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Abstract

There was a time when vehicles were considered mainly mechanical machines. Now they are
closer to being a piece of technology. Every modern vehicle in the market boasts numerous Elec-
tronic Control Units (ECUs), that are responsible for the most critical of functions (braking, direc-
tion and even safety features). This dependency in software raises the need for diagnostic functions
that allow leveraging that software coverage. Unified Diagnostic Services (UDS) was created in or-
der to standardize diagnostic communications among different brands in the automotive industry.
UDS plays a critical role in vehicles, by allowing communication between diagnostic testers and
ECUs. As with any communication protocol, UDS needs to be implemented and, consequently,
have that implementation tested. Normal methods for testing involve manually exchanging mes-
sages with an ECU and verifying the responses with a tool such as Vector CANoe. This proves
to be expensive in terms of time, reliability and money. In order to make testing faster and more
reliable, the work developed aimed to build a tool that takes a semi-automatic approach to testing
an UDS stack implementation. The objective was to create an option that poses a faster, more
reliable and less error-prone alternative when compared to manual testing. This dissertation was
developed in Continental Engineering Services (CES), the company that made the work possible
by providing the necessary resources and help for technical development.

The proposed tool was developed using Rust, a programming language that gives the program-
mer a control similar to C/C++ while offering memory safety by using a borrow-checker system
(among other features). The hardware consisted simply of a Raspberry Pi 4 equipped with a Con-
troller Area Network (CAN) interface, making the setup independent from third-party tools. In
order to describe the tests, the user creates a JavaScript Object Notation (JSON) file and uses a
syntax designed to that effect. The syntax’s design was thought to make it as flexible as possible
since, although UDS is standardized, its implementation can vary a lot according to client prefer-
ences and requirements. After describing the tests, the file is fed to the proposed tool which will
execute the tests by exchanging messages with an ECU in the CAN bus and output the results.

The proposed tool was tested with different ECU configurations in order to validate its be-
havior, which proved to be as expected. A timed comparison was also conducted, with the help
of three volunteers from CES’ cybersecurity team. The comparison involved executing the same
test routine using the proposed tool/syntax vs manually using Vector CANoe. Results showed an
average reduction of 15.3% in the time needed to execute the tests and a reduction of 80% in errors
during testing.

The work developed represented a solid alternative to manual testing and fulfilled the objec-
tives set for this work, by allowing faster, clearer and more reliable testing on UDS implementa-
tion, although work can be done to make the syntax even clearer and easier to use.
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Resumo

Outrora, os veículos eram máquinas maioritariamente mecânicas. Hoje em dia, estão mais perto
de serem peças de tecnologia. Todos os veículos modernos no mercado possuem numerosas Elec-
tronic Control Units (ECUs), que são responsáveis pelas mais críticas das funções (travagem,
direção e até segurança). Esta dependência em software acaba por motivar uma necessidade por
funções de diagnóstico que permitam aproveitar essa cobertura. O Unified Diagnostics Services
(UDS), foi um protocolo criado com o objetivo de padronizar a comunicação de diagnóstico entre
as diferentes marcas da indústria automóvel. UDS tem um papel crítico nos veículos, possibil-
itando a comunicação entre testadores e ECUs. Tal como qualquer outro protocolo de comuni-
cação, o UDS tem de ser implementado e, consequentemente, ter essa implementação testada.
Uma forma comum de o fazer seria manualmente trocar mensagens com o ECU e verificar as
respostas recebidas, numa ferramenta como o Vector CANoe. Isto, no entanto, provou ser caro
em termos de tempo, confiabilidade e dinheiro. De forma a tornar a testagem mais rápida e mais
confiável, o trabalho desenvolvido nesta dissertação pretende criar uma ferramenta que utiliza uma
abordagem semi-automática para testagem da implementação do protocolo UDS. Esta dissertação
foi desenvolvida na Continental Engineering Services (CES), a empresa que possibilitou o trabalho
desenvolvido, tendo facultado os recursos e ajuda necessários para o desenvolvimento técnico.

A ferramenta foi desenvolvida com Rust, uma linguagem de programação conhecida por dar
ao programador um controlo similar ao de C/C++, enquanto oferece garantias de segurança de
memória ao utilizar um sistema borrow-checker (entre outras vantagens). O hardware consistiu
num simples Raspberry Pi equipado com uma interface Controller Area Network (CAN), que torna
o sistema independente de hardware externo. Para descrever os testes, o utilizador pode fazê-lo
num ficheiro JavaScript Object Notation (JSON), utilizando uma sintaxe desenhada para esse
efeito. A sintaxe foi desenhada de forma a maximizar a flexibilidade da mesma porque, embora
o protocolo UDS seja padronizado, a sua implementação pode sofer uma grande variabilidade
consoante as preferências do cliente. Após a definição dos testes, o utilizador usa a ferramenta
proposta para interpretar o ficheiro e executar os testes descritos. A ferramenta irá depois trocar
mensagens CAN com o ECU, de forma a verificar se os testes foram bem sucedidos e apresentando
o resultado.

A ferramenta proposta foi testada num ECU com diferentes configurações de forma a validar
o seu comportamento, que foi o esperado. Uma comparação cronometrada também foi conduzida,
com a ajuda de três voluntários da equipa de cibersegurança da CES. Esta comparação envolveu
executar uma rotina de testes utilizando a ferramenta proposta vs manualmente no Vector CANoe.
Os resultados mostraram uma redução, em média, de 15.3% no tempo necessário para executar os
testes, bem como uma redução de 80% nos erros cometidos durante a testagem.

O trabalho desenvolvido representa uma alternativa sólida relativamente à testagem manual,
tendo cumprido os objetivos definidos por permitir uma testagem mais rápida, mais clara e mais
confiável a uma implementação dos UDS. Trabalho pode ser feito para tornar a sintaxe ainda mais
clara e fácil de utilizar.
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Chapter 1

Introduction

Modern vehicles rely heavily on software and electronics for the most critical and essential func-

tions. Nowadays, they boast numerous Electronic Control Units (ECUs) that, connected between

them and while running hundreds of millions of lines of code, exchange information that makes

the car function. The need for reliable testing arises in order to ensure protocol robustness. This

chapter attempts to give some context to the problem and includes a brief overview of Conti-

nental Engineering Services (CES), where the dissertation was developed. After discussing what

motivated the work, the problem at hand is introduced, and the objectives of the work are defined.

1.1 Context

Ever since the birth of the first car at the end of the 19th century, the evolution has been constant

and remarkably fast. What started as a purely mechanical machine evolved into what a modern

car is today.

Yet, some things never change, and the core requirements of a vehicle are still valid to this

day, such as ensuring safety, robustness, and reliability across a wide range of environments and

conditions. Quickly, as the first programmable electronic components started to be used inside

vehicles, it became necessary to have multiple ECUs working together to achieve the desired

functionalities and avoid resource constraints. Consequently, internal network protocols, such as

Controller Area Network (CAN) [1], started to be developed and used to enable communication

between ECUs.

Autonomous driving capabilities, self-parking, complex infotainment systems, internet con-

nection, or smartphone control are just some of the features in state-of-the-art cars. Although all

these features significantly boosted the drivers’ and passengers’ comfort and the quality of driving,

they also created a dependency on the electronics and software inside these vehicles.

This dependency raises the need for diagnostics services that can help manipulate the elec-

tronic systems. Unified Diagnostics Services (UDS) is a protocol that is standardized in ISO-

14229 [2], and provides a common solution to diagnostics communication between brands.
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2 Introduction

1.2 Continental Engineering Services

Continental Engineering Services, founded in 2006, mainly provides engineering services in the

automotive area, across areas such as automotive electronics, drive and chassis technology, or elec-

trical mobility. The company’s support for other industries such as agricultural and construction

machinery, aerospace, agriculture, marine, railways, and medical technology is also increasing.

With over 2200 employees over 24 different locations worldwide (shown in Figure 1.1 [3]). CES

Porto, in particular, benefits from a strategic position when it comes to proximity to engineering

universities and research institutes. Also, by having access to Continental’s entire technology pool,

CES presents itself in an unique position that combines the flexibility and speed that comes asso-

ciated with small engineering teams, with the resources and strength of an internationally leading

company.

Figure 1.1: CES’ worldwide locations.

1.3 Motivation

In order to implement network protocols, researchers and engineers need tools at their disposal

that allow them to understand what’s happening within the car’s networks and manipulate them

for testing purposes.

Teams rely heavily on products from external companies in order to conduct their testing and

make sure the products developed are as bulletproof as possible.

Although the use of those products saves the teams from workload related to the development

of a similar tool, it creates additional financial costs for the company. Also, available solutions

greatly limit the flexibility in the creation of testing environments due to licensing systems, and

offer no freedom to teams when it comes to the introduction of new features.

Furthermore, when looking at the specific case of UDS, a lack of automation in the testing

process was evident after the literature review and after feedback from professionals in the area.

Given the importance and the reach of the clearance one can achieve with this protocol [4], the

testing to its implementation is paramount and should be done as reliably as possible to avoid the

introduction of unexpected behavior or security weaknesses.
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It’s also worth mentioning two behemoths of the automotive industry and the embedded elec-

tronics world in general: C and C++. These two programming languages are the backbone of a

big part of automotive systems mainly because of their speed and degree of control they give to

the programmer. However, they suffer from a common weakness, which is the lack of memory

safety. [5]

1.4 Problem

Whenever a new service is added to an ECU’s UDS stack, it must be implemented and, afterward,

tested for correct functioning. Typically, testing is done manually by exchanging packets in the

network bus and analyzing the ECU’s behavior, confirming if it is as expected. This process is

painful and somewhat repetitive, making it prone to error.

Automation of this process seems obvious at first sight, but some restrictions have to be con-

sidered. Total automation of the testing process of a UDS stack is hard to achieve, mainly due to

the high variability of implementations. Each client may specify different behaviors for the ECU,

according to their preferences. Since an automated tool would have to "expect" a certain response

from the ECU in order to deem the test successful, the tool is then forced to integrate some kind

of customization that can account for the different specifications of the protocol.

1.5 Objectives

This dissertation’s work focuses on the development of a tool, using the programming language

Rust, that enables more reliable and straightforward testing of UDS protocol’s implementation

on an ECU. Given a semi-automation approach, this tool aims to greatly facilitate testing while

maintaining a high level of control over expected responses from an ECU.

At the root of the tool rests the ability to monitor and manipulate a vehicle’s internal CAN

network. That means the user is able to capture packets being exchanged between ECUs as well

as inject them. From that capability, a test generation feature is then developed. In order to execute

a set of tests, the user inputs a JavaScript Object Notation (JSON) file describing the tests using

a predefined syntax defined later in this document. The tool interprets the file, executes the tests,

and returns if they were successful or not. The process is similar to how unit tests work.

The syntax developed must allow some flexibility such as the creation of variables, in order

to accommodate the possibility of values that aren’t known a priori. This is the case of challenge

signing, where the server sends a challenge to the client, who then signs it, proving ownership.

This process will be explained in more detail later, but since the challenge is determined by the

server, the user cannot predict what the value will be nor its length and, as such, cannot expect a

certain chain of values.

The choice of Rust comes from the devastating effects of memory-related vulnerabilities, and

by considering the sheer complexity of C or C++. C’s specification alone is around 800 pages,

which is a lot considering it isn’t nearly as complex as C++. It’s not expected that a developer can
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be fully knowledgeable of it, which ends up causing development errors. Rust gives the developer

a very similar control to that of C/C++ while enforcing memory safety and quality code.

The software is embedded in a Raspberry Pi that enables a cabled connection to the desired

vehicle through a physical CAN interface, eliminating the need for expensive external hardware.

The present work focuses on the service commonly known as "service 29", given its hexadec-

imal request ID, 0x29. This service was included in the ISO-14229-1 [2] that standardizes UDS’s

application layer in 2020, and poses as a modern approach to authentication in the UDS stack.

This, regardless, does not mean the tool can’t be used for many other services in the UDS stack.

Service 29 was chosen because of how recent it is and how non-trivial its testing is.

The default template, which can be analyzed in appendix B, was designed according to ISO

14229-1. It tests what should be normal error detection by a correctly implemented UDS stack

as well as the happy path (a successful authentication), relative to service 0x29. For example,

sending a request without the minimum length should return an error code that is associated with

receiving a message that does not meet the minimum length. If the tested ECU returns anything

else, that means the implementation isn’t according to the standard.

With all this in mind, two research questions (RQs) were formulated, which should be able to

determine the success of the work developed:

– RQ1: Can the proposed tool achieve the same results as manual testing in a similar time-

frame?

– RQ2: Can the use of the proposed tool prevent errors while testing?

1.6 Document structure

The document is structured as follows:

Chapter 2 - Literature Review

Provides a comprehensive overview both of the technological background supporting the

work developed as well as of related work and tools that might help assess the state-of-the-

art in UDS testing methodologies. The chapter mainly serves as a foundation for under-

standing the challenges and concepts involved in the subsequent chapters.

Chapter 3 - Implementation

Starts off by describing the hardware setup used during the development and deployment

phases, followed by a description of the cross-compilation process used. After an overview

of the software backbone of the tool, the syntax designed for defining the tests is described

and a detailed overview of the test generator module is presented.

Chapter 4 - Validation

This chapter aims to find quantifiable data with which to answer the research questions

defined previously. The methodology used to achieve the validation of the proposed solution
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is presented. The results are laid out and discussed, mentioning limitations associated with

the chosen methodology.

Chapter 5 - Conclusion

In this chapter, a brief recap of the document is constructed, which helps wrap up the infor-

mation. The results collected in the previous chapter are summarized, and the applications

and positive implications of the proposed solution are analyzed. The future work that could

be developed is discussed.
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Chapter 2

Literature Review

This chapter is intended to build the foundation that will support the work developed in the next

chapters. First, a look into ECUs, as well as network architectures and a dive into CAN bus. Next,

two essential standards for the work developed are discussed, one standardizing UDS application

layer, and one standardizing ISO-TP. In the third section, an overview of some of the tools used

during development; this includes an analysis of Rust, the programming language used in this

project, some libraries and a look into the JSON format. Finally, some related work found in the

literature review is mentioned.

2.1 Electrical Control Units and Communication

2.1.1 Electronic Control Units

Modern vehicles are composed of around 70 ECUs, which are embedded systems that control

mechanical or electrical subsystems. [6][7] ECUs are responsible for braking, steering, passenger

comfort, safety, overall monitoring of the car, and many more important tasks. They do this by

receiving input from sensors installed in the vehicle, processing the data, and controlling actuators

in the system. Communication between ECUs is achieved via the use of various technologies,

CAN being the most common.

2.1.2 Network Architecture

The architecture of a vehicle’s internal network consists of the core organization of its electronic

components across the whole system in order to execute the desired function while accounting for

security and performance. [8]

In current vehicles, the network is divided into different subsystems. Each subsystem has a

number of ECUs destined for a given application, all connected to each other by a network pro-

tocol such as CAN. Then, all the subsystems are connected to a centralized gateway that receives

information from all ECUs and executes protocol conversions. This creates a choking point in the

gateway ECU requiring it to have high-bandwidth connections and high data processing ability.

7
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In order to solve this issue, the industry is moving in-vehicle networks toward a domain-based

architecture, in which ECUs are divided by functional domains (Figure 2.1, reproduced from [8]).

Each domain gets a domain controller ECU associated that maintains most of the data transfer

within a given domain. [7] Domain controllers are then inter-connected using high-bandwidth

Ethernet. This ultimately divides the work of the gateway into different devices thus reducing the

load and complexity of a central gateway.

Figure 2.1: Evolution of in-vehicle network architectures.

2.1.3 Controller Area Network

Back in the decade of the 1950s, automotive electronics cost only 1% of the total car cost. In the

2010s it was around 35% and is expected to rise to 50% in the 2030s. [9] CAN is the most widely

used protocol with respect to in-vehicle communications. It offers many advantages, mainly in

respect of cost-effective wiring, and overall robustness in communications. [1] In contrast, it is

weak in terms of security and has low bandwidth.

2.1.3.1 Overview

CAN was created by Bosch in the 80s, specifically for the automotive industry. The original CAN

could transmit up to a rate of 1Mbps with a data payload between 8 bytes. In 2012 CAN with

Flexible Data rate (CAN-FD) was released, which can go up to 5Mbps with a data payload of up

to 64 bytes while being backward compatible with original CAN nodes. [1]

The physical layer supports the dominance property. This means bit collisions are resolved

based on a notion of dominant/recessive bits (0 is dominant and 1 is recessive).
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The data link layer controls medium access through Carrier Sense Multiple Access with Bit-

wise Arbitration (CSMA/BA), using an identifier field in order to determine priority (a lower ID

sports benefits of higher priority). If a node is transmitting and detects that the bit in the bus is

different from the one it sent, the node switches to receiving mode. CAN is a message based

with unique message identifiers protocol. There are five different message (or frame) types, listed

below [10]:

• Data Frame: it is normally the most exchanged frame in CAN communication. It is used

to transmit data between ECUs on the bus. The Data Frame consists of the seven fields

denoted in Table 2.1.

• Remote Frame: it is sent by a node in order to request data from another ECU on the bus.

The structure of this frame is very similar to the data frame’s differing only in two aspects:

the absence of the data field, and the value of the Remote Transmission Request which is

recessive in the remote frame and dominant in the data frame.

• Overload Frame: this frame is sent by an ECU to signal that it is overloaded and cannot

process more messages. As a consequence, the transmitting node will increase the delay be-

tween consecutive data or remote frames. Its structure consists of six dominant bits (over-

load flag field) followed by the overload delimiter field which consists of eight recessive

bits.

• Interframe Space: consists of a gap between two consecutive data or remote frames. Com-

posed of at least three recessive bits this time interval allows for the separation of frames as

well as synchronization.

• Error Frame: This frame is sent by a node as soon as it detects an error while receiving or

sending. After this, the bus enters an error state. The frame is composed of six dominant

bits, ending with the error delimiter which is a recessive bit.

At the application layer, it uses the Producer-Consumer model, in which producer nodes dissem-

inate information and the consumer nodes access it (Figure 2.2). In this model, transactions are

triggered by the producers, they send a message to the bus and the consumer nodes determine

whether the message is relevant based on its identifier.

Figure 2.2: Example of the Producer-Consumer model.
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Table 2.1: Fields in a CAN Data Frame.

Field name Length (in bits) Description

Start of Frame 1
Consists in a solo dominant bit that
signals the beginning of a new frame

Identifier 11 or 29 in the case
of the extended
frame format

Unique message identifier that repre-
sents the message’s priority

Remote Transmission Re-
quest

1

Used to distinguish between a request
for data or a response. When set to
recessive (1), the frame represents a
request for data. When dominant (0)
it represents a response.

Data Length Code 4
Indicates the number of bytes of
data transmitted by the message (0-8
bytes).

Data 0-8 Data transmitted by the message

Cyclic Redundancy Check 15

Used to detect inconsistencies in the
messages that may be caused, for ex-
ample, by noise in the transmission
channels,

End of Frame 7
Consists of seven recessive bits that
signal the end of the current frame.

2.1.3.2 Security

CAN works in broadcast, meaning every ECU is connected to the bus and can send/receive mes-

sages from it. The protocol boasts, by default, no message authentication, and no encryption.

Bozdal et al. [1] set three main characteristics as defining the level of security of a communication

protocol:

1. Confidentiality - Communicating data to authorized individuals only. Broken since CAN has

no encryption whatsoever. An attacker can access any data in the bus without restrictions;

2. Integrity - related to the validity of the data. Although CAN uses a Cyclic Redundancy

Check (CRC) field to check for inconsistencies, it cannot prevent malicious injection of

data;

3. Availability- an authorized user’s ability to always use the network. Due to how priority

is integrated into the protocol, an intruder can deny access by overloading the bus with

maximum priority messages. This is known as a Denial Of Service (DOS) attack; [11]

In short, none of these criteria are matched and, as a result, networks running on CAN cannot be

considered safe from a security standpoint.



2.2 Standards 11

2.2 Standards

2.2.1 ISO-TP Standard (ISO 15765-2)

The ISO-TP standard is defined in ISO 15765-2 [12] and solves the problem related to CAN having

a maximum payload of 8 bytes. ISO-TP enables the exchange of messages up to 4095 bytes by

fragmenting them into 8-byte CAN frames and adding some metadata. [13] The standard defines

4 types of frames that allow the transmission of longer messages, which are presented in Table

2.2.

Table 2.2: The 4 types of frames defined in the ISO-TP standard.

Type of
frame Byte 0 Byte 1 Byte 2 Bytes 3-7

Single
Frame (SF)

First 4 bits set to 0; Second
4 are the size of the data (0-
7 bytes)

Data/Padding Data/Padding Data/Padding

First Frame
(FF)

First 4 bits set to 1; Sec-
ond 4 bits represent the size
of the data with 8 more bits
from Byte 1 totaling 12 bits
(8-4095 bytes)

Size of data
(8-4095
bytes)

Data/Padding Data/Padding

Consecutive
Frame
(CF)

First 4 bits set to 2; Second 4
bits, index of the message (1-
15)

Data/Padding Data/Padding Data/Padding

Flow Con-
trol Frame
(FC)

First 4 bits set to 3; Second 4
bits flag (0-2)

Block Size
Separation
time

Padding

When communicating using ISO-TP, every payload that doesn’t exceed 7 bytes can be trans-

mitted with a Single Frame, a frame that is followed by no other. Every payload that has a size

between 8 and 4095 bytes will use an exchange of the other three with the flow shown in Figure

2.3. A First Frame is sent, which contains information on the total length of the data that is going

to be sent, as well as the initial chunk of the data. After this, the other side responds with a Flow

Control Frame, that controls the speed with which the sender must send the Consecutive Frames

that contain the rest of the data.

2.2.2 Unified Diagnostic Service (ISO 14229-1)

UDS is a protocol with its application layer specified in ISO 14229-1 [2] and aims to facilitate

diagnostics in routine check-ups, covering the application and session layers of the OSI model.

[6] The protocol was designed to standardize diagnostics communication between different man-

ufacturers’ ECUs.

UDS contains various diagnostic services that each perform a given diagnostic function. These

services are divided into six functional units and some are described in Table 2.3, in order to convey
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Figure 2.3: ISO-TP network exchange for payloads above 7 bytes.

the general capabilities of the protocol. Each service is commonly known by its request service

ID (in parenthesis after each service’s name).

Table 2.3: UDS’ functional units and the services included .

Functional Unit Description Service Description

Diagnostics and

communication

management

Allows controlling

of the diagnostic

and

communication-

related operations

in the ECU

Diagnostic Session

Control (0x10)

Allows changing which

session is active. UDS

utilizes different operating

sessions, each one with

different services available.

When an ECU starts, the

default session is loaded;

if, for example, the user

wants to re-program the

ECU, the services needed

will only be available in

the programming session

and the user would need to

change the session
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Functional Unit Description Service Description

ECU Reset (0x11)

Allows for resetting the

ECU. There are three forms

of resetting:

• Hard reset - simu-

lates the shutdown of

the power supply;

• Key off-on reset -

simulates turning the

ignition off and on;

• Soft reset - simulates

the equivalent of a

watchdog reset in a

microcontroller;

Data Transmission

Contains services

designed to read

and write data to

the ECUs

Read data by Identi-

fier (0x22)

Using this service, data can

be gathered from the ECU.

Each value has a data iden-

tifier associated which is

represented by a 2-byte un-

signed integer (0 to 65535)

Read memory by

address (0x23)

Reads the data contained in

the specified memory ad-

dress

Dynamically de-

fined data identifier

(0x2C)

Used to read the response

of a pre-defined list of

needed values. When this

new identifier is polled, the

ECU responds with the val-

ues of all the pre-defined

identifiers

Write data by iden-

tifier (0x2E)

Writes the value associ-

ated with the specified data

identifier

Write memory by

address (0x3D)

Writes in the specified

memory address
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Functional Unit Description Service Description

Remote Activa-

tion of Routine

Allows starting a

specific routine in

an ECU

Routine Con-

trol(0x31)

This service can be used

to perform a variety of ac-

tions, namely:

• Managing devices

such as actuators and

sensors;

• Running specific test

sequences;

• Mutating values in

the ECU’s systems.

As anyone could access the CAN bus and exchange messages complying with the UDS stan-

dard, it also introduces security measures in order to guarantee that only authorized individuals

are able to alter an ECU’s software data. The SecurityAccess service is used to achieve this au-

thentication. The client first requests the ECU for a seed that will then be used to compute a key,

using a cryptographic function chosen by the vehicle’s manufacturer. The key is sent back to the

ECU, and if it is as expected, then access is unlocked.

Due to the weak processing capability of ECU computers, the complexity of these cryptog-

raphy processes is not great, which opens up the way to brute force attacks. To prevent this,

sometimes a delay is applied when a client requests for a seed and has already failed authentica-

tion multiple times. In some systems, going beyond a certain number of failed authentications can

trigger automatic denial of authorization. [6]

2.2.2.1 Service 0x29

Since we will focus on service 0x29 for the development of the proposed tool, it is worth taking a

more detailed look into it. Introduced in the 2020 update to the ISO-14229, this service serves as

a replacement for service 0x27 and enables a more modern approach to authentication, bringing

bi-directional authentication with certificate exchange based on a public key infrastructure.

It provides a way for the client to prove its identity and thus protect restricted access functions

and data. Service 0x29 supports two concepts:

• Based on Public Key Interface (PKI) with certificate exchange procedures using asymmetric

cryptography: Authentication with PKI Certificate Exchange (APCE);

• Based on challenge-response procedure without PKI certificates by using either symmetric

cryptography or asymmetric cryptography with software authentication tokens: Authentica-

tion with Challenge-Response (ACR);
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The work is focused on the APCE concept that supports both unidirectional authentication (client

against the server) as well as bidirectional authentication (client against the server and server

against the client). Tables 2.4 and 2.5 contain some of the relevant request and response subfunc-

tions, respectively.

Table 2.4: Request subfunctions in service 0x29 (Request Service ID 0x29).

Name ID Description
deAuthenticate 0x00 Simple request to deauthenticate

verifyCertificateUnidirectional 0x01

This request initiates an exchange for unidirec-
tional authentication. It carries a certificate that
will be checked by the ECU in order to verify the
tester’s legitimacy.

proofOfOwnership 0x03

This request transmits the solution of the challenge
sent by the ECU in response subfunction 0x01. It
aims to confirm the tester’s ownership of the cer-
tificate by having the tester sign a challenge sent
by the ECU

Table 2.5: Reponse subfunctions in service 0x29 (Request Service ID 0x69).

Name ID Description

verifyCertificateUnidirectional 0x01

This is the response to the 0x29 0x01 subfunction
request. It informs the tester if the certificate that
the certificate is valid and sends a challenge that
can be signed by the tester in order to prove own-
ership of the certificate.

proofOfOwnership 0x03
This request concludes an authentication process,
signaling if it was successful

2.3 Development tools

2.3.1 Rust programming language

Rust [14] was created by software developer Graydon Hoare in a personal project while working

at Mozilla Research back in 2006. The project was sponsored by Mozilla in 2009, and its first

stable release was launched in May 2015. Since then, Rust has been growing fast, starring in

Mozilla’s proprietary Firefox browser and even becoming, in December 2022, the second high-

level language to be included in Linux’s kernel code, after C.

2.3.1.1 Borrow Checker

Rust is a language that focuses on high-performance, safe and concurrent code. One of its most

notable features is the borrow checker, Rust’s way of managing memory. The borrow checker is
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the part of the Rust compiler that enforces ownership and makes Rust memory-safe. Ownership,

as defined in Rust’s official book [15], is the "set of rules that govern how a Rust program manages

memory". While languages like Java, C#, or Python have a garbage collector that frees unused

memory while the program is running, languages like C, C++ or Rust do not boast this mechanism.

However, Rust’s ownership rules are enforced by the compiler, and if a program violates a

single rule across its whole extension, then compilation will be unsuccessful. This means Rust

has no runtime overhead associated with memory management, as all processing done to ensure

memory safety goes on at compile time. The ownership rules are defined as the following [15]:

• Each value has an owner;

• A variable can only have one owner at a time;

• As soon as the owner goes out of scope, the value is dropped;

With these rules, Rust is able to avoid common errors such as buffer overflows, null pointer

dereferencing, or even data races. In fact, in Rust, null pointers don’t exist, and as a substitution the

standard library offers an Option enum that either is variant Some(value) or variant None. This

is important as even Tony Hoare, who invented the null reference while working in the ALGOL W

language, calls it his "billion-dollar mistake" stating it lead to "innumerable errors, vulnerabilities,

and system crashes" since its first appearance.

Rust then supports borrowing, by giving references to a value. You can either have one mutable

reference to a value or any number of immutable references to a value. This way values can be

accessed without changing their ownership.

2.3.1.2 Cargo

Cargo is another one of Rust’s key features. It is the package manager and build tool for the Rust

language. It provides an easy and convenient way to manage dependencies, build projects, even

enabling cross-compilation. Cargo supports versioning of dependencies which prevents compati-

bility issues while making it easy to upgrade dependencies to their new versions. The dependencies

are sourced from crates.io, a central repository that hosts a large number of Rust packages.

Cargo also makes it easy for developers to publish their packages in it and make them available

for the community to use them.

Cargo also boasts a built-in testing framework that makes it straightforward to write unit and

integration tests. As of the writing of this document, a benchmark feature is also available in

nightly Rust (the experimental version of the language), and enables the execution of benchmarks.

2.3.1.3 Why Rust?

Why should one choose Rust over other performant languages such as C++ or C? These last

two offer no memory safety of any kind, which makes it possible and common for developers

to "shoot themselves in the foot". In fact, Google’s team over at the Chromium project found
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that 70% of their serious security bugs were memory safety problems. [16] This dangerous lack

of memory safety, coupled with the fact that Rust programs boast a comparable performance to

C/C++ programs [17][18], makes it a very viable substitute.

Rust’s type system, its intelligent compiler that carefully and extensively details compilation

errors, and its harmonious combination of speed and safety is the reason why the language is

regarded, as of StackOverflow’s 2022 Developer Survey [19], as the most loved programming

language by developers.

2.3.2 Tokio

Tokio [20] provides a runtime to enable asynchronous programming with Rust, as well as asyn-

chronous versions of the blocking APIs in the standard library. It is one of the most known libraries

in the Rust world, and a must for writing asynchronous programs. tokio, following Rust’s theme,

sports zero-cost abstractions that make it bare-metal fast. Asynchronous TCP and UDP sockets

are also available with this library by leveraging operating systems’ event queues (such as epoll

and kqueue).

Asynchronous programming is strong in solving the blocking I/O problem. [21] Using the

example of a TCP socket, the operation of waiting to receive a message can become non-blocking

by reverting access to the handler. When a message becomes available to receive, the operating

system’s event queue will notify the runtime and the task scheduler may carry on with receiving

the message.

2.3.3 Serde

Serde [22] is a popular and widely used Rust library for deserialization and serialization. It serves

as a way to convert data between different formats such as JSON, TOML, YAML or DynamoDB

items. serde’s role in this work will consist of deserializing the JSON file inputted by the user. That

way, the program can interpret the test described in the file and execute it. Listing 2.1 represents a

code snippet demonstrating the straight-forward deserialization of a JSON file [22]:

1 use serde::{Serialize, Deserialize};

2

3 #[derive(Serialize, Deserialize, Debug)]

4 struct Point {

5 x: i32,

6 y: i32,

7 }

8

9 fn main() {

10 let point = Point { x: 1, y: 2 };

11

12 // Convert the Point to a JSON string.

13 let serialized = serde_json::to_string(&point).unwrap();
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14

15 // Prints serialized = {"x":1,"y":2}

16 println!("serialized = {}", serialized);

17

18 // Convert the JSON string back to a Point.

19 let deserialized: Point = serde_json::from_str(&serialized).unwrap();

20

21 // Prints deserialized = Point { x: 1, y: 2 }

22 println!("deserialized = {:?}", deserialized);

23 }

Listing 2.1: JSON deserialization example using serde.

2.3.4 socketcan_isotp

socketcan_isotp [23] is Rust a library that provides CAN sockets and methods that include an

abstraction from the ISO-TP layer, by wrapping data according to the standard, which is essential

as all messages need to be according to the ISO-TP standard in order to be received by the ECU,

even if they are 8 bytes or less. Under the hood, the library utilizes can-isotp, a Linux kernel

module developed in C. The library also takes care of the reception of Flow Control Frames, and

adjusts the parameters accordingly.

2.3.5 JavaScript Object Notation

JavaScript Object Notation (JSON) [24] is a text-based, lightweight data format. Due to its sim-

plicity and compatibility with a large number of programming languages, in the last few years,

JSON became one of the most common ways to exchange data over the web. It is widely used in

Application Programming Interfaces. In the context of this dissertation, JSON will be used by the

user of the program to describe the tests they want to execute. This file will then be interpreted by

serde (Subsection 2.3.3).

2.4 Related Work

2.4.1 Communicating Sequential Processes

Communicating Sequential Processes (CSP) is a formal model that can be used to describe and

model concurrent systems. Thus, it can also be applied to modern vehicles due to the systems of

systems approach to building them. As explored in [25], a vehicle can be modeled as a composition

of processes, with processes exchanging messages between them as in automotive networks.

In the aforementioned work, Ran Q. et al. model the networks and bus systems found in a

modern car and also describe attack vector models that all in all enable the automatic generation

of tests that can evaluate the response of a system to attacks.
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Timed CSP is applied in [26] in order to model and verify the Time-Triggered CAN protocol

(TTCAN). In a nutshell, TTCAN is an extension of CAN in which a reference message is trans-

mitted periodically, enabling nodes to calculate their timeslots for the transmission and reception

of messages. Timed-CSP is an extension of CSP that adds time operators.

2.4.2 TestGen-IF tool

TestGen-IF [27] was created by a team at Telecom SudParis and, similarly to the work developed

in this dissertation, aims to facilitate active testing, enabling capabilities like checking a protocol’s

or a service’s implementation. In this case, the system under test is described using the Inter-

mediate Format (IF) language and composed of parallelized processes running asynchronously

and communicating through shared variables and message exchanging through either channels or

direct addressing.

The tool was shown working with the Dynamic Route Planner, a service used to solve trans-

portation problems, mainly providing the driver with the best route to their destination. In order

for the driver (client) to activate the service, a certificate exchange takes place, with the server

verifying if the client has the authorization to activate the service. This is the process tested with

the TestGen-IF tool.

2.4.3 Vector CANoe

CANoe [28] is a software tool developed and maintained by Vector. It’s one of the most used tools

in the automotive industry and allows the development, testing and analysis of individual ECUs

and even whole ECU networks. One of its main features is the ability to support multiple bus

systems, such as CAN, LIN, FlexRay and Ethernet, enabling developers to test various kinds of

systems. The program also supports Automotive Open System Architecture (AUTOSAR), J1939

standard and OBD-II. CANoe’s main advantages lie in the user-friendly Graphical User Interface

(GUI) (represented in Figure 2.4) and being a single tool that fulfills most development and testing

tasks needed. However, besides the heavy price tag of the software, one must also acquire a CAN

Box, in which the license is contained, to use the tool.

2.5 Summary

In this chapter, an overview of ECUs was presented, as well as of CAN communication and ve-

hicle network architecture. An analysis of both the ISO 15765-2 and ISO 14229-1 was executed,

two standards on which the project is heavily based. Regarding development tools, Rust was dis-

cussed, the programming language used during development and that allows similar control and

performance to C++ while offering memory safety through a borrow-checker system. Further-

more the key Rust libraries in the project, such as tokio for asynchronous programming, serde for

parsing JSON files and socketcan-isotp for providing wrapping according to the ISO-TP standard,

were analyzed. The JSON file format was chosen to describe the tests, given its popularity. All this
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Figure 2.4: Vector CANoe’s GUI.

aims to build a foundation for the following chapters. Closing the chapter, some related work that

was found during literature review was analyzed. The lack of related work lead to the conclusion

that a gap in the literature does, in fact, exist.
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Implementation

In this chapter, the process for the implementation of the tool is presented. Firstly, the hardware

setup is described, followed by a look into the cross-compilation pipeline used and an analysis

of the software architecture. This is important in order to understand how the tool functions as a

whole, and the way the different modules are interconnected. Furthermore, the core components in

the code are analyzed, as to discuss the key logic that runs the software. After discussing the syntax

created for the description of the tests, a detailed look into the code that drives the generation of

tests is presented.

3.1 Hardware Setup

When referring to the hardware dimension of the project, we can divide it in two phases according

to the timeline. Moving forward we will refer to the first one as "Debug Phase" and the second

one as "Deployment Phase".

3.1.1 Debug Phase

The debug phase was the first phase of the project and was directed toward developing functioning

foundations for the planned work. CAN communication such as being able to send and receive

simple messages, as well as the JSON parsing that enabled interpreting the tests described by the

user were done during this phase.

The core component of the setup is a Raspberry Pi 4 Model B [29], depicted in Subfigure

3.1a. A small computer with an ARM architecture processor, that allowed connection via a CAN

interface. The computer was loaded with the 32-bit Raspberry Pi OS, the device’s official operating

system, version Bullseye from 30th of October 2021 for toolchain compatibility reasons that will

be discussed later in the 3.2 section. The use of a Linux-based operating system allowed taking

advantage of its user space toolset of CAN utilities.

As the Raspberry does not boast a CAN interface from the get-go, a CAN HAT manufac-

tured by Waveshare (Subfigure 3.1b) was mounted in its GPIO pins, thus achieving the ability to

communicate in the CAN bus. As the CAN HAT already included the necessary 120 Ω terminal

21
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(a) The Raspberry Pi 4 Model B used.

(b) CAN HAT interface.

Figure 3.1: Raspberry Pi and the CAN interface that was mounted in its GPIO pins.

resistor, the only setup needed was installing wiringPi, a GPIO interface library for the Rasp-

berry Pi. The Raspberry was then accessed headlessly through Secure Shell (SSH), meaning there

wasn’t a display connected to the device.

In order to debug CAN communication while developing, the Raspberry was connected via the

CAN HAT to a VN5610A network interface through a CAN connection. The VN5610A (Figure

3.2), manufactured by Vector, was connected to a laptop via Universal Serial Bus (USB) and

running Vector CANoe. Through CANoe, it was then possible to analyze messages sent from the

Raspberry, as well as to transmit them. A diagram of the full setup is represented in Figure 3.3.

3.1.2 Deployment Phase

During the deployment phase, the setup was similar, although with two new components. A

remote computer and the ECU board. Now, the only connection in the laptop is to the remote

computer (via Remote Desktop Protocol), to which everything else is connected. The Raspberry

was connected via Ethernet to the remote and assigned a static IP so that an user can take advantage

of the tool just by connecting to the remote. The ECU board was also connected via serial port

to the remote for monitoring. The Vector CAN interface was connected via USB to the remote as
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Figure 3.2: Vector’s VN5610A Ethernet/CAN interface.

well as via a CAN split cable to both the CAN HAT and the ECU Board. A diagram of the full

setup is represented in Figure 3.4.

The role of the CAN interface in this phase is simply to be able to examine the messages

exchanged between the CAN HAT and the ECU board. In order to connect both together (since

they were in different channels), a script was written so the messages sent from one channel were

redirected to the other and vice-versa.

3.2 Cross-Compilation: from x64 to ARM-32

In order for the application to run on the Raspberry Pi, a cross-compilation setup had to be ar-

ranged. While development was being done in a x64 computer with Windows, the Raspberry

Pi’s processor uses ARM architecture while loaded with a Linux distro-based OS. Also, the code

includes libraries related to CAN communication that require Linux kernel applications, which

renders the code uncompilable in the Windows computer. For that a Windows wrapper was built

so that the project could be compiled in windows (altough not having any real functionality).

To enable cross-compilation, a prebuilt Windows toolchain for the Raspberry Pi was installed

and its binaries listed in the PATH variable. After adding the target to rustup with rustup

target add armv7-unknown-linux-gnueabihf in the command line, the linker that should

be used for the armv7-unknown-linux-gnueabihf was specified in the .cargo/config

file with the entry described in Listing 3.1.

1 [target.armv7-unknown-linux-gnueabihf]

2 linker = "arm-linux-gnueabihf-gcc-10.exe"

Listing 3.1: Linker specification for the armv7-unknown-linux-gnueabihf target

(.cargo/config) .
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Figure 3.3: Execution phase hardware setup diagram.

After this configuration, the project can be built for the Raspberry Pi running Listing 3.2’s

command in the command line while inside the project’s root directory.

1 cargo build --target armv7-unknown-linux-gnueabihf

Listing 3.2: Building the project for Raspberry Pi execution.

The Raspberry Pi OS image used was the one recommended by the toolchain developers, as it

guaranteed compatibility with the toolchain.

3.3 Software Backbone

The project has, since the beginning, pointed in the direction of facilitating horizontal scalability

in order to leverage the distribution of computation nodes and improve flexibility in the creation

of testing environments. Before taking a look at the modules that compose the system, we shall

look at the actor model on which this software’s architecture rests.

3.3.1 Architecture

The actor model [30] is a mathematical model applied in concurrent systems that has the Actor

as its most basic primitive and messages as the root of communication. When an actor receives a

message, it can proceed to do the following:

• Create new Actors;

• Decide how to handle the next message that gets received;

• Send messages to other Actors, as long as it possesses their addresses;



3.3 Software Backbone 25

Figure 3.4: Deployment phase hardware setup diagram.

• Modify its own state;

The most important takeaways of the model are its ability to isolate actors in the sense that each

one executes their tasks concurrently, enabling efficient resource usage and ensuring an actor’s

state remains unaffected by processes running in other actors. This is particularly important as it

allows for much greater control over what happens in the system. Applying the actor model to the

software’s architecture resulted in 6 different actors:

• Monitor: the monitor actor is the root actor of the architecture. It’s the only actor that

isn’t created by another actor. The monitor actor communicates directly with the "Ctrl-

C"/console actors only, and its sole purpose is monitoring the system’s cycle.

• "Ctrl-C": this actor has the sole function of monitoring when the user performs a Ctrl+C on

the keyboard, a keybind combination that is supposed to terminate the program immediately.

It communicates directly with the monitor actor only;

• Console: The console actor takes care of monitoring the user’s input on the console. It

parses the input and then decides which path to follow. Depending on the command the

user invokes, either one of the following three actors receives a message.

• Sender: the sender actor serves the purpose of sending a message specified by the user to

the CAN bus.

• Receiver: the receiver actor serves the purpose of receiving a message from the CAN bus.

• Test generator: this actor is the spotlight of the developed work. By receiving a file path

from the console actor that points to the test description, it exchanges messages in the CAN

bus in order to execute and verify if the tests pass or fail, displaying the results back to the

user;
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Every actor is represented by two objects: an handler and an object that produces the expected

results. In the case of the test generator, it is represented by the TestGenHandle, which receives

messages from the console actor (the test file) and forwards it to the TestGen object that then

interprets it.

3.3.2 Foundations

A Rust application starts at the main.rs file, and this one is no exception. Given the nature of the

actor model and the way the architecture was structured, the only functionality built into main.rs

is starting the Monitor actor and calling for the "Ctrl-C"/Console actors’ initialization.

1 #[tokio::main]

2 async fn main() {

3 std::env::set_var("RUST_LOG", "debug");

4

5 env_logger::init();

6

7 info!("Starting runtime");

8

9 let mut monitor = MonitorHandle::new();

10

11 monitor

12 .spawn_ctrlc_watcher()

13 .await

14 .expect("could not spawn ctrl c watcher");

15

16 monitor

17 .spawn_console()

18 .await

19 .expect("could not spawn console actor");

20

21 monitor.wait_to_die_like_in_life().await;

22 }

Listing 3.3: main.rs code snippet.

The code in Listing 3.3 starts with the attribute macro #[tokio::main], and it’s provided by

the Tokio library in order to facilitate calling asynchronous functions by initiating a runtime auto-

matically. After tuning some logging functionalities, the Monitor actor is created by initializing a

new instance of the MonitorHandle struct. After spawning both the Ctrl-C and the Console

actors, the handler then waits for a shutdown signal that marks program termination.

1 enum MonitorMessages {

2 SpawnCtrlC,

3 SpawnConsole,

4 UglyExit,
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5 CleanExit,

6 }

7 pub struct MonitorHandle {

8 inbox: mpsc::Sender<MonitorMessages>,

9 shutdown: watch::Receiver<bool>,

10 }

11 impl MonitorHandle {

12 pub fn new() -> Self {

13 let (sender, receiver) = mpsc::channel(3);

14 let (tx, shutdown) = watch::channel(false);

15

16 let handle = Self {

17 inbox: sender,

18 shutdown,

19 };

20

21 let actor = Monitor::new(receiver, tx, handle.clone());

22

23 tokio::spawn(run(actor));

24

25 handle

26 }

27 pub async fn spawn_console(&self) -> Result<()> {

28 let msg = MonitorMessages::SpawnConsole;

29

30 self.inbox.send(msg).await.expect("failed to send message");

31

32 Ok(())

33 }

34 }

35 }

Listing 3.4: A look at the the Monitor actor’s functioning.

Listing 3.4 shows basic functioning behind an actor with the Monitor as the example. On ini-

tialization, the handler starts off by creating a channel that will allow communication with the

Monitor instance via messages defined in the MonitorMessages enum. The watch channel

is opened to monitor a bool variable that corresponds to the shutdown signal. The handler gets

the sending end and the receiving end of the first and second channels, respectively, while the

Monitor struct is initialized with the receiving/sending ends, respectively. Line 23 spawns a new

asynchronous task that makes the actor actually start to function. The spawn_console method

shows that the handler does not have any inherent functionality, as it simply transmits intended be-

haviors through the communication channel. In this case, a SpawnConsole message is passed,

that will be interpreted by the Monitor instance.
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1 pub async fn run(mut actor: Monitor) {

2 while let Some(msg) = actor.inbox.recv().await {

3 if !actor.handle_message(msg) {

4 break;

5 }

6 }

7 // tell CtrlC actor to shutdown

8 if let Some(ctrlc) = actor.ctrlc_actor {

9 ctrlc.clean_shutdown().await;

10 }

11 // tell Console actor to shutdown

12 if let Some(console) = actor.console_actor {

13 console.shutdown().await;

14 }

15 actor.shutdown.send(true).unwrap();

16 }

Listing 3.5: Code snippet of the Monitor’s task.

Listing 3.5 contains the task running asynchronously for the Monitor actor. The while loop will

iterate every time the handler sends a new message through the channel. The handle_message

method will then check which kind of MonitorMessageswas passed. In the case of an UglyExit

or a CleanExit, the method will return false, which will trigger a shutdown. In the case of a

SpawnCtrlC or a SpawnConsole, the respective actors will be spawned, the return will be true,

and the while loop will continue.

Now that the backbone behind the architecture is understood, it is important to delve into how

the user’s input is parsed by the Console actor. Console parsing was achieved by using clap [31],

a Rust library designed specifically for that effect. By defining a few structs and enums, one can

have a solid and polished command line interface set up that includes automatic help generation

(-help), and fix suggestions for the user.

1 #[derive(Parser)]

2 #[clap(version = "0.2.0", setting=AppSettings::NoBinaryName)]

3 pub struct Opts {

4 #[clap(short, long)]

5 config: Option<String>,

6 #[clap(subcommand)]

7 subcmd: SubCommand,

8 }

9

10 #[derive(Parser)]

11 enum SubCommand {

12 GenTest(Test),

13 }

14
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15 #[derive(Parser)]

16 struct Test {

17 file_path: String,

18 }

Listing 3.6: Code snippet of the parser’s defining structures (Some parts of the code are ommited

for simplification).

Analyzing Listing 3.6, the Opts enum is required for the library, and besides giving the option

for inputting a config file, it points to a second enum, SubCommand. This last is where the

integration of the intended user commands is materialized. In this case, the process for entering

the test generation case is exemplified. The GenTest option on the enum creates the gen-test

subcommand, which accepts an argument for the path to the JSON file describing the intended

tests. The result of this configuration in Windows’ Powershell can be visualized in Figure 3.5.

Figure 3.5: Example of the Command Line Interface.

3.4 Test definition syntax

As previously discussed, the approach to test generation in the context of this work involves a file

written by the user that describes the desired tests. With the goals of ease of understanding and

flexibility, a syntax for the JSON file was defined. Listing 3.7 contains a small example of a test

description using the designed syntax. It’s important to note that the ’\’ symbol introduces a new

line that isn’t present in a regular file and serves only for presentation purposes.

1 {

2 "TestSuitName":"0x29 Service",

3 "ID":"Extended,0x18DB33F1,0x18DAF100",

4 "Tests":[

5 {

6 "Sequence":[

7 {

8 "TestName":"Happy Path"

9 },

10 {

11 "PairArray":["0x29","0x01","0x00","0x08","0x00",\

12 "FILE(client_certificate.der)","0x00","0x00",\
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13 "Response","0x69","0x01|0x02","RANGE(0x11,0x15)","LEN(CHA)","CHA",\

14 "0x00","0x00"]

15 },

16 {

17 "PairArray":["0x29","0x03","LEN(RES(CHA))","RES(CHA)",\

18 "0x00","0x00","Response","0x69","0x03","0x12","0x00","0x00"]

19 }

20 ]

21 }

22 ]

23 }

Listing 3.7: Designed syntax applied in a small test for exemplification purposes (the backslash

characters only for presentation purposes.

The first key-value pair, TestSuitName, is completely optional and offers no functionality; its

only goal is identifying what the object of the tests described in the present file is (in this case,

service 0x29 is being tested). The ID pair sets the CAN IDs for the tests that will be executed in

the file, and it is required. The user can use both Standard (11-bit) or Extended (29-bit); the first

ID is the source ID and the second one is the destination ID.

The Tests array contains objects that, in turn, contain only a Sequence array. This last

array is where an actual individual test is described and may start with the optional TestName

key-value pair that identifies the test. Following it, comes however many PairArray pairs are

needed to execute the desired test sequence. Each PairArray contains a request message and

a response message, the division between the two being marked by the "Response" string. All

values are expressed as strings, and besides the standard 1-byte hexadecimal value (e.g 0x2A),

each item in a PairArray can use the operators described in Table 3.1.

3.5 Test Generator

In this section, the test generator will be looked at in detail, since it does represent the main part of

this work. Following the flow represented in Figure 3.6, the test generation starts off by the actor

defined in test_gen.rs (with the same logic as explained in the Subsection 3.3.2) calling the

exec_test(), defined in the testgen_util.rs file (contents fully laid out in appendix A).

This function takes a file_path argument, which is a String of a path that points to the JSON

file describing the tests. The contents of the file are then parsed using serde (Subsection 2.3.3) as

shown in Listing 3.8.

1 let mut file = File::open(file_path).expect("Couldn’t open test file");

2 let mut contents = String::new();

3 file.read_to_string(&mut contents)?;

4 let json: Value = serde_json::from_str(&contents)?;

Listing 3.8: Code snippet of using serde to parse the JSON file.
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Figure 3.6: Test generator flow.

Table 3.1: Operators available with the defined syntax .

Operator Description Example

RANGE(min, max)

This operator can only be

used in the Response part of

a PairArray, and allows ex-

pecting any number that fits

between the min and max

limits in a given index of an

incoming message

"RANGE(0x03,0x0A)"-> this would allow any

value between 0x03 and 0x0A
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Operator Description Example

|

This operator can only be

used in the Response part

of a PairArray, and allows

expecting multiple values in

a given index of an incom-

ing message. It can also be

used in conjunction with the

RANGE() operator, as in the

example

"0x01|0x02|RANGE(0x03,0x0A)" -> this is the

equivalent to accepting values from 0x01 to 0x0A

FILE(file_path)

This operator can only be

used in the Request part of

a PairArray, and channels

the contents of the file that

file_path points to. This is

particularly useful in order to

use, for example, a certificate

file while trying to authenti-

cate.

"FILE(./certificate_xpto.der"-> loads the contents

of the file specified in certificate_xpto.der into the

to-be transmitted message

LEN(VAR)/VAR

This operator can only be

used in the Response part of

a PairArray, and allows to

save a variable VAR for later

use in the sequence. This is

particularly helpful when the

tester is expecting unknown

length data from the ECU and

allows for later use as well.

The use of this kind of syn-

tax is possible given the way

fields work on UDS. If an

ECU wants, for example, to

send a challenge for the client

to solve, then there are two

bytes describing the size of

the challenge and the chal-

lenge is transmitted after

.."LEN(CHA)","CHA" -> this would capture a

message of size LEN(CHA) to the variable CHA
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Operator Description Example

LEN(RES(VAR,

priv_key_path)) /

RES(VAR)

This pair of operators can

only be used in the Request
part of a PairArray, must

be used together and allows

signing a challenge VAR pro-

vided by the ECU that will

prove ownership of the tester.

This can be used in the con-

text of the challenge discussed

in the previous row. The

ECU provides a challenge, it

gets saved in variable VAR and

signed using the private key

that priv_key_path points

to. LEN(RES(VAR)) repre-

sents the length in bytes of

the signature RES(VAR) in 2

bytes.

.."LEN(RES(CHA))","RES(CHA)",..-> this

would solve and transmit the solution to challenge

CHA

This parse results in a json variable of type serde_json::Value, an enum that contains 6

variants: Value::Null, Value::String, Value::Number, Value::Array, Value::Object,

and Value::Bool. Given that the array variant is an array of serde_json::Values and the

object variant is a map that pairs a string key and a value, recursion was used in order to iterate

through the JSON, in function process_json(). It’s also in this function that the ID key-value

pair is processed: depending on the kind of IDs the user chooses, they are constructed and as-

signed to variables that were declared before starting to process the JSON (in the exec_test()

function, for lifetime reasons.

The process_sequence() is called whenever a Sequence array is detected in the JSON,

and starts by initiating a variable of type HashMap that will save variables for the entire duration

of the sequence. Both the sending and receiving CAN sockets are also opened, using the src and

dest IDs assigned earlier. Next, each PairArray in the sequence is divided in both the request

and the response sections by using the "Response" value as the delimiter, feeding each one to the

process_request() and process_response() functions, respectively.

Function process_response returns a bool that represents the result of the PairArray

that is being exchanged, and takes as an argument the expected message as well as the variables

HashMap and the receiving socket. A false return from the function deems the entire test as having

failed, even if there are more PairArrays to go through. The first action the function takes is to

receive the incoming response to the request exchanged prior. As shown in Listing 3.9, there is a
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loop that enables filtering unwanted messages, such as the Negative Response Code 78 that is sent

by the ECU to inform the tester that it is still processing the request.

1 let mut message: Vec<u8>;

2 loop {

3 message=receive_isotp_frame(socket).await?;

4

5 if message[0]==127 && message[2]==120 {continue;} //ignore NRC 78

case

6 break;

7 }

Listing 3.9: Code snippet that implements receiving the response message from the ECU.

After receiving the message from the ECU, the function reads the expected message from the

JSON in order to compare both. This is done by iterating through the values of the response

section of the PairArray. For each value two variables are created:

• acceptable_values, a vector of byte-sized integers that will hold the possible values in

the respective position that won’t deem the test as failed;

• options, a vector of Strings that will hold the possible options, if the user used the ’|’

operator. For example, a value of "0x29|Range(0x30,0x31)" would result in options[0]=

"0x29" and options[1] = "Range(0x30,0x31)".

Splitting of the options is achieved with the code represented in Listing 3.10

1 if value.contains(’|’) {

2 let value = value.replace(" ", "");

3 let values= value.split("|").collect_vec();

4 for (j,val) in values.iter().enumerate() {

5 options.push(val[j*4+3..j*4+2].to_owned());

6 }

7 }

8 else {options.push(value);}

Listing 3.10: Code snippet of the splitting of options applied when the ’|’ operator is used.

When related to the options vector processing, it’s important to highlight the case where the

user uses the LEN() operator. Demonstrated in Listing 3.11, the code extracts the variable name,

and gets the size of the variable from the response message. Having the length of the message,

the message itself is also extracted and pushed into the variables HashMap, where it will stay

available for the rest of the sequence.

1 else if option.starts_with("LEN(") {

2 let map_key = option[4..option.len()-1].to_owned();

3 let var_len=(message[i] as u16)<<8 | (message[i+1] as u16);

4
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5 let var_vec = message[i+2..i+2+var_len as usize].to_owned();

6 i+=2+var_len as usize;

7

8 variables.insert(map_key, var_vec);

9

10 continue ’mainloop;

11 }

Listing 3.11: Code snippet demonstrating the processing of LEN() operator.

Function process_request() returns no data, and takes as an argument the String values that

the user input in the JSON, as well as the variables HashMap and the sending socket. The function

starts by allocating a vector of 8-byte unsigned integers, on which the bytes that are going to be

transmitted will be pushed. Then a for loop is initiated that will convert the String values from

the JSON into values that will be pushed in the vector.

Listing 3.12, shows how the FILE() operator is handled. The program simply verifies if the

provided path is valid and, if it is, its contents are extracted and appended onto the final vector.

1 else if value.starts_with("FILE("){

2 let value_len=value.chars().count();

3 if !Path::new(&value[5..value_len-1]).is_file() {

4 panic!("{} isn’t a file", &value[5..value_len-1]);

5 }

6

7 let mut cert_vec =

fs::read(&value[5..value_len-1]).expect("failed to read

certificate");

8 can_frame_vec.append(&mut cert_vec);

9 }

10 }

Listing 3.12: Code snippet demonstrating the processing of the FILE() operator.

In order to sign a challenge, prompt by the LEN(RES(..))/RES(..) pair of operators, the program

creates a temporary file on which the challenge, contained in a variable chosen by the user, is

dumped. This file will be used to execute the OpenSSL command in Listing 3.13, which will

output a file signature.bin containing the signed challenge.

1 openssl_cmd.args(&[

2 "dgst",

3 "-sha256",

4 "-sign",

5 priv_key_path,

6 "-out",

7 "./signature.bin",

8 "./challenge"

9 ])
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10 .output().expect("Couldn’t execute openssl command");

Listing 3.13: Code snippet demonstrating the OpenSSL command for signing a challenge.

After extracting the signature from signature.bin, and appending itself and its length to the

final vector, both the signature file and the temporary challenge file are deleted, as shown in Listing

3.14

1 let mut signature: Vec<u8> =

fs::read("signature.bin").expect("Couldn’t read signature");

2

3 let len_var = signature.len() as u16;

4

5 can_frame_vec.push(((len_var & 65280)>>8) as u8);

6 can_frame_vec.push((len_var & 255) as u8);

7 can_frame_vec.append(&mut signature);

8

9 fs::remove_file("signature.bin")?;

10 fs::remove_file("challenge")?;

Listing 3.14: Code snippet demonstrating appending the signed challenge.

In order to send the requests, the socketcan-isotp library was being used, however, after

trying to transmit a message that had more than 83 bytes, it was noticed that the message was

truncated and not being fully delivered. After much investigation, it was understood that the speed

at which the program was sending the CAN frames was overloading the buffers, so no more than

11 consecutive frames would go through. In order to go around this issue, and because the program

was abstracted from the ISO-TP layer, manual implementation of the protocol was hard coded, in

which mandatory delays were set. Since in development, frame control frames don’t have much

importance, it was assumed the ECU wouldn’t force any specific separation time between frames.

1 if can_frame_vec.len()>7 { //multi frame case

2 let byte1 = ((1 as u8)<<4) | ((((can_frame_vec.len() as u16) &

0xf00)>>8) as u8);

3 let byte2 = ((can_frame_vec.len() as u16) & 0x0ff) as u8;

4 let mut dummy: Vec<u8> = vec![byte1, byte2];

5 dummy.extend_from_slice(&can_frame_vec[0..6]);

6 let frame=CANFrame::new(*id, dummy.as_slice(), false,

false).expect("Couldn’t construct SF");

7 send_can_frame(socket, frame).await;

8

9 std::thread::sleep(std::time::Duration::from_millis(5));

10

11 let n_cfs = ((can_frame_vec.len()-6) as u16)/7+1; //number of

consecutive frames to be sent

12 for i in 0..n_cfs{

13 let frame_index = if i % 16 == 15 { 0 } else { (i % 16) + 1 };
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14

15 let mut dummy:Vec<u8> = vec![0x20+frame_index as u8];

16 if i==n_cfs-1{//last frame

17 dummy.extend_from_slice(&can_frame_vec[6+7*i as usize..]);

18 while dummy.len()<8 {

19 dummy.push(0 as u8);

20 }

21 }

22 else {

23 dummy.extend_from_slice(&can_frame_vec[6+7*i as usize..13+7*i

as usize]);

24 }

25

26 let frame = CANFrame::new(*id, dummy.as_slice(), false,

false).expect("Couldn’t construct CF");

27 send_can_frame(socket, frame).await;

28 std::thread::sleep(std::time::Duration::from_millis(10));

29 }

30 }

31 else{ //single frame case

32 let mut dummy: Vec<u8> = vec![can_frame_vec.len() as u8];

33 dummy.append(&mut can_frame_vec);

34

35 while dummy.len()<8 {dummy.push(0 as u8)}

36 let frame = CANFrame::new(*id, dummy.as_slice(), false,

false).expect("Couldn’t mount single frame");

37 send_can_frame(socket, frame).await;

38 }

Listing 3.15: Code snippet that demonstrates manual wrapping done for ISO-TP compliance.

Listing 3.15 demonstrates the process behind manually wrapping and dividing a CAN message for

ISO-TP transmission. In case the message is 7 bytes or less, a simple single frame will be sent, just

with the number of bytes in the first byte and the rest in the following bytes, padding with zeros

if needed. If a message is more than 7 bytes, then a first frame will be sent, followed by however

many consecutive frames are needed. A delay of 5 ms was introduced after the first frame, and of

10 ms after every consecutive frame, in order to ensure no overloading of the buffers.

3.6 Summary

This chapter described the process behind the development and had the objective of providing a

general understanding of the technical work developed. In terms of hardware, the setup used in

the "Debug Phase" allowed for a high degree of control and monitoring, whilst the "Development

Phase"’s allowed for testing with a real target in real conditions. The implemented architecture,



38 Implementation

being based in the actor model, represented a highly flexible and modular option, perfect for

this application. These same characteristics were of the utmost importance when defining the

syntax for the description of the tests, with the special operators accommodating potential special

requirements for the testing. The test generator, by interpreting the JSON file, and wrapping it

according to the ISO-TP standard, allows for the execution of the described tests.
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Validation

This chapter focuses on the validation of the proposed tool, with the research questions defined

in Section 1.5 in mind. The goal is to verify if the tool achieved the objectives and can indeed

be a valuable resource for real-world applications. Firstly, an overview of the methodology used

for validating the tool is presented. The results of the application of that methodology are then

presented, analyzed, and discussed.

4.1 Methodology

In order to understand if the tool can reliably test the implementation of an UDS stack, the template

in Appendix B was fed to the test generator with two different configurations flashed in the target

ECU. This should help understand if the tests are being correctly executed.

To understand the time efficiency of the tool when compared to the manual way of testing,

three professionals from CES volunteered to execute the same tests in two different scenarios:

describing them in a JSON file using the proposed syntax and feeding it to the developed tool vs

manually using Vector CANoe. The pool of volunteers consisted in software engineers that were

integrated in the cybersecurity team. All responded to a form (represented in Figure 4.1) where

they self-evaluated with respect to Vector CANoe and UDS knowledge, in a 0 to 5 Likert scale (0

being no experience and 5 extensive everyday usage).

It’s important to note that none of the volunteers had any previous contact with the proposed

tool, and it was their first time using it. For this reason, a guide (fully laid out in Appendix C) was

elaborated that contained the tests to be executed (common to both scenarios), a tutorial on the

JSON test definition syntax and the process for manual testing in Vector CANoe. Volunteers were

then timed using a chronometer from the moment they started writing the tests until the moment

they were fully executed and analyzed.

Whilst testing with the proposed tool consisted in describing the tests in the JSON and simply

feeding them to the tool, manual testing was less static. The volunteers had to manually write

and send the packets in Vector CANoe’s console and analyze the responses. They also needed to

extract challenges, sign them and write them back in CANoe manually.

39
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Figure 4.1: Form to be filled by the volunteers before the validation.

Susceptibility to error was evaluated by analyzing the subjects during both test scenarios.

Errors in the context of the proposed tool are related to the syntax of the tool or mistyping, while

in the context of Vector CANoe may be related to wrongful conclusions of the outcome of a test

or mistyping.

Volunteers also filled out a form after the procedure (represented in Figure 4.2), where they

expressed their educated opinion on the tool and syntax, their usability in real applications, opti-

mizations that could be done and highlights.

4.2 Results

4.2.1 Template Execution

The first execution with the template JSON file describing the tests involved an ECU that was

flashed with what was thought as a correct implementation of UDS. The output of the tool, shown

in Subfigure 4.3a demonstrates an accidentally failed test. Every test until the HappyPath passed;

however, the HappyPath, which proved to work before in standalone testing, failed due to a
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Figure 4.2: Form filled by the volunteers after the validation.

timeout. The ECU wasn’t responding back, and was stuck at sending a Negative Response Code

(NRC) 78 that signals the ECU is busy. After further investigation, this issue proved to be ECU-

sided, and although it isn’t solved as of the writing of this document, it is believed the cause was

the forcing of errors done before the happy path and sent the ECU into a blocking state, since the

second execution described next worked flawlessly.

The second execution used a revised version of the template where the Happy Path sequence

was being executed first and, as shown in Subfigure 4.3b, all tests passed. The ECU still blocked

for further correct requests, but since the Happy Path sequence was before the error-inducing

sequences, the ECU responded correctly.

The third execution involved an incorrect implementation of UDS where the NRCs returned

by the ECU aren’t the expected in the Minimum Length Check and Invalid Certificate

Check tests. Figure 4.4 demonstrated the expected behavior: a failed Minimum Length Check

test and a failed Invalid Certificate Check test.
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(a) Accidentally failed test execution (happy path after error-inducing tests).

(b) Successful template execution (happy path before error-inducing tests).

Figure 4.3: Executions on target with correctly implemented UDS stack.
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Figure 4.4: Failed template execution with the correct implementation of UDS.
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4.2.2 Timed comparison

Regarding the timed comparison between volunteers executing the same tests describing them in a

JSON and inputting them in the proposed tool vs manually in Vector CANoe, the obtained results

are presented in Table 4.1. The associated self-evaluated UDS and Vector CANoe expertise grade

is also represented.

Table 4.1: Time comparison between the execution of the same test routine with the proposed tool
and syntax vs with Vector CANoe.

Volunteer
number

Proposed tool time
to execution (in min-
utes:seconds)

Vector CANoe time
to execution (in min-
utes:seconds)

Knowledge of
UDS (0-5)

Expertise of
Vector CA-
Noe

1 14:43 (1 error) 16:05 (3 errors) 2 1
2 12:21 (0 errors) 14:32 (2 errors) 4 3
3 11:37 (0 errors) 14:41 (0 errors) 5 4

4.3 Discussion

From the first three executions, it’s possible to conclude that the tool was successful at fulfilling

its main objective of reliably testing the UDS stack and ended up uncovering a bug in the ECU’s

implementation. It’s important to keep in mind this was an ECU being developed for a real project,

so this finding ended up being useful for the development team. After a change to the ECU’s

configuration, the tool also detected failed tests and faulty NRC responses, indicating that the

implementation wasn’t as expected.

Analyzing Table 4.1, an advantage is evident on the proposed tool’s side, in terms of time

efficiency and errors. The proposed tool reduced the time to execute the same routine of tests by

an average of 15.3%, a significant reduction. Between volunteers 1 and 3, a reduction of 21% in

the time needed to execute the tests with the proposed tool was detected, most likely due to the

increase in self-evaluated expertise of the UDS protocol. This leads to the belief that knowledge

of UDS helps users understand the somewhat complex nature of some of the operators defined in

the proposed syntax.

Also evident is a reduction of errors, with the tool obtaining a result of 80% fewer errors,

on average. While describing the tests with the proposed tool, the only error encountered was

misusing operators such as the LEN(..)/.. or the LEN(RES(..))/RES(..); mistyping was not found

to happen. In CANoe, the errors were 80% mistyping byte values, and 20% originated from not

understanding the underlying UDS logic.

All in all, the advantages of the proposed tool are clear, and from the feedback received from

the volunteers in the post-validation form, all participants agreed on the value of the proposed tool

and would use it instead of Vector CANoe for testing UDS. Features highlighted by the volunteers

were the ease of testing, not needing third-party tools, easy reproducibility, and how visually

clearer the tests are. Volunteers pointed out that some parts of the syntax could be optimized;
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this is discussed in Section 5.3. Volunteers also stated that the use cases are evident and prove

themselves much clearer after the first use, which can be another indicator of space to make the

syntax better.

The validation methods used in this work determined the fulfillment of the objectives, however,

the need to test with real hardware meant only collaborators from CES could validate the work

developed, due to confidentiality concerns with the ECUs. This ultimately resulted in a small

sample of volunteers, a consequence of the big time investment needed to complete the validation

of the proposed tool, and could have limited the accuracy of the results.

4.4 Summary

Validation was split into two main parts: template execution and timed execution with volun-

teers. The first tested the provided template (Appendix B) on two different ECU configurations,

one correctly implemented and one wrongly implemented. After finding an ECU-sided bug in

the (supposedly) correct implementation, a revised version of the template allowed the tests to

pass anyways. The team responsible for the development of the ECU was informed of the unex-

pected behavior. The wrongly implemented ECU provoked two failed tests, as expected. This part

confirmed the intended behavior of the tool in detecting wrong implementations of the stack.

The timed execution involved three volunteers from CES’ cybersecurity team executing the

same tests with the proposed tool and syntax vs manually using Vector CANoe. After answering

a form where they self-evaluated on UDS and Vector CANoe knowledge, the volunteers read a

guide (Appendix C) that contained the information needed to execute the validation (a tutorial

on the tool’s syntax, on the manual testing in CANoe and the intended tests) and performed the

tests in both scenarios. They were timed from the moment they started testing until all tests were

concluded and analyzed. The proposed tool reduced by 15.3% the average time to execute the

same routine of tests. Volunteer 3 took 21% less time to execute the tests with the proposed tool

than volunteer 1, which is thought to be tied to the higher UDS knowledge (5 vs 2 in the 0-5 scale).

The proposed tool also resulted in 80% fewer errors.

Post-validation feedback received from the volunteers established the value of the tool in terms

of real-world usability and preference over manual testing with Vector CANoe. Volunteers high-

lighted the tool’s ease of testing, independence from third-party tools and visual clarity as strong

points. Optimizations to the syntax were also suggested and discussed in Section 5.3.

Limitations in the validation arose from the need to test with collaborators from CES for

confidentiality purposes and the big time investment needed to complete the validation. This

resulted in a small sample that could have affected the results.
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Chapter 5

Conclusions

Throughout this document, the work that culminated in a functional tool for UDS implementation

following a semi-automated approach was described. In the introduction, after discussing the

context of the dissertation, the motivation that lead to the development of this dissertation was

presented. After describing the problem to tackle, the objectives for the work were defined. Also,

a brief presentation of the company that enabled the development of this dissertation, Continental

Engineering Services, was delivered.

The literature review chapter aimed to provide some background on which to cling for the more

technical chapters to follow. It began by providing some knowledge of ECUs and communication

between them, especially CAN bus. Crucial standards such as ISO 15765-2 and ISO 14229-1 were

examined. The main development tools were discussed, such as the programming language used,

Rust, and its libraries. A short introduction to JSON was also included. Finally, some related work

was mentioned and analyzed.

The implementation chapter provided a comprehensive view of the process of implementing

the proposed tool. The hardware setup used in both stages of development (debug and deployment)

was described, followed by a look into the cross-compilation setup. In the software backbone

section, the architecture employed in the construction of the software (based in the actor model)

was detailed, and its implementation analyzed. Finally, after a description of the syntax designed

for defining the tests, the code behind the test generator was examined in detail.

In the validation chapter, the methodology used to validate the work developed was described.

It consisted in testing the proposed tool with different ECU configurations as well as timing vol-

unteers at executing the same routine of tests using the tool vs manually using Vector CANoe. The

results obtained are discussed in Section 5.1.

5.1 Summary of the results

The results obtained in the validation process suggest that the work was indeed successful. While

testing the tool, a malfunction was found in the target ECU’s implementation of UDS, an ECU

47
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that was being used in a real project. Also, different configurations on the target ECU resulted in

correct evaluations from the tool.

Regarding RQ1, the time comparison between executing the same tests using the proposed tool

vs manually using Vector CANoe showed the former achieving an average reduction of 15.3% in

the time needed to execute the tests. It was concluded that in one case, greater knowledge of UDS

resulted in a reduction of 21% in the time needed to execute the tests with the tool. This goes in

line with what can be considered a down-fall of semi-automation: there is still human intervention.

Regarding RQ2, using the proposed tool resulted in 80% fewer errors. This was attributed

by volunteers (in the post-validation form) to the static definition of the tests, which provided a

clearer visualization environment of the tests described.

5.2 Applications and positive implications

The tool has the ability to facilitate testing for teams developing software for ECUs. Some of the

advantages are the following:

1. Cost saving: Alternatives to the developed tool are very expensive. As mentioned previ-

ously, there isn’t only the cost of the software itself, but also of the hardware on which

the software is embedded. The software developed needs only a Raspberry Pi with a CAN

interface installed.

2. Reliability: when compared to the previous testing solution, the use of the developed tool, by

requiring less effort and being more easily reproduced, poses as a more reliable alternative.

3. Speed: the tool developed offers an advantage in terms of time efficiency, by providing an

interface (the JSON describing the tests) that’s easier to interact with. Reproducibility is

also an important factor.

4. Flexibility feature-wise: having an in-house tool makes sure it fits the team’s needs. In

case a feature is lacking in the tool, it can be added. The downside of time consumption in

developing those new features is obvious, however, the tool was built in order to facilitate

the introduction of new features.

5.3 Future work

Future work would involve optimizing the proposed syntax to make it clearer. Although the de-

signed syntax produced results that indicated less susceptibility to errors and increased speed in ex-

ecuting the tests, there are optimizations possible. Volunteers indicated the PairArray key-value

pair as being a confusing and hard-to-read design option, and would rather have two independent

arrays, one for the request and one for the expected response.

Another suggestion was the inclusion of a graphical user interface to describe the tests. This

would result in an even clearer interface, that could include details of the operators, possibly
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producing even better results. However, given the development nature of this tool and its relatively

limited use, a better command line would probably suffice without requiring too much effort.
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Appendix A

File testgen_util.rs

1 use std::collections::HashMap;

2 use std::fs::{File, self};

3 use std::process::{Command, Stdio};

4 use hex;

5 use itertools::Itertools;

6 use std::io::{Read, Write};

7 use std::path::{Path};

8 use anyhow::Result;

9 use log::{info, error, debug};

10 use serde_json::{self, Value};

11 use async_recursion::async_recursion;

12

13

14 use super::canutil::{send_isotp_frame, IsoTpSocket, ExtendedId, StandardId, Id,

receive_isotp_frame, FlowControlOptions, send_can_frame, CANSocket, CANFrame};

15

16 pub async fn exec_test(file_path: String) -> Result<()>{

17 let mut file = File::open(file_path).expect("Couldn’t open test file");

18 let mut contents = String::new();

19 file.read_to_string(&mut contents)?;

20

21 let json: Value = serde_json::from_str(&contents)?;

22

23 let mut dest:u32=0;

24 let mut src_isotp: Id;

25 let mut dest_isotp: Id;

26 if let Some(struc) = StandardId::new(0){

27 src_isotp=Id::Standard(struc);

28 dest_isotp=Id::Standard(struc.clone());

29 } else {panic!("Couldn’t create ids");}

30

51
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31 process_json(json, None, &mut src_isotp, &mut dest_isotp, &mut dest).await?;

32

33

34 Ok(())

35 }

36

37 #[async_recursion]

38 async fn process_json(json: Value, key_op:Option<String>, src_isotp: &mut Id,

dest_isotp: &mut Id, dest:&mut u32) -> Result<()>{

39 match json {

40 Value::String(value) => {

41 if let Some(key) = key_op {

42 match key.as_str() {

43 "TestSuitName" => {

44 info!("Initiating tests to {value}");

45 }

46 "ID" => {

47 let ids= value.split(’,’).collect_vec();

48 *dest=u32::from_str_radix(&ids[2][2..],16).unwrap();

49 match ids[0] {

50 "Extended" => {

51 let src_struc_opt =

ExtendedId::new(u32::from_str_radix(&ids[1][2..],16)\

52 .unwrap());

53 if let Some(src_struc) = src_struc_opt {

54 *src_isotp= Id::Extended(src_struc);

55 } else {panic!("Panicked creating id from {}", ids[1])}

56

57 let dest_struc_opt =

ExtendedId::new(u32::from_str_radix(&ids[2][2..],16)\

58 .unwrap());

59 if let Some(dest_struc) = dest_struc_opt {

60 *dest_isotp = Id::Extended(dest_struc);

61 } else {panic!("Panicked creating id from {}", ids[2])}

62

63 }

64 "Standard" => {

65 let src_struc_opt =

StandardId::new(u16::from_str_radix(&ids[1][2..],16)\

66 .unwrap());

67 if let Some(src_struc) = src_struc_opt {

68 *src_isotp= Id::Standard(src_struc);

69 } else {panic!("Panicked creating id from {}", ids[1])}

70
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71 let dest_struc_opt =

StandardId::new(u16::from_str_radix(&ids[2][2..],16)\

72 .unwrap());

73 if let Some(dest_struc) = dest_struc_opt {

74 *dest_isotp = Id::Standard(dest_struc);

75 } else {panic!("Panicked creating id from {}", ids[2])}

76 }

77 _ => {

78 panic!("Unknown ID type {}", ids[0]);

79 }

80 }

81 }

82 _ => {info!("Unknown key {}", key);}

83 }

84 }

85 }

86 Value::Array(values) => {

87 if let Some(key) = key_op{

88 match key.as_str(){

89 "Tests" => {

90 for value in values{

91 process_json(value, None, src_isotp, dest_isotp, dest).await?;

92 }

93 }

94 "Sequence" => {

95 process_sequence(values, src_isotp, dest_isotp,

dest).await.expect("Failed at processing sequence");

96 std::thread::sleep(std::time::Duration::from_millis(50));

97 }

98 _ => {}

99 }

100 }

101

102 }

103 Value::Object(obj) => {

104 for (key, value) in obj {

105 process_json(value, Some(key), src_isotp, dest_isotp, dest).await?;

106 }

107 }

108 _ => {}

109 }

110

111 Ok(())

112 }

113



54 File testgen_util.rs

114 async fn process_sequence(objects: Vec<Value>, src_isotp: &mut Id, dest_isotp: &mut

Id, dest: &mut u32) -> Result<()> {

115 info!("Starting to process sequence");

116

117 let mut vars: HashMap<String, Vec<u8>> = HashMap::new();

118 let mut testname: String = "Placeholder Test Name".to_owned();

119

120 let req_socket = CANSocket::open("can0").expect("Failed to open request socket");

121 let mut res_socket = IsoTpSocket::open(

122 "can0",

123 src_isotp.to_owned(),

124 dest_isotp.to_owned(),

125 ).expect("Failed to open ISO-TP socket");

126

127 for object in objects {

128 if let Value::Object(obj) = object {

129 for (_key, value) in obj {

130 if let Value::String(string) = value {

131 info!("Initiating test {string}");

132 testname=string;

133 }

134 else if let Value::Array(elems) = value {

135 let mut divide: bool = false;

136 let mut request_vec: Vec<String>=Vec::new();

137 let mut response_vec: Vec<String>=Vec::new();

138

139 for elem in elems {

140 if let Value::String(string) = elem {

141 if string == "Response" {

142 divide=true;

143 continue;

144 }

145

146 if divide {

147 response_vec.push(string);

148 }

149 else{

150 request_vec.push(string);

151 }

152 }

153 }

154

155 process_request(request_vec, &mut vars, &req_socket, dest).await?;

156 let res = process_response(response_vec, &mut vars, &mut

res_socket).await?;
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157 if !res {

158 info!("Messages didn’t match");

159 info!("Failed {}", testname);

160 return Ok(());

161

162 }

163 else {

164 info!("Messages matched");

165 }

166

167

168 }

169 }

170 }

171 }

172 info!("Passed {}", testname);

173

174 Ok(())

175 }

176

177 async fn process_request(request_vec: Vec<String>, variables:&mut HashMap<String,

Vec<u8>>, socket: &CANSocket, id:&u32) -> Result<()>{

178 let mut can_frame_vec: Vec<u8>= Vec::new();

179 let mut len_next_flag = false;

180

181 for value in request_vec {

182 let value = value.replace(" ", "");

183

184 if value.starts_with("0x"){

185 can_frame_vec.push(u8::from_str_radix(&value[2..], 16).unwrap());

186 }

187 else if value.starts_with("FILE("){

188 let value_len=value.chars().count();

189 if !Path::new(&value[5..value_len-1]).is_file() {

190 panic!("{} isn’t a file", &value[5..value_len-1]);

191 }

192

193 let mut cert_vec = fs::read(&value[5..value_len-1]).expect("failed to read

certificate");

194 can_frame_vec.append(&mut cert_vec);

195 }

196 else if value.starts_with("LEN(RES(") {

197 let len_key = value.chars().count();

198 let pair = value[8..len_key-2].to_owned();

199
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200 let values= pair.split(",").collect_vec();

201

202 let challenge = variables.get(values[0]).unwrap();

203 let priv_key_path = values[1];

204 if !Path::new(&priv_key_path).is_file() {

205 panic!("{} isn’t a file", &priv_key_path);

206 }

207

208 let mut file = File::create("challenge").unwrap();

209 file.write_all(challenge.as_slice())?;

210

211 let mut openssl_cmd = Command::new("openssl");

212 openssl_cmd.args(&[

213 "dgst",

214 "-sha256",

215 "-sign",

216 priv_key_path,

217 "-out",

218 "./signature.bin",

219 "./challenge"

220 ])

221 .output().expect("Couldn’t execute openssl command");

222

223 let mut signature: Vec<u8> = fs::read("signature.bin").expect("Couldn’t

read signature");

224

225 // dbg!("signature is {}", signature.len());

226

227

228 let len_var = signature.len() as u16;

229

230 if len_next_flag {

231 // dbg!("Introducing length of next field");

232 let len_nextfield = (2+len_var).to_be_bytes();

233 can_frame_vec.extend_from_slice(&len_nextfield);

234 len_next_flag=false;

235 }

236 can_frame_vec.push(((len_var & 65280)>>8) as u8);

237 can_frame_vec.push((len_var & 255) as u8);

238

239 can_frame_vec.append(&mut signature);

240

241

242 fs::remove_file("signature.bin")?;

243 fs::remove_file("challenge")?;
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244 }

245 else if value.starts_with("LEN_NEXT") {

246 len_next_flag=true;

247 }

248 }

249

250

251 //println!("Request frame: {:?}", can_frame_vec);

252 // send_isotp_frame(socket, can_frame_vec.as_slice()).await;

253 if can_frame_vec.len()>7 { //multi frame case

254 let byte1 = ((1 as u8)<<4) | ((((can_frame_vec.len() as u16) & 0xf00)>>8) as

u8);

255 let byte2 = ((can_frame_vec.len() as u16) & 0x0ff) as u8;

256 let mut dummy: Vec<u8> = vec![byte1, byte2];

257 dummy.extend_from_slice(&can_frame_vec[0..6]);

258 let frame=CANFrame::new(*id, dummy.as_slice(), false, false).expect("Couldn’t

construct SF");

259 send_can_frame(socket, frame).await;

260

261 std::thread::sleep(std::time::Duration::from_millis(5));

262

263 let n_cfs = ((can_frame_vec.len()-6) as u16)/7+1; //number of consecutive

frames to be sent

264 for i in 0..n_cfs{

265 let frame_index = if i % 16 == 15 { 0 } else { (i % 16) + 1 };

266

267 let mut dummy:Vec<u8> = vec![0x20+frame_index as u8];

268 if i==n_cfs-1{//last frame

269 dummy.extend_from_slice(&can_frame_vec[6+7*i as usize..]);

270 while dummy.len()<8 {

271 dummy.push(0 as u8);

272 }

273 }

274 else {

275 dummy.extend_from_slice(&can_frame_vec[6+7*i as usize..13+7*i as

usize]);

276 }

277

278 let frame = CANFrame::new(*id, dummy.as_slice(), false,

false).expect("Couldn’t construct CF");

279 send_can_frame(socket, frame).await;

280 std::thread::sleep(std::time::Duration::from_millis(10));

281 }

282 }

283 else{ //single frame case
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284 let mut dummy: Vec<u8> = vec![can_frame_vec.len() as u8];

285 dummy.append(&mut can_frame_vec);

286

287 while dummy.len()<8 {dummy.push(0 as u8)}

288 let frame = CANFrame::new(*id, dummy.as_slice(), false,

false).expect("Couldn’t mount single frame");

289 send_can_frame(socket, frame).await;

290 }

291

292 Ok(())

293 }

294

295 async fn process_response(response_vec: Vec<String>, variables:&mut HashMap<String,

Vec<u8>>, socket: &mut IsoTpSocket) -> Result<bool>{

296 // debug!("Reached response");

297 let mut message: Vec<u8>;

298 loop {

299 message=receive_isotp_frame(socket).await?;

300

301 if message[0]==127 && message[2]==120 {continue;} //ignore NRC 78 case

302 break;

303 }

304

305 //debug!("Received message: {:?}", message);

306 ///////////////Testing/////////////////////

307 // let message: Vec<u8> = vec![105, 3, 17, 0, 2, 1, 1, 0, 0];

308 // // let message = message_vec.as_slice();

309 let mut skip_iter:bool=false;

310 let mut i=0;

311 ’mainloop: for value in response_vec {

312 let mut acceptable_values: Vec<u8> = Vec::new();

313 let mut options: Vec<String> = Vec::new();

314

315 if skip_iter {skip_iter=false; continue;}

316

317 if value.contains(’|’) {

318 let value = value.replace(" ", "");

319

320 let values= value.split("|").collect_vec();

321 for (j,val) in values.iter().enumerate() {

322 options.push(val[j*4+3..j*4+2].to_owned());

323 }

324

325 }

326 else {options.push(value);}
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327

328 for option in options {

329 let option=option.replace(" ", "");

330

331 if option.starts_with("0x"){

332 acceptable_values.push(u8::from_str_radix(&option[2..],

16).expect("Unknown value {option}"));

333 }

334 else if option.starts_with("LEN(") {

335 let map_key = option[4..option.len()-1].to_owned();

336 let var_len=(message[i] as u16)<<8 | (message[i+1] as u16);

337

338 let var_vec = message[i+2..i+2+var_len as usize].to_owned();

339 i+=2+var_len as usize;

340

341 variables.insert(map_key, var_vec);

342 skip_iter=true;

343 continue ’mainloop;

344 }

345 else if option.starts_with("RANGE(") {

346 let lower = u8::from_str_radix(&option[8..10],16).unwrap();

347 let higher = u8::from_str_radix(&option[13..15], 16).unwrap();

348

349 for val in lower..=higher{

350 acceptable_values.push(val);

351 }

352 }

353 else {

354 error!("Command {option} unknown");

355 continue ’mainloop;

356 }

357 }

358

359 for acc_value in acceptable_values {

360 if acc_value == message[i] {

361 i+=1;

362 continue ’mainloop;

363 }

364 }

365 return Ok(false);

366 }

367

368 Ok(true)

369 }

Listing A.1: Test generator file



60 File testgen_util.rs



Appendix B

JSON test definition template for
service 0x29

1 {

2 "TestSuitName":"0x29 Service",

3 "ID":"Extended,0x18DAF017,0x18DA17F0",

4 "Tests":[

5 {

6 "Sequence":[

7 {

8 "TestName":"Minimum Length Error Check"

9 },

10 {

11 "PairArray":["0x29","0x01","Response","0x7F","0x29","0x13"]

12 }

13 ]

14 },

15 {

16 "Sequence":[

17 {

18 "TestName":"Total Length Error Check"

19 },

20 {

21 "PairArray":["0x29","0x01","0x00","0x08","0x00",\

22 "FILE(client_certificate.der)","0x00","0x00",\

23 "Response", "0x7F", "0x29", "0x13"]

24 }

25 ]

26 },

27 {

28 "Sequence":[

29 {
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30 "TestName":"Sequence Error Check"

31 },

32 {

33 "PairArray":["0x29","0x03","0x00","0x02","0x12","0x34",\

34 "0x00","0x00","Response","0x7F","0x29","0x24"]

35 }

36 ]

37 },

38 {

39 "Sequence":[

40 {

41 "TestName":"Invalid Certificate Error Check"

42 },

43 {

44 "PairArray":["0x29","0x01","0x00","0x00","0x02","0x00",\

45 "0x00","0x00","0x00","Response","0x7F","0x29","0x54"]

46 }

47 ]

48 },

49 {

50 "Sequence":[

51 {

52 "TestName":"Happy Path"

53 },

54 {

55 "PairArray":["0x29","0x01","0x00","0x02","0xCD",\

56 "FILE(client_certificate.der)","0x00","0x00","Response",\

57 "0x69","0x01","0x11","LEN(CHA)","CHA","0x00","0x00"]

58 },

59 {

60 "PairArray":["0x29","0x03",\

61 "LEN(RES(CHA,./client_private_key.pem))",\

62 "RES(CHA)","0x00","0x00","Response","0x69","0x03","0x12"]

63 }

64 ]

65 }

66 ]

67 }

Listing B.1: JSON test definition template for service 0x29 (character ’índicates new line used

here for presentation reasons)
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 Public

General module (execute in order) 
Tests to service 0x29 

ID src: 0x18daf017 (Extended) 

ID dest: 0x18da17f0 (Extended) 

Happy Path 

Send: 0x29 0x01 0x00 0x02 0xCD client_certificate.der 0x00 0x00 

Expect: 0x69 0x01 0x11 (2bytes with the length of the challenge) challenge 0x00 0x00 

Send: 0x29 0x03 (2 bytes with the length of the signed challenge) signed_challenge 0x00 0x00 

Expect: 0x69 0x03 0x12 

 

Minimum Length Error Check 

Send: 0x29 0x01 

Expect: 0x7F 0x29 0x13 

 

 

 

 

 

 

 

 

 

 

 



 

 Public

Tutorial Caravel 

 
JSON structure that describes the tests. Fields TestSuitName and TestName aren’t mandatory but 

help organizing the output.  

ID: First field to be specified is the ID type. You can either choose Extended or Standard IDs (both 
have to be the same type. Second field is the source ID, and third is the destiny ID. 

It’s in the Tests array that each sequence is included in (each sequence is equivalent to one test). In 
this case, the sequence that executes “Teste Exemplo” contains two PairArrays, which means that 

,for each PairArray, the message before “Response” is going to be sent, and the message after 
“Response” is going to be the expected response. 

In case the test fails, a message will be transmitted to the user informing of the pass/failure of the 
test. 

Special Operators 

- FILE(file_path) only available at send/request, and imports the contents from the file pointed to by 
the specified file_path. In the case of having a file called ola.der with a content 0x1234, and a 

PairArray of the type: 

“0x30”,”0x40,”FILE(ola.der)” 

This would be equivalent to: 

“0x30”,”0x40”, “0x12”,”0x34” 

--------------------------------------------------------------------------------------------------------------------------------------
--------------------------------------------------------------------------------------------------------------------------------------



 

 Public

--------------------------------------------------------------------------------------------------------------------------------------
-------------------------------------------------------------------------------------------------------------------------------------- 

 

- LEN(VAR)/VAR, only available for expect/response and allows saving a variable for later use 
in the sequence. If we are waiting to receive a value with an unknown length, we can use 

this pair of operators to process it in the following way: 
 

“0x30”,”0x40”,”LEN(CHA)”,”CHA”, “0x05” 

 

What happens in this case is: 

The first and second bytes are verified in order to know if they match with 0x30 and 0x40; 

The length of a field in UDS is always described with 2 bytes, so LEN uses the two bytes in the 
received message to extrapolate the size of variable CHA. 

With CHA’s length known, the program extracts CHA and saves it in a variable list for later use in 
the following PairArrays. 

The last byte is checked for match against 0x05. 

--------------------------------------------------------------------------------------------------------------------------------------
--------------------------------------------------------------------------------------------------------------------------------------
--------------------------------------------------------------------------------------------------------------------------------------
-------------------------------------------------------------------------------------------------------------------------------------- 

- LEN(RES(VAR, path_priv_key))/RES(VAR) – , only available for send/request, it is used in 
conjunction with the previous pair of operators. This pair of operators allows using a saved variable 
(that must be a challenge for this pair to be useful) and signing it using the private key pointed to by 

path_priv_key. As in the previous example LEN(RES(..)) represents the 2 bytes that contain the 
length of RES(..) (the signed challenge). This pair of operators could be used in the following way: 

“0x30”,”0x40”,”LEN(RES(CHA, private_key.pem))”,”RES(CHA)” 

What happens in this case is: 

The first and second bytes are set to 0x30 and 0x40 

The challenge contained in variable CHA is signed. The length of the signed challenge is written 
in 2 bytes and the signed challenge is inserted after. 

For example, for RES(CHA)=0x12 0x34, the sent message would be: 

“0x30”,”0x40”,”0x00”, “0x02”, “0x12”, “0x34” 

 

Tutorial CANoe 



 

 Public

 

It’s in the red circled box that the hexadecimal byte can be written in, in order to be sent to the CAN 
bus. In the figure a 29 01 request is represented. 

In case you wish to extract a message from CANoe, you must pause the simulation, right-click in the 
intended message and copy it to the clipboard. 

To sign the challenge you must write the challenge into a file and process it using the following 
command in the Raspberry Pi. 

openssl dgst -sha256 -sign path_private_key -out path_to_signed_challenge path_to_challenge 

You can then check the signed challenge using the command 

xxd -p path_to_signed_challenge  

Which dumps its hexadecimal contents in the terminal  

You can also check the file’s size using the command: 

du -h path_to_file 
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dations of json schema. 25th International World Wide Web Conference, WWW 2016, pages
263–273, 2016. [Online; accessed April 2023]. URL: https://dl.acm.org/doi/10.
1145/2872427.2883029, doi:10.1145/2872427.2883029.

[25] Eduardo dos Santos, Andrew Simpson, and Dominik Schoop. A formal model to fa-
cilitate security testing in modern automotive systems. Electronic Proceedings in The-
oretical Computer Science, EPTCS, 271:95–104, 5 2018. [Online; accessed April
2023]. URL: http://arxiv.org/abs/1805.05520http://dx.doi.org/10.
4204/EPTCS.271.7, doi:10.4204/EPTCS.271.7.

[26] Qinwen Ran, Xi Wu, Xin Li, Jianqi Shi, Jian Guo, and Huibiao Zhu. Modeling and verifying
the ttcan protocol using timed csp. Proceedings - 2014 International Symposium on Theoret-
ical Aspects of Software Engineering, TASE 2014, pages 90–97, 12 2014. [Online; accessed
March 2023]. doi:10.1109/TASE.2014.8.

[27] Mohamed H.E. Aouadi, Khalifa Toumi, and Ana Cavalli. An active testing tool for se-
curity testing of distributed systems. pages 735–740. IEEE, 8 2015. [Online; accessed
March 2023]. URL: http://ieeexplore.ieee.org/document/7299986/, doi:
10.1109/ARES.2015.97.

[28] Canoe | ecu and network testing | vector. [Online; accessed April 2023]. URL: https:
//www.vector.com/int/en/products/products-a-z/software/canoe/#.

[29] Raspberry pi 4 model b – raspberry pi. [Online; accessed June 2023]. URL: https://
www.raspberrypi.com/products/raspberry-pi-4-model-b/.

[30] Carl Hewitt. Actor model of computation: Scalable robust information systems. 8 2010.
[Online; accessed June 2023]. URL: https://arxiv.org/abs/1008.1459v38.

[31] Kevin Knapp. clap - crates.io: Rust package registry. [Online; accessed June 2023]. URL:
https://crates.io/crates/clap.

https://serde.rs/
https://crates.io/crates/socketcan-isotp
https://crates.io/crates/socketcan-isotp
https://dl.acm.org/doi/10.1145/2872427.2883029
https://dl.acm.org/doi/10.1145/2872427.2883029
http://dx.doi.org/10.1145/2872427.2883029
http://arxiv.org/abs/1805.05520 http://dx.doi.org/10.4204/EPTCS.271.7
http://arxiv.org/abs/1805.05520 http://dx.doi.org/10.4204/EPTCS.271.7
http://dx.doi.org/10.4204/EPTCS.271.7
http://dx.doi.org/10.1109/TASE.2014.8
http://ieeexplore.ieee.org/document/7299986/
http://dx.doi.org/10.1109/ARES.2015.97
http://dx.doi.org/10.1109/ARES.2015.97
https://www.vector.com/int/en/products/products-a-z/software/canoe/#
https://www.vector.com/int/en/products/products-a-z/software/canoe/#
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
https://arxiv.org/abs/1008.1459v38
https://crates.io/crates/clap

	Front Page
	Conteúdo
	List of Figures
	List of Tables
	List of Listings
	1 Introduction
	1.1 Context
	1.2 Continental Engineering Services
	1.3 Motivation
	1.4 Problem
	1.5 Objectives
	1.6 Document structure

	2 Literature Review
	2.1 Electrical Control Units and Communication
	2.1.1 Electronic Control Units
	2.1.2 Network Architecture
	2.1.3 Controller Area Network

	2.2 Standards
	2.2.1 ISO-TP Standard (ISO 15765-2)
	2.2.2 Unified Diagnostic Service (ISO 14229-1)

	2.3 Development tools
	2.3.1 Rust programming language
	2.3.2 Tokio
	2.3.3 Serde
	2.3.4 socketcan_isotp
	2.3.5 JavaScript Object Notation

	2.4 Related Work
	2.4.1 Communicating Sequential Processes
	2.4.2 TestGen-IF tool
	2.4.3 Vector CANoe

	2.5 Summary

	3 Implementation
	3.1 Hardware Setup
	3.1.1 Debug Phase
	3.1.2 Deployment Phase

	3.2 Cross-Compilation: from x64 to ARM-32
	3.3 Software Backbone
	3.3.1 Architecture
	3.3.2 Foundations

	3.4 Test definition syntax
	3.5 Test Generator
	3.6 Summary

	4 Validation
	4.1 Methodology
	4.2 Results
	4.2.1 Template Execution
	4.2.2 Timed comparison

	4.3 Discussion
	4.4 Summary

	5 Conclusions
	5.1 Summary of the results
	5.2 Applications and positive implications
	5.3 Future work

	A File testgen_util.rs
	B JSON test definition template for service 0x29
	C Guide used for the validation
	References

