrent Neural Network

SQuAD Stanford Question Answering
Dataset

NLTK Natural Language Toolkit

ML Machine Learning

PoS Part-of-Speech

TP True Positive

FP False Positive

TN True Negative

FN False Negative

xxi

Chapter 1

Introduction

The automatic identification of citations, or references, to published academic legal writings in
superior court decisions is a complex and challenging task. It requires in-depth knowledge of
legal terminology, language, and the ability to comprehend complex legal texts. The process
involves identifying references to previous court decisions, statutes, regulations, and other legal
materials to help understand and interpret the current case.

In Portuguese legal decisions, it is common to cite, or even quote, specialized works that provide
relevant context towards the decision being issued. However, the lack of a consistent format
on how citations or quotations are written in official documents makes automatic detection a
difficult problem.

1.1 Context and Motivation

Detecting references to legal literature within superior court decisions and crediting them to the
authors being cited is important for legal professionals, scholars, researchers, authors pursuing
an academic career [1], and to reviewers who, for example, want to find all court rulings that
have cited a particular work, or determine in which contexts a particular work has been cited.

The identification of references plays a critical role in the development of legal technology and
the improvement of legal research tools. With the increasing volume of legal texts available
online, it is essential to have accurate and efficient reference identification tools to support legal
professionals in their work. In the era of big data, the sheer volume of legal documents can be
overwhelming without the proper tools to help in parsing and analysing them.

A reference identification tool can have a good impact on the justice system as a whole. By
facilitating the identification of relevant legal literature, it assists judges in locating the sources
that have been consulted to support a specific solution. Thoroughly considering prior decisions
and the accompanying citations contributes to the unification of rulings and promotes increased
certainty and security in the application of the law. Additionally, it may contribute to the

1

2 Chapter 1. Introduction

development of legal arguments, the settlement of legal disputes, and progress in the rule of law.

This works aims at developing innovative text mining-based solutions to automatically identify
citations in the official court ruling documents and credit them to the authors being cited, while
also storing them and indexing the cited author so that the data can later be visualized by the
users.

The work presented is developed using real legal documents gathered from DGSI’s website [2],
from the Ministério da Justiça (Portuguese Ministry of Justice).

1.2 Main goals

In order to tackle the automatic identification of citations and to allow a user to visually observe
court rulings citing their work, the following goals guide the work of this dissertation.

• Language-focus: The focus of this work is on parsing Portuguese superior court decisions,
written in the Portuguese language, to determine citations to legal literature.

• Data availability: In order to develop and train an identification algorithm, allow for the
available documents to be stored in the same computation environment, together with the
link to the original document.

• Identification algorithm. Develop an algorithm that uses real superior court ruling
documents to learn, with high accuracy, how to identify citations within those documents.

• Citation extraction: Citations identified from sentences need to be parsed in order
to produce the corresponding publication metadata, which is normally characterized by
elements such as authors, publication title, pages and year.

• Indexing citations: In order, for authors to receive proper credit, it is essential to
appropriately link a citation to both the document in which it appears and the corresponding
author.

• Authors’ profile: Authors must be credited with the works they have authored and
citations their works are receiving in court decisions. This enables the ability to a given
author to fetch citation to their own documents.

In order to accomplish these goals, the work must include the following necessary steps:

• Data preprocessing of superior court decision documents. In order for these documents
to be used and their information to be easily accessed by an algorithm, one needs to pull
them from a certified and official website and perform some cleanup and syntactic analysis
before storing them in a database.

1.2. Main goals 3

• Citations need to be carefully looked at as they are not always referenced the same way
and documents may use more than one type of referencing.

• The algorithm not only needs to accurately determine the parts of the document that
correspond to a citation, but also to interpret it and discover its structure made of authors,
title, where-published, and year, in order to store it properly in the database. The set of
citations, or references, identified in a document constitutes its references list.

• Plan the storage model to be concise yet future-proof. Its information should be accessed
and used in multiple interesting ways beyond this dissertation.

• Create a mockup project and implement a prototype that illustrates the algorithm in
practice, namely the citations it discovers in a document, and the citations an author has
received in each of his works.

Based on the formulated goals, the following research questions guide the work pursued in this
dissertation:

• Q1: How to create an algorithm that selects citations, or quotes, in a Portuguese text
through collected superior court decision documents with a diversity of citation syntax?

• Q2: Can this identification process benefit from Machine Learning (ML) capabilities?

• Q3: How to credit researchers and law practitioners with citations to their work found in
superior court decision documents?

• Q4: How to identify the metadata elements characterizing a citation in order to build a
list with all references associated with a specific work?

Figure 2.1 illustrates the different stages of the project addressing the main goals, forming a
pipeline.

4 Chapter 1. Introduction

Figure 1.1: Project’s Pipeline

1.3 Contributions

This work resulted in contributions and tools to the scientific community in the following way:

• Our thesis introduces an algorithm that utilizes state-of-the-art Natural Language Pro-
cessing (NLP) technology to accurately identify citations within legal portuguese literature.
This innovative solution significantly reduces manual effort by automating the reference
identification process with exceptional precision. Moreover, the algorithm organizes the
extracted metadata into a structured database, providing a valuable resource for future
research and presentations. By establishing a solid foundation, our work opens avenues for
advancements in the field of reference identification from legal literature.

• In addition, we have developed a fine-tuning to BERT’s transformer architecture, with
legal field content. Its potential lies in enabling more accurate and context-aware citation
recognition, potentially revolutionizing the way legal references are identified and processed.
By leveraging advanced NLP and ML techniques, our work contributes to the efficiency
and accuracy of reference identification in the legal domain.

1.4 Dissertation structure

The remainder of the dissertation is organised as follows:

• In Chapter 2 is presented essential background information for the broader topics of the
dissertation and some techniques or technologies state-of-the-art related to them;

1.4. Dissertation structure 5

• Chapter 3 presents the steps of data preparation, explaining the dataset used and its
transformations for later use;

• The initial project development starts at Chapter 4 where we explore how the reference
identification is made;

• Chapter 5 focuses on metadata extraction from the references identified for later use;

• Chapter 6 uses information gathered throughout the work to elaborate demonstrations on
different topics;

• The dissertation concludes on Chapter 7 and there is presented an idea of future work.

The dissertation’s pipeline, depicted in Figure 1.2, will be morphed when we reach each one of
those stages throughout the dissertation.

Figure 1.2: Dissertation’s Pipeline

Chapter 2

Background and Related Work

This chapter focuses on introducing relevant concepts related to this dissertation, namely to the
areas of Data Mining (DM), Text Mining (TM) and Natural Language Processing (NLP) and
presenting some techniques and data tools that are related to our work, as well as describing
related research and tools addressing similar problems. It also explores the state of the art on NLP
technologies, followed by a more minute enlightenment on transformer architecture, as this is, by
our understanding, the most relevant form of data exploration techniques in nowadays machine
learning technology. After traversing through NLP, the chapter works around Citeseer and its
legacy in the text identification field. This chapter ends by stating Non-relational databases and
their different uses.

2.1 Data and Text Mining

Data mining is a complex process that involves discovering patterns and insights from extensive
datasets using statistical, machine learning, and data visualization techniques. Its primary
objective is to extract valuable information to support decision-making and predictive modelling.
The IEEE defines data mining as "the extraction of knowledge from data, through the use
of statistical, computational, and visualization techniques." [3]. This versatile approach finds
applications in various fields, including marketing, healthcare, finance, and cybersecurity.

The data mining process comprises several essential steps. Initially, data is collected from diverse
sources such as databases, social media, and websites. Subsequently, the collected data undergoes
preprocessing operations, including cleaning, filtering, and transformation, to ensure its suitability
for modelling. The modelling phase involves the application of statistical and machine learning
algorithms to uncover hidden patterns and relationships within the data. Common techniques
employed in data mining encompass clustering, classification, regression, and association rule
mining. Rigorous evaluation and validation of the modelling results are conducted to verify the
accuracy and usefulness of the derived models.

While data mining offers numerous benefits, such as identifying new business opportunities

7

8 Chapter 2. Background and Related Work

and enhancing decision-making processes, it is not without risks. Privacy violations can arise
as a result of accessing and analyzing large datasets. Additionally, the potential for biases
and discrimination in decision-making processes must be carefully considered. Despite these
challenges, data mining continues to play a crucial role in extracting valuable insights from data,
empowering organizations in various industries to make informed decisions and drive innovation.

Text mining is a valuable process that extracts useful information and insights from unstructured
text data using Natural Language Processing (NLP) techniques. Its primary aim is to uncover
patterns and relationships within text data, which can be utilized for decision-making or predictive
modelling. The IEEE defines text mining as "the application of natural language processing,
information retrieval, and machine learning techniques to extract information and insights from
unstructured text data." [3]. It finds applications in various domains, including sentiment analysis,
topic modelling, and document classification.

Text mining involves several crucial steps. Initially, data acquisition takes place, wherein text data
is gathered from diverse sources such as websites, social media, and documents. Subsequently,
the acquired data undergoes preprocessing, which includes tasks like tokenization, stop-word
removal, and stemming. These preprocessing steps are crucial in transforming unstructured text
data into a format suitable for modelling and analysis.

The modelling phase in text mining entails the application of NLP and machine learning
algorithms to preprocessed text data. These algorithms enable the discovery of patterns and
relationships within the text. Common text mining techniques include sentiment analysis, topic
modelling, and named entity recognition. The results of the modelling process are evaluated
and validated to ensure accuracy and usefulness. It is also essential to be aware of potential
risks associated with text mining, including privacy violations and the potential for bias and
discrimination in decision-making processes.

To this work in particular text mining is beneficial as it can help extract reference information to
create the document bibliography and to identify patterns in the Portuguese language with the
help of NLP techniques.

2.2 Data Mining Pipeline

In the modern world, the application of DM is frequently planned using a pipeline of operations.
The sequence of these operations makes it possible to convert information input into knowledge
output.

As stated by Juodyte M. in "Overview: Data mining pipeline.” [5], the CRISP-DM model grew
out of an earlier model named Knowledge Discovery in Databases (KDD). It is also important to
note that this pipeline is iterative, allowing us to go back and repeat previous steps in order to
strengthen the data output produced at the end. The CRISP-DM model, which can be seen in
figure 2.1, is currently the procedure that is most widely used in the community and it involves

2.2. Data Mining Pipeline 9

Figure 2.1: Cross Industry Standard Process for Data Mining (CRISP-DM)[4][5].

the following phases:

• Business Understanding. This is a phase that entails comprehending the project’s
boundaries and goals from a comprehensive and distributional point of view. As a result,
before planning how the outlined objectives will be attained, it should be first defined
a DM problem. It is up to the team working with the data to define this progress in
coordination with the subject, never forgetting the resources, tools, techniques, risks, and
costs. However, even in situations where the business is differentiated, as is the case in law,
there will always be a problem, a plan to follow, and conclusions to be drawn from the
work.

• Data Understanding. It implicates the entire environment of data collection-related
activities, as well as those that help data scientists become familiar with the information’s
quirks, data quality issues, and initial approaches and hypotheses about what they have.
When used in the following stage, data that is incorrect and poorly organized is fairly
typical.

• Data Preparation. This involves all the steps necessary to obtain a final dataset that is
ready to handle, including the application of other tools for data inclusion and exclusion
known as data selection as well as the selection of tables, records, and attributes. In a data
cleaning phase, the dataset is carefully inspected for incorrect values and inconsistencies in
data types and formats. This phase’s goal is to make it possible to statistically analyze the
data using tools that need the data to be properly formatted, normalized, and regulated.

• Modelling. During this phase the parameters are changed to produce the best results
while the techniques and procedures to be used on the data are chosen. Different modelling
techniques can be used, including anomaly detection to identify outliers and abnormal
values, association rule learning to simulate dependent relationships between variables,
clustering to identify groups and subgroups of similar values, and classification to apply
previously learned knowledge to new data and categorize it. As opposed to summarization,
which aims to create a concise visual representation of the dataset, regression algorithms
typically infer the relationship between a dependent variable and independent variables.

• Evaluation. In the Evaluation phase, a quality model must be tested to see if it meets the
requirements imposed in the previous phases. Although deployment is the final step, the

10 Chapter 2. Background and Related Work

pipeline is constantly active because most hypotheses can always be improved and made
applicable to modern standards by new information.

2.3 Data Preprocessing and Preparation

According to Jiawei Han et al. [6], data preprocessing aims to assess and arrange factors that
endanger data quality, such as accuracy, completeness, consistency, timeliness, believability, and
interpretability. Incorrect, inconsistent and incomplete data are integral properties of currently
collected data that are part of real data databases and data warehouses with exceptionally strong
ties to their genesis’s everyday living. Additionally, raw logs, documents, and semi-structured
data are commonly in a form that is not required for processing.

It is worthwhile introducing the concept of concealed missing data, even though the existence of
incorrect data can be simply explained by human or computational error. A user may occasionally
decide to enter a default value or a wrong value in one of the information that concerns him
for a variety of reasons, according to Pearson [7]. This also applies to the fields of law or legal
data, as academics or law practices may voluntarily enter information that is not accurate (such
as a person’s name or particular information that may expose an individual). Although such
information is fundamentally incorrect, an automated system accepts it as long as it is entered
in accordance with its formatting guidelines. This kind of data distorts results and is inherently
challenging to comprehend, identify, and remove.

Observed evidence suggests that incomplete data is often entered due to accessibility issues or
entry errors. The quality of data is also influenced by how consistently it is collected. It is crucial
to evaluate the data’s reliability on references and its interpretability, which measures how the
information is perceived. If a phrase presents a reference that might not be clear or with the
objective of being tacit, it can create increased complexity in trying to figure out if something is
being referenced.

Data cleaning, data integration, data reduction, and data transformation are some of the key
tasks that must be considered during data preprocessing.

The goal of the data cleaning phase is to address issues such as missing values and data noise.
This phase also addresses the presence and identification of outliers, which may or may not be
the goal of the work, as well as dealing with data inconsistencies. We should keep in mind that
these procedures must be reliable to prevent over-fitting the data and making it challenging to
obtain accurate results.

Examples of some of the issues and mistakes that can occur during data collection include:

• Technical problems with sensors and the hardware restrictions they have on data collection
and transmission

• Scanner errors brought on by imperfect recognition methods (e.g. speech-to-data).

2.3. Data Preprocessing and Preparation 11

• The refusal or preference to conceal personal information due to user privacy concerns.

• Manual errors and manually created data.

• The responsible entity might not be able to collect certain types of data, due to their
implications or cost.

During this phase, encountering missing values poses a significant challenge, necessitating careful
consideration of appropriate solutions. The entire record with missing values could be ignored,
or they could be manually filled in or replaced with constants (e.g. "Unknown." or "NaN").
Utilizing attribute trend calculations, such as the mean or median, from the entire dataset or
from particular classes or subsets within it is another choice. Researchers can also choose to use
the most likely value to complete the missing data. Despite their widespread use, it’s crucial
to remember that these latter techniques have the potential to introduce biased and inaccurate
values into the dataset. The method of estimating missing values is referred to as "imputation".
As a result, by providing approximations for the missing values, imputation plays a crucial role
in reducing the impact of missing data and enabling meaningful analysis.

Regarding the outliers found in the data, these may have been found through clustering, which
groups values into clusters based on shared traits. Figure 2.2 shows an example of an outlier,
a record that deviates from the norm within these characteristics, and the use of metadata,
knowledge about the data itself, a priori, can be helpful in confirming the existence of outliers.

Figure 2.2: A 2-D customer data plot with respect to customer locations in a city, showing three
data clusters. Outliers may be detected as values that fall outside of the cluster sets.[8].

Cross-referencing data from various sources is a concept known as data integration, which is
used to gather data from various databases, cubes, or files and represent a concept more broadly.
Additionally, by avoiding redundant data and inconsistent results in the final dataset, this process
speeds up the DM process that follows.

12 Chapter 2. Background and Related Work

2.4 Non-relational Databases - NoSQL

Not only SQL (NoSQL) refers to a class of non-tabular databases designed to manage large
amounts of data that are not properly suited to the conventional relational database model. They
instead make use of a range of data models created to support specific use cases. MongoDB,
Cassandra, and Redis are a few well-known examples of NoSQL databases.

2.4.1 Types of Non-relational Databases

The different types of NoSQL databases include:

• Document databases: Data is stored in the form of documents, which are comparable to
JSON objects. Due to their ability to store complex data structures and support flexible
schemas, document databases are frequently applied in modern online applications.

• Key-value databases: These types of databases store data as a collection of key-value pairs,
with the key being used to look up the corresponding value. Although they are quick and
effective, sophisticated searches cannot be run on key-value databases.

• Wide-column stores: Designed to read and write enormous amounts of data quickly and
efficiently as they store data in columns rather than rows. Wide-column stores are often
used for big data applications.

• Graph databases: Used to represent complex data-to-data relationships since they store
data in the form of nodes and edges. Graph databases are often used for recommendation
engines and social networking applications.

NoSQL databases are frequently chosen over typical relational databases when the data model is
not well understood beforehand, when the data is big and/or unstructured, or when scalability
is the main concern. For applications that demand complex operations or strict reliability
guarantees, they might not be the optimal choice.

2.4.2 Different cases of NoSQL databases

The following items are three of the most popular database programs [9], each one with its unique
capabilities:

• MongoDB is a document-oriented database that stores data in JSON-like documents with
optional schemas. It is frequently utilized in modern web applications because of its
scalability and flexibility. It provides flexible schemas, making it simple to add and modify
data over time, it’s horizontally scalable, meaning that it can handle high volumes of data
and traffic by simply increasing the number of servers in the cluster but it doesn’t support
complex transactions.

2.5. Natural Language Processing and Large Language Models 13

• Cassandra is a wide-column storing database that is designed to handle large amounts of
information across many commodity servers, providing high availability with no single point
of failure. It can replicate data across servers to improve availability and fault tolerance.
Cassandra also allows users to choose the level of consistency that is appropriate for the
application in the case. It may require upfront planning and design, and a more complex
to perform some queries compared to other NoSQL databases, doesn’t support complex
transactions. It’s normally used in real-time analytics and online advertising.

• Redis is an in-memory data structure store that can be used as a database, a message
broker, and a cache. Although it is not a traditional NoSQL database, its way of reading
and writing massive amounts of that allows it to be used as such. It supports a wide range
of data structures, going from lists to sorted sets and has a publish-subscribe messaging,
which allows clients to subscribe to channels and receive messages in real time. Redis’
high-performance flexibility makes it more commonly used for message brokering, real-time
analytics and caching.

2.5 Natural Language Processing and Large Language Models

NLP’s origins can be traced back to the 1950s [?] when researchers started creating techniques to
make it easier for machines to understand human language. Early methods made use of syntactic
and grammatical patterns and rule-based systems. But these methods frequently fell short of
capturing the subtleties and complexity of natural language, necessitating a move towards more
data-driven strategies.

The introduction of large language models (LLMs) signalled a significant turning point in NLP
research [10]. These models, distinguished by their enormous size and impressive computational
power, are able to process and produce text at a scale that has never been seen before. They
make use of highly developed deep learning architectures like Transformers, which are excellent
at capturing long-range dependencies and contextual relationships within language.

Models like GPT-3.5 show remarkable performance in generating pertinent and cogent responses
when it comes to information retrieval and question answering [11]. Clinical decision-making,
automated diagnosis, and analysis of electronic health records are all made possible in the
healthcare industry by NLP. Large language models have also been useful in text summarization,
sentiment analysis, machine translation, and even creative writing.

Despite their enormous potential, large language models pose ethical challenges. Concerns about
privacy and data protection are brought up by the sheer volume of training data. Additionally,
these models have been shown to amplify biases found in the training data, increasing the
likelihood that social, racial, and gender disparities will persist. To ensure the ethical and
impartial use of NLP models, these ethical conundrums must be addressed.

The development and deployment of large language models present a number of technical

14 Chapter 2. Background and Related Work

challenges. Such models require a lot of computational power to train, which makes them
inaccessible to smaller research teams [10]. Additionally, ongoing research directions include
reducing biases, enhancing interpretability, and boosting model generalization. Additionally,
finding a balance between model capability and control over generated text is still an area of
research.

Large language models have enabled Natural Language Processing to advance in a way that has
never been possible before. These models have revolutionized many applications across domains
by changing how machines understand and produce human language. However, ethical issues
and technical difficulties continue, calling for ongoing research and responsible application. NLP
is the current best technique to use machines to develop and enhance human language in many
known and unknown fields of computer science that involve natural language.

2.5.1 NLP Techniques

A wide range of applications, including document classification, sentiment analysis, spam detection,
and more, are now possible thanks to recent significant advancements in named-entity recognition
techniques and technologies. To produce cutting-edge results, these methods make use of the
strengths of machine learning,NLP, and deep learning. We will talk about some of the popular
methods and tools for named-entity recognition here.

• Tokenization: This is a fundamental preprocessing step that involves breaking down a
text into smaller units, called tokens. These tokens can be individual words or subwords,
depending on the chosen tokenization strategy. Tokenization forms the foundation for
various downstream tasks, such as text classification, named entity recognition, and
machine translation. By dividing the text into tokens, NLP models can effectively process
and understand the language, as each token represents a discrete piece of information.
Additionally, tokenization also helps in handling challenges like handling punctuation,
special characters, and formatting inconsistencies in the text. As a cornerstone of NLP,
tokenization enables language models to analyze, interpret, and generate human language,
playing a vital role in the success of many NLP applications and advancements in the field.

• Word Embeddings: Word embeddings are detailed vector representations that reveal
the connections between words’ semantic meanings. Text identification tasks have been
performed better thanks to methods like Word2Vec[12], GloVe[13], and FastText[14]. These
embeddings aid in better text generalization and comprehension by assisting models in
recognizing contextual and semantic similarities between words.

• PoS Tagging: Part-of-Speech (PoS) Tagging is a crucial linguistic analysis technique
that involves assigning grammatical labels or tags to each word in a given text, based on
its role and function in the sentence. The PoS tags represent parts of speech, such as
nouns, verbs, adjectives, adverbs, and more. This process is essential for understanding
the syntactic structure of sentences and extracting valuable information about how words

2.5. Natural Language Processing and Large Language Models 15

relate to each other. PoS tagging is a challenging task due to the inherent ambiguity of
natural language, where a single word can have multiple meanings and functions depending
on the context. However, accurate PoS tagging is fundamental for many NLP applications,
such as text parsing, machine translation, and sentiment analysis. It enables language
models to disambiguate words and gain a deeper understanding of the underlying grammar,
leading to more sophisticated and context-aware language processing capabilities. As a
result, PoS tagging significantly enhances the accuracy and performance of various NLP
systems, empowering them to tackle complex language-related challenges effectively.

• Chunking: is a crucial technique in syntactic analysis that involves grouping individual
words in a sentence into meaningful and well-defined units, called "chunks." These chunks
often consist of phrases or segments, such as noun phrases, verb phrases, and prepositional
phrases. This technique is a vital step in understanding the grammatical structure of
a sentence and plays a significant role in various NLP applications, such as information
extraction, text summarization, and sentiment analysis. By breaking down sentences into
chunks, NLP systems can extract essential information and relationships between words,
leading to a more accurate and comprehensive understanding of the text. Through this
process, NLP chunking empowers language models to handle more complex tasks and aids
in the development of sophisticated natural language understanding systems.

• Pretrained Language Models: Due to their capacity to extract representations from
sizable text corpora, pre-trained language models have become extremely popular. Massive
amounts of data have been used to train models like BERT, GPT-3, and their derivatives,
which can be tailored for particular text identification tasks. To achieve superior perform-
ance in tasks like text classification, sentiment analysis, and named entity recognition,
these models capture nuanced language aspects and context.

2.5.2 NLP Technologies

In the area of text identification, there are a number of well-known technologies and libraries,
particularly in the Python ecosystem, that offer strong tools and frameworks for creating text
recognition solutions. Here are a few noteworthy ones:

• Natural Language Toolkit (NLTK): NLTK is a well-known Python library for NLP
tasks. Tokenization, stemming, tagging, parsing, and classification are just a few of the
tasks it can perform, and it offers a complete set of tools and resources for them. NLTK is
a useful tool for text identification research and experimentation because it also has a large
number of corpora and lexical resources.

• TensorFlow and Keras: TensorFlow is a robust deep-learning framework that is
frequently used to create neural networks, including those for text recognition. Building
and training deep learning models are made easier by Keras, a high-level API built on
top of TensorFlow. For tasks like text classification, named entity recognition, and text

16 Chapter 2. Background and Related Work

generation, these libraries provide tools for building Recurrent Neural Network (RNN),
Convolutional Neural Networks (CNN), and transformer-based models.

• PyTorch: PyTorch is a further well-liked deep learning framework that is renowned for its
adaptability and dynamic computation graph. It offers a robust ecosystem for creating
neural network models for tasks involving text identification. To experiment with the
most recent developments in NLP and text recognition, researchers and developers can use
PyTorch’s modules and utilities for building RNN, CNN, and transformer-based models.

• spaCy: spaCy is a well-liked Python library for effective and powerful NLP. It offers
named entity recognition, part-of-speech tagging, dependency parsing, and tokenization
that is both quick and accurate. Additionally, spaCy provides word vector embeddings and
supports customized model training for jobs like entity and text classification.

Another important library is Hugging Face Transformers, which provides pre-trained models for
Transformer models. Hugging Face Transformers provides cutting-edge models for tasks like text
classification, question answering, entity recognition, and text generation.

It is significant to note the following tools/libraries, while being relevant and modern, weren not
utilized because they did not support portuguese sentences:

• Gensim [15], that should be replaced with PyTorch and BERT when used in Portuguese,
for better results

• Flair [16], that is still in development at the time of writing, but is very promising

• GROBID [17], that only can be used in PDF files, as it works with layout tokens.

2.6 Transformer architecture

NLP has been an active area of research for decades, and the recent explosion of data and
computing power has accelerated progress in the field. The Transformer architecture, introduced
by Vaswani et al. in 2017 [18], has been one of the most important developments in NLP in recent
years. The Transformer architecture has quickly established itself as a pillar of contemporary
NLP, powering cutting-edge models for activities like language modelling, text classification, and
translation. [19]

This architecture is based on the self-attention mechanism, which enables it to capture long-range
dependencies in input sequences. This approach has shown to be very successful for modelling
languages because it enables the Transformer to pick out the most important information from
the input and use it to generate predictions.

The Transformer architecture has transformed NLP and created new opportunities for language
creation and comprehension. To understand this architecture’s advantages and disadvantages, it

2.6. Transformer architecture 17

is possible by examining its internal workings, and by working to create NLP models that are
even more potent as a result.

2.6.1 BERT - Bidirectional Encoder Representations from Transformers

Bidirectional Encoder Representations from Transformers (BERT) was developed by Google in
2018, and is based on the Transformer architecture in the paper "Attention is All you need" by
A. Vaswani et al. in 2017 [18]. It is a pre-trained language model that has been trained on a
massive amount of text data, including Wikipedia articles and the BookCorpus dataset [20].

The pre-training process consists of two steps:

1. the model is trained on a masked language modelling task where it predicts the missing
word in a sentence given the context

2. the model is trained on a next sentence prediction task where it predicts whether two
sentences are consecutive in a text or not.

2.6.1.1 Architecture

BERT consists of a stack of Transformer encoder layers, each of which has two sublayers: a
position-wise feedforward network and a multi-head self-attention mechanism. The feedforward
network applies a non-linear transformation to the output of the self-attention mechanism,
allowing the model to attend to different elements of the input sequence and capture the
relationships between them.

One of BERT’s key characteristics is its bi-directionality, which enables the model to consider
both the left and right contexts of a given word in a sentence. In contrast, unidirectional training
was used to develop earlier language models like GPT or semi-bidirectional models like ELMo.
[21] (figure 2.3)

Figure 2.3: Comparison of BERT, OpenAI GPT and ELMo[20].

18 Chapter 2. Background and Related Work

2.6.1.2 Applications

On a range of NLP tasks, such as question answering, sentiment analysis, and natural language
inference, BERT has achieved cutting-edge performance. The General Language Understanding
Evaluation (GLUE) benchmark, which consists of nine various tasks that test the model’s capacity
to comprehend and produce natural language, is one of the most well-known benchmarks for
assessing NLP models.

BERT has achieved state-of-the-art performance on other benchmarks, such as the Stanford
Question Answering Dataset (SQuAD) and the Conference on Computational Natural Language
Learning (CoNLL) datasets, and has outperformed humans on some of the GLUE benchmark’s
tasks [20]. Figure 2.4 presents an idea of how the input is treated by BERT in masked language
model.

Figure 2.4: Model structure of the label-masked language model. "N-MASK" is a mask token
containing negative label information.[22].

2.6.1.3 New Products and Conclusion

BERT has transformed the field of NLP by demonstrating the power of pre-trained language
models that can learn from massive amounts of data. The model has been able to capture the
relationships between various sentence components and achieve cutting-edge performance on a
variety of tasks thanks to its bidirectional nature and attention mechanism.

BERT’s innovation in 2018 made Google launch a new product called Language Model for
Dialogue Applications (LaMDA) in 2021 and, as the name stands for, the application was made
as an open-ended conversational AI application. This type of Transformer, to be able to do

2.6. Transformer architecture 19

its objective, was fine-tuned with conversation datasets. Later, in 2023, Google integrated this
application into a new project, called BARD, a competitor of ChatGPT-4 and a conversational,
AI chat service that uses Google’s search engine capabilities to gather its information and deliver
[23].

2.6.2 GPT - A State-of-the-Art Language Model

The paper "Improving Language Understanding by Generative Pre-Training" by Radford et
al. from OpenAI,[11] introduced the Generative Pretrained Transformer (GPT) architecture.
GPT is a type of neural network that produces natural language text using a transformer-based
architecture. To achieve cutting-edge performance, BERT is first pre-trained on a large corpus of
text data using a language modeling objective. After pre-training, it is fine-tuned on downstream
NLP tasks to adapt it for specific applications and achieve high performance.

2.6.2.1 Architecture

The architecture of GPT consists of a stack of transformer decoder layers, where each layer
transforms the input into a series of hidden states using multi-head attention and feed-forward
networks. The output sequence of tokens is produced by the final layer by sampling from a
probability distribution over the vocabulary. [24]

2.6.2.2 Applications

GPT has been applied to a variety of NLP tasks, such as question-answering, text summarization,
and language translation. The model has produced high-quality text with state-of-the-art
performance in several benchmark datasets, proving its efficacy.

Additionally, GPT has been applied to the creation of chatbots and virtual assistants, where it
has demonstrated promise in producing contextually sensible answers to user inquiries.

It received its popularity not only from being state-of-the-art but from the free-to-use chatbot
ChatGPT [25] and from the image generator from input, DALL-E [26], both created by the same
company as GPT. ChatGPT uses GPT-3.5 technology and its viral sensation set the record for
the fastest-growing user base [27].

2.6.2.3 GPT-4 and Conclusion

GPT has become a significant step forward for NLP and has shown how effective big language
models are at producing high-quality text.

GPT-4 is, at the time of this writing, the next interaction of GPT. It surpasses GPT-3.5 with
flying colours. It is 40% more likely to produce factual responses than its predecessor [28]. It

20 Chapter 2. Background and Related Work

ends up being more coherent in its responses, has a better understanding of complex problems,
reads and writes programming with less error margin, and, as the major novelty by merging
DALL-E into the chatbot, interprets given images and graphics. [29] GPT-4 and its API it still,
at the time of this writing, in beta testing and can only be used by a subscription fee to OpenAI’s
service.

In a variety of NLP applications, its capacity to produce coherent and contextually appropriate
text has demonstrated promise, and its influence on the field is likely to continue in the years to
come.

2.6.3 Other Models and Applications

Other interesting models that large-scale corporations are working on:

• PaLM by Google: a model introduced to do more than being a chatting and searching
tool. This model aimed to be a collaborative project between language models and a helper
robot that would do tasks such as solve complex math word problems, answer questions in
new languages and explain jokes. [30] [31]

• LLaMA by Meta AI: A Large Language Model (LLM) made by Meta’s AI team to better
serve its chatbots and virtual assistants to content creation and data analysis

All of these models are being each day more used by huge applications like Microsoft in its Bing
AI [32], Duolingo [33] and Salesforce [34].

2.7 Related Work

To fully grasp the available work done previously in context of this dissertation, multiple sources
were verified. We look into work related the various steps of our pipeline, such as citation
identification [35] [36], text summarization in legal literature [37], works on the same effort but
for portuguese solutions using BERT [38], network architecture for citation in documents [39],
and many more in the gray area between those fields. The most important piece of investigation
that seems to be correlated with all of the researched documents is Citeseer.

2.7.1 Citeseer - An Automatic Citation Indexing System

Citeseer [36], is an influential digital library launched in 1997 that has transformed the way
academic papers are accessed and explored by researchers by establishing itself as a crucial
resource for academics all over the world thanks to its extensive collection of scientific articles.
Citeseer came into existence at a time when the internet was becoming more and more popular
as a platform for sharing research. For researchers, the rapid expansion of digital repositories

2.7. Related Work 21

brought both opportunities and difficulties. Libraries and physical journals, which were once
sufficient sources of scientific literature, were becoming less so. Citeseer was developed in response
to the demand for a complete, effective, and easily accessible digital library.

With the use of cutting-edge technologies, Citeseer was created as an autonomous digital library
that automates the gathering, indexing, and organizing of scholarly publications. It navigates the
internet using web crawling techniques to find academic papers and extract pertinent metadata.
The distributed system and multiple servers that makeup Citeseer’s architecture allow for effective
paper indexing and retrieval. Its search engine uses a sophisticated ranking algorithm to make
sure that pertinent and excellent articles are given priority.

A wide range of features and functionalities are available in Citeseer to improve the research
experience for scholars. First off, its extensive collection covers a variety of academic fields, such
as computer science, physics, and mathematics, among others. From a single platform, researchers
can access a wealth of data, saving a significant amount of time and effort. Additionally, Citeseer
offers citation analysis, which enables users to follow the influence and impact of particular
articles within the academic community. Additionally, it provides user-specific recommendation
systems that make recommendations for related papers based on search preferences and history.

Despite its numerous benefits, Citeseer does have some limitations and constraints. The
incomplete coverage of academic papers is one apparent drawback. Despite Citeseer’s best
efforts, it is not possible to index all articles due to the enormous amount of research that
is conducted on a global scale. Furthermore, because Citeseer relies on automated indexing
algorithms, metadata extraction and search results may occasionally be inaccurate. The depth
of analysis that can be carried out within the platform is also constrained by the absence of
sophisticated text mining and natural language processing techniques.

2.7.2 CiteSeerX

CiteSeerX [40] was introduced to enhance the research experience made in CiteSeer and brought
significant advancements and expanded its scope beyond computer science. One of the notable
advancements was the addition of new disciplines, which covered a broad spectrum of scientific
disciplines like physics, biology, and social sciences. The platform’s utility was increased by this
expansion, which gave researchers access to a wide range of scholarly literature from various
fields. This included the law field.

In order to enhance search functionality and user experience, CiteSeerX introduced a number
of changes. More precise and pertinent search results were produced as a result of improved
search engine algorithms. High-quality papers were ensured to be prominently displayed in the
search results by means of sophisticated ranking algorithms. The updated user interface provided
by CiteSeerX also made it easier to use and more logical. The enhanced interface simplified
accessing and exploring scholarly publications and allowed for easier navigation.

CiteSeerX’s incorporation of improved metadata extraction methods led to more precise and

22 Chapter 2. Background and Related Work

thorough metadata for indexed papers. The extraction procedure was improved to include crucial
information like author affiliations, abstracts, and citation data. The platform’s usability and
comprehensiveness were greatly enhanced by this change. Additionally, CiteSeerX advanced
citation analysis further by enabling researchers to investigate citation networks, monitor citation
trends and assess the significance of research papers across a range of disciplines.

As digital libraries increased in size and complexity, scalability and performance issues surfaced,
CiteSeerX addressed these issues. The distributed architecture it introduced made it possible to
efficiently index and retrieve papers from various servers. This architecture made it easier for
the system to manage large amounts of data, ensuring that users encountered few delays when
accessing search results. CiteSeerX’s scalability and performance enhancements were essential
in meeting the demands of an expanding user base as well as the growing volume of research
literature.

In conclusion, by following CiteSeerX’s crucial evolution from CiteSeer, it could be possible to
understand how to improve the code to a more scalable and reliable version. As detailed in the
next chapters, CiteSeer was a great base to follow as a proof of concept and CiteSeer was a
great addition to the knowledge to have some guidelines on where to look to improve the work
throughout its development.

2.8 Summary

This chapter summarizes fundamental concepts related to the work done and that is going to be
detailed in the following chapters. It begins by explaining briefly some DM concepts regarding
text mining, its pipeline, and with an extra focus on the data preprocessing phase that uses tools
to make data cleaning, data integration, data reduction and data transformation. The chapter
concludes on developing around NLP and LLM, provided an introduction to concepts related
to them, and explains, in a brief manner, the transformer architecture, as it is a crucial part of
the NLP state-of-the-art and it is used in the project. Here was also possible to understand the
current state of NLP technologies and techniques, Transformer architecture as a concept and
current applications of it, and explore non-relational databases that were available to work on
the project.

Chapter 3

Data Preparation and Preprocessing

As described in the previous chapter, namely for CiteSeer’s and other similar projects, any
approach to identify citations in a document needs to start by collecting and preparing a dataset
to be properly curated, used and tested accordingly [36] [40]. This chapter describes the initial
steps taken in our project to create a collection of superior court decision documents, their
preprocessing and database storing aiming to simplify the learning task for the identification
algorithm being developed.

As we can see in Figure 3.1, this chapter starts by describing a tool created to extract court
rulings documents from a public Web repository, parsing and special characters cleaning, and
organizing them into structured files which are store in a local database for future use.

Figure 3.1: Project’s Pipeline: Data Preparation Stage

3.1 Data Gathering - Web Scrapper

Considering that the DGSI’s website does not support an API to access the published law court
documents, we developed a web-scraper tool to extract them. Given that these documents
are freely available on the website without apparent rate limits, we were compelled to utilize

23

24 Chapter 3. Data Preparation and Preprocessing

this approach due to our specific research requirements. The tool was created to be effective,
scalable, and able to handle a significant amount of data. It carefully searches and extracts from
the website pertinent superior court decision documents. The scraper includes error-handling
features to deal with unforeseen circumstances and it is optimized to use parallel methods or
asynchronous requests for quick data retrieval. This tool can be easily modified to allow future
researchers or developers to adapt it to their needs.

An initial selection of twenty links to documents known to include citations to a set of known
authors was gathered. Furthermore, they were deliberately chosen because they make a good
sample of the diversity of layouts, writing procedures, and reference styling. Each link document
presented unique characteristics that differentiated it from the others in terms of structure,
content presentation, and citation format. By incorporating this diversity, we aimed to capture a
comprehensive and representative sample, enabling a thorough analysis and evaluation of the
varying styles and approaches employed in the respective sources.

3.1.1 Technologies Background

We chose Python as the scripting language for developing the web scrapper due to its simplicity
and extensive library support, which made it well-suited for the task. The script utilized the
"request-html" library, specifically the "HTMLSession" method, to send an HTTP request to the
DGSI’s URL. To ensure the request was handled smoothly and mimicked a browser, a specific
header was included. The library "re" was also employed, particularly during this stage, to
identify patterns in the data. Additional details can be found in Table A.1.

Web scrapping normally is used with the help of the expression query language XPath. XPath
(XML Path Language) is used to navigate and select elements from an XML document [41].
It offers a simple way to define paths and patterns that are used to locate particular nodes or
groups of nodes within the XML structure. The hierarchy and relationships between elements
are described in XPath expressions, which are made up of a series of steps separated by slashes
(/). It enables you to choose nodes according to their position within the document, tag names,
attributes, and text content [42].

To some extent, HTML documents can also be used with XPath. Even though HTML is not
strictly an XML-based markup language, many contemporary web browsers allow one to query
and manipulate HTML documents using JavaScript and XPath expressions. The internal HTML
parser of the browser transforms the HTML file into a Document Object Model (DOM) structure
that can then be navigated using XPath, thus enabling this functionality [43].

Before starting to create the script and for testing purposes, we used the Postman tool [44] on
every HTML call request made to the website. Postman provides developers with a convenient
platform to design, test, and document APIs, offering support for various request types such as
GET and POST. This tool significantly simplifies the process of API testing and debugging.

3.2. Data preparation 25

3.1.2 Extraction

In order to proceed with the creation of an XPath extraction algorithm in Python, the target
website architecture needed to be first investigated. In doing so, we discovered that the website
represented all of its web pages as data tables, a good representation to simplify information
extraction. Each webpage only had two columns, one for the key and the other for the values.
Both column entries could be extracted using the same method and a one-to-one connection can
be made between them using a dictionary structure in Python.

The DGSI website has a particular link structure that can be observed in figure 3.2. Its pattern
was used to make the fetching dynamic.

Figure 3.2: DGSI’s URL Structure

When extracting the court ruling table (Which can be seen on Figure D.1), the fields’ names
will come in Portuguese and with UTF-8 characters such as ones with tildes. The following
fields were refactored from the raw structure to the dictionary from direct correlation from key
to value: "Tribunal" (court), "Processo" (process number), "Data do acordão" (decision date),
"Votação" (vote), "Sumário" (summary).

The following fields need to be somewhat changed to facilitate the future parts of the project:

• Descritores: Descriptors. This is a collection of keywords that would appear separated
with ENTER character, so this characters were removed and every descriptor added to an
array.

• Decisão Texto Integral: Full Text. This is the most important field of the extracted
body as it is the one that is going to be used to identify and extract references. For
now, during this stage, the only cleaning done was to remove any area that has multiple
consecutive ENTER characters and replace them with just one character. In a later stage,
this ENTER character will be helpful to split the text into sentences.

In the end, the document’s link was added with the key "Link" to the dictionary. Any other field
that was not mentioned was not important to the project but can be easily added if needed.

3.2 Data preparation

After extracting the information available in the documents repository website, each document
must be parsed to identify relevant fields. Every field from this raw dataset should be evaluated,
optionally modified, and posteriorly added to a JSON schema. The fields mentioned in the

26 Chapter 3. Data Preparation and Preprocessing

previous section were renamed to be more concise and in line with database nomenclature, as
shown in table 3.1.

Table 3.1: Renaming fields from raw dataset to new dataset
Raw Field Name Changed Field Name Raw Field Name Changed Field Name
Processo _id Link link

Tribunal court Data do Acordão date

Descritores descriptors Relator author

Sumário summary Decisão Texto Integ-
ral

full_text

The _id, link, date, summary and value did come as an array with only one value, so
they had to be assigned that first value. The descriptors and author values were already
taken care of in the previous iteration, thus it was a direct assignment. To assign a value to
court, some cleanup was needed namely removing the substring "Acórdão do " as it is irrelevant
in this context. A field entry year is also added to the schema by converting first the date
value into a date type value using the datetime library in Python and then extracting the
year-part.

3.3 Database Architecture

As mentioned in chapter 2, MongoDB was the selected technology for the project. This non-
relational database offers several advantages that are beneficial to the project, such as scalability
and performance, allowing for quick and efficient data retrieval. One of its key features is its
flexibility, as it does not require predefined data types for fields unless a schema is explicitly
created. However, for consistency, a schema can be created to enforce structure.

One important aspect of MongoDB is that it uses the "_id" field as the default primary key
for documents within a collection. In the project, the "Processo" field represents the identifier
of a court decision document in the Publication scheme, so it was assigned to the "_id" field.
this allows for efficient retrieval and identification of specific documents in the Publication table
collection. More information on the conversion on Table 3.1 and details about the Publication
scheme in 3.2.

In order to facilitate the integration of our prepared JSON file into the database, it was necessary to
partition it, as it contains information that can be allocated to different tables. The Publication’s
Table (Table 3.2) encompasses the majority of the publication-related details. On the other hand,
the authors’ Table (Table 3.4) accommodates author-specific information, featuring a "verified"
boolean field that serves to indicate whether the authors’ name has been subsequently verified
after its addition to the database. Additionally, the "alias_of" field allows for the specification
of an alternate author name in cases where an alias is present, otherwise, this field defaults
to null. The absence of a direct connection between the authors’ Table and the Publication’s

3.3. Database Architecture 27

Table 3.2: Database Architecture - Publication
Attribute name Type Example Insight
_id String 3696/15.5T8AVR.P2.S1 Publication Identifier, gen-

erated from Process Num-
ber. "_id" is the default ID
nomenclature for identifiers
in MongoDB

link String https://www.dgsi.pt/[...] Link to the official reposit-
ory of the publication.

descriptors String Array ["Posse", "Arrolamento"] Keywords that are used to
better describe the publica-
tion or information presen-
ted. They simplify the
search for a publication.

type String acordao Type of document
date String 12/12/2012 Date of the publication
year Integer 2012 Year of the publication.

Made to be easy as it is
more important than date.

court String Tribunal da Relação do
Porto

Court, if applicable.

summary String "I - O STJ conhece de
matéria de facto[...]"

summary of the publica-
tion, in case of necessity
from a third party.

full_text String "I - RELATÓRIO Em
dissensão com o julgado
proferido[...]"

Full text of the publication
used through the project as
it is where the algorithm
looks for the references and
extracts those.

Table stems from the existence of a many-to-many relationship, where a publication can have
multiple authors, and an author can be associated with multiple publications. Consequently, a
junction table, identified as Table Publication-author (Table 3.5), was introduced to manage
this relationship. Lastly, the Reference Table (Table 3.3) was established to store information
pertaining to references, including the connection to both the referencing and the referenced
publication. This design decision to maintain a detachment between the authors’ Table and
the Publication’s Table is primarily motivated by the inclusion of comprehensive information,
with the exclusion of direct links, to ensure the preservation of data integrity. Such an approach
enables seamless implementation of future projects, allowing developers to present references with
consistent terminology and author aliases. The overall database schema and the interrelationships
among the tables are visually represented in Figure 3.3.

28 Chapter 3. Data Preparation and Preprocessing

Table 3.3: Database Architecture - Reference
Attribute name Type Example Insight
_id String 63eecb863d7c3d0[...] Reference Identifier.
name String or Array

of Strings
Fábio Nogueira Name(s) of the author(s)

pages Array of Strings [’64’,’65’,’76’,’+’] Pages in reference. It was
decided to use strings to use
the ’+’ sign and to avoid
creating complexity on that
boolean option.

volumes Array of Strings [’3’,’4’] Volumes in Reference. It
can also use ’+’ sign.
Volumes normally appear
as Cardinal Numbers or Ro-
man Numbers. Optional.

notes Array of Strings [’1a’, ’2b’] Notes in Reference. It can
also use ’+’ sign. Optional.

publication_caller String 3696/15.5T8AVR.P1 ID of the publication where
the citation lies on.

publication_receiver String 3696/15.5T8AVR.P2 ID of the publication that
the citation references.
This can be set as null if
no publication is found.
In-depth explanation on
Chapter Extraction

editor String "Nome De Editor" Editor’s name. Optional.
edition String "2ª Edição" Edition’s information. Op-

tional.
year Integer 2020 Year. Optional.
other Array of Strings ["Rlj" "Other Name"] This can be any informa-

tion that was not caught by
the algorithm but is inside
its limits. Parts such as
courthouses, other names
for the documents or full
dates will lay on this field.
Optional.

3.3. Database Architecture 29

Table 3.4: Database Architecture - Author
Attribute name Type Example Insight
_id ObjectId 63eecb863d7c3d0[...] Author ID automatically

generated.
name String Fábio Nogueira authors’ name
alias_of ObjectId 63eecb863d7c3d0[...] If the author is an alias of

another author, the main
authors’ id should be inser-
ted in here

verified boolean false If the author name is veri-
fied by a system adminis-
trator, it can be put as
"true". If the algorithm
extracts a name that is not
on the list, it adds it with
this boolean as "false"

Table 3.5: Database Architecture - Publication-Author
Attribute name Type Example Insight
_id ObjectId 63eecb863d7c3d0[...] Publication - Author ID

automatically generated.
id_publication String 3696/15.5T8AVR.P2.S1 Publication Identifier of

Table 3.2.
id_author ObjectId 63eecb863d7c3d0[...] Reference Identifier of

Table 3.4.
author_type String Relator Type of Author in publica-

tion.
author_order Integer 3 Value that represents the

authors’ position in the
publication’s authors’ list.

30 Chapter 3. Data Preparation and Preprocessing

Figure 3.3: Database schema involving all tables and relations.

3.4. Data Preprocessing 31

3.4 Data Preprocessing

The previous data cleaning is sufficient to store the relevant data on a court decision document
in a format that enables its use in the next stages of the project. However, some further data
preparation and tokenization are still necessary.

3.4.1 Data Preparation and Tokenization

When preparing data to tokenize information from the full text, it is important that this behaves
as the models expect it to. To achievable this, there are some changes to the actual text that
are necessary to be made. The following cleaning remove or replace undesired or abnormal
characters:

• A newline character is replaced with a space character;

• Any weird character, such as non-breaking space, is removed; Sometimes a non-breaking
space character (NBSP) appeared and had to be removed;

• Characters that are very similar, like hyphen(-) and dash (–) are perceived as different by
the compiler, so they are harmonized to dash, as it is the character used in Portuguese
keyboard’s layout;

• The dash is scattered in many places, thus if mistakenly used can generate tokenizing
problems. Due to this, the following changes were made: ". -" to " - " and ".- " to "- ";

• Parenthesis can introduce problems to the tokenizer due to its use together with the dot
character as a way to present new information. In this case, the following changes were
made: "). " to ") " and ". []" to "[].";

• When a dot appears before a quotation mark, the program removes the dot;

• Successions of characters should be edited or shortened. This is important on phrase chunks
like " ." to "." and " ;" to ";" because the tokenizing tool is sensitive to those spaces to divide
phrases in the full text;

• In some particular cases, there were singular, uppercased letters followed by two dots. In
this case, one of the dots was removed;

• Finally, DGSI, when there are documents with a reference list below, uses multiple
underscores (_) to define the end of the document. In this case, we replaced this line by a
tag referencing the separation, as it should not be evaluated by the algorithm.

References made by brackets in documents that are already used need to be normalized. In this
case the following changes to the text were made when:

32 Chapter 3. Data Preparation and Preprocessing

• A phrase ends with the bracketed reference made after the punctuation and followed by a
newline character, the bracketed reference is moved to before the punctuation;

• A phrase ends with the bracketed reference made after the punctuation and followed by
words afterwards, the bracketed reference is moved to before the punctuation;

• There are multiple references made in a row, those are grouped together inside the same
brackets and divided by a slash.

3.4.2 Data Preparation to Sentence Divider

Once the full text has been cleaned and prepared, the next step is to divide it into sentences. We
use the Python Natural Language Toolkit (NLTK) library to accomplish this important task. As
mentioned before, NLTK is quite an effective tool for processing human language and provides
us with a wide range of functionalities, namely the capacity to segment and divide text into
useful phrases or sentences.

The phrase division capabilities of NLTK can be used to split the text into coherent and contex-
tually meaningful chunks. Punctuation marks, like periods, question marks, and exclamation
points, which frequently denote the end of a sentence, can serve as the basis for these divisions.
As an alternative, NLTK can make use of more sophisticated methods like natural language
parsing to pinpoint the boundaries of sentences based on grammatical conventions and syntactic
structures.

NLTK has a class called PunktParameters [45] to deal with the use of abbreviations’ punctuation
when splitting the text and thus avoiding splitting errors. This class is used to customize the
behaviour of the Punkt sentence tokenizer and uses unsupervised learning to determine the
sentence boundaries based on multiple features (more details are given in figure 3.4). It allows the
developer to change parameters like abbreviations, tokenization preferences, and training data
selection. The final version only uses its capabilities to introduce some Portuguese abbreviations
gathered from an online dictionary forum [46].

To ensure flexibility and easy modification, the abbreviations utilized in the text processing
pipeline are stored in a dedicated configuration file. Any updates or modifications to the
abbreviations can be made without affecting the main codebase by saving the abbreviations
separately from the code. This strategy improves maintainability and makes it easier to modify
the system to meet the developer’s requirements.

3.4.3 Authors’ Data

At this stage, the Publication Table has been populated with the hand-picked documents selected
by the team. Now, the authors’ database table needs to be filled in. To accomplish this, the
team utilized the FDUP’s (Faculdade de Direito da Universidade do Porto) researcher’s open

3.4. Data Preprocessing 33

Figure 3.4: Architecture of the Punkt System [45]

database to gather the authors’ names. The database provided the authors’ information in rows
structured as follows:

• The row begins with the tag "$$a", followed by the author’s last name;

• This is followed by the tag "$$b" and succeeded by the author’s first name(s);

• The tag "$$f" indicates the date of birth, and, if applicable, the date of decease;

• Occasionally, the tag "$$k" is present, indicating the research center.

Here is an example that illustrates the aforementioned structure:

|$$aUltimoNome$$bPrimeiro Nome$$f1997-$$kFDUP |

In this stage of the project, we only need to store the authors’ names. To achieve this, the strings
can be trimmed from the beginning until the last name’s tag ("$$a"), and from the end until
the dates’ tag ("$$f"). Subsequently, the trimmed string can be split using the first name’s tag
("$$b") as the delimiter, resulting in a two-element array containing the full name. In the case
where the name needs to be saved, which is applicable here, the first name can be concatenated
with the last name(s) to form a string representing the full name.

34 Chapter 3. Data Preparation and Preprocessing

On completing this process, the list of names underwent a minor cleaning procedure to remove
entries that contained numbers (e.g., "a.C.", as in Ante Christum for dates, or names with
identifying numbers) or names that were deemed too short, as they could potentially have wrong
name matches. Such entries were deleted from the list. This cleaning process was carried out for
all authors in order to populate the authors’ Table.

3.5 Summary

This chapter introduced the steps taken to create the dataset to be utilized for the research, along
with the data-cleaning procedures involved. It highlights the importance of dealing with some
peculiarities in the data, thus emphasizing the need for careful handling of potential complexities.
The tools employed for data cleaning help to achieve better accuracy and reliability of the dataset.
Additionally, the techniques and methods applied to preprocessing the data elements present in
a document were also introduced. This stage, where we extract court rulings from the DGSI’s
website, parsed and inserted them in the database for later use, provides a solid foundation for
the subsequent stages of the research, enabling a robust and rigorous examination of the data.

Chapter 4

Identification of references to legal
literature

This chapter focuses on the development of an algorithm to be used for the identification
of references (or citations) to legal literature included within the preprocessed court decision
documents. The algorithm primarily uses information about stored publications, both the full
texts of court decisions and metadata characterizing a legal publication (book, article, etc.), as
described in table 3.2, and also needs to access the list of known authors, as described in table
3.4, in order to recognize the authors being cited in court decision documents.

This stage relates to the second part of our project’s pipeline, as seen in figure 4.1. In this
chapter, we already have the data related to the publications inside the database so the next
step is to parse them to identify citations and then output a clean, parsed document ready for
the next stage, metadata extraction.

Figure 4.1: Project’s Pipeline: Citation Identification Stage

35

36 Chapter 4. Identification of references to legal literature

4.1 Sentence Tokenization

With the data now cleaned and the punkt parameters set for sentence tokenization, the prepared
data is ready for further processing. Various approaches were explored for sentence tokenization
and quote identification, and this section only highlights the most noteworthy employed in the
project.

CiteSeer stated that there were three types of citations [36]:

• Those that are easy-to-identify as they display a clear, unambiguous and normalized citation
syntax;

• Those that are hard-to-identify as they may appear with different formats, without a proper
systematization, but can be understood by a machine;

• And those nearly impossible-to-identify that they are a citation, even for a person because
it is not a direct reference, only has a number between brackets referencing something in
the references list. This last one is avoided by the algorithm as its uncertainty should not
be used counted towards validation.

A crucial aspect of this research project involves developing a systematic framework to accurately
perform the identification of citations within the study’s context. While these methodologies
enhance accuracy, caution must be exercised due to the possibility of false positives. The next
phase involves retrieving known authors’ names from the database, ensuring comprehensive
evaluation and improving identification accuracy. This strengthens the authenticity of the
research outcomes by aligning the identified references with the relevant project documents.

From a technical standpoint, it was decided to gather all authors’ names from the database and
compile them into a list before running the algorithm. Depending on the implementation, this
method enables the algorithm to either iterate through each name or run a search query for
each potential reference. The limitation of storing the list of names in system memory rather
than utilizing the vast storage capacity of a database can present challenges when it comes to
scalability. Alternative project-planning strategies are reviewed in Chapter 7 in an effort to
mitigate potential problems and more effectively address scalability concerns. These alternatives
seek to streamline the procedure and remove any potential memory-related restrictions, improving
scalability.

The procedure to do this was to first identify if a pattern existed (an exemplary table can be
found on Table A.2) and then verify, for all names, if the full name is present. Identifying the
pattern before looking for a name made the code faster by 71 seconds, which is 92.21% (Figure
4.2 and Figure B.1) faster than starting by the name and had the same results comparing to the
other way around. This happens because the pattern search that the library "re" uses is faster
than looking into an array of names inside the sentence array. This means that the name is only
searched if a pattern is located.

4.1. Sentence Tokenization 37

Figure 4.2: Graph plot relating identification via patterns first and names first.

The pattern gathering was a job conducted by the team, consisting in the F. Nogueira, F. Silva, M.
R. Guimarães and S. Bugla, that focused on finding more unique ways of referencing a document.
Examples of patterns include "como ensina" (meaning "as taught"), "em sentido próximo [...] se
pronuncia" (where "[...]" signifies any word or characters), and "na doutrina" (meaning "in the
doctrine"). Although it may not always be the case, these patterns act as markers of prospective
citations in a phrase’s syntax. In other cases, citations may appear in between parentheses, after
the conclusion of a phrase, or by using unseen-before citation techniques.

The algorithm must include additional keywords that do not rely only on phrase structure in
order to handle these situations. Keywords such as "pags." (short for "pages"), "cfr." (abbreviation
for "conforme," meaning "refer to"), "in," or "vols." (short for "volumes") might appear within the
citation. The system can now find references regardless of their location or unusual usage by
considering these extra keywords.

As previously stated a decision was made on the algorithm to identify references by name. This
decision had different iterations as various approaches were made. As a first stage, we had a
simple researchers list, which lacked variability of different names and thus was not used. But, it
helped in deciding what alternatively one should do in the project. After this, an attempt to
gather various first names and possible last/middle names was made. This attempt was fast as it
used two lists that would be used for many different combinations of names but had many flaws.

First, Portuguese names sometimes have prepositions. This would be considered, in a first
iteration as part of the name, so it had to be mitigated by including an optional word in the
middle of the name. If this was not mitigated, strings such as "morte das" (as in "death of")
would be considered a name, just because "morte" can be a name and "das" also appears in
names, but it would not be a real name.

Sometimes editors use last names before first names, which would cause some issues as the

38 Chapter 4. Identification of references to legal literature

algorithm would first search for any number of first names followed by any number of last names
(having prepositions as options in between). A couple of rules were made because of this: first
and last names should not jump in between, as last names could only be followed by first names
and followed by last names in the worst-case scenario. If the name started with a group of first
names it should only be followed by a group of last names, and this ends the name. As the reader
can easily understand from this, a grammar rule can be done for this, so it was done as follows
and will be explained in more detail in the next chapter 5:

NAME: {<NPROP2>((<NPROP>|<PREP>)?<NPROP2>)+}

Grammar rules were not used as the default method for identification in the project’s final
iteration. To ensure consistency and to avoid using multiple different names or aliases, it was
decided to give priority to researchers who had been confirmed by the team. The project
prioritized the established identities rather than depending solely on grammar rules in order to
maintain a greater level of accuracy and reliability in the identification process. This thesis will
work around grammar rules in the next chapter 5 as it was more prominently done in that phase.

As a final stretch, as it was said, the final iteration of the code only uses the list of known authors.
At first, this introduced some difficulties because of the way it was implemented. Since names
can be rearranged in multiple forms, it was important to avoid having the names strictly the
way they were in the database. For that reason, it was used a python method that checks if
all elements of an array are inside of another array, independently of its order. To make this
efficient, it is important to divide the sentence that is being evaluated into an array of words. To
do this the program first deletes any instances of punctuation, special characters or numbers and
only then it divides by spaces. It is also important to have special attention to characters with
accents, as they are not in the default encoding, so a UTF-8 encoding support needs to be added
to the project as we are using Portuguese words.

Chapter 6 explores potential steps that a future developer can follow to make this identification
process even faster, using the same bases.

4.2 Data preparation for extraction

Now that the program is ready to identify, it will try to identify the references, sentence by
sentence in the full text of the document. When it finds a pattern it will look through all names
and check it against the sentence that has the pattern. When a citation match is found, it then
prepares the data for the next phase, citation or reference extraction.

4.2. Data preparation for extraction 39

4.2.1 Output of identified references

To facilitate the evaluation process, the program will create lines with information for each
phrase being evaluated. Each sentence (a line of characters) will incorporate the addition of
the keywords "TP?" or "TN?" (representing True Positive or True Negative) at the beginning.
However, it is important to understand that the determination of a sentence as a True Positive or
True Negative is beyond the scope of the algorithm itself, this identification is only to help human
evaluation. This classification relies on human judgment in order to establish ground truth data.
The algorithm cannot make definitive decisions in this regard without having ground truth data
from which it could learn, hence the inclusion of the character "?" serves a dual purpose. Not
only does it indicate that the sentence has not been accurately classified as "TP" or "TN," but it
also aids the human reviewer in keeping track of the sentences that require manual verification.

For sentences that were identified with "TP", two helper columns were added. One indicates
the name of the author that was identified and the other the pattern identified. This is only
applicable to identification algorithms that used names and patterns, as other algorithms such as
the learning method or grammar rule identification did not have this distinction.

For sentences that contain numbers inside square brackets, a value of "-" is added instead of TP
or TN, followed by "bra", as in "bracket", because, as said previously, this type of sentence should
be ignored as it can lead the algorithm to wrong assumptions. These sentences should also be
avoided when training a learning algorithm. Here is an example of this:

TN not . . Na contestação, que apenas os réus AA, BB e "CC-Promoção

Imobiliária Unipessoal, Lda."

TP ref |Maria Raquel Guimarães| | pp\. | Expressões como "dinheiro

de plástico", "moeda electrónica", "telemática", "caixas

automáticas", "porta-moedas electrónico" são exemplos de termos

que passaram a fazer parte do léxico corrente dos dias de hoje

(Com mais desenvolvimento, cfr. Maria Raquel Guimarães, "As

Transferências Electrónicas de Fundos e os Cartões de Débito",

Almedina, 1999, pp. 11 e 12.).

-bra . . Além do pai, os outros familiares, que, segundo o critério

proposto para o caso de morte, teriam direito pessoal de

satisfação, parece deverem tê-lo aqui também [1].

Furthermore, to enhance the comprehensibility of the program’s output during the manual
verification process, two additional components are included in the final string. First, the
identified pattern is appended, providing insight into what the program has recognized. Second,
the corresponding name identified in the phrase is also included. By providing these additional
details, it becomes easier for the manual verification team to interpret the program’s findings,
whether they are correct or incorrect.

40 Chapter 4. Identification of references to legal literature

Tokens Token IDs Attention
Mask

[CLS] 101 1
exemplo 1416 1
de 125 1
texto 4054 1
. 119 1
[SEP] 102 1
[PAD] 0 0
... 0 0
[PAD] 0 0

Table 4.1: Example text and its transformation into tokens and attention mask

Once the verification phase is completed, the string array, comprising all the accumulated
information with each sentence labelled as TP or TN, is saved to a file. This file serves as a
basis for subsequent manual verification by the team. During this review, each line is carefully
examined to determine its classification as a True or False Positive, as well as a True or False
Negative.

This new file will have two purposes: it will be used to confirm if the full text is already divided
into sentences and if each sentence includes a possible reference or not, for reference extraction,
and also will be useful to train the BERT AI algorithm.

4.2.2 BERT

As mentioned earlier, all sentences that compose the text of a court decision were manually
verified. The main objective of this tiresome task was to ensure a quality dataset for BERT.
The success of BERT’s identification of true references highly depends on having enough ground
truth data from which it can learn.

In the first stage, it is necessary to remove all the information between the first part of each
string (where TP, FP, TN and FN lie), and the actual sentence. The code will grab all negatives
and put them as 0 and grab all the positives and put them as 1. This data was then inserted in
data frame methods from the Panda library. It also used the transformers library because it has
methods specifically for BERT, such as BertTokenizer and BertForSequenceClassification, which
is the type of classification that we are exploring. BertTokenizer is used to create the tokenizer
from a pre-trained model. We used a Portuguese model from the neuralmind team, BERTimbau
[47] [48]. Table 4.1 presents a random sentence where each word-level split has a Token ID.

BERT requires the following preprocessing steps:

• Add special tokens: [CLS] at the beginning of each sentence with id 101 and [SEP] at the

4.2. Data preparation for extraction 41

end with id 102

• Make sentences all of the same length, by adding a padding to a max value tokens (512
[20]). Longer sentences are truncated. [PAD] has an id of 0.

• Create an attention mask and a boolean list is generated to indicate whether the model
should consider the referred token when learning its contextual representation. The token
"[PAD]" will be assigned a value of 0 in the mask

The process can be visualized in Figure 4.3. Using the tokenizer method encode_plus, it returns
a list of token IDs, a list of token type IDs, and an attention mask list.

Figure 4.3: Tokenization process pipeline visualizer

In Figure 4.4 can be observed the token IDs array for another given text sample, inside a tensor
wrapper object, and recognize the presence of special tokens, [CLS] and [SEP] and padding to
the desired max length.

Figure 4.4: Token IDs’ array as a tensor object and their respective class

The data is then split into an 80/20 model, where 80 is equivalent to 80% of the dataset being
used for training and 20 corresponds to 20% of the dataset used for validation. To accomplish
this split and training, the algorithm employs pytorch’s methods, namely TensorDataset and

42 Chapter 4. Identification of references to legal literature

train_test_split. Then, these two datasets are wrapped into a DataLoader to prepare them for
training (Code sample C.2 [49]).

Based on experience reported in the BERT paper [20], the optimal parameter values are found
in between these values:

• Batch size: 16 or 32;

• Learning rate (Adam): 5e-5, 3e-5, or 2e-5;

• Number of epochs: 2, 3, or 4.

To correctly identify the positive impact of this approach, we need to calculate validation metrics
of the training process. To do so, we introduced methods to calculate accuracy, precision, recall
and specificity (Code sample C.1 [49]). Figure 4.5 presents such calculations. The obtained
results and the parameters used will be further discussed in chapter 6.

• True Positive (TP): correct prediction of actual class 1;

• False Positive (FP): wrong prediction of actual class 0;

• True Negative (TN): correct prediction of actual class 0;

• False Negative (FN): wrong prediction of actual class 1;

• N (Total number of predictions): TP + FP + TN + FN.

Figure 4.5: Validation calculations to process training’s accuracy, precision, recall and specificity.

The final step of this approach is the prediction. At this stage, we already have a model ready
and trained to predict if a given sentence has, or does not have, a reference to a legal document.
As with previous sentences, the one to be evaluated must pass through the same preprocessing
algorithms, which includes IDs extraction and Attention Mask extraction. Using these values,
the model processes the data and generates a boolean prediction.

4.3. Summary 43

4.3 Summary

This chapter described the method used to discover citations to Portuguese legal literature and
how that can be achieved with a low computational time. It also described the application of
transformer architecture AI! (AI!) technologies, as a possible better alternative approach for
the identification task, provided there are quality datasets available.

In this chapter we were also able to answer the first question introduced in chapter 1, "How
to create an algorithm that selects citations, or quotes, in a Portuguese text through collected
superior court decision documents with a diversity of citation syntax?".

Chapter 5

References Extraction

This is the last phase of the project pipeline as shown in figure 5.1. This part will use the last
chapter’s output file (Chapter 4) to extract useful data from the identified references. Initially,
this phase was seen as out of scope considering the project’s premise but was added due to its
interesting procedure and useful result.

This stage starts with the information parsed in the last chapter and processes it via grammar
chunking to simplify the identification and extraction of the sentence parts (or metadata) that
constitute the citation. We must prepare this metadata for future works on data visualization
and presentation.

Figure 5.1: Project’s Pipeline: Metadata Extraction Stage

5.1 Extraction Tool Preparation

Extracting information from citations can be challenging due to the various patterns and formats
in which author names are written in superior court documents. However, one approach to

45

46 Chapter 5. References Extraction

mitigate this problem is by leveraging a feature in the Natural Language Toolkit (NLTK), called
Part-of-Speech (PoS) tagging. PoS tagging involves assigning lexical categories or tags to known
words in a sentence. These tags represent the grammatical roles and categories of the words in a
sentence.

NLTK provides a collection of word and tag tuples that form a tagset. This tagset is utilized to
assign appropriate tags to words in a citation. By applying POS tagging to the citation text,
it becomes possible to identify specific components such as author names, publication pages,
publication dates, and other relevant information.

The use of NLTK’s POS tagging feature can enhance the accuracy and efficiency of information
extraction from citations. By utilizing the tagset and analyzing the lexical categories of words,
researchers can develop rules or patterns to identify the desired information more effectively,
regardless of the variations in citation formats used by different authors.

A POS-tagger processes a sequence of words and attaches a part of the speech tag to each word.
As it can be seen in the following example, the sentence is divided into word chunks and then
tags are added to each word.

Text: "And now for something completely different"

[(’And’, ’CC’), (’now’, ’RB’), (’for’, ’IN’), (’something’, ’NN’),

(’completely’, ’RB’), (’different’, ’JJ’)]

Lexical ambiguity arises from the fact that many words can possess multiple meanings depending
on their context. For example, the word "refuse" can function as both a verb denoting "denial"
and a noun referring to discarded or worthless material. In linguistic analysis, these homonymous
words are assigned to distinct lexical categories, allowing for accurate representation and
interpretation.

The utilization of different tag tokens within the lexical field varies across languages. For the
project, a Portuguese dictionary must be used. In NLTK terms, this is called a corpora. Each
corpus, or corpus, will have its own set of words and designated lexical category. Specifically, the
official Brazilian Portuguese corpus is known as "Mac-Morpho" [50] was employed, as it provides
comprehensive documentation outlining each lexical category’s usage and contextual nuances
[51]. To facilitate understanding and analysis, a detailed table showcasing the available tags
within the Mac-Morpho corpus is provided in Table A.3.

Despite the extensive word coverage of the corpus, there are instances where certain words are
categorized as "unknown". This issue often arises with abbreviations, even though the corpus
is designed to handle them. To address the problem of significant words being classified as
unknown, a solution involves adding custom words to the corpus. For this project, a custom
list was created with each line representing a word-tag pair and incorporated into the code to
augment the corpus’s vocabulary and improve accuracy (Examples list on Table A.4).

After enhancing the lexical dictionary, it became necessary to modify certain tag assignments.

5.2. Grammar structure for chunk identification 47

In this case, we needed to override certain tags for names and punctuation. The decision to
overwrite names is driven by the need to align the names identified by NLTK with our specific
authors’ list, ensuring that names are accurately identified. Additionally, it is important to
distinguish between proper names and other uppercase words. For instance, the chunk "Supremo
Tribunal" refers to the supreme court rather than a specific name, and should not be tagged as
"NPROP" (the mac-morpho tag for proper names). To address this, the authors’ list extracted
from the database is parsed, generating a comprehensive list of possible names. Connectors such
as "de" or "e" are removed, and the names are validated to ensure they appear in uppercase
within the phrase. This ensures that all names are properly identified.

Furthermore, custom tags are added for punctuation to facilitate the parsing of citations and
identification of citation boundaries. This will be further discussed during the phase of parsing
extracted citations. The following example illustrates a parsed text that incorporates the
modifications mentioned, utilizing the mac-morpho corpus and the aforementioned changes.

The word "in" was also inserted with the tag "IN" as it is a recurrent (but not certain) keyword
that is used in dynamics citations. Dynamic citations are citations that are very different from
a somewhat "normal" citation. For the project we considered a citation to be normal when it
starts to be composed by a name, followed by the title, then the pages, then volumes, year, notes,
editor and edition, without particular order in the last ones.

Text: "Exemplo de Texto (Texto que antecede citação, cfr. Maria Raquel

Guimarães, \"As Transferências de Débito\", Almedina, 1999,

pp. 11 e 12.)."

[(’exemplo’, ’PDEN’), (’de’, ’PREP’), (’texto’, ’N’), (’(’, ’PUNC’),

(’texto’, ’N’), (’que’, ’PRO-KS-REL’), (’antecede’, ’V’),

’citação’, ’N’), (’,’, ’PUNC’), (’cfr’, ’N’), (’.’, ’PONT’),

(’maria’, ’NPROP2’), (’raquel’, ’NPROP2’), (’guimarães’, ’NPROP2’),

(’,’, ’PUNC’), (’‘‘’, ’PUNC’), (’as’, ’ART’), (’transferências’, ’N’),

(’de’, ’PREP’), (’débito’, ’N’), ("’’", ’PUNC’), (’,’, ’PUNC’),

(’almedina’, ’NPROP2’), (’,’, ’PUNC’), (’1999’, ’NUM’), (’,’, ’PUNC’),

(’pp’, ’PAG’), (’.’, ’PONT’), (’11’, ’NUM’), (’e’, ’KC’),

(’12’, ’NUM’), (’.’, ’PONT’), (’)’, ’SEP’), (’.’, ’PONT’)]

5.2 Grammar structure for chunk identification

The next phase of the information extraction pipeline is entity detection. In this step, we use
grammar rules to identify citations within the sentences that are being evaluated.

To better create those grammar rules we first need to understand what chunking means on NLTK.
Chunking is the ability to unite one or more entities into a multi-token sequence. As each entity

48 Chapter 5. References Extraction

has its own POS tag, a group of these will be a higher-level chunk. As we can see in figure 5.2,
an example of a text in an English corpus, the wider the box wrapping other boxes, the higher
will the chunk level.

Figure 5.2: Segmentation and Labeling at both the Token and Chunk Levels

Chunk grammar uses tag patterns to describe sequences of tagged words. This tag pattern is a
sequence of POS tags delimited using angle brackets, for example, <N>?<PREP>*<NUM>.
More information on this can be found in NLTK’s manual but for our project, this was what was
needed from chunking.

The grammar rules are chunks organized with regular expressions to identify some part of the
sentence. For names, we created a rule that states that a name should start with a name from
our verified authors’ list, then it can be followed by one or more common names and a verified
name, a preposition and a verified name, or just a verified name. The rule would be:

NAME: {<NPROP2>((<NPROP>|<PREP>)?<NPROP2>)+}

The page numbers, volumes and notes, all follow the same logic. The word stating if it is in fact
a page, volume or note, followed by, optionally, a dot, followed by a number and then, optionally,
more numbers separated by punctuation or article. The first part until the dot was made into a
smaller chunk to better organize the ruling system. It is important to note that volumes can
be displayed as Roman numbers so a cleaning step should be done to include this as a possible
number or volume. In this project, we decided to make Roman numerals as numbers, with the
tag NUM. Pages and notes can end in a string that states "and following" as in "and next pages
as well". There was no indication that volumes could have such wording. The following rules
were added:

PAG_DOT: {<PAG><PONT>?}

VOL_DOT: {<VOL><PONT>?}

NOT_DOT: {<NOT><PONT>?}

PAGS: {<PAG_DOT><NUM>((<PUNC>|<KC>|<ART>)<NUM>)*(<KC><SGS>)?}

VOLS: {<VOL_DOT><NUM>((<PUNC>|<KC>|<ART>)<NUM>)*}

NOTS: {<NOT_DOT><NUM>((<PUNC>|<KC>|<ART>)<NUM>)*(<KC><SGS>)?}

These three rules could be merged as 2 single rules, but for a future step where they are analysed,
it is important that this distinction is made.

5.2. Grammar structure for chunk identification 49

We could not see a good way for identifying the name of the publication, the editor or the edition,
as these are composed of normal words and normal phrases. In a future step, we will consider
more options to correctly extract these.

Now that we have all rules that are possible to extract the metadata, we can create a rule for
the full reference. This rule should start with the name, followed by any length of characters and
ending with pages, followed by, optionally, volumes and notes, without particular order. It has
to be prepared to have multiple names and sometimes with a dynamic citation that includes the
word "in". The final rule is the following:

(<NOME><.*>+?(<PAGS>(<PUNC><NOTS>)?)(<SEP>|<PONT>|<PUNC>|<KC>))|

(<NOME><.*>{,2}?<IN><.*>+?(<SEP>|<PONT>|<PAGS>)<KC>?)

As shown in figure 5.3, there were essentially two routes that could be pursued. One for a
"normal" citation and the other for a more "dynamic" citation. Both start with the name and are
followed by the minimum number of words possible until it reaches the pages or the end. This is
achieved by using "+?" in the regex expression. This solution, contrary to "+" which is greedy,
is a reluctant [52], and will search for the shorter route. This is important because if we have
two citations in the same sentence, the greedy algorithm would identify everything from the first
citation name until the end of the second one.

Figure 5.3: Segmentation and Labeling at both the Token and Chunk Levels

Figure 5.4 presents a full representation of a simple citation and its grammar tree. This tree
has a root, represented by the letter "S", but as in the given example, the only child branch
consists of the reference, represented by "REF". This REF then had multiple children that each
represents a subtree or a leaf pair word tag.

50 Chapter 5. References Extraction

Figure 5.4: Citation’s Chunk Tree Example from Pythons draw tool

5.3 Citation information extraction

Now that every chunk is correctly identified, we can start to extract the information from the
citation. Every part of the phrase has its own caveat so it’s important to structure it without
generalization. A single sentence can pass n times through this process as it can contain multiple
citations.

The information extracted from each tag that can be selected from the rules is the following:

• NAME: The program will check every branch of this subtree to create the name. When
the name is acquired, the program will check the database for an entry of the name and, if
found, it is added, with a relative keyword, to an array that represents the full citation’s
metadata.

• PAGS and NOTS: Pages and notes behave in the same way but have to be treated as
separate so the keywords are different. For each value of the branch, we verify if it is a
number or a "follow" keyword. If it is a number, it is added to an array, if it is a "follow"
keyword, such as "e seguintes" or "sgs", it is added a ’+’ to the array. In the end, this array
is added to the main citation array.

• VOLS: Volumes behave in the same way as the previous pages and notes but they can
have Roman numerals, so for that particular reason they must have a unique treatment.

For those chunks that could not be identified via grammar rules, personalized treatment must
be done. For the subtree being identified, every branch is checked whether it is a subtree or an
element. If it is a subtree and its tag is not one of the tags created in the grammar rules, the
program will open the same method inside of it in a DFS style. If it is an element, it checks if it
is not a termination tag, such as PUNC or SEP. If it is not, the element’s word is added to an
array. When the word has indeed a termination tag (and the array is not empty), the program
will behave in the following way:

• If it is the first time reaching a termination tag, it means that the words gathered are part
of the title. This is because the title of the referred work comes after the name of the
author or after the keyword IN. Then the array with the words is merged into a string and
added to the final citation array with all the citation parameters;

5.4. Summary 51

• If the number of words is less or equal to 5, and one of the words is a digit between 1000
and 3000, we consider it as a year and add that keyword to the citation array. The decision
for considering just 5 words resulted from our observation that the large majority of the
times we found a citation with just the date exposed, but in very rare ones we found a
string with day and month, so there is a need to include, at most, a string such as "20 de
abril de 2023". If there is a date that we can not find, there is no problem as we will see
afterwards;

• If there is a word "editor" or "editora" in the words gathered, (masculine and feminine types
of "editor" in Portuguese) we can assume that the string is related to the editor, so it is
added with the keyword "editor";

• Like the previous item, the same happens for "edição" (meaning edition), but in this case,
there is no variation of the word.

It is important to note that, if the tag IN is found in this part, everything before it is ignored as,
beyond the author’s name, it is not relevant information. Also, punctuation is ignored as it is
used, at most, to divide sentences. Only quotation marks and colons are accepted.

If any string is still not found by the program, it is added with the keyword "other" to the
citation array. This is important because we want to make sure that nothing is ignored because
of computer mistakes and can always be used afterwards.

In the end, we end up with the citation metadata, which is an array with the authors’ name,
publication’s title, pages, notes, volumes, year, editors, and editions. All of this information is
then added to the authors’ database (Table 3.4).

5.4 Summary

In this chapter, we successfully extracted citation information by employing grammar rules to
segment tokens and subsequently parsed this information for storage in the database. Through
this process, we gained valuable insights into the utility of rules, particularly with the assistance
of regular expressions (regex). Furthermore, by utilizing chunking techniques, we were able
to conveniently store specific components of the citation, further enhancing the accuracy and
efficiency of the extraction process.

This chapter successfully answers question four introduced in chapter 1, "How to identify the
metadata elements characterizing a citation in order to build a list with all references associated
with a specific work?".

Chapter 6

Results

This chapter presents and discusses the results gathered for the different citation identification
approaches that were followed in this work. We also explore some of BERT’s capabilities to
be used in the project and how the information extracted from the citations identified can be
displayed by a future developer.

The approach followed in the implementation of tools for the different stages of the project
was accompanied by unit tests. Unit tests contribute to better validity and reliability of the
research findings and thus provide reinforced confidence in the accuracy and functionality of the
developed approaches. We used a pool of superior court documents that after preprocessing and
data cleaning were the input of a learning algorithm to identify citations. Naturally, the initial
pool of curated documents was partly used for learning and part for validation, thus avoiding
overfitting, based on which metrics were calculated and reported as results.

At the end of this chapter, we present a possible solution to visualize the citation metadata
extracted, as described in the last chapter. This concludes the project’s pipeline, as shown in
figure 6.1.

Figure 6.1: Project’s Pipeline: Information Presenting Stage

6.1 Citation Identification Results Analysis

In this section, we compare the different approaches made to the citation identification algorithm,
without the use of transformative architecture.

53

54 Chapter 6. Results

6.1.1 Identification based on patterns and researcher’s names

As stated previously in chapter 4, an output file was created, not only for BERT training but
for values comparison. The team made an effort to validate manually if any false positives or
negatives were appearing in the code and unfortunately, some were. In the 7382 cases throughout
all 20 documents lines evaluated, this is our balance:

• True Negatives: 7256;

• True Positives: 64;

• False Negatives: 57;

• False Positives: 5.

At first glance, these numbers do not look great, so we calculated the validation parameters for
these values:

• Accuracy: 99,16%;

• Precision: 92,75%;

• Recall: 52,89%;

• Specificity: 99,93%.

We are aware that the high discrepancy between these numbers is due to the large number of
True Negatives values that we have compared with the False Negatives. Where it really fails is
on the recall because the formula compares the True Positives and the False Negatives. This
indicates that roughly 47% of all citations are not correctly identified and that is very concerning!
So there was a need to look through all False Negatives to understand what was going on.

After inspecting file by file in the 15 files that had an FP or FN, we gathered the main problems:

• In 14 out of the 16 files, the main problem was that the name was not on the researchers’
list. A complete list could show that 9 out of these 15 problematic files could be fully
correct;

• In 3 out of the 16 files, the main problem was because a shorter version, or an alias, of the
researcher’s name, was used. This cannot be accepted because, for example, the referenced
name was "Vaz Serra" but in the researchers list we have 2 different researchers with these
two names inside of their full names;

• In 2 out of the 16 files, the tokenization had problems and some sentences had been merged
together without a separation space being added. This is a problem with the origin in the
HTML conversion of DGSI website pages;

6.1. Citation Identification Results Analysis 55

• In 2 out of the 16 files, the identified citations did not have a name correlated with the
publication name, so they can be labelled as wrong citations.

• In 1 file, 3 names were mistakenly identified.

By removing the False Negatives that resulted in known researchers not having a match, this
value was reduced by 42 instances, from 57 to 15. The problems with having smaller names
or aliases are that firstly the longer names can contain shorter ones inside of them, which can
mislead by identifying the wrong author, but the extraction stage should correctly take care of
this. The second problem is that sometimes smaller names are used in the middle of a normal
sentence to address them as a redactor and not as a publication’s author. This is mainly because
of the types of patterns that were gathered.

After this manual verification, we added the missing authors’ names to the researcher’s list and
got the following values (More details on Table A.6):

• True Negatives: 7247;

• True Positives: 106;

• False Negatives: 15;

• False Positives: 14;

• Accuracy: 99,61%;

• Precision: 88,33%;

• Recall: 87,60%;

• Specificity: 99,81%.

The DGSI website had HTML issues that made the web scrapper create weird glitches when
parsing the data. The majority of these were corrected in the data preparation data but problems
such as the missing space after the period punctuation, random parentheses in the middle of the
phrase that would disrupt the tokenization process, or even phrases such as the following that
would sometimes appear:

n em co m a a utonomia ou in dependência carac terística d os

reg ulamentos d os plan os muni cipais

After a simple cleaning of some phrases that had abnormalities like this one, and after removing
the patterns that were causing the second problem mentioned, we got the following values (More
details on Table A.7):

• True Negatives: 7255;

56 Chapter 6. Results

• True Positives: 103;

• False Negatives: 19;

• False Positives: 5;

• Accuracy: 99,67%;

• Precision: 95,37%;

• Recall: 84,43%;

• Specificity: 99,93%.

These are great results, but we have to be thoughtful about them. The decline in False Positives
is due to the fact that fewer patterns are used, making it so that fewer patterns are misused.
But this way more False Negatives are created, because a great portion of the sentences have
uncommon citations that rely on those patterns to be identified, for example:

No campo doutrinário, como dá conta Carla Gonçalves,

"há quem defenda que a distinção entre a obrigação

de meio e a de resultado vem perdendo importância."

The higher number of False Negatives, compared to a similar number of True Positives, leads
to a decrease in recall. Conversely, the decrease in False Positives to a similar number of True
Positives results in an increase in precision.

6.1.2 Identify by grammar rules

Identifying citations by adopting grammar rules has its pros and cons. On one hand, they are
easier to implement as we only have to come up with a rule for the citation but then, on the
other hand, it can be harder to come up with a rule that accommodates all different formats a
citation may have and thus may identify many False Positives. For this reason, we created a rule
based on the grammar built on chapter 5, and toned it down to be more precise. The results can
vary based on the rule and on the authors’ list.

NAME: {<NPROP2>((<NPROP>|<PREP>)?<NPROP2>)+}

PAG_DOT: {<PAG><PONT>?}

PAGS: {<PAG_DOT><NUM>((<PUNC>|<KC>|<ART>)<NUM>)*(<KC><SGS>)?}

REF: {<NAME><.*>+?<PAGS>}

For the authors’ list, we used the same approach as presented in the chapter 5, which is a list of
unique names throughout authors. The results obtained were the following:

6.1. Citation Identification Results Analysis 57

• True Negatives: 7251;

• True Positives: 95;

• False Negatives: 26;

• False Positives: 10;

• Accuracy: 99,51%;

• Precision: 90,48%;

• Recall: 78,51%;

• Specificity: 99,86%.

Even though this method is worst from a recall perspective compared to the last section’s
procedure, it is more flexible as it does not need the researcher’s list, it only requires unique
singular names from the database. Figure 6.2 compares these validators’ metrics. More details
are provided in tables A.5, A.6, and A.9.

Figure 6.2: Comparison of validators metrics between different approaches on citation
identification

58 Chapter 6. Results

6.1.3 BERT

BERT, as a machine learning tool, is very dependent on the quality of the dataset. Legal
documents have commonly long phrases. In figure 6.3 we can see the distribution of these phrases,
after removing outliers.

In our analysis, sentences below a length of 50 characters were excluded from consideration. This
decision was made based on the presence of citations in sentences, as we assumed that shorter
sentences are less likely to contain citations. The lower quartile in the box plot calculation
indicated that sentences with a length of 56 characters or longer were included in the dataset (as
can be seen in Figure B.2). Many outliers by greatness appeared after 1000 characters, so we
blocked any phrase with a length above 1000. With these values, the median of all phrases, as
seen in figure 6.3, is 199, being the lower quartile 125 and the upper one 309.

Since 512 tokens, which is the maximum available for BERT, is roughly equivalent to 2500
characters [53], this is for English vocabulary, we decided to go with a max length of 64 tokens
on BERT. If you follow the English conversion, 200 characters would be equivalent to almost 41
characters. We wanted to go by excess so we do not come short.

Figure 6.3: Boxplot on sentence length distribution for all 7434 lines gathered

With this being said, to make sure that BERT was well explored as a possible solution, an effort
was made to positively enhance the quality of the dataset. In the end, the best values for the
variables were for epoch with value 2 (we will see it deeper later in this section), learning rate at
5e-5, and batch size at 16. The Graph 6.4, and 6.5 express this efforts.

The first iteration had all the lines that were found, disregarding the last calculations and
independent of length or quality. The bad results on this can be translated into not being a
really good fine-tuning, so it just guessed if the phrase was a sentence with a citation or not,
based on a negative percentage on the dataset.

The second iteration had deeper hand-picked sentences gathered. It only accepted sentences

6.1. Citation Identification Results Analysis 59

with a minimum length of 50 characters and a maximum of 1000. Also, each negative sentence
would have a 60% chance of being removed. The final dataset had 1338 negative sentences and
58 positives.

The third and final iteration had a tighter selective length, with a minimum of 100 and a
maximum of 700. The negative sentences had a 30% chance of survival during the purge. The
final dataset had 1718 negatives and 58 positives. These size values were not random, as they
were selected based mainly on the largest and shortest positive sentence.

Figure 6.4: Comparison of validator’s metrics between different iterations of BERT’s dataset

Figure 6.5: Comparison of computational times between different iterations of BERT’s dataset

Different epochs were made to the third iteration. Using epoch at level 3 made precision higher
but recall lower. Using epoch at 4, made everything worse, so we are better at fine-tuning
the model with 2 epochs and all previous variables. Figure 6.6 presents the comparison of the
validator’s metrics throughout different epochs in the same dataset.

60 Chapter 6. Results

Figure 6.6: Comparison of validator’s metrics between different epochs’ values on the same
iteration of BERT’s dataset

Upgrading the number of negatives and maintaining the number of positives, with a controlled
selection, provided a lower precision but a higher, above 50% (which could be considered true
randomness) recall. Regrettably, the second question posed in Chapter 1, "Can this identification
process benefit from machine learning capabilities?" is not conclusively answered in this section.

Our results do not demonstrate an improvement compared to a traditional algorithm that relies
on patterns and authors’ names. However, based on them, we can expect that a larger and
higher-quality dataset may yield considerable improvements in citation identification, potentially
eliminating the need for authors’ names or specific patterns to identify it. This suggests that
leveraging machine learning techniques and expanding the dataset could offer promising avenues
for future research in enhancing citation identification methods.

6.1.4 Conclusions

By comparing results, times, and complexity, we can conclude that, if a future iteration of this
work wants to be limited to a pre-constructed list, to maintain reliability on the system, the
best approach would be the one with patterns and authors’ names. If not, the researcher should
make a choice between the grammar ruling and BERT. On one hand, it is easier to implement
and control, and the overall times are quicker. On the other hand, BERT might increase its
positive identification even further by having a greatly populated dataset. Figure 6.7 compares
the identification times between the three iterations.

It is important to note that the times that were displayed for BERT iterations do not regard

6.2. Presenting extracted data 61

the training time. As that is a separate action, we wanted it to be as reliable as possible to be
compared to other approaches.

Figure 6.7: Comparison of times to identify citations in 20 documents between different approaches
to the citation identification problem

6.2 Presenting extracted data

From the information that we extracted in chapter 5, we got the following metadata, if available:
Authors’ names, Publication Title, Pages, Volumes, Notes, Year, Editor, Edition, and Others. To
present a possible output for the project, we generated stylized references having the following
rules:

• The authors’ name should start with the last one, then a comma;

• Then the rest of the name starting with the beginning;

• Then, if available, the year inside parenthesis;

• A period is made to open quotation marks to the publication name and then close those
quotation marks;

• A comma is introduced to make pages available. The word "págs." or "pág." (if singular) is
added, followed by each number of pages, separated by a comma. If the "+" sign exists in
the pages array, the word "sgs." is added, expressing "and following";

• The same logic is added to volumes and notes, but the preceding words used are "vols."
and "notes", respectively;

• It then adds a period followed by the editor, edition, and every other part that was not
identified, all of this separated by a period.

The following example might help understand this better:

Information fetch from the database: [[author: ’Maria Raquel Guimarães’, publication:
’As Transferências Electrónicas De Fundos E Os Cartões De Débito’, pags: ’[11, 12,’+’]’, year:
1999, other: ’Almedina’]]

62 Chapter 6. Results

Output: Guimarães, Maria Raquel (1999). "As Transferências Electrónicas De Fundos E Os
Cartões De Débito", págs. 11, 12 e sgs.. Almedina.

In this section and with the information stated in chapter 3, we were also able to answer the
third question introduced in chapter 1, "How to credit researchers and law practitioners with
citations to their work found in superior court decision documents?".

6.3 Summary

This chapter described the results of the work carried out in this dissertation. The main focus
of this dissertation was achieved as we can see by the results of the citation identification by
pattern and authors’ names. The combined use of these two methods yielded validation metrics
that surpassed other approaches. While the implementation of BERT did not yield satisfactory
results, we remain optimistic about its potential for improvement, as discussed in the subsequent
chapter, on future work.

The effective presentation of extracted information in a typical reference style demonstrates its
utility and potential applications for future developers. This standardized format allows for
versatile use in various contexts and enhances the accessibility and usability of the extracted
data.

Chapter 7

Conclusion and Future work

In this dissertation, we presented a strategy to deal with citation identification in superior court
decision documents. It includes three parts: (1) Data preparation, where decision court documents
are preprocessed into a format manageable by our algorithms; (2) citation identification, where we
presented different algorithm solutions to identify citations to legal documents and evaluate them
on a validated dataset to discover their differences and uniqueness; and (3) citation extraction
where used grammar syntax on Portuguese sentences to wrap chunks of words and extract
different kinds of information to the database.

The approaches used to identify citations were: identification based on patterns and researcher’s
names, identification based on grammar rules, and using BERT. Our results show that a
traditional algorithm based on patterns and author’s names achieved the best identification
results, however, if we could resort to a larger curated dataset on which a learning algorithm
could learn, the conclusion could be slightly different.

7.1 Future Work

Our work was an initial approach to the problem of citation identification in legal documents and
thus further work will be necessary to extend and improve its functionality and implementation.
Firstly, citation identification from techniques that do not use transformer architecture can
benefit from deep refactoring. Extending the optional punctuations, sentence tokenization, and
reference patterns can have a great performance increase.

Altering the authors’ names listing for citation identification can also be a great addition. Another
algorithm making use of Redis as a message broker and a cache database could be adopted to
keep track of the most commonly searched, used, or stored names in the database. In this case,
even if the time complexity would still be at O(n) for the author name search, we can still, in
the long run, have better results. We could also just store the first name of the authors’ and
then, if found, we could look for all of the names under that first name. It needs to be pointed
out that this can lead to hard code decisions because, as we said before, names can be displayed

63

64 Chapter 7. Conclusion and Future work

in different ways and first names do not necessarily mean that they are the first to be displayed.

One critical approach is to relate the names to the sentence but make sure that they are next to
each other. For one phrase that has two names to two different citations, our implementation
shows that if it exists a third individual can be wrongly identified, based only on those two
names.

Considering that BERT is an Artificial Intelligence model, it will always benefit from large
datasets with great quality. Having this in mind, a greater and wider dataset with good, different,
positive citations on phrases can help our model to become better. It is crucial to also create a
model for BERT that is fine-tuned for legal literature. This can eventually help the tokenization
process and help the model learn legal knowledge and terminology, leading to more accurate
predictions on these tasks. Our model had 7434 sentences but only 121 were positives, which is
only almost 2% of the dataset. Future research should increase this proportion to aim for better
results, as for our best solution, we tried to make it 10% by cutting down on negatives.

Citation extraction can be fine-tuned to include other parts of citations that were not seen. Rules
can be enhanced and improved to the developer’s necessity or if needed. Also, a future researcher
can try to include a transformative AI with named entity recognition capabilities to extract these
types of information.

Lastly, this work can also be used as a blueprint for other languages. Citation and extraction
would be very similar as it uses grammar rules to identify words. Advice for future work to
be done on other languages is to look deeper into NLTK’s "Extracting Information from Text"
chapter as chunk’s use cases can go much deeper as we go on this project, for example, chunk
evaluation, chinking, and regex tag pattern for rules with sub-token for each word.

It is also important to note that some results of this dissertation took a hit on their validation
because many parts of the extracted information from the DGSI’s website were not completely
correct (as seen in previous chapters). If they are correctly fetched and then parsed, tokenization
will be clear and the results would be much better.

In summary, improving the identification of unique citations has a twofold benefit. Firstly,
it enhances the quality of datasets, enabling the identification of more specific patterns and
information. This, in turn, streamlines the process of citation identification, reducing compu-
tational complexity and making it a more straightforward task. By focusing on identifying
unique citations, researchers can optimize the efficiency and accuracy of their work, ultimately
contributing to the advancement of the field.

Appendix A

Auxiliary Tables

Table A.1: HTML Requests Header for Web Scrapping Algorithm
Key Value
User-Agent Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36

(KHTML, like Gecko) Chrome/106.0.0.0 Safari/537.36
Encoding ISO-8859-1

65

66 Appendix A. Auxiliary Tables

Table A.2: Example of patterns in european portuguese legal literature for citations
in by pag. pág.
pags. págs. p. pp.
pps. cfr. citando afirma que
a expressão é
de

como [...] sub-
linha

como dá conta como ensina

como nos dá
conta

como sublinha como sugerido
por

como sustenta

conforme
alerta

conforme dis-
corre

conforme
explicam

conforme
explica

do mesmo
modo,

em sentido
próximo [...] se
pronuncia

escreve explica o autor

na doutrina na síntese de nas palavras de neste sentido
neste sentido,
afirma

no mesmo sen-
tido aponta

no mesmo
sentido aponta
também o prof.

No mesmo sen-
tido, refere [...]
in artigo pub-
licado

para segundo Refere, a este
propósito,

seguindo [...] a
obra de

sobre [...] vide sobre este
ponto, [...]
vide ainda

neste sentido,
vide

em sentido
oposto, vide

sobre o tema
pode ver-se
ainda

vide, por todos como acentua a como acentua o

por Acórdão do por Acórdão da mencionado
acórdão do

mencionado
acórdão da

67

Table A.3: Mac-Morpho’s lexical tags and its grammar class
Grammar Class Tag
ADJETIVE ADJ
ADVERBS ADV
ADVERBIAL CONNECTIVE
SUBORDINATIVE

ADV-KS

RELATIVE ADVERBIAL
SUBORDINATIVE

ADV-KS-REL

ARTICLE (def. or indef.) ART
COORDINATING
CONJUNCTION

KC

SUBORDINATING
CONJUNCTION

KS

INTERJECTION IN
NAME N
PROPER NOUN NPROP
NUMERAL NUM
PARTICLE PCP
DENOTATIVE WORD PDEN
PREPOSITION PREP
ADJECTIVE PRONOUN PROADJ
CONNECTIVE PRONOUN
SUBORDINATIVE

PRO-KS

PERSONAL PRONOUN PROPESS
RELATIVE CONNECTIVE
PRONOUN SUBORDINAT-
IVE CONNECTIVE

PRO-KS-REL

PRONOUN NOUN PROSUB
VERB V
AUXILIARY VERB VAUX
CURRENCY SYMBOL CUR
COMPLEMENTARY
LABELS (Foreignisms;
Appositives; Data; Telephone
Numbers; Dates; Times; and
Disjunction)

|EST|AP|DAD|TEL|DAT|HOR|[|]

CONTRAITIONS and EN-
CONCLISES

|+

MESOCLES |!

68 Appendix A. Auxiliary Tables

Table A.4: Example of paires "Word-Tag" used in the custom Mac-Morpho list
Key Value
pag. PAG
pags. PAG
pág. PAG
págs. PAG
vol VOL
/ PUNC
, PUNC
(PUNC
) SEP
; SEP
. PONT
Fábio NPROP2
cit. N
in IN
sgs SGS
ss SGS

69

Table A.5: Citation identification from authors’ names and patterns (Raw)
ID TN TP FN FP
1 91 3 7 0
2 254 0 0 0
3 272 3 0 0
4 443 0 1 0
5 250 3 5 0
6 195 7 2 0
7 348 7 1 0
8 509 3 1 0
9 149 1 1 0
10 546 1 0 0
11 360 4 0 0
12 299 3 3 0
13 789 4 0 0
14 272 3 6 0
15 363 5 0 0
16 436 2 8 0
17 206 2 6 1
18 725 3 5 0
19 255 3 2 4
20 282 1 1 0
21 212 6 8 0
Total 7256 64 57 5

70 Appendix A. Auxiliary Tables

Table A.6: Citation identification from authors’ names and patterns (All names)
ID TN TP FN FP
1 91 9 1 0
2 254 0 0 0
3 272 3 0 0
4 443 0 1 0
5 250 8 0 0
6 195 8 1 0
7 348 8 0 0
8 509 3 1 0
9 148 2 0 1
10 546 1 0 0
11 360 4 0 0
12 299 6 0 0
13 789 4 0 0
14 272 8 1 0
15 363 5 0 0
16 434 9 1 2
17 206 2 6 1
18 722 8 0 3
19 254 4 1 5
20 282 2 0 0
21 210 12 2 2
Total 7247 106 15 14

71

Table A.7: Citation identification from authors’ names and patterns (All names and less Patterns)
ID TN TP FN FP
1 91 9 1 0
2 254 0 0 0
3 272 3 0 0
4 443 0 1 0
5 250 8 0 0
6 195 8 1 0
7 348 7 1 0
8 509 4 0 0
9 149 2 0 0
10 546 1 0 0
11 360 4 0 0
12 299 6 0 0
13 789 4 0 0
14 272 8 1 0
15 363 4 1 0
16 434 9 1 2
17 206 2 6 1
18 724 7 1 1
19 258 3 2 1
20 282 1 1 0
21 211 13 2 0
Total 7255 103 19 5

72 Appendix A. Auxiliary Tables

Table A.8: Citation identification from authors’ names (All names), and Grammar Rules
ID TN TP FN FP
1 91 9 1 0
2 254 0 0 0
3 272 3 0 0
4 443 0 1 0
5 250 7 1 0
6 195 8 1 0
7 347 6 2 1
8 509 3 1 0
9 149 2 0 0
10 546 1 0 0
11 360 4 0 0
12 299 6 0 0
13 789 4 0 0
14 272 6 3 0
15 363 4 1 0
16 435 9 1 1
17 207 0 8 0
18 724 7 1 1
19 259 3 2 0
20 282 1 1 0
21 210 10 5 1
Total 7256 93 29 4

73

Table A.9: Citation identification from Grammar Rule’s Patterns
ID TN TP FN FP
1 91 9 1 0
2 254 0 0 0
3 272 3 0 0
4 443 0 1 0
5 250 7 1 0
6 194 9 0 1
7 347 6 2 1
8 509 3 1 0
9 149 2 0 0
10 546 1 0 0
11 360 4 0 0
12 299 6 0 0
13 789 4 0 0
14 271 7 2 1
15 362 4 1 1
16 435 9 1 1
17 207 0 8 0
18 724 7 1 1
19 259 4 1 0
20 280 1 1 2
21 210 9 5 2
Total 7251 95 26 10

74 Appendix A. Auxiliary Tables

Table A.10: Citation identification from BERT, iteration 1
ID TN TP FN FP
1 73 2 8 18
2 158 0 0 96
3 185 0 3 87
4 305 0 1 138
5 166 2 6 84
6 152 0 9 43
7 201 1 7 147
8 368 1 3 141
9 109 1 1 40
10 414 0 1 132
11 165 0 4 195
12 220 0 6 79
13 607 0 4 182
14 170 0 9 102
15 144 0 5 219
16 253 2 8 183
17 113 0 8 94
18 403 0 8 322
19 164 0 5 95
20 191 0 2 91
21 162 0 14 50
Total 4723 9 112 2538

75

Table A.11: Citation identification from BERT, iteration 2
ID TN TP FN FP
1 91 2 8 0
2 254 0 0 0
3 272 1 2 0
4 443 0 1 0
5 250 3 5 0
6 195 7 2 0
7 347 5 3 1
8 509 4 0 0
9 149 1 1 0
10 546 1 0 0
11 360 3 1 0
12 299 3 3 0
13 789 3 1 0
14 272 2 7 0
15 363 5 0 0
16 436 2 8 0
17 207 0 8 0
18 725 1 7 0
19 256 1 4 3
20 282 1 1 0
21 212 3 11 0
Total 7257 48 73 4

76 Appendix A. Auxiliary Tables

Table A.12: Citation identification from BERT, iteration 3
ID TN TP FN FP
1 89 1 9 2
2 254 0 0 0
3 271 2 1 1
4 443 1 0 0
5 249 8 0 1
6 194 5 4 1
7 346 7 1 2
8 505 3 1 4
9 148 2 0 1
10 543 1 0 3
11 359 4 0 1
12 298 3 3 1
13 785 3 1 4
14 269 7 2 3
15 358 5 0 5
16 435 8 2 1
17 204 0 8 3
18 722 5 3 3
19 253 4 1 6
20 281 1 1 1
21 210 7 7 2
Total 7216 77 44 45

Appendix B

Auxiliary Graphs

Figure B.1: Graph plot relating identification via patterns first and names first.

77

78 Appendix B. Auxiliary Graphs

Figure B.2: Boxplot on sentence length distribution for all 121 lines with citation gathered

Appendix C

Auxiliary Code Samples

Listing C.1: BERT Training
1 #In the optimizer , l r , meaning l earn ing rate , can and should be changed on n e c e s s i t y
optimizer = torch.optim.AdamW(model.parameters(), lr=5e-5, eps=1e-08)

3 # I n i t i a l i z e dev ice to use GPU i f p o s s i b l e
device = torch.device(’cuda’ if torch.cuda.is_available() else ’cpu’)

5 epochs = 2

7 for _ in trange(epochs, desc = ’Epoch’):

9 # Set model to t ra in ing mode . This model in our case was the base BERTimbau
model.train()

11
I n i t i a l i z e t rack ing v a r i a b l e s

13 tr_loss = 0
nb_tr_examples, nb_tr_steps = 0, 0

15
for step, batch in enumerate(train_dataloader):

17 batch = tuple(t.to(device) for t in batch)
b_input_ids, b_input_mask, b_labels = batch

19 optimizer.zero_grad()
Forward pass

21 train_output = model(b_input_ids,
token_type_ids = None,

23 attention_mask = b_input_mask,
labels = b_labels)

25 # Backward pass
train_output.loss.backward()

27 optimizer.step()
Update t rack ing v a r i a b l e s

29 tr_loss += train_output.loss.item()
nb_tr_examples += b_input_ids.size(0)

31 nb_tr_steps += 1

Listing C.2: BERT Validation
Set model to eva lua t ion mode

2 model.eval()

4 # Tracking v a r i a b l e s
val_accuracy = []

6 val_precision = []
val_recall = []

8 val_specificity = []

79

80 Appendix C. Auxiliary Code Samples

10 for batch in validation_dataloader:
batch = tuple(t.to(device) for t in batch)

12 b_input_ids, b_input_mask, b_labels = batch
with torch.no_grad():

14 # Forward pass
eval_output = model(b_input_ids,

16 token_type_ids = None,
attention_mask = b_input_mask)

18 logits = eval_output.logits.detach().cpu().numpy()
label_ids = b_labels.to(’cpu’).numpy()

20 # Calcu la te v a l i d a t i o n metrics
b_accuracy, b_precision, b_recall, b_specificity = b_metrics(logits, label_ids)

22 val_accuracy.append(b_accuracy)
Update prec i s i on only when (tp + fp) !=0; ignore nan

24 if b_precision != ’nan’: val_precision.append(b_precision)
Update r e c a l l only when (tp + fn) !=0; ignore nan

26 if b_recall != ’nan’: val_recall.append(b_recall)
Update s p e c i f i c i t y only when (tn + fp) !=0; ignore nan

28 if b_specificity != ’nan’: val_specificity.append(b_specificity)
Then model can be saved for fu ture use

Listing C.3: BERT Usage
Auxi l iary method . I t re turns BatchEncoding with a l i s t o f token ids ,

2 # l i s t o f token type ids , an a t t en t i on mask l i s t
def preprocessing(input_text, tokenizer):

4 return tokenizer.encode_plus(
input_text,

6 add_special_tokens=True,
max_length=max_length,

8 padding=’max_length’,
return_attention_mask=True,

10 return_tensors=’pt’,
truncation=True

12)

14 # Model should be loaded be fore
We need Token IDs and Attent ion Mask for in ference on the new sentence

16 test_ids = []
test_attention_mask = []

18 # Apply the token i z e r
encoding = preprocessing(phrase, tokenizer)

20
Extract IDs and Attent ion Mask

22 test_ids.append(encoding[’input_ids’])
test_attention_mask.append(encoding[’attention_mask’])

24 test_ids = torch.cat(test_ids, dim=0)
test_attention_mask = torch.cat(test_attention_mask, dim=0)

26
Forward pass , c a l c u l a t e l o g i t p r ed i c t i o n s

28 with torch.no_grad():
output = model(test_ids.to(device), token_type_ids=None,

30 attention_mask=test_attention_mask.to(device))

32 # I t w i l l return " Ci ta t ion " i f i t i d e n t i f i e s a c i t a t i o n and "Normal" i f not
prediction = "Citation" \

34 if np.argmax(output.logits.cpu().numpy()).flatten().item() == 1 \
else "Normal"

Appendix D

Auxiliary Images

Figure D.1: DGSI’s URL Structure

81

References

[1] UNSW - Sidney, “Why is referencing important?.” <www.student.unsw.edu.au/why-
referencing-important> Last accessed Mar. 20 2023.

[2] “IGFEJ - Bases jurídico-documentais.” <www.dgsi.pt>, Last accessed Mar. 20 2023.

[3] The Institute of Electrical and Electronics Engineers, Inc., “IEEE standard computer
dictionary: A compilation of IEEE standard computer glossaries,” 1990.

[4] P. C. (NCR), J. C. (SPSS), R. K. (NCR), T. K. (SPSS), T. R. (DaimlerChrysler), C. S.
(SPSS), and R. W. (DaimlerChrysler), “Cross industry standard process for data mining,”
2000.

[5] M. Juodyte, “Overview: Data mining pipeline.” Faculty of Informatics, Technical University
of Munich, 2017.

[6] J. Han, M. Kamber, and J. Pei, Data mining concepts and techniques. Morgan Kaufmann
Series in Data Management Systems, 3rd edition ed., 2012.

[7] R. K. Pearson, “The Problem of Disguised Missing Data,” ACM SIGKDD Explorations
Newsletter, vol. 8, pp. 83–92, jun 2016.

[8] K. Soo, “Deep learning bible,” 2023. Last edited on May 10 2023. <wikidocs.net/book/8926>.
Last accessed Jun. 4 2023.

[9] B. Dang, “The 8 best nosql databases for your business.” Datavid, <datavid.com/blog/best-
nosql-databases>, Last accessed Jan. 11 2023.

[10] S. Goled, “Self-supervised learning vs semi-supervised learning: How they differ,” in Analytics
India Mag, May 2021. <analyticsindiamag.com/self-supervised-learning-vs-semi-supervised-
learning-how-they-differ>. Last accessed Jun. 4 2023.

[11] A. Radford, K. Narasimhan, T. Salimans, and S. Ilya, “Improving language understanding
by generative pre-training.” https://s3-us-west-2.amazonaws.com/openai-assets/research-
covers/language-unsupervised/language_understanding_paper.pdf, 2018.

[12] O. Levy and Y. Goldberg, “Dependency-based word embeddings,” in Proceedings of the
52nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short

83

https://www.student.unsw.edu.au/why-referencing-important
https://www.student.unsw.edu.au/why-referencing-important
http://www.dgsi.pt/
https://wikidocs.net/book/8926
https://datavid.com/blog/best-nosql-databases/
https://datavid.com/blog/best-nosql-databases/
https://analyticsindiamag.com/self-supervised-learning-vs-semi-supervised-learning-how-they-differ
https://analyticsindiamag.com/self-supervised-learning-vs-semi-supervised-learning-how-they-differ

84 References

Papers), (Baltimore, Maryland), pp. 302–308, Association for Computational Linguistics,
June 2014.

[13] J. Pennington, R. Socher, and C. Manning, “GloVe: Global vectors for word representation,”
in Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP), (Doha, Qatar), pp. 1532–1543, Association for Computational Linguistics, Oct.
2014.

[14] J. Mannes, “Facebook’s fasttext library is now optimized for mobile.” Tech-
Crunch, 2018. <techcrunch.com/2017/05/02/facebooks-fasttext-library-is-now-optimized-
for-mobile/> Last Accessed May 31 2023.

[15] Radim Řehůřek, “Gensim: Topic modelling for humans.” <radimrehurek.com/gensim/>.
Last accessed on June 13 2023.

[16] Flair NLP, “Flair.” <github.com/flairNLP/flair>. Last accessed on June 12 2023.

[17] “GROBID documentation.” <grobid.readthedocs.io/en/latest/>. Last accessed on June 12
2023.

[18] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and
I. Polosukhin, “Attention Is All You Need,” in 31st Conference on Neural Information
Processing Systems (NIPS 2017), Long Beach, CA, USA, Jun 2017.

[19] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and
P. J. Liu, “Exploring the limits of transfer learning with a unified text-to-text transformer,”
CoRR, vol. abs/1910.10683, 2019.

[20] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidirectional
transformers for language understanding,” in Proceedings of the 2018 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), 2018. <www.aclweb.org/anthology/N18-3012>. Last
accessed on June 18 2023.

[21] G. Ghati, “Comparison between bert, gpt-2 and elmo,” May 2020.
medium.com/@gauravghati/comparison-between-bert-gpt-2-and-elmo-9ad140cd1cda
Last Accessed June 27 2023.

[22] S.-A. DeLucia, “Unleashing the power of bert: How the transformer model revolutionized
nlp.” Website, March 2023. <arize.com/blog-course/unleashing-bert-transformer-model-nlp>
Last Accessed May 20 2023.

[23] S. Pichai, “An important next step on our ai journey.” Google AI Blog, Feb 2023.
<blog.google> Last Accessed May 20 2023.

[24] OpenAI, “Openai api documentation.” <platform.openai.com/docs> Last Accessed 24 Apr.
2023.

https://techcrunch.com/2017/05/02/facebooks-fasttext-library-is-now-optimized-for-mobile/
https://techcrunch.com/2017/05/02/facebooks-fasttext-library-is-now-optimized-for-mobile/
https://radimrehurek.com/gensim/
https://github.com/flairNLP/flair
https://grobid.readthedocs.io/en/latest/
https://www.aclweb.org/anthology/N18-3012/
https://medium.com/@gauravghati/comparison-between-bert-gpt-2-and-elmo-9ad140cd1cda
https://arize.com/blog-course/unleashing-bert-transformer-model-nlp/
https://blog.google/
https://platform.openai.com/docs/introduction

References 85

[25] OpenAI, “Chatgpt.” <chat.openai.com> Last Accessed 24 Apr. 2023.

[26] OpenAI, “DALL-E 2.” <labs.openai.com> Last Accessed 24 Apr. 2023.

[27] K. Hu, “Chatgpt sets record for fastest-growing user base,” Feb. 2023.
<www.reuters.com/technology/chatgpt-sets-record-fastest-growing-user-base-analyst-
note-2023-02-01> Last accessed 24 Apr. 2023.

[28] OpenAI, “GPT-4 is OpenAI’s most advanced system, producing safer and more useful
responses.” <openai.com/product/gpt-4> Last Accessed 24 Apr. 2023.

[29] Harshini, “Gpt-4 vs gpt-3.5: What is different?,” Mar. 2023. <www.analyticsinsight.net/gpt-
4-vs-gpt-3-5-what-is-different> Last Accessed 24 Apr. 2023.

[30] Google, “Using language to better interact with helper robots.” Website.
<sites.research.google/palm-saycan> Last Accessed May 20 2023.

[31] S. Narang and A. Chowdhery, “Pathways language model (palm): Scaling
to 540 billion parameters for breakthrough performance.” Website, April 2022.
<ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html> Last Accessed
May 20 2023.

[32] Y. Mehdi, “Confirmed: The New Bing Runs on OpenAI’s GPT-4.” Website, Mar 2023.
blogs.bing.com/search/march2023/Confirmed−the−new−Bing−runs−on−OpenAI ′s−
GPT − 4 Last Accessed May 20 2023.

[33] D. Team, “Introducing duolingo max, a learning experience powered by gpt-4.” Website,
March 2023. <blog.duolingo.com/duolingo-max> Last Accessed May 20 2023.

[34] Salesforce, “Salesforce announces einstein gpt, the world’s first generative ai for crm.” Website,
March 2023. <www.salesforce.com/news/press-releases/2023/03/07/einstein-generative-ai>
Last Accessed May 20 2023.

[35] O. Shulayeva, A. Siddharthan, and A. Wyner, “Recognizing cited facts and principles in
legal judgments,” Artif Intell Law 25, p. 107–126, March 2017.

[36] C. L. Giles, K. D. Bollacker, and S. Lawrence, “Citeseer: An automatic citation indexing
system,” in Proceedings of the Third ACM Conference on Digital Libraries, NEC Research
Institute, 1998.

[37] A. Kanapala, S. Pal, and R. Pamula, “Text summarization from legal documents: a survey,”
Artif Intell Rev 51, p. 371–402, 2019.

[38] L. E. Resck, J. R. Ponciano, L. G. Nonato, and J. Poco, “LegalVis: Exploring and inferring
precedent citations in legal documents,” IEEE Transactions on Visualization and Computer
Graphics, vol. 29, pp. 3105–3120, jun 2023.

[39] P. Zhang and L. Koppaka, “Semantics-based legal citation network,” (New York, NY, USA),
Association for Computing Machinery, 2007.

https://chat.openai.com/
https://labs.openai.com/
https://www.reuters.com/technology/chatgpt-sets-record-fastest-growing-user-base-analyst-note-2023-02-01/
https://www.reuters.com/technology/chatgpt-sets-record-fastest-growing-user-base-analyst-note-2023-02-01/
https://openai.com/product/gpt-4
https://www.analyticsinsight.net/gpt-4-vs-gpt-3-5-what-is-different
https://www.analyticsinsight.net/gpt-4-vs-gpt-3-5-what-is-different
https://sites.research.google/palm-saycan
https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html
https://blogs.bing.com/search/march_2023/Confirmed-the-new-Bing-runs-on-OpenAI's-GPT-4
https://blogs.bing.com/search/march_2023/Confirmed-the-new-Bing-runs-on-OpenAI's-GPT-4
https://blog.duolingo.com/duolingo-max/
https://www.salesforce.com/news/press-releases/2023/03/07/einstein-generative-ai/

86 References

[40] C. Caragea, J. Wu, A. Ciobanu, K. Williams, J. Fernández-Ramírez, H.-H. Chen, Z. Wu, and
L. Giles, “Citeseerx: A scholarly big dataset,” in Advances in Information Retrieval. ECIR
2014. Lecture Notes in Computer Science, vol 8416. Springer, 2014. <citeseerx.ist.psu.edu>.
Last accessed Jun. 4 2023.

[41] World Wide Web Consortium (W3C), “Xml path language (xpath) 3.0,” April 2014.
<www.w3.org/TR/xpath-30/>. Last accessed on June 13 2023.

[42] M. Kay, “What’s new in 3.0 (xslt/xpath/xquery) (plus xml schema 1.1),” in XML Prague
2012, 2 2012. Retrieved on June 13 2023.

[43] MDN Web Docs, “Xpath.” <developer.mozilla.org/en-US/docs/Web/XPath>. Last accessed
on June 13 2023.

[44] “Postman.” <www.postman.com>. Last accessed June 13 2023.

[45] “Natural Language Toolkit (NLTK) - Documentation.” <www.nltk.org/book/>. Last
accessed on April 30 2023.

[46] F. Neves, “Abreviaturas: lista de abreviações.” <www.dicio.com.br/abreviaturas-lista-de-
abreviacoes>. Last accessed 4 June 2023.

[47] NeuralMind AI, “portuguese-bert.” <github.com/neuralmind-ai/portuguese-bert>. Last
accessed on June 18 2023.

[48] Hugging Face, “neuralmind/bert-large-portuguese-cased.” <huggingface.co/neuralmind/bert-
large-portuguese-cased>. Last accessed on June 18 2023.

[49] Nishank Mishra, “An introduction to bert: How it works and how to use it for nlp.”
<nish-19.github.io/posts/2021/02/blog-post-4>. Last accessed on June 20 2023.

[50] NILC, “Mac-morpho corpus.” <nilc.icmc.usp.br/macmorpho/>. Last accessed on June 20
2023.

[51] NILC, “Mac-morpho corpus manual.” <nilc.icmc.usp.br/macmorpho/macmorpho-
manual.pdf>. Last accessed on June 20 2023.

[52] R. Team, “Regex tutorial: Quantifiers.” <www.rexegg.com/regex-quantifiers.html>. Last
accessed on June 20 2023.

[53] Sinequa, “Classifying long textual documents up to 25,000 tokens using bert.”
<sinequa.medium.com/classifying-long-textual-documents-up-to-25-000-tokens-using-
bert-9d2dd55ca060>. Last accessed on June 20 2023.

[54] P. Guillou, “NLP nas empresas | como ajustar um modelo de linguagem natural como BERT
a um novo domínio linguístico com um adapter?,” Medium, Sept. 2021. Last accessed 25
Mar. 2023.

https://citeseerx.ist.psu.edu/
https://www.w3.org/TR/xpath-30/
https://developer.mozilla.org/en-US/docs/Web/XPath
https://www.postman.com/
https://www.nltk.org/book
https://www.dicio.com.br/abreviaturas-lista-de-abreviacoes/
https://www.dicio.com.br/abreviaturas-lista-de-abreviacoes/
https://github.com/neuralmind-ai/portuguese-bert
https://huggingface.co/neuralmind/bert-large-portuguese-cased
https://huggingface.co/neuralmind/bert-large-portuguese-cased
https://nish-19.github.io/posts/2021/02/blog-post-4/
http://nilc.icmc.usp.br/macmorpho/
http://nilc.icmc.usp.br/macmorpho/macmorpho-manual.pdf
http://nilc.icmc.usp.br/macmorpho/macmorpho-manual.pdf
https://www.rexegg.com/regex-quantifiers.html
https://sinequa.medium.com/classifying-long-textual-documents-up-to-25-000-tokens-using-bert-9d2dd55ca060
https://sinequa.medium.com/classifying-long-textual-documents-up-to-25-000-tokens-using-bert-9d2dd55ca060

References 87

[55] J. Brownlee, “Ensemble learning methods for deep learning neural networks.” Deep Learning
Performance, December 2018.

[56] W. J. Hutchins, “The history of machine translation in a nutshell,” 2006.

[57] K. Reitz, “Requests-html: Html parsing for humans.” <github.com/kennethreitz/requests-
html>. Last accessed on 13 June 2023.

[58] F. Nogueira, F. Silva, S. Bugla, and M. R. Guimarães, “Identifying references to
legal literature in portuguese superior court decisions - repository.” <github.com/fabio-
noga/reference-identification>. Last accessed on 30 June 2023.

[59] A. Borodin, G. O. Roberts, J. S. Rosenthal, and P. Tsaparas, “Link analysis ranking:
Algorithms, theory, and experiments,” February 2005.

[60] A. Mowbray, P. Chung, and G. Greenleaf, “A free access, automated law citator with
international scope: The lawcite project,” 12 2016.

[61] S. N. Group, “Stanza – a python nlp package for many human languages.” <stan-
fordnlp.github.io>. Last accessed on June 26 2023.

[62] C. Samarawickrama, M. de Almeida, N. de Silva, G. Ratnayaka, and A. S. Perera, “Party
identification of legal documents using co-reference resolution and named entity recognition,”
in 2020 IEEE 15th International Conference on Industrial and Information Systems (ICIIS),
pp. 494–499, 2020.

[63] N. Sannier, M. Adedjouma, M. Sabetzadeh, and L. Briand, “An automated framework for
detection and resolution of cross references in legal texts,” in Proceedings of the International
Conference on Artificial Intelligence and Law, 2021.

[64] D. Bergmark, “Automatic extraction of reference linking information from online documents,”
tech. rep., USA, November 2000.

[65] CRACS & Inesc TEC, “Authenticus.” <www.authenticus.pt>. Last accessed on June 26
2023.

[66] “Online confusion matrix.” <onlineconfusionmatrix.com>. Last accessed on June 26 2023.

[67] E. C. Damasceno, “Business models in legal tech companies,” Centro de Investigação Júridica
- FDUP, August 2019.

https://github.com/kennethreitz/requests-html
https://github.com/kennethreitz/requests-html
https://github.com/fabio-noga/reference-identification
https://github.com/fabio-noga/reference-identification
https://stanfordnlp.github.io/
https://stanfordnlp.github.io/
https://www.authenticus.pt/
https://onlineconfusionmatrix.com/

	Sworn Statement
	Acknowledgements
	Abstract
	Resumo
	Contents
	List of Tables
	List of Figures
	Listings
	Acronyms
	1 Introduction
	1.1 Context and Motivation
	1.2 Main goals
	1.3 Contributions
	1.4 Dissertation structure

	2 Background and Related Work
	2.1 Data and Text Mining
	2.2 Data Mining Pipeline
	2.3 Data Preprocessing and Preparation
	2.4 Non-relational Databases - NoSQL
	2.4.1 Types of Non-relational Databases
	2.4.2 Different cases of NoSQL databases

	2.5 Natural Language Processing and Large Language Models
	2.5.1 NLP Techniques
	2.5.2 NLP Technologies

	2.6 Transformer architecture
	2.6.1 BERT - Bidirectional Encoder Representations from Transformers
	2.6.2 GPT - A State-of-the-Art Language Model
	2.6.3 Other Models and Applications

	2.7 Related Work
	2.7.1 Citeseer - An Automatic Citation Indexing System
	2.7.2 CiteSeerX

	2.8 Summary

	3 Data Preparation and Preprocessing
	3.1 Data Gathering - Web Scrapper
	3.1.1 Technologies Background
	3.1.2 Extraction

	3.2 Data preparation
	3.3 Database Architecture
	3.4 Data Preprocessing
	3.4.1 Data Preparation and Tokenization
	3.4.2 Data Preparation to Sentence Divider
	3.4.3 Authors' Data

	3.5 Summary

	4 Identification of references to legal literature
	4.1 Sentence Tokenization
	4.2 Data preparation for extraction
	4.2.1 Output of identified references
	4.2.2 BERT

	4.3 Summary

	5 References Extraction
	5.1 Extraction Tool Preparation
	5.2 Grammar structure for chunk identification
	5.3 Citation information extraction
	5.4 Summary

	6 Results
	6.1 Citation Identification Results Analysis
	6.1.1 Identification based on patterns and researcher's names
	6.1.2 Identify by grammar rules
	6.1.3 BERT
	6.1.4 Conclusions

	6.2 Presenting extracted data
	6.3 Summary

	7 Conclusion and Future work
	7.1 Future Work

	A Auxiliary Tables
	B Auxiliary Graphs
	C Auxiliary Code Samples
	D Auxiliary Images
	References

