
 

   

Faculdade de Engenharia da Universidade do Porto 

 

 

A Bid Strategy Evaluation of a Battery Energy 
Storage System in the day-ahead energy market 

considering future opportunities costs 

Pedro Bernardo Pereira dos Santos 

  

Master’s Degree in Electrical and Computer Engineering 
 
 
 

Supervisor: Prof. Doutor Vladimiro Henrique Barrosa Pinto de Miranda 
Co-supervisor: Doutor Tiago André Teixeira Soares 

 
 

June 30, 2023  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

 
 
 
 
 
 
 
 
 
 
 
 

© Pedro Bernardo Pereira dos Santos, 2023 



iii 

 

  



 

Recognitions 

This work was carried out with the support of INESC-TEC and supervised at this institution 

by Igor Roberto Rezende e Castro de Abreu. 

  



v 

 

 

 

 

 

 

 

 

 

  
  



 

Resumo 

Durante os últimos anos, tem havido um aumento significativo na penetração de fontes de 

energia renovável nas redes elétricas em todo o mundo, não apenas devido ao seu custo de 

operação reduzido, mas principalmente devido as mudanças climatéricas que se têm 

registado nas últimas décadas. Muitos países pretendem alcançar a neutralidade carbónica, o 

que, pelo menos por enquanto, implica o aumento da penetração de fontes de energia 

renovável no sistema elétrico.  

No entanto, devido à sua natureza intermitente e à sua dependência em fatores externos 

(como a irradiação solar ou incidência do vento), que geralmente são difíceis de prever 

antecipadamente, o equilíbrio entre oferta e a procura pelos operadores do sistema está se 

tornar um desafio cada vez maior. Para enfrentar isso, houve um aumento da procura de 

flexibilidade no sistema, pois estes recursos flexíveis são capazes de mitigar as variações em 

tempo real das fontes de energia intermitentes, devido à sua capacidade de injetar assim 

como de absorver energia da rede.  

Os recursos flexíveis que recentemente têm despertado maior interesse em termos de 

pesquisa e desenvolvimento, são os sistemas de armazenamento de energia em baterias (BESS 

- Battery Energy Storage Systems), que têm exibido uma tendência crescente na sua 

prevalência na rede, e espera-se que esta apenas aumente durante os próximos anos. No 

entanto, atualmente, os principais projetos de BESS são controlados pelo operador do sistema 

e são usados principalmente para reduzir os custos operacionais do sistema e evitar o corte 

de fontes de energia renovável mitigando os desvios registados em tempo real entre a carga e 

produção do sistema; uma das formas de fazer isso é realizando arbitragem de energia, ou 

seja, carregar energia durante períodos de baixos preços de eletricidade e descarregar essa 

energia durante períodos caracterizados por preços de mercado altos. Isto é benéfico em 

termos de fornecimento de flexibilidade à rede, porém também pode ser usado para gerar 

lucro devido às diferenças de preço registadas entre a compra (carregamento) e venda 

(descarregamento) de energia.  

No entanto algumas pesquisas mostram que, atualmente, a simples realização de 

arbitragem de energia pelas BESS ainda não é lucrativa para proprietários privados; porém, 
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espera-se que isso mude num futuro próximo, principalmente devido à descida dos custos de 

fabrico e manutenção das baterias. 

Antecipando que em breve as baterias de investidores privados (desde indivíduos a 

comunidades de energia) possam lucrar com a arbitragem de energia no mercado diário, é 

necessário um modelo para auxiliar no processo de tomada de decisão associado ao processo 

de submissão de ofertas pela BESS. 

Com isso em mente, esta dissertação tem como objetivo desenvolver um modelo capaz de 

correlacionar as informações disponíveis ao operador da BESS (antes da submissão das ofertas 

no mercado) com a operação e lucros futuros desta de forma a prever qual será a melhor 

estratégia a ser utilizada, considerando algumas opções predefinidas. Com isto pretende-se 

melhorar o processo de decisão de um operador de uma BESS relativamente à sua 

participação no mercado diário. 

Isto foi feito simulando a operação da bateria, instalada numa rede de distribuição de 37 

barramentos usada como referência, e considerando alguns cenários de sistema com 

diferentes valores de carga e produção renovável, assim como três estratégias de oferta 

diferentes. Após a simulação da operação de mercado, os lucros resultantes de cada 

estratégia predefinida são usados para determinar qual a mais lucrativa para um determinado 

dia. Por sua vez esses resultados são utilizados para desenvolver uma ferramenta capaz de 

correlacionar certos parâmetros do sistema com a operação futura da BESS e indicar qual a 

melhor estratégia a usar no dia seguinte. 

Esta ferramenta preditiva é baseada numa rede neuronal treinada com os parâmetros de 

carga, produção eólica e solar e os preços de mercado registados no dia anterior, de forma a 

prever em quais períodos a bateria deverá carregar, descarregar ou conservar a sua carga, 

para as 24h do dia seguinte. Desta forma a ferramenta é capaz de indicar qual a estratégia a 

usar durante a submissão de ofertas para o próximo mercado diário de forma a maximizar o 

lucro do operador da BESS.  

Após ser testada para vários cenários com diferentes valores de carga e produção 

renovável, de forma a avaliar a sua assertividade em prever a melhor estratégia a usar e o 

lucro gerado pelo seu uso, constatou-se que a ferramenta é capaz de detetar variações 

sazonais e alterar sua estratégia de oferta de acordo. Para todos os anos testados, a 

ferramenta foi capaz de alcançar lucros de pelo menos 86% face ao lucro máximo possivel de 

ser gerado (100% de assertividade) Para um ano considerado típico, a ferramenta alcançou 

uma assertividade de 82,2% e um lucro de 91,4% face ao lucro máximo para esse ano. 

Considerando um horizonte temporal sazonal, a ferramenta foi capaz de melhorar o processo 

de decisão de um operador de uma BESS quanto ao processo de submissão de ofertas no 

mercado diário para a maioria das estações dos casos de teste estudados. Apenas no verão a 

ferrementa revela uma tendência para piorar a sua assertividade e lucro, devido ao maior 

número de variações de qual estratégia é a mais lucrativa durante dias desta estação. Por 



fim, foi realizada uma análise de sensibilidades de forma a determinar qual dos parâmetros 

de entrada da ferramenta tem maior impacto na eficiência desta, a qual revelou ser a carga.   
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Abstract 

In recent years there has been an increase in the penetration of renewable energy sources 

in power grids worldwide, not only due to their reduced cost of operation but also to address 

the environmental changes that have been prevalent in the past decades. Many countries are 

trying to achieve carbon neutrality which, at least for now, implies an increase in the 

penetration of renewable energy sources. 

 However, due to their intermittent nature and dependence on external factors (such as 

solar irradiance or wind incidence) which are usually hard to forecast in advance, the 

balancing of supply and demand by the system operators is becoming increasingly 

challenging. To face this, there has been an increase in the research and development of 

flexible assets, capable of mitigating the real-time deviations of intermittent energy sources 

due to their capabilities to both inject and absorb energy from the grid. The most well-known 

and researched of these assets are BESS (Battery Energy Storage Systems) which have become 

increasingly prevalent in the grid, and this trend is only expected to grow.  

Despite this, nowadays the major BESS projects are owned by the system operator and 

used mainly to reduce the operational costs for the system and to avoid curtailment of 

renewable energy sources; a way to do this is by performing energy arbitrage, that is., 

charging energy during periods with low electricity prices and discharging it during peak 

periods. This is very beneficial in terms of the provision of flexibility to the grid, however, it 

can also be used to generate profit due to the price arbitrage associated with this operation.  

Despite this, research shows that nowadays the sole performance of energy arbitrage by 

the BESS is still overall unprofitable for private owners. This, however, is expected to change 

soon with the decline in manufacturing cots of batteries.  

Anticipating that in the near future private BESSs will be able to profit from energy 

arbitrage in the day-ahead market, a model is needed to support the decision-making process 

associated with the bidding  of these BESS.  

Within this scope, this dissertation pretends to develop a model that can correlate 

information available to the BESS operator prior to the submission of bids to the day-ahead 
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market that can predict which will be the best strategy to use, among some predetermined 

options. 

This was done by simulating the operation of the battery installed in a 37-bus distribution 

grid for some established system scenarios, considering three different bidding strategy 

approaches. The resulting profits obtained by each predetermined strategy are used to 

determine the most profitable for a certain day; then, these results are used to develop a 

predictive model that can correlate some forecasted system parameters to the operating 

schedule of the BESS, and then predict which strategy would be the most profitable during 

the following day in the market operation.  

The predictive model relies on a neural network trained with inputs regarding the 

system’s load, wind energy production, solar energy production, and the previous day's 

market prices. It predicts the periods during the next 24 hours when the BESS should charge, 

discharge, or conserve its state of charge (SoC), thereby assisting in determining the bidding 

approach that is expected to maximize profit for the BESS operator. 

This tool was then tested for several cases with different demand and RES generation 

scenarios, in order to evaluate its accuracy and profitability. The major findings were that 

the tool can detect seasonal variations and change its bidding strategy accordingly, reaching 

annual profits of at least 86% (when compared with the maximum profit obtained by 100% 

assertiveness in predicting the best bidding strategy to adopt). For a year considered as 

typical, the tool demonstrated an assertiveness of 82,2% and a profitability of 91,4% when 

compared to the max. When considering a seasonal timeframe, the tool is able to improve 

the decision making of a BESS operator regarding its bidding process during most seasons of 

the studied test cases. Only the summer season shows a general decrease in the assertiveness 

and profitability for the tool when compared with a static approach to the bidding process, 

due to the increased variability in the rank of the most profitable strategy across days 

belonging to this season. Furthermore, a sensitivity analysis was conducted whose results 

pointed towards the demand being the most influential input parameter in the efficacy of the 

tool. 
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Chapter 1  

Introduction 

This chapter presents the motivation that gave way to the work presented for this 

dissertation, as well as the objectives and its organization. This chapter starts by providing 

the context in which it is inserted and the motivation to develop it. Additionally, this chapter 

outlines the main objectives of this dissertation, and finally, its structure is presented. 

1.1 Context and Motivation 

Balancing energy supply and demand in real-time has always been a challenge for power 

systems, and more so in recent years due to the increased prevalence of Renewable Energy 

Sources (RES). These sources (such as wind and solar power) are intermittent in nature and 

generally difficult to forecast in advance, which causes difficulties for the system operator to 

balance the dispatched production with the system’s demand. Since the major power grids in 

the world are now aiming to achieve carbon-neutrality, the penetration of RES in these grids 

is predicted to increase rapidly (a trend that is already noticeable in recent years), implying 

the need for more flexibility in these grids. One resource that can answer these flexibility 

needs is the Energy Storage Systems (ESS), due to their ability to store energy similarly to 

other physical commodities, and to their fast response which can be used to mitigate the 

real-time deviations occurring in both the supply and the demand. 

Among these storage systems, Battery Energy Storage Systems (BESS) are becoming 

increasingly prevalent in recent years, a trend that is predicted to continue in the future with 

the decline of battery production costs. By making use of this type of energy storage, the 

system operator can avoid the curtailment of RES during periods of low demand by storing 

the excess of energy generated and discharging said energy during hours characterized by a 

high demand This increases the efficiency of the RES, reduces market prices (due to avoiding 

the operation of more expensive generators during high demand periods), and defers new 

investments in the generation and transmission sectors. Currently, most BESS projects serve 
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the purpose of increasing grid stability, aiding the integration of distributed generation and 

helping the system operator to manage their costs; however, private investors are seeking 

ways to generate profit by exploiting the requirement of flexibility by the grid.  

One of the ways for privately owned BESSs to profit is by performing energy arbitrage 

(i.e., charging during off-peak periods and discharging during peak periods). The BESS 

operator can generate revenue this way by taking advantage of the difference in market 

prices registered during these hours. Currently, this operation does not justify the investment 

in privately-owned BESSs, mainly due to the costs associated with both the battery’s 

manufacturing and its round-trip efficiency, which do not allow their operator to have a 

return on investment by solely performing energy arbitrage. However, with the trend of 

declining costs, the profitability of energy arbitrage will only increase, leading to the 

proliferation of company or community-owned large-scale BESSs installed in the grid. This, in 

turn, will shift the energy market players’ focus to the strategic bidding of BESSs, as the 

profit generated by energy arbitrage depends on the approach adopted by the market 

participants in regards to the bids submitted to the energy market. 

In conclusion, despite the current unprofitability associated with energy arbitrage, the 

rising need for flexibility and the declining in battery costs will change this paradigm in the 

near future, increasing the importance of decision-making models to optimize the operation 

of BESSs when it comes to generate profit for their owners. 

In this scope, this work proposes a method to support the strategic bidding of a BESS 

operator interested in participating in the day-ahead energy market, by predicting which pre-

established bidding strategy is the most adequate to use during the following day, based on 

forecasted data. This work also addresses the assessment of the established bidding 

strategies considering their profitability under different operating conditions. 

1.2 Dissertation objectives 

Despite the extensive research on this topic, there are still some gaps that need to be 

addressed in terms of improving decision-making for BESS participation in the energy-only 

market. Nowadays, the BESS participation in the electricity market while performing energy 

arbitrage is still unprofitable when not paired with another service, so it presents no 

incentives for investors to fund projects of privately owned BESSs to provide arbitrage. This is 

the reason why most of the applications of current grid-side BESSs are associated with 

renewable energy integration and frequency control due to, not only presenting higher 

revenues than energy arbitrage, but also because they assist in the operation of the power 

system. However, as will be discussed in Chapter 2, this is predicted to change in the 

following years, leaving room for research to be conducted on the optimization of a BESS 

operator’s profitability while engaging in energy arbitrage in the day-ahead market. In this 

scope, the main research gap is: how can the BESS operator optimize its profit when 
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participating in the day-ahead energy-only market, that is, how can the operator make better 

decisions regarding its bidding based on historical or forecasted data? 

To this end, the objectives that this dissertation pretends to address are: 

• Designing different types of bidding approaches for the participation of a BESS in 

the day-ahead energy-only market; 

• Developing a case study to test how the BESS operates under different conditions 

regarding certain system parameters; 

• Find out in which conditions each of the established bidding strategies leads to 

better profitability for its operator; 

• Development of a tool that is capable of correlating certain system parameters to 

predict which of the established bidding strategies is the most profitable for the 

following day. 

1.3 Related Projects and publications 

The work developed for this dissertation is targeted towards the objectives and results of 

two research projects, which are: 

• DECARBONIZE – Development of strategies and policies based on energy and non-

energy applications towards CARBON-neutral cities via digitalization for citizens and 

society (NORTE-01-0145-FEDER-000065); 

• DECMERGE – Decentralized decision-making for multi-energy distribution grid 

management (2021.01353.CEECIND). 

 

The work developed resulted in the publication of a scientific paper at the EEM23 

conference, which should be referred to as: 

• Pedro Santos, Tiago Soares, Igor Rezende, and Vladimiro Miranda, “Evaluation of 

different bidding strategies for a battery energy storage system performing energy 

arbitrage –a neural network approach”, presented at EEM23. 

1.4 Structure of the dissertation 

The document for this dissertation is organized into six chapters, whose description is as 

follows: 

In Chapter 1 the main context and motivation for the development of the work presented 

in this dissertation are described, as well as the outline of the objectives and structure for 

this dissertation. 

In chapter 2, an extensive literature review is performed to present an overview of the 

main features of BESS, such as their types, characteristics, and possible applications. Then a 

brief overview of energy markets is also conducted to better understand how a BESS can take 
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advantage of their structure. Finally, the current scope of the provision of energy arbitrage 

by BESSs in the day-ahead market and predictive models similar to the one developed in this 

dissertation are presented. 

In Chapter 3, the methodology applied in this work is outlined; starting by describing the 

problem addressed, followed by describing the concept of a bidding strategy and the general 

approaches adopted for their design. Then, the mathematical formulation of the economic 

dispatch problem for the day-ahead energy market is described in detail including the 

constraints applied to the BESS. Furthermore, a brief description of how the predictive model 

based on an artificial neural network works is provided, including which parameters will be 

used as inputs and outputs. 

Chapter 4 presents the case study developed for this work, including the characterization 

of the system in which the BESS is installed (including the characteristics of each energy 

resource), the process that is undertaken to develop different system scenarios, and the 

bidding strategies established with this case study in mind. Additionally, this chapter presents 

the concrete methodology applied to develop the predictive tool for this case study, 

including its training and testing and a brief analysis of its accuracy in predicting the more 

profitable strategy for the next day. 

In chapter 5 the results regarding the application of the developed tool in some test cases 

are presented, as well as an analysis of its assertiveness and profitability in an annual and 

seasonal basis. Additionally, a sensitivity analysis of the impact of each input parameter in 

the effectiveness of the tool is also conducted. 

Finally, in chapter 6, the main findings pertaining to the development of this work are 

addressed, including possible topics to be addressed and researched infuture works. 

 

 
 



 

   

 

Chapter 2  

State of the Art 

This chapter presents the main research regarding BESS technology, particularly its 

characteristics and applications. Additionally, an overview of the energy markets is also 

portrayed, where the markets suitable for BESS participation are outlined. More important to 

the context of this dissertation, the current scope and existing research regarding both the 

participation of energy arbitrage performing BESS in the day-ahead market and predictive 

methods similar to the one used in the work presented are discussed. 

2.1 Overview of BESSs types, characteristics, and applications 

2.1.1 Types of BESS 

There are many options regarding the technology of batteries used for energy storage, 

characterized by different manufacture and capacity costs, maturity level, round-trip 

efficiency, among others. The most common types of batteries are: 

 

• Lead acid: These batteries are made up of cells, with a positive electrode of lead 

dioxide and a negative electrode of sponge lead. The electrodes are separated by 

a micro-porous material and are immersed in a liquid sulfuric acid electrolyte; 

• Sodium sulphur (NaS): This battery contains two liquid electrodes where the 

positive is made of molten sulphur and the negative of molten sodium. These 

electrodes are separated by a solid beta alumina ceramic electrolyte, only 

allowing the positive sodium ions to go through it and combine with the sulphur to 

form sodium polysulfides. This battery needs to be kept at about 300 ºC to ensure 

this process; 
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• Lithium-ion (Li-ion): This battery’s electrodes are made of lithiated metal 

oxide (for the cathode) and graphitic carbon,with a layer structure (for the 

anode), with an electrolyte made up of lithium salts dissolved in organic 

carbonates separating the two. During the charging of the battery, the lithium 

atoms in the cathode turn into ions and flow through the electrolyte, combining 

with external electrons on the other electrode, and being deposited as lithium 

atoms between carbon layers. The reverse happens during the discharging process. 

 

Lead acid batteries are the oldest and most mature technology of electrochemical energy 

storage, although, in recent years, Li-ion and NaS batteries have become the leading 

technologies, with Li-ion being the most promising in future development and optimization 

[1]. In the work presented in [2], the capacity costs of BESSs, particularly the lithium-ion 

technology, are determined to be far above the breakeven costs. This makes the performance 

energy arbitrage currently unprofitable, while also determining that the round-trip efficiency 

of batteries greatly affecting arbitrage revenue. 

 

2.1.2 BESS technical characteristics 

The main parameters that characterize a BESS and affect its operation [3]–[5], particularly 

energy arbitrage, are: 

 

• Energy density: the specific energy density of a battery reflects the amount of 

energy that can be stored by the battery per unit of its mass (Wh/kg); 

• Power density: the specific power density of a battery reflects the power that 

can be outputted by the battery per unit of its mass (W/kg); 

• Energy efficiency: The round-trip efficiency of a battery (also called cycle 

efficiency) is the ratio between the energy discharged by the battery and the 

energy charged by it when considering one full charge/discharge cycle. This 

parameter is correlated to the losses incurred by the battery both in the charging 

and discharging operations; 

• Cycle life: The lifetime of an operating battery represented in the expected 

number of cycles it can complete. This parameter is dependent on the operating 

conditions of the battery where the most important parameter is the depth of 

discharge of the battery during each cycle. 
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2.1.3 BESS applications 

Depending on the BESS’s response time, its power and energy capacities, as well as its 

location on the grid, there are several services that this flexible asset can provide, all of 

them derived from the simple charging and discharging of the BESS [6]. 

These services can provide support to power plants, increasing their efficiency and life 

expectancy and reducing fuel consumption and CO2 emissions per kWh produced. Regarding 

the RES integration on the electrical grid, a BESS located near RES can also provide certain 

ancillary services to help ensure the stability of the grid when faced with the generation 

uncertainty associated with these sources. This is achieved by storing the excess of 

renewable production, reducing or eliminating the curtailment of renewable generation in 

the process. 

These applications can also aim to reduce transmission line congestion, increasing system 

reliability and deferring new investments on new generating resources or new Transmission 

and Distribution (T&D) lines. 

Through participation in the energy or ancillary services markets, some of these 

applications can be used to generate profit for the BESS operator. The potential services that 

a BESS can provide can be observed in Table 2.1. 

 
Table 2.1  - Possible BESS Applications. 

Energy Applications Power Applications 

Energy arbitrage / time-shift Frequency regulation 

Peak reduction Voltage support 

Load levelling Reserves 

T&D congestion relief and infrastructure 

investment deferral 
Renewable Capacity Firming 

(Adapted from [6], [7]) 

 

These potential applications of BESS can be described as: 

 

• Energy Time-shift/Arbitrage: Storing low-priced energy by charging the battery 

during periods of low demand and then selling it during periods of high demand, 

where the price of energy is higher. This application of the BESS will be addressed in 

a more detailed manner in section 2.3; 

• Peak reduction/shaving: To reduce the energy demand of the consumer during peak 

hours (with an associated high energy price), and consequently reduce the cost of the 

electricity bill; the BESS can charge during off-peak hours to then reduce the load 
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demand on the grid during high demand periods, through self-consumption (by the 

consumer) of the energy stored; 

• Load levelling: Smoothing of the demand curve, thus, reducing the dependence on 

less-economical generators to supply the peak load. This application also defers new 

investments in T&D or generation systems; 

• T&D congestion relief and infrastructure investment deferral: Time-shifting or 

geographical shifting of the energy supply (discharging) or demand (charging), in 

order to relieve line congestion in the T&D grids and to defer the need for further 

investments; 

• Frequency Control: Using the fast response time of the BESS to provide the system 

with increased load (charging) or increased generation (discharging), in order to 

balance the two and therefore return the grid frequency to its base value. 

• Reserves: To prevent loss of load, and to rebalance the system, the BESS can be used 

to compensate for unexpected losses in generation (e.g., generator outage and 

renewable production deviations) by maintaining a standby capacity, ready to be 

deployed when needed. These reserves are grouped depending on their response 

time. Reserve capacities with response times under 15 minutes are classified as 

spinning reserves, while the ones with slower response times are called non-spinning; 

• Voltage support: The injection or absorption of reactive power to maintain voltage 

levels, in the T&D systems, within their limits and close to the nominal voltage. 

 

Despite all these services being capable of providing support to the grid, the deployment 

of BESSs is slowed due to their high investment costs (although decreasing in recent years [8], 

[9]). So, a market strategy needs to be determined to get the highest possible profit for 

BESS’s participation in the electricity market to reduce the risk of the investment for private 

investors, which, even if it does not reach break-even costs, may shorten the time until a 

profitable investment is guaranteed. 

This market strategy was considered to be the optimal bidding performed by the BESS, 

that is, in which market and time period will the BESS submit its bids and offers (along with 

their respective values) in order to obtain the highest possible profit. In section 2.2, the 

overview of the electricity markets is presented to better understand how a BESS can be used 

to generate profit in a competitive market environment. 

2.2 Electricity markets 

Any energy supplier aiming to supply the demand of the power system must first offer its 

production capacity in a market environment. This market structure of the energy sector 

enables competition between consumers, but mainly between suppliers, which can lead to 

greater economic efficiency regarding the energy sector. 
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An electricity market can be succinctly resumed as a market structure, managed by a 

market operator, whose function is to maximize the social welfare for a given region and a 

given timeframe. By determining which producers can effectively provide their production 

capacity and which consumers are allowed to be supplied by it, the market operator can 

reduce the system’s operational costs which ideally leads to a decrease in electricity prices. 

The competitive environment provided by this market structure enables the possibility for 

strategic bidding, that is, the effort made by each market player to increase their profits by 

exploiting the design of the market. Despite the strategic bidding of an energy supplier being 

intended to increase their profits, the way each strategy is designed must be carefully 

thought-out, otherwise, the risk of a non-ideal outcome (although always present in a 

competitive environment) may become too high to handle by a private energy supplier. 

The bidding process that each energy producer and consumer take part in is based on 

submitting bids to the electricity market, which will be accepted or rejected by the market 

operator to reduce the system’s operating cost. This market bidding process consists of the 

submission of bids by each supplier, defined by the quantity of energy that it is willing to 

supply and a price that represents the minimum amount of monetary units that it is willing to 

accept to supply that energy. On the other side, this process is also defined by the submission 

of the consumer’s bids, with the amount of energy needed to supply their demand and the 

maximum price they’re willing to pay for that energy. The market operator will collect every 

bid submitted and, by maximizing social welfare, will determine which bids are accepted, 

relaying that information to the producers and consumers so that they know how to proceed 

with the actual operation. 

Regarding BESSs (which will be the focus of this work), due to the capacity of the battery 

to both buy (by charging) and sell (by discharging) energy, they can behave as both a 

producer and a consumer. This implies that a BESS operator can submit both types of bids to 

the electricity market, paying or receiving compensation according to the service provided. 

2.2.1 Classification as a Market Player 

Regardless of the market in which they participate, any market player including the BESS 

can be classified as one of two types of players. price-makers and price-takers: 

 

• Price-maker: A price-maker is a market player whose market power is significant 

enough that their bids influence the final price cleared by the market. A BESS can 

assume a price-maker role if its capacity is large enough (or if there are multiple 

BESS aggregated to the same operator). This does not generally happen as the 

capacity of a single BESS (or even multiple aggregated BESSs) is much lower than that 

of the other players such as conventional generators. However, perhaps in the future, 

the large prevalence of BESSs in the grid and the consequential deferral of 
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conventional generation may lead to these systems being characterized as price-

makers at some or all hours of the operating day. 

• Price-taker: This is usually the predisposed classification of the BESS as a market 

participant. A price-taker can not influence in a significative way the setting of the 

market clearing price, because it does not have enough market power. The strategy 

for profit generation for a BESS considered as a price-taker is solely the maximization 

of its profit based on the forecasted market prices set during market clearing, not 

considering how its bidding may affect those prices. 

2.2.2 Types of electricity markets 

The electricity markets can be divided into two different types of markets depending on 

the service that their market players provide and their operating timeframe (as seen in Figure 

2.1). The energy and ancillary services markets are the two types of markets. 

2.2.2.1 Energy markets 

The energy markets are often split into three main stages, as detailed below: 

• Day ahead market: In this market, the wholesale of energy takes place between 

producers and consumers following a symmetric pool model. The consumers place 

buying bids, declaring the amount of energy needed for every hour of the next day, 

and how much they’re willing to pay for it, while the producers place selling bids 

disclaiming the amount of energy offered and its price. These hourly bids, when 

ordered to maximize social welfare (taking grid constraints into account), allow for 

the calculation of the marginal market price of the system, which corresponds to the 

price of the last bid that was accepted. The market price sets the cost of every unit 

of energy sold for that respective hour (considering a pay-as-clear system) [10]–[13]. 

• Intraday market: This is a Spot market that helps the balancing of energy supply and 

demand. Due to uncertainty in the load and generation forecast, market players may 

need to adjust the volumes traded in the day-ahead market to avoid surpluses or 

shortfalls of energy. These markets’ opening and closing hours vary from country to 

country (usually opening at the closing of the day-ahead market, and closing 1 hour 

before delivery), and energy can be traded for intervals of 15, 30 or 60 minutes [10], 

[13], [14]. Some Intraday markets follow an auction system instead of being 

continuous, such as the case of the Iberian electricity market [11]. 

• Balancing market: Even after the intraday market clearing, there may still be some 

last-minute adjustments to be made, particularly caused by RES, whose generation 

output can only be accurately forecasted very close to the dispatch hour. For this 

reason, a balancing market exists, where producers and consumers can adjust their 

trade volumes on a real-time continuous market [15]. 
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2.2.2.2 Ancillary services market 

Some unforeseen fluctuations in generation or demand, which must be matched 

continuously by the Independent System Operator (ISO), may happen in the real-time system 

operation. Because of this and the consequential need to preserve the stability and reliability 

of the grid, the system operators provide an ancillary services market that usually comprises 

a regulation market (to control the system frequency) and a reserve/capacity market (to help 

in the recovery of the system balance in the event of a loss of a generator). 

 
Figure 2.1 – Operating timeframe of the electricity markets. 

2.2.3 Regional Markets 

The aforementioned market structures are implemented in all major power grids. Thus, 

some of the regional markets will be briefly analysed regarding their overall design. 

2.2.3.1 CAISO 

This system operator is one of the largest in both the U.S. and the world, providing 3 

different market operations: the day-ahead market, the real-time market and the ancillary 

services market (as can be seen in Figure 2.2).  

The day ahead market opens 7 days before the trading day, and closes the day before, 

with the market clearing results being published at 1:00 PM. The ISO can get these results by 

running the integrated forward market, and obtaining the Locational Marginal Price (LMP) for 

the day-ahead market. 
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Figure 2.2 - Operating timeframe for CAISO’s energy markets [10]. 

2.2.3.2 MIBEL 

The Iberian electricity markets can be divided into the day-ahead market and the intraday 

market. Since 2014, the day-ahead market works as part of a pan-European Single Day-Ahead 

Coupling market (SDAC), setting prices for every European electricity market. The bids for 

selling and buying energy in this market are accepted based on their merit order, until this 

spot market closes at 11:00 (WET), publishing the price of energy and its scheduled quantities 

for every hour of the next day, or until the interconnection between Spain and Portugal 

becomes saturated (after which, each zone gets its own energy price, i.e., market splitting) 

[16]. 

2.2.3.3 Nord Pool 

This market (Figure 2.3) is divided into a day-ahead market (ElSpot) and an intraday 

market (Elbas), each operating in both the Nordic and Baltic regions. These regions are 

divided into different bidding zones which allow different prices according to the market 

clearing of each zone. The day-ahead market can accept single-hour, block and flexible bids, 

with each market player being able to submit one or more types of these bids. The Elspot 

closes, and publishes its energy prices and scheduled quantities, at 12:00 CET. 
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Figure 2.3 - Operating timeframe for Nord Pool’s markets [14]. 

2.2.4 Flexibility 

The flexibility of a power system can be defined as “the possibility of modifying 

generation and/or consumption patterns in reaction to an external signal to contribute to the 

power system stability in a cost-effective manner” [19]. The rise in the need for flexibility 

can be attributed to the increasing prevalence of intermittent RES (i.e., Wind and Solar) in 

today’s power systems, due to the uncertainty, and high variability associated with their 

generation. Considering the concept of net load (defined by the difference between the 

system load and renewable generation), it is easy to understand that higher penetration of 

RES in the grid leads to steeper ramps in the net load. If conventional reserves do not have 

the ramping capabilities necessary to respond to these steep ramp events, there will be 

temporary price spikes in the real-time energy markets [18], and frequent curtailment of 

renewable generation [19]. 

This lack of flexibility can be mitigated through the deployment of energy storage 

devices/assets due to their capabilities of renewable capacity firming (when the BESS is 

directly connected to the RES), load levelling (by time-shifting demand or generation to 

stabilize the load curve) and fast ramping. The deployment of BESSs is a tailor-fit solution to 

provide adequate flexibility to the system, because of their fast-ramping capabilities and 

capacity to both absorb or inject energy into the grid. The falling prices of batteries are a 

major driver for the rising trends of BESS installations. In the future, following this trend, 

regional markets must accommodate the prevalence of BESSs providing on-grid applications 

(mainly energy arbitrage and frequency control), in order to take advantage of this flexibility 

resource more efficiently [20], which some are already doing. 
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2.2.4.1 Europe 

In Europe, there are many interconnected regional markets such as Central Western 

Europe (which includes Germany, France and the Netherlands), Northern Europe (Nordic and 

Baltic countries), the British Isles (UK and Ireland), the Iberian Peninsula (Spain and Portugal) 

and the Apennine peninsula (Italy and Malta). These zones have different wholesale energy 

markets, and different countries have different regulations and financial risks [21], [22], 

which means that the profit resulting from the operation of the BESS in a competitive market 

environment, depends on the country it is located. 

Despite being capable of providing numerous services, the main applications for a BESS are 

energy arbitrage and frequency control. However, recent studies show that energy arbitrage 

is currently not profitable in European markets, due to the slim gap between peak and valley 

prices [22]. 

The UK is currently the European country with the largest BESS capacity installed (and the 

largest capacity for unbuilt authorized projects), followed by Germany and, with significantly 

less capacity, Italy and Netherlands. The UK government, ISO/ESO and regulation agency, 

facing these developments, made it easier for flexibility providers (such as BESS) to 

participate in capacity and balancing markets by implementing several measures. More 

precisely, it reduced the minimum capacity threshold for participating in these markets to 

1MW, implemented a new faster frequency response product, and implemented new local 

flexibility markets [20]. 

This new product called Dynamic Containment (DC), which aims to correct post-fault 

frequency deviations (i.e. after the deviation crosses either the upper or lower imposed 

limits), was introduced in October 2020, and will eventually phase out the monthly tenders of 

the standard Firm Frequency Response (FFR). Compared to the FFR requisites, a market 

player willing to provide dynamic frequency containment needs to be able to act much faster 

(full delivery in 1s vs 10s). At the same time, the frequency band for which no response, or 

little response, is needed, is much larger for the DC than for the FFR, which means that the 

energy actually delivered to the grid is much higher for the FFR than for the DC. These two 

factors show that batteries are the perfect asset to provide dynamic frequency response to 

the grid, which explains why only BESS participate in the DC market. Since its launch, the DC 

market has yet to reach saturation, meaning that the market clearing is not yet truly 

competitive, which explains the high prices registered compared to the ones cleared in the 

FRR market. 

In November 2021, high DC was introduced to complement the low DC. These two services 

are procured separately and respond to low and high frequency deviation, respectively. The 

compensation system was also changed from pay-as-bid to pay-as-clear, while the contract 

length was shortened from 24h to 4h blocks, allowing the National Grid ESO to adjust its DC 
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requirements along the day, instead of always procuring its maximum requirement for the 

24h period. 

In Germany, the primary containment reserve market has undergone some changes in the 

last decade, evolving from an oligopolistic market with only 5 providers to a more 

competitive one with more than 20 providers in 2016 [23]. The minimum bid size for 

frequency regulation reserves is currently 1MW and they are procured in a coupled market 

area that includes neighbouring countries (e.g., France, Austria and Netherlands) through 

daily tenders. The submitted bids must also be symmetrical. Recent changes to this market 

introduced some measures to allow for the better exploitation of BESS. These include the 

possibility of over and under regulation and the possibility of activation within the frequency 

deadband. The compensation for providing this service is based solely on the capacity 

provided, with the payments being determined by a marginal price system [24]. 

2.2.4.2 United States 

In the United States, the Federal Energy Regulatory Commission (FERC) along with the 

American ISO’s, are taking action to facilitate the participation of energy storage in the 

energy markets. FERC order 755, issued in 2011, requires the ISOs to provide compensation to 

resources that can provide fast-ramping frequency control. Following this order, PJM 

interconnection split its frequency regulation market into fast-ramping and slow-ramping 

services which resulted in the installation of more than 180MW of BESS capacity, located 

within PJM territory in 2015. But, due to the overdependence of this fast-ramping service 

(relative to the slow-ramping one), some technical issues arose that led to the changing of 

PJM regulation signals, which in turn led to a heavy decline in new battery installations. 

Another FERC order (841) required ISOs to remove barriers to the participation of BESSs in the 

energy and ancillary services market (by lowering minimum size requirements, allowing 

aggregation and defining duration requirements, for example) [25]. 

Besides FERC orders, other state-level policies have been passed (with California being the 

state most active in this regard), mainly about setting mandates for utilities to procure 

energy storage capacity. 

PJM Interconnection currently has the highest BESS capacity installed in its territory. A 

BESS willing to participate in this ISO’s Energy market can submit both charging and 

discharging bids/offers (which was not possible before FERC order 841, when BESS could only 

submit 0$ discharging bids). For participation in PJM’s regulation market, the BESS must 

submit two-part bids, containing its traditional capacity offer, as well as a performance offer 

that was introduced by the FERC order 755 to reflect the regulation resource’s performance 

in the market clearing and payment (with performance being evaluated through a 

Performance score, mileage ratio and benefit factor, all introduced by the same FERC order) 

[26]. 
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The inclusion of these new products and the relaxation of market restrictions for BESSs in 

the energy markets leads to an increase in BESS units installed in power grids due to their 

potential for being good economic investments. However, these are focused on providing an 

increasingly better market environment for BESSs designed to provide frequency regulation to 

the grid, which is of great importance to the system operator (DSO or TSO), but does not 

impact the economic value of BESSs that provide energy arbitrage. 

Even new investments in batteries with large energy capacities (adequate for energy 

arbitrage) are mainly targeted to aid the integration of renewable production in regions with 

a large penetration of RES and not to engage in arbitrage, which shows the current lack of 

interest in the economic potential of this operation. In section 2.3, it is presented an 

overview of energy arbitrage as a potential BESS application in the day-ahead energy market, 

considering its current scope and potential future developments. 

2.3 Energy arbitrage in the day-ahead energy market 

2.3.1 Concept 

The day-ahead energy market serves the purpose to aid the system operator in balancing 

the supply and demand of the power system, for which it is responsible, by selecting 

beforehand which producers and consumers will operate during each hour of the following 

day, to reduce system costs and improve the social welfare. After receiving every producer 

and consumer bid to sell or buy energy, respectively, the market operator performs an 

optimal economic dispatch which determines the market price that is used for every energy 

transaction accepted (market clearing). It is assumed that the market clearing price 

corresponds to the value associated with the last bid accepted, that is, the operating cost of 

the most expensive generator scheduled. 

2.3.2 Current scope 

In this subsection, an overview of the current developments in Europe and in the United 

States regarding energy arbitrage in the day ahead market is presented. 

2.3.2.1 Europe 

According to a report published by the European Commission [20], [27], the main energy 

storage provider is still hydro pump systems, but new projects are being developed to 

increase the prevalence of BESSs across Europe, particularly regarding lithium-ion batteries. 

This rapid development is being made especially in the U.K., Germany and Italy (as seen in 
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Figure 2.4), which currently represent the countries with the largest power capacity of BESS 

installed in their respective grids.  

 
Figure 2.4 - Total installed power capacity (in MW) of operated BESS in European countries [27] 

Previous research addresses the profitability of BESSs performing energy arbitrage in 

various European countries, considering the financial risks and fiscal issues of each country, 

where it is shown that, currently, the energy arbitrage operation is unprofitable across the 

board, with the U.K. and Ireland showing the best results and the worst being attributed to 

Portugal and Spain [22]. This can be attributed to the fact that the U.K. and Ireland are 

isolated power systems showing greater volatility in their day-ahead market prices (which 

implies greater viability for energy arbitrage), with the same happening in the “market zone“ 

of Sicily when compared to the rest of the Italian energy market zones. The substantial 

amount of investments in Germany can, in turn, be attributed to the scarcity of flexibility in 

this local market mainly due to nuclear power and large coal plants (notoriously low 

flexibility) being the base of the production diagram. On the other hand, countries like 

Portugal and Spain rely on their hydroelectric power plants (with pumping capacity) to 

provide the flexibility needed, leading to the slow restructuring of these markets when faced 

with the emergence of BESS assets. 

Despite these considerations regarding the profitability of energy arbitrage this paradigm 

is predicted to shift in Europe during the following years. This is due to the decrease in 

battery costs and increase in their round-trip efficiency, which may lead to profitable results 

for every European country. 

2.3.2.2 United States 

According to a report from EIA [25], between 2003 and 2019, there were installed more 

than 1000MW of new large-scale BESSs, with 80% of them being installed since 2015, which 

shows the increased prevalence of these systems in recent years. Of all the U.S. regions, 

BESSs installed in PJM have the most power capacity (around 30% of all existing U.S. BESS 
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power capacity), while the ones installed in CAISO have the most energy capacity (around 

36% of all BESSs in the US). In terms of technology, the most common battery type in the 

United States is Lithium-ion batteries, being used in more than 90% of all existing BESS 

projects. 

 
Figure 2.5 - Applications served by large scale battery storage (2019) [25]. 

Due to their characteristics regarding their power and energy capacities, the BESSs 

installed in PJM are more geared towards providing frequency regulation and other ancillary 

services, while the ones in CAISO are used more frequently for energy arbitrage, as shown in 

Figure 2.5. According to the research published in [30], the costs of investment related to the 

installation of BESSs need to decrease by approximately 80% for arbitrage to be economically 

viable as the only stream of revenue of a battery that participates in the CAISO market. The 

authors of [29] conclude that the current BESS costs also do not achieve profitability for their 

operator considering arbitrage as the only revenue and participation in the PJM market. 

Similar to Europe, the decline in battery costs is projected to bring viability to this operation 

in the near future. 

2.3.3 Strategic bidding of a BESS in the DAM 

Solely considering the provision of energy arbitrage in the day ahead energy market, a 

BESS can attempt to maximize its profitability by submitting strategic bids to the market. 

This strategic bidding is based on predicting the market prices for the day-ahead market, be 

it with a predictive algorithm or simply by analysing historical data, and bidding both charge 

and discharge bids in order to increase the profit generated. This optimization involves 

submitting charging bids during low-priced hours (characterized by prices slightly larger than 

the registered market price, so that the bids are accepted) in order to charge the battery for 

the minimum possible cost, and submitting discharge bids during the peak periods 

(characterized by prices slightly lower than the market prices). 

If there was a perfect forecast for how the power system would behave during the 

following day, this optimization of profit generation would be straightforward, however, 

since the future is uncertain, the BESS operator must rely on accurate forecasting methods 
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(which are still not very reliable) or create robust bidding strategies that minimize the risk of 

economic losses. Depending on the BESS classification as a price-maker or a price-taker, as 

well as its electrical characteristics, a bidding strategy must be determined in order to 

maximize the profit generated by the BESS. The bidding strategy of the BESS is defined by the 

bids submitted by its operator, to the market. These bids have the following structure [32]: 

 

• Charging bids: In order to charge itself, the battery must submit a bid to the 

energy market (normally the day ahead, where the prices are lower), containing 

the quantity of energy to be charged and the maximum price the operator is 

willing to pay for it. 

• Discharging offers: To discharge the energy stored during lower-priced periods, 

the battery submits offers in the energy market, detailing the energy available 

for discharge and the minimum price accepted for it. Making use of the BESS fast 

response, the discharging offers are ideally submitted to the balancing market, 

where the price is usually higher than on the day-ahead and intraday market. 

• Capacity bids: The BESS can also submit bids in the ancillary services market, 

offering to reserve a certain capacity (to be used when called by the system 

operator, for services like frequency regulation) and its respective price. Some 

TSO’s also ask for an additional performance price bid. Despite the existence of 

these types of bids, they are not relevant for the bidding geared towards the 

performance of energy arbitrage. 

 

After being submitted, these bids allow for the clearing of the market, that is, the 

determination of the winning bids (for each time-period considered) and the LMP. When 

every market is cleared for a certain time period, the BESS operating schedule is determined 

according to its winning bids. This schedule, in turn, allows the determination of the profit 

generated by the BESS. 

Based on the forecasted data that the BESS operator has access to, the strategy for the 

operation of the BESS can be designed, that is, the prices and quantities of each charging and 

discharging bid can be determined. Considering the day-ahead energy market and a BESS that 

performs energy arbitrage, the bidding strategy of the latter can be interpreted as how the 

operator intends to manage the battery’s SoC. The storage can define its discharge bids in a 

way that they are frequently accepted so that the energy previously stored is sold to create 

revenue, regardless of the value created, which can be useful to guarantee that the operator 

profits from the battery’s operation but not when maximizing its profitability. On the other 

hand, the operator can consider future opportunities to discharge the battery for higher 

profit margins, tolerating, however, the risk of its bids not being accepted by the market 

operator. 
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2.3.4 Operating Costs 

Operating the BESS has some associated costs, that can be interpreted as the marginal 

cost of operation. These costs are caused by the degradation of the BESS. 

With repeated charging and discharging, the battery gets degraded, meaning that it is 

closer to its replacement date. The cost of replacement (along with maintenance costs), 

when divided for every expected charge/discharge cycle, represents the cost of operating the 

BESS during one full cycle. 

It’s important to acknowledge that the degradation of the battery is dependent on three 

factors: the Depth of Discharge (DoD), the initial level of the state of charge (SoC), and the 

discharge rate. The depth of discharge (% of maximum energy capacity) represents the 

difference between the initial and final SOC values, and according to [30] and [31], the life 

cycle of a battery that operates in shallower charging/discharging cycles is longer than that 

of a battery whose operation is based on deeper discharges. The initial SOC value is also of 

importance to determine the operating cost of the BESS, because the degradation of two 

similar batteries that discharge the same amount of energy (same DOD) is not the same if 

they have different starting points; with a higher initial SOC implying a lesser degradation of 

the BESS. The discharge rate of a battery represents the variation of the battery´s SOC during 

a certain timeframe. Higher discharge rates (and therefore, higher discharge currents) are 

responsible for a higher life-cycle loss to the battery. 

Despite these considerations, this work will not focus on the degradation costs of the 

battery when aiding the strategic bidding of the BESS operator, however, these costs could be 

added to the model proposed in future works in order to obtain a more accurate prediction of 

the profit generated by the battery. 

2.4 Prediction models for day-ahead market uncertainty 

2.4.1 Concept 

The forecasting of the day-ahead market prices is critical for market participants to make 

better decisions regarding their approach to bidding with the objective of obtaining better 

results when it comes to scheduling energy production or consumption intended to generate 

higher profits. Due to the high volatility of market prices in power systems with high RES 

penetration, there is a need for predictive/forecasting methods to be employed by both 

suppliers and consumers. The main factor that affects the market prices of the DAM is the net 

load registered during the considered time period. The net load of a system is determined by 

the difference between the demand and the RES production, in other words, it is the amount 

of load that needs to be supplied by conventional generators. This parameter affects the day-
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ahead market prices as when the net load is high, meaning that the demand is high and RES 

generation is low, the conventional generators must increase their production (or call other, 

more expensive, generators into operation) in order to supply the needed demand, which in 

turns increases the marginal cost of production leading to higher market prices. 

2.4.2 Current scope 

In recent years, research has been done regarding the use of several prediction models to 

forecast the system behaviour, be it the future market prices or other variables such as 

demand or RES generation. These prediction models can be divided into two clusters: 

statistical models and machine learning models. 

A statistical model is based on mathematical and statistical methods to analyse historical 

data and identify patterns that relate the data analysed with the variable(s) it intends to 

forecast. These methods allow the BESS operator to use data regarding historical market 

prices, generation and consumption trends and other factors (e.g. weather conditions) to 

predict the behaviour of the BESS in the day-ahead market. One of these statistical models 

that is widely used in the literature concerning the day-ahead market is the Autoregressive 

Integrated Moving Average (ARIMA) model [32], [33]. 

Machine learning methods are based on algorithms that use historical data to configure 

their output-input correlation in order to identify patterns that may be too difficult for 

standard statistical methods. The most prevalent machine learning method is the artificial 

neural network (ANN) whose typical structure can be seen in Figure 2.6, which are modelled 

based on the behaviour of the human brain. These have three layers of neurons: an input 

layer, an output layer, and a hidden layer in between. The input layer receives data relevant 

to the correlation problem which is then passed to the hidden layer so that it can be 

processed, attributing a “weight” to each inputted variable based on its importance in 

predicting the forecasted variable and an associated “bias”. This processed data is in turn 

passed to the output layer resulting in the final prediction of the expected output variable. 

By using a training data set of inputs and targets (known outputs for the respective inputs), 

the weights and bias of each neuron are determined in order to minimize the difference 

between the neural network’s output and their respective target. 

In the context of energy arbitrage in the day-ahead market, these methods can be used to 

forecast the following day’s electricity prices, the BESS operatingl behaviour, etc. They rely 

on inputs obtained by analysing the system’s current or historical behaviour, based on 

parameters such as the demand registered, the renewable energy generated, weather 

conditions, market prices, among others. The results of these forecasts can be used by the 

BESS operator in order to make better informed decisions regarding its bidding, as well as 

help to determine which system variables affect the operation of the battery the most, which 

in turn can be used to improve the data gathering capabilities of the system regarding these 
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relevant parameters. When considering future energy prices as the forecasted variable, the 

authors in [34] show that the most important explanatory variables (for the Iberian market) 

are the market prices registered previously, thermal generation and the load consumption, 

while [35] shows the importance of the forecasted wind speed as an input variable of the 

forecasting model. One consideration that must not be disregarded is the availability of the 

information regarding the input variables chosen, as the BESS operator is only able to collect 

data that’s been made public. 

 
Figure 2.6 – Structural diagram of an artificial neural network. 

While both methods make use of historical data to predict future outcomes, it has been 

shown that ANNs need fewer data (used in the training phase) to produce more accurate 

predictions, making it the most adequate prediction model to be used by a BESS operator 

[36]. Thus, this will be the method used in the work presented in this dissertation, 

considering the lack of extensive historical data that the BESS operator has access to. One 

must also consider that, despite the usefulness of this machine learning method, every ANN 

trained beforehand must be tested so that its assertiveness can be ascertained, otherwise the 

results obtained can lead to bad decision-making. 

2.5 Main research conducted on energy arbitrage in the DAM by 

BESS 

There is an extensive literature, particularly in recent years, that addresses the 

determination of maximizing the profit of a BESS that participates in the electricity markets. 

The majority of research papers focus on the provision of arbitrage and frequency control 

services. In [37], the Colombian market is considered as a case study, where several market 

forecasting methods are used and compared to determine the best arbitrage strategy to 

maximize the BESS profit, with statistical strategies presenting better results than ANN 

models and much better results than simple seasonal strategies that only use a small amount 

of historical data. This shows that higher precision in the market behaviour forecast (with 

smaller prediction errors) leads to better profits, but despite this, every strategy considered 

brings a negative net profit value, which means that a BESS solely providing arbitrage in the 

Colombian market is not yet economically viable. In ref [22], the viability of a BESS engaging 
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in energy arbitrage is analysed for several European countries (using 2019 data). A mixed-

integer linear optimization method is used to maximize the cash flows that result from the 

BESS energy-only market participation, followed by the calculation of the highest possible 

profit generated during the battery’s life cycle. The results show that energy arbitrage is not 

profitable for any country considered (with the UK and Ireland presenting the best results, 

and Spain and Portugal presenting the worst), mainly due to the high battery and inverter 

costs and the volatility of the prices in the considered market. 

Ref. [38] addresses the techno-economic feasibility of BESSs performing energy arbitrage 

and providing energy arbitrage on the Iberian market. The study conducted shows that the 

range between maximum and minimum market prices (peak-off-peak price ratio) is crucial in 

the determination of the feasibility of the BESS when it comes to generate profit. The results 

also reveal that the energy arbitrage provision does not produce sufficient revenue for the 

BESS to justify investments of private firms, implying the need to employ the BESS in other 

applications, due to the high cycle costs and low variability of the DAM prices. This previous 

work also concludes that market prices are higher during winter months (mainly due to an 

increase in demand (e.g., the prevalent use of electrical heating), and that the transformer 

limitation and unavailability to sell energy does not affect the results. Ref. [39] examines the 

opportunities for investment in BESSs by private entities, concluding that a BESS with several 

days’ supply is socially desirable (from a welfare point of view) but not commercially 

profitable. This study also concludes that for the regional market of Britain, the best time 

period to perform energy arbitrage would be during the day, as the market prices reveal a 

higher variation, and that predicting future prices is difficult more than 3-days ahead due to 

the inaccuracy of wind power forecasts, while considering the load a first-order determinant 

of market prices. 

The work in [7] formulates a revenue maximization problem in CAISO’s day ahead and 

real-time markets analysing 3 years of data to calculate arbitrage profits and concluding that 

solely providing energy in the DAM produces significantly less profit that the participation in 

both markets. In addition, it also shows that the location of the BESS affects the revenue 

generated in the CAISO market environment. Ref. [40] focuses on the energy arbitrage of 

BESSs in the Nordic countries which, despite belonging to the same market structure (Nord 

Pool), show different potential benefits in each bidding zone, showing the differences in the 

scarcity of flexibility and market value of said flexibility in each zone. It shows that Norway 

reveals the least economic value for energy storage performing energy arbitrage, which is 

due to their natural hydro reservoirs providing their needed flexibility (pump hydro). The 

results also reveal, and more importantly, that with the current market conditions, even 

aggregating revenue sources besides arbitrage, do not lead to the profitability of energy 

storage. The authors of [41] formulate an LMP-based day-ahead market model, in GAMS, the 

results of which show that the inclusion of BESS reduces marginal prices and increases social 
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welfare when they possess larger market power. The work presented in [42] provides a model 

to optimize the revenue of a BESS performing energy arbitrage using statistics of 5 years of 

historical PJM data, demonstrating that the revenue is determined by price data shape, 

mostly their range. In addition, it also concludes that the winter season provides more energy 

arbitrage opportunities due to their average market prices assuming two daily peaks rather 

than just one. 

Ref. [20] concludes that under current battery costs, energy arbitrage is not profitable in 

the majority of EU countries, however, with the declining trend in battery costs, the 

potential for arbitrage profitability will increase rapidly in the studied countries. The study 

concludes that local markets such as the U.K., Germany, France and Italy show great promise 

regarding future profitability for BESSs performing energy arbitrage, while others such as 

Spain, Portugal and Norway still need a significant reduction in battery costs for this 

operation to be economically viable. The authors of [22] develop a MILP model to optimize 

the optimal bidding strategy for each EU country considered, and use the results to 

determine the profitability of a BESS performing energy arbitrage using economic indicators 

of net present value and internal rate of return (considering the relevant taxes and discount 

rates of each country), concluding that the U.K. and Ireland show the best results while Spain 

and Portugal show the worst. 

The work in [43] focuses on the potential for energy arbitrage of Lithium-Ion batteries in 

the Spanish market, with the main conclusion being that the profit generated is always 

negative regardless of the considerations taken (e.g., inverter size and bidding strategy). The 

authors suggest that with the trend of declining battery costs this operation might be 

profitable in the future but meanwhile the BESS operators should participate in other markets 

and provide additional services. In [29], the potential of energy arbitrage in PJM 

interconnection was studied, revealing that with current battery-related costs, energy 

arbitrage is still not a viable option for profit generation. 

The work presented in [44] is based on the uncertain lifetime of the BESS and how it 

affects its profit, with the results showing that for the regional ERCOT market, none of the 

BESS technologies considered will reach positive net present value by solely providing energy 

arbitrage. 

The results presented in [45] show that BESSs performing energy arbitrage are rarely 

profitable as the investment costs of lithium-ion batteries are too high, implying the need to 

reduce these costs or provide other BESS services in order for a storage operator to reach 

profitable results. The authors also conclude that market restructuring could impact profits in 

the future, as the need for energy storage in the grid is expected to increase. 

The authors of [32], [33], [46], [47] use several forecasting methods to forecast the day-

ahead market prices. In [47], a BESS connected to a wind park is studied regarding its 

arbitrage profitability, where a forecasting algorithm based on ANN is used to predict market 
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prices obtaining better results than other statistical methods in the literature. in [46], time 

series analysis, ANNs and wavelets were used to forecast the 24 market prices for the day-

ahead market using data from PJM, and after comparing the results the authors concluded 

that time-series techniques (particularly dynamic regression and transfer function algorithms) 

are more effective than ANNs. Attributing this to the fact that ANNs are difficult to tune in 

order to obtain an accurate forecast, implying the potential for improving this method if 

some adjustments are made. 
 



 

   

 

Chapter 3  

Methodology for the proposed predictive 
Tool 

This chapter provides an overview of the methodology adopted for this dissertation. The 

problem addressed is described in detail, along with the mathematical formulation that 

serves as the basis for the day-ahead market simulations used throughout this work. 

Additionally, the concept and characteristics of a bidding strategy are presented along with 

three different approaches to the bidding process of a BESS operator performing energy 

arbitrage in the DAM.  

3.1 Problem description 

The objective of the owner or operator of a BESS is to optimize its bidding process in order 

to maximize its profit. For this dissertation, this profit will be considered to be generated 

solely through the operation of energy arbitrage in the day-ahead market. However, this 

presents challenges as the operator must submit bids to the DAM without certainty if they 

will be accepted or rejected, due to not knowing how the market behaves in the future. 

By submitting charge and discharge bids (containing both quantity and prices) the operator 

tries to charge at the lowest cost possible and discharge at the highest price possible. 

However, the unknown bids of competitors make it difficult to determine the optimal 

profitability beforehand, potentially resulting in sub-optimal profitability or even non-

operation of the battery. 

In this scope, there is a need for a model to correlate available information to the 

operator in order to predict how the BESS will perform under a given system scenario. This 

dissertation aims to fill this gap by developing a predictive tool based on forecasted system 

parameters. This tool should be able to provide the best bidding strategy for the 

maximization of profit for the DAM, among those considered. The development of the tool 
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takes into account the limited availability of data, forcing the BESS operator to only possess 

knowledge available prior to the bidding submission for the next day’s market operation. 

Ideally, the tool should be able to output the best bidding strategy possible for the next 

day. However, this dissertation will only consider three different bidding strategies (detailed 

in section 3.2). This work serves as a proof-of-concept for the presented tool, which can be 

slightly adapted in future work to be used for a broader scope of application, considering 

multiple strategies to be selected from (following different bidding approaches). 

To this end, the flow of the presented work (depicted in Figure 3.1) can be divided into 

three steps: 

• The development of different bidding approaches for the BESS and the 

establishment of possible scenarios for the behaviour of the power system where 

the BESS is located; 

• The simulation of the BESS participation in the  DAM, considering that each 

bidding strategy is adopted for the established system scenarios; 

• The development of the predictive tool based on the results obtained by the 

simulations. 

Furthermore, an analysis is conducted to evaluate the results of the tool when applied to 

some test cases. This structured approach pretends to conduct a comprehensive examination 

on the influence of each bidding strategy in the BESS operation, and on the influence of the 

tool in the decision making process of a BESS operator. Additionally, it also aims to provide 

insights into the relationship between system parameters and the tool’s effectiveness. 
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Figure 3.1 - Flow of the adopted methodology. 

Section 3.2 provides an overview of what constitutes a bidding strategy and outlines the 

general approaches adopted in this dissertation. The specific bidding strategies used for the 

development of the tool will be designed in chapter 4, as section 3.2 only describes the 

thought process behind each strategy’s approach to submitting bids to the market. 
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3.2 Bidding Strategy Formulation 

The strategic bidding process of the BESS, aimed at energy arbitrage, can be seen as a 

means to influence the battery's behaviour to maximize the profit generated by its operation. 

The objective of a profitable energy arbitrage is to charge the battery during periods of low 

electricity prices (associated with low demand and/or high renewable generation) and 

discharge it during peak hours when prices are higher, thereby generating profit for its 

operator. 

A bidding strategy for a BESS consists of two components: (i) the strategic approach 

regarding the charging of the battery; and (ii) the approach relative to its discharging. This 

work primarily focuses on the discharging strategy. 

The charging behaviour of the BESS is considered implicit through the State-of-Charge 

(SoC) target established for the end of the day, as the BESS only submits bids to the market 

offering its full capacity at a null price. This approach induces the BESS to charge whenever 

the operating cost of the system is reduced through a complete charge cycle. For the 

discharge strategy of the BESS, its approach can be represented by two arrays with lengths 

equal to the delivery times, in this case, twenty-four delivery times with a duration of one 

hour each. These arrays contain the capacity bided and its respective selling price, for every 

hour of the following day. In Table 3.1 and Figure 3.2 the basic idea of a bidding strategy is 

represented. 
 
Table 3.1 - charging and discharging bids for the day-ahead market, considering a basic bidding strategy 

Hour 1 2 3 4 5 6 7 8 9 10 11 12 

Charge 

Bids 

Capacity 

[MW] 
Max Max Max Max Max Max Max Max Max Max Max Max 

Price 

[m.u.] 
0 0 0 0 0 0 0 0 0 0 0 0 

Discharge 

Bids 

Capacity 

[MW] 
- - - - - - - 10 10 10 10 10 

Price 

[m.u.] 
- - - - - - - 100 100 100 100 100 

Hour 13 14 15 16 17 18 19 20 21 22 23 24 

Charge 

Bids 

Capacity 

[MW] 
Max Max Max Max Max Max Max Max Max Max Max Max 

Price 

[m.u.] 
0 0 0 0 0 0 0 0 0 0 0 0 

Discharge 

Bids 

Capacity 

[MW] 
- - - - - 20 20 20 20 20 20 20 

Price 

[m.u.] 
- - - - - 50 50 50 50 50 50 50 
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a) 

  

b) 

Figure 3.2  - Characteristics of both the capacity (a) and price (b) bids of the exemplary bidding 
strategy 

When it comes to the strategic discharge of the battery, the BESS operator selects a 

bidding approach based on the level of risk that they are willing to undertake in order to 

generate profit. While discharging the full capacity of the BESS during the hour with the 

highest market price would yield the highest profit, the BESS operator lacks knowledge about 

the future behaviour of the power system and of the other market participants. 

Consequently, there is always a risk associated with bidding in the DAM, which may result in 

either a null profit or a suboptimal profit. 

Two main approaches were considered in this dissertation, differing from each other in 

terms of the capacity bided, the prices coupled with each bid and the time slots during which 

the discharge bids are submitted. These approaches are as follows: (i) The conservative 

approach, and (ii) the aggressive approach. Sections 3.2.1, 3.2.2 and 3.2.3 will provide an 

overview of the advantages and disadvantages of each considered bidding approach. 

3.2.1 Conservative approach 

The first approach pretends to discharge the BESS every time that it is profitable for its 

operator, regardless of the profitability of each individual discharge, prioritizing the 

generation of a steady and relatively predictable daily profit. This strategy achieves this due 

to the characteristics of its bids: 
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• By submitting a low-priced bid, the BESS can discharge at any given hour (except 

when the market price is zero due to the excess of RES production), with the only 

requirement being a sufficient level of SoC for the performance of this operation; 

• The low capacity of each bid leads the battery to discharge its stored energy across 

multiple periods instead of focusing on a single one. 
 

The pros and cons of this approach are as follows: 

 

• Pros:  

o Ensures the profitability of the BESS operation, for most days, as it is not 

affected by unexpected non-operations that result from undesired market 

outcomes; 

o Able to take advantage of every profitable discharge opportunity 

regardless of the specific period during which the opportunity arises. 

• Cons: 

o Does not fully capitalize on the occurrence of high-priced periods due to 

its low energy discharges, which results in an expected lower profitability 

when compared to the maximum potential profit for any given day. 

3.2.2 Aggressive approach 

Another approach is focused on only discharging the BESS during periods with expected 

high market prices, preserving the SoC of the battery to take full advantage of these 

opportunities. The characteristics of the bids associated with this strategy are: 

 

• High-capacity bids, which aim to influence the battery to discharge its full capacity, 

thereby maximizing the exploitation of high-priced periods; 

• By submitting high-priced bids, this strategy ensures that the BESS only discharges 

when the cleared market price exceeds a certain threshold deemed to be the 

minimum price acceptable to its operator. 

 

Similarly, to the conservative strategy, there are advantages and disadvantages to this 

type of approach when it comes to the performance of energy arbitrage by the BESS: 

 

• Pros: 

o Allows the BESS to fully capitalize on high prices, by discharging large 

amounts of energy during these periods, and thus achieving high profits. 
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• Cons: 

o Does not allow the battery to capture every high-priced period, as its bids 

are focused on specific daily periods with a higher prevalence of high 

prices; 

o This may result in the non-operation of the battery, and thus a null 

profit. This occurs if there are no peak periods with market prices high 

enough to trigger the discharge of the BESS. 

3.2.3  Moderate approach 

Another bidding strategy was proposed whose approach combines elements of the previous 

two strategies. This strategy involves submitting discharge bids during periods with expected 

high prices while also considering other possibilities for discharging the battery outside of this 

timeframe. The characteristics of the bids of the moderate strategy are: 

 

• Moderate capacity bids, with values in between those of the conservative and 

aggressive strategy; 

• High-priced bids, although less exclusive than those submitted by the aggressive 

strategy. 

 

This strategy also presents positive and negative aspects when it comes to generating 

profit from energy arbitrage. 

 

• Pros: 

o Takes advantage of opportunities to discharge during hours with high 

market prices, while not presenting the same level of risk of non-

operation as the aggressive strategy; 

o Allows the discharge of the BESS if an opportunity presents itself outside 

the typical high-priced periods. 

 

• Cons: 

o There is still a risk of non-operation associated with this bidding 

approach, although lower than that of the aggressive strategy; 

o Due to the moderate capacity of each bid, this strategy does not take full 

advantage of peak periods, as it can not discharge the totality of its SoC 

during a single period. 

 

Overall, the moderate strategy aims to strike a balance between maximizing profit from 

high-priced periods and maintaining some flexibility to discharge in other periods, reducing 

the risk of non-operation compared to the aggressive strategy. These will be the generic 
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approaches to the bidding of a BESS willing to perform energy arbitrage, in the day-ahead 

energy market. The specific characteristics of each strategy will be defined when presenting 

the case study addressed in this dissertation, which is described in Chapter 4. 

3.3 Model for the day-ahead market operation 

After designing the strategies and establishing the system scenarios based on the 

considered study case, the operation of the BESS that results from the adoption of each 

bidding strategy has to be determined so that each strategy can be evaluated. The operation 

of the BESS is obtained as a result of the simulation of an Economic Dispatch for the DAM, 

considering the distribution grid in which the BESS is located and all its characteristics. 

3.3.1 Concept 

The DAM is supervised by a market operator whose objective is to supply the maximum 

demand for the lowest cost possible, while making sure that the grid constraints are not 

violated. Both energy suppliers and consumers submit bids to the market, each characterized 

by their available capacity for that time period and by the minimum or maximum accepted 

price when selling or buying energy, respectively. Every submitted bid is considered by the 

market operator, and only the ones that will lead to the lowest system cost will be accepted. 

Each market player with accepted bids will pay or be compensated by the marginal market 

price registered during market clearing, which is the same for every bid during the 

considered time period under a pay-as-clear system (which is the one considered in this 

work). The formulation of both the objective problem for the economic dispatch simulation 

and the constraints associated with it, is presented in section 3.3.2. 

3.3.2 Mathematical Formulation 

The model for the economic dispatch of the day-ahead energy market used in the work 

developed for this dissertation was adapted from [48]. The mathematical formulation of this 

model is based on minimizing the objective function (system operational cost), while 

attending the constraints of the grid, generators and the BESS itself. The system operational 

cost is given by Eq. 1.1: 

min 𝑜𝑏𝑗 =  ∑

 

[
 
 
 
 
 

∑
(𝑃𝐺𝑒𝑛(𝑔, 𝑡) ∗ 𝜋𝐺𝑒𝑛(𝑔, 𝑡) + 𝑃𝐺𝑒𝑛

𝐶𝑢𝑡(𝑔, 𝑡) ∗ 𝜋𝐺𝑒𝑛
𝐶𝑢𝑡(𝑔, 𝑡)) − 𝑃𝐸𝑥𝑡

𝑒𝑥𝑝𝑜𝑟𝑡(𝑡) ∗ 𝜋𝐸𝑥𝑡
𝑒𝑥𝑝𝑜𝑟𝑡(𝑡)

𝑁𝐺𝑒𝑛

𝑔=1

+ ∑ (𝑃𝐿
𝑆ℎ𝑒𝑑(𝑙, 𝑡) ∗ 𝜋𝐿

𝑆ℎ𝑒𝑑(𝑙, 𝑡))

𝑁𝐿𝑜𝑎𝑑

𝑙=1

+ ∑ (𝑃𝐷𝑐ℎ(𝐵, 𝑡) ∗ 𝜋𝐷𝑐ℎ(𝐵, 𝑡) − 𝑃𝐶ℎ(𝐵, 𝑡) ∗ 𝜋𝐶ℎ(𝐵, 𝑡))

𝑁𝐵𝐸𝑆𝑆

𝐵=1 ]
 
 
 
 
 

𝐻

𝑡=1

 

 

(1.1) 
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where PGen is the power supplied by each generator, 𝜋𝐺𝑒𝑛 the production cost of each 

generator, 𝑃𝐺𝑒𝑛
𝐶𝑢𝑡   is the generation curtailed and 𝜋𝐺𝑒𝑛

𝐶𝑢𝑡  its cost, 𝑃𝐿
𝑆ℎ𝑒𝑑 refers to the load shed 

and 𝜋𝐿
𝑆ℎ𝑒𝑑 the equivalent cost of load shedding, 𝑃𝐶ℎ is the energy charged by the BESS and 

𝑃𝐷𝑐ℎ is the energy discharged, 𝜋𝐶ℎ is the bided price for charging the battery and 𝜋𝐷𝑐ℎ is the 

bided price for discharging. All these parameters refer to each interval 𝑡 ∈ 𝐻, where H is the 

total amount of periods considered (in this case 24 hours). 

This objective function is subjected to certain constraints which need to be considered: 

 

• Generation constraints: 

Regarding the constraints applied to the parameters of the objective function which 

concern the power supplied by each generator, their formulation is: 
 

 𝑃𝐺𝑒𝑛(𝑔, 𝑡) ≤ 𝑃𝐺𝑒𝑛
𝑀𝑎𝑥(𝑔, 𝑡), ∀𝑡; ∀𝑔 ∈ {𝐶𝐻𝑃 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟𝑠 𝑎𝑛𝑑 𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛} (1.2) 

 𝑃𝐺𝑒𝑛(𝑔, 𝑡) = 𝑃𝐺𝑒𝑛
𝑀𝑎𝑥(𝑔, 𝑡), ∀𝑡; ∀𝑔 ∈ {𝑊𝑖𝑛𝑑 𝑎𝑛𝑑 𝑆𝑜𝑙𝑎𝑟 𝑃𝑉} (1.3) 

 𝑃𝐺𝑒𝑛
𝐶𝑢𝑡(𝑔, 𝑡) ≤ 𝑃𝐺𝑒𝑛

𝑀𝑎𝑥(𝑔, 𝑡), ∀𝑡; ∀𝑔 (1.4) 

 𝑄𝐺𝑒𝑛(𝑔,𝑡) ≤ (𝑃𝐺𝑒𝑛(𝑔,𝑡) − 𝑃𝐺𝑒𝑛(𝑔,𝑡)
𝐶𝑢𝑡 ) ∗ 𝑡𝑎𝑛𝜑(𝑔,𝑡), ∀𝑡; ∀𝑔 (1.5) 

 𝑄𝐺𝑒𝑛(𝑔,𝑡) ≥ 0, ∀𝑡; ∀𝑔  (1.6) 

   

• Export Constraints: 

When there is an excess of generation within the distribution grid, it needs to be exported 

to the external supplier through the interconnection between them. The constraint regarding 

this export is: 
 𝑃𝐸𝑥𝑡(𝑡)

𝐸𝑥𝑝𝑜𝑟𝑡
≤ 𝑃𝐸𝑥𝑡(𝑡)

𝑀𝑎𝑥 , ∀𝑡 (1.7) 

where  𝑃𝐸𝑥𝑡(𝑡)
𝑀𝑎𝑥  is the maximum power which can be exported to the external supply according 

to the limits imposed by the max capacity of the interconnection. 

• Load Constraints: 

The loads present in the distribution grid are subjected to constraints regarding their 

active and reactive consumption as well as their shedding: 
 𝑃𝐿(𝑙,𝑡)

𝑆ℎ𝑒𝑑 ≤ 𝑃𝐿(𝑙,𝑡), ∀𝑡; ∀𝑙 (1.8) 

 𝑄𝐿(𝑙,𝑡) = (𝑃𝐿(𝑙,𝑡) − 𝑃𝐿(𝑙,𝑡)
𝑆ℎ𝑒𝑑)𝑡𝑎𝑛𝜑(𝑙,𝑡), ∀𝑡; ∀𝑙 (1.9) 

where 𝑃𝐿(𝑙,𝑡) and 𝑄𝐿(𝑙,𝑡) are the active and reactive power associated with each individual 

load, respectively. 

• BESS constraints: 

The BESS installed in the grid is also subject to constraints which address its operating 

limits, as well as how the SoC of the BESS is determined for each time interval. 
 𝑃𝐶ℎ(𝐵, 𝑡) ≤ 𝑃𝐶ℎ

𝑀𝑎𝑥(𝐵, 𝑡) ∗ 𝐶(𝑡)  ∀𝑡; ∀𝐵 (1.10) 

 𝑃𝐷𝑐ℎ(𝐵, 𝑡) ≤ 𝑃𝐷𝑐ℎ
𝑀𝑎𝑥(𝐵, 𝑡) ∗ 𝐷(𝑡)  ∀𝑡; ∀𝐵 (1.11) 

 𝑆𝑜𝐶𝑀𝑖𝑛(𝐵) ≤ 𝑆𝑜𝐶(𝐵, 𝑡) ≤ 𝑆𝑜𝐶𝑀𝑎𝑥(𝐵)  ∀𝑡; ∀𝐵 (1.12) 
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𝑆𝑜𝐶(𝐵, 𝑡) = 𝑆𝑜𝐶(𝐵, 𝑡 − 1) + 𝑃𝐶ℎ(𝐵, 𝑡) ∗ 𝜂𝐶ℎ(𝐵) −

𝑃𝐷𝑐ℎ(𝐵, 𝑡)

𝜂𝐷𝑐ℎ(𝐵)
  ∀𝑡; ∀𝐵 (1.13) 

 𝐶(𝐵,𝑡)𝑏𝑖𝑛𝑎𝑟𝑦, ∀𝑡; ∀𝐵 (1.14) 

 𝐷(𝐵,𝑡)𝑏𝑖𝑛𝑎𝑟𝑦, ∀𝑡; ∀𝐵 (1.15) 

 𝐶(𝐵,𝑡) + 𝐷(𝐵,𝑡) ≤ 1, ∀𝑡; ∀𝐵 (1.16) 

where 𝑃𝐶ℎ(𝐵,𝑡)
𝑀𝑎𝑥  and 𝑃𝐷𝑐ℎ(𝐵,𝑡)

𝑀𝑎𝑥  are the maximum charge and discharge capacities, respectively, 

for a given interval “t” and a given battery “B”. 𝑆𝑜𝐶(𝐵)
𝑀𝑎𝑥 and  𝑆𝑜𝐶(𝐵)

𝑀𝑖𝑛 are the minimum and 

maximum state of charge for the considered BESS, 𝜂𝐶ℎ(𝐵) and 𝜂𝐷𝑐ℎ(𝐵) are the efficiencies 

associated with the charging and discharging operation, which are considered to be constant 

regardless of the current SoC of the battery or the amount of energy charged/discharged. 

Finally, 𝐶(𝐵,𝑡) and 𝐷(𝐵,𝑡)  are binary variables chosen to indicate if the battery is currently 

charging or discharging. 

Equations 1.10 and 1.11 limit the charging and discharging of the BESS to what the 

maximum charge and discharge rates allow. Equation 1.13 determines the SoC for every 

interval “t” according to the SoC during the previous time interval and the operations 

performed by the battery “B” during “t”. Equation 1.12 limits the current SoC to the limits 

imposed by the technical characteristics of the BESS. 

 

• Power Flow Constraints: 

A crucial step in determining the optimal economic dispatch for a grid is the calculation of 

the power flow for each time interval, to verify if the current economic solution violates any 

grid constraints or if it is admissible to be used in the actual dispatch. The formulation for 

the active and reactive power flows are: 

 𝑉𝑖(𝑡)
2 𝐺𝑖𝑖 + 𝑉𝑖(𝑡) ∑[𝑉𝑗(𝑡)(𝐺𝑖𝑗 cos(𝜃𝑗(𝑡) − 𝜃𝑖(𝑡)) + 𝐵𝑖𝑗 sin(𝜃𝑗(𝑡) − 𝜃𝑖(𝑡)))]

𝑗

= ∑ (𝑃𝑔𝑒𝑛(𝑔,𝑡) 
𝑖 − 𝑃𝐺𝑒𝑛(𝑔,𝑡)

𝐶𝑢𝑡,𝑖 ) − 𝑃𝐸𝑥𝑡(𝑡)
𝐸𝑥𝑝𝑜𝑟𝑡

𝑁𝑔𝑒𝑛

𝑔

− ∑ (𝑃𝐿𝑜𝑎𝑑(𝑙,𝑡)
𝑖 ) +

𝑁𝐿𝑜𝑎𝑑

𝑙

∑ (𝑃𝐷𝑐ℎ(𝐵,𝑡)
𝑖 − 𝑃𝐶ℎ(𝑔,𝑡)

𝑖 )

𝑁𝐵𝑒𝑠𝑠

𝐵

,   ∀𝑡; ∀𝑖 

 

(1.17) 

 𝑉𝑖(𝑡)
2 𝐵𝑖𝑖 + 𝑉𝑖(𝑡) ∑[𝑉𝑗(𝑡)(𝐺𝑖𝑗 sin(𝜃𝑗(𝑡) − 𝜃𝑖(𝑡)) − 𝐵𝑖𝑗 cos(𝜃𝑗(𝑡) − 𝜃𝑖(𝑡)))]

𝑗

= ∑ (𝑄𝑔𝑒𝑛(𝑔,𝑡) 
𝑖 ) − 𝑄𝐸𝑥𝑡(𝑡)

𝐸𝑥𝑝𝑜𝑟𝑡

𝑁𝑔𝑒𝑛

𝑔

− ∑ (𝑄𝐿𝑜𝑎𝑑(𝑙,𝑡)
𝑖 )

𝑁𝐿𝑜𝑎𝑑

𝑙

,   ∀𝑡; ∀𝑖 

(1.18) 

 

where 𝑉𝑖,𝑗(𝑡) and 𝜃𝑖,𝑗(𝑡) are the voltage magnitude and angle for buses “i” and “j”. Equations 

1.17 and 1.18 represent the active and reactive power balances for the bus “i” and interval 

“t”, considering that “j” represents every other bus connected to bus “i”. 
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This formulation of this economic dispatch involves non-linear equations, whose 

complexity calls for the use of solvers capable of solving Mixed-Integer Nonlinear 

Programming (MINLP) problems. The modelling software used for this optimization was the 

software GAMS, which relied on a CPLEX optimizer to solve the minimization problem. 

The economic dispatch was simulated considering that the considered BESS adopts each of 

the three established bidding strategies for every system scenario. The results obtained can 

be subsequently used as historical data to train the predictive tool. 

3.4 Model for the predictive tool 

A BESS operator willing to engage in energy arbitrage in the DAM faces the challenge of 

submitting optimal charge and discharge bids (composed of both quantity and price values) in 

order to maximize their profit. However, the BESS operator lacks accurate knowledge of the 

future best opportunities that may arise to either charge or discharge the battery, which 

hinders their ability to maximize their profit according to the market’s outcome. The profit 

(and therefore its maximization) realized by the performance of energy arbitrage relies solely 

on the market prices, which are given by the bidding price of the most expensive generator in 

operation for any given hour when considering the DAM. These market prices depend on the 

prices bided by every market competitor, as well as the capacities coupled with each of 

these bids (due to their influence on the operating cost of the system which determines its 

acceptance by the market operator). Evidently, this knowledge is private to each competitor 

up to the moment of the market clearing. As a price-taker, the BESS operator's profit is 

dependent on these market prices, making it difficult to predict which bids will maximize 

their profit. To address this issue and mitigate this problem, a predictive method could be 

adopted by the market participant to correlate available information prior to the bidding 

process with the outcome of the DAM. In this dissertation, this information is correlated to 

the profitability of the BESS operation of energy arbitrage. 

Throughout the following work, the optimal bidding for the BESS will be narrowed down to 

a certain number of pre-established strategies, so that the prediction only has to culminate in 

one of these approaches instead of generating a completely new one predicted to be the 

best. This has some implications, such as: (i) the predictive capacity of the method is 

expected to increase, as the number of possible strategies for maximization of the BESS 

profit is narrowed from a virtual infinite number of possibilities to only a few deterministic 

options, and (ii) each bidding strategy must be designed in an effective manner in order to 

capture profits close to the maximum achievable, considering the unpredictability of future 

opportunity costs. 

The predictive method chosen for this work was a feedforward neural network, as this 

method is particularly adequate to correlate data to certain expected outcomes. These 

networks are designed to output a value correlated to a set of weighted inputs, which in the 
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context of this work, allow the operator of a BESS to predict the best decision regarding the 

bidding of the battery when provided with a set of system parameters regarding its demand 

and production. 

In order to be used in a practical scenario, the ANN must be trained beforehand so that its 

weights and bias are calibrated. This allows the ANN to effectively correlate the input 

variables with the desired outputs. To ensure reliable predictions, the trained ANN must be 

tested using a new dataset of input-target pairs so that its accuracy can be ascertained with 

minimal selection bias. Therefore, the development of the ANN has two distinct phases: (i) 

the training phase and (ii) the testing phase. Each of these phases will be described in 

sections 3.4.1 and 3.4.2, respectively. 

3.4.1 Training phase 

The training phase of the ANN involves the adjustment of the weights and bias of its 

neurons in order to reduce the error between the outputs of the ANN and their desired 

targets (while considering the same set of inputs). An adequate training of the ANN requires a 

suitable dataset that contains input parameters paired with desired outputs. These input-

target pairs must demonstrate an actual correlation between them otherwise the ANN cannot 

establish accurate associations and thus produce undesired results. 

In the context of aiding the BESS operator in their decision-making for the DAM, the 

parameters chosen (both inputs and targets) must follow the following criteria: 

 

• Parameters whose data is available to the BESS operator at the time of the market 

bidding (considered for this work to be at 12h00 during the day before the actual 

operation, following the regulation of the MIBEL); 

• Must be correlated to each other, that is, the parameter used as output should 

depend on the parameters used as inputs. 

As the intended purpose of the predictive tool is to predict the most profitable strategy, 

the output of the ANN must give an indication of which strategy is in fact the best to be 

adopted the following day. Taking this into consideration, the set of outputs chosen was a 24-

hour array composed of the binary decision variables regarding the charging and discharging 

of the BESS, obtained as a result from the operation of the battery that follows the optimal 

bidding strategy. 

The operation of the battery heavily relies on the market prices registered during the 

operating day, which in turn are correlated to the netload present in the system (since a 

higher netload implies the use of more expensive conventional generators to supply the 

needed demand, and vice versa). Neither the market prices nor the netload of the system for 

the following day are known during the bidding process, however, forecasts or historical data 

can be used to solve this non-availability problem. Based on these considerations, and the 
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objective proposed by this dissertation of proving a correlation between available parameters 

and the best bidding strategy, the set of inputs chosen consider an array containing the 24-

hour forecasts for the market prices and for the system parameters that define the netload, 

that is, the demand and renewable energy production( wind and solar PV). 

The ANN used in the work presented in this dissertation was trained using the Levenberg-

Marquardt backpropagation method, by making use of MatLab’s machine learning toolkit. 

3.4.2 Testing phase 

After adequately training the ANN, its accuracy needs to be tested while using a new 

dataset containing input-target sets not used during the training phase, in order to acquire 

unbiased results. The accuracy of the ANN is determined by the mean squared error between 

the outputs and their respective targets. 

Regardless of the parameter chosen as the target for the outputs of the ANN, the latter 

will be non-integers despite the targets being rounded values. This implies that two decision 

thresholds must be implemented to classify each output as a class associated with each 

integer decision variable (-1, 0 or 1). These thresholds are selected based on a statistical 

analysis that compares the true output rates for different threshold values. The chosen 

thresholds are those that achieve a balance between the true rates of the two classifications 

that they aim to separate. 

The outputs of the trained ANN, after being processed by the other tool components (i.e., 

thresholds and the strategy classifier.), will lead to the expected most profitable strategy for 

the following day among those previously established. This strategy will then be used by the 

operator of the BESS during the bidding process for the DAM. 

3.4.3 Strategy Classifier 

After inputting the system parameters into the trained neural network, the resulting 

output provides the decision variables for the battery's operating Schedule for the next 24 

hours. However, these results do not provide information on the quantities and prices of each 

bid; to address this, a strategy classifier algorithm was implemented. This algorithm is based 

on an heuristic method that counts the number of discharges in one specific time periods 

where discharges are expected to commonly occur based on the time slot and quantity bids 

of each strategy (16h-24h). Based on the number of discharges outputted in each of these 

periods, a certain bidding strategy is selected. The classifier algorithm follows this ruleset: 

• Aggressive Strategy: Selected if 2 or fewer discharges take place during the 16h-24h 

period. 

• Moderate Strategy: Selected if between 3 or 5 (included) discharges take place during 

the 16h-24h period. 
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• Conservative Strategy: Selected if the sum of 8 or more discharges are outputted by 

the neural network during the whole day, as no other strategy usually discharges as 

often; or if the criteria for the selection of the other strategies are not met. 

3.5 Summary 

Overall, the methodology employed throughout this dissertation relies on historical or 

forecasted data available to the operator of a BESS pretending to perform arbitrage. This 

data is used as inputs for the tool, which then indicates the most suitable strategy to employ 

during the bidding process of the DAM. To this end, and before assessing the tool's 

effectiveness in aiding the decision-making process of the BESS operator, a specific case 

study needs to be established and characterized. Only after these factors have been 

determined can the bidding strategies be developed. 

It is important to note that this specific case study narrows the scope of application for 

the developed tool. Therefore, the current work serves as a proof of concept for the 

effectiveness of this predictive model. 
 



 

   

 

Chapter 4  

Assessment of BESS participation in an 
energy-only market 

The purpose of the tool developed in this work is to predict the best bidding strategy to 

generate profit for its operator during the following day’s market operation. To verify the 

effectiveness of the proposed methodology, it first must be tested in a simulated practical 

scenario. This chapter is dedicated to establishing the case study adopted throughout the 

work presented for this dissertation, which is divided into: 

• The characterization of the distribution grid used as a reference for this study, 

including information about its topology, energy providers and consumers, as well 

as their profiles; 

• The design of the three bidding strategies, considering: (i) the characteristics of 

the studied BESS, (ii) the characteristics of the power system and (iii) the 

previously described general bidding approaches; 

• The development of the tool specifically designed to be used for these system’s 

characteristics, and considering the established strategies. 

4.1 System characterization 

The power system that is used as the foundation for this work is a distribution grid based 

on the design of the IEEE 37-bus grid, as depicted in Figure 4.1. This grid consists of 37 buses 

at 11kV. This system is made up by a set of 22 loads installed in some of those buses to 

represent consumption points, and their location is represented by circles in Figure 4.1. This 

system also contains several power plants, including 2 wind turbines and 22 solar PV plants 

(responsible for RES production), as well as 3 CHP generators. Additionally, There is an 

external connection to the upstream grid which is used to supply the load during a deficit of 
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RES generation, or used to drain its excess. In this case, the external supplier behaves as a 

producer or consumer depending on the actual RES generation. 

 

 
Figure 4.1 - 37-bus MV distribution grid. 

The technical characteristics of each energy resource are represented in Table 4.1, 

providing information on their quantity, as well as their availability (in pu) and operating cost 

(in m.u.). Additionally, the BESS installed in the grid is defined by the characteristics outlined 

in Table 4.2. 

 
Table 4.1   - Characteristics of the energy resources in the grid. 

  

Energy Resource 
Availability  

[pu] 

Production 

cost 

[m.u./pu] 

Quantity 

  External Supply 35 100-300 1 

  

CHP 

1 2 30 

3   2 2 20 

  3 2 10 

  Wind Turbines 2.5 0 2 

  Solar PV 0 - 8 0 22 

 

Table 4.2 - Technical characteristics of the BESS. 

Bus 

Location 
Capacity 

State of Charge 

Min. Max. 

2 1MW/1MWh 10% 90% 
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The production cost of wind and solar PV plants is null due to their renewable nature. On 

the other hand, the rest of the energy sources have an associated production cost which will 

be used as their price bids. For the CHP generators, their production cost (and thus their 

bids) are constant throughout the day, although different across the 3 available generators. 

For the external supplier, the production cost varies depending on the load present on the 

distribution grid. The production cost of the external supplier follows the rule presented in 

Table 4.3. 
 

Table 4.3 - Correlation between the system load and the operating price of the external supplier. 

Load Value 
[MW] 

Price of the external supply 
[m.u.] 

<10 100 

10-15 150 

15-20 200 

>20 300 

 

As stated in section 3.4, for the tool to be developed and then tested for this case study, a 

set of scenarios representing the operating behaviour of the characterized power system 

needs to be established. These will serve as potential historical data for the system and will 

be used to both develop the bidding strategies and the tool considered in this work. 

4.1.1 Typical System Scenario 

A system scenario is hereby considered to be defined by the value for the demand and 

renewable production for every hour of a single operating year, as these are the most 

relevant parameters pertaining to this power system that affect the operation of the BESS. 

Therefore, throughout the presented work these will be referred simply as system 

parameters. This scenario creation process begins by selecting a base scenario to represent a 

typical year for the behaviour of the system. 

4.1.1.1 Demand profiles 

To represent different behaviour for the consumers, the demand of the system in question 

must be defined for each of the consumption points of the grid. This was accomplished by 

relying on an adapted data set previously used in other research [48] 

To represent the variability intrinsic to the real-life operation of a power system, 

different types of variations were considered for this system parameter. These were: 
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• Seasonal profiles that define the load for each of the four clusters of days; 

• Hourly variations are applied to similar days within the same seasonal cluster. 

 

The data set adapted from [48] already contains seasonal variations to the demand of 

each consumption point of the reference power grid considered in this case study, meaning 

that for a single year, there are 4 distinct typical load diagrams (defining the profile for the 

cluster of days belonging to each of the seasons) for every single load. The load diagrams for 

the total demand of this power system are represented in Figure 4.2. 

 

  
a) cluster 1/Spring b) cluster 2/Autumn 

  
c) cluster 3/Summer d) cluster 4/Winter 

Figure 4.2  - Load diagrams that characterize each seasonal cluster of the year 

To account for the daily variation in the system’s demand, assuming that each day is 

slightly different from the previous one (even when belonging to the same season, and thus 

sharing the same load profile), a daily variation factor was introduced to the demand profile 

values for every hour of the year. This variation factor was chosen randomly for every hour of 

each day, following a uniform distribution of values between [-10,10]%. By introducing these 

variations, the established scenarios are able to more accurately represent the dynamic 

nature of the system's demand patterns that are seen in real life. Figure 4.3 illustrates the 

difference in the hourly system’s demand for two consecutive days belonging to the same 

season. 
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Figure 4.3 - Comparison of the hourly load data of two consecutive days belonging to the same seasonal 

cluster. 

4.1.1.2 Renewable energy generation profiles 

The data used to model the profiles for the wind production was taken from [49], in which 

a data set for 43-hours of point predictions under 100 possible scenarios was used. When 

creating possible system scenarios, a set of 24 hours of wind data is selected for each day. 

This hourly data is then multiplied by the capacity of each turbine in order to acquire the 

actual wind production for each of these, taking into consideration their maximum 

production capacity. 

Regarding the solar PV production, PV data from [50], [51] were used to obtain a data set 

that contains 24-hours of point predictions for the PV production of each solar plant for 100 

different scenarios. Similar to the process applied for the determination of the wind 

production data, a solar PV scenario is chosen at random to represent the solar production for 

every day of the year. 

  
a) Wind Production b) Solar PV Production 

Figure 4.4 - Comparison of the hourly wind production (a) and solar PV (b) production data of two 
consecutive days belonging to the same seasonal cluster. 
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Once the base scenario has been established, the seasonality of its parameters (associated 

with the operation of a typical year) can be examined. To this end, the graphical 

representation of each of the relevant system parameters as well as the netload of the 

system is shown in Figure 4.5. 

 

  
a) cluster 1 b) cluster 2 

  
c) cluster 3 d) cluster 4 

 
Figure 4.5 - Load, wind, PV and netload data for sample days of each cluster. 

4.1.2 Atypical years for the system’s behaviour 

Despite the consideration of a base system scenario to represent a typical year, it is 

important to acknowledge that every year demonstrates unique characteristics in regard to 

their demand and renewable generation. In order to represent these yearly variations, new 

system scenarios were created by applying known percentual variations to each individual 

parameter, or in some cases to a combination of parameters. The characteristics of these 

newly established scenarios are outlined in Table 4.4, presenting a reference number to each 

of them (which will be used throughout the presented work), alongside the variations applied 

to each parameter (normalized to the values of the base scenario). 
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Table 4.4 - Description of the scenarios that represent the behaviour of the power system, with each 
parameter normalized to the base scenario. 

Scenario Load PV Wind 

1 [Base] 1 1 1 

2 1.1 1 1 

3 0.9 1 1 

4 1 1.1 1 

5 1 0.9 1 

6 1 1 1.1 

7 1 1 0.9 

8 1.2 0.8 1 

9 1.2 1.2 1 

10 0.8 1.2 1 

11 0.8 0.8 1 

12 1.2 1 0.8 

13 1.2 1 1.2 

14 0.8 1 1.2 

15 0.8 1 0.8 

16 1.1 1.1 1 

17 1.1 0.9 1 

18 0.9 1.1 1 

19 0.9 0.0 1 

20 1 1.3 1 

21 1 0.7 1 

22 1.15 1 1 

4.2 Development of the bidding strategies for this case study 

Seasonal variations have a significant impact on market prices compared to variations 

within days belonging to the same seasonal cluster. Figure 4.6 displays the average hourly 

market prices for each season, based solely on the results of the economic dispatch 

simulations considering the base scenario (typical year). These results aid the BESS operator 

in designing each strategy following the approaches outlined in Section 3.2. 

 

  
a) cluster 1 b) cluster 2 
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a) cluster 3 b) cluster 4 

Figure 4.6 - Comparison of the hourly market prices for clusters 1 (a), 2 (b), 3 (c) and 4 (d), based on 
the condition of the base scenario. 

4.2.1 Conservative bidding strategy 

For the conservative strategy, the operator of the BESS submits small volumes of energy 

(i.e., 0.1 MW for each hour) for every time slot of the day. The intention is to discharge every 

time that it is profitable, therefore the price coupled with each discharge bid has to be above 

the charging cost but lower than the next possible market price (least expensive CHP 

generator – 10 m.u.). The characteristic of the discharge bidding strategy A can be seen in 

Figure 4.7. 

       
a) Discharge bid of strategy A. 

 
b) Price bid of strategy A. 

Figure 4.7 - Characteristics of strategy A’s bids, in terms of capacity (a) and price (b). 
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4.2.2 Aggressive bidding strategy 

The aggressive strategy aims to preserve the SoC to profit by fully discharging it during 

high-priced periods, implying that the bids submitted by this strategy have a capacity of 0.72 

MWh (full discharge capacity when considering the charging and discharging efficiencies of 

the BESS). Analysing Figure 4.8, it can be observed that the average prices for the days of 

clusters 1, 2 and 3 start rising at 16h00, exhibiting peaks during the 19h-21h period. The 

average prices for these periods are consistently above 150 m.u., therefore this strategy 

submits bids characterized by prices of 150 m.u. This is done to ensure that the BESS is only 

dispatched when the prices are very high, and due to variations in the system parameters, 

these peak prices may occur in adjacent periods to the mentioned previously. So, the 

operator bids during time slots starting from 16h00 until the end of the day. The 

characteristic of the discharge bidding strategy B can be seen in Figure 4.8. 

 

a) Discharge bid of strategy B 

 

b) Price bid of strategy B 

Figure 4.8 - Characteristics of strategy B’s bids, in terms of capacity (a) and price (b). 

4.2.3 Moderate bidding strategy 

The moderate strategy’s approach is to bid during two different periods with potential 

high prices: (i) the late afternoon (after 16h00) and (ii) the morning (7h-10h). 

During the afternoon, this approach is characterized by submitting bids with moderate 

volumes of energy, equal to 25% of the total discharge capacity of the BESS considering the 

round-trip efficiency of the battery. These bids of 0.18 MWh allow flexibility, which can 

capture potential variations in the timing of high-priced periods throughout the operating 
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day. The prices paired with each bid of this strategy were set as 100 m.u., ensuring that the 

battery only discharges when the external supplier defines the marginal price of the system. 

During the morning period (7h-11h) there is no high prevalence of peak period, so in order 

to capture them whenever possible, the BESS offers its full available capacity to be 

discharged at 75 m.u., expecting to increase the rate of acceptance of its bids during these 

events. The discharge strategy for the moderate approach (strategy C) is represented in 

Figure 4.9. 

 

 
a) Discharge bid of strategy C 

  
b) Price bid of strategy C 

 

Figure 4.9 - Characteristics of strategy C’s bids, in terms of capacity (a) and price (b). 

The economic dispatch simulation for the DAM is performed by using the CPLEX optimizer 

implemented in the software GAMS (as detailed in section 3.3). These simulations take into 

account the several established scenarios to represent a sample of the multitude of potential 

system behaviours. During these simulations the BESS operator adopts a single bidding 

strategy among those previously established in the present section, using it as its bidding 

approach for the entire year. The data resulting from these simulations will allow the 

development of the predictive tool as well as a more detailed analysis of the impact of each 

parameter on the operation and profitability of the BESS. 

4.3 Simulation of a BESS in an energy market 

The behaviour of the BESS, regardless of the bidding strategy adopted by its operator, is 

expected to be influenced by the system parameters that directly affect the market prices. 

The operating schedule of the battery is determined by the accepted bids and offers 
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submitted to the energy market, which are intrinsically connected to the relationship 

between the market price and the price component of the battery’s bid, for any given 

period. The same dependence on the accepted bids and the market price registered during 

the BESS’s operating hours is seen for the profit generated by the BESS. 

Hence, the results presented in this section are divided into 2 components according to 

the behaviour of the system parameters that affect the operation of the BESS: 

• The seasonality aspect of the system parameters; 

• The daily variations of the system parameters. 

4.3.1 Seasonality of the system parameters 

The residual demand present in the system, for any given time period, evidently impacts 

the number of energy resources that need to be in operation to supply the aforementioned 

demand. This, in turn, can potentially affect the characteristics of peak and off-peak periods. 

Therefore, the seasonal variations of the system parameters are expected to strongly 

influence the operating schedule of the battery, however, this needs to be validated by 

recurring to the dispatch simulations results. 

The following results related to the seasonality aspect of the system parameters are 

divided into: 

• The operating schedule of the BESS, considering every bidding strategy; 

• The profit generated by the BESS through the performance of energy arbitrage. 

4.3.1.1 Operating schedule of the BESS 

When considering the performance of energy arbitrage for a single day, the operating 

schedule of the BESS is interpreted as during which hours the battery charges and discharges 

its storage capacity. As discussed previously, this operation is dependent on the behaviour of 

the system parameters on the specific operating day. So, to evaluate the overall seasonal 

influence on the arbitrage of the BESS, the complete set of days of each season was used as 

data for the results presented in this subsection. Figure 4.10 represents the number of 

charges and discharges performed by the BESS during each hour of the day, for every day that 

encompasses seasonal cluster 1, while Figure 4.11, Figure 4.12 and Figure 4.13 represent the 

same parameter for seasonal clusters 2, 3 and 4 respectively. 
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• Results for Cluster 1: 

  
a) Conservative strategy b) Aggressive strategy 

 
c) Moderate strategy 

Figure 4.10 - Hourly number of charges and discharges for the days of seasonal cluster 1, considering 
the base scenario and the conservative (a), aggressive (b) and moderate (c) bidding strategies. 

 

 

• Results for Cluster 2: 

  
a) Conservative strategy b) Aggressive strategy 
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c) Moderate strategy 

Figure 4.11 - Hourly number of charges and discharges for the days of seasonal cluster 2, considering 
the base scenario and the conservative (a), aggressive (b) and moderate (c) bidding strategies. 

 

• Results for Cluster 3: 

  
a) Conservative strategy b) Aggressive strategy 

 
c) Moderate strategy 

Figure 4.12 - Hourly number of charges and discharges for the days of seasonal cluster 3, considering 
the base scenario and the conservative (a), aggressive (b) and moderate (c) bidding strategies. 
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• Results for Cluster 4: 

  
a) Conservative strategy b) Aggressive strategy 

 
c) Moderate strategy 

Figure 4.13 - Hourly number of charges and discharges for the days of seasonal cluster 4, considering 
the base scenario and the conservative (a), aggressive (b) and moderate (c) bidding strategies. 

4.3.1.2 Profitability of the BESS 

The accumulated profits obtained by the BESS operator for each bidding strategy are 

presented in Table 4.5, categorized by season. The system parameters affect the operation 

of the BESS, consequently impacting its profitability under different bidding approaches. The 

profit generated by the BESS is determined in two phases: 

• The calculation revenue is determined by multiplying the amount of energy 

discharged by the battery and the market price registered during the discharge 

period; 

• The calculation of the incurred costs, by multiplying the amount of energy 

charged at the market price registered during the charging period. 
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Table 4.5 - Accumulated profit from energy arbitrage for each strategy, divided per season. 

Scenario Strategy 
Profit [m.u.] 

Cluster 1 Cluster 2 Cluster 3 Cluster  4 

1 

A 10091 8078 7225 7782 

B 12747 12160 1395 158 

C 11725 11143 7952 9995 

 

Figure 4.14 illustrates the results pertaining to Table 4.5 where it can be seen that 

different seasonality profiles for the system variables lead to not only different profits but to 

different rankings regarding the most optimal strategies for each cluster. This demonstrates 

the impact that different peak and off-peak periods have on the profitability of the BESS. 

 
Figure 4.14 - Accumulated profit by strategy, divided per seasonal cluster when considering the Base 
Scenario. 

4.3.2 Daily variations of the system parameters 

A single system scenario is affected not only by seasonal variations, whose impact was 

shown in section 4.3.1, but also by daily variations applied throughout the year. These daily 

variations result in distinct outcomes for the operation of the BESS when comparing 

consecutive days within the same season. Slight variations in the system parameters during 

each hour of the day may require the use of more expensive energy sources to meet the 

residual demand, leading to higher market prices for that specific hour, and vice-versa. This 

can be verified by comparing both the hourly market prices and the system’s netload for each 

hour of the day, for consecutive days. These comparisons are represented in Figure 4.15. 
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a) Netload (above) and market price (below) 
for two days of cluster 1 

b) Netload (above) and market price (below) 
for two days of cluster 2 

  

c) Netload (above) and market price (below) 
for two days of cluster 3 

d) Netload (above) and market price (below) 
for two days of cluster 4 

Figure 4.15 - Hourly Netload and Market price for two consecutive days of cluster 1 (a), cluster (2), 
cluster 3 (c) and cluster 4 (d). 

The presented results focus on these daily variations and address three key aspects of the 

operation of the BESS: 

• The operating schedule of the BESS; 

• The daily profit generated for each strategy; 

• The ranking of the most profitable strategy for a given day. 

4.3.2.1 Operating schedule of the BESS 

As discussed previously, the daily variations in netload and hourly market prices can 

significantly influence BESS’s operation, depending on the extent of these variations, as well 

as the bidding strategy selected by the BESS operator. Figure 4.16 and Figure 4.17 shows the 

charging and discharging operation and SoC of the BESS for two consecutive operating days 

for each cluster, respectively. 
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a) Two days of seasonal cluster 1 

  
b) Two days of seasonal cluster 2 

Figure 4.16 - Comparison of the SoC and operating schedules of the BESS for two different days of 
seasonal cluster 1 (a) and seasonal cluster 2 (b) 

 

 

 

  

a) Two days of seasonal cluster 3 
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b) Two days of seasonal cluster 4 

Figure 4.17 - Comparison of the SoC and operating schedules of the BESS for two different days of 
seasonal cluster 3 (a) and seasonal cluster 4 (b) 

4.3.2.2 Profitability of the BESS 

The change in the charge and discharge hours of the BESS, along with the prices registered 

during those periods, obviously have an impact on the profitability of the energy arbitrage 

performed by the BESS. These variations impact each strategy differently due to their distinct 

characteristics. Table 4.6 provide information regarding the average profits generated by the 

adoption of each strategy for each seasonal cluster, as well as the maximum positive and 

negative deviations to the average profit. 

 
Table 4.6 - Average profit and the average positive and negative deviations, for each strategy divided 

per season. 

Cluster Strategy 
Average daily 

profit 
[m.u.] 

Average Positive 
variations 

[m.u.] 

Average Negative 
Variations 

[m.u.] 

1 

A 111,95 6,39 5,11 

B 141,63 2,37 9,46 

C 130,28 6,14 5,37 

2 

A 89,76 6,79 4,33 

B 135,11 0,00 0,00 

C 123,81 2,30 6,70 

3 

A 80,28 30,55 23,36 

B 15,50 78,87 13,32 

C 88,35 63,58 66,46 

4 

A 81,92 4,13 5,67 

B 1,66 20,93 1,66 

C 105,21 2,86 5,63 

 

Moreover, the daily variations can potentially influence the ranking of the most profitable 

strategy for any given day, influencing the decision-making process of the BESS operator. To 

assess this, the frequency of each strategy being the most profitable was determined for 



83 4.3-Simulation of a BESS in an energy market 

 

every day of each season. Furthermore, the same test was conducted under different 

parameters pertaining to different yearly system scenarios, to determine how the variation of 

each parameter influences the ranking of the established bidding strategies. 

 
Table 4.7 – Frequency of each strategy leading to the highest daily profit, divided per season, for the 

test scenarios. 

Scenario Strategy 
Cluster 

1 2 3 4 

Base 

A 0,0 0,0 43,3 0,0 

B 88,9 100,0 6,7 0,0 

C 11,1 0,0 50,0 100,0 

1 

A 1,1 6,7 17,8 20,0 

B 0,0 68,9 1,1 26,3 

C 98,9 24,4 81,1 53,7 

2 

A 0,0 0,0 98,9 100,0 

B 0,0 0,0 0,0 0,0 

C 100,0 100,0 1,1 0,0 

3 

A 0,0 0,0 80,0 0,0 

B 91,1 100,0 1,1 0,0 

C 8,9 0,0 18,9 100,0 

4 

A 0,0 0,0 4,4 0,0 

B 90,0 100,0 2,2 0,0 

C 10,0 0,0 93,3 100,0 

5 

A 0,0 0,0 63,3 0,0 

B 88,9 100,0 2,2 0,0 

C 11,1 0,0 34,4 100,0 

6 

A 0,0 0,0 18,9 0,0 

B 87,8 100,0 6,7 0,0 

C 12,2 0,0 74,4 100,0 

Table 4.7 show a strong correlation of the most profitable strategy with the seasonality of 

the system parameters. This implies that despite existing daily variations, these do not 

influence the ranking of the strategies in most of the seasons of the analysed scenarios, 

which improves the ability to correlate more efficiently the seasonality aspect of the tool’s 

inputs with the most profitable strategy. However, it worsens the capability of predicting 

occasional alterations in the ranking of the strategies. This, however, is not true for all cases, 

particularly for days of cluster 3, which shows a high daily variation in the ranking of the 

strategies due to the variations of the system parameters during the traditional operating 

hours of the BESS. 

Figure 4.18 shows a sample week taken from cluster 3 of the base scenario where the 

daily variation in the ranking of the most profitable strategy is clearly visible, which adds to 

the justifications of a decision-making aiding tool. 
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Figure 4.18 - Daily profit of each established bidding strategy for a sample week of the base scenario. 

4.3.3 Influence of system scenario in the results 

Subsections 4.3.1 and 4.3.2 were mainly focused on the performance of energy arbitrage 

by the BESS under the base scenario, which is considered to represent a typical year for the 

behaviour of the power system. To explore the influence of the system parameter variations 

on the operation of the BESS, other tests were conducted using atypical scenarios for the 

behaviour of the system. 

When considering the same daily pattern, despite being expected that an increase in 

netload (either by increasing demand or reducing renewable energy generation) leads to 

higher market prices and vice versa, it is necessary to examine these potential system 

scenarios. For example, while the increase in prices could lead to higher revenues,by 

increasing the number of discharges at higher market prices, it can also lead to higher 

charging prices.In Table 4.8, detailed information regarding the accumulated profits during 

each season for each bidding strategy is presented, considering each system scenario that will 

be used as a test case for the application of the tool. 

 
Table 4.8 - Accumulated profits for each strategy and season, for different system scenarios. 

Scenario Strategy 
Profit by Cluster [m.u.] 

1 2 3 4 

Base 

A 10076 8100 7225 7782 

B 12747 12169 1395 158 

C 11725 11143 7952 9995 

1 

A 11518 9839 12857 9052 

B 12131 12064 12515 3658 

C 12131 11554 12788 9555 

2 

A 7077 4666 1820 3706 

B 214 287 23 35 

C 9711 7032 261 689 
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3 

A 10132 7797 4087 7939 

B 12932 12180 471 136 

C 11696 11154 2881 10188 

4 

A 9533 8559 10855 7238 

B 12129 12160 5511 48 

C 11121 11134 13356 9390 

5 

A 9834 7573 5715 7400 

B 12848 12169 976 141 

C 11800 11143 5526 9879 

6 

A 10192 8473 8210 7784 

B 12564 12160 3049 227 

C 11603 11134 10733 9850 

 

Figure 4.19 illustrates the impact that the variation of the system parameters has on the 

annual profit generated by the BESS for different yearly system scenarios. This justifies the 

correlation of these parameters to the profitability of the performance of energy arbitrage 

which can be exploited to assist the decision-making of the BESS operator during the bidding 

process. 

These results help to illustrate the necessity for a tool that can aid the BESS operator in 

its decision-making process regarding which strategy to adopt during the bidding process of 

the DAM. 

 
Figure 4.19 - Percentual variation of the annual profit for different system scenarios compared to the 

Base scenario. 

4.4 Development of the Predictive Tool for this Case Study 

After both the distribution grid considered for the case studied and the bidding strategies 

capable of being adopted by the BESS operator were established, the development of the 

predictive tool capable of supporting the aforementioned decision-making process can be 

developed. The present section consists of the application of the previously defined 
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methodology to this study case, culminating in the development of a predictive tool adapted 

for the characteristics of the system and the bidding strategies considered in this chapter. 

4.4.1 Configuration of the predictive model 

The data resulting from the economic dispatch simulations were used to train and test the 

ANN for the proposed predictive tool. The present subsection covers the training and testing 

of the ANN as well as the implementation of the decision thresholds. Additionally, an 

example of the application of the ANN is done for a single day. 

The data set used for the development of the ANN (containing data for 8030 days, 

equivalent to 22 simulated years) is divided into 2 data groups: (i) one to be used in the 

training process and the other (ii) to test the network’s accuracy. The training data set 

consists of 80% of the data pertaining to the previous dataset, while the test data set 

contains the remaining 20%, with this selection being random to avoid selection bias in the 

results. 

The selected input data are the forecasted hourly values for the load, wind and solar 

production and market prices. These values are arranged in an array with 96 positions (24 

hours of each parameter) to be used during the training of the ANN. Due to not having an 

available forecast for these parameters, the historical values pertaining to the previous day 

were used instead, assuming that the deviations across them were in the same level of 

magnitude as the differences between forecasted and actual data for the following day. The 

targets selected are the decision variables representing the operation of the BESS for the day 

defined by the correspondent input set. Table 4.9 shows the characteristics of each data set. 

 
Table 4.9 - Characteristics of each data set used in the development of the ANN. 

Data Set Nr. Days Nr. Charges 
Nr. Non 

Operations 
Nr. Discharges Nr. of times each strategy is used 

Training 6424 22851 28248 103077 

Strategy A 1338 

Strategy B 1719 

Strategy C 3367 

Test 1606 5808 6958 25778 

Strategy A 315 

Strategy B 456 

Strategy C 835 

 

To classify the outputs of the ANN into three categories (charges, discharges, and non-

operations), two decision thresholds are implemented due to non-integer nature of the 

outputs of the ANN. These two thresholds can be defined as the “positive” and the “negative 

threshold, with the latter separating the negative and zero decision zones, and the former 

separating the zero and positive decision zones. These thresholds are selected based on a 
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statistical analysis, aiming to reach a balance between the true rates regarding the two 

classifications (positive, negative and zero) delimited by the respective threshold. 

The classification of each output in regards to the accuracy of the predictive ANN is 

determined by their relation to both the threshold and their respective targets: 

• An output is considered as a positive, negative or zero depending on if its value is 

above the positive threshold, below the negative threshold or in between them, 

respectively; 

• Each output is considered as true or false depending on their relation to their 

respective targets. If they are located in the same decision zone, they’re 

considered as being “true”, otherwise they are considered as false. 

 

To determine the optimal threshold values for this ANN, several threshold values were 

considered and tested, aiming to achieve the best accuracy for the network’s predictions. 

The test data set was divided into two subsets: (i) one containing every non-negative output 

and their respective targets, and (ii) another containing every non-positive output and their 

respective targets. 

The effect that the value of each threshold has on the accuracy and sensitivity of the ANN 

(which are a product of the true positive/negative rate and the false positive/negative rate, 

respectively), can be visualized by plotting a Receiver Operating Characteristc (ROC) curve. 

Each point of the ROC curves corresponds to a different threshold value. The point located in 

this curve whose coordinates are closer to the “optimal coordinates” (with a True Rate of 1 

and a False Rate of 0, indicating a perfect accuracy) reveals the best threshold value for the 

considered data set. The ROC curves obtained by testing 1000 different values for the 

positive and negative thresholds (from 0 to 1, with an increment of 0.001), are plotted in 

Figure 4.20. 

 

 
 

Figure 4.20 – ROC curves for the positive (left) and negative (right) thresholds 
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The red dots depicted in Figure 4.20 are the optimal points when considering the results 

of the true positive/negative rates in conjunction with the false positive/negative rates. The 

red dot in the left ROC curve of Figure 4.20 implies that the best value for the positive 

threshold is 0.365. For the negative threshold, the best results are achieved when its value is 

-0.359. 
 

Table 4.10 - Characteristics of the optimal thresholds chosen to be implemented in the tool. 

Thresholds Output Classification 
Rate of  

True Outputs 
Accuracy 

[%] 

Positive Negative TP FP TZ FZ TN FN TPR TZR TNR  

0,365 -0,359 5211 1082 23442 1302 6227 1280 0,90 0,91 0,89 90,5 

 

After implementing the optimal threshold values for the ANN, the results regarding the 

accuracy of the network are presented in Table 4.10. This table provides an overview of the 

accuracy achieved by the ANN in classifying the outputs for the full data set, as well as the 

corresponding true positive, true negative, and true zero  rates. 

In section 4.4.2, some relevant results regarding the developed ANN are presented. 

4.4.2 Results 

4.4.2.1 Neural network accuracy 

The test data set was then used to perform an analysis regarding the accuracy of the 

trained network. This was done by inserting the inputs of the test data set in the trained 

network and comparing every output of the network to its respective target of the data set- 

Then, the numeric error between them was determined. These errors were arranged in a 

histogram in order to visualize their probabilistic distribution, depicted in Figure 4.21. 
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Figure 4.21 – Histogram of the distribution of errors for the neural network. 

Analyzing the histogram of Figure 4.21, it can be concluded that the majority of errors are 

located around the 0 mark, meaning that for almost the entirety of the test data, the error is 

minimal. A parameter that can be used to represent the accuracy of the network’s results is 

the Mean Squared Error, given by eq. 4.1. 

 

 𝑀𝑆𝐸 =
1

𝑛
∑(𝑂𝑢𝑡𝑝𝑢𝑡𝑖 − 𝑇𝑎𝑟𝑔𝑒𝑡𝑖)

2

𝑛

𝑖=1

 

 

(4.1) 

4.4.2.2 Network assertiveness 

The assertiveness of the ANN can be interpreted as the accuracy in predicting the 

behaviour of the battery qualitatively, that is, the ability to correctly identify charges, 

discharges or non-operations of the battery for a certain time period. After implementing the 

thresholds (whose value was determined previously in Section 4.4.1), the test data set was 

used to determine the assertiveness of the network. 

The classification of each target is determined for the test data set with the results being 

represented in Table 4.11. In Figure 4.22, the outputs and targets of 7 random days selected 

from the test data set were used to represent the impact of the thresholds. 
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Table 4.11 - Confusion matrix for the outputs of the neural network when the test data set is used 

   Output 

    1 0 -1 

Target 

1 5211 579 18 

 

0 1074 23442 1262 
 

 

-1 8 723 6227 
 

 
 

 

Figure 4.22 - Comparison between the outputs of the neural network and their targets for 7 days of the 
test data set. 

It is shown in Figure 4.22 that the large majority of the incorrect outputs generated by the 

ANN are located near the thresholds, indicating proximity to the “decision zone”, which 

suggests that the ANN is functioning well, as only a few outputs deviate significantly from 

their respective targets. The previous observation is reinforced by the fact that the network, 

for the test dataset of 1606 days, only commits 26 large errors, that is, a “charge” output 

corresponds to a “Discharge” target, or vice versa. 

Figure 4.23 illustrates the distribution of errors between the output of the ANN and their 

respective target (same data set used in the distribution of Figure 4.21), however, for this 

case the true and false outputs are differentiated. 
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Figure 4.23 - Histogram of the error distribution considering the effect of the thresholds. 

The lack of false outputs with errors between [-0.36,0.37] is due to the effect of the 

thresholds: 

• If the target is positive (1): errors less than 0.63 would mean that the output would 

also be classified as positive, explaining the slight peak around this value. 

• If the target is negative (-1): errors that lead to false outputs need to be higher than 

the difference between the target and the highest (in absolute value) possible output 

classified as false zero, therefore these errors are always below -0.64. 

• If the target is zero (0): the absolute error must be above the threshold values in 

order for the corresponding output to be considered false, that is, any false output 

must be higher than 0.36 and lower than -0.37 (these values are symmetrical to the 

threshold values due to the way the error is calculated). 

4.4.2.3 Example of the application of the ANN for a single day 

To exemplify how the ANN behaves when inputs from the test data set are used, a random 

sample day belonging to this set was selected. The target for the BESS’s decision variables for 

the selected sample day is shown in Table 4.12, alongside the outputs obtained when system 

data, relative to the previous day, was used as input of the ANN. In Figure 4.24, the 

comparison between the outputs of the ANN for this day and their respective targets is 

illustrated. 
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Table 4.12 - Comparison between the outputs of the neural network and their respective outputs for a 
sample day of the test data set. 

Hour Target 
Network Output  

Before 
Thresholds 

After 
Thresholds 

1 0 0 0 

2 0 0 0 

3 0 0.255 0 

4 1 0.494 1 

5 -1 0.230 0 

6 0 -0.139 0 

7 -1 -0.640 -1 

8 1 0.007 0 

9 -1 -0.492 -1 

10 0 -0.037 0 

11 1 0.959 1 

12 -1 -0.162 0 

13 -1 -0.260 0 

14 -1 0.207 0 

15 1 0.336 1 

16 0 0.084 0 

17 -1 -0.925 -1 

18 -1 -0.794 -1 

19 -1 -0.728 -1 

20 -1 -1.172 -1 

21 -1 -0.951 -1 

22 -1 -0.904 -1 

23 -1 -0.605 -1 

24 -1 -0.775 -1 

 

 
Figure 4.24  - Target output comparison for the sample day of the test data set. 

 

The scatter plot of Figure 4.24 illustrates the dispersion of both the outputs generated by 

the trained ANN and their respective targets for the selected sample day of the test data set. 
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The outputs are then categorized into true and false depending on the relation between their 

obtained classification and respective target. 

The outputs obtained after thresholds imply a certain bidding strategy among those 

previously established, in this case, strategy A, whose reference bid values will be used for 

the day-ahead market’s bidding process. 

 
 



 

 

Chapter 5  

Application of the tool for some test 
cases 

The developed tool was used in several test scenarios that were excluded during its 

development to ensure unbiased results. These test cases aim to assess the tool's efficacy in 

supporting the decision-making process of the BESS operator. By using diverse scenarios for 

these test cases, the robustness of the tool can also be ascertained. Furthermore, these 

scenarios offer insights regarding the best cases for its use. Through a sensitivity analysis, 

these tests also allow to identify correlations between each input parameter and the tool's 

efficiency.  

The current chapter presents the application of the tool to multiple test scenarios, 

presenting the corresponding results and the subsequent analysis of the implemented work. 

5.1 Annual results for the application of the developed tool  

The tool utilized the input parameters for each daily scenario to determine the most 

profitable strategy for the following day. These predictions were then compared to the 

results of economic dispatch simulations of the DAM, in order to assess the accuracy of said 

predictions, and thus, gaining valuable insights of its effectiveness. 

To this end, the profitability of the BESS was evaluated by using two reference points:  

• The maximum potential profit achievable by a 100% accuate tool; 

• The profitability resulting of relying in a single strategy throughout the entire 

year, disregarding any dynamic decision-making approach.  This static approach 

served as a benchmark for evaluating the performance of the operator's decision-

making process when using the proposed tool.  
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5.1.1 Results for a typical system year (Base Scenario) 

Table 5.1 shows the comparison between the accumulated annual profit of the same BESS 

when using different approaches; these regard the use of the developed tool, and the use of 

a single strategy (among the three previously established), throughout the entire year. 

 
Table 5.1 - Profits generated for different cases, under the conditions of the Base Scenario. 

Case studied 
Profit  
[m.u.] 

Deviation to 
the tool’s profit 

[%] 

Applying the tool 41052 - 

Max. Profit  
(100% Assertiveness) 

44923 +9.4 

Strategy A 33161 -19.2 

Strategy B 26460 -35.5 

Strategy C 40815 -0.6 

The tool has demonstrated to be effective for this specific scenario, representing a typical 

year for the studied system. It has achieved an annual profit that is at least 0.6% higher 

compared to static-bidding approaches. This efficacy is increased if the operator adopts 

either a conservative or aggressive strategy. 

To further evaluate the tool’s robustness, it was tested under some atypical scenarios for 

the system considered. Six extreme scenarios were tested, with each having one of its system 

parameters altered. Each of the three independent system parameters (Load, Wind Gen. and 

Solar PV Gen.), gave way to two test cases: 

• One with a variation of +20% of the base value; 

• One with a variation of -20% of the base value. 

These scenarios are considered to be test cases 1 through 6, whose defining 

characteristics are presented in Table 5.2. 

 
Table 5.2 - Test cases and their characteristic variation when compared to the base scenario. 

Test Case 
Variation to Base 

Scenario 

1 +20% Load 

2 -20% Load 

3 +20% Wind Gen. 

4 -20% Wind Gen. 

5 +20% Solar PV Gen. 

6 -20% Solar PV Gen. 
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5.1.2 Results for Scenarios with load variations 

The analysis of this subsection was focused on the load variation scenarios (test cases 1 

and 2). The results of effectiveness of the tool in aiding the decision-making of the BESS 

operator can be seen in Table 5.3 and Table 5.4. These show that for these extreme load 

variations, the developed tool generates profits that surpass those obtained by the three non-

dynamic approaches that rely on a single strategy throughout the year. 

 
Table 5.3 - Comparison of the profits generated for different cases, considering test case 1 (+20% 

Load). 

Case studied Profit [m.u.] Deviation to the tool’s profit [%] 

Applying the tool 46501 
- 

Max. Profit (100% Assertiveness) 47705 +2.6 

Strategy A 43231 -7.0 

Strategy B 40363 -13.2 

Strategy C 46013 -1.0 
 
Table 5.4 – Comparison of the profits generated for different cases, considering test case 2 (-20% Load). 

Case studied Profit [m.u.] Deviation to the tool’s profit [%] 

Applying the tool 21966 
- 

Max. Profit (100% Assertiveness) 22332 +1.7 

Strategy A 17239 -21.5 

Strategy B 554 -97.5 

Strategy C 17666 -19.6 

 

For test case 1, the tool can generate profits at least 1% higher than the static use of 

bidding strategy C (best case scenario for an operator without any support to the decision 

making process regarding its strategic bidding). However, this slight increase in profitability is 

modest when compared to that achieved by the tool for test case 2. In this low demand 

scenario, the static bidding of a single strategy leads to profits at least 19,6% lower than 

those of the tool, showing its particular effectiveness in scenarios such as this. Furthermore, 

in both test cases, the annual profit generated by the tool are closer to the maximum 

possible profit for that respective year when compared to what occurs for the base scenario 

5.1.3 Results for Scenarios with Wind production variations 

Table 5.5 and Table 5.6 present the results for the test cases 3 and 4, respectively. The 

results for test case 3 demonstrate that for scenarios with increased wind generation, the 

tool is effective in correlating the system parameters with the optimal strategy for the BESS 
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and supporting the decision making process of its operator. This is proven by the tool being 

able to generate profits at least 3,9% higher than those of the three static approaches.  

Additionally, the profit generated by its use is closer to the maximum than what occurs for 

the base scenario. 

 
Table 5.5 - Comparison of the profits generated for different cases, considering test case 3 (+20% Wind 

production). 

Case studied Profit [m.u.] Deviation to the tool’s profit [%] 

Applying the tool  39886 - 

Max. Profit (100% Assertiveness) 42789 +7.3 

Strategy A 30498 -23.5 

Strategy B 26125 -34.5 

Strategy C 38348 -3.9 

 
Table 5.6 - Comparison of the profits generated for different cases, considering test case 4 (-20% Wind 

production). 

Case studied Profit [m.u.] Deviation to the tool’s profit [%] 

Applying the tool  40444 - 

Max. Profit (100% Assertiveness) 46685 +15.4 

Strategy A 34645 -14.3 

Strategy B 28000 -30.8 

Strategy C 43330 +7.1 

 

However, for test case 4, the tool’s profitability is reduced when compared to the best 

static alternative (strategy C). The deviation to the maximum profit is also higher relative to 

that of the typical system year. This suggests that the tool's effectiveness varies depending 

on the specific conditions of the system parameters, and that a static bidding approach can 

sometimes yield better results than the employment of the tool. 

5.1.4 Results for Scenarios with Solar PV production variations 

When examining the solar PV variation scenarios (test cases 5 and 6), the tool proves to be 

effective in assisting the BESS operator when there is an increase in PV generation, according 

to the results of Table 5.7. 

 
Table 5.7 - Comparison of the profits generated for different cases, considering Test Case 5 (+20% Solar 

PV production). 

Case Profit [m.u.] Deviation to the tool’s profit [%] 

Applying the tool  38581 - 

Max. Profit (100% Assertiveness) 40592 +5.2 

Strategy A 29931 -22.4 

Strategy B 25710 -33.4 

Strategy C 35919 -6.9 
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Table 5.8 - Comparison of the profits generated for different cases, considering Test Case 6 (-20% Solar 

PV production). 

Case Profit [m.u.] Deviation to the tool’s profit [%] 

Applying the tool  41259 - 

Max. Profit (100% Assertiveness) 47511 +15.2 

Strategy A 36183 -12.3 

Strategy B 29848 -27.7 

Strategy C 45009 +9.1 

 

For test case 5, the tool’s profitability is at least 6,9% higher than that of strategy C, when 

adopted for the entire year, and even higher when compared to the other alternatives. 

Additionally, the annual accumulated profit is also closer to the max than for the Base 

scenario. 

In contrast, the application of the tool for test case 6 led to ineffective results The tool's 

profitability in this scenario was 9.1% lower than that of using a single strategy (strategy C) 

and 15.2% lower than the maximum potential profit. These results are represented in Table 

5.8. 

5.2 Seasonal results for the application of the developed tool 

In this section, the analysis was extended to evaluate the effectiveness of the tool in 

different seasonal clusters, in order to assess how the tool improves the decision-making 

process for the BESS operator during each of these. As seen in section 5.1 , among the three 

static approaches, strategy C yielded the best results; therefore, the effectiveness of the tool 

in assisting the decision-making process was compared to the non-dynamic bidding approach 

while using the moderate strategy 

5.2.1 Seasonal results for the Base Scenario 

In the present subsection, the results of the comparison between the tool and the use of 

strategy C are analyzed. These are shown in Table 5.9, alongside the difference between 

them (in a percentage relative to the tool’s profit), referred to as error. Additionally, the 

prediction errors committed by the tool for the respective seasonal cluster are also shown. 
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Table 5.9 - Comparison between the profit generated by the tool and by the non-dynamic bidding of 

the moderate strategy alongside the tool’s prediction errors, for each cluster - Base Scenario. 

  Cluster 1 Cluster 2 Cluster 3 Cluster 4 

Non-dynamic bidding [m.u.] 11725.1 11142.9 7951.9 9995.0 

Tool’s profit [m.u.] 12567.6 11875.3 6614.0 9995.0 

Error [%] 7.2 6.6 -16.8 0.0 

Prediction errors [%] 20.0 16.7 35.6 0.0 

 

Based on these results, the tool demonstrates a higher profit for the first two clusters of 

the year. However, for cluster 3, the tool’s profit is nearly 17% lower, which coincides with 

the cluster where there are more daily variations in the ranking of the strategies. During days 

of cluster 4, the tool could accurately predict the best strategy for every day of the season;  

however, the best strategy for every day of this season is the moderate one, resulting in no 

improvement in profit. 

Regarding the tool’s assertiveness, it shows the lowest level of accuracy for days of cluster 

3 due to the aforementioned higher variance in the ranking of the most profitable strategy 

that occurs in this season. For clusters 1 and 2, the tool exhibits identical assertivenesses. 

 The profit generated by the tool, when normalized to the max daily profit (obtained by a 

100% accuracy), is illustrated in Figure 5.1  

 

 
Figure 5.1 - Tool's profit normalized to the maximum profit possible for every day of the Base scenario. 
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a) Cluster 1 b) Cluster 2 
 

Figure 5.2 - Histograms for the distribution of the deviations between the tool's profit and the daily 
maximum profit (for seasonal clusters 1 and 2). 

For cluster 3, the application of the tool stands out in terms of its results, as it is in this 

cluster that the larger number of prediction errors occurs. Additionally the tool also exhibits 

the largest variation in its profitability. This can be attributed to the larger variations in input 

parameters within this cluster, which can be justified by the overlap of the highest demand 

period with the peak solar PV production period. This leads to more variations in the market 

prices during the BESS’s most prevalent discharge periods, which in turn causes a higher 

variance in the ranking of the most optimal strategy for each day, as seen in Figure 4.18. 

With a focus on this cluster, the normalized profit generated by the tool concerning the 

maximum daily profit can be observed in Figure 5.3. Figure 5.4 illustrates the distribution of 

the percentual prediction errors committed by the tool. 

 
 

Figure 5.3 - Tool's profit normalized to the maximum profit possible for every day of cluster 3 of the 
Base scenario. 
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Figure 5.4 - Histogram for the distribution of the deviations between the tool's profit and the daily 
maximum profit (for seasonal cluster 3), represented in a percentage of the maximum profit. 

The purpose of the tool is to assist the BESS operator in its decision-making. To vizualize 

its effectiveness in achieving this, the seasonal profit obtained by the operator while using 

the tool is compared to another potential competitor that employs a single bidding strategy 

(strategy C) throughout the entire year. The comparative seasonal results are shown in Table 

5.10, with the one highlighted in bold being the highest for the respective cluster (obviously 

disregarding the max profit). 

 
Table 5.10 - Seasonal profit obtained by the application of the tool, by a single strategy approach, and 

the max profit obtainable, for the Base Scenario. 

Profit [m.u.] 
Cluster 

1 2 3 4 

Max. 12805.1 12168.9 9962.5 9995.0 

Tool 12567.6 11875.3 6614.0 9995.0 

Strategy C 11725.1 11142.9 7951.9 9995.0 

 

The tool demonstrates to be effective in aiding the decision-making process of the BESS 

operator when applied for a full year (as seen in Section 5.1). However, when considering 

each season separately, the effectiveness of the tool is limited to only some clusters (as 

shown in Table 5.10). This limitation can be attributed to one main factor: 

• The lack of daily variations in the ranking of the best strategy in the training 

dataset makes it difficult for the tool to accurately predict them. 

 

However, the small variations across similar days that actually lead to different rankings 

of the most profitable strategy were already more frequent in cluster 3. Therefore, even if 

the tool was trained more adequately, there is already an inherent difficulty in the decision-

making regarding which bidding strategy to use for days belonging to this season. 
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5.2.2 Seasonal results for the load variation scenarios 

The seasonal assertiveness and profitability of the tool was analysed for the load variation 

scenarios corresponding to test cases 1 and 2. The results for these cases are shown in Table 

5.11 and Table 5.12, respectively. 

 
Table 5.11 - Comparison between the profit generated by the tool and by the non-dynamic bidding of 

the moderate strategy, alongside the tool’s prediction errors, for each cluster of test case 1 (+20% 
Load). 

 Cluster 1 Cluster 2 Cluster 3 Cluster 4 

Non-dynamic bidding [m.u.] 12131.5 11554.1 12787.5 9554.6 

Tool’s profit [m.u.] 12131.5 11902.9 12871.2 9610.2 

Error [%] 0.0 3.0 0.7 0.6 

Prediction errors [%] 1.1 27.8 68.9 41.1 

 
Table 5.12 - Comparison between the profit generated by the tool and by the non-dynamic bidding of 

the moderate strategy, alongside the tool’s prediction errors, for each cluster of test case 2 (-20% 
Load). 

 Cluster 1 Cluster 2 Cluster 3 Cluster 4 

Non-dynamic bidding [m.u.] 9711.1 7032.2 261.4 688.8 

Tool’s profit [m.u.] 9711.1 7005.4 1820.4 3456.3 

Error [%] 0.0 -0.4 596.4 401.8 

Prediction errors [%] 0.0 1.1 1.1 11.6 

 

For both test cases, the tool can improve the decision-making regarding the bidding of the 

BESS operator. In test case 1, the tool provides assistance to the BESS operator for all seasons 

of the year, resulting in a slight improvement in profitability compared to the alternative 

strategy. For test case 2, the tool's profit is only slightly lower (0.4%) than the alternative 

strategy for cluster 2. Due to the decrease in load and the reduction in market prices 

observed in this test case, the alternative strategy C (with its moderate risk of non-operation) 

shows a significant decrease in profits for clusters 3 and 4. These results shows the 

effectiveness of the tool in these test cases. 

It must be considered that for clusters 3 and 4, another alternative among the three 

established strategies would be better suited for the BESS operator (as seen in Table 5.13). 

However, in order for a BESS to choose which strategy would be the best to use during each 

season, its operator would require another form of support to the decision making process in 

regard to its bidding (possibly through historical data analysis); this once again justifies the 

existence of a tool that would simplify this process, as the one developed for this dissertation 

aims to. 
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Table 5.13 - Seasonal profit considering the application of the tool, a single strategy approach, and the 
max profit, for test case 1. 

Profit [m.u.] 
Cluster 

1 2 3 4 

Max. 12133.7 12207.7 12993.0 10375.5 

Tool 12131.5 11902.9 12871.2 9610.2 

Strategy A 11518.2 9838.6 12857.2 9052.1 

Strategy B 12131.5 12063.8 12515.4 3658.0 

Strategy C 12131.5 11554.1 12787.5 9554.6 

 
Table 5.14 - Seasonal profit considering the application of the tool, a single strategy approach, and the 

max profit, for test case 2. 

Profit [m.u.] 
Cluster 

1 2 3 4 

Max. 9711.1 7032.2 1909.8 3706.0 

Tool 9711.1 7005.4 1820.4 3456.3 

Strategy A 7076.7 4665.8 1820.4 3706.0 

Strategy B 214.5 287.2 23.1 35.0 

Strategy C 9711.1 7032.2 261.4 688.8 

 

In terms of the assertiveness of the tool, Figure 5.5 and Figure 5.6 show the daily profit of 

the tool when normalized to the max possible daily profit for every day of the year. 

 
Figure 5.5 - Tool's profit normalized to the maximum profit possible for every day of the test case 1. 
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Figure 5.6  - Tool's profit normalized to the maximum profit possible for every day of the test case 2. 

5.2.3 Seasonal results for the wind variation scenarios 

The seasonal assertiveness and profitability of the tool was analysed for the wind variation 

scenarios, which correspond to test cases 3 and 4. 

 
Table 5.15 - Comparison between the profit generated by the tool and by the non-dynamic bidding of 

the moderate strategy alongside, the tool’s prediction errors, for each cluster of test case 3 (+20% wind 
production). 

 Cluster 1 Cluster 2 Cluster 3 Cluster 4 

Non-dynamic bidding [m.u.] 11799.8 11142.9 5526.4 9878.8 

Tool’s profit [m.u.] 12609.8 11720.2 5711.8 9835.4 

Error [%] 6.9 5.2 3.4 -0.4 

Prediction errors [%] 23.3 25.6 33.3 2.1 

 

Table 5.16 - Comparison between the profit generated by the tool and by the non-dynamic bidding of 
the moderate strategy, alongside the tool’s prediction errors, for each cluster of test case 4 (-20% Wind 

production). 

  Cluster 1 Cluster 2 Cluster 3 Cluster 4 

Non-dynamic bidding [m.u.] 11603.0 11134.0 10733.4 9850.3 

Tool’s profit [m.u.] 12134.3 11972.8 6468.4 9850.3 

Error [%] 4.6 7.5 -39.7 0.0 

Prediction errors [%] 43.3 11.1 25.6 0.0 

 

For the wind increase scenario (test case 3), the tool demonstrates a better profitability 

than the alternative for clusters 1, 2 and 3. For cluster 4, its effectiveness is only slightly 

inferior due to predicting a sub-optimal strategy for 2 days of this cluster. 

For test case 4, previously shown to be one of the worst cases for the application of the 

tool, the tool is still able to aid in the decision-making of the BESS operator for 3 out of the 4 
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clusters. Only in cluster 3 does the alternative produce higher profits. However, these errors 

tend to lead to the choice of strategy B as the alternative, which is associated with a high 

risk of non-operation. This leads to prediction errors that significantly impact the profitability 

of the tool, as seen in Figure 5.7 and Figure 5.8. Despite this, the tool still correctly foresees 

the best strategy for almost 75% of the days of this cluster. 

 
Figure 5.7 - Tool's profit normalized to the maximum profit possible for every day of the test case 3. 

 
Figure 5.8 - Tool's profit normalized to the maximum profit possible for every day of the test case 4. 

5.2.4 Seasonal results for the PV variations scenarios 

The effectiveness of the tool is now analysed for test cases 5 and 6, where the solar PV 

production was changed in comparison to the base scenario. Table 5.17 and Table 5.18 show 

the seasonal profit of the tool compared to the alternative. 
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Table 5.17 - Comparison between the profit generated by the tool and by the non-dynamic bidding of 
the moderate strategy alongside the tool’s prediction errors, for each cluster of test case 5 (+20% Solar 

PV production). 

 Cluster 1 Cluster 2 Cluster 3 Cluster 4 

Non-dynamic bidding [m.u.] 11696.0 11153.9 2880.7 10188.1 

Tool’s profit [m.u.] 12509.3 11895.1 4021.5 10154.5 

Error [%] 7.0 6.6 39.6 -0.3 

Prediction errors [%] 25.6 17.8 24.4 1.1 

 
Table 5.18 - Comparison between the profit generated by the tool and by the non-dynamic bidding of 
the moderate strategy alongside the tool’s prediction errors, for each cluster of test case 6 (-20% Solar 

PV production). 

 Cluster 1 Cluster 2 Cluster 3 Cluster 4 

Non-dynamic bidding [m.u.] 11120.5 11134.0 13355.8 9389.6 

Tool’s profit [m.u.] 11894.5 11915.5 8050.6 9389.6 

Error [%] 7.0 7.0 -39.7 0.0 

Prediction errors [%] 21.1 14.4 24.4 0.0 

 

The tool can generate higher seasonal profit for every season of test case 5, except for 

cluster 4, due to a single failed prediction. For test case 6, the tool’s profitability and 

effectiveness follows the same behaviour as they do for test case 4 (subsection 5.2.3). For 

this test case the tool is effective for clusters 1, 2 and 4. However, due to the strong 

variations verified in cluster 3, the tool lowers its profit enough (when compared to the 

alternative strategy C) to no longer be deemed effective in this test case. 

Figure 5.9 and Figure 5.10 show the normalized daily prices for test cases 5 and 6, 

illustrating the variations in the daily profit of each season with the max values for each day 

used as reference. One can see the low profitability of the tool for cluster 3 of test case 6. 

 
Figure 5.9 - Tool's profit normalized to the maximum profit possible for every day of the test case 5. 
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Figure 5.10 - Tool's profit normalized to the maximum profit for every day of the test case 6. 

5.2.5 Summary 

The previous results demonstrate the effectiveness of this predictive method in 

determining the optimal bidding strategy to be used in the DAM. Even if only by a slight 

margin, the tool can correlate the input parameters with the most effective strategy for the 

following day, for a year considered to be typical. This leads to higher profits than the 

alternative, even when considering that the alternative would be the best case scenario 

(moderate strategy). When considering a more risk-taking or risk-averse BESS operator, the 

tool would always be able to guarantee a better profitability, at least when used annually. 

By testing other possible scenarios for the system’s behaviour, a robustness analysis was 

performed, where it was shown that for 4 out of 6 test cases, the tool is able to help in the 

decision-making process regarding the bidding of the BESS operator. 

5.3 Sensitivity analysis of the application of the tool 

In order to make assertions on the impact of each system parameter on the assertiveness 

and profitability of the tool, a sensitivity analysis was conducted. This analysis compared the 

results obtained, identifying which variations in the inputs of the tool would lead to the most 

changes in the results. This allows us to analyze the sensibility of the tool to each of the 

independent system parameters used as inputs. 

The inputs considered for this analysis suffered the same variations as those used for the 

test cases of the previous analysis. That is, each system parameter was affected with an 

increase and decrease of 20% to their base value. 

Table 5.19 shows the impact of each input variation on the assertiveness of the tool 

compared to that obtained by the tool for the base scenario. The aforementioned table also 

presents the deviation between these assertivenesses. 
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Table 5.19 - Sensitivity analysis for the assertiveness of the tool. 

Input Scenario Assertiveness [%] Deviation to base [%] 

Base - 82.19 - 

Load 
+20% 51.2 -37.7 

-20% 16.4 -80.0 

Solar PV Production 
+20% 76.4 -7.0 

-20% 87.1 6.0 

Wind Production 
+20% 74.8 -9.0 

-20% 83.0 1.0 

 

In addition, Table 5.19 shows that the load has the highest impact on the assertiveness of 

the tool, which was expected (but still necessary to be simulated and proven), as the same 

percentual variation affects this parameter the most due to its higher base value when 

compared to the others. In turn, this affects the netload of the system and therefore the 

hourly market price, leading to more divergences in the outcome of the ranking of the most 

profitable strategy for each day (as seen in Table 4.8), which the tool was trained to predict. 

The variance in Solar PV input led to the next most pronounced effect on the assertiveness of 

the tool, followed by variations in the wind production input. 

In terms of the profitability of the tool, the variance in the inputs led to slightly different 

results than the ones for assertiveness, which are shown in Table 5.20. 

 
Table 5.20 - Sensitivity analysis of the profitability of the tool. 

Input Scenario Profit [m.u] Deviation to base [%] 

Base - 41051.91 - 

Load 
+20% 39672.53 -3.4 

-20% 38115.21 -7.2 

Solar PV Production 
+20% 41565.36 1.3 

-20% 38278.41 -6.8 

Wind Production 
+20% 41285.09 0.6 

-20% 39457.26 -3.9 

 

Table 5.20 shows that the profit obtained by the tool is most sensitive to the increase in 

the load input, followed by the decrease in solar PV production with similar results. However, 

when taking into consideration both the effect of increasing and decreasing the input value, 

the ranking of sensibilities is the same as for the assertiveness of the tool. The tool is more 
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sensitive to wind production, solar PV production and load inputs, when ordered from least to 

most impactful. 

Table 5.21 resumes this analysis by illustrating the absolute percentual deviation that the 

increase and decrease of 20% in each input parameter leads to for both the assertiveness and 

profitability of the tool. It is relevant to say that, although these input variations always 

affect the trained predictability capacities of the tool, the impact of these variations is not 

always negative. This occurs as a wrong prediction when it comes to the trained output of the 

tool may lead to a correct prediction in the actual day-ahead market operation leading to 

higher assertivenesses and profits for the tool. 

 
Table 5.21 - Absolute deviation of the tool's assertiveness and profitability for each input scenario. 

Input Scenario 

Absolute Deviation to Base Scenario 

Assertiveness 

[%] 

Profitability 

[%] 

Load 
+20% 37.7 3.4 

-20% 80.0 7.2 

Solar PV Production 
+20% 7.0 1.3 

-20% 6.0 6.8 

Wind Production 
+20% 9.0 0.6 

-20% 1.0 3.9 

5.4 Summary of the results 

The main conclusions regarding the effectiveness of the tool can be ascertained based on 

the results resumed in Table 5.22 for the 7 scenarios analysed previously. 

 
Table 5.22 - Results regarding the use of the predictive tool for every test case 

Test 
Case. 

Variation relative to 
the Base scenario Assertiveness 

[%] 
max profit 

[m.u.] 

tool 
profit 
[m.u.] 

Profitability 
[%] 

Load 
Wind 
Gen. 

Solar 
Gen. 

Base - - - 82.2 44922.6 41051.9 91.4 

1 +20% - - 64.9 47704.5 46501.4 97.5 

2 -20% - - 96.4 22332.1 21966.2 98.4 

3 - - +20% 79.5 42789.0 39886.3 93.2 

4 - - -20% 80.5 46685.1 40443.8 86.6 

5 - +20% - 83.0 40591.9 38580.5 95.0 

6 - -20% - 
85.2 47511.4 41259.3 86.8 

        

The assertiveness of the tool is primarily affected by variations in the load, followed by 

variations in PV production and then wind generation. This corresponds to how much each 
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variable affects the operating schedule of the battery, and thus the variability in the ranking 

of the best bidding strategy to be submitted to the DAM, as seen in Table 4.7. 

After testing the tool in a typical system scenario, and conducting a robustness analysis for 

other 6 test scenarios, the efficiency of the tool in assisting the BESS operator in its bidding 

process for the day ahead market is proven . This implies that the tool is able to find a 

correlation between the optimal bidding strategy for the following day and the system 

parameters used as inputs. However, the tool is not very effective in predicting the daily 

variations in the ranking of the most profitable strategy when these occur frequently (as is 

the case for Cluster 3). This is attributed to the development of the system scenarios and the 

establishment of the bidding strategies.  

Despite this, the tool is still able to increase the profitability of the BESS operator for the 

majority of the seasons in the cases tested throughout this chapter, demonstrating its 

efficiency in supporting the decision making process concerning the bidding of the BESS to 

the DAM in both an annual and seasonal timeframe. 
 



 

 

Chapter 6  

Main findings 

This chapter contains the main conclusions drawn during the development of this work. An 

analysis of the simulation results and the application of the predictive model is conducted, 

and the key findings are discussed. Some considerations regarding the results obtained and 

their interpretation are also provided. Additionally, the main contributions of this 

dissertation are highlighted, and some proposals for potential future developments related to 

this work are outlined. 

6.1 Conclusions 

The drive for carbon neutrality across the major world power grids is increasing the 

challenge of balancing the energy supply and demand, mainly due to the intermittent nature 

of RES. To mitigate these imbalances and to aid the integration of RES in the grid, the need 

for flexibility in the grid has been rising in recent years. BESSs offer a potential solution to 

this due to their capacity to both store excess energy and inject it into the grid when needed. 

A BESS operator can potentially profit through the provision of flexibility by charging during 

off-peak periods and discharging during peak periods in a process called energy arbitrage. 

Although currently unprofitable, declining battery costs and the growing need for flexibility is 

expected to change this paradigm, which implies that decision-making models for optimizing 

a BESS profit generation will become prevalent in the near future. 

To this end, this dissertation was focused on developing a predictive model to support the 

decision-making process of a BESS operator, by evaluating and forecasting the most profitable 

bidding strategy to be submitted to the DAM. This model correlates forecasted or historical 

system data, available to the BESS operator, with the most profitable strategy among the 

three established. In this context, the work developed in this dissertation can be divided into 

two parts. The first was dedicated to the establishment of the bidding strategies and system 
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scenarios considered during each simulation, which culminate in the development of a case 

study for the application of the tool. The second part of this work was focused on the 

development of the tool based on the parameters of the established case study, its 

application and the subsequent analysis of its results. This analysis mainly concerns the 

impact of the tool on the decision-making process of a BESS operator regarding its bidding to 

the DAM, considering both its assertiveness and profitability. 

The development of the predictive tool involved establishing three bidding strategies with 

different approaches to their bidding (conservative, moderate and aggressive) and evaluating 

their profitability by conducting simulations of the day-ahead energy market. These 

simulations considered different scenarios for the system’s demand and RES generation. 

These scenarios were all based on a single system scenario considered to represent the 

typical behaviour of each parameter for an entire year, and were created by applying 

percentual variations to each of the system’s parameters or a combination of them. The 

predictive tool, based on an ANN, was trained using the results of the simulations to correlate 

the system parameters of each established scenario with the operating schedule of the BESS 

that results from the adoption of the most profitable strategy. 

The analysis of the results of each simulation, conducted in the first part of this 

dissertation, revealed that the operating schedule of a BESS is affected by both seasonal and 

daily variations in the hourly DAM prices. These prices are dependent on the system's residual 

load, which is determined by the demand and RES generation (wind and solar PV). More 

importantly, the simulation results allowed to assert that the profitability of energy arbitrage 

for each bidding strategy is affected by the combination of the battery's operating schedule 

and the DAM market prices. Therefore, the ranking of these bidding strategies in terms of 

most profitable is also influenced by the variations in the system parameters. Based on this, 

it can be concluded that the demand and RES production are good explanatory variables for 

the prediction of the most profitable strategy for the future, and therefore are suitable to be 

used as input parameters for a predictive tool. 

The second part of the analysis addressed the results obtained by the application of the 

tool in some test scenarios. These results allowed to draw some conclusions regarding the 

effectiveness of the tool in supporting the decision-making of a BESS operator. To achieve 

this, the profitability of a BESS operator that relied on the results of the tool to dictate its 

bidding for the DAM was compared to the profitability of the same operator using the same 

bidding strategy across the entirety of the analyzed time frame. The analysis was conducted 

both on an annual basis and seasonal basis, allowing for conclusions to be drawn regarding 

the tool's effectiveness in different time frames. The annual analysis results allowed to affirm 

that for a system scenario deemed as typical, the tool was able to slightly improve (0.6%) the 

profitability of the BESS operator, when compared to the best-case scenario for an operator 

that relied on a static bidding strategy for the whole year. The profit margins for the tool 
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when compared to a more conservative or a more aggressive strategy are much more 

significant (19.2% and 35.5% for the conservative and aggressive strategies, respectively). To 

test the robustness of the tool, six extreme system scenarios were used as test cases for the 

application of the tool. For these cases, the tool’s usage was proven effective except for the 

scenarios where the RES generation of the system was decreased. 

The results of the seasonal analysis allow concluding that for a typical system year, the 

application of the tool improved the profitability of a BESS operator for the spring and 

autumn seasons. For these seasons, the tool was capable of generating at least 6.6% more 

revenue than if the BESS operator adopted a moderate bidding approach for the whole 

season. When considering all the test cases for the atypical scenarios, the tool also showed 

consistency in improving the profitability of the battery’s operator in relation to the 

benchmark profit (sole use of the moderate strategy). 

For the summer season, which for this study case was the season where the daily 

variations most impacted the rank of the best bidding strategy, the tool was shown to be 

ineffective. For this season, the profitability of the tool was 17% lower than the benchmark 

profit. When considering the rest of the test cases, the tool was only effective for this season 

when the system’s netload suffered a decrease, which can be attributed to the reduction in 

the profitability of the moderate strategy and not to the improvement of the tool’s 

prediction capabilities. This can be clearly seen in the solar PV variation scenarios, where the 

tool commits the same number of prediction errors but its profitability shows both a large 

increase and a large decrease when compared with the profit of the static bidding approach. 

This allows concluding that the tool was ill-prepared to deal with a higher degree of 

variations in the rank of most profitable strategy for days within the same season. 

For the winter season, the results implied that the moderate strategy was the optimal 

strategy for every day of this season (except for the test scenario with an increase in the 

system’s load). The results of the application of the tool led to an almost perfect 

assertiveness in the prediction of the most profitable strategy for the following day, when 

considering the majority of the test cases. This implies that the tool is capable of accurately 

correlating the seasonal characteristics of its input parameters with its expected outputs 

when there are few variations of the most profitable bidding strategy ranking for days 

belonging to the same season. 

The sensitivity analysis conducted revealed that the system's load had the greatest impact 

on both the tool's assertiveness and profitability, followed by solar PV and wind production. 

This implies that for a BESS operator relying on the proposed tool, the most crucial parameter 

is the accurate forecast of the system's demand. Therefore, investing in improving data 

gathering capabilities to enhance the reliability of demand forecasts should be prioritized to 

overall improve the tool's effectiveness in supporting the decision-making process for the 

BESS operator. 
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An important conclusion reached during the development of this dissertation is that, 

according to the results obtained, the forecast of the system’s demand and RES generation 

are suitable explanatory variables for a predictive model aiming to predict the optimal 

operating behaviour of a BESS for the following day. This can be applied to future 

developments in this area regardless of the specifications of the prediction model. However, 

the most important contribution of this dissertation is the development of a predictive model 

capable of correlating system data (available to a BESS operator) to the most profitable 

strategy for the following day. Despite the occurrence of some prediction errors associated 

with its application, which are to be expected due to its nature, this tool is able to increase 

the profitability of a BESS’s participation in the DAM compared to one that disregards the 

decision-making associated with the bidding process. 

Overall, the tool demonstrates that it is capable of supporting and improving the decision-

making of the BESS operator regarding its bidding process. This serves as the proof of concept 

for the methodology used in the development of the presented tool, which can be adapted to 

be applied to similar systems, considering different bidding strategies and a growing number 

of them. By relying on the tool, a private BESS operator can increase its profitability (in some 

cases by a significant margin) when performing energy arbitrage in the DAM. In the near 

future, assuming a continuous decline in battery costs, this will prove to be a significant 

advantage over other competitors that do not use decision-making support models such as the 

one developed in this dissertation. 

6.2 Future Work 

While realizing the work developed for this dissertation, and after acquiring their results, 

some topics seemed relevant to be considered during future research. These include: 

• Consideration of the use of other available data to use as inputs of the predictive 

model for the optimal bidding strategy parameters, as well as considering an 

increased number of bidding strategies; 

• Development of a tool that, despite using the same type of approach as the one 

developed in this dissertation could be used to adjust the specific bids submitted. 

This could be done by using targets other than the decision variables for the BESS 

operation; 

• The consideration of the participation of the BESS in other markets. This should 

involve the development of more complex bidding strategies; 

• Reformulation of the objective function to include multiple criteria, such as the 

life cycle of the BESS. This would add a layer of complexity to the problem, as 

the high profitability of a certain strategy may not justify its use when 

considering its effect on battery degradation. 
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• The reformulation of the strategy classifier component of the tool to be able to 

consider different cases. Future work could explore alternative approaches, such 

as using another neural network to correlate the outputs of the initial ANN with 

the most suitable strategy for the BESS operator  
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