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Abstract

Robot Learning is one of the most important areas in robotics and its relevance has only increased
in more recent years. The Robot Operating System (ROS) has been one of the most used archi-
tectures as it allows to either program and control physical robots or to create and run equivalent
simulations. Using ROS is not a simple task and is especially complicated for new developers. In
addition to the high entry level, the first version of ROS (ROS 1) is reaching its end-of-life and a
lot of users are yet to make the transition to the new version (ROS 2).

When combined with Robotics, Machine Learning (ML) originates the field of Robot Learning
with Reinforcement Learning (RL) being the most popular strategy used to train robots to perform
tasks. Although RL is presented in a lot of teaching scenarios, it is rarely taught in conjunction
with robotics. Applying RL to Robotics is not necessarily an intuitive process and there is value
in learning the two topics together. All these factors result in a large demand for tools to aid users
when trying to have all these technologies working concurrently.

This dissertation aims to develop a learning kit that can be used to teach Robot Learning in
different educational scenarios and for students with different levels of education and expertise in
topics related to Robotics. As physical robots are usually too expensive to be used for educational
purposes, the kit created works entirely in simulated scenarios and only uses open-source free
software. All examples provided use Flatland, a lightweight two-dimensional simulator, and are
compatible with ROS 2. The kit also contains several tutorials that start by introducing the user
to the simulation environment and teaching basic robot controls. From that, they move to more
complex concepts, such as using RL to train the robot to perform more complex tasks. The kit will
have a large relevance in this field since it teaches the user how to apply RL in Robotic applications
while also focusing on ROS 2, to which there is a lack of similar offers available on the market.

Since the examples shown in the tutorials involve mostly path planning tasks, some initial
work was done to study the viability of using RL for this problem. This work not only showed
that it was a viable option, but it also contributed to many decisions made when creating the kit’s
framework. This dissertation will also present the methodology and results of this work.

To evaluate how the kit performs in real scenarios, user tests were conducted to better un-
derstand its applicability. Once the kit was ready to be tested, several subjects with different
experience levels in Robotics were asked to follow the tutorials. After finishing them, they were
asked to fill out a form with their experience, providing both quantitative and qualitative feedback,
and also to answer a short quiz about the topics covered. The results gathered show very positive
feedback, with almost all the tested subjects agreeing that the kit provided a productive learning
experience.
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Resumo

O Robot Learning é uma das áreas mais importantes da robótica e sua relevância tem aumentado
nos últimos anos. O Robot Operating System (ROS) tem sido uma das arquiteturas mais utilizadas,
pois permite programar e controlar robôs físicos ou criar e executar simulações equivalentes. Usar
ROS não é uma tarefa simples e é especialmente complicado para novos utilizadores. Além do
alto nível de entrada, a primeira versão do ROS (ROS 1) está a chegar ao seu fim de vida e muitos
utilizadores ainda não fizeram a transição para a nova versão (ROS 2).

Quando combinado com Robótica, Machine Learning(ML) origina a área de Robot Learning
sendo Reinforcement Learning (RL) a estratégia mais popular para treinar robôs. Embora RL
esteja inserido em muitos cenários de ensino, raramente é ensinado em conjunto com a robótica.
Aplicar RL à Robótica não é necessariamente um processo intuitivo e é vantajoso aprender os dois
tópicos juntos. Todos esses fatores resultam numa grande procura por ferramentas para auxiliar
utilizadores a tentar colocar todas estas tecnologias a funcionar simultaneamente.

Esta dissertação tem como objetivo desenvolver um kit de aprendizagem que possa ser uti-
lizado para ensinar Robot Learning em diferentes cenários educacionais e a alunos com diferentes
níveis de escolaridade e especialização em temas relacionados com Robótica. Como robôs físicos
costumam ser demasiado caros para serem usados para fins educacionais, o kit criado funciona
inteiramente em cenários simulados e utiliza apenas software gratuito e open-souce. Todos os ex-
emplos fornecidos usam Flatland, um simulador bidimensional eficiente, e são compatíveis com
ROS 2. O kit também contém vários tutoriais que começam por introduzir o utilizador ao am-
biente de simulação e aos controlos básicos do robô. A partir daí, passam para conceitos mais
complexos, como usar RL para ensinar o robô a executar tarefas mais complexas. O kit terá uma
grande relevância nesta área, pois ensina utilisadores a aplicar RL em aplicações Robóticas, além
de se focar em utilizar ROS 2, para o qual faltam ofertas semelhantes disponíveis no mercado.

Como os exemplos mostrados nos tutoriais envolvem principalmente tarefas de planear tra-
jetórias (path planing), algum trabalho inicial foi feito para estudar a viabilidade de usar RL para
este problema. Esse trabalho não só mostrou que era uma opção viável, como também contribuiu
para muitas das decisões tomadas na hora de criar a estrutura do kit. Esta dissertação também apre-
sentará a metodologia e os resultados deste trabalho. Para avaliar o desempenho do kit em cenários
reais, foram realizados testes com utilizadores para entender melhor sua aplicabilidade. Com o kit
pronto para ser testado, vários voluntários com diferentes níveis de experiência em Robótica foram
convidados a seguir os tutoriais. Após a finalização, foi-lhes pedido a preenchessem um formulário
sobre sua experiência, fornecendo feedback quantitativo e qualitativo, e também que respondessem
a um pequeno questionário sobre os tópicos abordados. Os resultados obtidos mostram um feed-
back muito positivo, com quase todos os voluntários testados a concordarem que o kit propor-
cionou uma experiência de aprendizagem produtiva.

Keywords: ROS, Aprendizagem Robótica, Robótica Educacional
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“You don’t have to see the whole staircase,
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Chapter 1

Introduction

This first chapter will introduce the work developed in this dissertation. It starts by providing some

context in the field of Educational Robotics which explains the motivations behind this project. It

will also briefly present the work developed as well as propose relevant research questions.

1.1 Context

As technology around it develops, the field of Robotics is becoming an ever-growing part of the

daily life of human beings. There is also an increasing need for robots to become as autonomous as

possible, which means this field is often paired with Artificial Intelligence (AI), creating the field

of Intelligent Robotics (IR). IR already has a lot of applications in modern society, ranging from

simple robots used as children’s toys or learning tools to machines with very practical purposes,

such as domestic appliances or even industrial robots. With the growing number of applications

for it, a larger amount of qualified developers in this field is required, increasing the demand for

tools to aid its learning.

Throughout the years of the existence of the field of Robotics, several frameworks were created

to develop applications but, in the past decades, the most popular has been the Robot Operating

System (ROS). ROS is a Software Development Kit (SDK) originally idealized in 2007 at the

Stanford Artificial Intelligence Lab that was later acquired by Google [46]. Despite presenting a

lot of advantages, it also suffers from a major issue: it presents a hard learning curve for new users.

The first version of ROS (ROS 1) was released in 2010 and its latest and last distribution (ROS

Noetic) will have its end-of-life by 2025. The replacement is ROS 2 which had its first non-Beta

release in 2017 and offers improvements in multiple areas, among them being compatibility and

security [12].

1.2 Motivation

ROS is currently going through a transitional period as most ROS 1 users are yet to start using

ROS 2 and migrate their current projects. Learning ROS 1 is not a prerequisite to learning ROS

1
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2, meaning that new users should also start with the most recent version since the transition is

inevitable. One of the problems that are delaying this change is the lack of tutorials and courses

available for ROS 2.

In Robotics, simulations are often used to be able to perform experiments without the cost of

producing the actual robot. However, the ultimate goal in Robotics is usually to create physical

machines that are capable of performing tasks in the real world. This means that there is a lot of

value in using simulations and real robots in parallel when teaching Robotics. The issue is that the

high costs of physical robots make their usage almost impossible in most teaching scenarios.

AI can be applied to robots using several different strategies. One of the most popular ones

is Reinforcement Learning (RL). There is a limited amount of tutorials to help new learners use

RL for Robotics, which becomes even more scarce when looking for information when using it

paired with ROS. All these shortcomings in the current market paired with the increasing demand

for tools to teach IR, originated an interest in creating a teaching tool that encapsulates all the

mentioned technologies. It is intended to focus on using ROS 2 to apply RL in a simulated envi-

ronment providing a solid introduction to IR with many concepts that can also be applied in real

robots

1.3 Objectives

This dissertation aims to develop and evaluate a kit that can be used to teach RL in conjunction

with Robotics using ROS as the base. To achieve this goal, it provides a framework that combines

several components and as well as relevant examples in a simulated environment. The kit will

contain:

• A simulation framework with a simple differential drive robot model and several maps and

scenarios. As the robot is only able to move across a horizontal plane, it is possible to use a

2D simulation. By removing one of the axes, the simulation becomes more lightweight and

a lot simpler to understand. The simulator chosen for this kit is the Flatland Simulator 1.

• A set of tutorials on how to control the robot using ROS 2. The first tutorial will serve as

an introduction to the framework and the following tutorials show the user how to apply RL

algorithms to teach the robot how to perform a task.

Since the simulator used is 2D, there are some limitations on what type of tasks the robots can

perform. This is relevant as it was necessary to decide what the RL agent would try to learn in the

tutorials. The final decision was to use path planning as the main task to be explored in the kit.

Seeing that a two axes configuration can represent grounded robots moving in a horizontal plane,

using a 2D simulation does not present many issues. In addition to that, path planning is visually

intuitive while also being very relevant in modern-day Robotics with many applications [44].

1https://github.com/avidbots/flatland

https://github.com/avidbots/flatland
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To help ensure the success of the RL algorithms in the tutorials, some initial work was done to

test the viability of using it to tackle path planning in a Flatland and ROS 2 simulation. This work

consisted of placing robots in several different scenarios and having them attempt to learn how

to navigate to a target area. The first part targeted using just one robot with the second evolving

into using two traveling side by side. To maintain an approach that considers real-life scenarios,

the second part of this work re-envisioned the problem from the perspective of using Intelligent

Wheelchairs (IW) instead of abstract robots. Although the setup is very similar since an IW is

very similar to a differential drive robot in the context of a 2D simulation, this approach requires

several other considerations that relate to the real-life application. In some scenarios during this

work, the Artificial Potential Fields (APF) [65] algorithm was used as a baseline of comparison

for RL.

The goal for the kit developed is to provide simple and replicable tutorials that can be followed

by users with different levels of expertise in topics related to Robotics and RL. To validate the kit

created, user tests were performed and, after collecting relevant metrics, an evaluation was made.

This kit has a similar approach as the one developed by Ventuzelos et al.[62]. It shares a lot

of the framework since it also uses Flatland and ROS 2 to teach Robot Learning but also focuses

on ROS 1 and using a real robot. This meant there was a broad focus and the tutorials did not go

into much detail. The main difference between the kit proposed by Ventuzelos et al. from the one

being presented in this paper is that by focusing only on Robot Learning with ROS 2 and Flatland,

the tutorials in this kit go into much more depth in each of the components of its framework.

This work also uses different RL frameworks and resources as well as being able to use Flatland

directly with ROS 2, without needing the ROS 1 bridge 2.

1.4 Research questions

The research questions that this dissertation will attempt to address are:

2https://github.com/ros2/ros1_bridge

https://github.com/ros2/ros1_bridge
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RQ1 Is it possible to create tutorials about current day IR, namely ROS 2 and RL, that can

be followed by users with different levels of previous knowledge on the topics? As the

kit is meant to be used in different stages of education, the tutorials should be simple

enough to be used by students with less knowledge of the explored topics while still

having valuable content for more experienced users.

RQ2 Can users learn about IR, namely ROS 2 and RL, autonomously? The kit aims to have

its users learn on their own with the support of tutorials and other online resources.

The problem is that there could be a lot of value gained in teaching IR with in-person

lessons so it is important to determine what are the advantages and disadvantages of the

autonomous approach.

RQ3 Can a learning kit that combines Robotics, ROS 2 and RL be effective in teaching all

the topics at once? Despite being strongly connected, all these topics can be taught

individually. There could be advantages in teaching everything in parallel but it could

also be the case that the amount of information is too excessive for users to learn simul-

taneously.

1.5 Document structure

The rest of the document will start by exploring the literature relative to all the different tools that

will be used in the kit in Chapter 2. Chapters 3 and 4 will present the initial work done to study

the viability of using RL in path planning inside a simulation. Chapter 5 will demonstrate how the

learning kit was developed and tested. Finally, Chapter 6 will present the conclusions and possible

future work for this dissertation.

All the tutorials and examples developed for the kit are available in Appendices A.1, A.2,

A.3, A.4 and A.5, as well as a slideshow created to explain a method to manage Flatland layers in

Appendix A.6. The form used in the user tests is also available in Appendix B.1 followed by a quiz

that all subjects answered in Appendix B.2. All the answers to both the form and the quiz by each

subject are in Appendix B.3. To help better understand the results provided by this dissertation, a

repository 3 was setup with several videos of experiments done in the various parts of this work.

Three articles originated from this dissertation. The first one corresponds to the work presented in

Chapter 3 and was already published in the IEEE International Conference on Autonomous Robot

Systems and Competitions (ICARSC) 2023 [27] 4. The second is a journal article that corresponds

to the work presented in Chapter 4 and is ready to be submitted to a journal yet to be decided. The

final article is based on the work presented in Chapter 5 and was already submitted to the Robot

2023 conference 5.

3https://github.com/FilipeAlmeidaFEUP/dissertation_videos/
4https://www.icarsc.pt/
5https://robot2023.isr.uc.pt/

https://github.com/FilipeAlmeidaFEUP/dissertation_videos/
https://www.icarsc.pt/
https://robot2023.isr.uc.pt/


Chapter 2

Teaching Robot Learning

Before the development of the learning kit, a thorough literature review was conducted to better

understand how IR is taught in the present day. This chapter presents that review and is divided

into several sections, each one tackling a different subject relevant to this dissertation.

2.1 Robot Learning

Robot Learning is a field that combines Machine Learning (ML), a subset of AI, with Robotics.

ML is used to allow computers to learn how to perform a task without human intervention and be

able to adapt to their environment [2]. The difference between ML to Robot Learning is applying

the concept specifically to robots instead of generalizing it to computers.

ML has three main paradigms: Supervised Learning (SL), Unsupervised Learning (UL) and

Reinforcement Learning (RL). SL requires a data set that indicates what the correct outputs are

for certain inputs. This allows an agent to learn by example and figure out the patterns that allow

the mapping between the inputs to their correct output. In UL, despite also relying on a pre-

existing data set, there are no labels in it, meaning that the computer is tasked with identifying the

best outputs by itself by recognizing patterns in the existing data. RL has the particularity of not

requiring any prior knowledge by learning while performing the desired task. The agent learns by

experimenting, trying all the solutions, and, over time, starts learning what outputs produce the

best results for each input [2]. Each of these paradigms has its advantages and its effectiveness

depends mainly on the type of task to be learned.

In Robot Learning, the inputs and outputs require a more specific definition. Since the agent

represents the robot itself, the input is usually the perception that the robot has of the environment

it is inserted in, given by the sensors it contains. The output is an action the robot can perform

by using its actuators, with a well-defined beginning and end. Obtaining a trustworthy data set

for the inputs a certain robot is going to encounter before it starts performing the task is usually

not feasible. In Robotics there are a lot of factors that influence the environment, making it hard

to replicate scenarios. This means that data sets produced by other experiments are usually not

reusable. The only reliable data comes from inserting the robot in the specific scenario it is going

5
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to train. These reasons make both SL and UL less adequate to be used with Robot Learning. In

comparison, RL does not require any prior data and the inputs appear while performing the task.

This creates a scenario where there is an autonomous, adaptable and continuous acquisition of

knowledge as the different states of the environment are presented to the agent. For that reason,

Robot learning is very closely related to RL which is why the kit to be developed will use this

paradigm of ML 1.

2.2 Problems of using Reinforcement Learning in Robotics

RL presents several advantages when applied in Robotics. The fact that no prior data is necessary,

its adaptability to the environment and the ability to learn without human intervention allows the

agent to discover solutions for very complex tasks. Despite being one of the best paradigms to use

in Robot Learning, it also has some disadvantages that become very evident in certain scenarios.

One of the main issues in RL is the time and resources it usually requires to reach an acceptable

solution. Although it also contributes to the ability to eventually perform intricate tasks, the large

number of repetitions required by RL algorithms to train the agent can be an obstacle to its usage

as projects typically have limited time and computational resources. Robotics simulations can

frequently accelerate time to help circumvent this issue but physical robots do not offer a lot of

possible options to speed up the process.

When creating a RL model, the first version is very unlikely to immediately produce the de-

sired result. There is never a guarantee that the agent will be able to converge to a solution at all as

it is possible that it does not find any patterns that allow it to do so [41]. This means that the model

will need to be experimented with several versions and, due to its unpredictability, RL normally

requires a lot of trial and error. The fact that, even for minor changes in the model, the process of

learning has to usually be restarted, only exacerbates the concerns about the excessive time.

A problem related to ML in general is over-fitting the model, happening when the model

learns to specifically for the data used in training and is not effective for scenarios that present

a slightly different problem. This issue has also been detected in RL [72]. Another problem

that seems to occur when over-training in RL is Catastrophic Forgetting which happens when

the algorithm starts using a solution and small changes to incorporate new data end up affecting

the entire network and disrupt the patterns already learned [7]. The over-training risks create

the necessity to define good stopping criteria for the training process, which is often not easy to

accomplish.

2.3 Reinforcement Learning Algorithms

RL is a paradigm of ML and, by itself, it can not be used in a practical scenario. To create a

model that can actually learn, a well-defined way to map the effectiveness of each output for the

different inputs and how to update them over training is required. This idea is known as a policy.

1https://en.wikipedia.org/wiki/Robot_learning

https://en.wikipedia.org/wiki/Robot_learning
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Throughout the years, several algorithms with different policies were developed and each one

presents its own concrete definition of RL. In the past years, most new algorithms being presented

make use of Neural Networks (NN) and are part of a subset of RL called Deep RL (DRL) [28].

Despite all having distinct approaches, all RL algorithms share the same paradigm, meaning

that there is a lot in common between them [47]. Some fundamental concepts in all RL algorithms

are:

• State - A set of numerical values that represent the environment at a given point in time. The

state serves as the input for the algorithm.

• Action - A set of numerical values that represent an action that the agent can perform.

It serves as the output and is decided based on the previous state. Performing an action

typically changes the state of the environment.

• Reward - For each pair state-action the agent uses, a reward can be calculated. The reward

can be based on any information available, including the states immediately before and after

performing the action and even on the chosen action itself. The reward is how the algorithm

labels pair state-action as a positive or negative decision. The larger the reward, the better

the action was for the state.

• Step - Is the name given to the process of choosing an action to the given state, performing

the action, reading the new state and attributing a reward for the pair state-action. The step

needs to have a well-defined beginning and end but different actions may take different times

to complete so the time each step takes can be variable.

• Episode - Is defined by all the steps taken between an initial state and an end state. The

initial and end states are defined by the model and depend on the environment and the agent

and the task to be performed. When an end state is reached, no actions can be executed, so

the agent needs to be reset to an initial state.

When applying a RL algorithm to a robot, some adaptations need to be considered. The

input can only be read by the robot’s sensors, which means that the state has to be described by its

readings instead of having an omnipresent knowledge of the environment. RL algorithms require a

discrete model to fit the state-action pattern but the environment that robots exist in is a continuous

one. In theory, it should be necessary to translate the continuous environment to a discrete one.

In reality, this is already done because, in the current computation architecture, it is not possible

to truly represent a continuous system. Every component is dependent on update rates, from the

processor to the robot sensors and actuators, in either simulation or reality. Pseudo-continuous

systems are created with very high update rates. The only adaptation that needs to be made is to

coordinate the updates of all components to read or write values at the correct timings.

The rest of this Section will briefly present several of the most relevant RL algorithms and

describe some advantages and disadvantages in their usage.
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2.3.1 Q-Learning

The Q-Learning algorithm is one of the simplest forms to implement RL. For each pair of a state

and a possible next action, a Q-value is recorded (Q(S,A)), which determines how good the action

is for that state. All the Q-values are stored in a data structure that is known as the Q-table [66].

As the agent learns by executing actions, the Q-values are updated based on the Bellman Equation

(2.1). In the equation, α is the learning rate, R(S,A) is the reward for the pair state-action, γ is the

discount rate and MaxQ’(S’,A’) is the maximum expected future reward.

NewQ(S,A) = Q(S,A)+α
[
R(S,A)+ γMaxQ′(S′,A′)−Q(S,A)

]
(2.1)

Q-Learning is an algorithm very simple to understand and implement that is capable of, in

the right circumstances, reaching an optimal solution. It is model-free, meaning that it does not

require a model of the environment to learn. Its simplicity is also a disadvantage, as one of the

major limitations it has is that it can only work with discrete and finite state and action spaces.

2.3.2 Deep Q-Network

Deep Q-Networks (DQN) are essentially an improvement on Q-Learning by taking advantage of

Neural Networks NN. Instead of creating the Q-table, DQN use a NN to store the data, where

states are mapped to pairs of action and Q-value. Depending on the environment, the NN has to

be shaped in a way that allows the state to be used as the input and each output node represents

an action. Similar to Q-Learning, the Q-values on the NN are updated in training by using the

Bellman Equation (2.1) [35].

Unlike Q-Learning, DQNs allow for the input to contain continuous values. In simpler sce-

narios, training a NN might not be more efficient than using a Q-table but, the more complex the

problem is, the more using continuous values can simplify the environment state, allowing DQNs

to converge faster. Despite this improvement, the output space still only allows for discrete values.

Another problem for DQNs is their difficulty to train for planning for temporally extended goals

[4], only focusing on going from an initial state to a desired final state.

2.3.3 State–action–reward–state–action

When Q-learning calculates a new Q-value, it takes into consideration the action taken, the re-

ward, the initial and final states, and the best possible action that can be taken in the new state.

The State–action–reward–state–action (SARSA) is different because it considers all the possible

actions that can be performed in the new state by modifying the Bellman Equation (2.2). By using

a random instead of the best Q-value of the new state, the algorithm will become more conservative

while training, by taking paths that are less prone to cause negative rewards [49].

NewQ(S,A) = Q(S,A)+α
[
R(S,A)+ γQ′(S′,A′)−Q(S,A)

]
(2.2)
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When there is a large negative reward near the best possible path, the fact that it takes more

risks means that Q-Learning (optimal policy) will reach the optimal solution faster. On the other

hand, SARSA (near-optimal policy) is more capable of avoiding large penalties, making it a better

alternative if those mistakes can cause issues (ex: damaging a real robot). Another advantage with

SARSA is that it is usually more stable than Q-Learning and often has an easier time converging.

2.3.4 Proximal Policy Optimization

The Proximal Policy Optimization (PPO) is based on Policy Gradient methods. Instead of record-

ing Q-Values, Policy Gradient methods try to optimize parameterized policies related to the ex-

pected return by gradient descent. The issue with this method is its high sensitivity to hyper-

parameter tuning. PPO attempts to resolve this problem by striking a balance between ease of

implementation, sample complexity, and ease of tuning, trying to compute an update at each step

that minimizes the cost function while ensuring the deviation from the previous policy is relatively

small 2. The general idea is to avoid the current policy changing too much compared to the old

one [52].

The main advantage it has compared to previous Policy Gradient methods is the improvement

in the stability of the policy during training. PPO is one of the most effective RL algorithms to date

but several other Policy Gradient algorithms have been developed such as the Deep Deterministic

Policy Gradient (DDPG) [29] or the Trust Region Policy Optimization (TRPO) [51].

2.3.5 Reinforcement Learning Frameworks

When it comes to tools for AI, Python is the programming language that offers more options. For

RL in particular, the Gym3 package offers a simple interface capable of representing environments

to be used by RL agents. This package can be used in combination with other packages that

provide the algorithms. Some of those packages include the Keras-RL4 or the Stable-Baselines3 5

that provide several of the most popular RL algorithms such as DQN, PPO or DDPG.

2.4 Path Planning using Reinforcement Learning

There is already a considerable body of research on the use of RL for mobile robot navigation, in

order to get the agent to move from a source to a target position in an environment with obstacles

[58, 68, 71, 40, 8, 48, 62, 63, 69, 75]. The most common RL algorithms used are DRL techniques,

including DQN [68, 71, 48, 63, 69, 75], SAC [8, 69], PPO [40] and DDPG [58].

For the RL algorithms’ state space, many approaches use the readings from a Light Detection

and Ranging (LiDAR) sensor [58, 48, 62, 63]. These approaches do not use all the rays from

the LiDAR to avoid overly large state spaces (which slow down the training process), but instead

2https://openai.com/blog/openai-baselines-ppo/
3https://www.gymlibrary.dev/
4https://keras-rl.readthedocs.io/en/latest/
5https://stable-baselines3.readthedocs.io/en/master/

https://openai.com/blog/openai-baselines-ppo/
https://www.gymlibrary.dev/
https://keras-rl.readthedocs.io/en/latest/
https://stable-baselines3.readthedocs.io/en/master/


10 Teaching Robot Learning

use only a subset of the rays (typically 9 or 10 rays), equally sampled over the robot’s frontal

180º angular range. Examples of other data used for the state space include images captured by a

visual sensor [68, 71] and the relative distance and/or angle between the robot to the target position

[58, 48, 63]. Rather than using raw sensor values for the input, Pan et al. [40] first convert the

robot’s laser data to a local grid map.

The reward function in the related work rewards the robot reaching the destination and pe-

nalizes colliding with obstacles [58, 68, 71, 40, 8, 48, 62, 69, 75]. Many functions also take into

account the robot’s distance and/or angle to the destination [58, 71, 48, 63, 69], and some penalize

being close to obstacles [8, 75] or taking too much time to reach the destination [40].

For training, most of the approaches use a simulator, including Gazebo [63, 48, 71] and Cop-

peliaSim (and its predecessor, V-REP) [58, 8]. Most approaches either use a 3D environment

[58, 68, 71, 8, 63, 48] or a 2D grid [69, 75]. The former simulation approaches have the advan-

tage of more closely emulating a physical robot’s environment, while the latter ones are more

computationally efficient.

2.5 Path Planning with Intelligent Wheelchairs

As was already mentioned in Section 1.3, despite the kit not containing a real robot, one of the

concerns was to retain some considerations for real-life scenarios. One of the scenarios that were

explored during some of the initial work is the concept of IW. It is interesting to have some prox-

imity to the Intellwheels2 funded project. As solving accessibility issues becomes more prevalent

in modern society, the development of IW has seen a lot of recent improvements [15].

Since IW and path planning using RL are usually connected, this topic presents some research

in common with Section 2.4. Similarly, RL [67, 30, 14, 48], namely DRL [14, 48] are very

common approaches. In contrast, there are also approaches without Machine Learning that are

based on path planning optimization algorithms, namely A* [50, 24] and Ant Colony Optimization

[53].

The navigation algorithms for IW in the literature rely on various types of input. One typical

source of information is visual sensors, namely LiDAR [30, 53, 48, 20], Infrared proximity sensors

[42] and 3D scanners [54]. Some approaches use an Inertial Measurement Unit (IMU) sensor to

measure the chair’s acceleration and velocity [36, 30, 54]. Maekawa et al. use eye-tracking glasses

to acquire eye-gaze data from the wheelchair. Some approaches also use pre-planning algorithms,

namely Simultaneous Localization and Mapping (SLAM), to describe nearby obstacles [36, 20].

Simulations are also a common tool used in this problem, either for helping to train a RL agent

[14, 48] or to assess a path planning algorithm [50, 53]. Several 3D simulators have been used,

including Gazebo [53, 48], CoppeliaSim [50] and CARLA [14].
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2.6 Teaching robotics with ROS

ROS is the most prominent SDK used for robotics applications. Its success is the result of multiple

factors, among them being open source, working very similarly for both real robots and simula-

tions, having a large community of users to provide help and already being used in a lot of the

robotic industry 6 [38]. The reason for the name ROS is the fact that it is based on a concept of an

Operating System (OS). It works with several processes called nodes that operate mostly indepen-

dently of each other. Nodes communicate with each other via different types of messages, such as

topics or services, through the publisher/subscriber model. The independence given to each one

allows nodes that rely on completely distinct strategies or are written in different programming

languages to coexist. Currently ROS offers the most support for Python and C++. This architec-

ture allows for a framework that encourages adaptable and reusable code across all Robotics areas

[46, 38].

2.6.1 Transition from ROS 1 to ROS 2

In 2007, ROS was first idealized by the Stanford Artificial Intelligence Lab. It was adopted by

Google and was supported by the Willow Garage robotics research lab between 2008 and 2013.

After that, the project was taken over by Google’s OpenSource Robotics Foundation [38] and

became the most prominent robotics framework to date.

The first version of ROS, also known as ROS 1, has released several distributions to the public

over the years, with the first one being released in 2010. The latest distribution is ROS Noetic,

released in 2020, and is going to have its support terminated in 2025. No other new distributions

for ROS1 will be released which means it is approaching its End-of-Life 7.

Despite many advantages, ROS 1 lacked some functionalities that needed to be addressed. To

solve these issues, ROS 2 was developed and its first non-Beta distribution was released in 2017
8. One of the core ideas when creating ROS 2 was that no functionalities were lost in the process.

The plan was to only add features that would widen the range of possibilities and compatibility.

One of the most important changes was the added support for most common OS, like Windows

or MacOS, since ROS 1 was conceived for Linux-based applications. ROS 2 is built with a Data

Distribution Service (DDS) as the base for the communication between its nodes. This means

that it is now suitable for Real-Time distributed embedded systems thanks to its various transport

configurations and scalability [31]. Security features in ROS are also becoming more of a concern

as Robotics becomes a more mainstream field. The usage of a DDS also contributes to more

secure message protocols between nodes [12]. Along with the reformulated base architecture, a

multitude of other changes have also been included, among them new dependencies for C++ and

Python, a new threading model and a more complete form to develop launch files 9.

6https://www.ros.org/blog/why-ros/
7http://wiki.ros.org/Distributions
8https://docs.ros.org/en/foxy/Releases.html
9http://design.ros2.org/articles/changes.html

https://www.ros.org/blog/why-ros/
http://wiki.ros.org/Distributions
https://docs.ros.org/en/foxy/Releases.html
http://design.ros2.org/articles/changes.html
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2.6.2 Learning ROS

Due to its relevance, over the years, ROS has had a lot of courses, books and tutorials that target

its teaching. For ROS 1, the official documentation 10 offers an introduction to all the components

offered by the framework as well as a lot of tutorials that mainly target its usage paired with the

Gazebo Simulator. Several books have been written about ROS 1 [38, 39]. Although the books

end up being written for a distribution that eventually loses support, the core concepts of ROS

remain the same, which means that the materials provided maintain their relevance.

ROS 2 on the other hand, partly due to how recent it still is, suffers from a shortage of materials

to aid its learning. A dedicated documentation is available 11 and, much like the one for ROS 1,

provides both descriptions of its tools and practical tutorials. Some available material also offers

a comparison between ROS 1 and 2, providing a valuable tool for users to transition [56].

2.7 Teaching Robotics with a Simulation

Developing and testing real robots requires a lot of resources, making simulations is a key part

of Robotics. A lot of different scenarios have emerged where simulators are a necessary stepping

stone to develop robots. Even in a situation where the goal is to build a real robot, starting with

a simulation provides a safe, low cost and controllable environment for testing and verification

purposes. The ability to be accelerated and easily replicated allows for several setups to be exper-

imented with [10]. In educational scenarios, the high costs of real robots often inhibit their usage.

Simulations enable students to engage with robotics in a quick and easy manner and, in situations

where a physical robot is not accessible, have proven to be a very valuable teaching tool [60, 18].

Some simulators were built to integrate with ROS, directly interacting with the node system.

For 3D simulation, the most popular of these is Gazebo 12 while Flatland 13 is currently the best

alternative for a simpler 2D simulation. Other popular simulators were not originally built to be

used with ROS but adaptations were later developed to make the integration, such as MuJoCo [59]
14.

Outside of the ROS scope, there are a lot of other options to use in Robotics simulations. Some

of them focus only on teaching young robotics students, such as the case of the Tactode robotic

simulator [37]. Despite being always usable for educational purposes, most simulations also target

more professional applications. Simulators such as Webots [33] or RoboDK [16] are very targeted

to industrial settings. In some cases, simulations were created to fit physical robot platforms that

already exist on the market, creating virtual environments for platforms like Duckietown or LEGO

Mindstorms [21, 9].

For Robot Learning, a lot of simulations have the capability of being accelerated, which can

drastically improve the learning times for RL algorithms [25]. But using simulators to train robots
10http://wiki.ros.org/Documentation
11https://docs.ros.org/en/foxy/index.html
12https://gazebosim.org/home
13https://flatland-simulator.readthedocs.io/en/latest/
14https://github.com/shadow-robot/mujoco_ros_pkgs

http://wiki.ros.org/Documentation
https://docs.ros.org/en/foxy/index.html
https://gazebosim.org/home
https://flatland-simulator.readthedocs.io/en/latest/
https://github.com/shadow-robot/mujoco_ros_pkgs
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presents a major problem: the gap between the simulation environment to reality means that the

knowledge is not necessarily transferable. This means that is usually not reliable to train a physical

robot using simulations as policies may perform much worse in the real scenario [74].

2.8 Teaching Robotics with a Physical Robot

As the ultimate goal of Robotics is to create physical machines that can autonomously perform

useful tasks for humans, the transition from simulation to real robots is a topic that has to be

addressed when talking about Educational Robotics. As real robots tend to be very expensive,

the usual answer is to develop robots with the sole purpose of being used in teaching scenarios.

By building robots with simpler architectures and components, the costs of producing it can be

reduced while creating a physical robot developing platform that still uses fundamental principles

that need to be learned by students. Although the kit that was developed does not feature a physical

robot platform, that inclusion could be made in the future.

Ventuzelos et al. [62] presented a kit to teach Robotics that includes a simple robot. The robot

in question is a two-wheeled ground robot containing an Arduino micro-controller to control the

motors, a wide lens camera as its sensor and a Raspberry Pi single board computer as its brain.

The kit also contains an equivalent simulation and tutorials on both ROS 1 and 2 on how to control

the robot using RL.

Other educational physical robot platforms follow a similar approach: small two-wheeled

differential drive robots with some simple sensors. One example is AlphaBot2 which has several

variations and can be controlled by either an Arduino or a Raspberry Pi. It can also include

some common robot functionalities including line tracking or obstacle avoiding but it does not

provide a simulation [32] or support for ROS. Another available platform that follows this pattern

is PyBoKids. Its approach is very similar to AlphaBot2, having several versions as well but with

more robust bodies. Another important distinction is that it has an accompanying simulation for

Gazebo [61].

A slightly different approach to providing physical robots for educational purposes is the

Duckietown project that started as a class at MIT. The base idea is to also develop simple robots,

controlled either by a Raspberry Pi or a Jetson Nano, but it goes further than that by also providing

complete kits with simple physical maps, with small roads and traffic lights, that the robots can

use as their environment [45]. Despite its simplicity, the kits can become very expensive as they

are meant to be used by an entire class of students.

A more ambitious project is the EUROPA Robot that, besides the differential drive also has a

robotic arm mounted on it. The robot is controlled by a Raspberry Pi and also offers its simulation

for Gazebo [22]. The robot is a lot more complex than other options, which means that it might

not provide the best option to introduce students to Robotics.

Another different type of product that is available on the market, instead of providing the

complete robot, gives the user modular components that allow the robot to be assembled in more

than one way and complete different tasks. The assembling process usually does not require any
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Table 2.1: Robot Learning query

Database Query No.
results

Engineering
Village

(((educat* OR pedagogic* OR student*) WN KY)
AND ((robot*) WN KY))

9,707

Scopus
(TITLE-ABS-KEY(educat* OR pedagogic* OR

student*) AND TITLE-ABS-KEY(robot*))
26,068

IEEE Xplore
("All Metadata":educat* OR "All Metadata":

pedagogic* OR "All Metadata": student*) AND
("All Metadata":robot*)

21,195

soldering or other types of dangerous machinery, being adequate for children. One of the most

popular product lines that uses this approach is the LEGO Mindstorms [23] but more products are

available with similar characteristics, such as the Makeblock’s mBot 15 or the IQ-KEY Perfect

1000 16. These types of robots tend to have much higher price points than simpler platforms.

2.9 Teaching Robot Learning with ROS

There is a lot of material available on the topic of Educational Robotics but a lot of it does not

focus on the full scope that the kit to be developed will cover. Therefore, to effectively get a clear

idea of similar previous work done, a more deterministic process to gather information on relevant

projects. This process consisted of querying some of the most popular scientific databases for

papers on the topic and then manually determining which ones are relevant. The initial query used

to search in the title, abstract and keywords for Educational Robotics terms (Equation 2.3) and the

results are presented in Table 2.1.

(educat ∗ OR pedagogic∗ OR student∗) AND robot∗ (2.3)

As the number of results returned by the query was too high to perform a manual search, an-

other condition was added to only show results that also contain RL in the search fields (Equation

2.4). Table 2.2 shows the results of this query.

(educat ∗ OR pedagogic∗ OR student∗) AND robot ∗ AND ”rein f orcement learning” (2.4)

For a result to be considered relevant, it has to present a novel way to teach Robotics paired

with RL. Only projects with a physical robot or a simulation framework were considered. As the

number of results was still very large, only the 50 first were manually reviewed. Table 2.3 shows

all the results found and the technologies they use, along with some other entries already discussed

in this Chapter.

15https://store.makeblock.com/products/diy-coding-robot-kits-ultimate
16http://www.iq-key.com/

https://store.makeblock.com/products/diy-coding-robot-kits-ultimate
http://www.iq-key.com/
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Table 2.2: Robot Learning with RL query

Database Query No.
results

Relevant
results

Engineering
Village

((((educat* OR pedagogic* OR student*) WN KY)
AND ((robot*) WN KY)) AND (("reinforcement

learning") WN KY))
87

4 [17, 19,
73, 76]

Scopus
(TITLE-ABS-KEY(educat* OR pedagogic* OR

student*) AND TITLE-ABS-KEY( robot* ) AND
TITLE-ABS-KEY("reinforcement learning"))

701 2 [13, 62]

IEEE Xplore

("All Metadata":educat* OR "All Metadata":
pedagogic* OR "All Metadata": student*) AND

("All Metadata":robot*) AND ("All
Metadata":"reinforcement learning")

453
5 [17, 19,

26, 43,
57]

As they are more scarce than simulations, many of these projects attempt to create an afford-

able physical robot platform for new robotics students. This means that in many scenarios the

simulation is not a concern. The problem is that the transition from simulation to reality is also

a crucial step in the Robotics Industry as most projects start as virtual environments. Direct inte-

gration with ROS is usually not a priority and specifically ROS 2 is rarely utilized in Educational

Robotics resources.

2.10 Summary

This chapter was dedicated to performing a literature review. It started by explaining the state

of the Robot Learning field and the crucial role RL plays in it. A brief exploration of the most

important RL algorithms followed. A short study on how path planning can be done using the RL

approach was conducted, along with how the real-life scenario of IW can be integrated as well. It

was also demonstrated how ROS, Robotic Simulations and Real Robots are typically approached

in learning scenarios. Finally, an extensive survey was made on the topic of Teaching Robot

Learning. This study showed that Robot Learning has a lot of educational materials that have been

developed over the existence of the field. There is, however, a lack of a kit that unifies all the

current relevant tools in the Robotics Industry.
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Table 2.3: Related work on teaching RL with Robotics

Paper Simulation Physical Robot ROS version RL algorithms

Patil et al.,
2022 [43]

-
DeltaZ (low
cost, simple

robot)
-

Episodic
Relative

Entropy Policy
Search (eREPS)

Ventuzelos et
al., 2022 [62]

Flatland
Simulator

Two-wheeled
ground robot

ROS 1/2 PPO

Zhang et al.,
2022 [73]

-
LEGO SPIKE

Prime
- Q-learning

Dreveck et al.,
2021 [13]

AWS
DeepRacer

console

AWS
DeepRacer

-
PPO, Soft Actor

Critic (SAC)

Giernacki et al.,
2020 [17]

Gazebo Bebop 2 ROS1 -

Suenaga et al.,
2020 [57]

Fabot2D
Robot

controlled in
web-browser

ROS with
Rowma

Double DQN

Haak et al.,
2019 [21]

Creating
simulation in

progress

LEGO
Mindstorms

EV3
- -

Martínez-Tenor
et al., 2019 [76]

-
LEGO

Mindstorms
-

Q-learning,
SARSA

Chevalier-
Boisvert et al.,

2018 [9]

Simulator
written with
Python and

OpenGL

Duckietown
Robots

- DDPG

Newman, 2017
[38]

Examples for
Gazebo

-
ROS1 concepts
and structure

-

Goodspeed et
al., 2007 [19]

- Sony AIBO -
Matlab-based
RL library for

the robot

Lalonde et al.,
2006 [26]

-

Nomad Scout
robot mounted

with a Dell
laptop

- Q-learning



Chapter 3

Using Deep Reinforcement Learning for
Navigation in Simulated Hallways

As previously mentioned in Section 1.3, to make sure that a RL system that was capable of training

a robot to perform a path planning task was presented in the kit, some prior testing was required.

This motivated the realization of an initial work that targeted using a very similar setup to the one

that was planned to be used in the tutorials. One of the main constraints was that, at the time this

work was done, Flatland did not have a working version that was compatible with ROS 2 so ROS 1

was used. Since the main objective was to test the RL components of the framework, there would

be no major differences in using ROS 1. This section will present the first part of that work.

The goal of this first part was to explore using DQN [35] for navigation in a simulated 2D

environment with a simple differential drive robot, equipped with a LiDAR sensor. The aim is

to explore the specific advantages and challenges of applying DRL in this context, as there are

already several classic navigation algorithms to solve this problem [34]. Several maps, resembling

hallways, were used, with varying configurations and obstacles, including doors or turns. The

robot’s objective is to find a path from one end of the hallway to the opposite end.

3.1 Methodological Approach

the project consists of recreating the proposed scenario in a simulated environment and applying

reinforcement learning in that environment. This section describes the methodological approach

taken to achieve this goal.

3.1.1 Simulation

The simulation is built using Flatland and ROS 1. The simulation can be accelerated, allowing the

tests to run at 10 times the normal speed. Figure 3.1 shows the most basic setup explored and this

section will describe each of the simulation components that can be seen in it.

17
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Figure 3.1: Straight hallway in the simulator with one robot and target beacon

3.1.1.1 Robot

In the simulation, the robot is represented by a simple model with a differential drive plugin. This

robot can be seen at the bottom of Figure 3.1. The state of the robot is represented by the position

in two axes and the rotations (Equation 3.1).

robot_state = (x,y,θ) (3.1)

The differential drive plugin in Flatland allows the robot to have independent linear and angular

velocities, allowing for three types of trajectories:

• Translation: moving either forwards or backwards in the direction it is facing.

• Rotation: rotate in the same place in either direction.

• Translation and Rotation: combining both to give the robot linear and angular velocity

simultaneously.

The robot is also equipped with a LiDAR sensor that collects information from 90 rays spread

evenly all around the model and bumpers to detect collisions.

3.1.1.2 Target Beacon

To detect that the robot has reached the end, there is a very simple model at the target position

represented by the green circle (target beacon) in Figure 3.1. It is a basic static robot fitted with a

LiDAR and which periodically checks the closest reading. By using a feature from Flatland called

‘layers’, the LiDAR only detects the differential drive robot and, if the lowest reading reaches

below a certain threshold, then it signals that the robot has reached the target.
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3.1.1.3 Maps

Figure 3.1 represents a simple empty hallway. New maps were created by adding turns, doors and

obstacles. The resulting maps can be seen in Figure 3.2 and provide several degrees of complexity

as well as different challenges to reach the end. These new maps can be divided into four groups:

• Group 1 - Doors: Top row; second, third and fourth maps in Figure 3.2.

• Group 2 - Obstacles: Top row; fifth, sixth and seventh maps in Figure 3.2.

• Group 3 - 90º turns (left or right): Bottom row; first and second maps in Figure 3.2.

• Group 4 - 180º turns (left or right): Bottom row; third and fourth maps in Figure 3.2.

Figure 3.2: All maps used for training and testing

When creating the maps, some important details were taken into account. For Group 2, the

obstacles are set in a way that, if the robot is learning all the maps at the same time, it cannot

simply learn a single path, as a wider trajectory will not work on the first map and a more centered

one will collide in the third. It is important to note that any of the maps with turns can either be a

left or right turn depending on the start and end positions.

3.1.2 Reinforcement Learning Algorithm

The RL algorithm used to train the robot was the DQN provided by OpenAI gym [6]. The model

used for the DQN was developed using Keras and TensorFlow and the training agent was created

using the Keras-RL package1. The learning rate was 0.01 and the setup of the model and agent

was the same for all tests. The action selection policy was the Boltzmann policy, with an initial

temperature value, τ , of 1.0. Table 3.1 presents the architecture of the DQN used, where the input

is passed through a set of layers, sequentially.

1https://github.com/keras-rl/keras-rl

https://github.com/keras-rl/keras-rl


20 Using Deep Reinforcement Learning for Navigation in Simulated Hallways

Table 3.1: Architecture of the DQN

Layer Input dimensions Output dimensions Activation function
Dense 17 24 ReLU
Dense 24 24 ReLU
Dense 24 7 Linear

3.1.2.1 Input Space

The state space for the algorithm is retrieved by the LiDAR mounted on the robot. Since the sensor

contains 90 rays, if the algorithm were to use all of them, then the input space would be too large

and it could take too long to learn. Therefore, the LiDAR’s values are sampled as shown in Figure

3.3. The LiDAR’s readings are divided into sections and, for each section, only the lowest value

is stored, which indicates the closest obstacle in that direction. As the robot is supposed to move

forward, the front of the sensor has a lower sampling ratio and is divided into 9 sections (yellow

and orange in Figure 3.3), while the back is divided into 3 equal parts (blue sections in Figure 3.3).

For additional information, the state space also includes values from 3 rays in the front and 2

directly to the sides (red lines in Figure 3.3). Therefore, the input space has a size of 17 (Equation

3.2).

state_space(17) = closest_in_region(12)+ extra_rays(5) (3.2)

Figure 3.3: Visual representation of the LiDAR sampling strategy
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3.1.2.2 Action Space

For the output, the RL algorithm can choose one of seven actions for the robot presented in Table

3.2. A larger action space was not used to avoid having to use a larger DQN, which would require

more training time.

Table 3.2: Robot actions

Action Linear velocity (m/s) Angular velocity (rad/s)
Stop 0 0

Move forward 0.3 0
Move backwards -0.3 0

Rotate left 0 1.05
Rotate right 0 -1.05

Move forward and left 0.3 1.05
Move forward and right 0.3 -1.05

3.1.2.3 Reward Function

The reward function created for this system is presented in Algorithm 1. The function was devel-

oped with the main goal of directing the robot to the target. A secondary goal was to complete the

task as fast as possible, accomplished by trying to choose the shortest path. To make this possible,

the following rules were applied:

• Give a large negative reward for any collisions (line 3).

• Give a large positive reward for reaching the target. The reward reflects how fast the robot

reached the target (line 5).

• Give a large negative reward for exceeding the maximum time to reach the goal (line 7).

• Give a positive reward to actions that help the robot progress on the map. A larger reward for

moving forward (line 9) and a smaller one for moving forward and rotating (line 12). These

rewards are accumulated in a value to be given as a negative reward if the robot exceeds

the time to reach the target to avoid the agent exploiting it without completing the main

objective.

• Give a negative reward to actions that do not contribute to the robot’s progression and that

should only be used as a last resort: stopping and moving backwards (line 15).

• For rotation-only movements, give a positive reward if the robot had no space to move

forward (line 20) and negative otherwise (line 18).

• Give a reward based on the space the robot detects it has directly in front of it, to discourage

being too close to a wall right ahead (line 30).
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• Give a negative reward for redundant pairs of consecutive actions (line 26).

• Give a negative reward for consecutive full rotations to the same side (line 28). As the robot

uses angular velocity, the reward function keeps track of how much it has rotated and can

detect when it makes a full 360º turn. The more full turns it does consecutively to the same

side, the larger the penalty. This aims to help to prevent the robot from getting stuck in a

section of a map.

3.1.3 Environment

The Flatland Simulator and the DQN are two separate layers in the system that work in parallel.

A third layer exists to coordinate the actions and states used by the DQN with the simulation.

This layer uses both ROS Topics and Services to control the robots in the simulation and the Gym

Python package to translate the problem to an environment that can be used by a DQN agent.

Figure 3.4 is a schematic representation of how the environment layer is used to connect the entire

system.

Figure 3.4: Visualization of how the system is organized

The environment defines the notion of step which consists of processing an action selected by

the agent for the current state. The steps of that process are:

1. Execute the selected action in the simulation by changing the speed of the robot accordingly.

2. Wait for the action to be complete. Each action executes for 0.2 seconds.

3. Read values from the simulation and update the input space of the DQN accordingly.

4. Compute the reward for the action.

5. Return the values calculated so that the agent can update the DQN’s weights and select a

new action.

Another important concept of the environment is the episode. An episode is the set of sequen-

tial steps where the environment goes from an initial to a final state. There are three types of final

states:

• Collisions: a wheelchair’s bumpers detect a collision and signal the environment layer.

• Reaching the target position: the environment constantly receives and analyses the readings

from the target beacon (Section 3.1.1.2) to determine if the goal was reached.
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Algorithm 1 Reward function algorithm
Input:

agent - RL agent
action - Last action performed
n_steps - Current step
max_steps - Number of steps in an episode

1: basic_reward← 300
max_steps

2: if collided() then
3: reward←−200
4: else if reachedDestination() then
5: reward← 400+max_steps−n_steps
6: else if n_steps > max_steps then
7: reward←−(300+ f orward_reward)
8: else if action = FORWARD then
9: reward← basic_reward

10: f orward_reward← f orward_reward + reward
11: else if action ∈ {FORWARD_LEFT,FORWARD_RIGHT} then
12: reward← 0.5∗basic_reward
13: f orward_reward← f orward_reward + reward
14: else if action ∈ {STOP,BACK} then
15: reward←−5∗basic_reward
16: else if action ∈ {ROT _LEFT,ROT _RIGHT} then
17: if f orward_laser_dist > 0.1 then
18: reward←−2∗basic_reward
19: else
20: reward← 0.5∗basic_reward
21: else
22: reward← 0
23: if n_steps > 0 then
24: prev_acts← [previous_action,action]
25: if (prev_acts = [FORWARD,BACK]) ∨ (prev_acts = [BACK,FORWARD]) ∨

(prev_acts = [ROT _LEFT,ROT _RIGHT ]) ∨ (prev_acts = [ROT _RIGHT,ROT _LEFT ])
then

26: reward← reward−5∗basic_reward
27: consec_rot← getFullConsecRotations()
28: reward← reward−75∗ consec_rot
29: f orw_laser← f orward_laser_dist−0.5
30: reward← reward +2∗ f orw_laser ∗basic_reward
31: if f orward_laser_dist > 0.5 then
32: reward ← reward + (( f orward_le f t_laser_dist − 0.5) ∗ ( f orward_right_laser_dist −

0.5))∗basic_reward
33: return reward
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• Time out: each episode has a maximum of 200 steps or 40 seconds. If no other state is met

before, it ends when this time is exceeded.

If, at any step of an episode, one of these conditions is true, then the environment stops and

re-positions the robot at the start and signals the DQN agent to start a new episode. To allow the

robot to train and be tested in different scenarios complexity, when putting the robot back in a

starting position, a small random shift in position and a random rotation is applied. Moreover, a

small random shift is also applied to the target. The shifts are small to ensure that the robot has

to traverse most of the hallway in each episode, while the rotations force the robot to orient itself

correctly to be able to reach the end.

3.1.4 Training Strategies

The environment layer also defines how the agent is trained. The Keras-RL package provides

functions to both test and train the agent. With the use of these functions, two different strategies

were developed for training. The first strategy simply trains the agent for a given number of

steps and then tests it for 100 episodes, returning an accuracy. The accuracy corresponds to a

performance indicator for the proportion of episodes it reached the target position.

The second strategy involves the following steps:

1. Training the agent for a given number of steps (in all the tests, 10000 steps were used).

2. Test the agent after training for 100 episodes and determine the accuracy.

3. If a predetermined threshold for the accuracy is reached, the algorithm was successful and

the weights are stored. If the accuracy is still too low, go back to step 1.

This second method was the one used to do most of the experiments as the first one revealed a

major problem that will be discussed in section 3.2.1.

3.1.5 Model Classification

The model developed is mostly a descriptive model, as it aims to explore the usage of DQNs for

path planning in Robotics and demonstrate the advantages and disadvantages of the approach.

From the perspective of the Flatland Simulation layer, for each episode, the exogenous variables

are:

• Map to be used (controllable)

• Starting position and rotation (controllable or uncontrollable, depending on the scenario)

• Action (one per step) (controllable)

The endogenous variables are:

• End condition of the episode
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• Position and Rotation (at each step, only used as a metric for data analysis)

• LiDAR reading (one per step)

All the layers presented in Section 3.1.3 are Dynamic. The Flatland simulation is a Continuous

model but, to be used in the DQN, it has to be transformed into a Discrete model with states and

actions. In some of the scenarios, initial position and rotation have a random component, making

the model Stochastic. Because there are no other random variables, in situations where the starting

pose is constant, the model is Deterministic.

3.2 Results and Discussion

As a starting point, some experiments were done to help determine what was the most effective

way to train the robot in the developed environment. Some important findings were made during

these initial trials. Those conclusions were then used to improve the methodology for conducting

more extensive tests.

3.2.1 Catastrophic Forgetting

In the scenario represented in Figure 3.1, the challenge is very simple: all the robot needs to do is

to move forward and it will reach the target. Thus, it is expected that the DQN should be able to

easily train the agent. However, some issues arose in this scenario.

Figures 3.5 and 3.6 depict the accuracy (percentage of episodes where the robot reached the

goal) and average cumulative reward over the 100 test episodes with respect to the number of

training sessions, each one composed of 10000 steps, for the straight hallway map.

Figure 3.5: Straight hallway outcome probabilities of the testing episodes with respect to the
number of training sessions

Figure 3.5 shows the accuracy reaching an almost perfect score with very few training sessions

but, in the last session it dropped to below 0.3 (i.e. only around 30% of episodes led to the robot
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Figure 3.6: Straight hallway average cumulative reward of the testing episodes with respect to the
number of training sessions

reaching the goal). In fact, after the fifth training session, the robot incurs a timeout in around 70%

of the testing episodes. Moreover, in figure 3.6, the average cumulative reward drops significantly.

The best explanation for these issues is a common phenomenon in RL called Catastrophic For-

getting, which occurs when the algorithm starts using a solution and small changes to incorporate

new data end up affecting the entire network and disrupting the previously learned patterns, which

are reflected on the network’s weights [7].

This experiment demonstrated that the robot may run into problems if it is over-trained. To

overcome this issue, the second method explained in Section 3.1.4, which trains the agent until it

passes a certain threshold of accuracy, was used for the rest of the tests. This helps to ensure that

the weights after training will be effective on, at least, completing the maps it was using.

3.2.2 Using Distance and Rotation to target

Another scenario that was tested involved adding information about the distance and the rotation

from the robot to the target position, which was achieved using the ROS odometry topic. The

distance and rotation were added to the state space, and the reward function included a positive

reward if the robot was moving or rotating in the direction of the target, or a negative otherwise.

To understand if adding this extra information had a positive impact on the agent’s training, the

robot was trained with all of the maps in the original setup and the one presented in this subsection

until an accuracy of at least 0.8 is reached. Each scenario was attempted 3 times and the number

of steps required to train was registered for each one. The results are displayed in Table 3.3.

The results show that using the distance and rotation to the target leads does not help to de-

crease the number of training steps needed to reach the accuracy threshold. Moreover, using this

metric with a physical robot is not realistic as it would require using an expensive and accurate

sensor, which may not be feasible. Therefore, this extra information was not used in the state

space and reward function.
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Table 3.3: Results from testing with or without distance and rotation to target

Attempt With dist and rot Without dist and rot
Train steps Acc Train steps Acc

1 220000 0.800 590000 0.830
2 150000 0.810 140000 0.860
3 530000 0.800 110000 0.810

Mean 300000 0.803 280000 0.833

3.2.3 Group Tests

This section describes the most extensive tests done to this RL setup. The tests consist of training

the robot with different sets of maps until an accuracy of 0.8 is reached and saving the obtained

weights. Each map is then tested on 100 episodes for each different agent that was trained. Table

3.4 shows the steps needed and the accuracy obtained when training each group and Table 3.5

shows the accuracy when testing all the weights collected for each map.

Table 3.4: Training results for all groups

Group Train steps Acc
Doors 720000 0.8

Obstacles 270000 0.81
90º turns 50000 0.98
180º turns 130000 0.9
All maps 590000 0.83

From these results, several observations can be made:

• The robot very rarely used the stop action during testing, as it was able to learn during

training that it prevented it from reaching the destination earlier, which is encouraged by the

reward function. It is expected that the usage frequency of this action tends to 0 as more

episodes are used for training.

• The robot occasionally used the ‘move backwards’ action during testing. The authors spec-

ulate this is due to the need to correct the robot’s path when it reaches a dead end, namely

in maps with doors when the robot is too close to a wall adjacent to the door.

• The maps with the doors seem to be the most complex ones as the robot required a much

larger amount of training steps to reach the accuracy threshold.

• There seems to be a correlation between better results and training for a longer time. For

example, training only with the maps with doors has good results all around while training
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Table 3.5: Testing accuracy for all groups

Tested map Group trained
Doors Obst 90º turns 180º turns All

Straight 0.99 0.94 0.96 0.88 1.0
Left door 0.75 0.73 0.31 0.87 0.82

Center door 0.78 0.57 0.23 0.16 0.69
Right door 0.57 0.6 0.41 0.09 0.46
Two doors 0.34 0.88 0.54 0.44 0.85
Small obst 0.52 0.75 0.27 0.58 0.84
Large obst 0.54 0.7 0.13 0.42 0.65

Turn left(90º) 0.97 0.86 0.96 0.91 0.76
Turn right(90º) 0.99 0.15 0.99 0.90 0.97
Curve left(90º) 0.96 0.88 1.0 0.94 0.98

Curve right(90º) 0.94 0.93 0.98 0.85 0.95
Turn left(180º) 0.88 0.82 0.97 0.89 0.74

Turn right(180º) 0.96 0.04 0.99 0.87 0.81
Curve left(180º) 0.94 0.87 0.99 0.93 0.96

Curve right(180º) 0.82 0.39 0.93 0.93 0.9
Mean 0.797 0.674 0.711 0.711 0.825

Std Dev 0.202 0.271 0.334 0.284 0.144

the 90º turns, which only took 50000 steps, has a lower average and a much higher standard

deviation.

• The tests with the weights trained for maps with obstacles show that the robot was able to

complete turns to the left but not to the right. This illustrates that, just because the agent

learns how to turn to one side, it does not mean that it is capable of turning to the other.

• The best performance (highest mean and lowest standard deviation) was obtained by training

with all the maps, thus showing that there is always a lot of value in training with a larger

variety of scenarios.

• Overall the results are very positive because the averages are very high and there are very

few values below 0.5 in Table 3.5. This means that no matter what maps are used to train,

the agent is always able to find patterns that are useful for most situations.

3.2.4 Training Patterns

To better understand the results from the group tests, it is also relevant to look at how the agent

learns and how it improves the accuracy over training. The graph in Figure 3.7 depicts the accuracy

obtained while training with all the maps at the same time. The figure shows a pattern that is very

common while learning with this model: although the overall accuracy is increasing over time, the

growth is not gradual as it presents several high and low points. This is consistent with what was
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described in Section 3.2.1, as the agent may learn a good solution and then drastically change its

DQN weights.

Figure 3.7: Outcome probabilities of the testing episodes while training for all maps until the
accuracy threshold is reached

There is an exception to this: the learning progress of training maps with doors, as shown in

Figure 3.8. Both this example and the one for all maps took a long time to train, but the evolution

of the accuracy shows a much more gradual growth in this one. One hypothesis to explain this

difference is the fact that, when training for all maps, the challenge comes from the variety of the

states it needs to tune the weights to. As the agent tries to learn good results for one map, it might

forget what it learned for others, thus explaining the sudden drops in accuracy. In the example

with the doors, the challenge comes more from the precision required to pass through a door, so it

is a lot harder to reach a good solution. As the agent trains the specific weights needed to complete

the task, the accuracy increases gradually.

Figure 3.8: Outcome probabilities of the testing episodes while training for maps with doors until
the accuracy threshold is reached
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3.2.5 Wall Following Patterns

Figures 3.9a and 3.9b depict the paths followed by the robot in two of the maps, with the weights

for the DQN obtained by training with all the maps. The red rectangle depicts the area where the

robot is randomly placed at the beginning of an episode while the green rectangle depicts the area

where the target may be randomly placed.

Despite not using any input or reward that would encourage the robot to do so, the agent seems

to learn very often to choose paths that have it navigate near a wall. This is especially interesting

if taking into consideration that moving close to a wall increases the risk of collision, which is

associated with a negative reward. Figures 3.9a and 3.9b illustrate this phenomenon. The authors

hypothesize that this wall-following strategy is coherent and gives the robot a higher chance of

reaching the target regardless of the environment’s layout since:

• The robot does not have any knowledge of where the target area is and thus needs to develop

strategies to explore the map that have a high probability of reaching the goal in all scenarios.

• The target area is always at the end of the hallway, and therefore near a wall.

(a) Center door map (b) 180º left curve map

Figure 3.9: Paths obtained during testing with weights from training all maps

3.3 Conclusions

The main contribution of this work is an illustration of the main advantages and challenges of

using DRL for navigation in a simulated 2D environment. Regarding DRL’s strengths, this line
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of work showed how it is possible for the agent to successfully navigate through a map it never

interacted with by learning new behaviors (for instance, learning to follow walls). Regarding the

main challenges, it was shown how Catastrophic Forgetting can cause issues when training agents

as well as also showing a potential solution to overcome this issue of using a minimum threshold

for the accuracy. In addition, it was shown that using some types of information in the agent’s

state may actually be counter-productive: the results showed that allowing the agent to know

where the target position is relative to the robot does not bring any benefit to the performance,

despite requiring a lot more complex sensors.

Overall, this first part of the initial work demonstrated that this RL framework can produce very

interesting results to be used in a learning kit. It also provides an easy-to-understand structure that

does not require a lot of knowledge of RL to start using and, for simpler tasks with an accelerated

simulation, it can produce results reasonably quickly.

3.4 Summary

This chapter presented an initial work conducted to test the framework that will be used in the

tutorials. It presented all the simulation components as well as the RL setup. It also provided

results of various tests performed and concluded that the framework developed is suitable to be

used in the learning kit.
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Chapter 4

Navigation of Simulated Adjacent
Wheelchairs using Deep Reinforcement
Learning

The work presented in this section is the second part of the initial work and has a very similar

framework and setup to the one presented in Chapter 3 but with some major changes in the scope

and objectives it attempts to achieve. Even though the kit developed does not provide a physical

robot, does not mean that it is inapplicable when studying real-life scenarios. If a scenario is

appropriately depicted in a simulated environment, testing it there can be very valuable for an

eventual transition into reality. For these reasons, one of the most important differences from

the previous chapter is that the robots were re-imagined as IW to demonstrate how a real-life

application can be studied in simulations.

Solving mobility limitations is a problem where Robotics has the potential of playing an im-

portant role [5]. For instance, in hospitals or nursing homes, wheelchairs are often used to move

people around the facilities. In some cases, there is also a need for wheelchairs to travel together,

which can bring problems in spaces that include obstacles or doors. Therefore, to improve the

accessibility and independence of people with mobility limitations, wheelchairs can be enhanced

with the capability of autonomous navigation.

This work aims to explore how IW can be trained to navigate autonomously using a DQN [35].

For a regular wheelchair to be able to acquire autonomous navigation, it needs to be equipped with

additional components, such as electric motors to power the wheels (actuators), sensors to perceive

the environment and a connection with the computer running the algorithm. Additionally to the

costs and effort required by these tools, RL algorithms also tend to take a long time to learn and

tune the parameters. For these reasons, it is very common that studies done on the navigation of

IW are based on real scenarios but implemented and tested using simulations.

In the scenario presented in Chapter 3, a single simulated robot was successfully trained to

traverse hallways using DRL. Given these positive results, its DQN configuration, the input and

action spaces, the reward function and the simulation environment served as the basis for this

33
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work. Despite that, the whole system had to undergo major changes to accommodate the usage of

two robots and an entirely new set of results was produced. Another key difference from previous

work regarding the motivation is that the robots are now interpreted to be IW rather than abstract

entities, which means that other concerns should also be considered, such as the comfort and

viability of the paths taken.

The goal is to create a simulation environment where the IW must traverse areas with different

layouts to reach a target destination. The tested maps are a subset of the ones presented in Section

3.1.1.3 since they already had a similar layout to hallways found in public spaces. The scenarios

were explored using a pair of IW, with the additional objective of traveling side-by-side whenever

possible. In addition, a more classical approach based on APF [64, 65, 70] was developed to serve

as a baseline when assessing the performance of the RL-based solution.

One notable similar work that also performs RL on a pair of IW is by Rodrigues et al. [48].

Their goal was also to train a wheelchair to navigate through an area to reach a target position. It

also had a second objective of creating another independent agent to train another chair to follow

the first one. The paper focuses a lot on comparing the performance of Q-Learning and DQNs

to complete this task, presenting results that point to DQNs being more efficient and effective.

One important difference that it has from the work presented here is the approach to the second

wheelchair. Instead of having a leader and a follower as separate agents, the scenario proposed in

this work has both chairs attempting to navigate side by side and being trained by a single agent.

Therefore, this method ensures that, by selecting a pair of actions, the movement of each chair

is dependent on the other, as opposed to having two agents acting separately. Another relevant

distinction is the questions trying to be answered: while Rodrigues et al. aim to compare the

performance of several RL algorithms, the main objective here is to better understand how to tune

the environment and the DQN to achieve the best possible results.

4.1 Methodological Approach

The approach to this work was very similar to the one presented in Section 3.1. This was possible

since IW act very similarly to the differential drive robots, like the one from the previous approach.

The main differences are the adjustments made to accommodate two wheelchairs.

4.1.1 Simulation

The same simulation setup from Section 3.1.1, using Flatland and ROS 1, again taking advantage

of the fact that it can be accelerated to run the tests at 10 times the normal speed. To represent a

simplified version of a wheelchair, the same robot presented in Section 3.1.1.1 was used. In all

scenarios, there are IW that can move independently on the map, each one with its own LiDAR

sensor. The state of the wheelchairs is represented by a pair of values representing their positions

and rotations (Equation 4.1).

wheelchairs_state = ((x1,y1,θ1) ,(x2,y2,θ2)) (4.1)
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To detect if the wheelchairs have reached the end, the same solution presented in Section

3.1.1.2 is used. The target beacon has the same appearance (green circle) with the only difference

being that now it has two LiDARs instead of one. With the usage of the layers functionality from

Flatland, each of the LiDARs detects only one of the wheelchairs, being able to determine the

distance of both individually.

Since this task is a lot more complex, not all the maps that were used in the previous chapter

were used in this case. Besides the straight hallway (Figure 3.1), the maps that were used were the

turns divided in the same group configuration presented in Section 3.1.1.3. Figure 4.1 shows all

the maps used and the groups are:

• Group 1 - 90◦ turns (left or right): First and second maps in Fig. 4.1.

• Group 2 - 180◦ turns (left or right): Third and fourth maps in Fig. 4.1.

Figure 4.1: All hallway turns used to train and test

Some details about the maps need to be pointed out for some latter considerations. Some turns

allow for the usage of faster and more direct paths that, when followed in other maps, would result

in a collision. This will force the wheelchairs to learn patterns of navigation from the LiDAR

readings instead of fixed paths. The hallways have constant width to allow for both chairs to

maintain an adjacent path.

4.1.2 Wheelchair Adjacency

The system requires a well-defined criterion to determine when the wheelchairs are side by side.

Initial formalization of the problem established the chairs being adjacent by meeting the following

conditions:

1. The Euclidean distance between the two chairs is lower than a threshold (d):

r =
√

(x1− x2)2 +(y1− y2)2 (4.2)

r < d (4.3)

2. Both chairs are approximately facing in the same direction, with a maximum error threshold

(θt) (in radians):

|θ1−θ2|< θt (4.4)
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3. The line between them has to be approximately perpendicular to the direction they are fac-

ing, with a maximum error threshold (θt) (in radians):

θper = arctan
(

y2− y1

x2− x1

)
(4.5)

∣∣∣θper−
(

θ1−
π

2

)∣∣∣< θt (4.6)

As there is no information on the absolute or relative position of the wheelchairs, only the

LiDAR readings from both of them can be used to identify if they are next to each other. As the

LiDARs also detect all other obstacles in the environment, it would be very difficult to determine

the adjacency conditions with only these values.

To solve this issue, a simpler definition for wheelchair adjacency was proposed using the rays

from the LiDAR represented in green in Figure 4.8. One of the chairs is labeled as the left one

and uses two of the rays to its right while the chair labeled as the right one uses ones from its

left. If they are side by side, these rays should point to each other, allowing for a new definition of

adjacency:

1. All 4 rays have to read below a certain threshold (t):

top_le f t,bot_le f t, top_right,bot_right ≤ t (4.7)

2. Both pairs of top and bottom rays need to have similar readings to a threshold (t):

|top_le f t− top_right| ≤ t (4.8)

|bot_le f t−bot_right| ≤ t (4.9)

This definition allows for false positives when testing for adjacency, as correct values can also

appear if both are detecting walls. To minimize potential mistakes, the starting positions place the

wheelchairs side-by-side. The main task then becomes maintaining that position as they navigate

through the map.

4.1.3 Artificial Potential Fields Algorithm

APF is a classic method used for robot path planning when the scenario contains stationary ob-

stacles and will be used as a baseline to compare the RL approach. The idea is to use potential

fields to repel the robot from possible collisions and attract it to the target location. This algorithm

offers a relatively fast and effective way to guide robots around obstacles and has been successful

in many realistic path planning situations [64]. Figure 4.2 shows a simple example of an APF

scenario.



4.1 Methodological Approach 37

Figure 4.2: Visual representation of a simple APF example for path planning

Each obstacle will create a potential field around itself that will interact with the robot. The

force that a charge applies in the robot can be determined using Coulomb’s law [70], used to

calculate the amount of force between two electrically charged particles:

|F |= ke
|q1||q2|

r2 (4.10)

where ke is Coulomb’s constant, q1 and q2 are the two charges involved (robot and obstacle

charges) and r is the Euclidean distance (Equation 4.2) between the charges. This is an inverse-

square law, which means the force greatly increases the closer the charges are. The direction of

the force is defined by the line that passes through both the center of the robot and the obstacle

and the sense depends on the sign of both charges (equal signs repel and different ones attract).

The resulting force can be obtained by adding all the forces. Then, the acceleration can be

computed using the robot’s mass and Newton’s second law:

a⃗ =
∑ F⃗
m

(4.11)

4.1.3.1 Charges on a Map

From a more practical perspective, the potential field from a real obstacle cannot be represented

by a single charge at a point in space. A real obstacle has volume (or an area in a 2D simulation)

which means that the closest point to the robot has to be the one considered to determine the

distance (r). In addition to that, all the maps that are used in this project have the robots navigating

in a space surrounded by walls. To correctly represent the potential fields produced by the maps,

charges were divided into several groups based on how the force they applied on the robot was

calculated. Each map is composed of a set of charges of one or multiple of these types:
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• Point Charges

• Line Segment Charges

• Composite Charges

A point charge is defined by a point in space and its intensity (i). It represents the simplest

type of charge and, although alone it can not be used to represent walls, an attractive point charge

on the target position is used to guide the robot to the goal. Coulomb’s law (4.10) can be used to

determine the magnitude of the force produced at any point by the charge, but some simplifications

can be made:

• Coulomb’s constant (ke) is necessary when calculating forces on actual electric forces but,

in this case, the law serves only as an analogy to path planning. Since realistic values are

not relevant, the constant can be cut from the equation.

• The charge from the robot itself can also be simplified and positive point charges attract

while negative ones repel (essentially making the robot charge -1). This can be seen in

Figure 4.3.

This way, a point charge, at a given point in space, produces a force of magnitude:

|F |= |i|
r2 (4.12)

where i is the intensity of the charge and r is the Euclidean distance (Equation 4.2) between

the charge and the point.

Figure 4.3: Visual representation of how positive (green) and negative (red) point charges apply
forces to a point (blue) in space

A line segment charge is defined by two points in space that form a line segment (l) and their

intensity (i). The idea for this type of charge is to represent the inside of a wall in the maps. To

determine the force produced at any point P, first one needs to find the intersection between l and

the line that passes through P and is perpendicular to l. If there is no intersection, the charge does
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not apply a force in P. The magnitude of the force can be determined the same way as in a point

charge (Equation 4.12) with r the distance from P to the intersection. Figure 4.4 shows how a line

segment interacts with different points in a map.

Figure 4.4: Example of how a line segment charge (red) affects different points in space (blue) in
the left/right 90◦ turn map and the area where it applies forces in (light red)

A composite charge is defined by a set of line segment charges and point charge and their

intensity (i). The force applied at any point is defined only by the charge that is closest to that

point. This is used when one or more consecutive vertices of the map layout have an angle larger

than 180◦ degrees facing the inside. A composite charge contains all those vertices (point charges)

and all the edges (line segment charges) that are connected to them. Figure 4.5 shows an example

of a composite charge and how they apply forces at different points.

(a) Set of charges in the composite (red)
(b) Interaction with different points and areas each
charge applies forces (color-coded)

Figure 4.5: Example of a composite charge in the 90◦ turn map
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4.1.3.2 Following Behavior

In an APF algorithm, when more than one robot is used, one of the typical solutions is to have

a leader and a follower [65]. The leader chooses their path based on the potential fields from

obstacles and the target. The follower also uses the obstacle fields to avoid collisions but, instead

of having a charge on the target point, uses the position of the leader to create a Tension Point near

the leader to define the path.

A tension point is almost identical to a point charge but it calculates the magnitude of the

force using Hooke’s law instead, which indicates the force needed to extend or compress a spring

any distance:

|F |= kx (4.13)

where k is a constant factor characteristic of the spring and x is the compression/extension of

the spring. For the algorithm, k can be replaced by the intensity and x by the Euclidean distance

(Equation 4.2) between the tension point and the robot. This means the magnitude of the force

grows linearly with the distance, as is shown in Figure 4.6.

Figure 4.6: Visual representation of how a positive tension point (green) applies forces to a point
(blue) in space and how the distance affects its magnitude

The main issue with the leader and follower approach, in this case, is that one of the goals is

for the wheelchairs to be traveling side by side. One possible solution is for the follower to aim

for a point in space where it would be adjacent to the leader. The problem with this is that the

leader would end up traveling through the center of the hallway, potentially not leaving enough

space for the other robot. It could be possible to add charges to the map to try to force the leader

to navigate next to the walls on one side but the solution proposed here is to modify the leader

and follower perspective. The idea is to start by thinking of both robots as a single system and use

that system as the leader for both robots to follow. This is achieved by following these steps (also

demonstrated in Figure 4.7):

1. Finding the middle point of the positions of both robots.
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2. Calculate the resulting forces from all the map charges (with a positive charge in the target

position) and add the force vector to get a target middle point.

3. From the target middle point, find the target point for each robot. This is done by shifting

the target middle point by half the ideal distance between the robots in both ways of the

direction perpendicular to the force vector found in step 2.

4. In the target points found, create a tension point for each of the robots.

Figure 4.7: Example of the steps necessary to find the target points for both follower robots

After this, it is possible to determine what the resulting force for each robot at any position on

the map should be, just by adding all the forces from:

• The charges placed on the walls of the map.

• A negative point charge in the position of the other robot, to help avoid collisions between

them.

• Add the force from the newly found tension point.

4.1.3.3 Limitations of the IW

The fact that the goal is to simulate a pair of wheelchairs means that some limitations have to be

considered. To maintain a real use case plausible, the simulation must respect movement restric-

tions and passenger comfort considerations. These problems condition the way the APF algorithm

can function.

Just like a real wheelchair, the robots in the simulation use differential drive to move. This

means that to move towards a target, they need to already be facing that direction. Upon knowing

the resulting force that acts on them according to APF, to make sure they are following the correct

path, the robots start by only having angular speed until they reach the correct location (with a

small margin of error) and only then can use linear speed to move forward. To make sure the

movements do not become unsynchronized, the robots only move forward if both are facing the

correct way.

In addition, due to hardware limitations and danger to its passenger, wheelchairs have limited

speed and acceleration. The most important component of the resulting force from the APF algo-

rithm is the direction since that is what contributes the most to making the robots reach the end.
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But the magnitude is still useful because, if one of the robots falls behind, the added force from the

tension point can help it catch up. The solution found was to decide on a maximum linear speed

and, at any point, give the robot with the largest force magnitude that speed and the other the same

speed scaled down using the ratio of bot magnitudes:

v1 = max_speed (4.14)

v2 = max_speed
|F2|
|F1|

(4.15)

where v1 and F1 are, respectively, the linear velocity and the resulting force of the robot with

the largest force magnitude (|F |), while v2 and F2 correspond to the other robot.

4.1.4 Reinforcement Learning Algorithm

The DQN agent used is the same as the one created in the work from the previous chapter, pre-

sented in Section 3.1.2. It maintains the same learning rate (0.01) and action selection policy

(Boltzmann policy with an initial τ of 1.0). It also follows the same DQN architecture presented

in Table 3.1. This agent is used to train both wheelchairs simultaneously.

The environment works very similarly to the one presented in Section 3.1.3, linking Flatland

Simulator and the DQN agent to train the hyperref[abbrevs]IW. Collisions can happen with any of

the chairs and, to reach a successful final state, both have to be in the target location. Since using

two wheelchairs heavily increases the complexity of the task, there is no random shift to the start-

ing positions of any of the robots. The exogenous variable starting position and rotation presented

in Section 3.1.5 is now always controllable, making the model now exclusively Deterministic.

4.1.4.1 Input and Action Spaces

The sampling from the LiDAR sensors is done in the same manner as what is depicted in Figure

3.3. The main difference is that the input space is doubled seeing that there are two IW. Addition-

ally, To detect the adjacency between them, two extra rays from each of the LiDARs are stored

to help identify if the chairs are side by side. This new sampling setup is represented in Figure

4.8 where the green lines on the right side represent the ones for the wheelchair on the left while

for the one on the right the rays would be on the left side. This means that the input space has a

dimension of 38 (Equation 4.16).

space(38) = (samp(12)+ extrarays(5)+ siderays(2))∗2 (4.16)

Each wheelchair moves independently which means each one needs its action. The actions for

one IW remain the same as the ones from Table 3.2, but the agent has to select one for each at

every step. By choosing a pair out of the 7 original actions, the action space is now 49 (72).
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Figure 4.8: Visual representation of the LiDAR sampling strategy for the left wheelchair in a
two-wheelchair setup

4.1.4.2 Reward Function

The reward function rules from Section 3.1.2.3 that were applied to one robot, still apply to each

of the wheelchairs. Some rules had to be added or modified to adjust to the two IW traveling side

by side task. Additionally, two secondary goals were to optimize the path to be both efficient and

comfortable for the users of the wheelchairs. These new rules are:

• Collisions now can be caused by any of the wheelchairs and still give a large negative reward

(line 3).

• To give the large positive reward for reaching the end both wheelchairs need to be in the

target area (line 5).

• If a full 360◦ rotation from the starting position is completed, receive a negative reward (line

34). The magnitude of the penalty increases if consecutive complete rotations are performed

in the same sense. This helps to prevent the chair from getting stuck in a section of the map

and also has the user’s comfort in mind (to avoid motion sickness).

• If one of the chairs reaches the target position, receive a large positive reward (line 13).

• If one of the wheelchairs leaves the target position after reaching it, receive a large negative

reward (line 15).

• If after any action the wheelchairs are side by side, receive a positive reward (line 43). What

determines if the chairs are considered to be adjacent to each other is explained in Section

4.1.2.
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Algorithm 2 Reward function computation for two wheelchairs
Input:

agent - RL agent for all wheelchairs
n_steps - Current step
max_steps - Number of steps in an episode

1: basic_reward← 300
max_steps

2: if agent.collided() then
3: reward←−200
4: else if agent.allReachedDestination() then
5: reward← 400+max_steps−n_steps
6: else if n_steps > max_steps then
7: reward←−(300+agent.getForwardReward())
8: else
9: reward← 0

10: for each wc← wheelchair ∈ agent do
11: action← wc.getCurrentAction()
12: if wc.reachedDestination() then
13: reward← reward +100
14: else if wc.le f tDestination() then
15: reward← reward−100
16: if action = FORWARD then
17: reward← reward +basic_reward
18: agent.incrementForwardReward(reward)
19: else if action ∈ {FORWARD_LEFT,FORWARD_RIGHT} then
20: reward← reward +0.5∗basic_reward
21: agent.incrementForwardReward(reward)
22: else if action ∈ {STOP,BACK} then
23: reward← reward−5∗basic_reward
24: else if action ∈ {ROT _LEFT,ROT _RIGHT} then
25: if wc.getForwardLaserDistance()> 0.1 then
26: reward← reward−2∗basic_reward
27: else
28: reward← reward +0.5∗basic_reward
29: if n_steps > 0 then
30: prev_acts← [wc.getPreviousAction(),action]
31: if (prev_acts = [FORWARD,BACK]) ∨ (prev_acts = [BACK,FORWARD]) ∨

(prev_acts = [ROT _LEFT,ROT _RIGHT ]) ∨ (prev_acts = [ROT _RIGHT,ROT _LEFT ]) then
32: reward← reward−5∗basic_reward
33: consec_rot← wc.getFullConsecRotations()
34: reward← reward−75∗ consec_rot
35: f orw_laser← wc.getForwardLaserDistance()
36: reward← reward +2∗ ( f orw_laser−0.5)∗basic_reward
37: if f orw_laser > 0.5 then
38: FL_las← wc.laserFLDistance()
39: FR_las← wc.laserFRDistance()
40: laser_rew← ((FL_las−0.5)∗ (FR_las−0.5))
41: reward← reward + laser_rew∗basic_reward
42: if agent.wheelchairsAd jacent() then
43: reward← reward +10
44: return reward
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4.2 Results and Discussion

This section will present all the results obtained during testing. The initial goal was to perform

simple tests to determine if the setup was working as intended. Since some problems were encoun-

tered with the initial settings, the system went through several iterations and the next subsection

will explore the reasoning and results obtained in each of them. Once the setup was producing

better results, more complex scenarios were explored. The training strategy used in all tests is the

second one presented in Section 3.1.4 with the difference that, if the accuracy threshold (0.8 in

all tests) was not reached until 1000000 steps of training, it stops and considers the best weights

obtained up to that point.

4.2.1 Preliminary RL experiments with a straight hallway

The purpose of using a single agent to train both wheelchairs at the same time is to ease the

process of coordinating both of them while traveling. This choice comes with a cost of a much

more complex task for the agent to learn (larger input and action spaces). Initial tests for two

wheelchairs were done with the simplest possible task: two chairs starting side by side in a straight

hallway, already facing the target. Table 4.1 and the graph in Figure 4.9 show results with the

number of steps to train, the accuracy achieved and an additional performance indicator for the

wheelchairs’ adjacency. Adjacency is the fraction of steps when testing where the wheelchairs

were considered to be next to each other.

Table 4.1: Results from training two hyperref[abbrevs]IW in a straight hallway

Train steps Accuracy Adjacency
570000 0.77 0.21

Figure 4.9: Two IW in a straight hallway end conditions of testing over 570000 steps of training
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Despite taking a very long time on a simple task, the final accuracy was high and some ad-

jacency was achieved. The main issue can be observed in the graph showing the accuracy: there

seems to be no steady growth in the success rate and higher accuracy tests seem to be outliers.

This probably means that, instead of learning useful patterns to navigate the map, the agent, after

enough training sessions, is reaching weights that allow the chairs to finish the map by random

chance. This means that it does not accumulate any knowledge between training sessions regard-

less of the accuracy achieved. To better understand the reason for this problem, several probable

causes were proposed:

• Because there are two chairs, there is less space to move causing more collisions. From

the graph in Figure 4.9 it is possible to observe that collisions are the most common end

condition throughout training.

• Very large action space (7 for each chair means a total of 49 different actions for the agent).

• Large input space (dimension of 38).

This would cause problems in any further testing, so a solution to solve or at least mitigate the

issue was necessary. Based on the proposed causes, several changes were made to the environment.

The next sections will describe the experiments made.

4.2.1.1 Solving space issues

To try to solve issues caused by the lack of space for two wheelchairs, two changes were made.

Additionally, a small change was done to the reward function. These changes were:

• Increasing the radius of the target area (from 0.25 to 0.4).

• The chairs now start further away from each other to try to reduce collisions between them

(from 0.3 to 0.4).

• If a chair is in the target area, it now receives a positive reward for stopping and a negative

one for any other action.

Using this new environment, the same methodology from Section 4.2.1 was applied to test it.

Table 4.2 and the graph from Figure 4.10 show the results obtained.

Table 4.2: Results from training two hyperref[abbrevs]IW in a straight hallway with space im-
provements

Train steps Accuracy Adjacency
670000 0.79 0.17
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Figure 4.10: Two IW in a straight hallway with space improvements end conditions of testing over
670000 steps of training

Some small improvements can be seen in Figure 4.10, as more peaks of accuracy appear. The

problem is not solved though because, when better results are achieved, the accuracy goes back to

0 in the next session, indicating the agent is not learning properly. Therefore, in addition to these,

further changes were required before testing with more complex maps.

4.2.1.2 Reducing the number of actions

To try to improve the performance of the DQN, some actions were removed, leaving only four

available (actions space from 49 to 16). The new set of possible actions can be seen in Table 4.3.

Table 4.3: New wheelchair actions

Action Linear velocity (m/s) Angular velocity (rad/s)
Stop 0 0

Move forward 0.3 0
Rotate left 0 1.05

Rotate right 0 -1.05

It is important to notice that, by removing actions, the wheelchairs lose some autonomy of

movement. The actions removed were chosen with the purpose of not having a great effect on the

number of possible paths but can have a greater effect on the time needed to reach the goal. The

results are shown in Table 4.4 and graph from Figure 4.11. Figure 4.12 also shows a graph with

the adjacency measured throughout training.

This change shows very significant positive changes. The most apparent one is how much

better the accuracy is and how much faster it was reached, only taking 50000 to achieve a perfect

score. There is also some improvement in adjacency. The most important difference is the steady
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Table 4.4: Results from training two IW in a straight hallway with fewer actions

Train steps Accuracy Adjacency
50000 1.0 0.28

Figure 4.11: Two IW in a straight hallway with fewer actions end conditions of testing over 50000
steps of training

Figure 4.12: Two IW in a straight hallway with fewer actions adjacency of testing over 50000
steps of training
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growth achieved throughout training, both in the accuracy (Figure 4.11) and adjacency (Figure

4.12).

The excessive number of possible different actions appeared to be the main reason for the poor

performance of the DQN. After solving this issue, initial results start to show a lot more consis-

tency and stability. For those reasons, the environment with the changes described in Sections

4.2.1.1 and 4.2.1.2 was the one used in all the remaining tests.

4.2.2 Experiments with non-straight hallways

To test if the single agent for two wheelchairs is capable of adapting to a map after training for

a different one, an experiment where the agent learns the 90◦ turns and then tries to complete

the 180◦ turns was conducted. The weights obtained in the training described in Section 4.2.1.2

were also used for comparison. For each of the scenarios tested, 100 episodes were run and the

accuracy and adjacency were retrieved. The results from training are in Table 4.5 and the results

from testing are in Table 4.6.

Table 4.6 also includes the results of applying APF to the straight and sharp turn hallways (90◦

and 180◦), to establish a baseline. For all these maps, a charge layout was created, always using

the same intensity values, and each of the different scenarios was tested 20 times, each time letting

the algorithm run until the end is reached or a collision happens (the same as an episode in RL).

Table 4.5: Results from training two hyperref[abbrevs]IW in the 90◦ turns and the straight hallway

Trained Train steps Accuracy Adjacency
Straight 50000 1.0 0.28
90◦ turns 100000 0.44 0.01

Table 4.6: Testing results from training straight hallway and 90◦ turns.

Tested map APF RL trained with 90◦ Turns map RL trained with Straight map
Acc Adj Acc Adj Acc Adj

Straight 1.0 1.0 0.96 0.0 1.0 0.28
Turn left (90◦) 1.0 0.54 0.35 0.02 0.0 0.03

Turn right (90◦) 1.0 0.62 0.13 0.0 0.0 0.13
Curve left (90◦) - - 0.79 0.01 0.0 0.02

Curve right (90◦) - - 0.34 0.0 0.0 0.09
Turn left (180◦) 0.0 0.04 0.32 0.05 0.0 0.02

Turn right (180◦) 0.0 0.07 0.07 0.0 0.0 0.11
Curve left (180◦) - - 0.68 0.0 0.0 0.01

Curve right (180◦) - - 0.35 0.01 0.0 0.04
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4.2.2.1 Results analysis for APF

The first thing to notice is that the results are very polarizing across the maps. This happens

because, in contrast with RL methods, this is a reactive algorithm meaning that, given the same

conditions, it will take almost the same path. This path either succeeds or fails, depending on

the scenario, which is why the accuracy is either 0 or 1. Adjacency was also very high when

the algorithm was successful, even when completing 90◦ turns, demonstrating the viability of the

method presented in Section 4.1.3.2. This behavior is demonstrated in Figure 4.13a.

The algorithm fails to complete 180◦ turns and always ends up colliding with the wall in the

middle, as is shown in Figure 4.13b. This happens because it is very hard to find a balance for the

intensity of the positive end goal charge as it needs to initially move away from the target to go

around the wall. This means that the setup that was 100% effective for all other maps completely

fails in this scenario.

(a) Successful test on the 90◦ turn (b) Failed test on the 180◦ turn

Figure 4.13: Paths taken by two IW on the 90◦ and 180◦ turns using the APF algorithm (left
wheelchair in blue right in red, start yellow zone, finish green zone; dots in the lines represent
positions in fixed time steps)

The algorithm was not assessed for the 90◦ and 180◦ curves, as that would require adapting

the computation of the electric force for curves, which is more complex than with straight lines,

and APF is merely being used to establish a baseline, with the main focus being on RL.

4.2.2.2 Results analysis for RL

A lot of observations can be done based on these results. Some of them include:

• Although some success was achieved, results still show an accuracy below 50%. This means

that there is still a lot of room for improvement before the model can be used with real

wheelchairs.



4.2 Results and Discussion 51

• For the results with the turns, the agent was able to use what was learned in the 90◦ turns

and apply it to the 180◦ turns. Despite not having very high accuracy, it is consistent through

the maps, showing it is learning useful patterns.

• The results for left turns seem to be better in all scenarios than for right turns. This shows

that in this setup the agent learning how to turn to one side does not imply that it can turn as

effectively to the other side.

• There also seems to be a tendency for better results in curved hallways compared to sharp

turns. This could be because curves allow for a shorter path to be taken. The 180◦ sharp

turn also has a thin wall across the map that can be harder for the LiDARs to detect from

certain angles.

• The scores for the adjacency were very low. This is probably due to the conditions for the

adjacency being very restricting and the wheelchair is not able to maintain it with the limited

movements it can perform. A better solution could be having an adjacency score instead of

a binary decision (adjacent or not).

• The weights from the straight hallway could not be used on other maps. This was caused by

a very low amount of inputs being trained, causing the wheelchairs to run into completely

new readings from the environment, having no knowledge of what actions to take.

One possible issue that could be preventing a higher accuracy is the fact that the agent does

not know when one of the wheelchairs reaches the end. This causes the chair to turn back and

follow the hallway in the opposite direction. This behavior can be observed in the graphs from

Figures 4.14a and 4.15a. In contrast, successful episodes usually happen when both wheelchairs

can directly reach the end at similar times, as it is shown in Figures 4.14b and 4.15b. Adding the

information that one of the IW has reached the end of the DQN input should solve the issue.

4.2.2.3 Comparison between RL and APF

When compared to RL, APF presents very competitive results, since it is very effective under the

right circumstances. Particularly when it comes to the adjacency, it seems to have much better

results. However, before any conclusions are made, one must take into consideration that APF

needs a lot of knowledge about the environment, namely:

• The complete layout of the map to place charges on the obstacles;

• The position of both robots at all times;

• The position of the target area.

In a real scenario, this information will probably not be available, which immediately raises

questions about the adaptability of the algorithm to new scenarios. With RL, on the other hand,

the robot can adapt to new maps, distinct from the ones used during training.
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(a) Failed test (b) Successful test

Figure 4.14: Paths taken by two IW trained to do 90◦ turns, on two tests on the 180◦ left turn (left
wheelchair in blue and right in red, start yellow zone, finish green zone; dots in the lines represent
positions in fixed time steps)

(a) Failed test (b) Successful test

Figure 4.15: Paths taken by two IW trained to do 90◦ turns, on two tests on the 180◦ right curve
(left wheelchair in blue and right in red, start yellow zone, finish green zone; dots in the lines
represent positions in fixed time steps)
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Even if it was to be assumed that all the required information is available, APF offers no

guarantee of working in a new scenario. This can be seen by how it was able to very effectively

complete the straight hallway and the 90◦ turns but, with the same setup, it was not able to complete

a 180◦ turn. While the RL might have shown lower accuracy on average, it was always able to find

some success in new scenarios, showing an ability to learn patterns and adapt to its environment.

In conclusion, RL is much easier to use than APF in unexplored environments since it does

not require any prior knowledge of the map to work. It also has a lot of room for improvement,

either by training for a longer time or tuning learning parameters. These reasons make RL the

best option between the two to perform autonomous navigation to IW since it provides the best

chances to eventually use them in real-life scenarios.

4.3 Conclusions

As there is an increasing necessity for autonomous intelligent wheelchairs, new techniques to

tackle the problem start to appear. RL still offers one of the best answers for this issue.

The main contribution of this work is the application of a DQN to train a single agent to control

two IW for navigation along simulated curved hallways. This allowed for a detailed exploration

of some advantages and obstacles of using this RL algorithm. APF was used as a baseline and

proved to be very effective under the right circumstances but with some major issues that can be

resolved with RL, such as the need to have complete and perfect information on the map, not

being capable of improvement (reactive method) and very low adaptability to new scenarios. With

RL, it was proven that it is possible for the two wheelchairs to successfully navigate through a

map they never used before by learning patterns trained on other maps. As it is common with ML

techniques, tests revealed the trained network to be usable in some other scenarios but usability in

all future scenarios is not ensured.

This second part of the initial work was very valuable to further explore the RL approach for

navigation. Several issues were found during the different scenarios explored with many solutions

being proposed and some of them proving to be very effective. Perhaps as important as the RL

conclusions is the re-interpretation of the problem to use IW. It would not be very productive to

perform most of these tests in real wheelchairs as they would be very time-consuming and costly,

demonstrating the value of using a simulation before using real robots. This proves the value of

the kit being developed for studying real scenarios, despite not including a physical robot.

4.4 Summary

This chapter presented the second part of the initial work that explored path planning using two

IW. It presented all the changes made from the setup presented in Chapter 3 to the simulation

components and the RL setup. It also provided a new set of results from various tests performed

and, by using simulated IW in Flatland, proved the value of using simulations in Robotics to study

real scenarios.
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Chapter 5

Developing a Kit to teach Robot
Learning

This chapter will present the development of a kit that can be used to teach Robot Learning, which

is the main goal of this dissertation. The initial work presented in Chapters 3 and 4 was used

to understand how to develop the best possible framework with the tools available for RL and

Robotics and what is the most effective way to teach it.

The kit developed is meant to be valuable for users with different levels of expertise in Robot

Learning, with the only pre-requisite being some fundamental concepts of programming. It was

designed to guide the user in a sequence of logical steps that provide a simple and replicable

basis for developing Robotics applications that use RL. To explain how the kit was developed, this

chapter will explain the process of creating the framework, designing the tutorials and performing

user tests to evaluate its performance.

5.1 The Kit’s Framework

The kit created has several components that need to work together. There were multiple options

for all of them and each of the choices was made with multiple factors taken into account. This

section will explain the decision process for all the components.

5.1.1 GitHub as a host for the tutorials

By using GitHub as the platform to host the tutorials, several problems are eliminated. Since

this resource is already used by many Computer Science students, there is no need to learn a

new platform and immediately makes the kit very easy to access and share. Each tutorial has

a dedicated repository for the ROS package and the Markdown README file on the main page

is used to display the instructions for the tutorial. The Markdown format is simple to read and

understand the page’s structure, while also being very useful to share terminal commands and

example code snippets.

55
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5.1.2 Virtual Machine

To run the packages provided by the kit on their machine, the user needs to install all the framework

components. This can be a lengthy process and, if errors occur during any of the installations, it

can not only take more time but also become very tedious and frustrating, since the user will need

to search for how to solve the issue. These situations take the focus of the main topic of the

tutorials.

To avoid intimidating the user with the framework setup, especially one that has no experience

in Robotics, a Virtual Machine (VM) for VirtualBox 1 was created that is ready to run the packages

provided by the tutorials. The VM is available through a Google Drive link 2 in the tutorials. The

file can be directly opened in VirtualBox and contains a VM with Ubuntu 22.04.

For someone that will need to use the framework for a prolonged time, its installation is in-

evitable and instructions for it are available at the beginning of the first tutorial. These instructions

try to cover as many potential issues as possible but there are no guarantees that it will work on all

machines.

5.1.3 ROS 2

Unlike the initial work that had to use ROS 1 for reasons that will be explained in Section 5.1.4,

all contents from the kit will be developed under the ROS 2 framework. Using ROS is the best

option since it is expected that it will be the base for most commercial robots in the near future.

Due to its modularity, ROS also promotes good software engineering principles [1].

Other than the possibility of being done in different OSs, none of the new features of ROS

2 will be focused on the tutorials. This means that the kit could also use ROS 1 since, for the

more basic features, they function very similarly. Despite this, ROS 2 is still the best choice as the

end-of-life for ROS 1 is approaching and there is still a lack of learning materials to help with the

transition.

5.1.4 Flatland Simulator

As it was already mentioned, since it is meant to only use a simple differential drive robot, Flatland

was the simulator chosen to be used to develop the kit. At the time the work from Chapters 3 and

4 was done, Flatland was not available in a version that was compatible with ROS 2 which meant

ROS 1 had to be used. When this kit was being developed, a version for Flatland had recently

been released for the latest ROS 2 distribution (Humble) 3.

Flatland is a performance-centric 2D robot simulator and was designed to be a lightweight

alternative to other ROS integrated simulators. It heavily facilitates the framework’s comprehen-

sion for the user since, by removing one of the axes, a 2D simulator simplifies the setup and any

necessary geometrical calculations. It also allows for the simulation to be accelerated without

1https://www.virtualbox.org/
2https://drive.google.com/file/d/1N6N4pSjVlnStYj-vKl02eGlmH9EECybP/view
3https://github.com/JoaoCostaIFG/flatland

https://www.virtualbox.org/
https://drive.google.com/file/d/1N6N4pSjVlnStYj-vKl02eGlmH9EECybP/view
https://github.com/JoaoCostaIFG/flatland
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many performance issues, which is very useful for RL purposes. By improving the performance,

Flatland will allow the kit to work on more machines and to be used inside the VM presented in

Section 5.1.2.

5.1.5 Python Programming Language

To create robot controllers, a programming language that is supported by the framework has to be

chosen. ROS 2 currently offers support for programming both in Python and C++. The decision

for all the tutorials was to use Python and the reasons for that will be explained in this section.

5.1.5.1 Python and C++ comparison

Most of the resources to learn ROS usually offer examples for both Python and C++ and the

ROS 2 documentation follows this pattern. The functioning of ROS packages are very similar for

both and differences mainly come from language-specific syntax or semantics. Since, from the

perspective of teaching ROS, there seems to be very little difference between Python and C++,

this component was not considered in the decision.

In more recent times, Python has been gaining a lot of popularity and is particularly useful for

Computer Science students that are starting to learn how to code, which is one of the major target

audiences for this kit, when compared with other programming languages[55, 3]. When it comes

to packages to work with RL, Python also seems to be gaining an advantage over other alternatives

as more and more new libraries for AI and ML appear[11]. For these reasons, the choice was made

to focus the kit on teaching Python, as it seems that, in the near future, it is going to be an essential

skill to work in the field of Robot Learning.

5.1.5.2 RL packages for Python

When it comes to RL resources in particular, the Gym 4 package developed by OpenAI offers a

simple interface capable of representing environments that can be used to train RL agents. This

is done by providing a class that can be inherited from and serves as a template to create RL

environments. This class emphasizes more fundamental principles of RL, such as observation/ac-

tion spaces and the reward function, instead of algorithm-specific concepts, making it ideal for an

introductory lesson.

The Gym package does not actually provide any of the RL algorithms, but serves as the basis

for many others that do. Some of the compatible packages were already presented in Section

2.3.5, such as Stable-Baselines3 and Keras-RL, the latter being used for the initial work. Using the

Keras-RL package would require the users to build their own NNs which can be too demanding

for new users. Stable-Baselines3 on the other hand provides default parameters for the policy

while also letting a more experienced user create their own. For this reason, when creating the

framework, it was decided to change the RL agent package to Stable-Baselines3. Aside from

4https://www.gymlibrary.dev/

https://www.gymlibrary.dev/
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being more beginner friendly, it also provides a wide range of the most popular algorithms, such

as DQN, PPO or DDPG.

5.2 Tutorials for Robot Learning

The tutorials were created in a way that guides the user through the process of constructing a ROS

2 package for Flatland and eventually uses a RL agent to train a robot to perform a simple task.

This way, the user only needs to have some basic knowledge of Python programming. Each tu-

torial starts by showing the user how to run an example package, also providing visual examples

of the package running by showing images and animations, and then explaining all the relevant

components and files it is using. This is done by showing code snippets and explaining some theo-

retical concepts while providing the user with links to more information on the topics. Throughout

the tutorial, users are presented with some suggestions to try to modify the code and explore the

package for themselves. The code also contains several comments to help understand it.

5.2.1 Tutorial 1 - Teleop Keys

The first tutorial 5 will focus on teaching how to setup a Flatland package for ROS 2. It will also

show how a robot can be controlled through the use of a Python script. The full tutorial is included

in Appendix A.1. After completing the tutorial, the user should be able to:

1. Prepare a machine to develop basic ROS 2 packages with Flatland.

2. Analyse the progress of a virtual robot in 2D simulation with visualization tools.

3. Analyse the code controlling a virtual robot in 2D simulation.

4. Modify the code controlling a virtual robot in 2D simulation.

5.2.1.1 Example package

When the user runs the package, a window with the configured Flatland world will appear, just

like is shown in Figure 5.1. This will show a simple robot inside a map in the shape of a maze 6.

The robot is the same as presented in Section 3.1.1.1 and contains the following Flatland plugins:

• Bumper - Detects collisions and publishes them to a topic.

• Diff Drive - Subscribes to a topic that receives messages to modify the model’s velocity.

• Laser - Simulates a LiDAR sensor and publishes the readings to a topic.

5https://github.com/FilipeAlmeidaFEUP/ros2_teleopkeys_tutorial
6https://en.wikipedia.org/wiki/File:Maze_simple.svg

https://github.com/FilipeAlmeidaFEUP/ros2_teleopkeys_tutorial
https://en.wikipedia.org/wiki/File:Maze_simple.svg
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The eventual goal of the tutorial will be to control it with the keyboard but, initially, the robot

moves forward until it detects a wall in front of it using its radar. When a wall is detected, it

randomly chooses one direction to rotate 90◦, essentially following a random path. If a collision

happens, the robot goes back to its original position.

Figure 5.1: Robot inside a maze in the Flatland window from tutorial 1

Later in the tutorial, the user is asked to run a different ROS 2 package7 in another con-

sole. This package was also created for this tutorial but can be reused for other projects. It reads

keystrokes from the keyboard and publishes them to a ROS Topic. Instructions on how to use this

package are included in Appendix A.2. By changing a Boolean variable inside the robot controller,

it will now subscribe to that topic and the user will be able to control the robot using the arrow or

the WASD keys. If it gets too close to a wall, a warning message appears on the terminal and the

robot moves slower. Just like in the previous scenario, any collisions send the robot to the original

position.

5.2.1.2 Theoretical concepts

This tutorial explains the user how ROS is structured in Nodes and how each of them should have

a singular task. It shows how Nodes communicate between them using either Topics (subscriber

and publisher model) or Services (server and client model). It also reinforces the importance and

value of the modular structure of ROS by showing how it can be used effectively.

5.2.1.3 Practical concepts

This tutorial shows the user how to:

7https://github.com/FilipeAlmeidaFEUP/ros2_teleopkeys_publisher

https://github.com/FilipeAlmeidaFEUP/ros2_teleopkeys_publisher
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• Use ROS 2 launch files to run several nodes.

• Change the Flatland’s launch parameters.

• Create an instance of the class Node in Python.

• Publishing and subscribing to Topics in a Python script using the Node class.

• Make a service request in a Python script using the Node class.

• Use ROS 2 commands to see information about active Nodes, Topics and Services.

• Add new models to the visualization file (ROS RViz file).

• Modify relevant setup files, such as the Python setup and the Extensible Markup Language

(XML) package file.

• Configure Flatland world and layer files.

• Manage Flatland layers.

• Configure Flatland models and their plugins.

• Use plugins such as the ones in the robot from this package.

• Create two separate Nodes that communicate with each other.

• Control a robot in ROS 2 using the keyboard.

The concept of layers makes Flatland essentially a 2.5D simulator since each layer can contain

different components of the world that work independently in terms of physics. This means objects

in different layers will not collide with each other and a Flatland world can only have up to 16

layers. Managing layers can quickly become a very complex task, even for relatively simple

projects. To provide the user some extra help with this task, a Google Slides presentation 8 was

created to demonstrate a method based on Graph Theory to determine the minimum number of

layers necessary in a Flatland world and which components need to interact with them. The full

presentation is included in Appendix A.6.

5.2.1.4 Self-Learning/Autonomous work

By the end of the tutorial, the user is encouraged to attempt to create a new controller for the

robot. As the example package in this tutorial already has a lot of code, it is not very inviting to

make changes. To combat this issue, a template package 9 is also provided. This package has a

similar setup to the one presented, but the Python controller written for the robot only contains a

few commented basic code examples to make the robot:

8https://docs.google.com/presentation/d/1KqJDQR_PBaGtS-kA5KgsTbaRThu_uP2U8NJeoSP
0GDE/edit?usp=sharing

9https://github.com/FilipeAlmeidaFEUP/ros2_flatland_robot_controller

https://docs.google.com/presentation/d/1KqJDQR_PBaGtS-kA5KgsTbaRThu_uP2U8NJeoSP0GDE/edit?usp=sharing
https://docs.google.com/presentation/d/1KqJDQR_PBaGtS-kA5KgsTbaRThu_uP2U8NJeoSP0GDE/edit?usp=sharing
https://github.com/FilipeAlmeidaFEUP/ros2_flatland_robot_controller
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• Move forward.

• Move in a circle.

• Move forward and turn to the right when it finds an obstacle in front of it.

The package also offers other pre-prepared maps along with the maze that the user can choose

from, as can be seen in Figure 5.2. Some of these maps were created to resemble real-life scenarios

to try to captivate the user’s interest in Robotics such as a racetrack 10 and an example of house

plans 11. Instructions on how to use this package are included in Appendix A.3.

(a) Basic map (b) Racetrack (c) House Plans

Figure 5.2: Example maps on the robot controller template package

5.2.2 Tutorial 2 - Reinforcement Learning

The second tutorial 12 focuses on applying RL to a setup very similar to the first one with some

small changes that are also explained. This tutorial serves as an introduction to RL and how to

apply it in Robotics scenarios. The full tutorial is included in Appendix A.4. After completing the

tutorial, the user should be able to:

1. Prepare a machine to run a RL system.

2. Analyse the behavior of a RL agent.

3. Modify the learning parameters of a RL agent.

5.2.2.1 Example package

Right after the package is launched, a RL agent immediately starts training to perform a task and

the Flatland window will look like Figure 5.3. The robot uses the PPO algorithm to learn how to

navigate the hallway turn from one end to the other. The target area is represented by the green

circle, which is a new model added that can detect its distance to the robot (equivalent to the target

beacon from Section 3.1.1.2). Every time the task is restarted, the initial and final positions swap

10https://ru.pinterest.com/pin/ho-slot-car-racing-ho-slot-car-track-layouts-2-a
nd-4lane-race-tracks--637118678514235810/?amp_client_id=CLIENT_ID(_)&mweb_unauth_i
d=&simplified=true

11https://www.roomsketcher.com/house-plans/
12https://github.com/FilipeAlmeidaFEUP/ros2_flatland_rl_tutorial

https://ru.pinterest.com/pin/ho-slot-car-racing-ho-slot-car-track-layouts-2-and-4lane-race-tracks--637118678514235810/?amp_client_id=CLIENT_ID(_)&mweb_unauth_id=&simplified=true
https://ru.pinterest.com/pin/ho-slot-car-racing-ho-slot-car-track-layouts-2-and-4lane-race-tracks--637118678514235810/?amp_client_id=CLIENT_ID(_)&mweb_unauth_id=&simplified=true
https://ru.pinterest.com/pin/ho-slot-car-racing-ho-slot-car-track-layouts-2-and-4lane-race-tracks--637118678514235810/?amp_client_id=CLIENT_ID(_)&mweb_unauth_id=&simplified=true
https://www.roomsketcher.com/house-plans/
https://github.com/FilipeAlmeidaFEUP/ros2_flatland_rl_tutorial
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so the robot learns how to turn to both the left and the right. The task is restarted if it fails if there

are any collisions, if it takes too much time or if it succeeds by reaching the end. The simulation

was also sped up so that it reduces the time needed to learn the task and the user can see the

progress more rapidly. The agent follows the same training strategy from the tests done in the

initial work, by training in batches until a certain accuracy is reached.

Figure 5.3: Robot inside a hallway turn in the Flatland window from tutorial 2

5.2.2.2 Theoretical concepts

This tutorial explains several RL concepts, such as the agent, the environment, the action space,

the observation space, the state, the reward function, the step and the episode. It also explains the

importance of each one and how they all need to be used together to create a RL system.

5.2.2.3 Practical concepts

This tutorial shows the user how to:

• Create a class that inherits from the Env class from the Gym Python package to create a

standard RL environment.

• Initialize the action and observation spaces and the state.

• Override the step, reset, render and close functions from the Env class to define the behavior

of the agent and the environment.

• Use the environment class created to run any RL algorithm from the Stable-Baselines3 pack-

age.
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• Test a trained agent.

• Save and load the weights of a trained agent.

• Define a training strategy to improve the chances of the agent learning the task.

5.2.2.4 Self-Learning/Autonomous work

During the tutorial, the users are presented with the following challenges:

• Trying to improve the reward function to make the agent learn even faster.

• Test different RL algorithms from the ones available in the Stable-Baselines3 package.

• Developing their own RL projects and experimenting with different maps, setups or tasks.

5.2.2.5 RL Setup

As this is meant to be an introductory lesson, the RL setup is a simplified version of the one

developed in Section 3.1.2 that also ensures the agent is capable of learning the task. The PPO

agent uses the Multilayer Perceptron (MLP) Policy 13 and has a learning rate of 3e−4.

The action space is composed of three different actions presented in Table 5.1. The actions

are performed by modifying the robot’s linear and angular velocities for a given time period. The

actions are:

Table 5.1: Robot actions

Action Linear velocity (m/s) Angular velocity (rad/s)
Move forward 0.5 0

Rotate left 0 1.57
Rotate right 0 -1.57

The observation space is given by the robot’s LiDAR sensor. A similar sampling from the one

depicted in Figure 3.3, which proved to be effective, was used but, since the task is simpler and

this is an introductory tutorial, there is no need to make the code more complicated than necessary.

The sampling used consisted in simply dividing the LiDAR into 9 equal sections, and from

each, we get the closest reading. This means that the observation space has a size of nine 9,

with each value representing the closest obstacle in one of the sections. Figure 5.4 illustrates the

sampling process.

The reward function is also a simplified version of previous examples (Section 3.1.2.3). The

function created is presented in Algorithm 3 and respects the following rules were applied:

13https://stable-baselines.readthedocs.io/en/master/modules/policies.html#mlp-pol
icies

https://stable-baselines.readthedocs.io/en/master/modules/policies.html#mlp-policies
https://stable-baselines.readthedocs.io/en/master/modules/policies.html#mlp-policies
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Figure 5.4: Visual representation of the LiDAR sampling strategy in the RL tutorial

• Give a large negative reward to any collisions(line 2).

• Give a large positive reward for reaching the target. The reward reflects how fast the robot

reached the target (line 4).

• Give a large negative reward for exceeding the maximum time to reach the goal (line 6).

• Give a small positive reward for moving forward (line 8).

Algorithm 3 Reward function algorithm
Input:

action - Last action performed
n_steps - Current step
max_steps - Max number of steps in an episode

1: if collided() then
2: reward←−200
3: else if reachedDestination() then
4: reward← 400+max_steps−n_steps
5: else if n_steps > max_steps then
6: reward←−(300+ f orward_reward)
7: else if action = FORWARD then
8: reward← basic_reward
9: else

10: reward← 0
11: return reward
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5.2.2.6 Expected Results

To make sure this setup was able to learn the task, the agent was tested three times and, each

time, the number of steps required and the final accuracy was retrieved. The training was done in

batches of 5000 steps and tested for 20 episodes each time until an accuracy of 0.8 was achieved.

The results of those tests are in Table 5.2 and since the simulation is sped up 10 times (1 step

= 0.1/10 = 0.01 seconds), demonstrate that the agent is capable of training in an acceptable time

for the user to wait.

Table 5.2: Results for the RL algorithm

Test Number Train steps Accuracy
1 35000 0.8
2 20000 0.8
3 45000 1.0

5.2.3 Tutorial 3 - Artificial Potential Fields

The third tutorial 14 shows how the APF algorithm can also be used to perform the same task

from the second tutorial. Additionally, instead of using just one robot, another one was added

and both need to travel side by side. The goal is to present a reactive algorithm, which is another

viable strategy for path planning, as an alternative to RL while also presenting some other different

details about this package that were required for this new setup. The full tutorial is included in

Appendix A.5. After completing the tutorial, the user should be able to:

1. Understand and analyze the behavior of the APF algorithm.

2. Setup their own map to be used with the APF algorithm.

3. Modify the intensity of the charges to adjust the APF algorithm behavior.

5.2.3.1 Example package

When running the package, the user will see a Flatland window that looks like Figure 5.5. Just

like in tutorial 2, the start is at one end of the hallway and the target position is on the other, but

now there are two robots traveling side by side. Collisions or reaching the end, will reset the

environment and switch the starting and target positions. Since APF is a reactive algorithm, the

robot does not need to train and is instantly able to perform the task. The APF algorithm setup is

exactly the same as the one presented in Section 4.1.3.

14https://github.com/FilipeAlmeidaFEUP/ros2_flatland_pf_tutorial

https://github.com/FilipeAlmeidaFEUP/ros2_flatland_pf_tutorial
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Figure 5.5: Two robots inside a hallway turn in the Flatland window from tutorial 3

5.2.3.2 Theoretical concepts

The tutorial explains the basic functioning and purposes of the APF algorithm. It presents Coulomb’s

law (Equation 4.10) that can be used to calculate the forces exerted by repulsive (obstacles) or at-

tractive (target position) charges at any point of the map. It also shows how tension points can be

created using Hooke’s law (Equation 4.13). It explains how Hooke’s law is better to implement

a following behavior since, unlike Coulomb which is an inverse-square law, Hooke is linear and

increases with the distance.

5.2.3.3 Practical concepts

This tutorial shows the user how to:

• Use local Python packages in ROS 2 by adding them to the setup file.

• Use callback methods with multiple arguments for subscribing to Topics in ROS 2.

• Represent the layout of a map with walls as obstacles for the APF algorithm by creating

charges in the shape of line segments.

• Determine the forces generated by line segment charges at any point of the map.

• Use both robots as a singular system to travel to the target position side by side.

• Use tension points to implement a following behavior in a robot.

• Manage the movement limitations of a differential drive robot to still be able to use the APF

algorithm.
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5.2.3.4 Self-Learning/Autonomous work

At the end of the tutorial, the user is presented with the challenge of trying to create a new map.

This means creating a whole new charge layout and adjusting the intensity values, testing how

well the tutorial was able to explain the concept behind the APF algorithm.

5.2.3.5 Expected Results

By running the package without making any changes, the user is expected to see results similar

to the ones in Table 5.3. Each of the turns was tested 20 times and the accuracy and adjacency

indicators (same indicators from Chapters 3 and 4) were retrieved, averaging all the values.

Table 5.3: Results for the APF algorithm

Map Accuracy Adjacency
Right turn 1.0 0.62
Left turn 1.0 0.54

In this specific scenario, the algorithm presents very good results, which might lead the user

to think that is clearly better than using RL. So the tutorial also points out some of the problems

with APF relative to RL, such as requiring perfect knowledge of the map, the robots’ positions

and target location and the need to create a whole new charge layout for every new map.

5.3 Results and Discussion

To ensure that the kit is effective at teaching the subjects it covers, the solution proposed is to per-

form user tests. In these tests, subjects with different backgrounds, but all with some programming

knowledge, were asked to complete the tutorials and then answer a form about their experience.

As testing the entire learning kit would be very time-consuming and finding test subjects that are

available and meet the requirements can be difficult, tutorial 3 was not used in the tests. Tutorials

1 and 2 were considered more important since they are the ones that are essential for the subject

of Robot Learning, while tutorial 3 provides only complementary information. At the end of the

form, the user is asked to answer a short quiz with questions about the different theoretical and

practical concepts presented by the tutorials.

The form was created using Google Forms 15 and mostly asks the subjects for quantitative

feedback, by evaluating a statement in a scale from 1 to 7. Subjects were also asked if there were

any problems running the packages and were given the option of leaving qualitative feedback in

the form of open-ended questions. This will serve to retrieve data that can help understand what

15https://docs.google.com/forms/d/e/1FAIpQLSf4Tfr1wfZtkZ4nsdfKQ6DLCVWZZcqDTL3W1y
jLbXKUXAWSFQ/viewform?usp=sf_link

https://docs.google.com/forms/d/e/1FAIpQLSf4Tfr1wfZtkZ4nsdfKQ6DLCVWZZcqDTL3W1yjLbXKUXAWSFQ/viewform?usp=sf_link
https://docs.google.com/forms/d/e/1FAIpQLSf4Tfr1wfZtkZ4nsdfKQ6DLCVWZZcqDTL3W1yjLbXKUXAWSFQ/viewform?usp=sf_link
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features of the kit are useful and what changes should be made. The full form is included in

Appendix B.1 and the quiz in Appendix B.2. All the answers for both are in Appendix B.3.

The user tests were performed by a total of 12 participants. Out of those 12, only one did not

use the VM provided to follow the tutorials and claimed to have no problems installing the setup

or running the packages. The following sections will describe and analyze the results obtained.

Since this kit has a similar approach as the one developed by Ventuzelos et al.[62], comparisons

between results will be made whenever possible.

5.3.1 Prior Subject Knowledge

To have a better grasp on where each subject stood in terms of knowledge on each of the relevant

topics for the tutorials, they were asked to provide quantitative data that evaluates their experience

before completing the tutorials on each of the following fields: Robotics, ROS 1, ROS 2, Robotic

Simulators, Flatland and RL. The distribution of subjects according to their prior knowledge in

Robotics and on average can be observed in the histograms from Figure 5.6. From the histograms

it is possible to infer that most of them estimate themselves to have a medium to high knowledge

of Robotics (M = 3.17 and SD = 1.47) but those values decrease when all the topics approached

are considered (M = 2.64 and SD = 1.39). This is probably because Robotic applications do not

necessarily imply the usage of all the other components of the kit which demonstrates the diversity

of approaches in the Robotics field.

(a) Distribution per prior knowledge in Robotics (b) Distribution per average prior knowledge

Figure 5.6: Histograms of the distribution of test subjects on their prior knowledge

Although lower prior experience, even among people with knowledge in Robotics, is expected

for some of the less popular components, such as Flatland, ROS is meant to be used as a unifying

structure for Robotic applications [46, 38]. Despite that, histograms from Figure 5.7 show that

prior knowledge for both ROS 1 (M = 2.67 and SD = 1.61) and ROS 2 (M = 2.58 and SD = 1.56)

is considerably lower than for Robotics in general 5.6a. This demonstrates that the adoption of

ROS is not very high despite the crucial role it has in Robotics.

As the user tests for the kit developed by Ventuzelos et al. split their subjects into beginners and

experts, the same was made in this work to facilitate the comparison. To establish the experience of

the subjects, an expertise score that enhances the most relevant topics was determined for each one.
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(a) ROS 1 (b) ROS 2

Figure 5.7: Histograms of the distribution of test subjects on their prior knowledge in ROS

This score was calculated based on prior knowledge of Robotics, ROS 2, ROS in general, Flatland,

RL and overall knowledge, by order of importance. Algorithm 4 demonstrates the process of

calculating this score for each subject and the resulting values (M = 2.69 and SD = 1.38) are in

table 5.4 in descending order.

Algorithm 4 Function to determine the expertise score for each subject
Input:

robotics - Robotics prior knowledge
ros1 - ROS 1 prior knowledge
ros2 - ROS 2 prior knowledge
simulators - Robotic Simulators prior knowledge
f latland - Flatland prior knowledge
rl - RL prior knowledge

1: overall← mean(robotics,ros1,ros2,simulators, f latland,rl)
2: ros← max(ros1,ros2)
3: robotics_ros← mean(ros,robotics)
4: expertise_score← mean(robotics,ros2, f latland,rl,ros,robotics_ros,overall)
5: return expertise_score

Based on the scores calculated, subjects were divided into beginners and experts. To make this

decision, several division criteria were proposed. The first was to divide using the threshold of 3.5

which is half of the maximum possible score (7). The second one was to divide the subjects into 2

equal groups, meaning the 6 higher scores are experts and the rest are beginners. The third option

was to use the mean of the scores (2.69) as the threshold. Table 5.4 shows the divisions on each of

the methods and Table 5.5 shows data of both groups created with each method.

Using a threshold of 3.5, despite there being a big difference in the mean expertise score for

beginners and experts (2.25 and 4.87), which reflects a big knowledge difference between them,

creates very uneven groups in terms of size. Since it only assigned 2 subjects as experts, the sample

size of data would be too small for any valuable comparison with beginners, which was the main

reason why it was discarded. Among the other two options, the subject distribution and the mean

scores are very similar in the two groups but the SD is lower in the method that uses the mean
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Table 5.4: Subjects expertise scores and their evaluation (beginner or experienced) based on dif-
ferent criteria

User Score Division at 3.5 Division in half Division at M
1 5.76 Expert Expert Expert
2 3.98 Expert Expert Expert
3 3.33 Beginner Expert Expert
4 3.26 Beginner Expert Expert
5 3.00 Beginner Expert Expert
6 2.83 Beginner Expert Expert
7 2.79 Beginner Beginner Expert
8 2.24 Beginner Beginner Beginner
9 1.88 Beginner Beginner Beginner
10 1.17 Beginner Beginner Beginner
11 1.00 Beginner Beginner Beginner
12 1.00 Beginner Beginner Beginner

Table 5.5: Number of subjects, M and SD of the beginner and expert groups generated with
different criteria

Division criteria Beginners Expert
Number M SD Number M SD

Division at 3.5 10 2.25 0.93 2 4.87 1.26
Division in half 6 1.68 0.74 6 3.69 1.09
Division at M 5 1.46 0.57 7 3.56 1.05
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score as the threshold, meaning that it provides better clusters. It is important to note that the SD

in the expert groups are always larger due to an outlier score much higher than the average (5.76).

Additionally to that, the difference between the lowest expert and the highest beginner scores in

this method (2.79− 2.24 = 0.55) is much larger than in the result of splitting the subjects into

two groups of the same size (2.83−2.79 = 0.04), providing a much clearer division point. These

reasons resulted in the choice of using the mean of all scores as a threshold to create the expert

and beginner groups that were used in any further analysis. The knowledge on average for each of

the groups by topic can be observed in Figure 5.8.

5.3.2 Prior and Gained Knowledge comparison

The subjects are also asked to provide quantitative data on how much knowledge they perceived

to gain after completing the tutorials in all the same topics from the questions in Section 5.3.1,

with the exception of ROS 1 that was not used in the kit. Figures 5.8 and 5.9 show a direct

comparison between the previous and gained knowledge that was perceived by the subjects. From

these graphs, it is possible to conclude that:

• The overall perceived gained knowledge for experts (M = 3.77 and SD = 1.49) has a higher

SD than the one for beginners (M = 3.32 and SD = 1.21). This is probably due to the value

of the kit depending on the type of prior experience in Robotics for expert users.

• Flatland had the lowest prior experience on average and had one of the highest scores in

gained knowledge. This is expected since it had a lot more room for improvement.

• Unlike Flatland, RL, which also had one of the lowest prior knowledge, had the lowest

scores in gained knowledge.

• Both Robotics and Robotics simulators scored some of the lowest values in perceived gained

knowledge. This might be due to being more generic topics and having a wider range of

material to be explored.

• The highest gained knowledge overall was for ROS 2. One of the main contributing factors

for this probably was the animations of the ROS 2 structure, provided by the documentation,

that are recommended by the first tutorial.

Despite these small details, results for the perceived gained knowledge are overall (M = 3.58

and SD = 1.24) very positive. On average, both beginner and expert subjects seemed to retrieve

some value out of the tutorials in all the topics addressed.

One other important detail to point out is that, somewhat surprisingly, expert subjects claim

to gain more knowledge than beginners. This is counter-intuitive since it was to be expected that

beginners would have more to learn, therefore retrieving more value from the kit. The graph in

Figure 5.10 demonstrates a possible explanation. It is possible to observe that the gained knowl-

edge seems to peak for users with a medium prior knowledge level, which is where a lot of the
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Figure 5.8: Bar graph of the prior knowledge by topic

Figure 5.9: Bar graph of the perceived gained knowledge by topic
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expert users fall under, and decreases outside that range. This appears to point out that the subjects

who can retrieve the most value from the kit are the ones with some prior experience in Robotics

since it helps to understand the topic presented on first contact while still having a lot to learn.

Figure 5.10: Plot graph comparing the prior and perceived gained knowledge of all subjects

5.3.3 Learning Outcomes

Regarding the learning outcomes presented in Sections 5.2.1 and 5.2.2, subjects were asked to

give quantitative feedback on each of them. The results from the learning outcomes for the Teleop

keys tutorial are in Table 5.6 and Figure 5.11 and the ones for the RL tutorial are in Table 5.7 and

Figure 5.12. Some conclusions can be drawn from these results:

• Only 1 out of the 12 subjects claimed to have problems running the packages. This is

consistent with the overall positive results obtained on the outcomes.

• There seems to be no significant distinction between the two groups, showing the tutorials

can be followed by both beginners and experts.

• The SD values appear to be low in most cases, with the only notable exception being the first

on the Teleop keys tutorial, relative to the preparation of the ROS 2 and Flatland package

• The outcomes that seem to score the lowest on average are the ones that require the subject

to modify the code. As they require more effort, it is possible that better guidance in the

tutorials could help.

As the analysis in this section is very close to the one done by Ventuzelos et al., using the same

learning outcomes, a comparison was made with their results. Both sets of experiments present

positive values with high means and low SDs. In both scenarios, prior knowledge of Robotics
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Table 5.6: Results for the learning outcomes for the Teleop keys tutorial

Group Value Learning Outcome
1 2 3 4

Beginner M 5.60 5.20 5.00 4.00
SD 1.34 1.10 1.00 0.71

Expert M 5.57 5.43 5.00 5.00
SD 1.51 1.13 1.15 1.29

Overall M 5.58 5.33 5.00 4.58
SD 1.38 1.07 1.04 1.16

Figure 5.11: Bar graph of the results for the learning outcomes for the Teleop keys tutorial

Table 5.7: Results for the learning outcomes for the RL tutorial

Group Value Learning Outcome
1 2 3

Beginner M 6.00 5.40 4.80
SD 0.71 0.89 1.10

Expert M 5.57 5.14 5.00
SD 1.27 1.07 1.00

Overall M 5.75 5.25 4.92
SD 1.06 0.97 1.00
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Figure 5.12: Bar graph of the results for the learning outcomes for the RL tutorial

seems to not have any considerable influence on the results. Ventuzelos et al. claimed that there

were problems for the subjects in setting up the RL environment, causing worse results in some of

the learning outcomes. This kit, on the other hand, takes advantage of a simpler and more intuitive

RL framework which seems to resolve most of these issues.

5.3.4 Difficulty and Explanation Quality comparison

Another part of the quantitative data collected was regarding the more theoretical concepts present

in the tutorials. For the main components of the kit, ROS 2, Flatland and RL, subjects were asked

to evaluate how difficult several concepts from each one were. The results for these questions are

displayed in Figure 5.13. Additionally, they were asked how well did they perceive those concepts

to be explained in the tutorials. The results for these questions are displayed in Figure 5.14. These

results show that:

• In terms of difficulty, subjects considered the hardest topic to be RL (M = 3.69 and SD =

1.37) and the easiest to be ROS 2 (M = 3.11 and SD = 1.42). Compared to the perceived

gained knowledge, previously explored in Section 5.3.2, subjects claimed that they gained

the most expertise in ROS 2 and the least in RL. This demonstrates that the harder the topic

is to grasp, the more difficult it is to retain that information from the tutorials.

• Overall beginner subjects seem to perceive the topics as being harder to understand in gen-

eral (M = 3.61 and SD = 1.67) compared to experts (M = 3.28 and SD = 0.83).

• When analyzing how well the subjects perceived the topics to be explained, there seems to

not be any major differences between beginners (M = 4.90 and SD = 0.87) and experts (M

= 4.96 and SD = 1.24).
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• Overall feedback for how well the topics were explained is very positive (M = 4.93 and SD

= 1.06).

• For the explanation quality evaluations, SD was overall low with ROS 2 being the exception

(M = 5.00 and SD = 1.41). This is probably due to it being a very extensive topic and

the tutorials often linked to its documentation to help explain the concepts. The perception

of how well it was explained might depend on the subject’s willingness to go through the

documentation.

• There seems to be a direct correlation between the overall perceived explanation quality

and the perceived gained knowledge, as can be observed in Figure 5.15. The trend line on

the graph shows that the better the subjects perceived the information was explained in the

tutorials, the more value they claim to have gathered from the kit.

Figure 5.13: Bar graph of how difficult the subjects perceived the topics to be

5.3.5 Qualitative Feedback

The form also asked subjects to give some qualitative feedback in the form of open-ended ques-

tions. Some suggestions regarding the tutorials were to try to make them more interactive with

videos or games. This seems to be consistent with the previous observation (Section 5.3.2) claim-

ing that animations of the ROS 2 structure provided by the documentation appeared to help its

comprehension.

For the Google Slides presentation on how to manage Flatland layers, subjects considered the

method presented to be difficult to understand. The slideshow uses a complex layer graph as an

example that shows what to do in every possible scenario that can be encountered. Although this

more complex scenario is necessary to cover all basis, there should also be a simpler example to

provide the viewer with a softer introduction to the method.
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Figure 5.14: Bar graph of how well the subjects perceived the topics to be explained in the tutorials

Figure 5.15: Plot graph comparing how well the subjects perceived the topics to be explained in
the tutorials with their perceived gained knowledge with a trend line



78 Developing a Kit to teach Robot Learning

Subjects that had prior experience in ROS 1 were also asked to give their opinion of what they

thought were the main differences when using ROS 2. The ones that also had prior experience

with ROS 2 claimed that "ROS 2 is slightly easier and more intuitive from a beginner perspective,

however, it is more difficult to transition from ROS 1 to ROS 2" and, for some of them, one of the

most valuable new features was being "supported on Windows and macOS". Since the tutorials

do not use most of the new ROS 2 features, subjects with no prior experience with it said that it

"seemed similar to ROS 1".

5.3.6 Quiz results

To be able to compare the subjects’ perception of how much they learned from the tutorials with

a more objective evaluation, at the end of the form, subjects are asked to answer a short quiz.

The quiz contains a total of 12 multiple choice questions divided into 3 sections, one for each

of the major topics, which are ROS 2, Flatland and RL. As the questions are meant to prioritize

evaluating comprehension over memorization, the subjects were instructed that consultation is

allowed, whether that be the tutorials or any documentation. The results from the answers to that

quiz are displayed in Tables 5.8 and 5.9 and in the bar graph in Figure 5.16. The score of each

subject is determined by the fraction of questions correctly answered. Some of the main takeaways

from these results are:

• Even though the subjects were able to mostly answer correctly, the overall score can still be

improved. This means that there is still room to complement the learning process either by

revisiting the tutorials or consulting other materials.

• Experts scored much higher on average than beginners on all topics. This demonstrates that

prior experience has a lot of influence on these results and beginners may need more time

with the kit to be better acquainted with the concepts.

• Beginners also have much higher SD values compared to experts. This is expected since

for beginners this is their first experience with most of the components of the kit and their

individual scores will greatly depend on their ability to learn on first contact.

• The question that the least subjects were able to correctly answer was the first question on

the Flatland section that is related to the concept of layers. As was already mentioned in

Section 5.2.1.3, this is one of the most difficult concepts to understand in Flatland.

• Subjects seem to have a good understanding of what is a RL agent is, since they were mostly

capable of answering the question about it (RL section, question 4). The question about the

RL environment (RL section, question 2) appeared to be much harder to get right. The

probable cause for this is that it is possible to interpret the robot in the tutorial as the agent,

which helps in understanding it. The most intuitive thing is to equate the environment to the

map where the robot is. The issue is that this is not an accurate way of understanding a RL

environment.
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• Beginners had their highest scores on average on the RL sections while experts performed

the best in the ROS 2 section.

• Even though the sample size is small, the distribution of the subjects’ scores seems to follow

a standard normal distribution. This phenomenon can be observed in the histogram in Figure

5.17.

• In the plot in Figure 5.18 it is possible to observe that the subjects either considered the

topics very simple or very hard to understand scored the lowest in the quiz. This probably

happens because the ones that considered the concepts easy, might not have actually grasped

their complexity, leading to a false sense of confidence, while the ones who considered

them very difficult probably struggled to understand them. Subjects with the best scores

tend to consider the topics somewhat difficult probably due to better comprehension of their

nuances.

• It appears that the subjects were not very effective in self-evaluating how much they learned

with the kit. This is possible to verify in the plot graph in Figure 5.19, where the perceived

gained knowledge seems to not be correlated with the quiz scores. It is possible that answer-

ing the quiz gave subjects more awareness of how much information they retained from the

tutorials so this question should also have been asked after.

Table 5.8: Fraction of subjects that correctly answered each question

Topic Question Beginners Experts Overall

ROS 2

Q1 0.60 0.86 0.75
Q2 0.40 0.86 0.67
Q3 0.00 0.57 0.33
Q4 0.00 0.71 0.42

Flatland

Q1 0.20 0.00 0.08
Q2 0.40 0.86 0.67
Q3 0.60 1.00 0.83
Q4 0.20 0.57 0.42

RL

Q1 0.40 0.43 0.42
Q2 0.00 0.57 0.33
Q3 0.60 0.86 0.75
Q4 0.60 0.86 0.75

5.4 Conclusions

As IR appears to be an evergrowing field of research in the present day, the demand for tools

and alternatives to teaching it increases. This work set out to develop a kit that could provide a
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Table 5.9: Overall results of the quiz scores

Group Value Topic
ROS 2 Flatland RL Total

Beginner M 0.25 0.35 0.40 0.33
SD 0.25 0.42 0.29 0.26

Expert M 0.75 0.61 0.68 0.68
SD 0.20 0.20 0.24 0.16

Overall M 0.54 0.50 0.56 0.53
SD 0.33 0.32 0.28 0.26

Figure 5.16: Bar graph of the overall scores on the quiz

Figure 5.17: Histogram of the distribution of the quiz scores
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Figure 5.18: Plot graph comparing the overall perceived difficulty and the quiz score of all subjects

Figure 5.19: Plot graph comparing the overall perceived gained knowledge and the quiz score of
all subjects with a trend line
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teaching environment for Robot Learning inside a simulator that would benefit users with different

backgrounds. The kit was designed to be simple and intuitive to use with its framework only taking

advantage of open-source free software, meaning there are no costs associated with its usage. The

tutorials that are contained in it provide its users with relevant examples of Robotic applications,

such as keyboard control and autonomous navigation using RL or APF, explained in detail how

each of them can be achieved.

The user tests were conducted by users with different levels of expertise in Robotics. These

tests demonstrated that, although prior experience had an impact on the interaction with it, it was

not a deciding factor on whether it was possible to get value from the kit. The main learning

outcomes the tutorials were trying to achieve were effective for almost all subjects tested and

overall knowledge of practical and theoretical concepts seem to have improved. Although there

are still details that could be improved, it is possible to claim that the kit received generally very

positive feedback and reached most goals it set out to accomplish.

5.5 Summary

This chapter demonstrated the development of the learning kit. It started by explaining the process

of developing the framework and then presented the tutorials developed. Finally, it displayed all

the results produced by the user tests performed on the kit and concluded that the feedback was

very positive overall.



Chapter 6

Conclusions and Future Work

This chapter will present the conclusions relative to this dissertation and answer the research ques-

tions proposed in Section 1.4. It will also propose some possible future work to build upon the

current state of the kit developed.

6.1 Conclusions

The main goal for this project was to develop a kit that could be used to teach Robot Learning

that could be used in various stages of education. As it currently stands, the kit has proven to be

effective for users with different backgrounds and levels of expertise. It provides a very detailed

introduction to concepts related to Robotics and RL and could serve as a reliable foundation in the

process of learning IR. The kit can be used as a self-learning tool, as it is designed in a way that

allows its users to follow its tutorials autonomously, but it can also be used to complement existing

Robotics courses.

To be able to answer research question 1, test subjects were divided into experts and beginners.

Tests showed that prior knowledge of the topics seems to impact the way some of the subjects

interacted with the tutorial but also that it was not a relevant factor in how much value they were

able to get from the tutorials. For beginners, they serve as an introduction to IR and for more

experienced users it is helpful to expand their knowledge in the field.

In regards to research question 2, it seemed clear that, to an extent, self-learning is a viable

option for students to be introduced to IR. The tested subjects were able to acquire basic knowledge

of many important components of Robot Learning while working autonomously. But it is also

important to acknowledge that there is still a need for in-person classes and courses, specifically

when it comes to explaining more theoretical concepts.

As discussed in Section 5.3.2, subjects that had a medium prior experience level in the topics

covered by the tutorials, seemed to be the ones who benefited the most from the kit. This provides

a good answer for research question 3, demonstrating that the kit provides the most value when

used to augment the knowledge and connect all the concepts. Although it is perfectly possible to

83



84 Conclusions and Future Work

teach Robotics, ROS 2 and RL simultaneously, providing separate introductions for each of the

fields appears to be the best course of action for better results.

6.2 Future Work

Despite the positive feedback, several improvements can still be made to the current contents of

the kit. Furthermore, the scope of the topics addressed can also be expanded and new features

could be added to allow for a better learning process.

Regarding the simulation in Flatland, the working version for ROS 2 used in the kit is currently

a separate branch from the original Flatland repository. In the future it would be advantageous if

this branch was merged with the main one so that any future updates would be available for the

ROS 2 version as well. In that case, installation instructions for Flatland would have to be updated

in the tutorials.

Despite the tutorials receiving positive feedback, some modifications could be made to the

tutorials to make them more user-friendly. The ROS 2 documentation uses animations to represent

its structure, which some test subjects used to improve the learning process. The tutorials could

also contain a more appealing interface with more animations and videos or even some interactive

exercises.

One type of scenario that was studied in Chapter 4 but never directly discussed in any of the

tutorials is the idea of using the simulation to depict real-life Robotic applications. If new tutorials

are added in the future, this could be interesting to explore since it could motivate the user by

showing real-life scenarios, such as IW or autonomous robot vacuum cleaners. New tutorials could

also present more technical challenges in conjunction with providing more appealing scenarios.

A lot of other interesting features from Flatland and ROS 2 could be explored but perhaps the

area that needs more follow-up after the tutorials is RL. In the introductory tutorial, users are told

that knowing how the RL algorithms work is not necessary to build the environment and train

the agent, which is possible thanks to the Stable-Baselines3 package providing default policies.

To have a complete curriculum in Robot Learning, a more in-depth knowledge of RL is required

than the one provided, meaning new tutorials could be created to teach users how different RL

algorithms work and how to tune all their parameters and policies.

For now, user tests have been made with a total of 12 subjects. Although a lot of interesting

patterns seem to emerge, the sample size is not large enough to be completely sure of some con-

clusions proposed based on the results. Further testing would be advisable to be able to assess the

kit’s quality more accurately, including tests for the APF tutorial as well. Since most participants

had an education level of a bachelor’s degree or above, it would also be important to try to validate

the usage of the kit with students below the University education level.

Another important addition to increasing the scope of the kit could be to include a physical

robot. This would be very valuable since it would allow for the addition of a tutorial that helps the

users transition from simulation to reality. It is possible to either attempt to develop a new robot

or to re-purpose a preexisting one, such as the options presented in Section 2.8. In this situation,
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the robot in the simulation would resemble the real one. One very interesting possibility with this

setup would be to prepare a tutorial that would have the user create a real map for the robot, take a

picture of that map and use the image to recreate the scenario in Flatland. After using RL to train

the robot to perform a task in the simulation, the user would try to test the agent with the physical

robot map created.
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Appendix A

Robot Learning tutorials

A.1 Flatland Teleop keys Tutorial using ROS 2

This appendix contains the full Teleop keys Tutorial presented in Section 5.2.1 which is also

available at https://github.com/FilipeAlmeidaFEUP/ros2_teleopkeys_tutoria

l.

Videos with examples from this tutorial are available at https://github.com/FilipeA

lmeidaFEUP/dissertation_videos/tree/main/teaching_robot_learning_in_

ros2/teleop_keys_tutorial.

87

https://github.com/FilipeAlmeidaFEUP/ros2_teleopkeys_tutorial
https://github.com/FilipeAlmeidaFEUP/ros2_teleopkeys_tutorial
https://github.com/FilipeAlmeidaFEUP/dissertation_videos/tree/main/teaching_robot_learning_in_ros2/teleop_keys_tutorial
https://github.com/FilipeAlmeidaFEUP/dissertation_videos/tree/main/teaching_robot_learning_in_ros2/teleop_keys_tutorial
https://github.com/FilipeAlmeidaFEUP/dissertation_videos/tree/main/teaching_robot_learning_in_ros2/teleop_keys_tutorial














94 Robot Learning tutorials

A.2 Teleop keys Keystroke Publisher for ROS 2

This appendix contains the instructions to install and use the Keystroke Publisher for ROS 2 (used

in the Teleop keys tutorial) which are also available at https://github.com/FilipeAlmei

daFEUP/ros2_teleopkeys_publisher.

https://github.com/FilipeAlmeidaFEUP/ros2_teleopkeys_publisher
https://github.com/FilipeAlmeidaFEUP/ros2_teleopkeys_publisher
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A.3 Base robot controller for ROS 2 and Flatland

This appendix contains the instructions to install and use the base robot controller for ROS 2 and

Flatland (used in the Teleop keys tutorial) which are also available at https://github.com/F

ilipeAlmeidaFEUP/ros2_flatland_robot_controller.

Videos of the examples provided are available at https://github.com/FilipeAlmei

daFEUP/dissertation_videos/tree/main/teaching_robot_learning_in_ros2

/base_controller.

https://github.com/FilipeAlmeidaFEUP/ros2_flatland_robot_controller
https://github.com/FilipeAlmeidaFEUP/ros2_flatland_robot_controller
https://github.com/FilipeAlmeidaFEUP/dissertation_videos/tree/main/teaching_robot_learning_in_ros2/base_controller
https://github.com/FilipeAlmeidaFEUP/dissertation_videos/tree/main/teaching_robot_learning_in_ros2/base_controller
https://github.com/FilipeAlmeidaFEUP/dissertation_videos/tree/main/teaching_robot_learning_in_ros2/base_controller
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A.4 Flatland Reinforcement Learning Tutorial using ROS 2

This appendix contains the full Reinforcement Learning Tutorial presented in Section 5.2.2 which

is also available at https://github.com/FilipeAlmeidaFEUP/ros2_flatland_rl_

tutorial.

Videos with examples from this tutorial are available at https://github.com/FilipeA

lmeidaFEUP/dissertation_videos/tree/main/teaching_robot_learning_in_

ros2/reinforcement_learning_tutorial.

https://github.com/FilipeAlmeidaFEUP/ros2_flatland_rl_tutorial
https://github.com/FilipeAlmeidaFEUP/ros2_flatland_rl_tutorial
https://github.com/FilipeAlmeidaFEUP/dissertation_videos/tree/main/teaching_robot_learning_in_ros2/reinforcement_learning_tutorial
https://github.com/FilipeAlmeidaFEUP/dissertation_videos/tree/main/teaching_robot_learning_in_ros2/reinforcement_learning_tutorial
https://github.com/FilipeAlmeidaFEUP/dissertation_videos/tree/main/teaching_robot_learning_in_ros2/reinforcement_learning_tutorial
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A.5 Flatland Artificial Potential Fields Tutorial using ROS 2

This appendix contains the full Artificial Potential Fields Tutorial presented in Section 5.2.3 which

is also available at https://github.com/FilipeAlmeidaFEUP/ros2_flatland_pf_

tutorial.

Videos with examples from this tutorial are available at https://github.com/FilipeA

lmeidaFEUP/dissertation_videos/tree/main/teaching_robot_learning_in_

ros2/artificial_potential_fields_tutorial.

https://github.com/FilipeAlmeidaFEUP/ros2_flatland_pf_tutorial
https://github.com/FilipeAlmeidaFEUP/ros2_flatland_pf_tutorial
https://github.com/FilipeAlmeidaFEUP/dissertation_videos/tree/main/teaching_robot_learning_in_ros2/artificial_potential_fields_tutorial
https://github.com/FilipeAlmeidaFEUP/dissertation_videos/tree/main/teaching_robot_learning_in_ros2/artificial_potential_fields_tutorial
https://github.com/FilipeAlmeidaFEUP/dissertation_videos/tree/main/teaching_robot_learning_in_ros2/artificial_potential_fields_tutorial






















A.6 Managing Layers in Flatland Presentation 121

A.6 Managing Layers in Flatland Presentation

This appendix contains the full Google Slides presentation on how to manage layers in Flatland

which is also available at https://docs.google.com/presentation/d/1KqJDQR_PBa

GtS-kA5KgsTbaRThu_uP2U8NJeoSP0GDE/edit?usp=sharing.

https://docs.google.com/presentation/d/1KqJDQR_PBaGtS-kA5KgsTbaRThu_uP2U8NJeoSP0GDE/edit?usp=sharing
https://docs.google.com/presentation/d/1KqJDQR_PBaGtS-kA5KgsTbaRThu_uP2U8NJeoSP0GDE/edit?usp=sharing
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Appendix B

User Tests

This appendix contains the full Form and Quiz answered by the test subjects as well as the answers

each one gave.

B.1 Kit Evaluation Forms
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B.2 Quiz
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B.3 Form and Quiz answers

Table B.1: Form questions numbered (1/3)

Type Question N
Multiple
Choice

What is your current education level? (Highest degree you have already
obtained)

1

Before completing the tutorials, how much experience did you have in the
following areas:
Robotics 2
ROS 1 3
ROS 2 4
Simulators 5
Flatland 6
RL 7
After completing the tutorials, how much do you think you have learned in
the following areas:
Robotics 8
ROS 1 9
ROS 2 10

1 - 7 Simulators 11
Eval Flatland 12

RL 13
How difficult was to install and setup the pre-requisites?
Install ROS 2 Humble 14
Setup Workspace 15
Install Flatland 2 16
Stable-Baselines3 17
How useful did you find this tutorial to fulfill the following goals? (tutorial
1)
Prepare a machine to develop basic ROS 2 packages with Flatland. 18
Analyse the progress of a virtual robot in 2D simulation with visualiza-
tion tools.

19

Analyse the code controlling a virtual robot in 2D simulation. 20
Modify the code controlling a virtual robot in 2D simulation. 21
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Table B.2: Form questions numbered (2/3)

Type Question N
How easy do you think these subjects are to understand? (tutorial 1)
ROS 2 Node structure 22
ROS Topics and Services 23
ROS 2 launch file 24
Flatland worlds 25
Flatland layers 26
Flatland models and plugins 27
How well do you think these subjects were explained in the tutorials? (tu-
torial 1)
ROS 2 Node structure 28
ROS Topics and Services 29
ROS 2 launch file 30
Flatland worlds 31
Flatland layers 32

1 - 7 Flatland models and plugins 33
Eval How useful did you find this tutorial to fulfill the following goals? (tutorial

2)
Prepare a machine to run a reinforcement learning system. 34
Analyse the behavior of a reinforcement learning agent. 35
Modify the learning parameters of a reinforcement learning agent. 36
How easy do you think these subjects are to understand? (tutorial 2)
RL Agent 37
RL Environment 38
State and Action spaces 39
Steps and Episodes 40
How well do you think these subjects were explained in the tutorials? (tu-
torial 2)
RL Agent 41
RL Environment 42
State and Action spaces 43
Steps and Episodes 44
How simple was it to understand the method to determine the layers? 45
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Table B.3: Form questions numbered (3/3)

Type Question N
Did you use the VM to follow the tutorials? 46
Were you able to run the package and see the robot move on its own? 47
Were you able to run the second node to read keystrokes and control the
robot with the keyboard?

48

Yes/No Were you able to run the package? 49
Were you able to train the robot to complete the task? 50
Did you read the slideshow? 51
Do you have any prior experience using ROS 1? 52
Do you have any suggestions to improve the tutorial or problems you
ran into while doing it? (tutorial 1)

53

Open
Ended

Do you have any suggestions to improve the tutorial or problems you
ran into while doing it? (tutorial 2)

54

Do you have any suggestions to improve the slideshow? 55
What are the main differences you encountered between using ROS 1
and ROS 2? Do you think any of them is better or easier to use?

56

Table B.4: Form answers to multiple choice and yes/no questions

Subject Question
1 46 47 48 49 50 51 52

1 Master’s degree Yes Yes Yes Yes Yes Yes Yes
2 Bachelor’s degree Yes Yes Yes Yes Yes Yes No
3 Master’s degree Yes Yes Yes Yes Yes No Yes
4 Bachelor’s degree Yes Yes No Yes Yes No No
5 Master’s degree Yes Yes Yes Yes Yes Yes No
6 Master’s degree Yes Yes Yes Yes Yes Yes No
7 Bachelor’s degree Yes Yes Yes Yes Yes Yes Yes
8 Master’s degree Yes Yes Yes Yes No No Yes
9 Master’s degree No Yes Yes Yes Yes Yes No

10 Grade 12 Yes Yes Yes Yes Yes Yes Yes
11 Master’s degree Yes Yes Yes Yes Yes No No
12 Master’s degree Yes Yes Yes Yes Yes Yes Yes
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Table B.5: Form answers to 1 - 7 evaluation questions (1/2)

Q Subject
1 2 3 4 5 6 7 8 9 10 11 12

2 5 3 3 1 4 5 3 4 1 4 1 4
3 6 3 2 1 1 2 3 4 1 4 1 4
4 5 3 2 1 1 2 5 2 1 4 1 4
5 6 3 2 1 1 5 3 4 1 3 1 4
6 7 3 2 1 2 1 1 3 1 4 1 1
7 6 2 2 1 1 3 2 3 1 4 2 1
8 1 3 5 2 4 5 1 5 2 3 4 6
9 1 4 5 1 3 4 1 1 2 3 1 6
10 4 4 5 3 3 4 1 5 3 4 5 6
11 1 4 5 2 3 5 2 4 2 4 3 6
12 1 3 5 2 4 4 4 6 2 5 4 6
13 2 2 5 1 2 3 3 5 3 4 4 6
14 - - - - - - - - 2 - - -
15 - - - - - - - - 2 - - -
16 - - - - - - - - 2 - - -
17 - - - - - - - - 2 - - -
18 6 3 5 7 7 6 4 7 4 6 5 7
19 5 4 4 6 6 6 4 6 4 6 6 7
20 5 4 5 6 4 5 4 6 4 4 6 7
21 5 3 5 5 4 5 4 6 3 5 4 7
22 3 2 6 6 1 3 2 5 2 4 2 2
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Table B.6: Form answers to 1 - 7 evaluation questions (2/2)

Q Subject
1 2 3 4 5 6 7 8 9 10 11 12

23 2 2 5 6 2 3 2 5 2 4 2 2
24 2 2 6 2 1 4 2 5 2 4 5 2
25 4 2 6 3 4 4 3 4 2 2 4 2
26 6 2 5 5 1 4 3 4 2 1 5 2
27 5 2 5 5 3 5 3 5 1 3 5 2
28 4 4 6 1 6 5 2 6 6 6 6 6
29 3 4 5 1 6 5 3 6 7 7 7 6
30 3 4 5 6 7 5 4 6 6 7 3 6
31 2 4 5 5 7 5 5 6 6 7 4 6
32 2 4 5 5 5 5 5 6 4 6 4 6
33 2 4 5 5 4 5 5 6 6 6 5 6
34 5 3 6 6 7 6 6 7 6 6 5 6
35 5 3 5 5 7 5 5 6 5 6 5 6
36 5 3 6 5 5 5 5 6 5 5 3 6
37 3 3 6 5 1 4 4 4 4 3 4 4
38 5 3 5 5 1 5 4 4 4 3 2 4
39 5 2 5 7 1 4 5 4 4 1 3 4
40 4 2 5 6 1 4 5 4 4 1 2 4
41 4 4 6 3 6 5 5 6 4 6 4 6
42 4 4 6 3 6 5 5 6 4 6 4 6
43 4 3 5 1 6 3 6 6 4 7 5 6
44 5 3 4 4 5 3 6 6 4 7 6 6
45 6 4 - - 3 3 5 - 5 3 - 4
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Table B.7: Form answers to open ended questions

Subject Q Question

1
53 Consider reading up on python package structure and the usage of the

__init__.py file.
55 Simplify it somehow.
56 The main differences relate to QoS features in messages, launch file

structure, node initialization and the decentralized architecture of ROS2.
ROS2 is slightly easier and more intuitive from a beginner perspective,
however it’s more difficult to transition from ROS1 to ROS2. Addition-
ally, this question is in no way relevant to your work, as it only deals
with ROS2, providing no solid comparison to ROS1.

8 53 I’m lazy. I’d like to have something more interactable to learn like
youtube videos or games.

10 56 Ros 2 is supported on windows and macOs that fact for me helps a lot
in my workspace .

12 56 It was the first and only time I used ROS2, seemed similar to ROS1
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Table B.8: Quiz questions and correct answers

Topic Question Right answer

ROS 2

Q1 If you make modifications in one of your pack-
ages, inside which folder do you need to run
the command to build the changes?

1 Workspace folder

Q2 Imagine you are developing a controller for a
robot and need to know its position but only
when a collision with a wall is detected. The
most efficient way for the robot to share this
information is to use a:

1/4 ROS Service/ROS
Topic

Q3 What should be used to communicate with a
Node that only has the task of controlling the
speed of a motor in a robot?

1 ROS Topic

Q4 Which statement is false about ROS Nodes: 2 Nodes can only
communicate with
other Nodes that
were launched by
the same launch file.

Flatland

Q1 The image that is used to represent the walls of
the map needs to be sourced in which file?

1 Layer file

Q2 In the following layer setup:
Robot 1 -> Layer 1, Layer 3
Robot 2 -> Layer 2, Layer 3
Robot 3 -> Layer 2
Which robots collide with each other?

1 Robot 1 collides
with 2, Robot 2
collides with 3.

Q3 In the following layer setup:
Robot 1 -> Layer 1, Layer 3
Robot 2 -> Layer 2, Layer 3
Robot 3 -> Layer 2
Laser -> Layer 2, Layer 3
The Laser detects:

1 All the Robots.

Q4 Which of these Flatland plugins subscribes to a
topic?

1 Diff Drive

RL Q1 The possible actions for any given state are de-
fined by the:

1 Environment

Q2 When a final state is reached, this means that: 1 The environment
needs to be reset to
an initial state.

Q3 Considering the concepts of step and episode
in reinforcement learning, which of these state-
ments is false?

1 Each episode needs
to have the same
number of steps.

Q4 Each algorithm defines its own policy to decide
which action to take based on the state. The
entity that makes this decision is also known as
the:

1 Agent



176 User Tests

Table B.9: Quiz answers

Topic Question Subject
1 2 3 4 5 6 7 8 9 10 11 12

ROS 2

Q1 1 - 1 1 4 1 1 1 - 1 1 1
Q2 1 3 - 4 3 4 4 4 - 4 1 1
Q3 1 1 3 4 2 4 1 4 - 3 3 1
Q4 2 2 4 1 - 2 2 3 - 2 - 3

Flatland

Q1 3 2 4 3 2 3 3 3 - 2 1 3
Q2 1 3 - 1 2 1 1 1 2 1 1 1
Q3 1 1 4 1 1 1 1 1 - 1 1 1
Q4 1 3 2 - - 3 1 1 - 1 1 3

RL

Q1 1 4 3 2 1 2 2 2 2 1 1 1
Q2 - 1 3 4 4 4 1 4 - 1 4 1
Q3 4 1 - 1 1 1 1 1 - 1 1 1
Q4 1 3 1 1 1 1 1 1 - 1 2 1
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