
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Last-Mile Delivery Problem
Representation in Reinforcement

Learning

Clara Alves Martins

Mestrado em Engenharia Informática e Computação

Supervisor: Prof. Rosaldo J. F. Rossetti

Second Supervisor: Zafeiris Kokkinogenis

July 28, 2023





Last-Mile Delivery Problem Representation in
Reinforcement Learning

Clara Alves Martins

Mestrado em Engenharia Informática e Computação

Approved in oral examination by the committee:

Chair: Prof. Ana Paula Cunha da Rocha
External Examiner: Prof. Alberto Fernández Gil
Supervisor: Prof. Rosaldo J. F. Rossetti

July 28, 2023





i

This work is a result of project DynamiCITY: Fostering Dynamic Adaptation of Smart Cities
to Cope with Crises and Disruptions, with reference NORTE-01-0145-FEDER-000073, supported
by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020
Partnership Agreement, through the European Regional Development Fund (ERDF).



ii



Abstract

The last-mile delivery problem refers to the final phase of the delivery process, the item’s trip
between the last warehouse and the customer’s house. Due to its substantial cost, it makes a great
candidate for optimisation. Besides, it embodies many similarities with the well-known Vehicle
Routing Problem.

Even though this problem is commonly solved using optimisation-driven techniques, Rein-
forcement Learning has achieved promising results. Additionally, Graph Deep Reinforcement
Learning allows the application of Reinforcement on graph-structured data. It can handle variable-
sized graphs and much more complex environments at the cost of more interaction samples. Since
getting those extra samples might be costly, Transfer Learning aims to increase sample efficiency
by reusing knowledge from previously learnt tasks.

In this project, we focus on the representation of a last-mile delivery problem. We organise
a taxonomy for solving the Vehicle Routing Problem using Reinforcement Learning. We utilise
two real-world datasets to explore the effects of different node features and reward functions on
the Reinforcement Learning agents’ performance. On top of that, we devise an empirical study
designed to ascertain the effects of Transfer Learning when changing the environment or reward
function.

We emphasise the use of masking mechanisms to avoid searching invalid actions. Addition-
ally, we demonstrate that Transfer Learning is highly dependent on the quality of the source model.
Finally, we proved that Transfer Learning can be successful when changing Vehicle Routing Prob-
lem variants and reward functions.

Keywords: Reinforcement Learning, Transfer Learning, Last-Mile Delivery, Vehicle Routing
Problem, Representation Problem
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Resumo

O problema da entrega da última milha refere-se à fase final do processo de entregas, a viagem
da encomenda entre o último armazém e a casa do cliente. Devido ao seu custo substancial, é um
ótimo candidato para otimização. Além disso, apresenta muitas semelhanças com o conhecido
Problema de Planeamento de Rotas.

Embora este problema seja geralmente resolvido com técnicas de otimização, a Aprendizagem
por Reforço tem alcançado resultados promissores. Além disso, a Aprendizagem por Reforço
Profunda em Grafos permite a aplicação do Reforço em dados estruturados em grafos. Pode lidar
com grafos de tamanho variável e ambientes muito mais complexos à custa de mais amostras. Uma
vez que a obtenção dessas amostras adicionais pode ser muito dispendiosa, a Aprendizagem por
Transferência visa aumentar a eficiência das amostras através da reutilização de conhecimentos
provenientes de tarefas previamente exploradas.

Neste projeto, concentámo-nos na representação de um problema de entrega da última milha.
Organizamos uma taxonomia para resolver o Problema de Planeamento de Rotas utilizando Apren-
dizagem por Reforço. Utilizamos dois conjuntos de dados do mundo real para explorar os efeitos
de diferentes características dos vértices do grafo e funções de recompensa no desempenho dos
agentes de Aprendizagem por Reforço. Além disso, elaboramos um estudo empírico destinado a
verificar os efeitos da Aprendizagem por Transferência quando se altera o ambiente ou a função
de recompensa.

Salientamos a utilização de uma máscara para evitar a procura de ações inválidas. Além disso,
demonstrámos que a Aprendizagem por Transferência é altamente dependente da qualidade do
modelo de origem. Finalmente, provámos que a Aprendizagem por Transferência pode ser bem
sucedida quando se alteram as variantes do Problema de Planeamento de Rotas e as funções de
recompensa.

Keywords: Aprendizagem por Reforço, Aprendizagem por Transferência, Entrega da Última
Milha, Problema de Planeamento de Rotas, Problema de Representação
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Chapter 1

Introduction

This chapter introduces the topic of this work. It starts by introducing the context and motiva-

tion for this project, followed by how we define the problem. Next, it specifies what we aim to

accomplish and how we plan to achieve our goal. In the end, it outlines the rest of this document.

1.1 Context and Motivation

The last-mile delivery problem corresponds to the transportation of each order from the last ware-

house to the corresponding customer. It has become a very prominent problem for delivery com-

panies due to the proliferation of e-commerce and free shipping [23]. Since the majority of the

population lives in urban areas [41], most of these deliveries are scattered throughout the cities.

Due to its high cost compared with the rest of the trip [23], and its similarities with variants of the

Vehicle Routing Problem (VRP), it is a great candidate for optimisation. In real-world situations,

it is possible that, in addition to minimising the costs (either the total distance travelled or time

used), other factors might need to be considered as well. Besides, with ecological solutions gain-

ing popularity and the possibility of delivery orders with the help of crewless vehicles (e.g., robots

or drones), new optimisation needs come to light.

Reinforcement Learning (RL) is a machine learning technique focused on learning from inter-

actions with the environment. It attempts to maximise the total received reward over a sequence of

actions. Traditional Reinforcement Learning methods mainly address scenarios where the states

and actions can be represented in a tabular form. However, due to their complexity, this approach

makes many real-world problems infeasible. Deep Reinforcement Learning (DRL), which com-

bines Reinforcement Learning with Deep Learning, has recently gained popularity.

On the one hand, Deep Reinforcement Learning has a powerful representation ability and can

deal with more complex tasks much closer to real-world scenarios [130]. Additionally, Graph

Deep Reinforcement Learning (GDRL) combines the learning power of Deep Reinforcement

Learning with the versatility and ability to handle graphs from Graph Neural Networks (GNN).

1



2 Introduction

Moreover, it is not limited to fixed-sized inputs, enabling the use of different-sized graphs. Since

the Vehicle Routing Problem can be naturally formulated in graph form, solving it using Graph

Deep Reinforcement Learning looks promising. On the other hand, it suffers from the curse of

dimensionality [66], and its training may require many interaction samples.

In a real-world scenario, getting those samples may be costly or even prohibitive. To mitigate

this adversity, one can use Transfer Learning (TL) alongside Reinforcement Learning. Transfer

Learning is a method of reusing knowledge gained from solving one problem to solve a related

but different problem. It aims to reduce the number of required samples by increasing sample ef-

ficiency and can be especially useful when the new task has a limited amount of data or resources.

However, there is still uncertainty about which representations, or parts of them, better influence

Transfer Learning techniques. Transfer Learning methods depend highly on the knowledge trans-

ferred since it determines how well one can apply prior knowledge to the new task [160]. There-

fore, the problem of representation is a key factor in the success of both Reinforcement Learning

and Transfer Learning.

1.2 Problem Definition

Reinforcement Learning is a powerful and generalisable methodology. Unfortunately, it encoun-

ters multiple challenges when applied to real-world problems. These challenges include high

dimensionality of state and action spaces, limited data, training offline from previously collected

data, and multi-objective reward functions [26, 25].

The representation problem in Reinforcement Learning refers to representing the environment

in a way that will ease the agent’s learning and decision-making process. “A machine learning

model can’t directly see, hear, or sense input examples” [21]. Instead, it relies on its representation

of the environment, both the state’s and its internal representation. Without a suitable represen-

tation, it will not capture the important characteristics of the environment. Additionally, it will

impair the model’s learning and limit its potential.

In short, we wish to find out how to represent the problem in a way that will benefit the

agent’s performance. Firstly, by scrutinising the effects of representation and reward function in

the agent’s learning and behaviour. Then, by inspecting the impact of knowledge transfer.

1.3 Objectives

The main goal of this research is to gain insights into how the representation problem of Rein-

forcement Learning affects the agent’s performance. By leveraging Transfer Learning to transfer

knowledge about these representations, we aim to improve the performance and reduce the num-

ber of samples necessary to train the Reinforcement Learning agents. For this purpose, we will

devise an empirical experiment to test these representations in a Vehicle Routing Problem domain.
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We seek to understand the impact of different representations and reward functions in the learning

and performance of Reinforcement Learning agents. Additionally, we aspire to shed some light

on the effects of utilising knowledge from previously learnt tasks.

In a broad sense, possible questions that may arise in the pursuit of these goals are:

• How does the choice of state representation affect the training and performance of a Rein-

forcement Learning agent?

• How does the selection of reward function affect the behaviour of Reinforcement Learning

agents?

• How can we guarantee that hard constraints are not violated during the training and testing

phases?

• Can the knowledge gained from training in a specific environment be transferred to another

environment?

• Can we benefit from transferring knowledge of an agent trained under a different reward

function?

1.4 Document Structure

This document is divided into six chapters, beginning with this introduction. Chapter 2 provides

the necessary background information and relevant concepts, followed by a discussion of the ap-

plication domain and related work in Chapter 3. The environment and performance metrics are

outlined in Chapter 4, and the experiments and their results are analysed in Chapter 5. Finally, the

dissertation in Chapter 6 concludes with our contributions and possible avenues for future work.



Chapter 2

Background

This chapter defines the concepts and principles required to fully comprehend the project. It

includes relevant information and definitions of Reinforcement Learning, Graph Deep Reinforce-

ment Learning, and its relevant algorithms and Neural Network layers. Additionally, it covers the

concept of Transfer Learning and the importance of representation in Reinforcement Learning and

Transfer Learning.

2.1 Reinforcement Learning

Machine Learning paradigms are usually divided into three categories: Supervised, Unsupervised,

and Reinforcement Learning (RL). Even though there are similarities between the three, RL dis-

tinguishes itself by its unique characteristics. Like Supervised Learning, RL attempts to find a

mapping between states (inputs) and actions (outputs). However, unlike Supervised Learning, RL

is not about finding the best immediate reward but the cumulative reward after performing all the

actions. Like Unsupervised Learning, RL does not require a labelled dataset. However, unlike

Unsupervised Learning, RL does not intend to find a pattern in the data, only the actions that lead

to greater rewards.

There are also similarities between RL and other optimisation methods due to RL’s objec-

tive of maximising the received reward. Even though its primary goal is optimisation, it is quite

distinct from other optimisation methods, such as Ant Colony Optimisation [24], Simulated An-

nealing [54], Tabu Search [40], Exact Methods [118], Constraint Programming [100], and oth-

ers [59, 14]. A major drawback of these methods is the time and computation required to obtain

an instance’s result. Whereas RL requires significant computation during its training phase, after-

wards, it can yield an answer to a new instance almost instantaneously.

RL learns from interactions with its environment. It is sequential and considers the long-term

effect of its actions. RL involves a trial-and-search strategy throughout the possible environment’s

states to discover the sequences of actions that allow it to reach the highest total reward [111].

4
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For that, it uses feedback from the environment to update its behaviour. This feedback is limited,

and there is no clear and explicit indication of which action leads to what reward. Because of this

uncertainty, RL usually faces the exploration-exploitation trade-off, where it must choose between

a new action to learn more about the environment (exploration) and the best-known action to

maximise the reward (exploitation) [111].

RL is usually associated with the concept of agents. One can identify two main elements in a

reinforcement-learning system: the agent and the environment.

• The agent is the learning system.

• The environment is the world around the agent and in which the agent operates.

In addition, there are four subelements of a reinforcement-learning system: the policy, the

reward signal, the value function, and the model [111].

• The policy defines the agent’s behaviour at a specific time.

• The reward signal defines the agent’s goal.

• The value function specifies what a good action in the long run (not only immediately) is.

• The model is optional and (mainly) used for planning since it allows the agent to anticipate

the behaviour of the environment after performing a specific action.

Figure 2.1: Interaction between the Agent and the Environment in a Markov Decision Pro-
cess [111]

The sequential interaction between the agent and the environment can be modelled as a Markov

Decision Process (MDP) [9], as showcased in Figure 2.1. An MDP is a mathematical framework to

deal with stochastic control optimisation problems [111] by modelling decision-making processes

where the future state is partly random and partly controlled by the agent’s decisions. An MDP

can be described using a 5-tuple ⟨ S, A, T, R, P ⟩, where

• S: state space, the set of possible states s.

• A: action space, the set of possible actions at each state.
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• T: the set of all the steps in which the agent makes a decision.

• R: reward function, specifying the expected immediate reward for reaching the state s’ after

performing action a in state s.

• P: the transition probability function, p(s′|a,s), defining the conditional probability of reach-

ing state s’ after executing action a in state s.

A process is Markovian if the transition probability function is only affected by the current

state and not by previous states or actions [119].

P(st ,at ,st+1) = p(st+1|st ,at) = p(st+1|st ,at ,st−1,at−1,st−2,at−2, . . .) (2.1)

Even though the learning process of RL makes it very promising, there are still challenges

related to its application in real-world scenarios. Simulated environments are abstractions of the

real system, which means some real-world details might not be present in the simulation. There

could also be some uncontrollable external factors impacting the agents. Additionally, working

in a real-world environment limits the exploration of the agent. On top of that, difficulties may

also arise from the interaction with other agents. Multi-Agent Reinforcement Learning (MARL)

introduces multiple coexisting RL agents in the same environment. These agents usually need

to develop strategies to cooperate or compete with others to fulfil their goals. In multi-agent

environments, each time an agent makes an action, it modifies the environment in which the other

agents operate, which raises new challenges. In summary, the challenges faced by RL agents in

real-world settings include the following [26, 25]:

• Having a limited number of samples, either because of their cost or inability to obtain them

on the real system.

• Having unknown and / or large delays on its sensors, actuators, or rewards (i.e., sparse

rewards).

• Need to act on a highly dimensional or continuous state and action spaces.

• Never or seldom violating system constraints, either operational or safety.

• Having a non-stationary or stochastic environment causing the tasks to be only partially

observable.

• Having multi-objective, risk-sensitive, unspecified, or poorly specified reward functions.

• Providing actions quickly and in a timely manner, especially on systems requiring low la-

tencies.

• Training offline from logs of an external behaviour policy.

• Having to provide system operators with explainable and interpretable policies.
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• Need to adapt and generalise between tasks [144].

• Need to avoid models with a huge number of parameters [50].

• Need to speed up the agent’s learning process [116].

• Need to transfer knowledge between agents with different internal representations [115,

114].

According to how the agent learns, RL algorithms can be divided into Online RL and Offline

RL. In Online RL, the agent learns from interacting with the system in real-time. In contrast, in

Offline RL, the agent trains from a set of collected experiences (logs) without the need to interact

with the environment during training. Additionally, RL can be divided according to whether or

not the agent can access or learn a model of the environment. Figure 2.2 contains an overview

of RL algorithms based on this classification. Model-based RL algorithms use the model of the

environment directly for planning, as it can predict the environment’s state and reward after the

execution of an action. They can either be given the model, like in AlphaZero [105], or learn it,

like in World Models [43], Imagination-Augmented Agents (I2A)[132], Model-Based RL with

Model-Free Fine-Tuning (MBMF) [85], or Model-Based Value Expansion (MBVE) [29]. Model-

free RL algorithms can be classified based on what they learn. Q-Learning methods, also known

as value-based methods, estimate the action value function using a function approximator. This

category encompasses algorithms such as Deep Q-Networks (DQN) [84], Categorical 51-Atom

DQN (C51) [8], Quantile Regression DQN (QR-DQN) [17], and Hindsight Experience Replay

(HER) [4]. In contrast, Policy Optimisation algorithms focus on learning the policy directly and

include methods such as Policy Gradient [112], Advantage Actor-Critic (A2C), Asynchronous

Advantage Actor-Critic (A3C) [83], Proximal Policy Optimisation (PPO) [104], and Trust Region

Policy Optimisation (TRPO) [103]. Additionally, there is a group of algorithms that bridge the

gap between the two categories of model-free RL methods, including Deep Deterministic Policy

Gradient (DDPG) [66], Twin Delayed DDPG (TD3) [38], and Soft Actor-Critic (SAC) [44].
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Figure 2.2: Non-exhaustive Taxonomy of Reinforcement Learning Algorithms, adapted from [87].

Note that the Policy Gradient is not an algorithm. Instead, it is a category of algorithms,

including, for example, the REINFORCE algorithm [135]. According to [135], REINFORCE is

an acronym for “REward Increment = Nonnegative Factor x Offset Reinforcement x Characteristic

Eligibility”. This algorithm is explored further in Section 2.1.2.

2.1.1 Graph Deep Reinforcement Learning

Traditional RL methods mainly address cases where the states and actions can be represented in

a tabular form. However, many real-world problems are highly dimensional and are infeasible

this way. Consequently, Deep Reinforcement Learning (DRL) has become a trend in dealing

with high-dimensional problems. DRL fuses RL with Deep Learning (originally from Supervised

Learning), allowing us to handle a much more complex environment at the cost of more interaction

samples. It employs Neural Networks (NN) to approximate the value function or policy of the RL

agent.

Although Neural Networks allow us to solve more problems, they still present drawbacks.

One of these limitations is their fixed input and output sizes. NNs are composed of multiple

connected processing layers which successively transform the input [36]. Figure 2.3 represents

a Neural Network with two input neurons, a hidden layer with four neurons, and an output layer

with a single neuron. Usually, a Neural Network includes one input layer, one output layer, and a

variable number of hidden layers. In this architecture, we would always need to input two values

and get a single output value. If we wanted to input a third value, we would need to modify the

Neural Network’s architecture, adding a third input neuron.
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Figure 2.3: Example of a Neural Network with a Single Hidden Layer

Graph Deep Reinforcement Learning (GDRL) blends together Deep Reinforcement Learning

with Graph Neural Networks (GNN). On the one hand, it uses the algorithms from DRL. On the

other hand, it utilises the GNN’s capacity to deal with graphs to take advantage of the environ-

ment’s graph scheme. GNNs provide a way to define both node and edge features, allowing us

to characterise the graph in its entirety. Moreover, they are not dependent on the graph size and

do not need alterations when modifying the graph size. This essential factor enables the use of

variable-sized inputs under the format of graphs with different sizes.

2.1.2 REINFORCE

First presented in 1992 [135], the REINFORCE algorithm has since become a foundational method

in the RL field. It is a Monte Carlo Policy Gradient algorithm [111], sharing characteristics with

both Monte Carlo and Policy Gradient methods.

In RL, Monte Carlo methods employ techniques based on averaging sample returns. To ensure

that the rewards are completely defined and available, they are typically used only for episodic

tasks [111].

As presented before in Section 2.1, the Policy Gradient belongs to the class of Policy Opti-

misation algorithms. These algorithms learn a policy directly and use it to map states to actions.

Policy Gradients can learn any parameterised policy as long as it is differentiable with respect to

its parameters [111]. They aim to optimise its parameters in order to maximise the expected re-

turn. To achieve this, they update their policy through gradient ascent, moving towards a direction

that leads to more favourable actions. Additionally, Policy Gradient generates the samples used to

update the policy using the policy itself, making them inherently on-policy [96].

In short, the REINFORCE algorithm starts by using its policy to choose the actions to execute

(on policy) until it completes an episode. Afterwards, for each step of the episode, it updates its
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policy in two steps. First, it calculates the discounted returns using the formula:

Gt ←
T

∑
k=t+1

(γ k−t−1Rk) (2.2)

, where

• t is the current step.

• T is the total number of steps in the episode.

• Gt is the discounted return at step t.

• γ is the discount factor.

• Rk is the reward obtained in step k.

Then, it updates the policy using the previously calculated discounted returns.

θ ← θ +αγ
tGt

∇π(At |St ,θ)

π(At |St ,θ)
(2.3)

, where

• t is the current step.

• θ is the policy parameters.

• α is the learning rate or step size.

• γ is the discount factor.

• Gt is the discounted return at step t.

• ∇π(At |St ,θ) is the gradient of the policy function with respect to the policy parameters. It

represents the direction in which the parameters should be updated to increase the likelihood

of selecting action At in state St .

• π(At |St ,θ) is the probability of the policy choosing action At when in state St under the

current policy parameterised by θ .

In short, the REINFORCE algorithm can be summarised as follows. π(·|·,θ) represents the

policy function.
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Algorithm 1 REINFORCE Algorithm

1: Input: a differentiable policy parameterisation π(a|s,θ) and the learning rate α

2: Initialise policy parameters (θ)

3: loop each episode

4: Generate an episode following π(·|·,θ): S0,A0,R1,S1,A1,R2, . . . ,ST−1,AT−1,RT

5: loop each step of the episode

6: Gt ← ∑
T
k=t+1(γ

k−t−1Rk)

7: θ ← θ +αγ tGt
∇π(At |St ,θ)
π(At |St ,θ)

8: end loop
9: end loop

2.1.3 Graph Convolutional Networks

Graph Convolutional Networks [53] are widely recognised methods for learning graph represen-

tations [152]. They take a graph as input, specifically its node and edge features, and generate a

new representation for each node [137]. Similarly to other Neural Networks, they are composed

of connected layers.

For each layer k, H(k−1) and H(k) symbolise the input and output node representations, respec-

tively. Additionally, S denotes the normalised adjacency matrix with added self-loops and can be

formalised as S = D̃−
1
2 Ã D̃−

1
2 , with D̃ as the degree matrix of Ã, Ã = A+ I, and I as the identity

matrix.

Each GCN layer updates the node features in three steps [137].

1. Apply a local smoothing, propagating the node features and averaging them with the features

in their neighbourhood.

H̄(k)← S H(k−1) (2.4)

2. Perform a linear transformation using the layer weights (Θ(k)).

H̄(k)← H̄(k)
Θ

(k) (2.5)

3. Apply a nonlinear activation function (e.g., ReLU).

H(k)← ReLU(H̄(k)
) (2.6)

Figure 2.4 showcases the steps of the update. For ease of understanding, each step uses a

different colour and line style.
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1 2 3

Figure 2.4: Steps for Updating the Feature Vectors on a Graph Convolutional Network Layer

2.2 Transfer Learning

Transfer Learning (TL) is a machine learning technique that transfers knowledge from a source

task to a target task. It aims to improve the learner’s performance or reduce the number of samples

needed in a target task by reusing knowledge from previously learned tasks [161]. It is mainly

encouraged by the difficulty and cost of acquiring the required data to train the model. Instead

of depending on large quantities of data from the specific problem needed to start over and learn

how to solve the problem from scratch, one can reuse knowledge from a similar task with more

available or easily collectable data. While in an RL problem, the agent is supposed to generalise

between instances in the same domain. When applying TL, the agent should be able to generalise

beyond the source task domain to the target task domain, which may be different.

One of the most critical factors of the TL procedure is the effect the transferred knowledge has

on the target task’s learning. Depending on the effect that the transferred knowledge has on the

target learner, there are three types of knowledge transfer:

1. Positive transfer: the transferred knowledge and previous experience positively influence

the target’s learning process.

2. Neutral transfer: the knowledge transfer does not affect the target’s learning process. The

learner does not benefit from having previous experience, but that knowledge does not im-

pair their learning.

3. Negative transfer: the transferred knowledge has a detrimental effect on the target learner

and impairs the learning process. The previous experience inhibits the learner’s performance

in the target task.

Ideally, we want to ensure positive transfer in all our TL applications. However, so far, it is

not clear in the literature precisely what causes the knowledge transfer to be successful or unsuc-

cessful. It is known and understandable that the source and target domains must have something
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in common in order to reuse helpful information between the two tasks. If the source and target

domains have nothing in common, the knowledge transfer will not contribute to learning how to

solve the target task. Despite that, even if the task domains are similar, TL is not guaranteed to

have a positive effect since similarities between the domains and tasks can be misleading.

Apart from the effect on the target learner, TL approaches can also be characterised by the

number of interactions needed from the target domain, the difference between the domains, the

transferred knowledge, and other factors [160].

Based on the number of interactions needed from the target domain, TL approaches can be

divided into [160]:

• Zero-shot transfer provides ready-to-apply knowledge to the target-domain agent.

• Few-shot transfer requires a small number of interactions with the target domain.

• Sample-efficient transfer improves the efficiency of each interaction with the target domain.

Based on the similarities and differences between the source and target domains, TL ap-

proaches can be classified as follows:

• Homogeneous: when the source and target tasks share the same feature space.

• Heterogeneous: when that does not happen. These approaches are inherently more com-

plicated since, in addition to distribution adaptation, they also require feature space adapta-

tion [19].

Domain adaptation involves aligning the distributions of the source and the target tasks [99],

while feature space adaptation involves aligning their feature spaces [161].

There are multiple forms of knowledge that can be transferred between the source and the

target learner. The strategy and framework used for TL depend on the transferred knowledge’s

representation, granularity, and quality [160]. We can apply TL in RL in multiple forms, including

fine-tuning a pre-trained model and transferring the agent’s policy or value function.

2.3 Representation Problem

Even though the authors of [111] do not address representation, they still consider the represen-

tation of states and tasks to affect the learner’s performance. As referred to in Section 2.2, TL

methods also rely on the underlying knowledge representation. Without the proper information,

the learner may suffer considerable impacts on efficiency, accuracy, and transferability.

Problem representation is an essential step for problem-solving [119, 49]. Incorrect or par-

tial information hinders the perception and problem-solving skills, making the problem harder or

unsolvable. Similarly, a good representation will ease the understanding of the data [21]. Con-

sequently, it is crucial to consider and define the problem and the necessary data to solve it. In
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computer science and artificial intelligence, there is a wide range of possibilities to represent a

problem. Two central topics are what information needs to be represented and how that informa-

tion is structured and organised [119]. It can be done for a variety of reasons, such as to make the

information easier to process, to enable the use of certain algorithms or techniques, or to facilitate

communication or storage of the data.

Since the model only interacts with the environment via the state’s representation and makes

decisions based on its internal representation, both these representations significantly influence

the learned policy and the transferred knowledge. Additionally, the reward function affects the

agent’s learning efficiency. By guiding the agent towards the goal, the reward function can affect

the learner’s performance. A better reward function will lead the agent better and help it learn the

optimal policy faster.



Chapter 3

Literature Review

Before starting, looking around and reading about how others solved similar problems is essential.

Thus, this chapter reviews the existing literature on this project’s topic. Firstly, we present the

last-mile delivery and the possibilities to abstract it as variants of the Vehicle Routing Problem

(VRP). Secondly, we assess how GDRL has been used to solve Vehicle Routing Problems in the

literature. Then, we review how TL has been used alongside DRL to solve different VRP variants.

Later, we dive into how the representation affects the performance of RL models and how TL

can be used to improve this performance. Finally, we summarise the most relevant findings and

present a VRP-RL taxonomy for solving the VRP using RL.

3.1 Application Domain

The last-mile delivery corresponds to the last step of the delivery process, the item transportation

between the warehouse and the customer, and embodies many similarities with the well-known

Vehicle Routing Problem. It is a very costly portion of the item’s transportation due to the size

and dispersal of individual package destinations. These factors make it a great candidate for

optimisation.

When optimising this delivery problem, it is typical to abstract it as a variant of the VRP. The

VRP is a generalisation of the famous Travelling Salesman Problem (TSP). Just like the TSP, the

VRP is a combinatorial optimisation problem. It aims to find the shortest routes for a fleet of

vehicles to visit customers at different locations and return to the starting point [22].

Just like the TSP, the VRP possesses many possible researchable variants. The specific variant

used depends on the needs and constraints of the problem in question. When optimising a last-mile

delivery problem, one could use some of the common VRP variants, such as:

• Capacitated Vehicle Routing Problem (CVRP): the vehicles have a specified maximum

weight or volume capacity.

15
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• Vehicle Routing Problem with Time Windows (VRPTW): the vehicles must visit the delivery

locations during the time windows requested by the customers.

• Capacitated Vehicle Routing Problem with Time Windows (CVRPTW): incorporates both

the previous constraints, the maximum vehicle capacity, and the time windows to deliver

the packages.

• Vehicle Routing Problem with Soft Time Windows (VRPSTW): if the vehicles visit the deliv-

ery locations outside the time windows specified by the customers, they will incur a penalty.

• Capacitated Vehicle Routing Problem with Soft Time Windows (CVRPSTW): similar to the

CVRPTW, but considering soft time windows, which may be missed at the cost of a penalty.

• Vehicle Routing Problem with Pickup and Delivery (VRPPD): the vehicles must transport

the item from the pickup points to the respective delivery points [107].

• Vehicle Routing Problem with Delivery Options (VRPDO): the vehicle must deliver each

item to one of its delivery options. A delivery option corresponds to a location and its

associated time window [117].

• Split Delivery Vehicle Routing Problem (SDVRP): the customer’s demands can be split over

multiple routes [56].

• Heterogeneous Capacitated Vehicle Routing Problem (HCVRP): the vehicles may have dif-

ferent maximum capacities and speeds [63].

• Vehicle Routing Problem with Stochastic Service Requests (VRPSSR): we are unaware of

which and when customers will request service, but all potential customers’ locations are

already known [57].

• Dynamic Vehicle Routing Problem (DVRP): the routes are constantly updated as new cus-

tomer requests arrive.

• Stochastic Vehicle Routing Problem (SVRP): as considered in [86], the customer’s locations

and demands can change.

• Green Vehicle Routing Problem [32, 6] (GVRP): weights ecological and environmental con-

cerns.

• Electric Vehicle Routing Problem [68] (EVRP): the vehicle has a limited battery which may

need to be recharged between customer visits.

Like other combinatorial optimisation problems, the VRP and its variants can be solved using

exact or heuristic algorithms [101]. The main difference between these two types of algorithms

is the optimality guarantee. Exact methods are guaranteed to find the optimal solution; however,

since the problem is NP-hard, they require exponential effort. Heuristic methods are usually faster,
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but the solution may not be optimal. Since RL does not have optimality guarantees, it falls under

the category of heuristic algorithms.

In real-world problems, it may be necessary to contemplate multiple factors at once or consider

multi-objective optimisation. The need to simultaneously optimise multiple conflicting objectives

arises from the different optimising needs considered. The optimising needs may include the

following:

• Reducing either the distance or time costs.

• Reducing the number of vehicles needed.

• Improving the quality of the trip by considering parking availability, avoiding specific streets,

or other similar factors.

• Reducing the amount of pollution produced, by:

– Improving the trip’s energy efficiency.

– Reducing fuel consumption.

– Reducing carbon footprint, Greenhouse Gas (GHG), or carbon dioxide (CO2) emis-

sions.

Note that minimising the distance and time costs might already be conflicting if we take into

account traffic.

3.2 Related Work

Due to the relevance and economic interest of the VRP, it has been extensively researched. Here,

we focus on the research relevant to this project. We start by exploring the most relevant topics

and research on the topics of DRL, TL, and Representation Learning. Since DRL’s introduction,

there has been a lot of research on its application for the VRP. Although DRL can handle highly

dimensional scenarios and environments, it requires a large number of samples. TL attempts

to improve sample efficiency and reduce the number of samples necessary to achieve a good or

acceptable performance. Even though there is a more prominent research focus on algorithms

and their effect on performance, representation is still crucial to their performance. Afterwards,

due to the natural representation of the VRP as a graph, we examine the literature on the GDRL

application to the VRP.

First of all, there are two distinct settings encountered when modelling the system using RL

agents. In a single-agent environment, the agent acts as a central dispatcher, simultaneously defin-

ing all vehicle routes. In a multi-agent setting, the agent might abstract a driver or be a part of

the centralised dispatcher. As a driver abstraction, the agents might need to cooperate to fulfil all

the customer’s requests or compete to fill the most requests themselves. As a part of the solver,
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the route assignment will combine all the individual agent’s solutions. Depending on the problem

solved by each agent and their methodology, the agents might be either homogeneous (solving the

same problem using the same methods) or heterogeneous (solving different parts of the problem

or solving the same problem using distinct methods).

Secondly, the authors of [50] differentiate between autoregressive approaches and non-regressive

approaches. Both of these approaches present different challenges. Autoregressive techniques

construct solutions step-by-step, and each action from the agent corresponds to a step. Usually,

this action corresponds to which graph node or customer to visit next or the time to wait at the

current position. Non-autoregressive approaches produce the complete solution in the same step.

These require extra flexibility since both the input, the environment’s state, and the output, the

agent’s action, do not have a fixed length. Other authors also designate the methods used in these

approaches as construction / constructive methods (autoregressive approaches) and improvement

methods (non-regressive approaches).

Thirdly, many different algorithms and architectures have been proposed to solve the VRP.

Consequently, surveys [28, 93, 129, 162] attempt to examine and catalogue these techniques.

Some of the most frequently used methods include REINFORCE, both with the greedy rollout [56,

65, 5, 141] and the rollout baseline [51], actor-critic algorithms, such as A2C [121] and A3C [86],

and deep Q-networks, such as DQN [131] and Dueling Double DQN (D3QN) [57].

Furthermore, in an attempt to reduce the number of samples needed by these DRL algorithms,

TL has been applied on multiple occasions. In [131], Wang et al. attempt to solve the Pickup and

Delivery Problem (PDP) as a central operation task, relying on the DQN framework, using TL to

allow learning to be global instead of restricted to a specific city. In this case, they enable knowl-

edge transfer both between cities and across time within the same city. In [5], Ardon explores what

they consider to be the two most relevant methods to solve the CVRP. The first includes a Recur-

rent Neural Network (RNN) encoder-decoder coupled with an attention mechanism from [86],

while the second consist of the REINFORCE algorithm from [56]. However, the knowledge trans-

fer experiment only uses the latter. In this experiment, they reuse a pre-trained policy from a more

straightforward yet similar problem, the TSP, to solve the CVRP. Similarly, Yaddaden, Harispe,

and Vasquez, in [141], also choose the REINFORCE algorithm with a greedy rollout from [56]

and attempt knowledge transfer from a pre-trained TSP model to solve the CVRP, varying the

instance’s size and data generation distribution between the source and target tasks.

Table 3.1 summarises the representation and methodology used in each of the papers. The

research studies featured in this table tackle the VRP variants listed in Section 3.1. Additionally,

they also address the following TSP variants:

• Prize Collecting Travelling Salesman Problem (PCTSP): each city gives a prize when visited

and a penalty when it is excluded from the route. The travelling salesman minimises the sum

of tour length and penalties while collecting a minimum prize [7].

• Stochastic Prize Collecting Travelling Salesman Problem (SPCTSP): a variant of the PCTSP

where an expected prize is known, and the real prize is only discovered once we visit the
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city [56].

• Covering Salesman Problem (CSP): finds a route with a subset of the cities to visit, such

that each city outside the route is within a predefined distance of a visited city [15].

The bold lines represent the most relevant papers for this project.
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In addition, even though there is usually a much bigger focus on methods, algorithms, and

architectures, representation still plays a big part in the model’s performance. Many studies have

tried to understand this impact, and there is a large diversity of methods used. While some methods

learn the representation explicitly, others learn it implicitly.

There are a few characteristics that these representations require when applying them to real-

world scenarios. These representations need to be able to deal with the same challenges as the

RL methods, as showcased in Section 2.1. Table 3.2 enumerates the challenges each of the papers

reviewed tackled. It includes a comprehensive list of all the challenges addressed, along with

challenges found in [26] and [25]. The first line represents the challenges that the representation

would ideally address in order to be applied to the VRP. The bold lines represent the most relevant

papers for this project. The names of the columns were shortened to fit the page layout. The

first column (Paper) includes the name and year of the publication. The last column (MDP Type)

contains the type of MDP considered by the authors in their work. The other columns represent

whether the authors considered the following challenges of RL when applied to the real world.

LimS : Limited number of samples for training

Delay : Sparse rewards or rewards with unknown or large delays

HighD : Highly dimensional state and action spaces

Constr: System constraints that should not be violated

PO : Partially observable tasks, viewed as non-stationary or stochastic

MoR : Multi-objective, unspecified, or poorly specified reward functions

Fast : Ability to provide a fast response

ExtBe : Training off-line from logs of an external behaviour policy

Expl : Explainable policies

Gener : Ability to generalise between tasks

Param : Avoid millions of model parameters

Speed : Agent’s learning speed

IRepr : Transfer representation between agents with different internal representations
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Finally, we delve into how GDRL has been applied to solving the VRP and other similar

problems. As previously discussed, GDRL allows for a variable-sized graph as input, awarding us

with extra flexibility and the ability to serve a variable number of customers. Table 3.3 identifies

the properties of multiple papers that explore constructive methods. Here, we take a deeper look

into the interaction between the agent and the environment. The key aspects of that interaction can

be listed as follows:

• State: How the environment’s state is represented and what node or edge features are used.

• Action: What making an action corresponds to. Since we only selected papers using con-

structive methods, the action always corresponds to selecting the next node. Therefore, this

column is omitted from the table.

• Reward: What is the reward function, or what it takes into account.

• Mask: Whether or not the research paper considers masking invalid actions and how that is

done.

The environment’s representation will be further discussed in Section 4.1.
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3.3 Discussion

Although the existing literature on solving the VRP using DRL is extensive, its main focus is

on different algorithms and architectures. Therefore, there are many studies exploring the per-

formance correlation of different algorithms. Moreover, multiple studies have demonstrated the

impact of leveraging knowledge from one or more source domains to improve their model’s per-

formance on the target domain. When transferring knowledge, the authors usually share the policy

or value function and compare the performance with and without using TL. However, there is still

a lot of uncertainty about precisely what causes TL to have negative effects.

Even though representation plays a vital role in both RL and TL, there is much less research on

the impact of representation on the model’s performance. From observing Table 3.2, only one of

the featured papers focused on the TSP and none on the VRP domain. Besides, only one study [2]

considered a multi-objective reward function, and none explored all the concepts we deemed ideal

to fit a VRP variant.

Graph Deep Reinforcement Learning grants large input flexibility, allowing the use of variable-

sized graphs seamlessly. Since the VRP can be represented in a graph form, creating an environ-

ment to interact with a GDRL agent is natural. Nonetheless, there is still less research on GDRL

than DRL or other methods due to it being relatively recent. Additionally, only a few of the papers

researched contained GDRL and TL, even though it was considered a viable way to improve gen-

eralisation [142, 71]. Besides, there is a lack of understanding regarding the effects of the reward

function on the learning and exploration phase, and finding a good reward function to guide the

RL agent is still an open area of research.

3.4 VRP Taxonomy

From all the papers reviewed, we established a taxonomy for solving the VRP using RL. This

taxonomy is divided into four parts:

• Components

• VRP

• VRP + RL

• RL

However, it is worth noting that the RL taxonomy was already covered in Chapter 2. Therefore,

we will refrain from discussing it again.

Starting with the components, the VRP has three main inter-connected components or phases

that can be solved sequentially or simultaneously: assignment, bin-packing, and routing. A sim-

plified view of the components, their classifications, and examples can be seen in Figure 3.1.
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The assignment subproblem defines pairs of (package, vehicle) for all packages. We can

consider this assignment to be either a single package per vehicle (one-to-one or balanced) or

multiple packages per vehicle (many-to-one or unbalanced). Ideally, the assignment would take

into account the vehicle’s maximum capacity and the delivery locations in order to favour the

subsequent phases.

The bin-packing subproblem is responsible for fitting all the assigned packages inside the

vehicle in the most convenient order. For the bin-packing, multiple dimensions can be considered,

depending on the packages in question and their transportation requirements.

• 1D considers only the package weight.

• 2D disregards the package weight but considers that packages cannot be placed on top of

one another.

• 3D either disregards the weight or considers that packages cannot be placed on top of one

another.

• 4D considers the package’s weight and 3D size, considering that they might be placed on

top of each other.

Additionally, the most convenient order might consider the delivering order, package proper-

ties (such as the ability to turn packages, placing heaviest ones on the bottom, or placing lighter or

fragile ones at the top), or both.

The routing subproblem aims to minimise the cost of the trip while serving all the customers.

As already mentioned in Section 3.1, the cost might vary. It might represent the total distance

travelled, total time spent, battery or energy used, fuel consumed, CO2 or GHG emissions, total

customer waiting time, maximum customer waiting time, or even a combination of multiple ob-

jectives. The routing component is greatly affected by the graph and its underlying structure and

characteristics, namely size, topology, and node and edge properties. Besides, it is also affected by

connectivity restrictions or limitations, such as traffic regulations. These connectivity limitations

include the following:

• Fixed or permanent. For example, cars can never pass through a pedestrian pathway.

• Time-based. For example, vehicles may be unable to pass through a specific area at night.

• Temporary disruptions:

– Planned. For example, due to construction, processions, fairs, or other sporting or

seasonal events.

– Unplanned. For example, due to incidents, protests, roadblocks, or accidents.

Additionally, these connectivity limitations might affect the entirety of the fleet or just some

of its vehicles (when the fleet is heterogeneous).
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Components

Assignment

Bin-Packing

Routing

1 Package: 1 Vehicle
(i.e. drone delivery)

N Packages: 1 Vehicle
(i.e. truck delivery)

Dimensions

Ordering

Objective Function

Graph

Package properties

Delivery order

Connectivity

Structure &
Characteristics

Fixed / Permanent

Temporary

Time-based

Node / Edge
Properties

Topology

Size

1 D

4 D

3 D

2 D

Combination of
Multiple Objectives

Maximum Customer
Waiting Time

Total Customer
Waiting Time

Total CO2 / GHG Emissions

Total Battery / Energy / Fuel
Consumption

Maximum Trip Time

Total Time Spent

Total Distance Travelled

Planned

Unplanned

Figure 3.1: Vehicle Routing Problem Components
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Moving on to the VRP portion, we complement the variants listed in Section 3.1. We en-

hance the already listed variants with a constraint superset and a classification of their operation

mechanisms. Figure 3.2 portrays an overview of the divisions of the VRP part.

Each VRP variant can be considered as a VRP with a set of extra constraints from the following

superset:

• Maximum vehicle capacity: limiting the amount of cargo each vehicle can carry, either in

weight, volume, or both.

• Customer time windows: requesting the delivery of packages during a specified time win-

dow, either obligatory or optional (at the cost of penalties).

• Pickup and delivery:

– Pickup and delivery of the same package: the package must be picked up from the

pickup point before being delivered to the delivery point.

– Pickup and delivery of different packages: the vehicle might pick up a package and

deliver a different one during the same trip. It can be considered a specific case of the

pickup and delivery of the same package when the package to be picked up is delivered

at the depot, and the package to be delivered is picked up at the depot.

• Customers served: serving all the customers might be obligatory or optional (at the cost of

penalties).

• Stochastic customers: the customers might have stochastic demand, location, or both.

• Limited vehicle battery / energy: the vehicle might have a limit on the distance it can travel

before returning to the depot or visiting a recharging station.

Additionally, the VRP can also be distinguished based on its operating mechanisms. Firstly,

we consider the fleet and its characteristics, the number of vehicles (either finite or infinite), the

number of trips per vehicle (single trip or multiple trips), the homogeneity (either homogeneous or

heterogeneous), the type of vehicles (combustion, electric, hybrid or drones), and its crew (either

crewed or crewless). Secondly, we consider the delivery types. Each delivery point might allow

either a single package or multiple packages (split delivery). Finally, considering the number of

depot locations, the VRP might have a single or multiple depots.
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VRP

Constraints

Operation
Mechanisms

Delivery

Maximum Vehicle
Capacity

Customer
Time Windows

Fleet

Pickup & Delivery

Customers Served

Stochastic Customers

Limited Vehicle
Battery / Energy

Homogeneity:
Homogeneous / Heterogeneous

Finite / Infinite
Number of Vehicles

Depot

Single Depot

Multiple Depots

1 Package : 1 Delivery Point

N Packages : 1 Delivery Point
(split delivery)

Type of Vehicles

Crew:
Crewed / Crewless

Single / Multiple
Trips per Vehicle

Combustion

Electric

Hybrid

Drone

Same Package

Different Packages

Figure 3.2: Constraints and Operation Mechanisms Used when Addressing the Vehicle Routing
Problem

Last but not least, we characterise the VRP + RL portion. This part incorporates the necessary

assumptions required to solve the VRP using RL. An overview is provided in Figure 3.3.

Regarding decision-making, we can divide the methods into centralised and decentralised.

Regarding representation, they can be grouped based on the state, action, and reward. The state

might have a fixed or variable size. When the state is represented as a graph, it might have a

variable size. The action might select the next node or customer, making the method a constructive

method, or the complete route, making the method an improvement method. The reward might

be single objective or multiobjective and might in consideration classic, traditional or economic

optimisation metrics (total distance travelled or total time spent), ecological metrics (battery /
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energy / fuel consumption, or CO2 / GHG emissions), or customer satisfaction (total customer

waiting time or maximum customer waiting time).

VRP + RL

Decision-making

Representation

Decentralized

Centralized

Reward

Action

State

Variable Size
(i.e. graph)

Fixed Size

Select the Entire Route
(Improvement Method)

Select Next Customer
(Constructive Method)

Metrics Classical /
Economical

Ecological

Customer
Satisfaction

Maximum Trip Time

Total Time Spent

Total Distance Travelled

CO2 / GHG
Emissions

Energy / Battery / Fuel
Consumption

Total Customer
Waiting Time

Maximum Customer
Waiting Time

Multi-Objective

Single Objective

Type

Figure 3.3: Assumptions Required to Solve the Vehicle Routing Problem using Reinforcement
Learning



Chapter 4

Methodological Approach

This chapter previews how to tackle the problem. It starts with a formalisation of the problem con-

straints. Next, we dive into how to represent the environment in a graph form and highlight useful

node features. Afterwards, we describe the implementation of a masking mechanism to narrow

down the action space. Later, we explore different reward functions and how reward shaping af-

fects the learning phase. Lastly, we examine evaluation metrics which can be employed to measure

the agent’s performance, the efficiency of its actions and overall decision-making capabilities.

4.1 The Environment

The research problem addressed can be framed as an RL problem. In RL, an agent aims to optimise

the reward it receives from the environment over the sequence of actions it executes. Essentially,

it learns how to convert the state’s representation into the most profitable or desirable action. As

such, an RL agent can be formalised as an MDP, explained in Section 2.1.

Hence, the solution to our research problem can be seen as the sequence of actions during an

episode. Notwithstanding, we want the solution to respect all the constraints applied to the VRP

variant in question. In this project, we experiment with two variants: the Capacitated Vehicle

Routing Problem (CVRP) and the Capacitated Vehicle Routing Problem with Soft Time Windows

(CVRPSTW).

Consider,

• G = (V,E): the VRP variant graph.

• V = 0, . . . ,n: the graph vertices, where 0 is the depot and 1, . . . ,n are the customers.

• E = (i, j) : i, j ∈V : the graph edges. In edge (i, j), i represents the origin vertex, and j is

the destination.

• di, j: the distance travelled when traversing edge (i, j).

39
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• tti, j: the travel time when traversing edge (i, j).

• ci: capacity required / demand at vertex i.

• si: the start of the time window for delivery at vertex i.

• ei: the end of the time window for delivery at vertex i.

• sti: the service time (time taken to deliver the demand) at vertex i.

• Ck: the maximum capacity of vehicle k.

• K: the vehicle fleet.

• Xk: the number of time steps used by vehicle k.

• tripk
x: the vertex visited by vehicle k at time step x. Consequently, tripk

0 and tripk
Xk

are the

first and last locations visited by the vehicle, respectively.

The basic VRP constraints pertain to routing. These ensure that the trips are valid (they start

and end at the depot) and all the customers are served (all the delivery locations are visited). These

constraints are present in any VRP variant and can be formulated as follows:

• Each vehicle leaves and returns to the depot.

∀k ∈ K, tripk
0 = 0∧ tripk

Xk
= 0 (4.1)

• Each delivery location is visited exactly once.

∀i ∈V \{0} , ∑
k∈K

Xk

∑
x=0

1 , if tripk
x = i

0 ,otherwise

= 1 (4.2)

The CVRP includes the basic VRP restrictions and an additional one related to the vehicle’s

capacities. This capacity constraint considers that the vehicle has limited space or a weight limit

(all the packages carried by the vehicle cannot surpass the maximum vehicle capacity). In short,

we consider the following constraints:

• Each trip must start and end at the depot.

• Each delivery location must be served exactly once.

• The capacity of each vehicle cannot be exceeded.

This capacity constraint can be formulated as follows:

∀k ∈ K,Ck ≥∑
i∈V

 Xk

∑
x=0

1 , if tripk
x = i

0 ,otherwise

∗ ci

 (4.3)
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In the CVRPSTW setting, in addition to the previously presented constraints, there is another

one related to the customer’s requested time window. This restriction requires the package delivery

to be done within the requested time window. However, in opposition to the previous restrictions,

which are hard constraints since they cannot be infringed, this time window restriction can be

violated at the cost of collecting a penalty, making it a soft constraint. In short, we consider the

following constraints:

• Each trip must start and end at the depot.

• Each delivery location must be served exactly once.

• The capacity of each vehicle cannot be exceeded.

• The packages should be delivered within the customer’s requested time window. Failure to

comply will result in a penalty.

The last restriction can be formulated as follows:

∀k ∈ K,∀x ∈ {0..Xk} ,stripk
x
≤

x−1

∑
y=0

(
sttripk

x
+ tttripk

x

)
≤ etripk

x
(4.4)

4.1.1 Node Features

We represent the environment in a graph form. In this graph, the nodes correspond to the points of

interest, the depot and the delivery locations, and the edges correspond to the connection between

each pair of points. We can characterise each node with a group of attributes named node features

and each edge with a weight (the distance between the points).

We divide the node features into two categories. The first category covers the attributes which

can be used to characterise nodes in both settings (CVRP and CVRPSTW). The attributes which

can only characterise nodes in the second scenario (CVRPSTW) are incorporated into the second

category.

The first class of attributes includes:

• location: whether or not the vehicle is at the node.

• depot: whether or not the node is the depot.

• demand: the current demand of the node (0 at the depot or when the customer was already

served).

• current_capacity: the vehicle’s current capacity.

• next_capacity: the maximum capacity of the next trip.

• possible_capacity: the vehicle’s capacity after travelling to the node and serving the node’s

customer.
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• can_serve: whether or not the vehicle has enough capacity to serve the customer at the node.

• fuel_consumption: the fuel consumption when travelling to the node (from the current loca-

tion).

• cost: the distance cost of travelling to the node (from the current location).

• mask: whether or not this node would be masked out.

The second class of attributes includes:

• current_time: current time.

• travel_time: time taken to travel to the node (from the current location).

• service_time: the time taken to serve the node (or reload the vehicle at the depot).

• start_tw: the start time of the node’s time window.

• end_tw: the end time of the node’s time window.

• arrival_time: the time of arrival at the node (when travelling to the node directly from the

current location).

• time_after_service: time after serving the customer at the node (when travelling to the node

directly from the current location).

• inside_tw: whether or not the vehicle arrives at the node inside its time window (when

travelling to the node directly from the current location).

• tw_error: the number of seconds the vehicle misses the time window for (when travelling to

the node directly from the current location). This value is negative when the vehicle arrives

before the time window’s start and positive if the vehicle arrives after the time window’s

end.

• after_tw_start: whether or not the vehicle arrives at the node after the start of its time

window (when travelling to the node directly from the current location).

• before_tw_end: whether or not the vehicle arrives at the node before the end of its time

window (when travelling to the node directly from the current location).

4.1.2 Masking Scheme

The action of our RL agent is equivalent to picking the next point of interest (depot or customer)

to which the vehicle will travel. Ideally, we would want this selected point to lead to the optimal

solution. However, first, the agent needs to learn. With only the reward function as a guide, the

agent is forced to explore a very large action space. Besides, not all the nodes in the graph lead to a
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feasible solution at all time steps. Since the research problem we are studying comprises multiple

hard constraints, these could be incorporated into the agent’s decision-making process.

In fact, in the literature, there have been many occasions where masks have been utilised to

block out invalid actions from being selected by the agent. The authors of [48] demonstrate the

positive effects of masking by comparing the performance of invalid action masking (removing

the actions from being selected) with invalid action penalty (giving a negative reward for invalid

actions), especially in large invalid action spaces. In Section 3.2, we previewed some of the masks

utilised in the literature to mask out actions in routing problems. These masking schemes range

from blocking out the possibility of staying in the same location forever to blocking out all the

points that turn the solution infeasible or that are known to lead to a non-optimal solution. For

example, there might be a time when the agent decides to explore whether or not it should leave

the depot or a particular customer. However, we are already aware of the outcome of this (staying

in the same location for multiple steps in a row). It yields unsatisfied customers and unfeasible

solutions.

Therefore, we implement a masking mechanism to limit the nodes that the agent can select.

This mask effectively narrows down the number of actions the agent can select. As a result, the

agent can only select nodes that would lead to a valid solution. Indeed, the mask blocks the agents

from executing the following actions:

• Not moving (selecting the current node as the next node).

• Visiting a customer that has already been served (selecting a node that is not the depot and

has no demand).

• Visiting a customer that it cannot serve (selecting a node whose demand exceeds the vehi-

cle’s remaining capacity).

Which leads our agent to adopt the behaviours:

• At each time step, it travels to a node different from the one it is currently in.

• At each time step, it either serves a customer or reloads at the depot.

In short, we mask out actions a whose nodes are considered invalid by the following equation.

Invalida : (a= current_location)∨(a ̸= depot_node∧¬(0< demanda≤ current_capacity)) (4.5)

where,

• Invalida determines whether the action is invalid or not.

• current_location is the node the vehicle is currently in.

• depot_node represents the depot node (usually 0).

• demanda corresponds to the demand of the node selected by action a.
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• current_capacity is the remaining vehicle capacity.

Nevertheless, this mask is only defined to limit the actions based on hard constraints. In the

CVRPSTW, the restrictions related to the customer’s requested time windows are soft constraints.

Since soft constraints can be infringed, selecting an action that violates them does not induce an

unfeasible solution. Therefore, they were not masked out. While they lead to penalties, breaching

them might be necessary to fulfil the demand. Besides, the agent is required to make decisions

about whether or not it is beneficial to break these restrictions.

4.1.3 Reward Functions

As previously stated, reward functions help the agent learn the optimal policy by guiding it towards

the goal. Sparse rewards, even though the most direct and general way to design the reward for

many problems, might prove challenging to train with [92]. When the RL agent uses a sparse

reward function, some issues that might emerge include:

• The agent does not know which action or subsequence of actions better influenced the re-

ward it obtained. This problem is also known as the credit assignment problem or the blame

attribution problem.

• The agent might be unable to find any reward in the environment. Without any reward, the

agent cannot learn.

• The agent might be unable to find any positive reward in the environment. Without positive

rewards, the agent will favour inactivity or inexistent rewards (actions with a reward value

of 0).

A better-shaped reward function that distributes the rewards over multiple actions without

modifying the intended optimal policy can speed up training and help the agent learn the optimal

policy more efficiently.

Reward shaping is a technique used to enhance the natural and direct reward design. It adds

intermediate rewards to compliment the agent when it progresses towards the goal or penalise it

when it moves further away. This new reward function is much denser and can help the agent try

out promising behaviours earlier. However, it risks distracting the agent from the real goal and

learning a sub-optimal policy, even when the shaping is very close to the actual value [134].

When solving a VRP, reward functions are used to communicate to the agent the quality of the

solution it found. Higher rewards indicate a better solution. In this project, the reward functions

employed are a linear combination of reward signals. Therefore, we establish three groups of

reward signals.

The first group encourages the agent to serve customers. It consists of a single function called

Step Reward. It awards the agent for serving a customer while penalising it for returning to the

depot and travelling to customers that it cannot serve (either by lack of capacity or because the
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customer was already served). The purpose of this reward signal is twofold. Firstly, it acts as a

safeguard, incentivising the vehicle to avoid travelling to the depot after serving a single customer.

Secondly, it guides the agent away from customers it has already served (when learning without

the mask). The Step Reward can be formalised as follows:

Step Rewarda =


−1 , if destinationa = depot

1 , if 0 < demanddestinationa ≤ current_capacity

−2, otherwise

(4.6)

, where

• a is the action that the agent executed.

• destinationa is the destination node after executing action a.

• depot is the depot node.

• demanddestinationa is the customer demand in the node selected by action a.

• current_capacity is the remaining vehicle capacity before executing action a.

The second group evaluates the routing quality, focusing on metrics related to the distance

travelled and fuel consumption. It comprises five different reward signals, Distance Reward, Nor-

malised Distance Reward, Distance Fraction Reward, Distance Savings Reward, and Fuel Con-

sumption Reward. The first four rewards account for the total distance travelled, an economic

metric, while the fifth accounts for fuel consumption, an ecological metric.

The first three penalise the agent based on the travelled distance between the current location

(current_location) and the destination node (destinationa) selected by action a. When the vehicle

travels longer, all of them will provide the agent with a smaller reward. The Distance Reward

penalises the agent proportionally to the distance travelled, as detailed in Equation 4.7.

Distance Rewarda =−dcurrent_location,destinationa (4.7)

, where dcurrent_location,destinationa is the distance travelled by the vehicle to go from current_location

to destinationa.

The Normalised Distance Reward normalises the distances in order to obtain reward values

between 0 and 1, following the formula:

1−
di, j−mini, j(di, j)

maxi, j(di, j)−mini, j(di, j)
(4.8)

, where mini, j(di, j) represents the minimum distance between any two points and maxi, j(di, j)

represents the maximum distance between any two points. Since the distances cannot be negative,

and the distance between any location and itself is always 0, the minimum value will always be 0.

Hence, Equation 4.9 defines the Normalised Distance Reward.
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Normalised Distance Rewarda = 1−
di, j

maxi, j(di, j)
(4.9)

The Distance Fraction Reward is a customised reward function based on the distance travelled

by the vehicle and the properties of fractions. This reward is also characterised by having its values

in the [0,1] range. It is defined in Equation 4.13. The mathematical explanation for this formula

is presented below in Equations 4.10, 4.11, and 4.12, where i and j represent any two points. The

value 1 added between Equations 4.10 and 4.11 allows us to avoid divisions by 0.

0≤ di, j < ∞ (4.10)

1≤ di, j +1 < ∞ (4.11)

0 <
1

di, j +1
≤ 1 (4.12)

Fraction Rewarda =
1

di, j +1
(4.13)

The Distance Savings Reward is another custom reward function inspired by the Clarke-

Wright Savings algorithm [14]. The Clarke-Wright Savings algorithm starts with the trivial so-

lution of making a trip per customer. Then, iteratively, selects an edge to connect two different

routes. This edge is determined based on which edge would incur a bigger decrease in the overall

travel distance. Similarly, the Distance Savings Reward awards and penalises the agent based on

the reduction in the travel distance. It starts by assuming the same scenario: the vehicle travels

to each delivery point and back to the depot. In this scenario, we do not consider multiple trips

to the same location, as the vehicle only needs to deliver a single package by location. As such,

subsequent visits are not serving the customer and are, therefore, useless. As the agent selects new

nodes to add to its partial route, it calculates the savings between the actual path it follows and the

trivial one, similar to Clarke-Wright Savings. Firstly, it starts by calculating the cost of travelling

to the node selected by action a using the trivial worst-case scenario:

expected_costcurrent_location,destinationa
= dcurrent_location,depot +ddepot,destinationa (4.14)

Then, it calculates the actual cost of travelling to the node by selecting action a. Note that if

the customer is not served, the vehicle will need to come back, leading to an increase in the total

distance travelled. The cost of this extra trip (travelling to the depot and back to the customer) is

calculated in the same way as the expected cost.

real_costcurrent_location,destinationa = dcurrent_location,destinationa +non_served_costa (4.15)
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non_served_costdestinationa =

0 , if 0 < demanda ≤ current_capacity

ddestinationa,depot +ddepot,destinationa ,otherwise
(4.16)

Finally, Equation 4.17 defines the Distance Savings Reward.

Distance Savings Rewarda = expected_costcurrent_location,destinationa

− real_costcurrent_location,destinationa

(4.17)

The last reward of this group is the Fuel Consumption Reward depicted in Equation 4.23. As

further explored in Section 4.2.3 and Equation 4.30, the fuel consumption can be calculated using

the formula:

Fuel Consumption = Distance Travelled∗Vehicle and Cargo Weight (4.18)

Accordingly, the Fuel Consumption Reward attempts to reduce the magnitude of the values

obtained using the maximum possible fuel consumption for a single trip segment between any two

nodes. This worst possible value (max_fuel_partial) corresponds to travelling the graph edge with

the biggest length while the vehicle is full.

max_fuel_partial = (vehicle_weight+vehicle_capacity)∗max
i, j

(di, j) (4.19)

, where:

• vehicle_weight corresponds to the weight of the vehicle without any packages. In this

project, we assumed a vehicle weight of 1500 kilograms. While this is not close to the

weight of a truck, it is a good approximation for the poundage of a last-mile delivery vehicle

with smaller sizes. Besides, on average, in the Amazon dataset (described in Section 5.1),

the vehicles have a maximum capacity of 3.6 cubic metres.

• vehicle_capacity corresponds to the maximum capacity of the vehicle.

For each action selected, the vehicle travels from its current location to the location chosen

by action a. However, the packages delivered at the destination need to be carried from the depot

to that location. Therefore, when the agent adds a new customer to the trip, the corresponding

package needs to be transported from the depot until it gets dropped off.

fuel_consumedvehicle = dcurrent_location,destinationa ∗vehicle_weight (4.20)

fuel_consumedpackage = distance_since_depotdestinationa
∗package_weight (4.21)
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, where distance_since_depotdestinationa corresponds to the route’s total distance from the depot to

the node selected by a, passing by all the other nodes previously selected after the last depot visit.

fuel_consumedcurrent_location,destinationa = fuel_consumedvehicle + fuel_consumedpackage (4.22)

Finally, Equation 4.23 depicts the Fuel Consumption Reward.

Fuel Consumption Rewarda = 1 −
fuel_consumedcurrent_location,destinationa

max_fuel_partial
(4.23)

Instead of using the maximum distance of a single segment and considering the vehicle full

during that segment, one could use other values to reduce the magnitude of the reward value.

Another possibility includes considering the maximum fuel consumed in a trip to deliver a single

package of capacity equal to the vehicle’s maximum capacity, as shown below.

max_fuel_partialalternative = max
i
(ddepot,i ∗ (vehicle_weight+vehicle_capacity)

+ddepot,i ∗vehicle_weight)
(4.24)

The third group penalises the agent for missing its time windows and measures customer satis-

faction. It includes two different reward signals, Error Reward and Inside or Outside Reward. The

first signal attributes a penalty proportional to the time gap between the package delivery and the

requested time window. In contrast, the second signal simply penalises package deliveries outside

the time window. Additionally, the penalties are the same whether the package was delivered early

or late. Accordingly, serving the order 10 minutes earlier would yield the same punishment as 10

minutes late. Thus, the time gap can be defined as follows:

early_delivery_gapa = max(0,starta−delivery_timea) (4.25)

late_delivery_gapa = max(0,delivery_timea− enda) (4.26)

time_gapa = early_delivery_gapa + late_delivery_gapa (4.27)

, where

• starta and enda are the start and end of the requested time window of the customer selected

by action a.

• delivery_timea corresponds to the time when the vehicle arrived at the customer selected by

action a.

If the customer does not specify a starting time for its time window, the value of early_delivery_gap

will be 0. Similarly, when the end time is not defined, the value of late_delivery_gap will be 0.

Using the defined time gap, the Error Reward is detailed in Equation 4.28. The time gap is

divided by 2 hours to reduce this value’s order of magnitude.
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Error Rewarda =−
time_gapa

2∗60∗60
(4.28)

Equation 4.29 depicts the Inside or Outside Reward. This reward penalises the agent for de-

livering packages outside the delivery window on two levels. The first level considers a difference

of up to 10 minutes, with a smaller penalty of -0.5. More significant deviations from the time

window result in a penalty score of -1.

Inside or Outside Rewarda =−


0 , if time_gapa = 0

0.5 , if time_gapa ≤ 10∗60

1 ,otherwise

(4.29)

4.2 Performance Metrics

In this section, we discuss how to evaluate the performance of our approach. Firstly, we start with

existing performance evaluation metrics in the literature that can be applied in multiple domains to

assess the method’s quality. In particular, we provide an overview of both Reinforcement Learning

and Transfer Learning metrics. Then, we discuss what could be considered a performance measure

in our specific domain, the VRP and its variants.

4.2.1 Reinforcement Learning Metrics

The most common performance evaluation metrics in RL algorithms are the received reward and

the time spent training and / or testing the model.

The received reward can be observed and analysed from two different perspectives. Firstly, in

regard to a single episode (as a function of the number of steps in that episode), it can illustrate how

the rewards are dispersed through the episode. Secondly, analysing the cumulative reward obtained

in each epoch (as a function of the number of epochs) can describe the policy evolution throughout

the training. To analyse the cumulative reward, we could accumulate it across multiple episodes

and epochs, yielding the Accumulated Reward or resetting that accumulator between episodes or

epochs, yielding the Received Rewards per Episode or Received Rewards per Epoch, respectively.

Both metrics produce the same results as the Received Rewards’ absolute value corresponds to the

Accumulated Reward’s slope.

On the other hand, the time spent training and / or testing the model reflects the computational

power it requires and its efficiency. This metric usually requires that both models train in the same

or equivalent hardware and software.

4.2.2 Transfer Learning Metrics
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For ease of comparison with other projects, we started by compiling evaluation metrics already

in use in the literature. Zhu et al. [160] group these performance metrics according to their per-

spective and main focus, as seen in Figure 4.1, and the TL ability they evaluate. According to that

ability, the metrics are separated into two groups, mastery and generalisation. Mastery indicates

the agent’s level of proficiency in the target domain. Generalisation indicates the agent’s ability to

efficiently adapt to the target domain using the transferred knowledge from the source task. Addi-

tionally, some metrics can fit into both of these categories, depending on the choice of threshold.

Figure 4.2 visually demonstrates how each of the following metrics was classified.

• Jumpstart performance [116, 160, 141]: the initial performance of the agent in the target

domain.

• Performance sensitivity [160]: the performance variance when using different hyperparam-

eter settings.

• Necessary knowledge amount [160]: the necessary amount of knowledge required to trans-

fer.

• Necessary knowledge quality [160]: the necessary quality of the transferred knowledge.

• Time to threshold [116, 160]: number of steps necessary to reach the specified threshold. A

low threshold measures generalisation, whereas a higher threshold measures mastery.

• Performance with fixed training epochs [160, 141]: agent’s performance after a fixed num-

ber of steps. A low number of steps evaluates generalisation, whereas a higher number of

steps evaluates mastery.

• Asymptotic performance [116, 160, 141]: the final performance of the agent in the target

domain.

• Accumulated rewards [116, 160]: the total reward accumulated by the agent.

• Transfer ratio [116, 160]: the ratio between the agent’s performance with and without trans-

fer.

Figure 4.1: Result Evaluation Metrics divided according to their Perspective and Main Focus
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Figure 4.2: Result Evaluation Metrics divided into Mastery and Generalisation

4.2.3 Domain Metrics

As referred to in Section 3.1, when optimising the VRP, one can consider multiple conflicting

objectives. While some of those objectives are not tangible, others are not so clear. In this project,

we will focus more on the quantifiable ones, such as:

• Reducing the distance costs.

• Reducing the time costs.

• Improving the trip’s energy efficiency.

• Reducing fuel consumption.

• Reducing carbon footprint.

• Reducing GHG emissions.

• Reducing CO2 emissions.

• Reducing the number of vehicles needed.

• Reducing the number of deliveries made outside the customer’s requested time window.

• Reducing the number of times a delivery is made earlier than requested.

• Reducing the number of times a delivery is made later than requested.

• Reducing the time gap between the time of the delivery and the requested time window.

Nonetheless, not all of the objectives presented are conflicting, and some are correlated. For

example, fuel consumption is inherently connected to the carbon footprint and the emissions of

GHG and CO2. Moreover, by reducing fuel / energy consumption while still using the same type

of vehicles and delivering all the packages to the customers, we are automatically increasing fuel



52 Methodological Approach

/ energy efficiency. Since there is a directly proportional relationship between fuel consumption

and the carbon footprint, GHG, and CO2 emissions, and an inversely proportional relationship be-

tween fuel consumption and fuel / energy efficiency, observing the fuel consumption metric should

provide a good overview of how those metrics are performing. Therefore, one could consider the

following performance measures:

• Total Distance Travelled: kilometres travelled by the fleet of vehicles.

• Total Trip Time: time spent outside the depot (travelling, serving customers, or waiting to

serve customers) by the fleet of vehicles.

• Number of Vehicles: number of vehicles necessary to serve all the customers.

• Total Fuel Consumption: litres of fuel consumed by the vehicles.

• Violated Time Windows: number of deliveries made outside the requested time window.

It is essential to highlight that fuel consumption is still somewhat connected to the distance

travelled or time spent on the trip. Despite that, it also depends on other factors, such as weight,

speed, traffic congestion, and driver habits. According to [80], we can calculate GHG emissions

using the formula:

GHG Emissions = D∗W ∗EF (4.30)

where,

• D is the distance travelled by the vehicle.

• W corresponds to the weight (both the vehicle’s weight and the carried packages).

• EF is the emissions factor. It corresponds to the amount of GHG emitted per litre of fuel

used. This factor can be approximated as a constant.

Therefore, in this project, we will be observing and examining the following metrics:

• Unsatisfied Demand and Unsatisfied Customers

• Average Vehicle Load per Trip

• Total Distance Travelled

• Total Fuel Spent

• Percentage of Customers Served Outside their Requested Time Window (either Early or

Late)
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Experimental Setup and Result Analysis

This chapter presents the datasets as well as the experiments, their configuration and parameters,

and respective results and analysis. We start by introducing the datasets and their properties.

Afterwards, we describe the general characteristics of the experiments. Then, we introduce each

experiment and its specific settings, followed by the results and their analysis. To organise our

experiments, we divided them based on the environment in which the agent operates and the

method used. As a result, we conducted three experiments: the first two using Reinforcement

Learning and the third one using Reinforcement Learning in conjunction with Transfer Learning.

Each Reinforcement Learning experiment targeted a different environment: the first focused on

the Capacitated Vehicle Routing Problem (CVRP), and the second on the Capacitated Vehicle

Routing Problem with Soft Time Windows (CVRPSTW).

Some of the graphs in this chapter present relative values instead of absolute ones. These

relative values are calculated within each run, meaning they were calculated using the formula:

relative value =
value−minimum value o f the run

maximum value o f the run−minimum value o f the run
(5.1)

While the absolute values allow us to compare the agent’s performance, using relative values

enables us to compare the evolution of the agent’s performance. The use of relative values is

necessary due to big disparities between absolute values or the impossibility of comparing absolute

values.

The lines in the graphs represent the moving average of the last five values. Additionally, some

graphs include a coloured area surrounding the lines delimited by the maximum and minimum

values of the last five values. In the graphs with more lines, the coloured area was omitted for

legibility.

For the complete and exact hyperparameters used in each of the experiments, see Appendix B.

53
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5.1 Datasets

Before conducting the experiments, it is necessary to analyse the data that we will employ. The

first one comes from the Loggi Benchmark for Urban Deliveries (LoggiBUD) [74], while the

second one comes from the 2021 Amazon Last Mile Routing Research Challenge [81, 91]. From

now on, we will refer to them as the Loggi dataset and the Amazon dataset, respectively. Note that

both datasets only assume deliveries, excluding the concept of pickup points.

Some general properties for each dataset are presented in Table 5.1. Those properties include:

• Dataset: the name of the dataset.

• N Cities: the number of cities depicted in each dataset.

• CVRP: whether or not one can consider the CVRP when using this dataset.

• CVRPSTW: whether or not one can consider the CVRPSTW when using this dataset.

Table 5.1: Properties of the Datasets

Dataset N Cities CVRP CVRPSTW
Loggi 3 X

Amazon 5 X X

Tables 5.2 and 5.3 describe each of the cities included in the Loggi and Amazon datasets,

respectively. This characterisation includes:

• City: the city’s name.

• N Routes: the number of routes that contain delivery points in that city.

• N Points: the total number of delivery points across all the available routes.

• Min Points/Route: the minimum number of delivery points per route in that city (excludes

routes that do not deliver items to that city).

• Max Points/Route: the maximum number of delivery points per route in that city (excludes

routes that do not deliver items to that city).

• Avg Points/Route: the average number of delivery points per route in that city (excludes

routes that do not deliver items to that city).

The Loggi dataset contains 1320 CVRP instances simulating large-scale delivery problems

within Belém, Brasília, and Rio de Janeiro, some of Brazil’s largest cities. Even though Loggi

proposes three increasingly complex tasks capable of being solved with this dataset, in this project,

we exclusively focus on the first one, the CVRP. However, we introduce some modifications to the
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optimisation objective. Instead of only minimising the total distance travelled, other optimisation

needs, discussed in Section 4.2.3, are taken into account.

Table 5.2: Properties of Cities Present in the Dataset from Loggi [74]

City N Routes N Points Min Points/Route Max Points/Route Avg Points/Route
Belém 240 533973 211 5108 2224.89

Brasília 360 1179407 765 5636 3276.13

Rio de Janeiro 720 3466092 1758 8421 4814.02

The Amazon dataset comprises 9177 historical routes. They contain delivery points scattered

throughout Austin, Chicago, Seattle, Boston, and Los Angeles. While some of the delivery points

include multiple packages, for ease of generalisation with the previous dataset, we treat each

package as an individual delivery point when converting the routes to instances. Specifically,

Table 5.3 comprises the number of delivery points after separating each package.

Table 5.3: Properties of Cities Present in the Dataset from Amazon [81]

City N Routes N Points Min Points/Route Max Points/Route Avg Points/Route
Austin 335 79977 153 304 238.74

Boston 1345 309925 151 299 230.43

Seattle 1505 345343 151 299 229.46

Chicago 1472 372259 158 299 252.89

Los Angeles 4520 1077713 150 299 238.43

Both datasets only consider delivery points and disregard pickups. Additionally, they both

assume a homogeneous fleet without specifying restrictions on the number of vehicles or the max-

imum number of trips per vehicle. As a result, in this project, we will consider a single vehicle

capable of completing an infinite number of trips. This presumption is analogous to assuming an

infinite number of vehicles, where each vehicle completes a single trip, except time accumulates

between trips.

5.2 Core Configuration

Since our goals are divided into two groups, we present two separate pipelines for our experi-

ments. When using the first pipeline, we explore the effects of different representations, action

restrictions and reward functions on the RL’s agent overall learning and performance. The second

pipeline incorporates the first one and is intended to examine the effects of TL on the new agent’s

performance.

As previously mentioned in Section 2.1, an RL agent maps environment states to actions. The

first pipeline, illustrated in Figure 5.1, corresponds to a single one of these mappings. It starts by

deconstructing the environment state and organising it into nodes, edges, and their features.



56 Experimental Setup and Result Analysis

State

Node
Features

Edge
Weights

Mask

Graph Layers

Connection
Function

Linear Layers

Mask Layer

Softmax Select Action

G
ra

ph
 N

eu
ra

l N
et

w
or

k

Figure 5.1: Steps Taken to Map an Environment State to an Action

Figure 5.3 exemplifies the second pipeline. This pipeline presents how Transfer Learning is

applied to RL agents. Typically, an RL agent uses a dataset to train its model, as in Figure 5.2.

When using Transfer Learning, the agent first receives knowledge from an already trained source

model and then trains using an entirely new dataset.

Dataset Model
Learning

Figure 5.2: Reinforcement Learning Pipeline without Transfer Learning
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Figure 5.3: Transfer Learning Pipeline

After showcasing our pipelines, we proceed to provide their setup and configuration details.

The REINFORCE algorithm described in Section 2.1.2 was used to train the agent. Due to time

restrictions, optimising all the hyperparameters used was impossible. Therefore, the Graph Neural

Network configuration is similar to the one presented in [39]. It contains a single Graph Convo-

lutional Network layer, followed by a connection function and three Linear layers. The network

weights are initialised as an orthogonal matrix, and its bias is initialised as zero.

Additionally, we defined the learning rate to be 10−4 since the authors of [56] deemed it the

most appropriate. Furthermore, we performed some experiments regarding the discount factor

(γ) value, which can be seen in Figure 5.4. We used a discount factor of 0.98 for all our other

experiments, as it provided more stable and convergent learning. Aside from that, we went with

the default parameters considered by the library we were using [133].
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Figure 5.4: Discount Factor Tuning: Rewards per Episode

The exact hyperparameters used in each experiment are described in full detail in Appendix B.
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5.3 Capacitated Vehicle Routing Problem (CVRP)

The CVRP environment deals with the Capacitates Vehicle Routing Problem scenario. As such, it

is subject to its constraints. Additionally, from the node features and reward signals recognised in

Sections 4.1.1 and 4.1.3, respectively, it only employs the ones related to the general routing or the

vehicle capacity constraint. Moreover, we only examine domain metrics associated with routing

and vehicle capacity from the ones presented in Section 4.2.3.

The reward functions approached in this section are detailed below.

Distancea = Distance Rewarda (5.2)

Distance Norm.a = Normalised Distance Rewarda +Step Rewarda (5.3)

Fractiona = Fraction Rewarda +Step Rewarda (5.4)

Savingsa = Savings Rewarda (5.5)

Fuel Cons.a = Fuel Consumption Rewarda +Step Rewarda (5.6)

Multi (D + F)a = Normalised Distance Rewarda +Fuel Consumption Rewarda +Step Rewarda

(5.7)

Sparse (Dist. Norm.) =

∑
a∈A
a (Distance Norm.a) if episode is over

0 ,otherwise
(5.8)

, where A represents the sequence of actions executed during the episode.

The last equation represents the Sparse Reward. Identical to the Distance Norm. in terms of

received rewards per episode, it only provides the rewards to the agent at the end of the episode

instead of at every step.

5.3.1 The Masking Mechanism

Due to the difficulties in guiding the agent to a feasible solution referenced in Section 4.1.2, we

implemented a mask that prevents selecting nodes that lead to an invalid sequence of actions.

This section displays the experimental results that verify that using this specific mask guarantees

a better jumpstart and overall performance. Thus, we compare the agent’s learning when using

different masking procedures. The first agent (None) will be operating without any restriction.

The second agent (Noop) will use a simpler mask to avoid not moving (selecting the node the

vehicle is currently in). The third agent (Invalid) will use the mask described in Section 4.1.2.

Remembering, this mask blocks our agent from deciding to execute actions that lead to unfeasible

or less-than-optimal solutions, such as:

• Selecting the current node.
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• Selecting a customer who has already been served (whose demand is 0).

• Selecting a customer the vehicle cannot serve (its demand exceeds the remaining capacity

of the vehicle).

Since agents None and Noop are not guaranteed to finish the episode, a maximum number of

steps for a single episode was established. In the event that the agent surpassed it, the episode

would stop, and a penalty of 1000 would be issued. The Invalid agent cannot visit the same

customer twice. As such, there is no need to establish an upper bound on the number of actions it

can execute per episode.

Figure 5.5 depicts the absolute values of the total rewards received per episode. While this

figure does not allow us to evaluate the evolution of rewards throughout learning, it highlights the

difference between the performance of the various agents.
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Figure 5.5: Rewards per Episode Comparison between Agents using Different Masks (Absolute
Values)

Figure 5.6 illustrates the evolution of rewards received per epoch using relative values. These

normalised relative values allow us to perceive the evolution of the rewards and analyse the con-

vergence. These relative values do not contain information about which agent performs better but

rather which agent has a better or worse evolution. A downward curve indicates that the agent’s

performance degrades as it trains more, and an upwards curve demonstrates that its performance

improves over time.
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Figure 5.6: Rewards per Episode Comparison between Agents using Different Masks (Relative
Values)

As can be observed in the previous two figures, the agent using Invalid clearly outperforms

the others. The size of the action space, combined with the fact that this problem is combinatorial,

difficults the learning of the other two agents. These other agents have to go through a lot of the

search space in order to figure out what was initially imposed on the Invalid agent. Since this agent

sees its search space reduced at each step, it will have fewer problems finishing all the deliveries

and the episode. On top of that, it will avoid the penalty applied for not being able to complete all

the deliveries.

Intuitively, by not having to explore a large group of invalid actions and negative rewards,

the agent will have more opportunities to explore valid actions. Indeed, since the agent starts

without any prior knowledge of which actions are valid or invalid, it needs to explore the entirety

of the action space to determine which actions are beneficial or detrimental before choosing which

actions are better.

Figures 5.7, 5.8 and 5.9 demonstrate the problems with the solutions the Noop and None agents

found. These agents get lost on local minimums that do not produce feasible solutions.
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Figure 5.9: Unsatisfied Customers (%) Comparison between Agents using Different Masks (Ab-
solute Values)

While agent Invalid serves all the customers, agents Noop and None do not. These two wander

around almost aimlessly without serving almost anyone. In fact, they both leave most customers

unserved, with Noop averaging 95.81% and None at 99.68%. While the agent Noop manages to

serve 45.24% of customers during epoch 1744 (leaving 54.76% of customers unserved), the agent

without any restrictions (None) never serves more than 0.32% of customers.

None opts for not leaving the depot or simply visiting a single customer and then stopping

there for the rest of the epoch. On the other hand, since Noop cannot remain in the same location,

it usually hops in a loop between 2 or 3 customers, occasionally breaking the circle to serve a few

customers or engage in a new loop. During their best epochs (947 and 1744, respectively), agents

None and Noop serve 4 and 258 customers, respectively, out of 1293. Additionally, they visit the

depot 512 and 259 times and repeat customers 2044 and 2043 times.

5.3.2 Node Features

This section evaluates the effects of different node features on the agent’s performance. For that,

we select some of the referred properties as obligatory and some as optional.

Table 5.4 identifies all the node features considered and whether they were obligatory or op-

tional.
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Table 5.4: Node Features Considered in the CVRP Experiments

Node Feature Obligatory Optional
location X

depot X

demand X

current_capacity X

next_capacity X

possible_capacity X

can_serve X

fuel_consumption X

cost X

mask X

The results of this experiment can be seen in Table 5.5. For simplicity, only the optional node

features are presented in the table. The column Accumulated Rewards holds the cumulative re-

wards obtained through 25 training epochs. The best performant agents attain good accumulated

rewards, as well as good initial and final performances. Additionally, the initial and final perfor-

mances should be different to indicate the potential to develop and evolve over time. Figure 5.10

describes the distribution of the cumulative rewards obtained per agent.
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Figure 5.10: Distribution of Accumulated Rewards Obtained by Agents using Different Node
Features through the Span of 25 Epochs

As can be seen, there is a significant variance in the accumulated rewards caused by using

various node feature combinations. Additionally, Figure 5.11 showcases the effects of different

node feature combinations throughout the 25 training epochs.
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Figure 5.11: Distribution of Rewards per Epoch Obtained by Agents using Different Node Feature
Combinations

This figure also observes a large range of values, indicating that node feature combinations
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influence the initial and final performances of the agent as well as its training. This impact can

be partly justified by the low amount of training completed by the agents. Since the agents in

this experiment only train for 25 epochs, their performance is highly dependent on the network

initialisation, which is an orthogonal matrix.

We decided to explore further the combination: location, depot, demand, current_capacity,

next_capacity, fuel_consumption, and cost for the experiments regarding the CVRP environment.

5.3.3 Reward Functions

In order to prove the impact and importance of correctly designed reward functions, we performed

two different experiments. Due to the nature of this section and to allow a fair comparison between

agents, the absolute rewards per episode will not be considered. The rewards the agent receives

will be inherently different as a result of different reward functions. Therefore, all the comparisons

will regard only the relative rewards per episode and domain metrics.

In the first experiment, we use the mask addressed as Invalid in the previous section, which

masks out invalid nodes, to test the agent’s performance under different reward functions. Fig-

ures 5.12, 5.13, and 5.14 depict the effects of using different reward functions with the same

objective on the agent’s performance.
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Figure 5.12: Rewards per Episode Comparison between Agents using Different Reward Functions
(Relative Values)
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Figure 5.13: Distance Travelled Comparison between Agents using Different Masks (Absolute
Values)
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Figure 5.14: Fuel Consumption Comparison between Agents using Different Reward Functions
(Absolute Values)

As expected, even though the agent’s performance differs as a result of different reward func-

tions, it still performs quite similarly when optimising the same objectives. Additionally, rewards

such as Fraction and Savings note a bigger stability than the Distance Norm. reward. Surprisingly,

the agent subject to Sparse (Dist. Norm.) performs very well. This is in great part due to the mask-

ing mechanism used. Since the mask guides the agent to finish the episode, when using the Sparse

(Dist. Norm.) reward function, the agent will still receive the entirety of the episode rewards.

While they are delayed, all the partial trips that compose the vehicle’s route are considered and

accounted for in the final reward. However, in the case that they do not use masking, the agent is

not guaranteed to finish the episode. As such, the rewards received may vary, which will lead to

very different results.
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Figures 5.15, 5.16, and 5.17 portray the effects of using different reward functions attempting

to optimise different objectives.
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Figure 5.15: Rewards per Episode Comparison between Agents using Different Reward Functions
(Relative Values)
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Figure 5.16: Unsatisfied Customers Comparison between Agents using Different Masks (Absolute
Values)
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Figure 5.17: Fuel Consumption Comparison between Agents using Different Reward Functions
(Absolute Values)

Most importantly, the behaviour is different when trying to optimise different objectives. Quite

unexpectedly, the agent attempting to minimise the distance (using the Distance Norm. reward)

outclasses its counterparts which consider fuel consumption minimisation in both distance trav-

elled and fuel consumption.

There are two main factors which contribute to this underperformance. The first factor is the

network initialisation does not favour this reward function. The node features were also chosen

based on how well the agent performed with them when receiving rewards from the Distance

Norm. function. On the other hand, the agent might have problems with credit assignment since

the package must travel from the depot to the customer, and all that distance needs to be considered

when calculating the fuel consumption. As such, delivering the heavier packages first and the

lighter ones later leads to a much better reward than the opposite. Nonetheless, this is implicit

and, therefore, not explicitly represented in the reward function. Thus, the agent might need more

time and training to understand these caveats effectively.

In a second experiment, we experimented without the mask and effectively compared dense

and sparse reward functions. In this scenario, we can visualise and interpret the absolute reward

per episode since, when the actions executed are equal, both functions grant the same reward per

episode. The only difference is using a dense reward function, Distance Norm., for the Dense

agent and a sparse reward function, Sparse (Dist. Norm.), for the Sparse agent.

However, the agents require much more training when training without the mask. Due to time

constraints, the experiment concluded after only 1000 epochs, which is not enough to preview the

full picture of training with these two reward functions, as seen in Figure 5.18.
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Figure 5.18: Rewards per Episode Comparison between Agents using Different Reward Functions
(Absolute Values)

5.4 CVRP with Soft Time Windows (CVRPSTW)

The CVRPSTW environment represents the Capacitated Vehicle Routing Problem with Time Win-

dows. Therefore, alongside the restrictions already presented in the previous section, the cus-

tomers should be visited within a specified time window. As such, all the constraints introduced

in Section 4.1 need to be respected. Moreover, any of the node features, reward signals, and

performance metrics discussed in Sections 4.1.1, 4.1.3 and 4.2.3 is applicable.

Similarly to the previous section, we establish the reward functions as a linear combination of

reward signals proposed. However, instead of testing the reward signals related to routing and the

capacity constraints, we explore the ones related to the customer time windows. In this experiment,

we explore two particular reward functions: the TW Failed (D) and the TW Error (D) described in

Equations 5.9 and 5.10.

TW Failed (D)a = Distance Norm.a + Inside or Outside Rewarda (5.9)

TW Error (D)a = Distance Norm.a +Error Rewarda (5.10)

5.4.1 CVRP vs CVRPSTW

Before diving into the specifics of the CVRPSTW, it is important to understand the behavioural dif-

ferences between agents operating in the CVRP and the CVRPSTW environments. Figures 5.19, 5.20,
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and 5.21 expose the main differences between agents trained in the CVRP and CVRPSTW envi-

ronments.
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Figure 5.19: Rewards per Episode Comparison between Agents operating in Different Environ-
ments (Absolute Values)
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Figure 5.20: Distance Travelled Comparison between Agents operating in Different Environments
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Figure 5.21: Time Windows Missed Comparison between Agents operating in Different Environ-
ments (Absolute Values)

As expected, the agent operating in the CVRP domain will start with better reward values as

it will not be penalised by serving the clients outside the required time windows. However, we

can note an unexpectedly significant reward difference between epochs 1000 and 2000. In fact,

during that time, the CVRPSTW agent achieved a bigger reward and a smaller distance travelled,

even though it was subject to more constraints and penalties than the CVRP.

Overall, although the agent operating in the CVRPSTW domain does not receive higher re-

wards, it still travels a somewhat similar distance. Additionally, its behaviour is more stable, and

the number of time windows it misses is small. Only 0.14% of customers received their orders out-

side their expected time window, which means that from the 1.237% of customers that requested

a time window, only 11.32% received theirs outside of it.

5.4.2 Node Features

Similarly to Section 5.3.2, this section evaluates the effects of different node features on the agent’s

performance. The most significant difference is related to the node attributes featured. The CVRP

experiments’ attributes were related to routing and capacity constraints. In contrast, in this ex-

periment, they are related to time and time windows. Once again, we select some of the referred

properties as obligatory and some as optional.

Table 5.6 identifies all the node features considered and whether they were obligatory or op-

tional.



5.4 CVRP with Soft Time Windows (CVRPSTW) 77

Table 5.6: Node Features Considered in the CVRPSTW Experiments

Node Feature Obligatory Optional
location X

depot X

demand X

current_capacity X

can_serve X

cost X

mask X

current_time X

travel_time X

service_time X

start_tw X

end_tw X

arrival_time X

time_after_service X

inside_tw X

tw_error X

after_tw_start X

before_tw_end X

The results of this experiment can be seen in Table 5.7. For simplicity, only the optional node

features are presented in the table. The column Accumulated Rewards holds the cumulative re-

wards obtained through 25 training epochs. The best performant agents attain good accumulated

rewards, as well as good initial and final performances. Additionally, the initial and final perfor-

mances should be different to indicate the potential to develop and evolve over time. Figure 5.22

describes the distribution of the cumulative rewards obtained per agent.
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Figure 5.22: Distribution of Accumulated Rewards Obtained by Agents using Different Node
Features through the Span of 25 Epochs

As can be seen, the variance in accumulated rewards is much smaller than the one obtained

in Section 5.3.2. With the exception of using all optional node features, all other combinations

perform much more similarly. However, there are still some disparities. Figure 5.23 showcases

the effects of different node feature combinations throughout the 25 training epochs. It does not

include the combo of all optional node features.
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Figure 5.23: Distribution of Rewards per Epoch Obtained by Agents using Different Node Feature
Combinations
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It also observes a large range of values, with darker bars on the right, indicating that the node

feature combinations allow the agent to learn and improve its performance. Nonetheless, with

only 25 training epochs, the performance is still heavily affected by the initialisation method.

We decided to explore further the combination: location, depot, demand, current_capacity,

next_capacity, fuel_consumption, cost, current_time, travel_time, service_time, start_tw, end_tw,

tw_error, and time_after_service for the experiments regarding the CVRP environment.

5.4.3 Reward Functions

This section assumes a similar purpose to Section 5.3.3: to explore the impact and performance

of different reward functions. However, instead of testing the reward signals related to routing

and the capacity constraints, we explore the ones related to the customer time windows. Once

again, due to the nature of this section and to allow a fair comparison between agents, the absolute

rewards per episode will not be considered.

Figures 5.24, 5.25 and 5.26 portray the evolution of agents operating in the CVRPSTW envi-

ronment.
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Figure 5.24: Rewards per Episode Comparison between Agents using Different Reward Functions
(Relative Values)
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Figure 5.25: Distance Travelled Comparison between Agents using Different Reward Functions
(Absolute Values)
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Figure 5.26: Failed Time Windows Comparison between Agents using Different Reward Func-
tions (Absolute Values)

Figure 5.27 demonstrates how the penalty applied evolves as the delivery gets farther from the

requested time window. In this figure, the Error Reward is the penalty applied to the TW Error

(D), and the Inside or Outside Reward is the penalty applied to the TW Failed (D). The values

correspond to penalties, which, essentially, means that the agents receive them as negative values,

the symmetric of the value represented in the graph.
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Figure 5.27: Penalties Obtained as the Delivery Time gets Farther Away from the Requested Time
Window

Since the REINFORCE algorithm is based on gradients, a constant function during a certain

portion of values is harder to optimise. Due to the nature of the reward functions, and the penalty

applied to the agents for missing deliveries on the requested time windows (shown in Figure 5.27),

the agent receiving the TW Error (D) will converge quicker than the agent receiving the TW Failed

(D) reward.

5.5 Exploring Transfer Learning

This section explores the effects of transferring the knowledge from a source model to a target

model and continuing its training on the new task. To transfer that knowledge from one model

to another, we simply initialise the weights and biases of the target model with the respective

values held by the source model. This practice is called fine-tuning, one of the Transfer Learning

approaches. We chose to fine-tune our models without freezing any layers (frozen layers do not

update during the backpropagation step). By doing this, our entire network is allowed to train and

adapt to the new task.

5.5.1 Changing Dataset

The first experiment regarding Transfer Learning explores the ability of the agent to adapt to

a different dataset. Firstly, the agent is trained on the Amazon Dataset, considering a CVRP

environment. Afterwards, the knowledge is transferred to another agent operating on the Loggi

Dataset, still in a CVRP environment. Below, we compare the performance of two agents, one that

received knowledge from the previously trained agent and another that started the training from

scratch.
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Figure 5.28: Rewards per Episode Comparison between Agents when using Transfer Learning to
Change Dataset (Absolute Values)
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Figure 5.29: Distance Travelled Comparison between Agents when using Transfer Learning to
Change Dataset (Absolute Values)

The similarities between both datasets affect how positive the transfer is. Both the source and

target agents operate in the same environment, and only the magnitude of values changes. Since

the domains are very similar, the agent performs much better than the one trained from scratch.

Even though the agent that starts the training from scratch has a similar start to the one subject

to knowledge transfer, the latter quickly surpasses its counterpart. It becomes more stable and

receives more rewards.

5.5.2 Removing the Mask
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Our second experiment involving Transfer Learning evaluates the ability of the agent to function

without the mask. Figure 5.30 illustrates the effects of reusing knowledge from an agent trained

with it.
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Figure 5.30: Rewards per Episode Comparison between Agents when Using Transfer Learning to
Remove the Mask (Absolute Values)
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Figure 5.31: Unsatisfied Customers Percentage Comparison between Agents when Using Transfer
Learning to Remove the Mask (Absolute Values)

Since the mask proved such a critical piece in the agent’s training, it was expectable that

the agent subject to knowledge transfer surpassed the agent without TL substantially. However,

the agent is not capable of outperforming its counterpart. It starts by scoring −1510.33, only

marginally below (0.02 units) the agent without knowledge transfer, who scored−1510.31. Then,

it continues to perform slightly worse than the agent without Transfer Learning. However, it
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evolves quicker as its first downward curve appears before the 100 epochs, while its counterpart

only starts evolving around the 800 epochs mark, as seen in Section 5.3.1.

There are two main possibilities for this low performance: the lack of training of the source

agent and the exploring phase of RL. On the one hand, the source agent might require more training

before being generalisable to working without the mask. On the other hand, since the source agent

never picked invalid nodes, it might not recognise them as invalid but rather unexplored. It would

require longer training to discern which option applies or if some other factors are affecting the

target agent.

5.5.3 Changing Environment

The third experiment explores one of the focal topics of this project, whether or not knowledge

can be reused across different VRP variants. We start by analysing how an agent trained in the

CVRPSTW environment performs in the CVRP environment (in Figures 5.32, 5.33 and 5.34).

20 40 60 80 100
Epoch

508.5

508.6

508.7

508.8

508.9

509.0

509.1

R
ew

ar
ds

 p
er

 E
po

ch

Rewards per Epoch

Use Transfer Learning
No
Yes

Figure 5.32: Rewards per Episode Comparison between Agents when using Transfer Learning to
Change to an Easier Environment (Absolute Values)
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Figure 5.33: Rewards per Episode Comparison between Agents when using Transfer Learning to
Change to an Easier Environment (Relative Values)
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Figure 5.34: Distance Travelled Comparison between Agents when using Transfer Learning to
Change to an Easier Environment (Absolute Values)

Since the target task involves fewer constraints than those in which the agent was originally

trained (in the source task), the agent would be expected to perform exceptionally well. However,

contrary to expectations, this does not happen. The agent subject to Transfer Learning improves

faster than its counterpart. However, even with those improvements, it still underperforms. In fact,

it only receives 98.72% of the total rewards received by the agent starting from scratch, receiving

a reward of 50254.86 over 100 epochs, while its counterpart receives 50907.42.

However, when an agent trained in the CVRP environment is placed in a CVRPSTW envi-

ronment, it thrives (Figure 5.37). The distance travelled is much smaller in the agent subject to

knowledge transfer, as can be observed in Figure 5.35.
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Figure 5.35: Distance Travelled Comparison between Agents when using Transfer Learning to
Change to an Harder Environment (Absolute Values)

Additionally, the agent also manages to serve more customers within their respective time

windows, shown in Figure 5.36, leading to an even higher difference in the received rewards.
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Figure 5.36: Time Windows Missed Comparison between Agents when using Transfer Learning
to Change to an Harder Environment (Absolute Values)

Figure 5.37 depicts the difference in the rewards. This time, the agent subject to Transfer

Learning outperforms its counterpart. Indeed, the agent not subject to Transfer Learning collects

98.89% of the rewards received by the agent who undergoes knowledge transfer. It only manages

a total reward of 50328.32, while its counterpart outperforms it, collecting 50893.78 over the 100

epochs.
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Figure 5.37: Rewards per Episode Comparison between Agents when using Transfer Learning to
Change to an Harder Environment (Absolute Values)

These contradictory findings, where the knowledge is transferable when the problem gets

harder but not when it gets easier, reinforce the importance of understanding the effects of Transfer

Learning. One possible reason for these inconsistencies is the lack of training undergone by the

source agent. Since the agent did not reach an optimal performance, the quality of the knowledge

is not optimal. As such, the target agent underperforms when compared to learning from scratch.

In fact, Section 5.4.1 compared the learning and evolution of two agents acting in distinct en-

vironments: CVRP and CVRPSTW. At first, this comparison seems absurd, as the agents function

in different environments under different reward functions. However, it helps us understand why

transferring the knowledge between the CVRPSTW and the CVRP leads to such unexpectedly

poor performance. When we look at those graphs, we can note the lack of quality of the CVRP

agent, which at its peak, collects only 0.54 more rewards than the CVRPSTW (standing at 509.42

against 508.88).

5.5.4 Changing Reward Functions

After demonstrating the effects of reward functions on the agent’s learning and performance, it

is time to evaluate whether an agent trained on a reward function can be generalised to actuate

with another. For that, we devised two experiments, one in the CVRP domain and another in the

CVRPSTW domain.

Firstly, we start with the CVRP domain. Figures 5.38, 5.39, 5.40, 5.41, 5.42, and 5.43 compare

the performance of the agent with and without Transfer Learning when learning a new reward

function in the CVRP environment.
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Figure 5.38: Rewards per Episode Comparison between Agents when using Transfer Learning to
Change Reward Function to Fraction (Absolute Values)
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Figure 5.39: Rewards per Episode Comparison between Agents when using Transfer Learning to
Change Reward Function to Savings (Absolute Values)
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Figure 5.40: Rewards per Episode Comparison between Agents when using Transfer Learning to
Change Reward Function to Distance (Absolute Values)
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Figure 5.41: Rewards per Episode Comparison between Agents when using Transfer Learning to
Change Reward Function to Distance Norm. (Absolute Values)
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Figure 5.42: Rewards per Episode Comparison between Agents when using Transfer Learning to
Change Reward Function to Fuel Cons. (Absolute Values)
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Figure 5.43: Rewards per Episode Comparison between Agents when using Transfer Learning to
Change Reward Function to Multi (D + F) (Absolute Values)

As expected, the most favourable transfer occurs when changing between reward functions that

consider the same objective. For example, the Distance, Distance Norm., Fraction, and Savings

rewards attempt to guide the agent to minimise the total distance travelled. Therefore, even if

the absolute value of the received rewards changes, the optimal behaviour does not. Indeed, the

optimal action in the source domain is still the optimal action in the target domain. Additionally,

an action that received a smaller reward in the source task would still get awarded less in the

target domain. Nonetheless, the Fraction reward function seems to behave differently, and the

agent learning from scratch in it is quite stable and able to outperform its counterpart subject to

knowledge transfer.
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On the other hand, when attempting to change between reward functions that aim to optimise

different objectives, such as the Fuel Cons. and the Distance Norm., the benefits are not as easily

attained. When transferring knowledge to operate with the Distance Norm. reward function, it is

not clear which agent performs better. Indeed, their performances are really close, with the agent

starting from scratch collecting a total reward of 509.14 over the 100 epochs, while the agents

who transferred knowledge from Fuel Cons. and Multi (D + F) received 509.19 and 509.17,

respectively. When transferring knowledge to operate with the Fuel Cons. reward function, all the

agents perform almost equally, and the agent starting from scratch with the Multi (D + F) reward

function outperforms its counterparts subject to TL.

Then, we experiment in the CVRPSTW domain. Here, we compare the agent’s performance

when learning a reward function with a different penalty for missing time windows in Figures 5.44

and 5.45.
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Figure 5.44: Rewards per Episode Comparison between Agents when using Transfer Learning to
Change Reward Function to TW Error (D) (Absolute Values)
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Figure 5.45: Rewards per Episode Comparison between Agents when using Transfer Learning to
Change Reward Function to TW Failed (D) (Absolute Values)

As seen before, the relationship between reward functions influences the transfer quality. Fig-

ure 5.46 demonstrates how the penalty applied evolves as the delivery gets farther from the re-

quested time window. In this figure, the Error Reward is the penalty applied to the TW Error

(D), and the Inside or Outside Reward is the penalty applied to the TW Failed (D). The values

correspond to penalties, which, essentially, means that the agents receive them as negative values,

the symmetric of the value represented in the graph.
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Figure 5.46: Penalties Obtained as the Delivery Time gets Farther Away from the Requested Time
Window

In this case, there is some relation between reward functions, as seen in Figure 5.46. However,

actions with the same penalty on the TW Failed (D) reward function might have different penalties

in the TW Error (D) reward function. As such, the connection is not as easy as the one witnessed in
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the CVRP between the reward functions attempting to minimise the distance travelled. Nonethe-

less, the performance still transfers well to the new agent achieving performances of 0.82% and

0.91% above the agents starting from scratch when transferring to TW Error (D) and TW Failed

(D), respectively.



Chapter 6

Conclusions

With the proliferation of e-commerce, there has been an increasing demand for cheap and fast

deliveries. Besides, more than ever before, environmental issues and ecological concerns are

growing wider. These occurrences make a system capable of responding quickly, considering

multiple optimisation objectives, and adapting to new and different circumstances, a very desirable

tool. Reinforcement Learning (RL) is an effective methodology already applied in many fields,

including the transportation and delivery sectors. Although its use in real-world scenarios faces

multiple challenges, there is already work attempting to solve some of them. Transfer Learning

(TL) is one of the techniques used to mitigate some of the problems RL agents face.

The existing literature in the field portrays representation as a vital problem both for RL and

TL. It points Graph Neural Networks as a potential tool to solve Vehicle Routing Problems with

a variable number of customers due to their capacity to deal with variable-sized graphs. Addi-

tionally, it highlights the potential of TL to improve sample efficiency and reduce the number of

samples necessary to train an RL agent.

In this project, we explored the application of Deep Reinforcement Learning (DRL) with

Graph Convolutional Networks to solve two variants of the Vehicle Routing Problem: the Ca-

pacitated Vehicle Routing Problem and the Capacitated Vehicle Routing Problem with Soft Time

Windows. Multiple experiments were devised to compare the RL agent’s performance when op-

erating under diverse reward functions and receiving different information from the environment.

Moreover, TL was used to attempt to achieve a performant model with reduced training.

Our main findings can be mainly divided into three groups. In a combinatorial problem, lim-

iting the search space with a masking scheme significantly increases the model performance. Be-

sides, all our results point to the importance of a correct initialisation of the model and the correct

shaping of a reward function. Finally, although it depends on the source model’s quality, we

proved that Transfer Learning can be successful when changing VRP variants or reward functions.
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6.1 Main Contributions

This work aims to contribute not only to solving routing problems in smart cities but primarily to

the field of Reinforcement Learning and the application of Transfer Learning on Reinforcement

Learning agents.

Through an extensive literature review on how to solve Vehicle Routing Problems (VRP) with

the application of DRL and Graph Deep Reinforcement Learning (GDRL), we identified the com-

ponents and dimensions of the VRP, as well as the current efforts and techniques used to solve it

with RL. Additionally, we were able to define a taxonomy for the VRP solved using RL, which

can be used to systematise knowledge of the problem.

From the representation perspective, besides adopting Deep Reinforcement Learning as an

optimisation approach to the VRP, this dissertation resorts to Graph Neural Networks, making

explicit use of the nature of the problem, which is network-based. Moreover, facing the curse of

dimensionality, which ultimately yields long, unnecessary exploration phases of invalid actions,

this work suggests a practical approach to addressing these issues by designing appropriate mask-

ing techniques.

We devised an exploratory empirical study on the applicability and effects of using Trans-

fer Learning to leverage training efforts among similar VRP instances. Although preliminary, it

shows promising gains when Transfer Learning is employed to VRP variants and change reward

functions.

Finally, it is important to notice the pipeline devised to handle the different datasets used in

this work, which contributed to demonstrating the approach proposed in this work in real-world

and large-scale delivery networks.

6.2 Future Work

As for future work, we propose two different avenues: improvements to the current project and

new projects that extend or derive from it.

Firstly, when it comes to improvements, we could start by further optimising the hyperpa-

rameters. Additionally, we could explore the possibility of using different hyperparameters when

dealing with different reward functions. Other architectures, a different layer organisation, and dif-

ferent RL algorithms, such as A2C or PPO, could also be tested. In addition, other TL techniques

could be considered.

In order to enrich the analytical part of our work, the computational setup could be modified to

allow for more efficient and extended training periods. This would enable us to run the experiments

for more epochs and further explore the effects of Transfer Learning. Moreover, we could first

experiment with training on artificial data and then transfer the knowledge to an agent operating
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in real-world datasets. On top of all that, we could implement graph sparsification techniques to

allow solving of even larger instances and other masking mechanisms.

As an extension to the current work, a couple of steps still need to be taken for this model to

be implementable in a real-world scenario. First of all, we could apply the proposed approach in

Multi-Agent RL (MARL) settings, exploring distributed and decentralised solutions. In addition,

other concepts and concerns in AI, such as explainability, transparency or fairness, could also be

explored to leverage actionable decision-making.

Finally, other VRP variants, including new real-world constraints, might need to be contem-

plated. Moreover, dynamically calculating the shortest paths between delivery locations allows for

deviations in the distance, time taken, and fuel consumption according to the current traffic con-

ditions. The final step would be deploying the proposed methodological approach within a digital

twin of transport planning frameworks to support management operations in urban logistics.



100 Conclusions



References

[1] Alekh Agarwal, Yuda Song, Wen Sun, Kaiwen Wang, Mengdi Wang, and Xuezhou Zhang.
Provable benefits of representational transfer in reinforcement learning, 2022.

[2] Lucas Nunes Alegre, Ana Bazzan, and Bruno C. Da Silva. Optimistic linear support and
successor features as a basis for optimal policy transfer. In Proceedings of the 39th Interna-
tional Conference on Machine Learning, volume 162 of Proceedings of Machine Learning
Research, pages 394–413. PMLR, 17–23 Jul 2022.

[3] Majed G. Alharbi, Ahmed Stohy, Mohammed Elhenawy, Mahmoud Masoud, and Hamiden
Abd El-Wahed Khalifa. Solving pickup and drop-off problem using hybrid pointer networks
with deep reinforcement learning. PLOS ONE, 17(5):1–19, 05 2022.

[4] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welin-
der, Bob McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba. Hindsight experience
replay, 2017.

[5] Leo Ardon. Reinforcement learning to solve np-hard problems: an application to the cvrp,
2022.

[6] Mohammad Asghari and S. Mohammad J. Mirzapour Al-e-hashem. Green vehicle rout-
ing problem: A state-of-the-art review. International Journal of Production Economics,
231:107899, 2021.

[7] Egon Balas. The prize collecting traveling salesman problem. Networks, 19(6):621–636,
1989.

[8] Marc G. Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on rein-
forcement learning, 2017.

[9] Richard Bellman. A markovian decision process. Journal of mathematics and mechanics,
pages 679–684, 1957.

[10] Irwan Bello, Hieu Pham, Quoc V. Le, Mohammad Norouzi, and Samy Bengio. Neural
combinatorial optimization with reinforcement learning, 2016.

[11] Matteo Boffa, Zied Ben Houidi, Jonatan Krolikowski, and Dario Rossi. Neural combina-
torial optimization beyond the tsp: Existing architectures under-represent graph structure,
2022.

[12] Yuhong Cao, Zhanhong Sun, and Guillaume Sartoretti. Dan: Decentralized attention-based
neural network for the minmax multiple traveling salesman problem, 2022.

101



102 REFERENCES

[13] Jinwei Chen, Zefang Zong, Yunlin Zhuang, Huan Yan, Depeng Jin, and Yong Li. Rein-
forcement learning for practical express systems with mixed deliveries and pickups. ACM
Trans. Knowl. Discov. Data, 17(3), feb 2023.

[14] G. Clarke and J. W. Wright. Scheduling of vehicles from a central depot to a number of
delivery points. Operations Research, 12(4):568–581, 1964.

[15] John R. Current and David A. Schilling. The covering salesman problem. Transportation
Science, 23(3):208–213, 1989.

[16] Przemysław Czuba and Dariusz Pierzchała. Machine learning methods for solving vehicle
routing problems. In 36th International Business Information Management Association
(IBIMA), 01 2021.

[17] Will Dabney, Mark Rowland, Marc G. Bellemare, and Rémi Munos. Distributional rein-
forcement learning with quantile regression, 2017.

[18] Hanjun Dai, Elias B. Khalil, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combina-
torial optimization algorithms over graphs, 2017.

[19] Oscar Day and Taghi M. Khoshgoftaar. A survey on heterogeneous transfer learning. Jour-
nal of Big Data, 4(1):29, Sep 2017.

[20] Aymar de Brouchoven de Bergeyck. An iterative deep reinforcement learning approach to
solve vehicle routing problems. Master’s thesis, Delft University of Technology, 10 2022.
http://resolver.tudelft.nl/uuid:09b527d1-de01-4a40-941c-7ba6f9368423.

[21] Google Developers. Representation | machine learning | google developers.
https://developers.google.com/machine-learning/crash-course/
representation/video-lecture, 07 2022. [Online; accessed 5-February-2023].

[22] Google Developers. Vehicle Routing | OR-Tools | Google Developers. https://
developers.google.com/optimization/routing, 01 2023. [Online; accessed
5-February-2023].

[23] Shelagh Dolan. Last mile delivery logistics explained: Problems & so-
lutions. https://www.insiderintelligence.com/insights/
last-mile-delivery-shipping-explained/, Jan 2023. [Online; accessed
5-February-2023].

[24] Marco Dorigo. Optimization, learning and natural algorithms. Ph. D. Thesis, Politecnico
di Milano, 1992.

[25] Gabriel Dulac-Arnold, Nir Levine, Daniel J. Mankowitz, Jerry Li, Cosmin Paduraru, Sven
Gowal, and Todd Hester. Challenges of real-world reinforcement learning: definitions,
benchmarks and analysis. Machine Learning, 110(9):2419–2468, Sep 2021.

[26] Gabriel Dulac-Arnold, Daniel Mankowitz, and Todd Hester. Challenges of real-world rein-
forcement learning, 2019.

[27] Mhairi Dunion, Trevor McInroe, Kevin Sebastian Luck, Josiah Hanna, and Stefano V. Al-
brecht. Temporal disentanglement of representations for improved generalisation in rein-
forcement learning, 2022.

https://developers.google.com/machine-learning/crash-course/representation/video-lecture
https://developers.google.com/machine-learning/crash-course/representation/video-lecture
https://developers.google.com/optimization/routing
https://developers.google.com/optimization/routing
https://www.insiderintelligence.com/insights/last-mile-delivery-shipping-explained/
https://www.insiderintelligence.com/insights/last-mile-delivery-shipping-explained/


REFERENCES 103

[28] Nahid Parvez Farazi, Tanvir Ahamed, Limon Barua, and Bo Zou. Deep reinforcement
learning and transportation research: A comprehensive review, 2020.

[29] Vladimir Feinberg, Alvin Wan, Ion Stoica, Michael I. Jordan, Joseph E. Gonzalez, and
Sergey Levine. Model-based value estimation for efficient model-free reinforcement learn-
ing, 2018.

[30] Getu Fellek, Ahmed Farid, Goytom Gebreyesus, Shigeru Fujimura, and Osamu Yoshie.
Graph transformer with reinforcement learning for vehicle routing problem. IEEJ Transac-
tions on Electrical and Electronic Engineering, 18(5):701–713, 2023.

[31] Liang Feng, Yuxiao Huang, Lei Zhou, Jinghui Zhong, Abhishek Gupta, Ke Tang, and
Kay Chen Tan. Explicit evolutionary multitasking for combinatorial optimization: A
case study on capacitated vehicle routing problem. IEEE Transactions on Cybernetics,
51(6):3143–3156, 2021.

[32] Júlio César Ferreira, Maria Teresinha Arns Steiner, and Osíris Canciglieri Junior. Multi-
objective optimization for the green vehicle routing problem: A systematic literature review
and future directions. Cogent Engineering, 7(1):1807082, 2020.

[33] Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geo-
metric. In ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

[34] Simone Foa, Corrado Coppola, Giorgio Grani, and Laura Palagi. Solving the vehicle routing
problem with deep reinforcement learning, 2022.

[35] OpenStreetMap Foundation. Main page — openstreetmap foundation,, 2023. [Online;
accessed 4-July-2023].

[36] Vincent François-Lavet, Peter Henderson, Riashat Islam, Marc G. Bellemare, and Joelle
Pineau. An introduction to deep reinforcement learning. Foundations and Trends® in
Machine Learning, 11(3-4):219–354, 2018.

[37] Chenchen Fu, Zhengxuan Gao, Weiwei Wu, Vincent Chau, Jie Wang, Xueyong Xu, and
Junzhou Luo. A learning approach for multi-agent travelling problem with dynamic service
requirement in mobile iot. Computers and Electrical Engineering, 104:108397, 2022.

[38] Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation
error in actor-critic methods, 2018.

[39] Daniele Gammelli, Kaidi Yang, James Harrison, Filipe Rodrigues, Francisco C. Pereira, and
Marco Pavone. Graph neural network reinforcement learning for autonomous mobility-on-
demand systems, 2021.

[40] Fred Glover. Future paths for integer programming and links to artificial intelligence.”
computers & operations research 13, 533-549. Computers & Operations Research, 13:533–
549, 01 1986.

[41] The World Bank Group. Urban development overview. https://www.worldbank.
org/en/topic/urbandevelopment/overview, Oct 2022. [Online; accessed 5-
February-2023].

https://www.worldbank.org/en/topic/urbandevelopment/overview
https://www.worldbank.org/en/topic/urbandevelopment/overview


104 REFERENCES

[42] Abhinav Gupta, Supratim Ghosh, and Anulekha Dhara. Deep reinforcement learning al-
gorithm for fast solutions to vehicle routing problem with time-windows. In 5th Joint In-
ternational Conference on Data Science & Management of Data (9th ACM IKDD CODS
and 27th COMAD), CODS-COMAD 2022, page 236–240, New York, NY, USA, 2022.
Association for Computing Machinery.

[43] David Ha and Jürgen Schmidhuber. Recurrent world models facilitate policy evolution. In
Advances in Neural Information Processing Systems 31, pages 2451–2463. Curran Asso-
ciates, Inc., 2018. https://worldmodels.github.io.

[44] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor, 2018.

[45] Joyce Hendriks. Towards applying reinforcement learning to the home care scheduling and
routing problem. Master’s thesis, Tilburg School of Economics and Management - Tilburg
University, 2022. http://arno.uvt.nl/show.cgi?fid=158619.

[46] André Hottung, Yeong-Dae Kwon, and Kevin Tierney. Efficient active search for combina-
torial optimization problems, 2022.

[47] Qingchun Hou, Jingwei Yang, Yiqiang Su, Xiaoqing Wang, and Yuming Deng. Generalize
learned heuristics to solve large-scale vehicle routing problems in real-time. In The Eleventh
International Conference on Learning Representations, 2023.

[48] Shengyi Huang and Santiago Ontañón. A closer look at invalid action masking in policy
gradient algorithms. The International FLAIRS Conference Proceedings, 35, may 2022.

[49] David Jonassen. Using cognitive tools to represent problems. Journal of Research on
Technology in Education, 35(3):362–381, 2003.

[50] Chaitanya K. Joshi, Quentin Cappart, Louis-Martin Rousseau, and Thomas Laurent. Learn-
ing TSP Requires Rethinking Generalization. In Laurent D. Michel, editor, 27th Interna-
tional Conference on Principles and Practice of Constraint Programming (CP 2021), vol-
ume 210 of Leibniz International Proceedings in Informatics (LIPIcs), pages 33:1–33:21,
Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

[51] Minsu Kim, Jinkyoo Park, and Joungho Kim. Learning collaborative policies to solve np-
hard routing problems, 2021.

[52] Minsu Kim, Jinkyoo Park, and joungho kim. Learning collaborative policies to solve np-
hard routing problems. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wort-
man Vaughan, editors, Advances in Neural Information Processing Systems, volume 34,
pages 10418–10430. Curran Associates, Inc., 2021.

[53] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks, 2017.

[54] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. Sci-
ence, 220(4598):671–680, 1983.

[55] W. Kool. Learning and optimization in combinatorial spaces. PhD thesis, Faculty of
Science (FNWI), Amsterdam, 2022. https://hdl.handle.net/11245.1/b8d1289e-8204-49ba-
b3c1-d11dbb613ef1.

https://worldmodels.github.io


REFERENCES 105

[56] Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing prob-
lems!, 2018.

[57] Nicholas D. Kullman, Jorge E. Mendoza, Martin Cousineau, and Justin C. Goodson. Atari-
fying the vehicle routing problem with stochastic service requests, 2019.

[58] Yeong-Dae Kwon, Jinho Choo, Iljoo Yoon, Minah Park, Duwon Park, and Youngjune
Gwon. Matrix encoding networks for neural combinatorial optimization. In M. Ranzato,
A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan, editors, Advances in
Neural Information Processing Systems, volume 34, pages 5138–5149. Curran Associates,
Inc., 2021.

[59] Annu Lambora, Kunal Gupta, and Kriti Chopra. Genetic algorithm- a literature review.
In 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel
Computing (COMITCon), pages 380–384, 2019.

[60] Charline Le Lan, Stephen Tu, Adam Oberman, Rishabh Agarwal, and Marc G. Bellemare.
On the generalization of representations in reinforcement learning, 2022.

[61] Jaeho Lee and Young Jae Jang. The graph neural network-based dynamic rout-
ing algorithm for overhead hoist transport vehicles in semiconductor fabrication
plants. In Proceedings of the 2022 International Symposium on Semiconductor Man-
ufacturing Intelligence (ISMI2022), Tokyo, Japan, 2022. Proceedings of the 2022
International Symposium on Semiconductor Manufacturing Intelligence (ISMI2022).
https://ciie2022.conf.tw/site/userdata/1449/ISMI_paper/ISMI2022_paper_5130.pdf.

[62] Kun Lei, Peng Guo, Yi Wang, Xiao Wu, and Wenchao Zhao. Solve routing problems with
a residual edge-graph attention neural network. Neurocomputing, 508:79–98, 2022.

[63] Jingwen Li, Yining Ma, Ruize Gao, Zhiguang Cao, Andrew Lim, Wen Song, and Jie
Zhang. Deep reinforcement learning for solving the heterogeneous capacitated vehicle
routing problem. IEEE Transactions on Cybernetics, 52(12):13572–13585, 2022.

[64] Jingwen Li, Liang Xin, Zhiguang Cao, Andrew Lim, Wen Song, and Jie Zhang. Heteroge-
neous attentions for solving pickup and delivery problem via deep reinforcement learning.
IEEE Transactions on Intelligent Transportation Systems, 23(3):2306–2315, 2022.

[65] Kaiwen Li, Tao Zhang, Rui Wang, Yuheng Wang, Yi Han, and Ling Wang. Deep rein-
forcement learning for combinatorial optimization: Covering salesman problems. IEEE
Transactions on Cybernetics, 52(12):13142–13155, 2022.

[66] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yu-
val Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement
learning, 2015.

[67] Bo Lin, Bissan Ghaddar, and Jatin Nathwani. Deep reinforcement learning for the electric
vehicle routing problem with time windows. IEEE Transactions on Intelligent Transporta-
tion Systems, 23(8):11528–11538, 2022.

[68] Jane Lin, Wei Zhou, and Ouri Wolfson. Electric vehicle routing problem. Transportation
Research Procedia, 12:508–521, 2016. Tenth International Conference on City Logistics
17-19 June 2015, Tenerife, Spain.



106 REFERENCES

[69] Xi Lin, Zhiyuan Yang, and Qingfu Zhang. Pareto set learning for neural multi-objective
combinatorial optimization, 2022.

[70] Zhengxuan Ling, Yu Zhang, and Xi Chen. A deep reinforcement learning based real-time
solution policy for the traveling salesman problem. IEEE Transactions on Intelligent Trans-
portation Systems, 24(6):5871–5882, 2023.

[71] Fei Liu, Chengyu Lu, Lin Gui, Qingfu Zhang, Xialiang Tong, and Mingxuan Yuan. Heuris-
tics for vehicle routing problem: A survey and recent advances, 2023.

[72] Ruifan Liu, Hyo-Sang Shin, Minguk Seo, and Antonios Tsourdos. Delivery Route Planning
for Unmanned Aerial System in Presence of Recharging Stations.

[73] Ruifan Liu, Hyo-Sang Shin, and Antonios Tsourdos. Edge-enhanced attentions for drone
delivery in presence of winds and recharging stations. Journal of Aerospace Information
Systems, 20(4):216–228, 2023.

[74] Loggi. loggibud: Loggi benchmark for urban deliveries. https://github.com/
loggi/loggibud, 2021.

[75] Rui Lu, Gao Huang, and Simon S. Du. On the power of multitask representation learning
in linear mdp, 2021.

[76] Jia Luo, Chaofeng Li, Qinqin Fan, and Yuxin Liu. A graph convolutional encoder and
multi-head attention decoder network for tsp via reinforcement learning. Engineering Ap-
plications of Artificial Intelligence, 112:104848, 2022.

[77] Qiang Ma, Suwen Ge, Danyang He, Darshan Thaker, and Iddo Drori. Combinatorial opti-
mization by graph pointer networks and hierarchical reinforcement learning, 2019.

[78] Sephora Madjiheurem and Laura Toni. Representation learning on graphs: A reinforcement
learning application, 2019.

[79] Clara Martins, Daniel Monteiro, and Gonçalo Pascoal. Solving large-scale instances of the
capacitated vehicle routing problem, 2022. [Unpublished manuscript].

[80] Jason Mathers, Elena Craft, Marcelo Norsworthy, and Christina Wolfe. The green freight
handbook, 2023. [Online; accessed 4-julho-2023].

[81] Daniel Merchán, Jatin Arora, Julian Pachon, Karthik Konduri, Matthias Winkenbach,
Steven Parks, and Joseph Noszek. 2021 amazon last mile routing research challenge: Data
set. Transportation Science, 0(0):null, 0.

[82] Astrid Merckling, Nicolas Perrin-Gilbert, Alex Coninx, and Stéphane Doncieux. Ex-
ploratory state representation learning. Frontiers in Robotics and AI, 9, 2022.

[83] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lill-
icrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep
reinforcement learning, 2016.

[84] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou,
Daan Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning,
2013.

https://github.com/loggi/loggibud
https://github.com/loggi/loggibud


REFERENCES 107

[85] Anusha Nagabandi, Gregory Kahn, Ronald S. Fearing, and Sergey Levine. Neural network
dynamics for model-based deep reinforcement learning with model-free fine-tuning, 2017.

[86] MohammadReza Nazari, Afshin Oroojlooy, Lawrence Snyder, and Martin Takac. Rein-
forcement learning for solving the vehicle routing problem. In S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 31. Curran Associates, Inc., 2018.

[87] OpenAI. Part 2: Kinds of rl algorithms — spinning up documentation. https:
//spinningup.openai.com/en/latest/spinningup/rl_intro2.html, Nov
2018. [Online; accessed 5-February-2023].

[88] Joel Oren, Chana Ross, Maksym Lefarov, Felix Richter, Ayal Taitler, Zohar Feldman, Dotan
Di Castro, and Christian Daniel. Solo: Search online, learn offline for combinatorial opti-
mization problems. In Vol. 12 No. 1 (2021): Fourteenth International Symposium on Com-
binatorial Search, pages 97–105, Jinan University, Guangzhou, China, 2021. Association
for the Advancement of Artificial Intelligence.

[89] Wenbin Ouyang, Yisen Wang, Shaochen Han, Zhejian Jin, and Paul Weng. Improving
generalization of deep reinforcement learning-based tsp solvers. In 2021 IEEE Symposium
Series on Computational Intelligence (SSCI), pages 01–08, 2021.

[90] Sherjil Ozair, Corey Lynch, Yoshua Bengio, Aaron van den Oord, Sergey Levine, and Pierre
Sermanet. Wasserstein dependency measure for representation learning, 2019.

[91] Julian Pachon, Daniel Merchán, Yossi Sheffi, and Matthias Winkenbach. About
the Challenge | Amazon Last-Mile Routing Research Challenge. https://
routingchallenge.mit.edu/about-the-challenge/, Sep 2022. [Online; ac-
cessed 5-February-2023].

[92] Junyoung Park, Sanjar Bakhtiyar, and Jinkyoo Park. Schedulenet: Learn to solve multi-
agent scheduling problems with reinforcement learning, 2021.

[93] Nahid Parvez Farazi, Bo Zou, Tanvir Ahamed, and Limon Barua. Deep reinforcement
learning in transportation research: A review. Transportation Research Interdisciplinary
Perspectives, 11:100425, 2021.

[94] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmai-
son, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank
Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An
Imperative Style, High-Performance Deep Learning Library. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d’Alché Buc, E. Fox, and R. Garnett, editors, Advances in Neural Infor-
mation Processing Systems 32, pages 8024–8035. Curran Associates, Inc., 2019.

[95] Bo Peng, Jiahai Wang, and Zizhen Zhang. A deep reinforcement learning algorithm using
dynamic attention model for vehicle routing problems. In Kangshun Li, Wei Li, Hui Wang,
and Yong Liu, editors, Artificial Intelligence Algorithms and Applications, pages 636–650,
Singapore, 2020. Springer Singapore.

[96] J. Peters. Policy gradient methods. Scholarpedia, 5(11):3698, 2010. revision #137199.

https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html
https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html
https://routingchallenge.mit.edu/about-the-challenge/
https://routingchallenge.mit.edu/about-the-challenge/


108 REFERENCES

[97] Julie Poullet. Leveraging machine learning to solve the vehicle routing problem with time
windows. Master’s thesis, Massachusetts Institute of Technology, Massachusetts, 2020.
https://hdl.handle.net/1721.1/127285.

[98] Jacob Rafati. Learning Representations in Reinforcement Learning. PhD thesis, University
of California, Merced, 04 2019.

[99] Ievgen Redko, Emilie Morvant, Amaury Habrard, Marc Sebban, and Younes Bennani. Ad-
vances in domain adaptation theory. Elsevier, 2019.

[100] Francesca Rossi, Peter van Beek, and Toby Walsh. Handbook of Constraint Programming.
Elsevier Science Inc., USA, 2006.

[101] Franz Rothlauf. Optimization Methods, pages 45–102. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2011.

[102] Alex Salgo, Jeremy Banks, and Francois Rivest. Exploring decision support systems in
task scheduling. In Proceedings of the 31st Annual International Conference on Computer
Science and Software Engineering, CASCON ’21, page 184–189, USA, 2021. IBM Corp.

[103] John Schulman, Sergey Levine, Philipp Moritz, Michael I. Jordan, and Pieter Abbeel. Trust
region policy optimization, 2015.

[104] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms, 2017.

[105] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai,
Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy
Lillicrap, Karen Simonyan, and Demis Hassabis. Mastering chess and shogi by self-play
with a general reinforcement learning algorithm, 2017.

[106] Jagdeep Singh, Sanjay Kumar Dhurandher, Isaac Woungang, and Telex Magloire N.
Ngatched. Multi-agent reinforcement learning based approach for vehicle routing prob-
lem. In Telex Magloire Ngatched Nkouatchah, Isaac Woungang, Jules-Raymond Tapamo,
and Serestina Viriri, editors, Pan-African Artificial Intelligence and Smart Systems, pages
411–422, Cham, 2023. Springer Nature Switzerland.

[107] Pawel Sitek and Jarosław Wikarek. Capacitated vehicle routing problem with pick-up and
alternative delivery (cvrppad): model and implementation using hybrid approach. Annals
of Operations Research, 273(1):257–277, Feb 2019.

[108] Ahmed Stohy, Heba-Tullah Abdelhakam, Sayed Ali, Mohammed Elhenawy, Abdallah A.
Hassan, Mahmoud Masoud, Sebastien Glaser, and Andry Rakotonirainy. Hybrid pointer
networks for traveling salesman problems optimization. PLOS ONE, 16(12):1–17, 12 2021.

[109] Niklas Strauss, David Winkel, Max Berrendorf, and Matthias Schubert. Reinforcement
learning for multi-agent stochastic resource collection. In Massih-Reza Amini, Stéphane
Canu, Asja Fischer, Tias Guns, Petra Kralj Novak, and Grigorios Tsoumakas, editors, Ma-
chine Learning and Knowledge Discovery in Databases, pages 200–215, Cham, 2023.
Springer Nature Switzerland.

[110] Nasrin Sultana, Jeffrey Chan, Tabinda Sarwar, and A. K. Qin. Sample-efficient, exploration-
based policy optimisation for routing problems, 2022.



REFERENCES 109

[111] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT
press, 2018.

[112] Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient
methods for reinforcement learning with function approximation. In S. Solla, T. Leen, and
K. Müller, editors, Advances in Neural Information Processing Systems, volume 12. MIT
Press, 1999.

[113] Quinlan Sykora, Mengye Ren, and Raquel Urtasun. Multi-agent routing value iteration
network. In Hal Daumé III and Aarti Singh, editors, Proceedings of the 37th International
Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Re-
search, pages 9300–9310. PMLR, 13–18 Jul 2020.

[114] Matthew E Taylor and Peter Stone. Representation transfer for reinforcement learning.
In AAAI Fall Symposium: Computational Approaches to Representation Change during
Learning and Development, pages 78–85, 2007.

[115] Matthew E. Taylor and Peter Stone. Towards reinforcement learning representation trans-
fer. In Proceedings of the 6th International Joint Conference on Autonomous Agents and
Multiagent Systems, AAMAS ’07, New York, NY, USA, 2007. Association for Computing
Machinery.

[116] Matthew E Taylor and Peter Stone. Transfer learning for reinforcement learning domains:
A survey. Journal of Machine Learning Research, 10(7), 2009.

[117] Christian Tilk, Katharina Olkis, and Stefan Irnich. The last-mile vehicle routing problem
with delivery options. OR Spectrum, 43(4):877–904, Dec 2021.

[118] Paolo Toth and Daniele Vigo. Models, relaxations and exact approaches for the capacitated
vehicle routing problem. Discrete Applied Mathematics, 123(1):487–512, 2002.

[119] Martijn van Otterlo and Marco Wiering. Reinforcement Learning and Markov Decision
Processes, pages 3–42. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[120] Guido Van Rossum. The Python Library Reference, release 3.8.2. Python Software Foun-
dation, 2020.

[121] José Manuel Vera and Andres G. Abad. Deep reinforcement learning for routing a het-
erogeneous fleet of vehicles. In 2019 IEEE Latin American Conference on Computational
Intelligence (LA-CCI), pages 1–6, 2019.

[122] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In C. Cortes,
N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural Infor-
mation Processing Systems, volume 28. Curran Associates, Inc., 2015.

[123] Han Wang. Emergent representations in reinforcement learning and their properties. Mas-
ter’s thesis, University of Alberta, 2020.

[124] Han Wang, Erfan Miahi, Martha White, Marlos C. Machado, Zaheer Abbas, Raksha Ku-
maraswamy, Vincent Liu, and Adam White. Investigating the properties of neural network
representations in reinforcement learning, 2022.

[125] Qi Wang. Alpha-t: Learning to traverse over graphs with analphazero-inspired self-play
framework, 2021. https://www.researchsquare.com/article/rs-415344/v1.



110 REFERENCES

[126] Qi Wang, Yongsheng Hao, and Jie Cao. Learning to traverse over graphs with a monte carlo
tree search-based self-play framework. Engineering Applications of Artificial Intelligence,
105:104422, 2021.

[127] Qi Wang, Yuqing He, and Chunlei Tang. Mastering construction heuristics with self-play
deep reinforcement learning. Neural Computing and Applications, 35(6):4723–4738, Feb
2023.

[128] Qi Wang, Kenneth H. Lai, and Chunlei Tang. Solving combinatorial optimization problems
over graphs with bert-based deep reinforcement learning. Information Sciences, 619:930–
946, 2023.

[129] Qi Wang and Chunlei Tang. Deep reinforcement learning for transportation network com-
binatorial optimization: A survey. Knowledge-Based Systems, 233:107526, 2021.

[130] Xu Wang, Sen Wang, Xingxing Liang, Dawei Zhao, Jincai Huang, Xin Xu, Bin Dai, and
Qiguang Miao. Deep reinforcement learning: A survey. IEEE Transactions on Neural
Networks and Learning Systems, pages 1–15, 2022.

[131] Zhaodong Wang, Zhiwei Qin, Xiaocheng Tang, Jieping Ye, and Hongtu Zhu. Deep re-
inforcement learning with knowledge transfer for online rides order dispatching. In 2018
IEEE International Conference on Data Mining (ICDM), pages 617–626, 2018.

[132] Théophane Weber, Sébastien Racanière, David P. Reichert, Lars Buesing, Arthur Guez,
Danilo Jimenez Rezende, Adria Puigdomènech Badia, Oriol Vinyals, Nicolas Heess, Yujia
Li, Razvan Pascanu, Peter Battaglia, Demis Hassabis, David Silver, and Daan Wierstra.
Imagination-augmented agents for deep reinforcement learning, 2017.

[133] Jiayi Weng, Huayu Chen, Dong Yan, Kaichao You, Alexis Duburcq, Minghao Zhang, Yi Su,
Hang Su, and Jun Zhu. Tianshou: A highly modularized deep reinforcement learning li-
brary. Journal of Machine Learning Research, 23(267):1–6, 2022.

[134] Eric Wiewiora. Reward Shaping, pages 863–865. Springer US, Boston, MA, 2010.

[135] Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist rein-
forcement learning, May 1992.

[136] Chen Wu, Yin Song, Verdi March, and Eden Duthie. Learning from drivers to tackle the
amazon last mile routing research challenge, 2022.

[137] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger.
Simplifying graph convolutional networks. In Kamalika Chaudhuri and Ruslan Salakhutdi-
nov, editors, Proceedings of the 36th International Conference on Machine Learning, vol-
ume 97 of Proceedings of Machine Learning Research, pages 6861–6871. PMLR, 09–15
Jun 2019.

[138] Guohua Wu, Mingfeng Fan, Jianmai Shi, and Yanghe Feng. Reinforcement learning based
truck-and-drone coordinated delivery. IEEE Transactions on Artificial Intelligence, pages
1–1, 2021.

[139] Guojin Wu, Zizhen Zhang, Hong Liu, and Jiahai Wang. Solving time-dependent traveling
salesman problem with time windows with deep reinforcement learning. In 2021 IEEE
International Conference on Systems, Man, and Cybernetics (SMC), pages 558–563, 2021.



REFERENCES 111

[140] Yaoxin Wu, Jianan Zhou, Yunwen Xia, Xianli Zhang, Zhiguang Cao, and Jie Zhang. Neural
airport ground handling. IEEE Transactions on Intelligent Transportation Systems, pages
1–15, 2023.

[141] Ali Yaddaden, Sebastien Harispe, and Michel Vasquez. Is transfer learning helpful for
neural combinatorial optimization applied to vehicle routing problems? COMPUTING
AND INFORMATICS, 41(1):172–190, Apr. 2022.

[142] Yimo Yan, Andy H.F. Chow, Chin Pang Ho, Yong-Hong Kuo, Qihao Wu, and Chengshuo
Ying. Reinforcement learning for logistics and supply chain management: Methodologies,
state of the art, and future opportunities. Transportation Research Part E: Logistics and
Transportation Review, 162:102712, 2022.

[143] Hua Yang, Minghao Zhao, Lei Yuan, Yang Yu, Zhenhua Li, and Ming Gu. Memory-
efficient transformer-based network model for traveling salesman problem. Neural Net-
works, 161:589–597, 2023.

[144] Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Reinforcement learning
with prototypical representations, 2021.

[145] Jiaming Yin, Weixiong Rao, and Chenxi Zhang. Learning shortest paths on large dynamic
graphs. In 2021 22nd IEEE International Conference on Mobile Data Management (MDM),
pages 201–208, 2021.

[146] Hongyu Zang, Xin Li, Jie Yu, Chen Liu, Riashat Islam, Remi Tachet Des Combes, and
Romain Laroche. Behavior prior representation learning for offline reinforcement learning,
2022.

[147] Amy Zhang, Rowan Thomas McAllister, Roberto Calandra, Yarin Gal, and Sergey Levine.
Learning invariant representations for reinforcement learning without reconstruction. In
International Conference on Learning Representations, 2021.

[148] Cong Zhang, Yaoxin Wu, Yining Ma, Wen Song, Zhang Le, Zhiguang Cao, and Jie Zhang.
A review on learning to solve combinatorial optimisation problems in manufacturing. IET
Collaborative Intelligent Manufacturing, 5(1):e12072, 2023.

[149] Ke Zhang, Fang He, Zhengchao Zhang, Xi Lin, and Meng Li. Multi-vehicle routing prob-
lems with soft time windows: A multi-agent reinforcement learning approach. Transporta-
tion Research Part C: Emerging Technologies, 121:102861, 2020.

[150] Ke Zhang, Meng Li, Jiguang Wang, Yunxuan Li, and Xi Lin. A two-stage learning-based
method for large-scale on-demand pickup and delivery services with soft time windows.
Transportation Research Part C: Emerging Technologies, 151:104122, 2023.

[151] Ke Zhang, Xi Lin, and Meng Li. Graph attention reinforcement learning with flexible
matching policies for multi-depot vehicle routing problems. Physica A: Statistical Me-
chanics and its Applications, 611:128451, 2023.

[152] Si Zhang, Hanghang Tong, Jiejun Xu, and Ross Maciejewski. Graph convolutional net-
works: a comprehensive review. Computational Social Networks, 6(1):11, nov 2019.

[153] Xuezhou Zhang, Yuda Song, Masatoshi Uehara, Mengdi Wang, Alekh Agarwal, and Wen
Sun. Efficient reinforcement learning in block mdps: A model-free representation learning
approach, 2022.



112 REFERENCES

[154] Yongxin Zhang, Jiahai Wang, and Zizhen Zhang. Edge-based formulation with graph at-
tention network for practical vehicle routing problem with time windows. In 2022 Interna-
tional Joint Conference on Neural Networks (IJCNN), pages 01–08, 2022.

[155] Yongxin Zhang, Jiahai Wang, Zizhen Zhang, and Yalan Zhou. Modrl/d-el: Multiobjective
deep reinforcement learning with evolutionary learning for multiobjective optimization. In
2021 International Joint Conference on Neural Networks (IJCNN), pages 1–8, 2021.

[156] Zizhen Zhang, Hong Liu, MengChu Zhou, and Jiahai Wang. Solving dynamic traveling
salesman problems with deep reinforcement learning. IEEE Transactions on Neural Net-
works and Learning Systems, 34(4):2119–2132, 2023.

[157] Jiuxia Zhao, Minjia Mao, Xi Zhao, and Jianhua Zou. A hybrid of deep reinforcement
learning and local search for the vehicle routing problems. IEEE Transactions on Intelligent
Transportation Systems, 22(11):7208–7218, 2021.

[158] Tao Zhou, M.Y. Law Kris, Douglas Creighton, and Changzhi Wu. Gmix: Graph-based
spatial-temporal multi-agent reinforcement learning for dynamic electric vehicle dispatch-
ing system. Transportation Research Part C: Emerging Technologies, 144:103886, 2022.

[159] Tianyu Zhu, Xinli Shi, Xiangping Xu, and Jinde Cao. An accelerated end-to-end method
for solving routing problems. Neural Networks, 164:535–545, 2023.

[160] Zhuangdi Zhu, Kaixiang Lin, Anil K. Jain, and Jiayu Zhou. Transfer learning in deep
reinforcement learning: A survey, 2020.

[161] Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu Zhu, Hui
Xiong, and Qing He. A comprehensive survey on transfer learning. Proceedings of the
IEEE, 109(1):43–76, 2021.

[162] Zefang Zong, Tao Feng, Tong Xia, Depeng Jin, and Yong Li. Deep reinforcement learning
for demand driven services in logistics and transportation systems: A survey, 2021.



Appendix A

Preprocessing Pipeline

In order to effectively utilize the data from the datasets for the learning process of the RL agent,

several steps need to be taken. Moreover, the data from both datasets needs to be in an identical

form. Figure A.1 provides a comprehensive pipeline view.

Distance Matrix
*.csv

Aggregate into
Instances

VRP Instances
*.p

Order
*.txt

Retrieve Map Clean Map Maps
*.xml

OpenStreetMap

Amazon / Loggi

Separate Packages

Distance matrix
calculation

Select City Select City Map Match Nodes Calculate
Distance Matrix

Figure A.1: Data Preprocessing Pipeline

The first step is obtaining the datasets. The Loggi dataset [74] can be obtained directly from

the LoggiBUD Github repository, while the Amazon dataset [81] can be downloaded using the

following command:

aws s3 ls -no-sign-request s3://amazon-last-mile-challenges/

The second step is obtaining and cleaning the city maps. Firstly, we retrieve a map for each

city in the datasets from the OpenStreetMap [35]. Next, we clean each map, removing all the

113



114 Preprocessing Pipeline

nodes and edges outside the largest strongly connected component. Immediately afterwards, the

map is stored in an XML file. Table A.1 describes each map.

• Area (km2): the city’s area in square kilometres (km2).

• N Nodes: the number of nodes in the city’s map (after cleaning).

• N Edges: the number of edges in the city’s map (after cleaning).

Table A.1: Description of each Map

City Area N Nodes N Edges
Belém 8836.842 60475 71914

Brasília 10688.753 184661 215130

Rio de Janeiro 10909.896 375603 418913

Austin 5621.605 181060 195736

Boston 17474.827 1197090 1246074

Seattle 9612.950 271378 290920

Chicago 13355.364 682750 750833

Los Angeles 35670.848 1075238 1176532

The third step is calculating the distance matrices. We start by separating each package into

its own delivery point (as referred to in Section 5.1). Afterwards, we identify the city and select

the corresponding city map. Then, we match the depot and each delivery point with a node in

the map. Lastly, we compute the distance between every pair of matched nodes and store it in a

distance matrix (saved in a CSV file). This step uses code adapted from [79].

The final step is aggregating all the information and creating the instance files. We start by

parsing the dataset files again, following the same file and package order as before, in order to

match each instance with the correct distance matrix and each row and column with the proper

delivery. Lastly, we combine the parsed data with the already created distance matrices to generate

the instance files (stored as pickle [120] files).

Listing A.1 showcases the relevant instance fields described below using Python [120].

• demands: demand for each customer.

• distance_matrix: pair-wise distance between all the pairs of locations. The first loca-

tion is the depot, followed by all the delivery points (customer locations). It is constructed

as a matrix with the rows as the origins and the columns as the destinations. Before storing,

it is flattened.

• vehicles: capacities for each vehicle. Since we consider a single vehicle, this list only

contains one value.

• start_time: starting time of the first trip.
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• travel_times: time needed for the vehicle to travel between every pair of locations.

Similarly to the distance matrix, the first location is the depot, followed by all the delivery

points. On top of that, it is also constructed as a matrix (with the rows corresponding to the

origins and the columns corresponding to the destinations) and, later, flattened.

• service_times: time needed to load the vehicle at the depot, followed by the time needed

to deliver the package at each delivery point.

• time_windows: requested time window for delivery to each customer. To avoid penalties

regarding the infringement of this constraint, the vehicle would need to arrive at the specified

location between the start and end times.

1 class Instance:

2 demands : List[float]

3 vehicles : List[float]

4 distance_matrix : List[float]

5 start_time : float | None

6 travel_times : List[float] | None

7 service_times : List[float] | None

8 time_windows : List[TimeWindow] | None

9

10 class TimeWindow:

11 start: float | None

12 end : float | None

Listing A.1: VRP Instance



Appendix B

Hyperparameters

This chapter details the exact hyperparameters used in each of the experiments. For ease of under-

standing, we present a structure similar to the one adopted to present the results in Chapter 5.

B.1 Core Configuration

In this project, we used the tianshou library [133] to facilitate the implementation. Therefore, some

of the hyperparameters described here coincide or have a direct mapping with the ones described

by this library. Our hyperparameters include:

• Run ID: ID used internally to determine which model to transfer the knowledge from when

using Transfer Learning.

• Algorithm: the algorithm employed to train the RL agent. All our agents are trained with

the REINFORCE algorithm.

• Environment: the environment in which the agent operates.

• Fleet Type: type of fleet managed. In accordance with the datasets, the fleet is homogeneous

and infinite, meaning all the vehicles have equal capacity, and there are no restrictions on

the number of trips those vehicles can make to serve customers.

• Node Features: node features used to represent the environment.

• Mask: mask scheme adopted to limit the agent’s possible actions.

• Reward Function: the reward function employed to guide the learner.

• Source ID for Transfer Learning: ID of a stored agent whose model will serve as the source

in the knowledge transfer. When left empty, no Transfer Learning is employed.
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• Resume Training: whether or not to resume training from an existing checkpoint. To ensure

reproducibility, our agents are trained in a single run without resuming training. Therefore,

this value is always False.

• Resume Epoch: epoch used to resume training or transfer knowledge.

• Dataset: dataset exploited to train and test the agent’s decision-making skills. Due to the

huge graph size of the instances in the Loggi dataset, most of our experiments run on the

Amazon dataset.

• Train Instances: IDs of the instances from the datasets used during the training phases (as

obtained by our data preprocessing pipeline explored in Section A).

• Test Instances: IDs of the instances from the datasets used during the testing phases (as

obtained by our data preprocessing pipeline explored in Section A).

• Seed: seed used to initialise all the random generators.

• N Epochs: number of training epochs.

• Steps per Epoch: number of steps or transitions collected per training epoch.

• Max Steps per Episode: maximum number of steps per episode (only applicable when the

Invalid mask is not in use).

• Steps per Collect: number of steps or transitions collected before performing a network

update.

• Repeat per Collect: number of times the policy needs to learn from each batch of data.

• N Training: number of parallel environments used for training.

• N Testing: number of episodes per policy evaluation.

• Same Seed: whether or not the same seed should be used to initialise all the environments.

• Epochs per Instance: number of epochs to train using the same training instance.

• Buffer Size: the size of the replay buffer. The replay buffer stores and manages the experi-

ences of an agent during its interactions with an environment.

• Batch Size: number of experiences processed simultaneously (batch).

• Learning Rate (α): the learning rate.

• Discount Factor (γ): the discount factor.

• Device: either CPU or GPU indicating whether we employ CPU or GPU for training.

• Checkpoint Interval: number of epochs between each checkpoint saved.
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• Graph Layer Type: specific layer adopted as the Graph Layer.

• Linear Layer Type: specific layer adopted as the Linear Layer.

• Graph Activation Type: activation function applied in the Graph Layer.

• Linear Layer Type: activation function applied in the Linear Layer.

• Graph Layers Hidden Sizes: a list containing the number of neurons used in each hidden

graph layer.

• Linear Layers Hidden Sizes: a list containing the number of neurons used in each hidden

linear layer.

• Optimiser: optimiser that will update the parameters based on the computed gradients.

As previously described in Section 5.2, our Graph Neural Network configuration is identical to

the one used by the authors of [39]. Therefore, we use a single Graph Convolutional Network layer

(GCNConv [53]) from the pytorch-geometric package [33] and three Linear layers (Linear)

from the pytorch package [94], with two hidden layers of 32 neurons each. Additionally, ReLU

is used as the activation function in all layers except the last, which does not use an activation

function, and Adam is used as the optimiser.

When the Amazon Dataset is used, the Train Instances correspond to [0, 1094] \ {246, 316,

380, 651, 782} and the Test Instances correspond to [1095, 1096, 1097, 1098, 1099]. When the

Loggi Dataset is used, the Train Instances correspond to [499, 506, 483, 476, 459, 466, 475, 363,

438, 484, 490, 436, 474, 507, 430, 457, 489, 451, 477, 443] and the Test Instances correspond to

[481, 442, 386, 449, 497].

Additionally,

• (*1) represents the node features used in the Discount Factor Tuning experiment in the

CVRP environment. It includes [location, depot, demand, current_capacity, cost, can_serve,

mask].

• (*2) represents the node features used in the experiments in the CVRP environment. It in-

cludes [location, depot, demand, current_capacity, next_capacity, fuel_consumption, cost].

• (*3) represents the node features used in the experiments in the CVRPSTW environment.

It includes [location, depot, demand, current_capacity, next_capacity, fuel_consumption,

cost, current_time, travel_time, service_time, start_tw, end_tw, tw_error, time_after_service].

The model used in TL corresponds to the checkpoint that produced the highest reward (in that

epoch).

In the graph, the number of epochs presented is the smaller number of epochs trained in each

group of runs.
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B.1.1 Computer Specifications

Due to time restrictions, multiple computers were used in the experiments. To allow reproduc-

tion of the results, the hardware and software specifications used in this project’s experiments is

presented below.

Table B.1: Computer #1 Specifications

CPU Intel (R) Core (TM) i7-7700k CPU @ 4.2GHz
RAM 32GB (+ 2GB swap)
GPU NVIDA GeForce GTX 1080
GPU Memory 8GB
Operating System Ubuntu 18.04.6 LTS
Python Version 3.10.11
Pytorch Version 2.0.1+cu117
Pytorch Geometric Version 2.3.1
CUDA Version 12.1
Driver Version 530.41.03
Desktop or Laptop Desktop

Table B.2: Computer #2 Specifications

CPU Intel (R) Core (TM) i7-7700k CPU @ 4.2GHz
RAM 16GB (+ 8GB swap)
GPU NVIDIA GeForce GTX 1080
GPU Memory 8GB
Operating System Mint 19.2 Tina
Python Version 3.10.11
Pytorch Version 2.0.1+cu117
Pytorch Geometric Version 2.3.1
CUDA Version 12.1
Driver Version 530.30.02
Desktop or Laptop Desktop

B.1.2 Discount Factor Tuning

B.2 Capacitated Vehicle Routing Problem (CVRP)

B.2.1 The Masking Mechanism

B.2.2 Node Features
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Table B.3: Computer #3 Specifications

CPU Intel (R) Core (TM) i7-4790k CPU @ 4GHz
RAM 32GB (+ 4GB swap)
GPU NVIDIA GeForce GTX 3060 Lite Hash Rate
GPU Memory 12GB
Operating System Ubuntu 22.04.2 LTS
Python Version 3.10.6
Pytorch Version 2.0.1+cu117
Pytorch Geometric Version 2.3.1
CUDA Version 12.1
Driver Version 530.30.02
Desktop or Laptop Desktop

Table B.4: Computer #4 Specifications

CPU 13th Gen Intel (R) Core (TM) i9-13900k
RAM 64GB (+ 8GB swap)
GPU NVIDIA GeForce GTX 4070
GPU Memory 12GB
Operating System Ubuntu 23.04
Python Version 3.11.2
Pytorch Version 2.0.1+cu117
Pytorch Geometric Version 2.3.1
CUDA Version 12.0
Driver Version 525.125.06
Desktop or Laptop Desktop

Table B.5: Computer #5 Specifications

CPU Intel (R) Core (TM) i7-8750H CPU @ 2.2GHz
RAM 16GB (+ 16GB swap)
GPU NVIDIA GeForce GTX 1050 Mobile
GPU Memory 4GB
Operating System Ubuntu 22.04.02 LTS
Python Version 3.10.6
Pytorch Version 2.0.1+cu117
Pytorch Geometric Version 2.3.1
CUDA Version 12.1
Driver Version 530.30.02
Desktop or Laptop Laptop
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Table B.6: Parameters Used in the Discount Factor Tuning Experiment in the CVRP Environment

Parameter Value

Label in the Graph 1 0.99 0.98 0.97 0.9
Run ID t1 t5 t8 t3 t2
Algorithm REINFORCE REINFORCE REINFORCE REINFORCE REINFORCE
Environment CVRP CVRP CVRP CVRP CVRP
Node Features (*1) (*1) (*1) (*1) (*1)
Mask Invalid Invalid Invalid Invalid Invalid

Reward Function
Distance
Norm.

Distance
Norm.

Distance
Norm.

Distance
Norm.

Distance
Norm.

Source ID for TL - - - - -
Dataset Amazon Amazon Amazon Amazon Amazon
Seed 42 42 42 42 42
N Epochs 500 500 500 500 500
Steps per Epoch 1024 1024 1024 1024 1024
Max Steps per Episode None None None None None
Steps per Collect 512 512 512 512 512
Repeat per Collect 1 1 1 1 1
N Training 4 4 4 4 4
N Testing 5 5 5 5 5
Same Seed True True True True True
Epochs per Instance 1 1 1 1 1
Buffer Size 1024 1024 1024 1024 1024
Batch Size 64 64 64 64 64
Learning Rate 0.0001 0.0001 0.0001 0.0001 0.0001
Discount Factor 1 0.99 0.98 0.97 0.9
Device GPU GPU GPU GPU GPU
Checkpoint Interval 1 1 1 1 1
Computer #1 #4 #4 #2 #4
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Table B.7: Parameters Used in the Masking Mechanism Experiment in the CVRP Environment

Parameter Value

Label in the Graph Invalid Noop None
Run ID t4 t6 t7
Algorithm REINFORCE REINFORCE REINFORCE
Environment CVRP CVRP CVRP
Node Features (*2) (*2) (*2)
Mask Invalid Noop None

Reward Function
Distance
Norm.

Distance
Norm.

Distance
Norm.

Source ID for TL - - -
Dataset Amazon Amazon Amazon
Seed 42 42 42
N Epochs 5000 5000 5000
Steps per Epoch 1024 1024 1024
Max Steps per Episode None 512 512
Steps per Collect 512 512 512
Repeat per Collect 1 1 1
N Training 4 4 4
N Testing 5 5 5
Same Seed True True True
Epochs per Instance 1 1 1
Buffer Size 1024 1024 1024
Batch Size 64 64 64
Learning Rate 0.0001 0.0001 0.0001
Discount Factor 0.98 0.98 0.98
Device GPU GPU GPU
Checkpoint Interval 1 1 1
Computer #4 #1 #2
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Table B.8: Parameters Used in the Node Features Experiment in the CVRP environment

Parameter Value

Algorithm REINFORCE
Environment CVRP
Mask Invalid

Reward Function
Distance
Norm.

Source ID for TL -
Dataset Amazon
Seed 42
N Epochs 25
Steps per Epoch 1024
Max Steps per Episode None
Steps per Collect 512
Repeat per Collect 1
N Training 4
N Testing 5
Same Seed True
Epochs per Instance 1
Buffer Size 1024
Batch Size 64
Learning Rate 0.0001
Discount Factor 0.98
Device GPU
Checkpoint Interval 1
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B.2.3 Reward Functions

Due to a sudden drop in performance from the Distance agent after epoch 995, the figures involv-

ing this agent represent the values until epoch 995 instead of 1000. Including this epoch would not

allow for any meaningful comparison as all the lines would overlap as a constant (in the Distance

and Fuel Consumption figures), with the exception of the Distance agent, which would overlap

until epoch 995 and then skyrocket.

Table B.10: Parameters Used in the Reward Functions Experiment in the CVRP environment

Parameter Value

Label in the Graph
Distance
Norm.

Distance Fraction Savings
Sparse (Dist.

Norm.)
Run ID t4 r8 r4 r5 r1
Algorithm REINFORCE REINFORCE REINFORCE REINFORCE REINFORCE
Environment CVRP CVRP CVRP CVRP CVRP
Node Features (*2) (*2) (*2) (*2) (*2)
Mask Invalid Invalid Invalid Invalid Invalid

Reward Function
Distance
Norm.

Distance Fraction Savings
Sparse (Dist.

Norm.)
Source ID for TL - - - - -
Dataset Amazon Amazon Amazon Amazon Amazon
Seed 42 42 42 42 42
N Epochs 5000 1000 1000 1000 1000
Steps per Epoch 1024 1024 1024 1024 1024
Max Steps per Episode None None None None None
Steps per Collect 512 512 512 512 512
Repeat per Collect 1 1 1 1 1
N Training 4 4 4 4 4
N Testing 5 5 5 5 5
Same Seed True True True True True
Epochs per Instance 1 1 1 1 1
Buffer Size 1024 1024 1024 1024 1024
Batch Size 64 64 64 64 64
Learning Rate 0.0001 0.0001 0.0001 0.0001 0.0001
Discount Factor 0.98 0.98 0.98 0.98 0.98
Device GPU GPU GPU GPU GPU
Checkpoint Interval 1 1 1 1 1
Computer #4 #4 #3 #3 #3

B.3 CVRP with Soft Time Windows (CVRPSTW)

B.3.1 CVRP vs CVRPSTW

B.3.2 Node Features
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Table B.11: Parameters Used in the Reward Functions Experiment in the CVRP environment

Parameter Value

Label in the Graph
Distance
Norm.

Fuel Cons.
Multi (D +

F)
Run ID t4 r2 r3
Algorithm REINFORCE REINFORCE REINFORCE
Environment CVRP CVRP CVRP
Node Features (*2) (*2) (*2)
Mask Invalid Invalid Invalid

Reward Function
Distance
Norm.

Fuel Cons.
Multi (D +

E)
Source ID for TL - - -
Dataset Amazon Amazon Amazon
Seed 42 42 42
N Epochs 5000 1000 1000
Steps per Epoch 1024 1024 1024
Max Steps per Episode None None None
Steps per Collect 512 512 512
Repeat per Collect 1 1 1
N Training 4 4 4
N Testing 5 5 5
Same Seed True True True
Epochs per Instance 1 1 1
Buffer Size 1024 1024 1024
Batch Size 64 64 64
Learning Rate 0.0001 0.0001 0.0001
Discount Factor 0.98 0.98 0.98
Device GPU GPU GPU
Checkpoint Interval 1 1 1
Computer #4 #3 #3
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Table B.12: Parameters Used in the Reward Functions Experiment in the CVRP environment

Parameter Value

Label in the Graph Dense Sparse
Run ID t7 tx
Algorithm REINFORCE REINFORCE
Environment CVRP CVRP
Node Features (*2) (*2)
Mask None None

Reward Function
Distance
Norm.

Sparse (Dist.
Norm.)

Source ID for TL - -
Dataset Amazon Amazon
Seed 42 42
N Epochs 5000 1000
Steps per Epoch 1024 1024
Max Steps per Episode 512 512
Steps per Collect 512 512
Repeat per Collect 1 1
N Training 4 4
N Testing 5 5
Same Seed True True
Epochs per Instance 1 1
Buffer Size 1024 1024
Batch Size 64 64
Learning Rate 0.0001 0.0001
Discount Factor 0.98 0.98
Device GPU GPU
Checkpoint Interval 1 1
Computer #2 #4
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Table B.13: Parameters Used in the Experiment comparing the CVRP and the CVRPSTW envi-
ronments

Parameter Value

Label in the Graph CVRP CVRPSTW
Run ID t4 t0
Algorithm REINFORCE REINFORCE
Environment CVRP CVRPSTW
Node Features (*2) (*3)
Mask Invalid Invalid

Reward Function
Distance
Norm.

TW Error
(D)

Source ID for TL - -
Dataset Amazon Amazon
Seed 42 42
N Epochs 5000 5000
Steps per Epoch 1024 1024
Max Steps per Episode None None
Steps per Collect 512 512
Repeat per Collect 1 1
N Training 4 4
N Testing 5 5
Same Seed True True
Epochs per Instance 1 1
Buffer Size 1024 1024
Batch Size 64 64
Learning Rate 0.0001 0.0001
Discount Factor 0.98 0.98
Device GPU GPU
Checkpoint Interval 1 1
Computer #4 #4
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Table B.14: Parameters Used in the Node Features Experiment in the CVRPSTW environment

Parameter Value

Algorithm REINFORCE
Environment CVRPSTW
Mask Invalid

Reward Function
TW Error

(D)
Source ID for TL -
Dataset Amazon
Seed 42
N Epochs 25
Steps per Epoch 1024
Max Steps per Episode None
Steps per Collect 512
Repeat per Collect 1
N Training 4
N Testing 5
Same Seed True
Epochs per Instance 1
Buffer Size 1024
Batch Size 64
Learning Rate 0.0001
Discount Factor 0.98
Device GPU
Checkpoint Interval 1
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B.3.3 Reward Functions

Table B.16: Parameters Used in the Reward Functions Experiment in the CVRPSTW environment

Parameter Value

Label in the Graph
TW Error

(D)
TW Failed

(D)
Run ID t0 r0
Algorithm REINFORCE REINFORCE
Environment CVRPSTW CVRPSTW
Node Features (*3) (*3)
Mask Invalid Invalid

Reward Function
TW Error

(D)
TW Failed

(D)
Source ID for TL - -
Dataset Amazon Amazon
Seed 42 42
N Epochs 5000 5000
Steps per Epoch 1024 1024
Max Steps per Episode None None
Steps per Collect 512 512
Repeat per Collect 1 1
N Training 4 4
N Testing 5 5
Same Seed True True
Epochs per Instance 1 1
Buffer Size 1024 1024
Batch Size 64 64
Learning Rate 0.0001 0.0001
Discount Factor 0.98 0.98
Device GPU GPU
Checkpoint Interval 1 1
Computer #4 #4

B.4 Exploring Transfer Learning

B.4.1 Changing Dataset

B.4.2 Removing the Mask

B.4.3 Changing Environment

B.4.4 Changing Reward Functions
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Table B.17: Parameters Used in the Changing Dataset Experiment

Parameter Value

Label in the Graph No Yes
Run ID ty d4
Algorithm REINFORCE REINFORCE
Environment CVRP CVRP
Node Features (*2) (*2)
Mask Invalid Invalid

Reward Function
Distance
Norm.

Distance
Norm.

Source ID for TL - t4
Dataset Loggi Loggi
Seed 42 42
N Epochs 100 100
Steps per Epoch 4096 4096
Max Steps per Episode None None
Steps per Collect 512 512
Repeat per Collect 1 1
N Training 4 4
N Testing 5 5
Same Seed True True
Epochs per Instance 1 1
Buffer Size 1024 1024
Batch Size 64 64
Learning Rate 0.0001 0.0001
Discount Factor 0.98 0.98
Device GPU GPU
Checkpoint Interval 1 1
Computer #4 #4
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Table B.18: Parameters Used in the Removing the Mask Experiment

Parameter Value

Label in the Graph No Yes
Run ID t7 dl
Algorithm REINFORCE REINFORCE
Environment CVRP CVRP
Node Features (*2) (*2)
Mask None None

Reward Function
Distance
Norm.

Distance
Norm.

Source ID for TL - t4
Dataset Amazon Amazon
Seed 42 42
N Epochs 5000 100
Steps per Epoch 1024 1024
Max Steps per Episode 512 512
Steps per Collect 512 512
Repeat per Collect 1 1
N Training 4 4
N Testing 5 5
Same Seed True True
Epochs per Instance 1 1
Buffer Size 1024 1024
Batch Size 64 64
Learning Rate 0.0001 0.0001
Discount Factor 0.98 0.98
Device GPU GPU
Checkpoint Interval 1 1
Computer #2 #3
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Table B.19: Parameters Used in the Changing Environment Experiment (Target is Easier than
Source)

Parameter Value

Label in the Graph No Yes
Run ID t4 dk
Algorithm REINFORCE REINFORCE
Environment CVRP CVRP
Node Features (*2) (*2)
Mask Invalid Invalid

Reward Function
Distance
Norm.

Distance
Norm.

Source ID for TL - r0
Dataset Amazon Amazon
Seed 42 42
N Epochs 5000 100
Steps per Epoch 1024 1024
Max Steps per Episode None None
Steps per Collect 512 512
Repeat per Collect 1 1
N Training 4 4
N Testing 5 5
Same Seed True True
Epochs per Instance 1 1
Buffer Size 1024 1024
Batch Size 64 64
Learning Rate 0.0001 0.0001
Discount Factor 0.98 0.98
Device GPU GPU
Checkpoint Interval 1 1
Computer #4 #4
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Table B.20: Parameters Used in the Changing Environment Experiment (Target is Harder than
Source)

Parameter Value

Label in the Graph No Yes
Run ID t0 d3
Algorithm REINFORCE REINFORCE
Environment CVRPSTW CVRPSTW
Node Features (*3) (*3)
Mask Invalid Invalid

Reward Function
TW Error

(D)
TW Error

(D)
Source ID for TL - t4
Dataset Amazon Amazon
Seed 42 42
N Epochs 5000 100
Steps per Epoch 1024 1024
Max Steps per Episode None None
Steps per Collect 512 512
Repeat per Collect 1 1
N Training 4 4
N Testing 5 5
Same Seed True True
Epochs per Instance 1 1
Buffer Size 1024 1024
Batch Size 64 64
Learning Rate 0.0001 0.0001
Discount Factor 0.98 0.98
Device GPU GPU
Checkpoint Interval 1 1
Computer #4 #4
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Table B.21: Parameters Used in the Changing Reward Functions Experiment (Target = Fraction)

Parameter Value

Label in the Graph -
Distance
Norm.

Run ID r4 d2
Algorithm REINFORCE REINFORCE
Environment CVRP CVRP
Node Features (*2) (*2)
Mask Invalid Invalid
Reward Function Fraction Fraction
Source ID for TL - t4
Dataset Amazon Amazon
Seed 42 42
N Epochs 1000 100
Steps per Epoch 1024 1024
Max Steps per Episode None None
Steps per Collect 512 512
Repeat per Collect 1 1
N Training 4 4
N Testing 5 5
Same Seed True True
Epochs per Instance 1 1
Buffer Size 1024 1024
Batch Size 64 64
Learning Rate 0.0001 0.0001
Discount Factor 0.98 0.98
Device GPU GPU
Checkpoint Interval 1 1
Computer #3 #4
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Table B.22: Parameters Used in the Changing Reward Functions Experiment (Target = Savings)

Parameter Value

Label in the Graph -
Distance
Norm.

Run ID r5 dh
Algorithm REINFORCE REINFORCE
Environment CVRP CVRP
Node Features (*2) (*2)
Mask Invalid Invalid
Reward Function Savings Savings
Source ID for TL - t4
Dataset Amazon Amazon
Seed 42 42
N Epochs 1000 100
Steps per Epoch 1024 1024
Max Steps per Episode None None
Steps per Collect 512 512
Repeat per Collect 1 1
N Training 4 4
N Testing 5 5
Same Seed True True
Epochs per Instance 1 1
Buffer Size 1024 1024
Batch Size 64 64
Learning Rate 0.0001 0.0001
Discount Factor 0.98 0.98
Device GPU GPU
Checkpoint Interval 1 1
Computer #3 #3
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Table B.23: Parameters Used in the Changing Reward Functions Experiment (Target = Distance)

Parameter Value

Label in the Graph -
Distance
Norm.

Run ID r8 dm
Algorithm REINFORCE REINFORCE
Environment CVRP CVRP
Node Features (*2) (*2)
Mask Invalid Invalid
Reward Function Distance Distance
Source ID for TL - t4
Dataset Amazon Amazon
Seed 42 42
N Epochs 1000 100
Steps per Epoch 1024 1024
Max Steps per Episode None None
Steps per Collect 512 512
Repeat per Collect 1 1
N Training 4 4
N Testing 5 5
Same Seed True True
Epochs per Instance 1 1
Buffer Size 1024 1024
Batch Size 64 64
Learning Rate 0.0001 0.0001
Discount Factor 0.98 0.98
Device GPU GPU
Checkpoint Interval 1 1
Computer #4 #3
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Table B.24: Parameters Used in the Changing Reward Functions Experiment (Target = Distance
Norm.)

Parameter Value

Label in the Graph - Fuel Cons.
Multi (D +

F)
Run ID t4 db di
Algorithm REINFORCE REINFORCE REINFORCE
Environment CVRP CVRP CVRP
Node Features (*2) (*2) (*2)
Mask Invalid Invalid Invalid

Reward Function
Distance
Norm.

Distance
Norm.

Distance
Norm.

Source ID for TL - r2 r3
Dataset Amazon Amazon Amazon
Seed 42 42 42
N Epochs 5000 100 100
Steps per Epoch 1024 1024 1024
Max Steps per Episode None None None
Steps per Collect 512 512 512
Repeat per Collect 1 1 1
N Training 4 4 4
N Testing 5 5 5
Same Seed True True True
Epochs per Instance 1 1 1
Buffer Size 1024 1024 1024
Batch Size 64 64 64
Learning Rate 0.0001 0.0001 0.0001
Discount Factor 0.98 0.98 0.98
Device GPU GPU GPU
Checkpoint Interval 1 1 1
Computer #4 #4 #4
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Table B.25: Parameters Used in the Changing Reward Functions Experiment (Target = Fuel Cons.)

Parameter Value

Label in the Graph -
Distance
Norm.

Multi (D +
F)

Run ID r2 d0 dj
Algorithm REINFORCE REINFORCE REINFORCE
Environment CVRP CVRP CVRP
Node Features (*2) (*2) (*2)
Mask Invalid Invalid Invalid
Reward Function Fuel Cons. Fuel Cons. Fuel Cons.
Source ID for TL - t4 r3
Dataset Amazon Amazon Amazon
Seed 42 42 42
N Epochs 1000 100 100
Steps per Epoch 1024 1024 1024
Max Steps per Episode None None None
Steps per Collect 512 512 512
Repeat per Collect 1 1 1
N Training 4 4 4
N Testing 5 5 5
Same Seed True True True
Epochs per Instance 1 1 1
Buffer Size 1024 1024 1024
Batch Size 64 64 64
Learning Rate 0.0001 0.0001 0.0001
Discount Factor 0.98 0.98 0.98
Device GPU GPU GPU
Checkpoint Interval 1 1 1
Computer #3 #4 #4
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Table B.26: Parameters Used in the Changing Reward Functions Experiment (Target = Multi (D
+ F))

Parameter Value

Label in the Graph -
Distance
Norm.

Fuel Cons.

Run ID r3 d1 dc
Algorithm REINFORCE REINFORCE REINFORCE
Environment CVRP CVRP CVRP
Node Features (*2) (*2) (*2)
Mask Invalid Invalid Invalid

Reward Function
Multi (D +

E)
Multi (D +

E)
Multi (D +

E)
Source ID for TL - t4 r2
Dataset Amazon Amazon Amazon
Seed 42 42 42
N Epochs 1000 100 100
Steps per Epoch 1024 1024 1024
Max Steps per Episode None None None
Steps per Collect 512 512 512
Repeat per Collect 1 1 1
N Training 4 4 4
N Testing 5 5 5
Same Seed True True True
Epochs per Instance 1 1 1
Buffer Size 1024 1024 1024
Batch Size 64 64 64
Learning Rate 0.0001 0.0001 0.0001
Discount Factor 0.98 0.98 0.98
Device GPU GPU GPU
Checkpoint Interval 1 1 1
Computer #3 #4 #4
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Table B.27: Parameters Used in the Changing Reward Functions Experiment (Target = TW Error
(D))

Parameter Value

Label in the Graph No Yes
Run ID t0 de
Algorithm REINFORCE REINFORCE
Environment CVRPSTW CVRPSTW
Node Features (*3) (*3)
Mask Invalid Invalid

Reward Function
TW Error

(D)
TW Error

(D)
Source ID for TL - r0
Dataset Amazon Amazon
Seed 42 42
N Epochs 5000 100
Steps per Epoch 1024 1024
Max Steps per Episode None None
Steps per Collect 512 512
Repeat per Collect 1 1
N Training 4 4
N Testing 5 5
Same Seed True True
Epochs per Instance 1 1
Buffer Size 1024 1024
Batch Size 64 64
Learning Rate 0.0001 0.0001
Discount Factor 0.98 0.98
Device GPU GPU
Checkpoint Interval 1 1
Computer #4 #4
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Table B.28: Parameters Used in the Changing Reward Functions Experiment (Target = TW Failed
(D))

Parameter Value

Label in the Graph No Yes
Run ID r0 dd
Algorithm REINFORCE REINFORCE
Environment CVRPSTW CVRPSTW
Node Features (*3) (*3)
Mask Invalid Invalid

Reward Function
TW Failed

(D)
TW Failed

(D)
Source ID for TL - t0
Dataset Amazon Amazon
Seed 42 42
N Epochs 5000 100
Steps per Epoch 1024 1024
Max Steps per Episode None None
Steps per Collect 512 512
Repeat per Collect 1 1
N Training 4 4
N Testing 5 5
Same Seed True True
Epochs per Instance 1 1
Buffer Size 1024 1024
Batch Size 64 64
Learning Rate 0.0001 0.0001
Discount Factor 0.98 0.98
Device GPU GPU
Checkpoint Interval 1 1
Computer #4 #4


	Front Page
	Abstract
	Resumo
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	List of Listings
	Abbreviations
	1 Introduction
	1.1 Context and Motivation
	1.2 Problem Definition
	1.3 Objectives
	1.4 Document Structure

	2 Background
	2.1 Reinforcement Learning
	2.1.1 Graph Deep Reinforcement Learning
	2.1.2 REINFORCE
	2.1.3 Graph Convolutional Networks

	2.2 Transfer Learning
	2.3 Representation Problem

	3 Literature Review
	3.1 Application Domain
	3.2 Related Work
	3.3 Discussion
	3.4 VRP Taxonomy

	4 Methodological Approach
	4.1 The Environment
	4.1.1 Node Features
	4.1.2 Masking Scheme
	4.1.3 Reward Functions

	4.2 Performance Metrics
	4.2.1 Reinforcement Learning Metrics
	4.2.2 Transfer Learning Metrics
	4.2.3 Domain Metrics


	5 Experimental Setup and Result Analysis
	5.1 Datasets
	5.2 Core Configuration
	5.3 Capacitated Vehicle Routing Problem (CVRP)
	5.3.1 The Masking Mechanism
	5.3.2 Node Features
	5.3.3 Reward Functions

	5.4 CVRP with Soft Time Windows (CVRPSTW)
	5.4.1 CVRP vs CVRPSTW
	5.4.2 Node Features
	5.4.3 Reward Functions

	5.5 Exploring Transfer Learning
	5.5.1 Changing Dataset
	5.5.2 Removing the Mask
	5.5.3 Changing Environment
	5.5.4 Changing Reward Functions


	6 Conclusions
	6.1 Main Contributions
	6.2 Future Work

	References
	A Preprocessing Pipeline
	B Hyperparameters
	B.1 Core Configuration
	B.1.1 Computer Specifications
	B.1.2 Discount Factor Tuning

	B.2 Capacitated Vehicle Routing Problem (CVRP)
	B.2.1 The Masking Mechanism
	B.2.2 Node Features
	B.2.3 Reward Functions

	B.3 CVRP with Soft Time Windows (CVRPSTW)
	B.3.1 CVRP vs CVRPSTW
	B.3.2 Node Features
	B.3.3 Reward Functions

	B.4 Exploring Transfer Learning
	B.4.1 Changing Dataset
	B.4.2 Removing the Mask
	B.4.3 Changing Environment
	B.4.4 Changing Reward Functions



