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Abstract  

 
 

Prostate cancer (PCa) was the second most diagnosed cancer and the fifth leading 

cause of mortality worldwide in 2020. Since the mid-1990s, PCa mortality rates have 

decreased due to advancements in treatment and increased screening among men over 50 

years of age. However, the currently available screening and diagnostic tools show critical 

limitations (e.g., false negatives, overdiagnosis and overtreatment), which impairs patient’s 

quality of live. Therefore, the search for new and more precise PCa biomarkers is of utmost 

importance to assure timely detection and treatment with better patients’ quality of life, as 

well as to reduce the mortality rate. In the last decade, metabolomics has been widely used 

to unravel the complexity of PCa development and progression, advancing new promising 

diagnostic and prognostic biomarkers along with new potential therapeutic targets. 

The work presented in this thesis aimed to contribute for the identification of metabolite 

biomarkers for timely detection of PCa to improve the current screening strategies, as well 

as to get further insights into metabolic characterization of the dysregulations associated 

with PCa development. For this purpose, advanced analytical tools, namely mass 

spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy-based 

metabolomic approaches, were applied for analysis of urine and tissue samples collected 

from PCa patients. 

In the first study, a headspace solid-phase microextraction (HS-SPME) gas 

chromatography-mass spectrometry (GC-MS)-based metabolomics approach was used to 

investigate the performance of urinary volatilome to unveil novel non-invasive biomarkers 

for PCa detection. The results revealed a multi-biomarker panel composed by 6 volatile 

compounds, which was able to identify this type of cancer with 89% sensitivity, 83% 

specificity and 86% accuracy. Considering the promising results obtained, a new cohort of 

samples was collected to validate the 6-biomarker panel in a completely independent study 

using the same methodology. Furthermore, the biomarker panel was improved in terms of 

organ specificity by comparison of detection performance for other urological cancers (renal 

cancer and bladder cancer) leading to a candidate 10-biomarker panel which comprised the 

former panel plus 4 new metabolites. This 10-biomarker panel showed an excellent 

discriminatory performance to distinguish PCa from cancer-free controls and other 

urological cancers, with 76% sensitivity, 90% specificity, and 92% accuracy. Indeed, this 

accuracy outperformed serum prostate specific antigen (PSA), which is currently the most 

frequently used biomarker for PCa screening. 
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Considering that tissue is the ideal matrix to disclose specific-organ metabolic changes 

associated with PCa development, in the next study, matched pairs of tumor and adjacent 

non-malignant tissues were collected from patients who underwent radical prostatectomy 

PCa and analyzed through a multi-platform untargeted metabolomics approach. The 

combination of GC-MS, 1H NMR and hydrophilic interaction liquid chromatography-tandem 

mass spectrometry (HILIC-MS/MS) allowed a more holistic metabolic profiling of tissue, 

including amino acids, organic acids, fatty acids, nucleotides, purines, pyrimidine and 

pyridines, phospholipids, among others. The results showed alterations in the levels of 27 

metabolites and 21 phospholipid species associated with PCa development, suggesting 

dysregulation in 13 metabolic pathways, predominantly in amino acid and 

glycerophospholipid metabolisms. 

Lastly, a dual analytical platform study combining GC-MS and 1H NMR spectroscopy 

was carried out to obtain a more comprehensive characterization of the urinary non-volatile 

metabolome of PCa patients. In this study, we were able to associate PCa development 

and progression with the dysregulations in the levels of 28 metabolites participating in 14 

metabolic pathways. These results emphasized the participation of amino acid and 

energetic metabolisms in PCa development. 

In summary, this thesis demonstrated the potential of metabolomics to provide accurate 

and non-invasive biomarkers for PCa screening as well as for the characterization of 

metabolic dysregulations associated with PCa development and progression.  

 

 

Keywords: Metabolomics; biomarkers; prostate cancer; urine; tissue 
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Resumo 

 
 

O cancro da próstata (PCa) foi o segundo cancro mais diagnosticado e a quinta 

principal causa de morte, em todo o mundo, em 2020. Desde meados da década de 1990, 

a taxa de mortalidade por PCa diminuiu devido aos avanços no tratamento e ao aumento 

do rastreio em homens com mais de 50 anos. No entanto, as ferramentas de rastreio e 

diagnóstico disponíveis atualmente apresentam limitações significativas (por exemplo, 

falsos negativos, sobrediagnóstico e sobretratamento), o que prejudica a qualidade de vida 

dos doentes. Portanto, a descoberta de biomarcadores mais precisos para o PCa é de 

extrema importância para garantir a deteção e tratamento adequados, melhorando assim 

a qualidade de vida dos doentes, e reduzindo a taxa de mortalidade. A metabolómica tem 

sido amplamente usada na última década na elucidação dos processos metabólicos 

envolvidos no desenvolvimento e na progressão do PCa, avançando biomarcadores 

promissores para o diagnóstico e prognóstico, bem como potenciais alvos terapêuticos. 

O trabalho apresentado nesta tese teve como objetivo identificar novos biomarcadores 

para a deteção precoce do PCa, melhorando assim as técnicas de rastreio atuais, bem 

como aprofundar o conhecimento sobre as desregulações metabólicas associadas ao 

desenvolvimento do PCa. Para o efeito, realizaram-se estudos metabolómicos em 

amostras de urina e tecido recolhidas de doentes com PCa, recorrendo a ferramentas 

analíticas avançadas, nomeadamente espectrometria de massa (MS) e espectroscopia de 

ressonância magnética nuclear (NMR). 

No primeiro estudo, foi aplicada uma abordagem metabolómica usando como 

metodologia analítica a cromatografia gasosa acoplada à espectrometria de massa (GC-

MS) com microextração em fase sólida por headspace (HS-SPME), para investigar o 

potencial do volatiloma urinário revelando novos biomarcadores não invasivos para a 

deteção do PCa. Os resultados revelaram um painel de biomarcadores constituído por 6 

compostos voláteis, capaz de identificar este tipo de cancro com uma sensibilidade de 89%, 

uma especificidade de 83% e uma precisão de 86%. Tendo em conta os resultados obtidos, 

foi realizado um estudo independente incluindo amostras recolhidas de doentes com PCa, 

assim como outros cancros urológicos (cancro renal e cancro de bexiga) para avaliar a 

especificidade deste painel. Com vista a melhorar a especificidade em relação a outros 

tipos de cancro, foi necessário introduzir 4 novos metabolitos ao painel anterior dando 

origem a um painel de 10 biomarcadores que mostrou um excelente desempenho para 

distinguir doentes com PCa de indivíduos controlo e de doentes com outros cancros 

urológicos, com sensibilidade de 76%, especificidade de 90% e precisão de 92%. De facto, 
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a precisão deste painel mostrou ser superior à do teste do antigénio específico da próstata 

(PSA), que é o biomarcador mais frequentemente usado para rastreio do PCa. 

Considerando que o tecido da próstata é a matriz ideal para revelar as alterações 

metabólicas específicas associadas ao desenvolvimento do PCa, no estudo seguinte foram 

colhidos pares de tecido prostático tumoral e não maligno adjacente de doentes com PCa 

submetidos a prostatectomia radical. Estes tecidos foram analisados por meio de uma 

abordagem não direcionada, usando várias plataformas analíticas. A combinação de GC-

MS, 1H NMR e cromatografia líquida de interação hidrofílica acoplada a espectrometria de 

massa (HILIC-MS/MS) permitiu obter um perfil metabólico mais completo do tecido, 

incluindo aminoácidos, ácidos orgânicos, ácidos gordos, nucleótidos, purinas, pirimidinas 

e piridinas, fosfolípidos, entre outros. Os resultados revelaram desregulações nos níveis 

de 27 metabolitos e 21 espécies moleculares fosfolipídicas no tecido de PCa em 

comparação com o tecido não maligno adjacente, sugerindo desregulação em 13 vias 

metabólicas, predominantemente no metabolismo de aminoácidos e glicerofosfolipídios.  

Para obter uma caracterização mais abrangente do metaboloma urinário considerando 

a composição não volátil, foi realizado um estudo combinando GC-MS e 1H NMR em 

doentes com PCa vs. controlos. Neste estudo, foi possível associar o desenvolvimento e a 

progressão do PCa com as desregulações nos níveis de 28 metabolitos que participam em 

14 vias metabólicas. Estes resultados enfatizam a importância do metabolismo dos 

aminoácidos e do metabolismo energético no desenvolvimento do PCa. 

Em conclusão, os resultados obtidos nesta tese demonstraram o potencial da 

metabolómica para fornecer novos biomarcadores precisos e não invasivos para o rastreio 

do PCa, bem como para a caracterização das desregulações metabólicas associadas ao 

desenvolvimento e progressão do PCa. 

 

 

Palavras-chave: Metabolómica; biomarcadores; cancro da próstata; urina; tecido
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Thesis Layout 

 
 

 

This thesis will be divided into six main chapters: 

 

 Chapter 1 – General introduction  

 

In this section, the theoretical principles at the basis of this thesis will be 

presented, including a brief description of prostate cancer (PCa) diagnosis and 

prognosis, as well as the state of the art of metabolomics in PCa research, 

highlighting the major contributions of metabolomics for PCa biomarker 

discovery and metabolic characterization. The main goal of this section is to 

provide the knowledge to comprehend the aims and the results obtained in 

original research studies. This chapter includes two review articles: 

 

• Section 1.1: Ana Rita Lima, Joana Pinto, Filipa Amaro, Maria de Lourdes 

Bastos, Márcia Carvalho and Paula Guedes de Pinho. Advances and 

perspectives in prostate cancer biomarker discovery in the last 5 years 

through tissue and urine metabolomics. Metabolites, 2021; 11(3):181. doi: 

10.3390/metabo11030181. 

 

• Section 1.2: Ana Rita Lima, Joana Pinto, Maria de Lourdes Bastos, Márcia 

Carvalho and Paula Guedes de Pinho. NMR-based metabolomics studies of 

human prostate cancer tissue. Metabolomics, 2018; 14, 88. doi: 

10.1007/s11306-018-1384-2. 

 

 

 Chapter 2 – Aims and scope  

 

This section will explain the main goals and objectives intended to be achieved 

in the scope of this thesis.  
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 Chapter 3 – PCa biomarker discovery 

 

This section presents the main results obtained throughout the experimental 

studies regarding PCa biomarker discovery performed in the scope of this 

thesis, divided into two original research manuscripts: 

 

• Section 3.1: Ana Rita Lima, Joana Pinto, Ana Isabel Azevedo, Daniela 

Barros-Silva, Carmen Jerónimo, Rui Henrique, Maria de Lourdes Bastos, 

Paula Guedes de Pinho and Márcia Carvalho. Identification of a biomarker 

panel for improvement of prostate cancer diagnosis by volatile metabolic 

profiling of urine. British Journal of Cancer, 2019; 121, 857-868. doi: 

10.1038/s41416-019-0585-4. 

 

• Section 3.2: Ana Rita Lima, Joana Pinto, Carina Carvalho-Maia, Carmen 

Jerónimo, Rui Henrique, Maria de Lourdes Bastos, Márcia Carvalho and 

Paula Guedes de Pinho. A Panel of Urinary Volatile Biomarkers for 

Differential Diagnosis of Prostate Cancer from Other Urological Cancers. 

Cancers, 2020; 12(8):2017. doi: 10.3390/cancers12082017.10.3390. 

 

 

 Chapter 4 – Metabolic characterization of PCa 

 

This section presents the main results obtained throughout the experimental 

studies performed regarding metabolic characterization of PCa, in the scope of 

this thesis, divided into two original research manuscripts: 

 

• Section 4.1: Ana Rita Lima, Márcia Carvalho, Susana S. Aveiro, Tânia 

Melo, M. Rosário Domingues, Catarina Macedo-Silva, Nuno Coimbra, 

Carmen Jerónimo, Rui Henrique, Maria de Lourdes Bastos, Paula Guedes 

de Pinho and Joana Pinto. Comprehensive metabolomics and lipidomics 

profiling of prostate cancer tissue reveals metabolic dysregulations 

associated with disease development. Submited to International Journal of 

cancer. 
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• Section 4.2: Ana Rita Lima, Joana Pinto, Daniela Barros-Silva, Carmen 

Jerónimo, Rui Henrique, Maria de Lourdes Bastos, Márcia Carvalho and 

Paula Guedes de Pinho. New findings on urinary prostate cancer 

metabolome through combined GC-MS and 1H NMR analytical platforms. 

Metabolomics, 2020; 16:70. doi: 10.1007/s11306-020-01691-1. 

 

 Chapter 5 – Integrated discussion 

 

The findings achieved by the original research described in Chapter 3 and 4 will 

be discussed and interpreted in this section. 

 

 

 Chapter 6 – Conclusions and future perspectives 

 

A general conclusion highlighting the major achievements of this thesis, as well 

as the future perspectives in this area will be presented in this section. 
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 This chapter comprises two complementary review papers. The first review paper 

(Section 1.1) introduces the current limitations on PCa diagnosis and management, the 

fundaments and basis of metabolomics and related subareas, the metabolic dysregulations 

associated with PCa development and progression, and provides a state of the art of the 

most recent metabolomic studies on PCa (2015-2020). The second review paper (Section 

1.2) gives more emphasis on PCa metabolomic studies performed in tissue by NMR 

spectroscopy (2007-2018).
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1.1.1 Abstract 

 

Prostate cancer (PCa) is the second most diagnosed cancer in men worldwide. For its 

screening, serum prostate specific antigen (PSA) test has been largely performed over the 

past decade, despite its lack of accuracy and inability to distinguish indolent from aggressive 

disease. Metabolomics has been widely applied in cancer biomarker discovery due to the 

well-known metabolic reprogramming characteristic of cancer cells. Most of the 

metabolomic studies have reported alterations in urine of PCa patients due its non-invasive 

collection, but the analysis of prostate tissue metabolome is an ideal approach to disclose 

specific modifications in PCa development. This review aims to summarize and discuss the 

most recent findings from tissue and urine metabolomic studies applied to PCa biomarker 

discovery. Eighteen metabolites were found consistently altered in PCa tissue among 

different studies, including alanine, arginine, uracil, glutamate, fumarate and citrate. Urine 

metabolomic studies also showed consistency in the dysregulation of fifteen metabolites 

and, interestingly, alterations in the levels of valine, taurine, leucine and citrate were found 

in common between urine and tissue studies. These findings unveil that the impact of PCa 

development in human metabolome may offer a promising strategy to find novel biomarkers 

for PCa diagnosis.  

 

Keywords: metabolomics; volatilomics; lipidomics; prostate cancer; urine; tissue; 

biomarkers; metabolic pathways 
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1.1.2 Introduction 

 

Cancer diseases are one of the most important health problems worldwide, being 

prostate cancer (PCa) one of the most prevalent. Indeed, PCa is globally the second most 

frequently diagnosed male malignancy and the fifth leading cause of cancer, with more than 

1 000 000 new cases and more than 350 000 deaths, each year [1]. PCa is a heterogeneous 

disease [2] with a broad spectrum of aggressiveness, going from indolent PCa, which is a 

non-life-threatening cancer, to metastatic PCa with a five-year survival of 28% [3].  

Currently, PCa screening is based in serum prostate specific antigen (PSA) test and 

digital rectal examination (DRE) [4], whereas prostate biopsy (PB) is mandatory for a final 

diagnosis [5]. High levels of PSA (> 4 ng/mL) are considered a sign of PCa [4]. However, 

this biomarker shows important limitations [6], due to its reduced accuracy (accu) (62–75%) 

[7], sensitivity (sens) (20.5%), specificity (spec) (ranging from 51 to 91%) [4,8] and area 

under the curve (AUC) (varying from 0.53 to 0.83) [7]. These low performance values can 

be due to interference from other diseases, like benign prostate hyperplasia (BPH) or 

prostatitis, that may also lead to an increase in serum PSA levels [2,6]. Furthermore, PSA 

testing is unable to distinguish indolent from aggressive disease, leading to unnecessary 

PB [2]. As matter of fact, about 70% of the PB performed due to high levels of PSA do not 

detect PCa and could be avoided with a more accurate PCa screening test [6]. PB is an 

invasive procedure that is associated to several adverse effects, like haemoejaculate, 

haematuria, fever, pain and haematochezia. Although more rare, other complications, like 

bleeding, acute urinary retention, local infection, sepsis, vasovagal syncope and erectile 

dysfunction, can also occur as a consequence of PB [9]. Moreover, PB can fail to diagnose 

over 30% of clinically significant PCa (non-indolent). On the other hand, PB can also lead 

to overdiagnosis and overtreatment of indolent PCa, that will not bring advantages to the 

patients’ health and can negatively affect patients’ quality of life [5]. 

PCa can be curable if diagnosed when the development is still in its early stages [3]. 

For localized PCa, the gold standard treatment is radical prostatectomy (RP). However, 

around 40% of the patients will develop biochemical recurrence (BCR) after RP, which 

indicates PCa progression [10]. After RP, levels of PSA decrease until undetectable, and 

the resurgence of high PSA levels is the first indication of BCR. The ideal PSA cut-off to 

define BCR is still controversial [10], with the American Urological Association and the 

European Association of Urology defining BCR for a serum PSA ≥ 0.2 ng/ml [10,11]. For 

aggressive PCa, one of the most frequently used treatments is androgen deprivation 

therapy (castration). However, the treatment can be hampered by the development of 

resistance to castration [12].  
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Considering the limitations of the currently available PCa diagnostic tools, the scientific 

community has performed massive efforts to discover new biomarkers for PCa detection. 

These biomarkers include several derivatives of PSA, like the prostate health index (PHI) 

and the 4Kscore tests. PHI test combines the PSA precursor isoform that circulates 

uncomplexed [-2]proPSA (p2PSA), free PSA (fPSA) and total PSA, through the formula PHI 

= (p2PSA/fPSA) x √(tPSA) [13,14]. Higher levels of PHI are correlated with PCa [13,14] and 

this test obtained FDA approval for men with PSA between 2.5-10 ng/ml and negative DRE 

[2]. The 4Kscore test includes total PSA, fPSA, intact PSA (iPSA), and human glandular 

kallikrein (hK2), a protein similar to PSA [2]. Despite the promising results, 4Kscore test did 

not obtain FDA approval [2]. 

With the raising of “omics’’ technologies, other biomarkers for PCa detection have been 

proposed, such as prostate cancer antigen 3 (PCA3), which is a biomarker coming from 

transcriptomic methodologies. PCA3 gene encodes a non-coding RNA which is specific of 

prostate and is increased in urine of PCa patients collected after DRE. Despite the 

controversy around the ideal cut-off for the levels of this biomarker, this test obtained FDA 

approval for men with high PSA levels and/or positive DRE and/or previous negative PB 

[15,16]. Prostarix test, which is also performed in urine after DRE, was developed using 

metabolomic approaches and detects four amino acids [17], namely sarcosine, glycine, 

alanine and glutamate [13,16]. This test has not yet obtained FDA approval [13], but it is 

commercially available and is recommended for men with persistent PSA increase and 

previously negative PB [13,17]. 

Despite such great efforts to discover new biomarkers for PCa detection and the 

promising perspectives, no biomarker has so far been able to replace PSA in clinical 

practice for PCa screening, highlighting the need to pursue research in this field. In this 

review, we explore the potentialities and challenges of metabolomics for PCa biomarker 

discovery. In addition, we update our earlier review [18] by presenting the most recent 

metabolomic studies performed in urine and tissues from PCa patients aimed at evaluating 

metabolic pathways perturbed in this disease and the altered metabolites as potential 

biomarkers for PCa detection. For this, a search was conducted in the PubMed database 

for articles published between January of 2015 and December 2020, using the keywords 

“metabolomics”, “prostate cancer”, “biomarker”, “urine” or “tissue”. A total of twenty-five 

studies were included, of which twelve were performed in PCa tissue samples, twelve in 

PCa urine samples and one study included both matrices. 
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1.1.3 Metabolomic approaches to biomarker discovery 

 

Nicholson et al. (1999) defined metabonomics as “the quantitative measurement of the 

dynamic multiparametric metabolic response of living systems to pathophysiological stimuli 

or genetic modification” [19]. Nowadays, the term metabonomics is often used 

interchangeably with the terms metabolic phenotyping, metabolic profiling, or simply 

metabolomics in the context of the comprehensive analysis of all metabolites of a biological 

sample representative of an organism or cell. Metabolomics is the last “omic” platform in 

the “omics” cascade (genomics – transcriptomics – proteomics – metabolomics), and it 

focus in the study of small molecules (<1500 Da) [20] in several complex matrices like 

serum, saliva, exhaled air, urine, tissue, among others [21]. When compared with other 

omics, metabolomics shows important advantages: i) the dynamic feature of metabolome, 

once it modifies rapidly in response to changes in cell status, allowing a continuous 

evaluation of the cell state [22]; ii) minor changes in gene expression or protein synthesis 

are translated into major alterations in metabolite levels [23]; iii) the response of 

metabolome to pathophysiological alterations is much more sensitive than gene or protein 

response [24]; iv) the alterations in metabolome are closely related with the observed 

phenotype; v) the levels of several metabolites can simultaneously be measured, allowing 

to establish a pattern of alterations associated with an specific pathophysiological state [22]; 

and vi) allows to define patterns of disease progression [25]. 

Human metabolome comprises metabolites of low molecular weight from very different 

chemical families, such as amino acids, lipids, nucleotides, carbohydrates, organic acids, 

among others. They are present in a wide range of concentrations and have distinct 

physicochemical characteristics [26]. When a metabolomics study is designed, the selection 

of the analytical technique is a critical step, once this choice will restrict the metabolites 

detected and consequently the obtained results [27]. This selection needs to take into 

consideration the characteristics of the analytical technique like sensitivity, resolution, limits 

of detection of the instrumental technique [27], but also the characteristics of the samples 

and of the metabolites of interest, e.g., metabolite physicochemical properties and 

abundance [27,28]. 

Currently, the majority of the metabolic studies are performed using mass spectrometry 

(MS), frequently coupled with a separation technique like gas or liquid chromatography (GC-

MS or LC-MS), and nuclear magnetic resonance spectroscopy (NMR) [26,29]. MS and NMR 

show several differences, including in the detected range of concentrations, namely, MS 

allows the detection of metabolites in concentrations ranging from picomolar (pM) to 

millimolar (mM) [30] and NMR from micromolar (µM) to millimolar (mM) [31]. Table 1.1 
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summarizes the advantages and limitations of the three analytical techniques (GC-MS, LC-

MS and NMR), for metabolomic studies. As depicted in table 1.1, none of these methods 

are able to cover the entire metabolome. For example, GC-MS is only suitable for the 

analysis of thermally stable compounds, such as volatile organic compounds (VOCs) [26]. 

In turn, LC-MS is used for profiling of compounds with medium and low polarities (reversed-

phase LC) and polar compounds (hydrophilic-interaction LC), but the datasets generated 

are complex, spectrometer dependent, and require additional MS/MS experiments, as well 

as spiking with authentic standards, in order to perform metabolite annotation and 

identification [26,32,33]. NMR shows a lower sensitivity, which compromise the detection of 

low abundance metabolites. Importantly, due to NMR non-destructive nature, the samples 

can be recovered after analysis and used in complementary studies (e.g., MS analysis) to 

obtain a more comprehensive characterization of the metabolome [34]. Indeed, the 

combination of more than one analytical platform is desirable to allow a more 

comprehensive analysis of a sample metabolome [26,29]. 

 

Table 1.1: Main advantages and limitations of gas or liquid chromatography coupled with mass 

spectrometry (GC–MS or LC–MS), and nuclear magnetic resonance spectroscopy (NMR) in 

metabolomic studies. 

Analytical platform Advantages Limitations 

GC-MS 

-Ideal for volatile organic 

compounds detection [26] 

-High sensitivity and resolution [26] 

-Available database for metabolite 

identification [26] 

-High peak capacity to cover a wide 

range of concentrations [22] 

-Small amounts of sample used [32] 

-High dynamic range, selectivity and 

throughput [26,29,35] 

-Retention times are highly 

reproducible [22,26] 

-Only suitable for thermally stable 

compounds [26] 

-Derivatization step is required for 

nonvolatile compounds [26] 

-Formation of new compounds due 

the derivatization step [28] 

-Destructive nature [32] 
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Analytical platform Advantages Limitations 

LC-MS 

-Detects a wide range of 

metabolites, including conjugates, of 

varying molecular weight and 

different natures (hydrophilic and 

hydrophobic compounds) [22,26] 

-Easy sample preparation [26,28] 

-Does not require derivatization [22] 

-Small amounts of sample used [32] 

-Destructive nature [32] 

-MS/MS experiments are usually 

required for metabolite 

identification, which implies 

additional experimental time [33] 

NMR 

-Relatively high throughput and 

efficiency [22,36] 

-High reproducibility and selectivity 

[34,37] 

-Non-destructive nature [22,34] 

-Analysis of liquid and solid matrices 

[34]  

-Easy sample preparation [37] 

-Provides information about 

chemical structure, chemical 

environment and molecular 

interactions [34,36] 

-Low sensitivity [34,37] 

-High costs [22] 

-Not optimal for targeted analysis 

[37]  

-Peak overlapping which difficult 

quantification [34] 

 

Metabolomic studies can follow two distinct approaches, namely the untargeted or the 

targeted approach. In the first, the goal is to cover the maximum of the metabolome 

detecting as many metabolites as possible in a matrix and is frequently denominated as 

hypothesis generation [23]. In the second, a single metabolite or a group of metabolites 

(e.g., metabolites from a specific metabolic pathway) are previously selected and all the 

study is designed to detect and quantify these metabolites. This approach can be applied 

to validate the results obtained through an untargeted approach and is called hypothesis-

driven [23,25].  

Regarding PCa metabolomic studies, two main goals are recognized: i) the discovery 

of biomarkers with high sensitivity and specificity for PCa timely detection and ii) to 

understand the metabolic basis of PCa pathogenesis identifying altered metabolic pathways 

in consequence of PCa development and progression [25]. Nevertheless, the potential 

application of metabolomic studies is not limited to these two main goals, once metabolomic 
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studies can also be applied to study the effectiveness of treatments, as well as the 

mechanism of action of therapeutic drugs and the mechanism of drug resistance or 

contribute to achieve the goal of personalized medicine [38]. 

Over the years, several independent subareas emerged from metabolomics, like 

volatilomics, lipidomics, among others. Volatilomics is based on the analysis of VOCs, like 

aldehydes, ketones, alcohols, hydrocarbons or aromatic compounds [39], that are produced 

by human body and released into breath, blood, sweat, urine, feces or saliva [39,40]. All 

VOCs share some physicochemical characteristics, such as low molecular weight and low 

boiling point and/or elevate vapor pressure in normal conditions [41]. The interest to 

investigate VOCs as potential cancer biomarkers gained strength after the observation that 

dogs were able to ‘’smell’’ urine or skin samples of cancer patients with high sensitivity and 

specificity, indicating that the composition of VOCs is different in cancer individuals [42-44]. 

VOCs are end products of human biological activity and their composition in biological 

samples can reflect pathological processes [40], alterations in normal biochemical pathways 

and/or a response to a damage or disease. Indeed, cancer development and progression 

can lead to the production of new VOCs and/or to change their concentration [41], making 

them suitable candidates to cancer biomarkers [39]. One of the greatest advantages of 

VOCs as biomarkers is the possibility to easily, inexpensively and quickly detect them in 

clinical point of care through the most recent technological developments in biological 

sensors (e.g., electronic noses (e-nose)) [39].  

Lipidomics is the subarea of metabolomics focused on the qualitative and quantitative 

profile of the lipid species in biological samples [45]. The knowledge of lipid metabolism is 

crucial to understand cancer development and progression for several reasons: i) de novo 

synthesis provide phospholipids for cancer cell proliferation, ii) fatty acid β-oxidation is 

important in energetics and redox homeostasis, iii) lipids play an important role in signaling 

pathways [46] and, finally, iv) lipids are extremely dynamic and can reflect physiological, 

pathological, and environmental alterations [47]. For these reasons, the interest to study the 

lipid profile of cancer cells has increased in the last years. It is estimated that mammalian 

cells comprise around 10 000 individual lipid species [48]. These lipids can be classified 

into different classes: i) fatty acids, ii) glycerophospholipids (GPLs), iii) glycerolipids (e.g. 

triglycerides (TG)), iv) saccharolipids, v) sphingolipids (SL) and vi) sterols. Each class of 

lipids show different biological functions. For instance, TG are important for energy storage, 

while sterols are key elements in cellular membrane and have also hormonal functions [49]. 

GPLs and SL are important components of cellular membranes and lysophospholipids 

(LPLs) (a subclass of GPLs) are important molecules for cellular signaling. These three 
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classes (GPLs, SL and LPLs) are the most frequently studied in cancer lipidomic studies. 

GPLs can still be divided into phosphatidylcholine, phosphatidylethanolamine (major 

components of human cellular membranes), phosphatidic acid, phosphatidylglycerol, 

phosphatidylinositol and phosphatidylserine, considering the molecular structure of these 

molecules. SLs can also be divided into several subclasses like ceramides, sphingomyelins, 

among others [45]. This summary reflects the importance and the complexity of the lipidome 

and justify that lipidomics comprises an independent subarea of metabolomics. 

Furthermore, several studies revealed that cancer cells show alterations in lipidome 

fingerprint demonstrating the potential of lipids as biomarkers and/or therapeutic targets 

[46,49]. 

 

 

1.1.4 The metabolic phenotype of prostate cancer 

 

It is well established that cancer cells suffer profound metabolic alterations that are 

indispensable for cancer development and progression [50]. One of the most well described 

metabolic alterations of cancer cells is the Warburg effect, which is characterized by a 

change in the preferential pathway to produce energy. Indeed, cancer cells preferentially 

produce ATP via aerobic glycolysis, even in the presence of oxygen, while normal cells 

produce ATP through oxidative phosphorylation [50,51]. This shift leads to an increase in 

glucose uptake and in lactate secretion [50,52]. The increase in lactate levels seems to play 

an important role in cancer development and progression [50]. Lactate can be utilized as 

fuel for oxidative metabolism, metabolized into alanine and glutamine and can also 

intervene in cancer cell mobility, immune escape and angiogenesis [50]. 

To comprehend how the Warburg effect impacts PCa cell metabolism, it is important to 

revisit the peculiar metabolic phenotype of normal prostate cells. Contrarily to other human 

cells, prostate cells favor citrate accumulation instead of citrate oxidation for energy 

production through tricarboxylic (TCA) cycle, also known as Krebs cycle or citric acid cycle 

[53]. Prostate cells have an increase in the zinc transporter ZIP1 and, consequently, zinc 

accumulates in prostate tissue [52]. The high levels of zinc are responsible for the inhibition 

of m-aconitase, which is the enzyme responsible for citrate oxidation in TCA cycle [53]. 

However, one of the first metabolic alterations associated with PCa development is the loss 

of cell ability to accumulate zinc and subsequent reduction of citrate levels in PCa cells [53]. 

Indeed, there is an increment of citrate oxidation in TCA cycle to produce energy in PCa 

cells [52,53]. For this reason, the Warburg effect and consequent increase in aerobic 

glycolysis is described mainly in advanced stages of PCa, where the increase in glycolytic 
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pathway is associated with metastases formation and thereafter to a poor prognosis [52,54]. 

Furthermore, citrate can also be used in PCa cell to produce acetyl-coenzyme A (acetyl-

CoA) (important for fatty acids and cholesterol synthesis) and oxaloacetate (amino acid 

precursor) [55] (Figure 1.1). Beyond citrate accumulation, normal prostate cells can also 

accumulate polyamines, such as spermine and spermidine once they are important 

components of prostatic secretions [56]. Polyamine levels also decrease, similarly to citrate, 

during cancer development and progression (Figure 1.1). Indeed, this reduction in 

polyamine levels may promote PCa cell survival by preventing apoptosis [55,56]. 

Pentose phosphate pathway (PPP) is also altered in PCa cells, once the levels of 

glucose-6-phosphate dehydrogenase (a key enzyme in PPP) are increased through 

androgen receptor (AR) signaling [54], which is essential for PCa progression. AR signaling 

also promotes glycolysis and anabolism [55]. As previously referred, one of the most 

frequently used treatments for aggressive PCa is androgen deprivation therapy, which is 

associated to the development of castration-resistant state and consequently alterations in 

the lipid profile, and to a worst prognosis [55,57]. Furthermore, PCa cells show the ability to 

synthesize sterols, highlighting the importance of androgen signaling in PCa [57] (Figure 

1.1). 

Alterations in different amino acids, such as glutamine, have been associated with PCa 

and other cancers [50,52]. Glutamine is one of the most abundant amino acids in human 

plasma and has important roles in human metabolism [54], as it can be converted in 

glutamate, and subsequently be transformed in α-ketoglutarate, an intermediate in TCA 

cycle [50,52]. This amino acid can also be used by cancer cells for acetyl-CoA production 

[54], for fatty acid synthesis [52] and as a nitrogen and carbon donor for nucleotide, lipids 

and protein synthesis [50,54]. The glutamate resulting from glutamine is an essential 

substrate for glutathione synthesis, and therefore important for the protection of the cells 

against oxidative damage [50] (Figure 1.1). Arginine is an important amino acid involved in 

PCa metabolism. Arginine is converted by PCa cells in glutamine and/or proline [52]. The 

increase in proline levels is needed to the maintenance of the levels of pyridine nucleotides 

[54]. Arginine has also an important role in nitric oxide (NO) production [52] (Figure 1.1).  

Sreekumar et al (2009), reported higher levels of sarcosine in urine of PCa patients, 

which was a milestone in PCa metabolomics [58], but its importance as potential PCa 

biomarker was refuted in the following years [59-61]. Sarcosine is synthesized from other 

amino acid, glycine, and vice versa. This reaction can be linked to methionine cycle, and 

the produced methionine can be up-taken to folate cycle. The combination of these two 

cycles is referred frequently as one-carbon metabolism. One-carbon metabolism fuels 
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building blocks for purines and thymidylates synthesis, which are essential for DNA 

synthesis and repair [62,63]. Methionine cycle also plays a role in polyamines and 

glutathione synthesis [54,63] (Figure 1.1).  

Another prominent characteristic of a cancer cell is its ability to proliferate constantly. 

Lipids are major components of cellular membranes, so alterations in lipids, and in choline 

or choline derivative metabolites, have a very important role in cancer cells proliferation 

[53,54]. Furthermore, lipids are also essential as energy resource, for energy storage and 

for intracellular signaling [54]. So, increase in de novo fatty acids synthesis is an initial event 

in PCa development, which is stimulated by androgen signaling [52], as well as the increase 

in fatty acids oxidation to produce energy [52,54]. The importance of lipogenesis in PCa is 

patent in the increase of the expression of lipogenic and lipid-modifying enzymes, occurring 

in PCa [52,54] and by the accumulation of triglycerides, cholesterol esters and 

phospholipids (phosphatidylcholine), mainly in aggressive PCa [53]. Furthermore, 

metastatic PCa cells also show an upregulation of acetyl-CoA synthetase 2, allowing PCa 

cells to produce acetyl-CoA (essential for fatty acids synthesis) from acetate, while normal 

cells produce acetyl-CoA essentially from glucose and glutamine [54] (Figure 1.1). 

Moreover, PCa cells show the ability to take up exogenous lipids and to synthetize and 

mobilize lipids storage in other cells, like adipocytes [54]. From this brief explanation, it is 

reasonable to infer that the study of the metabolic signature of cancer cells has an enormous 

potential in the discovery of new biomarkers, as well as to elucidate cancer 

pathophysiological mechanisms, which can be used to define new therapeutic strategies.  
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Figure 1.1: Schematic representation of the metabolic phenotype of prostate cancer cells. Red 

indicates increase in either metabolites or metabolic pathway flux and green indicates decrease in 

either metabolites or metabolic pathway flux. Underlined indicate changes especially important in 

advanced PCa. The dashed lines represent multiple steps reactions. (α-KG, alpha-ketoglutarate; Ac-

CoA, acetyl-coenzyme A; Chol, choline; G6P, glucose-6-phosphate; GNMT, glycine N-

methyltransferase; Isocit, isocitrate; Met, methionine; NO, nitric oxide; OAA, oxaloacetate; PCs, 

phosphatidylcholines; PEs, phosphatidylethanolamines; PPP, pentose phosphate pathway; R5P, 

ribose-5-phosphate; SAH, S-adenosylhomocysteine; SAM, S-adenosylmethionine; SARDH, 

sarcosine dehydrogenase; TCA cycle, tricarboxylic acid cycle). 

 

 

1.1.5 Tissue metabolomic studies 

 

The collection of tissue samples is very invasive, hampering their use for PCa screening. 

However, the study of the tissue metabolome has important advantages, once this is the 

ideal matrix to establish which metabolic alterations are specific to PCa development and 

progression. Furthermore, tissue studies have been performed using matched tumoral and 

non-tumoral samples from the same individual, thus minimizing the contribution of 

confounding factors (e.g., age, comorbidities, lifestyle). 

Thirteen metabolomic studies performed in PCa tissue samples were published in the 

last 5 years, including two lipidomic studies. Table 1.2 summarizes the study design and 
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main outcomes obtained in those studies. Overall, a total of 98 different metabolites were 

associated with PCa, indicating that PCa is related with dysregulations in 32 different 

metabolic pathways (Table 1.2). Interestingly, 18 metabolites were found to be common 

among the included studies (Figure 1.2). It is important to note that these studies were 

performed under different analytical conditions, with different sample selection criteria and 

using different statistical approaches, foreseeing difficulties to compare results across 

studies. The fact that these metabolites were found common in the various studies, 

highlights their importance in PCa metabolism and their potential as specific PCa 

biomarkers. 
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Table 1.2: Metabolomic studies performed in tissue samples from PCa patients in the last five years (2015-2020). 

PCa group Control group Analytical 
platform 

Statistical 
methods 

Altered metabolites (direction of 
variation) 

Dysregulated metabolic 
pathways 

Candidate 
biomarkers 

Ref. 

n=31 n=14 (benign 
adjacent tissue) 

HR-MALDI-
IMS 
MS/MS 

Univariate and 
Multivariate Cox 
Regression 
Analyses 

1. LPC (16:0) (-) 
2. SM [(d18:1/16:0) (-) 
Predictor of biochemical recurrence: 
1. LPC (16:0) (-)  

1. FAs de novo synthesis 
and remodeling pathway 
(Lands’ pathway) 
2. Arachidonic acid 
metabolism 

LPC (16:0) [64] 

n=25  
 
 
Validation set 1: 
n=19 
 
Validation set 2: 
n=12 

n=25 (normal 
adjacent tissue) 
 
Validation set 1: 
n=17 (normal 
adjacent tissue) 
Validation set 2: 
n=12 (normal 
adjacent tissue) 

LC-MS PCA 
OPLS-DA 
 
Model 
performance: 
Sens: 85% 
Spec: 83- 91% 
AUC: 0.90 

1. Adenosine monophosphate (-) 
2. Spermidine (+) 
3. Uracil (+) 

1. Purine metabolism 
2. Polyamines synthesis  
3. Pyrimidine metabolism 

Adenosine 
monophosphate 
(AUC: 0.82) 
Spermidine (AUC: 
0.85)  
Uracil (AUC: 0.91) 
 
 

[65] 

n=25  
 
 
Validation set:  
n=51 

n=25 (normal 
adjacent tissue) 
 
Validation set:  
n=19 (BPH) 

LC-MS PCA  
PLS-DA 
 
Model 
performance: 
AUC: 0.90-0.94 
External 
validation: AUC: 
0.84-0.91 

1. PCs (alkyl/acyl-PCs, PC-O) (-); 
PEs (alkenyl/acyl-PEs, 
plasmalogens, PE-P) (-); Free 
saturated FAs (-); Diacyl-PC (+); 
Diacyl-PE (+); Free mono- and poly-
unsaturated FAs (+) 
2. CEs (+); Cholesteryl oleate (+) 
 

1. Lipogenesis, lipid uptake 
and phospholipids 
remodeling 
2. Cholesterol metabolism 

Cholesteryl oleate 
(AUC: 0.91(PCa vs. 
normal adjacent 
tissue) and AUC: 
0.96 (PCa vs. 
BPH)) 

 

[66] 
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PCa group Control group Analytical 
platform 

Statistical 
methods 

Altered metabolites (direction of 
variation) 

Dysregulated metabolic 
pathways 

Candidate 
biomarkers 

Ref. 

n=25  
 
 
Validation set: n=51  

n=25 (normal 
adjacent tissue) 
 
Validation set: 
n=51 (benign 
adjacent tissue) + 
n=16 (BPH) 

LC-MS PCA 
PLS-DA 

1. Choline (+); Citicoline (+) 
Nicotinamide adenine dinucleotide 
(+); S-Adenosylhomoserine (+); 5- 
Methylthioadensine (+);                  
S-Adenosylmethionine (+); 
Nicotinamide mononucleotide (+); 
Nicotinamide adenine dinucleotide 
phosphate (+); Adenosine (-); Uric 
acid (-) 
2. D-Glucosamine 6-phosphate (+); 
N-Acetyl-D-glucosamine (+); N-
Acetyl-D-glucosamine 6-phosphate 
(+); UDP-Acetyl-glucosamine (+) 
3. 2-Aminoadipic acid (+); 
Saccharopine (+); Trimethyllysine 
(+); Carnitine C4-OH (+); Carnitine 
C14:2 
4. Sphingosine (+)  
5. Pantothenic acid (+) 
6. Dehydroepiandrosterone sulfate  
(-); Etiocholanolone sulfate (-) 
7. Phenylacetylglutamine (-) 

1.Cysteine and methionine 
metabolism; NAD 
metabolism; phospholipid 
membrane metabolism 
2. Hexosamine biosynthesis 
3. Lysine degradation; β-
oxidation of FAs 
4. Sphingolipid metabolism 
5. CoA homeostasis 
6. Dihydro-testosterone 
synthesis  
7. Unavailable  

Sphingosine (AUC: 
0.81-0.87) 

[67] 

n=34 (ERGhigh PCa) 
 
 

n=30 (ERGlow PCa) 
 
 

HR-MAS 1H-
NMR 

PCA 
PLS-DA 
 
Model 
performance: 
Sens: 79% 
Spec: 74% 
Accu: 77% 

ERGhigh PCa vs. ERGlow PCa 
1. Citrate (-)  
2. Spermine (-) 

1. TCA cycle 
2. Polyamines synthesis 

Citrate and 
spermine 
ERGhigh for 
stratification  

[68] 
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PCa group Control group Analytical 
platform 

Statistical 
methods 

Altered metabolites (direction of 
variation) 

Dysregulated metabolic 
pathways 

Candidate 
biomarkers 

Ref. 

n=6 (patients 
treated with 
Degarelix) +  
n=7 (untreated) 

n=10 (benign from 
untreated patients) 

HR-MAS  
1H-NMR 

PCA 
OPLS-DA 
 
 

Untreated patients: 
1. Lactate (+); Alanine (+) 
2. Total choline (+) 
 
Patients treated with Degarelix: 
1. Lactate (-) 
2. Total choline (-) 

1. Energetic metabolism 
2. Choline metabolism; 
Phospholipid membrane 
metabolism 

Lactate 
Total choline 

[69] 

n=50 (patients that 
developed 
recurrence after 
prostatectomy) 

n=60 (patients that 
did not develop 
recurrence after 
prostatectomy) 

HR-MAS 
1H-NMR 

PLS-DA 
 
Model 
performance: 
Sens: 92% 
Spec: 92% 
Accu: 92% 

Increased risk of recurrence 
1. (Total-choline + 
creatine)/spermine (+); (Total-
choline + creatine)/citrate (+) 
2. Spermine (-) 
3. Citrate (-) 

1. Choline metabolism; 
Phospholipid membrane 
metabolism 
2. Polyamines synthesis 
3. TCA cycle 

Spermine 
Total-choline + 
creatine/ spermine  

[70] 

n=21  
 
 
Validation set: 
n=50 

n=21 (benign 
adjacent tissue) 
 
Validation set: 
n=50 

GC-MS OSC-PLS-DA 1. Fumarate (+); Malate (+); 
Succinate (+); 2- Hydroxyglutaric 
acid (+); Alanine (+); Glycerol-3-
phosphate (+) 
2. 11-Eicosenoic acid (+); 
Docosanoic acid (+); Eicosanoic 
acid (+) 
3. Glycerolipids (+); Myo-inositol (+) 
4. Uracil (+) 
5. Proline (+) 

1. Energetic metabolism 
(TCA cycle) 
2. FAs metabolism 
3. Membrane metabolism 
4. Pyrimidine 
metabolism 
5. Amino acid metabolism 

- [71] 

n=199 
 
 
 
 
 
Validation set  
n=166 

n=179 (benign 
adjacent tissue) 
n=15 (BPH) + 
n=14 (cancer-free 
patients) 
 
Validation set 
n=159 (benign 
adjacent tissue) 

HR-MAS  
1H-NMR 

Linear 
Regressions 
 
 
 
 

1. Myo-inositol (+); Phosphocholine 
(+); Glycerophosphocholine (+) 
2. Lactate (+); Taurine (-) 
3. Histidine (+) 
4. Phenylalanine (-); Glutamate (+) 

1. Membrane metabolism 
2. Energetic metabolismo 
3. Histidine metabolism 
4. Amino acid metabolism 
 

Myo-inositol 
 

[72] 
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PCa group Control group Analytical 
platform 

Statistical 
methods 

Altered metabolites (direction of 
variation) 

Dysregulated metabolic 
pathways 

Candidate 
biomarkers 

Ref. 

n=13 (American 
African population) 
+ n=13 (Caucasian 
American 
population)  

n=12 (American 
African population) 
+ n=9 (Caucasian 
American 
population) 
(benign adjacent 
tissue) 

GC-FID 
ESI-MS 

Generalized 
linear model 

Saturated total FAs (+); Arachidic 
acid (+); Myristic acid (+) 
Monounsaturated total FAs (+); 
Polyunsaturated FAs (+); n-6 Total 
FAs (+); n-3 Free FAs (+) 

Lipid metabolism Arachidic acid 
(sens: 78%; spec: 
75%; accu: 80%) 
(American African 
population) 
 
Myristic acid (sens: 
85%; spec: 89%; 
accu: 98%) 
(Caucasian 
American 
population) 

[72] 

n=13  n=13 (benign 
adjacent tissue) 

LC-MS 
CE-MS 

OPLS-DA 1. Cysteine (+); Lysine (+); 
Methionine (+); Phenylalanine (+); 
Tyrosine (+); 
Branched-chain amino acids 
(leucine, isoleucine, and valine) (+); 
Fumarate (+) 
2. Glycerophospholipids (+) 
3. Fructose 6-phosphate (-); 
Fructose 1,2-biphosphate (-); 
Pyruvate (-); Citrate (-); cis-aconitate 
(-); Isocitrate (-) 
4. N-Acetylglucosamine (+); N-
Acetylglucosamine 1-phosphate (+), 
N-acetylglucosamine 6-phosphate 
(+); Galacturonate 1-phosphate (+) 
5. Aspartate (+); Argininosuccinate 
(+); Arginine (+); Proline (+); 
Fumarate (+) 

1. Amino acid metabolism  
2. Lipid metabolism  
3. TCA cycle 
4. Hexosamine pathway 
5. Urea cycle 

Fumarate 
Citrate 
Isocitrate   

[74] 

 



 

23 

 

2
3

 

PCa group Control group Analytical 
platform 

Statistical 
methods 

Altered metabolites (direction of 
variation) 

Dysregulated metabolic 
pathways 

Candidate 
biomarkers 

Ref. 

n=58  
 

n=18 (BPH) 1H-NMR PCA 
PLS-DA 
 
 
 

1. Creatine (-); Creatinine (-); 
Glutamate (+); Glutamine (+); 
Formate (+); Tyrosine (+);       
Uridine (+) 
2. Citrate (-) 
3. Trimethylamine (+) 

1. Amino acid metabolism 
2. TCA cycle  
3. Membrane metabolism 

Citrate  
Glutamine  

[75] 

n=70 
43 GS (3+3)  
16 GS (3+4) 
10 GS (4+3) 
1 GS (4+4) 
 

n=59 (benign 
adjacent tissue) 

1H HR MAS 
NMR 
1H/31P NMR 
LC-MS 

PCA 
OPLS-DA  
 
 
 
  

PCa vs. Benign 
1. Citrate (-); Succinate/ malate (+); 
Fumarate (+) 
2. Putrescine (-); Spermidine (-) 
Spermine (-) 
3. Glutamate (+) 
4. Uracil (+) 
5. Hypoxanthine (+); Inosine (+) 
6. α-Glucose (-) 
7. SM (-) 
8. NAD+ (-) 
9. Phosphocholine (+); PE (+);    
LPC (-); 
10. Arginine (+);  
11. Docosapentanoic acid (22:5) (+); 
Oleic acid (18:1) (+);               
Linoleic acid (+); Docosahexaenoic 
acid (22:6) (+); Maleic acid (+); 
 
 

1. TCA cycle 
2. Polyamines synthesis  
3. Glutamate metabolism 
4. Pyrimidine metabolism 
5. Purine metabolism 
6. Glycolysis  
7. Sphingolipid metabolism 
8. Nicotinate and 
nicotinamide metabolism 
9. Glycerophosphocholine 
metabolism; Phospholipid 
membrane metabolism 
10. Urea cycle 
11. Free FAs oxidation 
12. Branched-chain amino 
acid metabolism 
13. Inositol metabolism 
14. Propanoate metabolism 
15. Aminoacyl-tRNA 
biosynthesis 

Phosphocholine 
Glutamate  
Hypoxanthine 
Arginine 
α-Glucose 
 
 

[76] 
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PCa group Control group Analytical 
platform 

Statistical 
methods 

Altered metabolites (direction of 
variation) 

Dysregulated metabolic 
pathways 

Candidate 
biomarkers 

Ref. 

    GS ≥7 vs GS 6 
 
3. Glutamate (+) 
5. Hypoxanthine (+) 
6. α-Glucose (-) 
7. Sphingosine (+) 
9. Glycerophosphorylcholine (+); 
Phosphocholine (+) 
10. Arginine (+) 
11. Hexanoylcarnitine (+) 
12. Tyrosine (+); Valine (+); 
Phenylalanine (+) 
13. Ascorbate (+) 
14. 2-Hydroxybutyrate (+) 
15. Lysine (+); Threonine (+) 

   

Notes: (+) indicates increased levels in PCa, (-) indicates decreased levels in PCa; (-); the numbering of the column Altered Metabolites is related with the numbering of the 
column Dysregulated metabolic pathways. Abbreviations: 1H-NMR, proton nuclear magnetic resonance spectroscopy; 31P NMR, phosphorus-31 nuclear magnetic resonance 

spectroscopy; accu, accuracy; AUC, area under the curve; BPH, benign prostatic hyperplasia; CE-MS, capillary electrophoresis–mass spectrometry; CEs, cholesteryl esters; 

PCs, ether-linked phosphatidylcholines; ESI-MS, electrospray ionization-mass spectrometry; ERG, ETS-related gene; FAs, fatty acids; GC-FID, gas chromatography-flame 

ionization detector; GC-MS, gas chromatography–mass spectrometry; GS, Gleason score; HR-MALDI-IMS, high-resolution matrix-assisted laser desorption/ionization imaging 

mass spectrometry; HR-MAS 1H-NMR, high resolution magic angle spinning proton nuclear magnetic resonance; LC-MS, liquid chromatography–mass spectrometry; LPC, 

lysophosphatidylcholine; OPLS-DA, orthogonal projections to latent structures discriminant analysis; OSC-PLS-DA, orthogonal signal corrected partial least squares-discriminant 
analysis; PCA, principal component analysis; PEs, phosphatidylethanolamines; PLS-DA, partial least squares-discriminant analysis; sens, sensitivity; spec, specificity; SM, 
sphingomyelin; TCA, tricarboxylic acid cycle. 
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Figure 1.2: Metabolites referred with the same variation in more than one study performed in PCa 

tissue in the last 5 years. The black bars represent metabolites increased in PCa and the grey bars 

represent metabolites decreased in PCa. 

 

The most frequent alteration reported among the studies conducted in the last 5 years 

is the significant decrease in citrate levels in PCa tissue [68,74-76] (Table 1.2 and Figure 

1.2). This result is not unexpected as the loss of capability to accumulate citrate is one of 

the first metabolic alterations observed in prostate cells during malignant transformation. 

This loss of capability to accumulate citrate translates in a profound alteration in energetic 

metabolism of PCa cells, once PCa cells start to use citrate in TCA cycle more efficiently 

than normal prostate cells [51,52]. Furthermore, Braadland et al (2017) compared PCa 

tissue from men that suffered PCa recurrence after prostatectomy with tissue from men 

that, until the date of the study, did not show signals of recurrence, unveiling that lower 

levels of citrate in PCa tissue were associated with shorter time of recurrence [70]. 

Additionally, lower levels of citrate were also associated with more aggressive PCa [77]. 

Beyond citrate, two other metabolites involved in energetic metabolism, namely alanine 

[69,71] and lactate [69,72] showed significant alteration in PCa tissue.  
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The increased levels of other key metabolites of TCA cycle have also been frequently 

cited in the reviewed studies, namely succinate [71,76], malate [71,76] and fumarate 

[71,74,76] (Table 1.2, Figure 1.2). The increase in malate and fumarate levels was also 

correlated with Gleason score [71,78] and tumor stage [71]. Notably, both succinate and 

fumarate were previously considered oncometabolites [49] once their accumulation leads 

to cancer progression [79]. The increased levels of succinate and fumarate have been 

associated in other cancer types (e.g., paraganglioma, pheochromocytoma or kidney 

cancers [78]) with mutation in the enzymes succinate dehydrogenase (SDH) and fumarate 

hydratase (FH), respectively [49,80]. However, these results were not observed in PCa 

studies performed by Shao et al (2018), which suggested the involvement of other 

mechanisms that could also be related with the increase of the levels of these metabolites 

in PCa [71]. Once fumarate is also linked with urea cycle [74,76], this metabolic pathway 

could be responsible for keeping the high levels of fumarate in PCa tissue [74,79]. As 

previously referred, the accumulation of fumarate leads to cancer progression, this could 

involve the activation of hypoxia-inducible factor 1-subunit alfa (HIF1α) and NFκB pathways 

[74]. HIF1α plays an important oncogenic role in PCa once this pathway is responsible for 

many essential mechanisms to guarantee PCa cell survival, like anti-apoptosis, 

angiogenesis and increased glycolytic metabolism. Furthermore, HIF1α protects PCa cells 

against oxidative stress and against the cytotoxicity caused by androgen deprivation 

therapy, chemotherapy, or radiation [81]. Similarly, NFκB pathways support PCa cell 

survival, proliferation, and invasion, playing an important role in the development of 

resistance to castration therapy [82]. 

The increase in uracil levels is another alteration consistently reported in PCa tissue 

(Table 1.2, Figure 1.2), suggesting that PCa cells have alterations in pyrimidine metabolism 

[65,71,76]. Pyrimidine metabolism is a complex biochemical pathway that comprises 

different reactions, namely de novo nucleotide synthesis, nucleoside salvage, and 

pyrimidines degradation [83]. Pyrimidines, like uracil [84], are essential in cells metabolism 

once they are constituents of nucleotides, nucleic acids, vitamins, proteins and folates [85]. 

Furthermore, they are key intermediates in RNA and DNA synthesis, protein and lipids 

glycosylation, synthesis of phospholipid precursors [84,85] and in reactions of 

glucuronidation [84]. Cancer cells are dependent on de novo nucleotide synthesis for cell 

proliferation and consequently for cancer development and progression [83,84]. 

Importantly, the inhibition of this metabolic pathway is a strategy adopted in the treatment 

of several cancers (e.g. colorectal cancer and pancreatic cancer) [84,86,87].  
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One of the main functions of normal prostate is to synthesize polyamines like spermine 

but apparently this function is impaired with PCa development and progression [70] leading 

to a decrease in the levels of spermine [68,76]. Indeed, the reduction of spermine levels 

was proposed as a biomarker able to predict BCR [70]. Interestingly, levels of spermidine, 

a spermine precursor, were also reported as significantly altered in PCa tissue samples; 

however, the obtained results were contradictory. Huan et al (2016) found a significant 

increase in the levels of spermidine [65], whereas Dudka et al (2020) showed a significant 

decrease in the levels of this metabolite in PCa tissue samples [76].  

As previously referred, lipid metabolism can be an important source of PCa biomarkers, 

emphasizing the relevance of lipidomic studies. The major reported lipidic alterations 

occurring in PCa cells involved phospholipids from cellular membrane [64,66,67,69,71-

73,76] which was expected taking into consideration that cancer cells show a high 

proliferative phenotype. Notably, the significant decrease in the levels of LPC (16:0) was 

able to predict BCR [64]. This observation is supported by a transcriptomic study, that 

evaluate the expression of the enzyme LPC transferase 1 (LPCAT1). The increase in the 

expression of this enzyme was able to discriminate PCa from benign tissue, as well as to 

differentiate PCa with different GS and to predict BCR and/or metastasis development [88]. 

Furthermore, phosphocholine also revealed to be able to discriminate PCa tissue with 

different GS [76]. 

Finally, alterations in amino acid metabolism have also been widely reported in PCa, 

mainly in the increase levels of glutamate [72,75,76], tyrosine [74,75], arginine [74,76] and 

proline [71,74]. Importantly, the significant alteration in the levels of the first three amino 

acids was associated with GS and consequently PCa aggressiveness [76], making these 

metabolites potential diagnosis and prognosis biomarkers. 

 

 

1.1.6 Urine metabolomic studies 

 

Urine is the ideal matrix to be used in a screening test, due to its non-invasive nature, 

along with ease collection and handling, high volume which allow repeated analysis, and 

lower complexity when compared with other biofluids (e.g. serum or plasma) [20,37,89]. 

Furthermore, urinary metabolites are concentrated by the kidneys, which are anatomically 

close to the prostate [89,90]. However, urine composition can vary due to several external 

factors, like diet, smoking habits, genetic factors, microbiota, diurnal cycles, diabetes and 

other diseases which can affect urine metabolome [91]. 
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From 2015 to 2020, thirteen studies performed in PCa urine samples were published, 

including four volatilomic studies. Table 1.3 summarizes these studies, highlighting study 

design, altered metabolites, metabolic pathways, as well as candidate biomarkers, 

whenever available. Overall, 179 different metabolites were associated with PCa, indicating 

that PCa is correlated with dysregulations in 48 different metabolic pathways. In this section, 

the metabolites that hold greatest potential as PCa biomarkers will be highlighted, 

considering different selection criteria: i) consistency among different urinary studies, ii) 

AUC greater than PSA and iii) translatability between tissue and urine studies.
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Table 1.3: Metabolomic studies performed in urine samples from PCa patients in the last five years (2015-2020) 

PCa group Control 
group 

Analytical 
platform 

Statistical 
methods 

Altered metabolites (direction of 
variation) 

Dysregulated metabolic 
pathways  

Candidate Biomarkers Ref. 

n=32  n=32 LC-MS  
GC-MS 

PCA 
PLS-DA 

1. Glycine (-); Serine (-); Threonine (-); 
Alanine (-) 
2. Glutamine (-); Isocitrate/Citrate (-); 
Aconitate (-); Succinate (-) 
3. Sucrose (-); Sorbose (-); Arabinose  
(-); Arabitol (-); Inositol (-); Galactarate (-); 
Acetate (-); Propanoic acid (-); Propenoic 
acid (-); Butanoic acid (-) 
4. Carnitines (-) 
5. Sphingolipids (+) 

1. Amino acid metabolism 
2. Energetic metabolism 
3. Carbohydrates metabolism 
4. Long-chain FAs metabolism 
5. Sphingolipid metabolism 

- [92] 

n=59 n=43 GC-MS RF 
LDA 

1. 2,6-Dimethyl-7-octen-2-ol (-);  
3-Octanone (-); 2-Octanone (-) 
2. Pentanal (+) 

1. Increased energy consumption 
2. Inflammatory conditions via 
the excessive production of 
reactive oxygen species, known 
to induce lipid peroxidation 

4-Biomarker panel: 
2,6-Dimethyl-7-octen-2-ol  
3-Octanone 
2-Octanone 
Pentanal  
(accu: 63-65%) 
 

[93] 

n=66 n=88 (BPH) + 
n=11 (cancer-
free) 

UPLC-
MS/MS 

ROC 
Student’s t-
test 

Spermine (-) Polyamines synthesis  Spermine (AUC: 0.83) [94] 
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PCa group Control 
group 

Analytical 
platform 

Statistical 
methods 

Altered metabolites (direction of 
variation) 

Dysregulated metabolic 
pathways  

Candidate Biomarkers Ref. 

n=62 n=42 LC-QTOF PLS-DA 
 
Model 
Performance: 
Sens: 88%; 
Spec: 93% 

1. Dimethyllysine (-); 5-
Acetamidovalerate (-); Acetyllysine (-); 
Trimethyllysine (-) 
2. Imidazole lactate (-); Histidine  
(-); Methylhistidine (-); Acetylhistidine (-) 
3. Urea (-); Acetylarginine (-); 
Acetylcitrulline (-); Acetylputrescine (-); 
Dimethylarginine (-);  
Citrulline (-) 
4. Tyrosine (-) 
5. 8-Methoxykynurenate (-); Kynurenic 
acid (-); Xanthurenic acid (-) 
6. Sulfoacetate (-); Isethionate (-); 
Acetyltaurine (-) 
7. Acetylaspartylglutamic acid (-);  
Acetylaspartate (-); 2-Oxoglutaramate (-) 
8. 2-Pyrrolidone-5-carboxylate (-) 
9. 5-Methyldeoxycytidine-5′-phosphate(-); 
7-Methylguanosine (-);  
7-Methylguanine (+) 

1. Lysine degradation 
2. Histidine degradation 
3. Arginine metabolism 
4. Tyrosine metabolism 
5. Tryptophan metabolism 
6. Taurine metabolism 
7. Alanine, aspartate and 
glutamate metabolism 
8. Glutamine and glutamate 
metabolism 
9. Purine and pyrimidine 
metabolism 

- [95] 
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PCa group Control 
group 

Analytical 
platform 

Statistical 
methods 

Altered metabolites (direction of 
variation) 

Dysregulated metabolic 
pathways  

Candidate Biomarkers Ref. 

n=30 
 
Validation 
set 
n=19 
 

n=25 
 
Validation set 
n=15 
 

LC-ESI-
MS/MS 

PLS-DA 
 
Model 
performance: 
Sens: 90%  
Spec: 73% 

1. Taurine (+) 
2. Ethanolamine (-); 
Phosphoethanolamine (-) 
3. Arginine (-); Homocitrulline (-); 
Citrulline (-) 
4. Isoleucine (-); Leucine (-); 
Phenylalanine (-); Serine (-);  
Tyrosine (-); Tryptophan (-);  
Asparagine (-); Glutamate (-);  
Ornithine (-); Glutamine (-) 
5. Lysine (-); δ-Hydroxylysine (-) 
6. 1-Methylhistidine (-);  
3-Methylhistidine (-); Histidine (-) 
7. α-Aminoadipic acid (-);  
γ-Amino-n-butyric acid (-) 
8. Cystathionine (-); Cystine (-); 
Methionine (-) 

1. Energetic metabolism 
2. Phospholipid metabolism 
3. Arginine metabolism  
4. Amino acid metabolism 
5. Lysine degradation 
6. Histidine degradation 
7. FAs metabolism 
8. Methionine metabolism  

γ-Amino-n-butyric acid 
(AUC: 0.93) 
Phosphoethanolamine 
(AUC: 0.88) 
Ethanolamine (AUC: 0.86) 
Homocitrulline (AUC: 
0.84) 
Arginine (AUC: 0.83) 
δ-Hydroxylysine (AUC: 
0.80) 
Asparagine (AUC: 0.77)  

[96] 

n=64 n=51 (BPH) 1H-NMR OPLS-DA 1. Branched-chain amino acids (+); 
Glutamate (+); Glycine (-); 
Dimethylglycine (-) 
2. 4-Imidazole-acetate (-) 
3. Fumarate (-) 
4. Pseudouridine (+) 

1. Amino acid metabolism 
2. Histidine metabolism 
3. TCA cycle 
4. RNA synthesis 

- [97] 

n=29 n=21 (BPH) HS-SPME-
GC-MS 

Shapiro-Wilks 
test, Levene’s 
test, ANOVA, 
Kruskal-Wallis 
test, Pearson 
test 

Before prostate massage: 
1. 3,5-Dimethylbenzaldehyde (-) 
2. 2,6-Dimethyl-7-octen-2-ol (-); 2-
Ethylhexanol (-) 
3. Santolin triene (-) 
4. Furan (+) 
 
After prostate massage: 
2. 3-Methylphenol (+); Phenol (+) 
4. Furan (+) 
5. 2-Butanone (+) 
6. p-Xylene (+) 

1. Alcohols and FAs metabolism 
2. Lipid metabolism 
3. Energetic metabolism 
4. FAs oxidation 
5. FAs and carbohydrate 
metabolism 
6. Unavailable 

Furan  
p-Xylene (correlation with 
GS) 
 

[98] 
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PCa group Control 
group 

Analytical 
platform 

Statistical 
methods 

Altered metabolites (direction of 
variation) 

Dysregulated metabolic 
pathways  

Candidate Biomarkers Ref. 

n=40 
 
Validation 
set 
n=18 

n=42 
 
Validation set 
n=18 

GC-MS PCA 
PLS-DA 
 
Model 
performance:  
Sens: 78% 
Spec: 94%-
100% 
Accu: 86%-
89% 
AUC: 0.90-
094 
 

1. Methylglyoxal (-) 
2. Hexanal (-) 
3. 3-Phenylpropionaldehyde (+); 
Decanal (-); 
4. 4-Methylhexan-3-one (-),  
Hexan-2-one (-); 2-Methylcyclopentan-1-
one (-); 5-Methylheptan-2-one (-);  
4,6-Dimethylheptan-2-one (-);2-Hydroxy-
2-methyl-1-phenylpropan-1-one (-); 
Pentan-2-one (+); Cyclohexanone (+) 
5. 2.5-Dimethylbenzaldehyde (+) 
6. 2,6-Dimethyl-6-hepten-2-ol (-);1-
Methyl-4-propan-2-ylcyclohex-2-en-1-ol  
(-); Linalool (-); Terpinen-4-ol (-); 3- 
Carene (-); Isoterpinolene (-);  
Menthyl acetate (-);  
7. Theaspirane (-) 
8. Glyoxal (-); 
9. 2-Butenal (-) 
10. Phenylacetaldehyde (+) 
11. Butan-2-one (+) 
12. Dihydroedulan IA (-); 3,4-
Dimethylcyclohex-3-ene-1-carbaldehyde 
(-);  
4-Methyldec-1-ene (-); Hexadecane (+) 

1. Pyruvate metabolism; Glycine, 
serine and threonine metabolism 
2. Steroid hormone biosynthesis 
3. Alcohols and FAs metabolism; 
Amino 
acids and carbohydrate 
catabolism 
4. FAs metabolism 
5. Alcohols and FAs metabolism 
6. Lipid metabolism 
7. Steroid metabolism 
8. Energetic metabolism; 
metabolites related to cell 
signaling and membrane 
stabilization  
9. Metabolites linked to lipid 
peroxidation  
10. Phenylalanine metabolism 
11. FAs and carbohydrate 
metabolism 
12. Unavailable 

6-Biomarker-panel:  
Hexanal  
2,5-Dimethyl-
benzaldehyde  
4- Methylhexan-3-one  
Dihydroedulan IA 
Methylglyoxal  
3- Phenylpropional-
dehyde 
(AUC: 0.90; sens: 89%; 
spec: 83%; accu: 86%) 

[99] 
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PCa group Control 
group 

Analytical 
platform 

Statistical 
methods 

Altered metabolites (direction of 
variation) 

Dysregulated metabolic 
pathways  

Candidate Biomarkers Ref. 

n=10  n=30 GC-MS 
LC-MS 

PCA 
OPLS-DA 

1. Pseudouridine/Uridine (+); 
Dihydrouridine(+) 
2. Citrate (-) Pyruvate (+); Lactate (+); 
Hexose (-); Pentose (+); 
3. Hippuric acid (-); Aminohippuric acid 
(+); Phenylpyruvic acid (-); Tyrosine (-) 
4. Sphinganine (-); Sphingosine (-); 
Serine (+) 
5. Succinate (-); Glucosamine phosphate 
(+) 
6. Xanthosine (+); Hypoxanthine (+); 
Xanthine (+) 
7. Hydroxytryptophan (+) 
8. N-linoleoyl taurine (-); Taurine (+) 
9. Creatinine (+) 
10. Sialyl-N-acetyllactosamine (+); 
Suberic acid (+); Dihydrocaffeic acid 
sulfate (+); Hydroxyethanesulfonate (+); 
Hydroxyglutaric acid (+); 
Acetylaminoadipic acid (+); 
Adipic acid (+); Hydantoinpropionate (+); 
Nicotine glucuronide (-); Benzoic acid (-); 
Oxo-heptanoic acid (+); Glucoheptonic 
acid (-); Aminohexadecanoic acid (-); 
Glucocaffeic acid (-); 
Trimethyluric acid (+); 3,7 Dimethyluric 
acid (-); 3' Sialyllactose (+) 

1. Pyrimidine metabolism 
2. Energetic metabolism 
(gluconeogenesis; pyruvate 
metabolism pathways; glycolysis; 
pentose phosphate pathway) 
3. Phenylalanine metabolism 
4. Sphingolipid metabolism 
5. Alanine, aspartate and 
glutamate metabolism 
6. Purine metabolism 
7. Tryptophan metabolism 
8. Taurine metabolism 
9. Amino acid metabolism 
10. Unavailable 

- [100] 

n=43  n=48 (BPH) GC-MS PLS-DA 
PARAFAC2 
 
Model 
performance: 
Sens: 93% 
Spec: 89%  

1. Androsterone (+); 16-
Hydroxydehydroisoandrosterone (+);  
5β-Pregnanediol (-); Enterodiol (-); 
Pregnanetriol (-) 
2. 5-Hydroxyindoleacetic acid (+) 
3. Vanillyl alcohol (+) 

1. Steroidal biosynthesis 
2. Tryptophan metabolism 
3. Unavailable 

- [101] 
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PCa group Control 
group 

Analytical 
platform 

Statistical 
methods 

Altered metabolites (direction of 
variation) 

Dysregulated metabolic 
pathways  

Candidate Biomarkers Ref. 

n=41 
 
Validation 
set 
n=18 

n=42 
 
Validation set 
n=18 

GC-MS 
1H-NMR 
 

PCA 
PLS-DA 
 
Model 
performance: 
GC-MS  
Sens: 89% 
Spec: 83%, 
Accu: 86% 
AUC: 0.96 
 
1H NMR  
Sens:67% 
Spec: 89% 
Accu:78% 
AUC: 0.82 
 

1. Pyruvate (+); Leucine (+); Valine (+) 
2. Gluconic acid (-); d-Glucose (-); d-
Mannitol (-); d-Threitol (+); l-Fucitol (-);  
l-Threose (+) 
3. Sarcosine (+); Hydroxyacetone (+); 2-
Furoylglycine (-) 
4. l-Arabitol (-); Ribitol (-) 
5. Propylene glycol (+) 
6. Acetone (+) 
7. Trigonelline (-) 
8. Oxalate (+) 
9. Myo-inositol (-) 
10. 2-Hydroxyisobutyrate (+);  
2-Hydroxyvalerate (+) 

1. Valine, leucine and isoleucine 
biosynthesis and degradation 
2. Energetic metabolism 
(Pentose phosphate pathway; 
Glycolysis 
or gluconeogenesis) 
3. Glycine, serine and threonine 
metabolism  
4. Pentose and glucuronate 
interconversions 
5. Pyruvate metabolism  
6. Propanoate metabolism; 
Synthesis and degradation of 
ketone bodies 
7. Nicotinate and nicotinamide 
metabolism  
8. Glyoxylate and dicarboxylate 
metabolism 
9. Galactose metabolism; 
Ascorbate and aldarate 
metabolism; Membrane 
metabolism 
10. Unavailable 

2-Hydroxyvalerate (sens: 
86%; spec: 61%; AUC 
0.76) 
2-Furoylglycine (sens: 
85%; spec: 62%; AUC 
0.74) 
d-Glucose (sens: 70%; 
spec: 69%; AUC 0.69) 
d-Mannitol (sens: 78%; 
spec: 60%; AUC 0.69) 
 
 

[102] 



 

35 

 

3
5 

PCa group Control 
group 

Analytical 
platform 

Statistical 
methods 

Altered metabolites (direction of 
variation) 

Dysregulated metabolic 
pathways  

Candidate Biomarkers Ref. 

n=20 n=20 (cancer-
free) 
n=20 (bladder 
cancer) 
n=20 (renal 
cancer) 

GC-MS PCA 
PLS-DA 

1. Methylglyoxal (-) 
2. Hexanal (-) 
3. 3-Phenylpropionaldehyde (+) 
4. 4-Methylhexan-3-one (-) 
5. 2.5-Dimethylbenzaldehyde (+) 
6. Dihydroedulan IA (-) 
7. Ethylbenzene (+) 
8. Heptan-2-one (+); Heptan-3-one (+);  
4-(2-Methylpropoxy) butan-2-one (+) 
9. Methyl benzoate (+) 
10. 3-Methyl-benzaldehyde(+) 

1. Pyruvate metabolism; Glycine, 
serine and threonine metabolism 
2. Steroid hormone biosynthesis 
3. Alcohols and FAs metabolism; 
amino 
acid and carbohydrate 
catabolism 
4. FAs metabolism 
5. Alcohols and FAs metabolism 
7. Metabolites linked to oxidative 
stress 
8. Protein metabolism; Ketogenic 
pathway 
9. Lipid hydrolysis 
10. Metabolites linked to lipid 
peroxidation 

10-biomarker panel 
Methylglyoxal 
Hexanal 
3-Phenylpropionaldehyde 
4-Methylhexan-3-one 
2.5-
Dimethylbenzaldehyde 
Dihydroedulan IA 
Ethylbenzene 
Heptan-2-one 
Heptan-3-one 
4-(2-Methylpropoxy)butan-
2-one 
Methyl benzoate 
3-Methyl-benzaldehyde 
 
Discrimination of PCa 
from control, bladder 
cancer and renal cancer 
(AUC 0.90; sens: 76%, 
spec: 90%, accu: 92%) 

[103] 

n=58  
 

n=18 (BPH) 1H-NMR PCA 
PLS-DA 

1. Glutamate (-); Glutamine (-); 
Glycine (-) 
2. Citrate (-); Taurine (-) 
3. Trimethylamine (+) 
4. Choline (-) 
 

1. Amino acid metabolism 
2. Energetic metabolism 
3. Membrane metabolism 
4. Choline metabolism; 
phospholipid membrane 
metabolism 

Citrate  
Glutamine 
 

[75] 

Notes: (+) indicates increased levels in PCa, (-) indicates decreased levels in PCa; the numbering of the column Altered Metabolites is related with the numbering of the column 
Dysregulated metabolic pathways. Abbreviations: 1H-NMR, proton nuclear magnetic resonance spectroscopy; accu, accuracy; AUC, area under the curve; BPH, benign prostatic 
hyperplasia; FAs, fatty acids; GC-MS, gas chromatography–mass spectrometry; GS, gleason score; HS-SPME, headspace solid-phase microextraction; LC-ESI-MS/MS, liquid 
chromatography electrospray ionization tandem mass spectrometry; LC-MS, liquid chromatography–mass spectrometry; LC-QTOF, liquid chromatography quadrupole time of 
flight; LDA, linear discriminant analysis; OPLS-DA, orthogonal projections to latent structures discriminant analysis; PCA, principal component analysis; PLS-DA, partial least 
squares-discriminant analysis; RF, random forest; ROC, receiver operating characteristics curve; sens, sensitivity; spec, specificity; TCA, tricarboxylic acid cycle; UPLC-MS/MS, 
ultra-performance liquid chromatography-tandem mass spectrometry.
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Despite the great differences (e.g different analytical platform, samples preparation or 

different inclusion/ exclusion criteria) among the study designs, 15 metabolites have been 

consistently reported with the same variation among different urinary studies, as 

represented in Figure 1.3. Importantly, 4 metabolites out of the 15 have also been reported 

with the same alteration in PCa tissue, namely decreased levels of citrate [68,74-

76,92,100], increased levels of leucine [74,97,102], increased levels of valine [74,97,102] 

and increased levels of taurine [96,100,104], suggesting that these alterations may be 

specific of PCa tumors and suggesting their translatability between tissue and urine 

samples (Figure 1.3). 

 

 

Figure 1.3: Metabolites found with the same alteration in urine metabolome of PCa patients in more 

than one study, in the last 5 years. The black bars represent metabolites increased in PCa and the 

grey bars represent metabolites decreased in PCa. The listed bars correspond to the metabolites 

that were previously found with the same variation in PCa tissue. 

 

In addition, 12 metabolites stood out once they unveiled similar or even better 

performance than PSA (AUC ranging from 0.53 to 0.83) for PCa detection [7], namely γ-

amino-n-butyric acid (AUC: 0.93), phosphoethanolamine (AUC: 0.88), ethanolamine (AUC: 

0.86), homocitrulline (AUC: 0.84), asparagine (AUC: 0.773), arginine (AUC: 0.83) [96], 

spermine (AUC: 0.83) [94], δ-hydroxylysine (AUC: 0.80) [96], 2-hydroxyvalerate (AUC: 

0.76), 2-furoylglycine (AUC: 0.74), mannitol (AUC: 0.69) and glucose (AUC 0.69) [102]. 

From these 12 metabolites, the alterations observed in the levels of 3 metabolites were 
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previously reported in PCa tissues, namely spermine [68,76], ethanolamine [105] and 

glucose [76]. Importantly, the decrease in glucose levels was also correlated with GS [76]. 

The significant alterations observed in the other 9 metabolites, to the best of our knowledge, 

were not previously reported in PCa tissue. It is important to highlight that even if it is not 

possible to prove translatability of a metabolite from tissue to urine, this does not invalidate 

its potential as PCa biomarker once its alteration can for example be driven from a systemic 

response to PCa development and progression.  

The volatilomic studies have been more focused in the definition of biomarker panels for 

possible detection through biosensors rather than proposing individual biomarkers 

[93,99,103]. The smallest biomarker panel reported included four metabolites (2,6-dimethyl-

7-octen-2-ol, 3-octanone, 2-octanone and pentanal) [93], which unveiled accuracies at least 

equal to PSA (accu. of 62-75% for PSA vs. accu. of 63-65% for the 4-biomarker panel [7,93]. 

Remarkably, a 6-biomarker panel (hexanal, 2,5-dimethylbenzaldehyde, 4-methylhexan-3-

one, dihydroedulan IA, methylglyoxal, 3-phenylpropionaldehyde) [99] and an improved 10-

biomarker panel (methylglyoxal, hexanal, 3-phenylpropionaldehyde, 4-methylhexan-3-one, 

2.5-dimethylbenzaldehyde, dihydroedulan IA, ethylbenzene, heptan-2-one, heptan-3-one, 

4-(2-methylpropoxy)butan-2-one, methyl benzoate, 3-methyl-benzaldehyde) [103] were 

recently proposed that outperformed PSA in all performance parameters (PSA: acc = 62%-

75% , Sens = 20.5%, spec = 51%-91% [4,7,8]; 6-biomarker panel: acc = 86%, sens = 89%, 

spec = 83% [99]; 10-biomarker panel: acc = 92%, sens = 76%, spec = 90% [103]). Notably, 

the 10-biomarker panel proved to be able to differentiate PCa from cancer-free individuals 

as well as from other urological cancers (renal and bladder cancers) [103]. 

Overall, findings from the reviewed studies showed that PCa development and 

progression is mainly associated with alterations in amino acid metabolism, energy 

metabolism, especially in TCA cycle, and membrane metabolism (Tables 1.2 and 1.3). 

 

 

1.1.7 Current challenges and future perspectives  

 

There are no doubts that the scientific community has made enormous efforts to define 

the impact of PCa in human metabolome with dozens of studies focused in this topic, not 

only using tissue and urine matrices but also other biological samples as serum, plasma, 

seminal fluid, prostatic fluid and even cell lines [18]. However, some biological and technical 

challenges should be addressed before we can translate all the potentialities of 

metabolomics into clinical practice.  
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The traditional paradigm is to find a single biomarker for PCa screening. However, during 

the last years, the idea of using a panel of biomarkers instead of a single biomarker has 

gained strength, especially in volatilomic studies. The use of a biomarker panel has 

important advantages, once a multi-biomarker panel may be able to capture more deeply 

the various metabolic dysregulations occurring during cancer development and progression 

than a single biomarker [106]. Hence, a multi-biomarker panel allows the definition of a 

more robust signature of PCa providing a better evaluation of cancer progression. 

Furthermore, the use of a biomarker panel avoids that an arbitrary change in a single 

metabolite leads to a false result [22]. 

As referred in the previous section, the comparison of the findings from different studies 

is compromised by the lack of standardized procedures in metabolomic studies, especially 

in study design which consequently increases inter-laboratory variability [107]. Many efforts 

have been made to accomplish the goal of standardized procedures in metabolomics 

studies in the last years [107,108]. There is still a long way to go until the desired 

standardization, but the first steps have already been taken [108].  

Other crucial technical challenge is metabolite identification. This is particularly true in 

volatilomics studies. Also, the interpretation of the urinary volatilome signature of PCa is 

particularly challenging once there is no clearly understand of the biological origin of VOCs 

[39]. In addition, the volatilome of PCa tissue has not been explored so far, to our 

knowledge, hindering the elucidation of a potential translatability of VOCs from tissues to 

urine samples. In future, this issue can be addressed through volatilomic studies of PCa 

tissue and fluxomic studies. Fluxomic studies allow the understanding of the metabolic 

origin of endogenous VOCs by labeling and tracking metabolic precursors (e.g., glucose), 

throughout the metabolic pathways [109]. 

Perhaps the greatest limitation to biomarker discovery relies on the fact that several 

metabolomic studies are essentially descriptive and skip the validation step. Indeed, the 

vast majority of the papers just list which metabolites are statistically different between the 

groups in study, not proposing candidate biomarkers and/or clearly state the performance 

of the proposed metabolites/biomarkers (e.g., AUC, sensitivity, specificity and/or accuracy), 

thus impairing the discussion of which would be the most promising biomarkers for PCa. 

Hence, future studies should be less descriptive and more assertive, proposing and 

evaluating potential biomarkers. Furthermore, it is also important to include external sets 

for model/results validation to improve the robustness of candidate biomarkers and to 

include unambiguous biochemical and biological interpretation of PCa metabolic 

dysregulations. Remarkably, some of the studies included in this revision are already 
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following this direction. In addition, it is well known that especially urinary metabolic profile 

can be affected by several factors (e.g., diet, lifestyle, microbiota, race, among others) [107], 

so it is also crucial to perform studies in large and more heterogeneous populations (e.g., 

American, African, Caucasian), to ensure that the proposed biomarkers can be applied 

among different countries and different lifestyles.  

To conclude, metabolomics is a powerful tool to uncover the metabolic signature of 

PCa development and progression. The results obtained so far in tissue and urine 

metabolomic studies unveiled potential to define new screening/diagnosis biomarkers. 
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1.2.1 Abstract 

 

Introduction: Prostate cancer (PCa) is one of the most prevalent cancers in men 

worldwide. Serum prostate-specific antigen (PSA) remains the most used biomarker in the 

detection and management of patients with PCa, in spite of the problems related with its 

low specificity, false positive rate and overdiagnosis. Furthermore, PSA is unable to 

discriminate indolent from aggressive PCa, which can lead to overtreatment. Early 

diagnosed and treated PCa can have a good prognosis and is potentially curable. 

Therefore, the discovery of new biomarkers able to detect clinically significant aggressive 

PCa is urgently needed. 

Methods: This revision was based on an electronic literature search, using Pubmed, with 

Nuclear Magnetic Resonance (NMR), tissue and prostate cancer as keywords. All 

metabolomic studies performed in PCa tissues by NMR spectroscopy, from 2007 until 

March 2018, were included in this review. 

Results: In the context of cancer, metabolomics allows the analysis of the entire metabolic 

profile of cancer cells. Several metabolic alterations occur in cancer cells to sustain their 

abnormal rates of proliferation. NMR proved to be a suitable methodology for the evaluation 

of these metabolic alterations in PCa tissues, allowing to unveil alterations in citrate, 

spermine, choline, choline-related compounds, lactate, alanine and glutamate. 

Conclusion: The study of the metabolic alterations associated with PCa progression, 

accomplished by the analysis of PCa tissue by NMR, offers a promising approach for 

elucidating biochemical pathways affected by PCa and also for discovering new clinical 

biomarkers. The main metabolomic alterations associated with PCa development and 

promising biomarker metabolites for diagnosis of PCa were outlined. 
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1.2.2 Introduction 

 

Cancer is a serious health concern in the world, being one of the most important causes 

of death (Fuss and Cheng 2016). Prostate cancer (PCa) is one of the most prevalent 

cancers in men worldwide (Siegel et al. 2017) and the early-stage disease is usually 

asymptomatic. Currently available PCa diagnosis is mainly based on serum prostate-

specific antigen (PSA) quantification, digital rectal examination (DRE) and prostate biopsy 

(PB). However, PSA is far from being an ideal biomarker as it lacks sensitivity and specificity 

and it is unable to distinguish indolent from aggressive PCa. PB is a very invasive technique 

giving false negative results, mainly in low grade and in heterogeneously distributed PCa 

(Spur et al. 2013). Furthermore, PCa if early diagnosed, when organ-confined, has a good 

prognosis and it is potentially curable, but advanced or metastatic PCa can be deadly. Given 

the magnitude of the PCa burden, continuous efforts have been made by the scientific 

community toward the discovery of new biomarkers for PCa diagnosis. 

Metabolomics is a relatively novel approach for evaluating the entire measurable 

metabolome, that includes all endogenous and exogenous low molecular weight 

compounds in a biological system, giving a biochemical “snapshot” of an organism’s 

metabolic state. The detection of metabolite profile deviations in fluids (Sreekumar et al. 

2009), cells (Lima et al. 2018a, b), or tissues (Kumar et al. 2014) by comparing the relative 

amount of these compounds in the samples under study with that of the control group (e.g., 

PCa patients vs. healthy individuals) may be translated into valuable disease biomarkers 

(Lima et al. 2016). It is well-established that cancer cells display distinct phenotypes from 

normal cells. These different phenotypes translate into deep metabolic alterations, which 

are indispensable to cancer development and progression. Metabolomics is an ideal 

approach to identify these metabolic alterations and consequently to discover new 

diagnostic and prognostic biomarkers, new therapeutic targets and also to better 

understand the cancer cell biochemistry (Lima et al. 2016). 

Several different matrices can be used in metabolomic studies. In biomedical field, the 

most commonly used matrices are immortalized or primary cultured cells, tissues and 

biofluids, mainly urine and blood. Tissue samples are collected in an invasive way but 

present the value of being the most suitable matrix to determine organ-specific metabolic 

fingerprints (Lin et al. 2007). 

Taking into consideration the high prevalence of PCa and the important drawbacks of 

the currently available biomarker, this review will focus on the metabolomic studies 

performed in PCa tissues by nuclear magnetic resonance (NMR) spectroscopy, updating 

previous reviews in this area (DeFeo et al. 2011; Decelle and Cheng 2014) and 
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summarizing the most frequent metabolic alterations associated with PCa. We believe that, 

in the future, these metabolic alterations could be used as novel biomarkers for PCa, as 

well as potential targets for more efficient treatments. 

 

 

1.2.3 Prostate cancer diagnosis and prognosis 

 

PCa is one of the most commonly diagnosed cancers in men. In fact, the predictions 

for 2017 indicated that PCa will be the most prevalent cancer in men in USA, with 161,360 

new cases and 26,730 estimated deaths (Siegel et al. 2017). PCa is characterized by a 

slow growing nature (Kumar et al. 2016), though more aggressive forms of PCa 

(approximately 25%) can metastasize to the bones (majority) and other organs like lymph 

nodes and lungs (Aoun et al. 2014; Dimakakos et al. 2014; Yang et al. 2010). Metastatic 

PCa is a heterogeneous disease with an extensive range of different malignant progression 

and aggressiveness, and hence, the 5-year survival for men with metastatic disease is very 

low (28%). Despite this, PCa has a long latency period and is potentially curable if 

diagnosed at early stages and appropriately treated (Kumar et al. 2016). Since PCa is often 

initially asymptomatic, highly efficient screening technologies for effective detection of PCa 

potential biomarkers are indispensable in order to diagnose and treat PCa patients at an 

early stage (Yang et al. 2010). 

Since the earliest 1990s, the introduction of PSA screening test markedly changed the 

management of PCa, with the number of PCa cases diagnosed at an early stage of the 

disease largely increased (Decelle and Cheng 2014). Serum PSA levels higher than 4.0 

ng/mL were considered an indication of PCa (Dimakakos et al. 2014). However, after biopsy 

(mandatory for definitive diagnosis), only ~ 25% of men with PSA > 3.0 ng/mL were 

diagnosed with PCa (Alberts et al. 2017). Recently, the use of serum PSA for PCa screening 

of all senior male population started to be contested (Moyer and Force 2012), since this 

biomarker is not able to differentiate patients with aggressive PCa from those with indolent 

disease (slow growing, asymptomatic, non-life-threatening cancers) (McDunn et al. 2013), 

which may lead to an overdiagnosis (Welch and Black 2010). The overdiagnosis leads to 

prescription of aggressive treatments (prostatectomy, chemotherapy and radiotherapy) in 

PCa patients with indolent disease, with important side effects (e.g., androgen deprivation 

therapy leads to hypogonadism and consequently increased risk of cardiovascular disease, 

diabetes, and osteoporosis). For indolent PCa, those aggressive treatments have more 

disadvantages than advantages for the patient´s health and life quality (Drake et al. 2009; 

Decelle and Cheng 2014). Although PSA presents limited sensitivity and specificity to PCa 
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(Roberts et al. 2011; Trock 2011), this test has a good specificity for prostate diseases in 

general, meaning that it is organ- but not cancer-specific (Schalken et al. 2014) and, 

therefore, its levels may be elevated as a consequence of benign prostate hyperplasia 

(BPH) or other prostate diseases. In addition, some PCa patients may present PSA levels 

below the established cutoff value (4.0 ng/mL) (Dimakakos et al. 2014) and false negative 

results may occur (Roberts et al. 2011; Barry 2009; Dimakakos et al. 2014). Furthermore, 

there are also ethnic variations which influence the performance of the serum PSA test, as 

only 25–35% of Caucasians and Hispanics with a PSA level in the 2–10 ng/mL range have 

positive biopsies for PCa, whereas up to 70–80% of African-Americans in this same range 

have a positive biopsy (Lam et al. 2003). As the sensitivity and specificity of the serum PSA 

test is less than 75%, this is a rather imperfect PCa marker. In order to try to minimize this 

problem, at least two PSA measurements are recommended by European Association of 

Urology Guidelines on Prostate Cancer before PB (Gomez-Gomez et al. 2017; Heidenreich 

et al. 2014). Although several PSA derived indices have been developed (e.g., free PSA, 

complex PSA, PSA density and PSA velocity), none has so far attained widespread 

acceptance. 

DRE is another commonly used PCa diagnostic technique, frequently used in 

combination with PSA. Although, definitive diagnosis of PCa is based on histopathological 

verification of adenocarcinoma in PB specimens. The diagnosis based on DRE alone can 

miss more than 50% of PCa patients, whereas PB is an invasive diagnostic technique 

(Drake et al. 2009; Decelle and Cheng 2014). Furthermore, PB may also lead to false 

negative results specially when PCa has a small size, and the lesions are dispersal (Fuss 

and Cheng 2016). 

Other strategy used to try to improve PCa diagnosis and decrease overdiagnosis is the 

use of Nomogram-based PCa risk calculators (RC) (e.g. European Randomised Study for 

Screening of Prostate Cancer (ERSPC-RC)) (GomezGomez et al. 2017). RC are easy and 

accessible tools that can be used in the clinical practice to help in the decision of performing 

or not a PB, thus decreasing the number of unnecessary PB. However, these tools can also 

lead to PCa underestimation, mainly in patients with low risk values, and overestimation in 

patients with high risk values (GomezGomez et al. 2017). 

The lack of a consistent biomarker for PCa diagnosis and monitoring, highlights the 

need for novel, specific, sensitive, and cost effective biomarkers (Dimakakos et al. 2014). 

Taking into consideration the problems associated with the currently used PCa diagnostic 

tools, and consequently the important problems of overdiagnosis and overtreatment 

observed, it is urgent to discover a new biomarker (or a panel of biomarkers) capable to 
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discriminate aggressive PCa from indolent PCa. For this purpose, metabolomic studies 

performed by NMR spectroscopy of PCa tissues are a very promising approach (Fuss and 

Cheng 2016). 

 

 

1.2.4 Metabolomics: an “omic” platform technology for biological systems 

 

The well-known “omics” technologies include genomics (evaluation of genome), 

transcriptomics (evaluation of gene expression) and proteomics (evaluation of proteins). 

Importantly, the integration of these three approaches may not be enough to explain all 

alterations occurring in the organism as a consequence of a disease or a xenobiotic 

exposure, as these “omics” do not evaluate the end point markers of the occurred alteration. 

To overcome this limitation, another “omic” technique was proposed, known as 

metabolomics (evaluation of all metabolites in a biological system), to enable the 

assessment of alterations that are not visible at a genomic and/or proteomic level. 

Metabolites are the end products of cellular metabolism and reflect a combination between 

environment and alterations in gene activation, gene expression, proteins, enzyme activity, 

microbiome, and alterations in metabolic pathways (Spratlin et al. 2009; Roberts et al. 2011; 

Markley et al. 2017). Other advantage of metabolomics is that the study of the entire 

metabolome gives a much more comprehensive perspective of cancer biochemistry than 

the measurement of a single metabolite and/or a single metabolic pathway, allowing a better 

understanding of cancer development and progression (Fuss and Cheng 2016). The total 

number of metabolites present in human organism is at the moment unknown, but it is 

believed that the human metabolome encompasses more than several thousands of 

metabolites (Spratlin et al. 2009; Zhang et al. 2014). 

During neoplastic transformation, the energy needs and synthesis requirements of cells 

increase leading to metabolic alterations, which can be assessed by metabolomics 

approaches (Roberts et al. 2011; Lucarelli et al. 2015). Furthermore, metabolomics can be 

combined with other “omics” methodologies to better understand cancer cell biochemistry. 

The use of NMR spectroscopy in metabolomic studies has the advantage to preserve the 

samples (nondestructive), which can be further used for other metabolomic studies and/or 

gene expression evaluation, for example (Hansen et al. 2016). 

Despite the advantages of NMR-based metabolomics, problems with the design of the 

metabolomic studies have challenged the validation of new biomarkers. The most relevant 

issues include the heterogeneity in patient populations, the small number of subjects in the 

tested and control groups, which leads to lack of statistical power, and the presentation of 
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the results in form of metabolite lists without reference to the critical metabolites that are 

altered or the degree of their perturbations. Regardless all aforementioned difficulties to 

obtain relevant and reliable results, metabolomics has great potential for the discovery of 

new cancer biomarkers. 

 

 

1.2.5 Nuclear magnetic resonance spectroscopy: an analytical technique used in 

metabolomic studies 

 

The human metabolic profile has a huge complexity and, hence, the combination of 

different analytical techniques is usually required in order to detect the maximum number 

of metabolites, as a single analytical technique allows the assessment of only part of the 

metabolome. The most commonly used analytical techniques in metabolomic studies are 

mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy (Roberts et 

al. 2011; Kumar et al. 2016). The combination of NMR and MS platforms offers the best 

approach available nowadays for a more holistic evaluation of the metabolome (Monteiro 

et al. 2013; Cuperlovic-Culf et al. 2010). Both MS and NMR can be combined with 

multivariate statistical analysis (MVA), facilitating data interpretation, to investigate the 

metabolic state of the individual through analysis of biological samples (e.g., tissues or 

biological fluids) (Gao et al. 2012). MS, compared with NMR, is able to detect metabolites 

that exist at lower concentrations (< µM) due to its higher sensitivity (Monteiro et al. 2013). 

Nevertheless, MS techniques have some disadvantages, such as the requirement of 

sample pre-treatment procedures and the bias introduced by several factors, such as 

ionization efficiency, extraction efficiency, and molecule fragmentation behavior (Trock 

2011; Roberts et al. 2011; Spratlin et al. 2009). On the other hand, NMR spectroscopy has 

several advantages over MS that include (i) minimal sample preparation, (ii) non-destructive 

analysis, (iii) analysis of liquid and solid matrices, (iv) high intra- and inter-laboratory 

reproducibility, (v) information about the chemical environment, (vi) detection of different 

nuclei, such as 1H, 13C, 15N or 18O. In addition, NMR acquisition is faster and gives results 

in a single experiment (ca. 10–30 min for 1D 1H NMR) (Trock 2011; Kosmides et al. 2013; 

Kumar et al. 2014; Cuperlovic-Culf et al. 2010; Lenz and Wilson 2007; Markley et al. 2017). 

Another important advantage of NMR studies in prostate cancer tissues is that the results 

obtained through the evaluation of PCa tissues by NMR can be used in clinical practice 

since there is a relationship between the results obtained through NMR tissue analysis and 

the results obtained in in vivo assays (Hansen et al. 2016; Fuss and Cheng 2016). Hence, 

the results obtained through the evaluation of PCa tissues by NMR have the potential to be 
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translated to clinical practice in a noninvasive manner. Using magnetic resonance 

spectroscopy imaging (MRSI), it is possible to visualize in vivo prostate metabolites and not 

only the tissue anatomy, this will improve a noninvasive PCa diagnosis by translation to the 

clinic the results obtained by NMR tissue analysis (Fuss and Cheng 2016; Hansen et 

al.2016). 

The NMR spectra from biological samples are very complex with several overlapped 

signals. However, it is possible to suppress or enhance specific signals through the 

optimization of pulse sequences and acquisition parameters, taking advantage of physical 

properties of the different resonating functional groups (Moestue et al. 2011). In the 

standard one dimension (1D) experiment, called 1D pulse-and-acquire experiment, both 

large (broad resonances) and small molecules (narrow resonances) contribute to the 

spectrum with the intensity proportional to their concentration (Dunn et al. 2005). 

It is also possible to use edited pulse programs such as diffusion-edited experiment to 

select only the signals from macromolecules or transverse relaxation (T2)-edited 

experiment (Carr–Purcell–Meiboom–Gill experiment) for detection of small molecules 

(Dunn et al. 2005). In addition, 2D NMR methods are of paramount importance to facilitate 

the identification of overlapped metabolites (Ebbels and Cavill 2009; Cuperlovic-Culf et al. 

2010). 1H–1H Total correlation spectroscopy (TOCSY) and 1H–13C heteronuclear single 

quantum coherence (HSQC) are the most commonly used 2D NMR experiments in 

metabolomic studies (Ebbels and Cavill 2009; Cuperlovic-Culf et al. 2010). 

Before 1990s, the analysis of intact tissue by traditional NMR techniques was possible 

although the NMR spectra unveiled very low resolution and sensitivity due to the high 

heterogeneity of semi-solid samples which caused differences in magnetic field (DeFeo et 

al. 2011). In addition, molecules having low internal molecular motion lead to formation of 

1H–1H dipolar couplings, quadrupolar interactions and anisotropic chemical shift. With the 

development of high-resolution magic angle spinning (HR-MAS) NMR, in the late 1990s, 

these limitations were overcome. In HR-MAS, the sample is spinning (at 4–6 kHz) at an 

angle of 54.7° (magic angle) with respect to the direction of the external magnetic field 

applied, which increase internal molecular motion allowing the reduction of the line 

broadening effects (Kumar et al. 2014; Moestue et al. 2011; DeFeo et al. 2011; Beckonert 

et al. 2010). Thus, the HR-MAS NMR spectra of tissues show the metabolites present in 

the sample with better resolution and reproducibility, in a non-destructive fashion, allowing 

to perform further analysis (e.g., histopathological analysis or gene expression assays) on 

the same tissue (Moestue et al. 2011). This is particularly important in PCa diagnosis once 

the histopathological evaluation of prostate tissue is mandatory (Fuss and Cheng 2016). 
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Furthermore, it is also possible to perform transcriptomic studies in the same tissue samples 

used in HRMAS NMR metabolomic studies since no transcriptomic data is lost during 

acquisition, as concluded by Santos et al. (2010). 

Beyond the analysis of intact tissue, it is also possible to perform extraction of polar 

and non-polar metabolites for subsequent liquid NMR analysis (Beckonert et al. 2007). The 

spectral pattern obtained for tissue extracts and intact tissue is similar (Kumar et al. 2014). 

The extraction step presents some limitations such as time-consuming, destructive, larger 

amount of tissue required, lower accuracy, and chemical degradation of some metabolites 

(Lenz and Wilson 2007; Kumar et al. 2014). Nevertheless, when tissue extracts are used, it 

is possible to concentrate samples through lyophilization followed by resuspension in a 

small volume of deuterated solvent (Lenz and Wilson 2007; Kumar et al. 2014). In addition, 

some metabolites can only be observed using the extraction protocol, likely due to the 

location of metabolites in highly restricted environments (Dunn et al. 2005). Furthermore, 

the use of extraction protocols has also the advantage to completely stop the metabolism, 

allowing to capture an unbiased snapshot of the metabolism (Kumar et al. 2014; Moestue 

et al. 2011; Dunn et al. 2005). 

 

 

1.2.6 PCa metabolomic studies using tissue by NMR spectroscopy 

 

The first NMR studies performed in PCa tissue have more than twenty years and, 

despite these studies look archaic, they established the basis for the metabolomic studies 

(DeFeo et al. 2011). These studies were mainly performed in tissues extracts or intact 

tissues from prostate before HR-MAS development, showing poor spectral resolution. 

A healthy prostate accumulates and secretes citrate and spermine, once these two 

metabolites are important constituents of prostatic fluid, though both these functions are lost 

during PCa progression (Lima et al. 2016). Several NMR studies confirmed the reduction in 

spermine levels associated with PCa development and progression (Table 1.4; Fig. 1.4) 

(Giskeodegard et al. 2013; Swanson et al. 2008; Stenman et al. 2011). The high levels of 

citrate characteristic of healthy prostate result from the inhibition of mitochondrial aconitase 

(m-aconitase), that prevents citrate oxidation in these cells. m-Aconitase is inhibited by high 

intracellular concentrations of zinc. With PCa development, the zinc levels decrease and 

consequently m-aconitase is no longer inhibited and can catalyze citrate oxidation (Lima et 

al. 2016; Kumar et al. 2016). The reduction in citrate levels, observed in PCa tissues, was 

confirmed in several NMR studies (Table 1.4; Fig. 1.4) (Dittrich et al. 2012; Giskeodegard 

et al. 2013; Swanson et al. 2008; Stenman et al. 2011; Keshari et al. 2011; van Asten et al. 
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2008). In a more recent study, the reduction of citrate and spermine levels was correlated 

with ERGhigh (overexpression of ERG which is associated with cells proliferation and 

invasion) in intact PCa tissues (Hansen et al. 2016) (Table 1.4). One of the most promising 

gene rearrangements for PCa diagnosis is the TMPRSS2: ERG fusion gene. This fusion 

gene is formed by the translocation between the androgen-regulated transmembrane 

protease, serine 2 (TMPRSS2) gene transcriptional promoter and the ETS related 

oncogene (ERG (protooncogene)) (Hansen et al. 2016). This alteration results in an 

increased expression of transcription factors involved in cell proliferation, namely the 

overexpression of ETS genes encoding the E26 family (ERG gene), which affects the 

androgen pathway. This alteration leads to androgen independency and, consequently, 

PCa progression (Rostad et al. 2009). Hansen et al. (2016) correlated the overexpression 

of this fusion gene (ERGhigh) with low levels of citrate and spermine and with an increase 

of PCa aggressiveness (Hansen et al. 2016). 

Other frequent alterations associated with PCa are the increase in choline and/or 

choline-related metabolites and lipid levels (Table 1.4; Fig. 1.4) (Keshari et al. 2011; van 

Asten et al. 2008; Madhu et al. 2014). Choline and choline-related metabolites are the major 

precursors and degradation products of phospholipid membrane assembly and catabolism, 

and since cancer cells show a high proliferative phenotype and high rates of cellular division, 

it was expected to see alterations in those metabolites. Other deviation that can be related 

with the alteration in membrane metabolism is the increase of myo-inositol (Vandergrift et 

al. 2018) and scyllo-inositol levels, which are involved in cell proliferation (Table 1.4; Fig. 

1.4) (Swanson et al. 2008; Stenman et al. 2011). 

Taking into consideration the results that highlight deviations in cellular membrane 

metabolism and since one of the major components of membranes are phospholipids, 

several studies (Komoroski et al. 2011; Keshari et al. 2011) were performed by 31P and 1H 

NMR aiming to evaluate the alterations occurring in phospholipid metabolism in the 

presence of PCa. These studies unveiled significant alterations in the levels of important 

constituents of phospholipid cell membranes, such as phosphoethanolamine and 

glycerophosphoethanolamine (Table 1.4) (Komoroski et al. 2011; Keshari et al. 2011). 

Madhu et al. (2014) determined the alanine levels in prostate tissues by HR-MAS 1H 

NMR spectroscopy (Madhu et al. 2014). Consistent with previous studies, alanine levels 

were increased in PCa tissues (Table 1.4; Fig. 1.4) (Madhu et al. 2014; Tessem et al. 2008; 

van Asten et al. 2008). The results of these studies also revealed an increase in glutamate 

levels in high grade PCa when compared with low grade PCa and benign prostate samples, 

which may be due to an increase in glutaminolysis, as this mechanism can be used by 
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cancer cells to produce energy (Table 1.4; Fig. 1.4) (Madhu et al. 2014). Through 

glutaminolysis, glutamate is converted into α-ketoglutarate, which is further incorporated 

into the tricarboxylic acid cycle (Krebs cycle) leading to citrate formation. However, the 

transformation of α-ketoglutarate into citrate can be accomplished to the reversal of the 

tricarboxylic acid cycle through reductive carboxylation. Hypoxia promotes this 

transformation of oxidation to reductive carboxylation and this shift results in lipid synthesis 

and tumor growth (Lima et al. 2016; Kumar et al. 2016). The significant increase in lactate 

concentration found in prostate cancer biopsies (Tessem et al. 2008; van Asten et al. 2008) 

can be explained by the alteration in energy metabolism due to “Warburg effect”. “Warburg 

effect” is a well-established metabolic alteration associated with cancer development and 

progression that is characterized by an increase in the use of anaerobic pathway (glycolytic 

pathway) to produce energy even in presence of oxygen, which leads to lactate production 

(Lima et al. 2016). Increased levels of lactate may be associated with the tumor stage and 

cancer outcome (Tessem et al. 2008). The intensification in glycolytic flux and the increased 

protein synthesis in cancer cells are possible explanations for the elevated levels of alanine 

(Table 1.4; Fig. 1.4) (Tessem et al. 2008). 
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Table 1.4: Metabolomic studies performed in tissues from PCa patients using NMR technology. 

Analytical 

platform 

PCa group Control group Sample 

treatment 

Statistical 

methods 

Main results Ref. 

HR-MAS 
1H-NMR 

n=15  n=32 benign  Intact Z statistics ↑ Phosphocholine; Glycerolphosphocholine; 

Phosphoethanolamine; 

Glycerophosphoethanolamine  

 

↓ Ethanolamine 

 

(Swanson et al. 

2008) 

HR-MAS 
1H-NMR 

n=16 malignant 

prostate biopsies 

n=82 benign biopsies Intact Linear mixed 

effects model 

procedure 

↑ Lactate; Alanine  

 

 

(Tessem et al. 

2008) 

HR-MAS 
1H-NMR 

n=18 malignant 

prostate needle 

biopsies 

n=30 benign needle 

biopsies 

Intact Two-tailed 

unpaired t-test 

↑ total choline/citrate; choline/creatinine; (glycerol-

phosphocholine +phosphorylcholine)/creatinine; 

lactate/alanine  

 

↓ Citrate/creatinine 

   

(van Asten et 

al. 2008) 

HR-MAS 
1H-NMR 

n=27 from RP n=54 nonmalignant 

from RP 

Intact NA ↑ Omega-6 PUFA 

 

(Stenman et al. 

2009) 
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Analytical 

platform 

PCa group Control group Sample 

treatment 

Statistical 

methods 

Main results Ref. 

HR-MAS 
1H-NMR 

n=16 from patients 

with recurrence after 

prostatectomy  

n=16 from patients 

without recurrence 

after prostatectomy 

Intact PCA Alteration in the levels of spermine, glutamine, 

myo-inositol, phosphoryl choline, scyllo-inositol, 

and glutamate  

 

Metabolic profiles obtained were able to predict 

recurrences with an accuracy of 78%. 

(Maxeiner et al. 

2010) 

HR-MAS 
1H-NMR 

n=13 LG + 

22 HG 

n=14 benign  Intact  Student t test ↑ Phosphocholine and glycerophosphocholine in 

high grade PCa when compared with low grade 

 

↑ Choline + creatinine; phosphocholine; 

glycerophosphocholine; phosphoethanolamine; 

glycerolphosphoethanolamine 

 

↓ Citrate 

 

(Keshari et al. 

2011) 

31P NMR n=8 from 

transurethral 

resections or RP 

n=13 BPH samples 

from transurethral 

resections or RP 

Extraction 

with 

perchloric 

acid 

NA Significant alterations in phosphoethanolamine and 

glycerophosphoethanolamine 

(Komoroski et 

al. 2011) 
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Analytical 

platform 

PCa group Control group Sample 

treatment 

Statistical 

methods 

Main results Ref. 

HR-MAS 
1H-NMR 

n=41 from RP  n=108 nonmalignant 

from RP 

Intact Linear 

Regression 

↑ Choline compounds; Scyllo-inositol 

 

↓ Myo-inositol 

 

(Stenman et al. 

2011) 

HR-MAS 
1H-NMR 

 

n=30 from LG  

+ 81 from HG cancer 

from prostatectomies 

n=47 normal adjacent Intact PLS 

PLS-DA 

↑ (total choline+creatine+polyamines)/ citrate 

↓ Citrate; spermine 

 

The metabolic alterations were correlated with 

Gleason score and can differentiate malignant from 

normal adjacent tissues samples with a sensitivity 

of 86.9% and a specificity of 85.2% 

 

(Giskeodegard 

et al. 2013) 

HR-MAS 
1H-NMR 

n=6 LG + 6 HG  n=10 benign Intact Student t test ↑ Alanine;  

 

↑ Glutamate and total choline in high grade PCa 

(Madhu et al. 

2014) 

HR-MAS 
1H-NMR 

n=95 n=34 benign adjacent 

tissue 

Intact PCA 

PLS-DA 

↓ Citrate and spermine in ERGhigh PCa samples 

 

(Hansen et al. 

2016) 
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6
6 

Analytical 

platform 

PCa group Control group Sample 

treatment 

Statistical 

methods 

Main results Ref. 

HR-MAS 
1H-NMR 

n=6 from patients 

treated with Degarelix 

+ 7 untreated PCa 

from prostatectomies 

n=10 benign from 

untreated patients 

from prostatectomies 

Intact PCA 

OPLS-DA 

↑ Lactate, alanine and total choline in high grade 

PCa when compared with benign samples from 

untreated patients 

 
↓ Lactate and total choline in samples treated with 

Degarelix 

(Madhu et al. 

2016) 

HR-MAS 
1H-NMR 

n=50 patients that 

developed recurrence 

after prostatectomy 

n=60 patients that do 

not develop recurrence 

after prostatectomy 

Intact PLS-DA 

LMM 

Mann–Whitney 

U-tests 

Spearman’s 

rank 

↓ Spermine and citrate associated with increased 

risk of recurrence  

 

↑ Total choline + Creatine /Spermine and total 

Choline + Creatine /Citrate ratios were associated 

with increased risk of recurrence  

 

(Braadland et 

al. 2017) 

HR-MAS 
1H-NMR  

n=365 from 

prostatectomies  

n=15 from BPH 

n=14 from from 

cancer-negative 

patients 

Intact Linear 

regressions  

ANOVA 

Kruskal-Wallis-

Wilcoxon test 

Student’s t-test 

Mann-Whitney-

Wilcoxon test 

Canonical 

analysis 

↑ Myo-inositol 

 

HRMAS NMR-based metabolomics was able to 

predict prostate cancer biochemical recurrence and 

survival time. 

 

(Vandergrift et 

al. 2018) 

↑increased in PCa; ↓decreased in PCa; 1H NMR: proton nuclear magnetic resonance; LLM: Linear mixed modelling; 31P NMR: phosphorus nuclear magnetic resonance; BPH: 
benign prostate hyperplasia; HG: high grade; HR-MAS: high resolution magic angle spinning; LG: low grade; NA: not available; OPLS-DA: orthogonal partial least squares 
discriminant analysis; PCA: principal component analysis; PCa: prostate cancer; PUFA: polyunsaturated fatty acids; RP: radical prostatectomy; TURP: transurethral resection. 
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Figure 1.4: Schematic representation of the main metabolomic alterations associated to PCa 

development based in the NMR metabolomic studies presented in Table 1.4. (G6P, glucose 6-

phosphate; αKG, α-ketoglutarate). 

 

In another study, Stenman et al. (2009) evaluated the levels of polyunsaturated 

omega-6 fatty acids (PUFAs) in nonmalignant and malignant prostate tissue samples by 

HR-MAS 1H NMR. There are two types of PUFAs associated with PCa development: 

omega-3, which are believed to inhibit PCa development, and omega-6, which promote 

PCa development. The results obtained from this study revealed that omega-6 fatty acids 

were only detected in PCa samples and were correlated with Gleason scores and worst 

tumor stages (Table 1.4) (Stenman et al. 2009). 

Metabolomics can also be applied to follow up the patient’s response to 

therapeutics. One of the major concerns of PCa treatment is the development of 

recurrences after treatment. Hence, in order to discriminate the PCa cases that will develop 

recurrences from PCa cases that will not develop recurrence after treatment, Maxeiner et 

al. (2010) compared the metabolic profile at the time of prostatectomy of PCa patients that 

developed recurrence after prostatectomy with that of PCa patients that did not develop 

recurrence (Maxeiner et al. 2010). The results showed that the levels of some metabolites, 

namely spermine, glutamine, myo-inositol, phosphoryl choline, scyllo-inositol, and 

glutamate, previously associated with PCa development, were also altered when comparing 

these two groups of PCa patients. These results indicated that the metabolic alterations 

occurring in the recurrence cases after prostatectomy are similar to that accompanying the 

development of PCa. It was also shown that significant alterations in spermine synthesis, 

phospholipid membrane synthesis and hydrolysis, and energy metabolism were associated 

with the development of PCa recurrence (Table 1.4) (Maxeiner et al. 2010). More recently, 

another study with a similar aim was performed by Braadland et al. (2017). In this study, the 
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increase in the levels of citrate, spermine and total choline + creatine/ spermine and total 

choline + creatine/citrate ratios were associated with an increased risk of recurrence 

(Braadland et al. 2017). 

One of the most frequent treatments for PCa is the use of androgen deprivation 

therapy (Merseburger et al. 2015) to decrease androgen levels and consequently cancer 

remission. The metabolomic effects of a new gonadotropin-releasing hormone antagonist 

(degarelix) were recently studied by HR-MAS 1H NMR (Madhu et al. 2016). In this study, 

malignant tissues from PCa patients treated with degarelix were compared with malignant 

and benign tissues from untreated PCa patients. The results showed a significant reduction 

in levels of lactate and total choline in tissues from patients treated with degarelix which 

may indicate a reversion of the “Warburg effect” (decreased glycolysis), and alteration in 

membrane phospholipid metabolism, which may indicate a reduction of cell division (cancer 

progression). In addition, an increase in lactate, alanine and total choline levels was also 

observed in high grade PCa when compared to benign samples from untreated patients 

(Table 1.4) (Madhu et al. 2016). Complementary information of all aforementioned studies 

is compiled in Table 1.4. 

 

 

1.2.7 Conclusion 

 

Metabolomics is a relatively new “omics” approach that already proved to have a 

tremendous potential for biomarker discovery. Beyond the discovery of new biomarkers for 

PCa detection, metabolomics also allows to find indicative biomarkers of cancer prognosis, 

disease progression, therapeutic response and may also help to identify new therapeutic 

targets, potentially leading to better therapeutic outcomes and improvement on the quality 

of life of treated patients. 

The use of tissues in metabolomic studies allows the evaluation of the specific 

metabolic fingerprint of PCa and the identification of metabolic differences between PCa 

and normal prostate. However, and taking into consideration that PCa is a very complex 

disease, for a reliable diagnosis it will be important to use more than one parameter. 

Focusing in tissue PCa metabolomic studies performed by NMR spectroscopy, the mainly 

reported metabolic alterations included:  

(i) the decrease in citrate and spermine levels, which indicates that prostate cells lose 

their ability to accumulate both metabolites with cancer development; 

(ii) the increase in choline and choline-related compounds which indicates alterations 

in cell membrane synthesis and catabolism. The dysfunction in membrane metabolism was 
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also confirmed by alterations in the levels of phospholipid components and in myo-inositol 

and scyllo-inositol; 

(iii) the increase in lactate and alanine levels which may be due to alterations in energy 

metabolism, probably associated with the “Warburg effect”, and the increase of energy 

demand caused by the high proliferative state of cancer cells; 

(iv) alteration in glutamate levels, once glutaminolysis pathway can be used by cancer 

cells for energy production. 

 

In the future, the results obtained by NMR analysis of prostate tissues have the potential 

to be translated into clinical practice. Furthermore, these results have the potential to be 

correlated with in vivo assays. Despite the potential of NMR-based metabolomics to identify 

and interpret the metabolic alterations occurring in PCa, there are still some challenges that 

need to be addressed in future studies before a new biomarker can be translated to clinical 

practice, namely the evaluation of inter-laboratory and inter-population reproducibility of 

cancer metabolic profile, aiming to prove the specificity of metabolic signature to cancer 

type. The influence of important confounder factors, such as age, lifestyle habits or other 

diseases, that can seriously interfere in the biological interpretation have to be considered. 

Furthermore, the NMR analyses requires expensive instrumentation and specialized 

technicians, which could difficult the implementation of NMR in the clinical practice. 
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Currently, there is a clear limitation in the PCa screening options, regardless of the 

common use of PSA for PCa screening. In fact, PSA biomarker shows important limitations 

which compromises the effectiveness of PCa screening and consequently PCa diagnosis. 

Furthermore, despite the great efforts performed to date, PCa metabolic phenotype is not 

completely characterized. Considering this, the major goals of this work were to uncover 

new potential biomarkers for non-invasive PCa screening and to perform a comprehensive 

metabolic characterization of PCa dysregulations. 

 

To achieve these goals, the following specific objectives have been established:  

 

• To evaluate the performance of volatile compounds, present in urine as candidate 

markers for PCa detection, by headspace-solid-phase microextraction (HS-

SPME)/GC-MS, aiming to disclose a biomarker panel with potential to be used as a 

non-invasive diagnostic tool for PCa. 

 

• To validate the previously proposed PCa biomarker panel and evaluate its site 

specificity in a completely independent set of urine samples collected from PCa 

patients, cancer-free controls and patients diagnosed with other urological cancers, 

namely bladder cancer (BC) and renal cancer (RC). 

 

• To understand the metabolic alterations associated with PCa development, studying 

matched pairs of tumor and adjacent non-malignant tissue by a multi-platform 

untargeted metabolomics approach (GC-MS, 1H NMR spectroscopy and HILIC-

MS/MS), aiming to get a more holistic fingerprint of the PCa metabolic 

dysregulations.  

 

• To deepen the PCa metabolic dysregulations detected in urine by a dual-platform 

untargeted metabolomics approach (GC-MS and 1H NMR spectroscopy), aiming to 

obtain a more complete overview of the excreted metabolites related to PCa 

disease.
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3.1.1 Abstract 

 

Background: The lack of sensitive and specific biomarkers for the early detection of 

prostate cancer (PCa) is a major hurdle to improve patient management. 

Methods: A metabolomics approach based on GC-MS was used to investigate the 

performance of volatile organic compounds (VOCs) in general and, more specifically, 

volatile carbonyl compounds (VCCs) present in urine as potential markers for PCa 

detection. 

Results: Results showed that PCa patients (n = 40) can be differentiated from cancer-free 

subjects (n = 42) based on their urinary volatile profile in both VOCs and VCCs models, 

unveiling significant differences in the levels of several metabolites. The models constructed 

were further validated using an external validation set (n = 18 PCa and n = 18 controls) to 

evaluate sensitivity, specificity and accuracy of the urinary volatile profile to discriminate 

PCa from controls. The VOCs model disclosed 78% sensitivity, 94% specificity and 86% 

accuracy, whereas the VCCs model achieved the same sensitivity, a specificity of 100% 

and an accuracy of 89%. Our findings unveil a panel of 6 volatile compounds significantly 

altered in PCa patients’ urine samples that was able to identify PCa, with a sensitivity of 

89%, specificity of 83%, and accuracy of 86%. 

Conclusions: It is disclosed a biomarker panel with potential to be used as a non-invasive 

diagnostic tool for PCa. 
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3.1.2 Background  

 

Prostate cancer (PCa) ranks second in cancer incidence and fifth in mortality among 

men worldwide.1 Diagnostic strategies currently available for patients with PCa rely on 

prostate biopsy (PB), which is an invasive, unpleasant and potentially harmful procedure, 

potentially missing clinically significant cancers due to tumor heterogeneity.2 Prostate 

cancer detection based on serum PSA with a cut-off of 4.0 ng/ml has limited sensitivity (of 

20.5%) and specificity (ranging from 51 to 91%),3,4 and inability to differentiate aggressive 

from indolent PCa,4 leading to false negatives, to overdiagnosis and consequent 

overtreatment.5 The free/total serum PSA ratio (fPSA/tPSA) has been proposed as an 

alternative. However, it displays the opposite performance, with high sensitivity but low 

specificity.3 Globally, this entails the performance of a large number of prostate biopsies, a 

significant proportion of which is deemed unnecessary. Thus, the free/total PSA ratio is not 

usually employed for risk-stratification of prostate cancer, but only in selected cases. The 

reported values for the sensitivity and specificity of this biomarker are very inconsistent 

among different studies, nevertheless a recent meta-analysis concluded that this biomarker 

shows a sensitivity of 70% and a specificity of 58%.6 Thus, intense efforts have been 

devoted for development of PCa molecular biomarkers, some of which have already 

obtained FDA approval, like prostate cancer antigen 3 (PCA3)7 or circulating tumor cells 

(CTs).7 Notwithstanding, these biomarkers also have important limitations, such as the 

definition of a cut-off value (e.g., PCA3)7 and low abundance at early stages (e.g., CTs).7 

Thus, discovery and validation of novel PCa biomarkers with improved sensitivity, non-

invasive and able to detect early stage disease (when PCa is potentially curable) remains 

an important research aim. 

Metabolomics emerged as one of the most promising approaches for discovery of new 

disease biomarkers as pathological conditions cause disruption of metabolic processes and 

consequently change the production, use and levels of many metabolites, resulting in a 

characteristic “metabolic signature” that can be captured through metabolic profiling. 

Analysis of the volatile part of the metabolome, i.e., the low molecular weight volatile organic 

compounds (VOCs) present in the headspace (gas phase) of clinical samples (e.g., biofluids 

as urine), is a promising new screening tool for several cancers, including PCa.8–10 VOCs 

are end products of cellular activities and alterations in VOCs profile may reflect 

modifications in gene activation, gene expression, proteins and activity of enzymes involved 

in metabolic pathways. These volatile molecules endow biological samples with distinct 

odours which may even be detected by animals with highly sensitive olfactory capabilities, 

such as dogs,11,12 or sophisticated analytical instrumental techniques, such as gas 
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chromatography-mass spectrometry (GC-MS) combined with multivariate statistical 

analysis (MVA).8–10 In this regard, Smith et al.8 studied the urine metabolomics of 13 PCa 

patients and 24 controls using GC-MS, disclosing 91 VOCs and unveiling significant 

differences between PCa and controls in 21 VOCs. However, this study has important 

limitations namely a small sample size and lack of external validation.8 Khalid et al. 

performed the GC-MS volatile profiling of urine from PCa patients using a larger number of 

samples (n = 59 PCa and n = 43 controls). Overall, 196 VOCs were identified from which 

four (2,6-dimethy-7-octen-2-ol, pentanal, 3-octanone, and 2-octanone) were found to be 

statistically different between PCa and control samples.9 More recently, Jimenez-Pacheco 

et al. performed a similar study using 29 PCa urine samples that were compared with 21 

samples from patients with benign prostatic hyperplasia (BPH). In this study, 57 VOCs were 

identified, but only nine significantly differed between the two groups, highlighting furan and 

p-xylene as potential PCa biomarkers.10 Interestingly, 2-octanone8,9 and 2,6-dimethy-

7octen-2-ol9,10 were pointed as urinary PCa biomarkers in more than one study. Taken 

together, these studies provide convincing evidence that volatiles emanating from urine are 

potential biomarkers for PCa detection. Recently, the feasibility and potential of volatile 

signature for diagnosing PCa led to the development of chemical system sensors (so-called 

“electronic nose” or “e-nose”).13,14 “E-noses” are designed to mimic the mammalian olfactory 

system and provide a global characterization of the odorous mixtures.15 Remarkably, the 

application of the “e-nose” technology to discriminate the odour of urine from patients with 

PCa from controls provided better diagnostic performance than serum PSA.13,14 

Herein, we aimed to obtain a more comprehensive metabolomic profiling of volatile 

metabolites in urine from PCa patients, using a metabolomics approach based on 

headspace solid-phase microextraction coupled with GC-MS (HS-SPME/GC-MS). Two 

different sample preparation strategies were considered: (i) direct analysis for VOCs 

detection and (ii) derivatization with O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine 

(PFBHA), prior to HS-SPME/GC-MS analysis, to enhance the sensitive detection of volatile 

carbonyl compounds (VCCs). An external validation set was then used to validate a panel 

of discriminant volatile compounds with clinical potential for PCa diagnosis. To the best of 

our knowledge, this is the first time that VCCs are investigated as urinary PCa biomarkers 

and that a volatile biomarker panel for PCa is validated using an external set of samples. 
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3.1.3 Methods 

 

3.1.3.1 Chemicals 

All chemicals used were of analytical grade. Benzaldehyde (≥99.5%), 2-butanone 

(≥99%), (E)-2-butenal (≥99%), cyclohexanone (≥99%), 2-decanone (≥98%), (E)-2-decenal 

(≥92%), 2,5-dimethylbenzaldhyde (≥99%), 3,4-dimethylcyclohex-3-ene-1-carbaldehyde 

(≥97%), 2,6-dimethyl-6-hepten-2-ol (≥96%), 3,7-dimethylocta-1,6dien-3-ol (≥95%), 4-

fluorobenzaldehyde (≥98%), 2-furfural (≥99%), heptanal (≥92%), 4-heptanone (≥97%), 

hexadecane (≥99%), (E,E)2,4-hexadienal (≥95%), hexanal (≥98%), 2-hexanone (≥98%), 

2hydroxy-2-methyl-1-phenylpropan-1-one (≥97%), 2-methylbutanal (≥90%), 3-

methylbutanal (≥97%), 2-methylcyclopentan-1-one (≥97%), 5-methyl-2-furfural (≥99%), 

methylglyoxal (40% aqueous solution), 5-methylheptan-2-one (≥95%), 2-methylpropanal 

(≥98%), 5-methyl-2-(propan-2-yl) cyclohexyl acetate (≥98%), nonanal (≥95%), 2-nonanone 

(≥97%), (E) -2-nonenal  (≥93%),  octanal (≥98%), 2-octanone (≥98%), pentanal 

(≥97%), (E)-2-pentenal (≥95%), 3-penten-2-one (≥70%), 3-phenylpropionaldehyde (≥95%), 

PFBHA (≥98%), phenylacetaldehyde (≥90%), propanal (≥97%), terpinen-4-ol (≥95%), 

2,6,6,10-tetramethyl-1-oxaspiro[4.5] dec-9-ene (≥90%), and 3,7,7-trimethylbicyclo[4.1.0] 

hept-3-ene (≥97%) were purchased from Sigma–Aldrich (Madrid, Spain). Butanal (≥99%) 

and glyoxal (≥95%) were purchased from Fluka (Madrid, Spain) and 4-hydroxy-2-nonenal 

(≥98%) was purchased from Cayman Chemical (USA). Sodium chloride was obtained from 

VWR (Leuven, Belgium). 

 

3.1.3.2 Subjects 

Early morning urine samples without fasting were collected from PCa patients and 

controls at the Portuguese Oncology Institute of Porto (IPO Porto) and frozen at −80 °C until 

analysis. The study protocol was approved by the local Ethics Committee and all subjects 

provided their signed informed consent prior to enrolment. 

A cohort of 118 men were included in this study: 58 PCa patients (age 52–77 years, mean 

63) and 60 cancer-free control subjects (age 56–66 years, mean 59). Both PCa and control 

groups were randomly divided into two sets: (1) training (n = 40 PCa and n = 42 controls for 

VOCs; n = 40 PCa and n = 40 controls for VCCs) and (2) external validation (n = 18 PCa 

and n = 18 controls for VOCs and VCCs). Control group consisted of subjects with age 

related comorbidities such as hypertension, diabetes, lipid disorders and BPH, but without 

cancer. Detailed information on Gleason score and some important biochemical and clinical 

parameters of PCa patients and control subjects is provided in Table 3.1. 
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Table 3.1: Demographic and clinical data of the PCa patients and cancer-free controls included in the training and validation sets. 

Characteristics Prostate cancer Control 

 Training set VOCs External set 
VOCs 

Training set 
VCCs 

External set 
VCCs 

Training set 
VOCs 

External set 
VOCs 

Training set 
VCCs 

External set 
VCCs 

Number of subjects 40 18 40 18 42 18 40 18 

Mean Age ± SD (years) 64.4 ± 6.4 61.8 ± 5.2 63.7 ± 6.5 63.4 ± 5.3 59.3 ± 3.0 59.6 ± 2.62 59.3 ± 2.8 59.8 ± 2.7 

PSA (ng/mL), n (%)         
<4 3 (7.5%) 1 (5.6%) - 4 (22.2%) - - - - 
4-10 24 (60%) 13 (72.2%) 28(70%) 9 (50%) - - - - 
>10 13 (32.5%) 4 (22.2%) 12 (30%) 5 (27.8%) - - - - 

Gleason score, n (%)         
≤6 6 (15%) 3 (16.7%) 8 (20%) 1 (5.6%) - - - - 
=7 25 (62.5%) 12 (66.7%) 24 (60%) 13 (72.2%) - - - - 
≥8 9 (22.5%) 3 (16.7%) 8 (20%) 4 (22.2%) - - - - 

Clinical stage, n (%)         
I 3 (7.5%) 3 (16.7%) 4(10%) 2 (11.1%) - - - - 
II - 2 (11.1%) 2(4%) - - - - - 
IIA 7 /17.5%) 4 (22.2%) 9(22.5%) 2 (11.1%) - - - - 
IIB 15 (37.5%) 2 (11.1%) 11 (27.5%) 6 (33.3%) - - - - 
III 13 (32.5%) 5 (27.8%) 10 (25%) 8 (44.4%) - - - - 
IV 2 (5%) 2 (11.1%) 4 (10%) - - - - - 

Alcoholism, n (%) 7 (17.5%) 4 (22.2%) 9 (22.5%) 2 (11.1%) 3 (7.1%) - 2 (5%) 1 (5.6%) 

Smoking, n (%) 2 (5%) - 2 (5%) - 5 (11.9%) 2 (11.1%) 6 (15%) 1 (5.6%) 

Obesity, n (%) 6 (15%) 4 (22.2%) 7 (17.5%) 3 (16.7%) 7 (16.7%) 3 (16.7%) 7 (17.5%) 2 (11.1%) 

Cardiac condition, n (%) 5 (12.5%) 6 (33.3%) 7 (17.5%) 4 (22.2%) - 1 (5.6%) - 1 (5.6%) 

AH, n (%) 21 (52.5%) 8 (44.4%) 19 (47.5%) 10 (55.6%) 14 (33.3%) 9 (50%) 20 (50%) 3 (16.7%) 

Dyslipidemia, n (%) 16 (40%) 8 (44.4%) 14 (35%) 10 (55.6%) 16 (38.1%) 9 (50%) 16 (40%) 8 (44.4%) 

Diabetes, n (%) 9 (22.5%) 3 (16.7%) 8 (20%) 4 (22.2%) 6 (14.3%) 1 (5.6%) 5 (12.5%) 1(5.6%) 

HTG, n (%) 2 (5%) - 1 (2.5%) 1 (5.6%) 1 (2.4%) - - 1 (5.6%) 

HC, n (%) 3 (7.5%) - 1 (2.5%) 2 (11.1%) 4 (9.5%) 1 (5.6%) 3 (7.5%) 2 (11.1%) 

BPH, n (%) - - - - 13 (31%) 4 (22.2%) 11 (27.5%) 4 (22.2%) 

Prostatitis, n (%) - - - - 1 (2.4%) 1 (5.6%) 2 (5%) - 

AH: Arterial Hypertension; BPH: Benign prostatic hyperplasia; HC: Hypercholesteremia; HTG: Hypertriglyceridemia.
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3.1.3.3 Sample preparation and metabolites extraction 

Urine samples were thawed at 4 °C. For VOCs analysis, 1 mL of sample was placed in 

a 10 mL glass vial with 20 µL of internal standard (IS) (10 μg/mL 4-fluorobenzaldehyde in 

ultrapure water) and NaCl (0.27 g). To optimise the extraction conditions, a central 

composite design (CCD) was performed (data not shown). The optimal extraction 

conditions, using divinylbenzene/carboxen/ polydimethylsiloxane (DVB/CAR/PDMS) fiber 

coating, were 11 min of incubation and 30 min of extraction at 44 °C under continuous 

stirring (250 rpm). 

For VCCs analysis, 250 µL of urine were placed in a 10 mL glass vial with 5 µL of IS 

(10 μg/mL 4-fluorobenzaldehyde in ultrapure water) and 7.5 µL of the derivatizing agent 

PFBHA (40 g/L in ultrapure water). Extraction was performed according to the conditions 

previously optimised in our lab16 using a CombiPAL automatic autosampler (Varian, Palo 

Alto, CA) and a polydimethylsiloxane/divinylbenzene (PDMS/DVB) fiber coating. Briefly, 

urine samples were incubated at 62 °C during 6 min, followed by extraction of volatiles at 

the same temperature during 51 min, under continuous stirring (250 rpm). After extraction, 

the fiber was inserted into the GC system for thermal desorption of the analytes at 250 °C 

during 5 min. 

In both approaches, all samples were randomly injected, with the quality control (QCs) 

samples being injected at the same conditions on every eight samples. QCs were prepared 

as aliquots of a pool of all urine samples (PCa and controls) considered in this study. 

 

3.1.3.4 GC-MS analysis  

A Scion 436-gas chromatograph coupled to a Bruker single quadrupole (SQ) equipped 

with a Scion SQ ion trap mass detector and a Bruker Daltonics MS workstation software 

version 6.8, with a Rxi-5Sil MS (30 m × 0.25 mm × 0.25 μm) column from RESTEK were 

used. Briefly, the carrier gas was helium C-60 (Gasin, Portugal) (flow rate 1 mL/min) and 

the injector port was heated at 230 °C. The oven temperature was fixed at 40 °C for 1 min, 

increasing to 250 °C (rate 5 °C/min), held for 5 min, followed by increasing to 300 °C (rate 

5 °C/min) and held for 1 min. The temperatures of transfer line, manifold and trap were 280 

°C, 50 °C and 180 °C, respectively. The emission current was 50 μA and the electron 

multiplier was set in relative mode to an auto tune procedure. All mass spectra were 

acquired in the electron impact mode (270 °C). The analysis was performed in full scan 

mode and the mass range used was 40–350 m/z, with a scan rate of 6 scan/s.17 

To analyse VCCs, a 436-GC model (Bruker Daltonics) coupled to an EVOQ triple 

quadrupole mass spectrometer (Bruker Daltonics) and a Bruker MS workstation software 
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version 8.2 were used. The chromatographic separation was accomplished using a fused 

silica capillary column (Rxi-5Sil MS; 30 m × 0.25 mm × 0.25 μm; Restek Corporation, U.S., 

Bellefonte, Pennsylvania) and high purity helium C-60 (Gasin, Portugal) as carrier gas (flow 

rate 1 mL/min). The oven temperature was held at 40 °C for 1 min, increasing to 250 °C 

(rate 5 °C/min), held for 5 min, finally increasing to 300 °C (rate 20 °C/ min). The temperature 

of transfer line and manifold were 260 °C and 40 °C, respectively. The emission current was 

50 μA and the electron multiplier was set in relative mode to an auto tune procedure. All 

mass spectra were acquired in the electron impact mode (270 °C). Data acquisition was 

performed in full scan mode and a 50–600 m/z mass range was used.16 

The metabolite identification was accomplished by comparison of the MS spectra with 

standards (whenever available), the National Institute of Standards and Technology (NIST 

14) database spectral library, and comparison of the experimental and theory (literature) 

Kovats index. 

 

3.1.3.5 Data pre-processing 

Before statistical analysis, the data was pre-processed using MZmine 2,18 including 

baseline correction, peak detection, chromatogram deconvolution and alignment. The 

parameters used for pre-processing of VOCs data were: RT range 2.0–29.0 min, m/z 

range 50–400, MS data noise level 1.0 × 105, m/z tolerance 0.2, chromatogram baseline 

level 1.0 × 102 and peak duration range 0.06–0.70 min; whereas for VCCs were: RT range 

6.5–38.0 min, m/z range 50–600, MS data noise level 5.0 × 105, m/z tolerance 0.2, 

chromatogram baseline level 1.0 × 104 and peak duration range 0.06–0.70 min. In both 

approaches, all RT-m/z pairs with a relative standard deviation greater than 30% in QCs, 

as well as RT-m/z pairs identified as contaminants (from column, fiber, among others), 

were manually removed from the matrix. The obtained data were normalised by the total 

area of the chromatograms and the final matrix was scaled to pareto. Furthermore, to 

reduce the variation from uncontrolled confounding factors and simplify the data, a 

variable selection method based in a univariate test,19 namely t-test, was performed using 

MetaboAnalyst.20 Consequently, all variables with p-value > 0.05 were removed from the 

matrix. 

 

3.1.3.6 Statistical analysis 

The statistical analysis strategy used for VOCs and VCCs data was similar and included 

multivariate and univariate statistical tests. From all available samples, 70% were used for 

the training set and 30% were randomly selected for the external set. MVA was performed 
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using the training set and included principal component analysis (PCA) and partial least 

squares discriminant analysis (PLS-DA) in SIMCA-P 15 (Umetrics, Sweden). The 

robustness of the PLS-DA models was confirmed through 7-fold cross validation and 

permutation test (200 random permutations of Y-observations, 2 components) (SIMCA-P 

15, Umetrics, Sweden). To test the validity of the created models, an internal (training set) 

and external (external set) validation was performed. For internal and external validations, 

receiver operating characteristic curves (ROC), area under the curve (AUC), sensitivity, and 

specificity were computed (MetaboAnalyst)20 for both PLS-DA models (VOCs and VCCs). 

The samples of the external set were classified as cancer or controls, taking into 

consideration the PLS-DA models obtained using the training sets and the sensitivity, 

specificity and accuracy of both PLS-DA models (VOCs and VCCs) were computed.21  

After MVA, all metabolites with VIP (Variable Importance to the Projection) greater than 

one were subjected to univariate analysis (GraphPad Prism 6, USA), including a normality 

test (Shapiro-Wilk test) followed by unpaired Student’s t-test with Welch correction test, for 

normal distribution, or unpaired Mann–Whitney U-test, for non-normal distribution. 

Percentage of variation, uncertainty of the percentage of variation, and effect size and the 

standard error were also determined.22 For all significantly altered metabolites (p value < 

0.05 and effect size higher than the standard error), receiver operating characteristic curves 

(ROC), area under the curve (AUC), sensitivity, and specificity were also computed 

(MetaboAnalyst).20 Bonferroni correction was used to adjust p values in multiple 

comparisons.23 Multivariate ROC exploratory analysis (Metaboanalyst)20 was used to define 

a small panel of discriminant metabolites with high accuracy for prostate cancer detection, 

envisaging a possible translation into clinics using an “e-nose”. The PLS-DA algorithm was 

used to evaluate the importance of each discriminant metabolite based on VIP scores 

through repeated random sub-sampling cross validation. The top important metabolites 

were used to build a PLS-DA model which was validated through ROC analysis using the 

training and external sets. 

To better understand the biological relevance of the significantly altered VOCs and 

VCCs, a metabolic pathway analysis using the MetPa tool was performed in 

Metaboanalyst.20 Finally, to search for possible correlations between the metabolites 

significantly altered in PCa, Spearman’s rank correlation coefficient was computed for the 

set of identified and putatively annotated statistically significant compounds and 

represented in a heatmap, using R software (version 3.5.1).24 Spearman’s rank correlation 

coefficient was also computed between age and the set of metabolites found altered in PCa 

compared to controls. 
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3.1.4 Results 

 

3.1.4.1 Urinary volatile profile of PCa patients vs. controls 

In this study, a HS-SPME/GC-MS method was employed to evaluate differences in the 

urinary volatile profile of PCa patients compared with controls. To accomplish a more 

comprehensive evaluation of the urinary volatilome, we used two different sample 

preparation techniques which enabled the identification of 122 VOCs and 148 VCCs (seven 

common compounds were found). 

MVA was used to evaluate the reproducibility of both analytical strategies and the 

discriminant capability of the PLS-DA models created using the training set. The QC 

samples were closely clustered in the PCA scores scatter plot (Fig. S1), which confirmed 

the analytical reproducibility of both methods. For construction of the PLS-DA models, a 

variable selection method was performed (VOCs: 3232 variables x 82 samples; VCCs: 246 

variables x 80 samples) to improve the prediction power. In Fig. 3.1, the discriminant 

capability of the PLS-DA models, after variable selection, is clearly observed (VOCs model: 

LV = 2; R2X = 0.172; R2Y = 0.776; Q2 = 0.599; VCCs model: LV = 2; R2X = 0.354; R2Y = 

0.534; Q2 = 0.443). Model robustness was also confirmed through permutation testing (Fig. 

S2). In the internal validation, VOCs PLS-DA model showed an AUC of 0.975, a sensitivity 

of 92% and specificity of 100% and the VCCs model unveiled an AUC of 0.878, a sensitivity 

of 71% and specificity of 91% (Fig. 3.1). 

Furthermore, an external validation set was used to confirm the validity of the training 

models. For VOCs and VCCs, among 18 PCa samples, 14 were accurately classified and 

four were poorly classified. On the other hand, 17 control samples were accurately classified 

and only one was poorly classified for VOCs, whereas all 18 control samples were correctly 

classified for VCCs (Table S3). Thus, taking into consideration these results, a sensitivity of 

78%, a specificity of 94% and an accuracy of 86% was obtained for VOCs, whereas VCCs 

disclosed equal sensitivity, a specificity of 100% and an accuracy of 89%. For VOCs, from 

a total of 64 metabolites with VIP > 1,31 were found significantly different between the two 

groups (PCa vs. control). The discriminant VOCs included three aldehydes, six ketones, 

two alcohols, two monoterpene alcohols, one alkene, one cycloalkane, two terpenes, 

among others, and 11 unidentified compounds (Table 3.2). Regarding VCCs analysis, 21 

metabolites showed VIP > 1 and 12 significantly differed between PCa and control groups. 

The discriminant VCCs included two alpha-ketoaldehydes, one alkanal, one alkenal, two 

aromatic aldehydes, three ketones, one alkane and two unidentified compounds (Table 3.3). 

The chromatographic characteristics considered for identification of VOCs and VCCs are 

displayed in Tables S1 and S2, respectively. AUC values were superior to 0.6 for all 
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statistically significantly altered metabolites (Tables 3.2 and 3.3). The sensitivity and 

specificity of the individual metabolites was also determined and, despite the lower 

individual sensitivity and specificity found for the majority of the metabolites when compared 

to the one obtained for the models (Fig. 3.1 and Table S3), all metabolites disclosed 

sensitivity and specificity greater than 50 and 70%, respectively (Tables 3.2 and 3.3). 

 Age significantly differed between PCa and controls in VOCs (Mann–Whitney test p-

value = 0.0002) and VCCs (Mann–Whitney test p-value = 0.0022) training sets (Table 3.1). 

Hence, a possible influence of age in the set of metabolites found altered in PCa compared 

to controls (Tables 3.2 and 3.3) was investigated through Spearman correlation, unveiling 

no statistically relevant correlations (|r| ≤ 0.36) (Table S4). In addition, the number of 

individuals with arterial hypertension (AH) was higher in PCa group compared to controls in 

the VOCs training set (Table 3.1). The impact of AH on urine volatile profile was evaluated 

in the control group (AH n = 14 vs. non-HA n = 28), revealing no predictive power (Q2 = 

−0.145) in the PLS-DA model (Fig. S3). Taking into consideration these results, no age- and 

AH-related changes were found in the urinary volatile signature of PCa patients. 
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Figure 3.1: a PLS-DA scores scatter plot (Pareto scaling; 2 components) obtained for VOCs training 

model of PCa patients (n = 40, squares) vs. cancer-free controls (n = 42, circles), after variable 

selection; b Assessment of the diagnostic performance of the PLS-DA model obtained for VOCs 

using the training set (AUC = 0.975; sensitivity = 92%; specificity = 100%) and the external set (AUC 

= 0.898; sensitivity = 78%; specificity = 94%) through ROC analysis; c PLS-DA scores scatter plot 

(Pareto scaling; 2 components) obtained for VCCs training model of PCa patients (n = 40, squares) 

vs. cancer-free controls (n = 40, circles), after variable selection; d Assessment of the diagnostic 

performance of the PLS-DA model obtained for VCCs using the training set (AUC = 0.878; sensitivity 

= 71%; specificity = 97%) and the external set (AUC = 0.944; sensitivity = 78%; specificity = 100%) 

through ROC analysis. 
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Table 3.2: List of VOCs significantly altered in PCa group compared to controls. 

Chemical name 

(IUPAC) or common 

name 

p-value 
Variation 

± uncertainty (%) 

Effect size 

± ESSE 
AUC Spec Sens HMDB29 Matrices  

Potential 

biochemical 

pathway 

Aldehydes 

Hexanal L1 0.0313 ↓ 14.62 ± 6.77 ↓ 0.53 ± 0.45 0.641 0.76 0.51 HMDB0005994 

Blood; 

Cerebrospinal 

fluid; Feces; 

Saliva; Urine29 

Steroid hormone 

biosynthesis20 

3,4-Dimethylcyclohex-3-

ene-1-carbaldehyde L1 
0.0004B ↓ 24.09 ± 8.68 ↓ 0.71 ± 0.46 0.730 0.84 0.61 NA - - 

2,5-Dimethyl-

benzaldehyde L1 
<0.0001B ↑ 49.36 ± 9.90 ↑ 0.91 ± 0.47 0.786 0.87 0.64 HMDB0032014 - 

Alcohols and fatty 

acids 

metabolism40,48  

Ketones 

Hexan-2-one L1 (2-

Hexanone) 
0.0194 ↓ 23.42 ± 10.77 ↓ 0.56 ± 0.45 0.656 0.77 0.53 HMDB0005842 Urine; Feces29  

Fatty acid 

metabolism41  

2-Methylcyclopentan-1-

one L1 
0.0129 ↓ 31.26 ± 12.85 ↓ 0.65 ± 0.46 0.662 0.78 0.55 NA - 

Fatty acid 

metabolism41  

4-Methylhexan-3- 

one L2 
0.0022 ↓ 16.49 ± 6.17 ↓ 0.66 ± 0.46 0.701 0.82 0.59 NA - 

Fatty acid 

metabolism41  

5-Methylheptan-2- 

one L1 
0.0073 ↓ 21.40 ± 11.34 ↓ 0.48 ± 0.45 0.677 0.80 0.51 NA Cell lines40 

Fatty acid 

metabolism41  
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Chemical name 

(IUPAC) or common 

name 

p-value 
Variation 

± uncertainty (%) 

Effect size 

± ESSE 
AUC Spec Sens HMDB29 Matrices  

Potential 

biochemical 

pathway 

4,6-Dimethylheptan-2-

one L2 
0.0174 ↓ 17.04 ± 6.67 ↓ 0.63 ± 0.46 0.658 0.76 0.55 NA - 

Fatty acid 

metabolism41 

2-Hydroxy-2-methyl-1-

phenylpropan-1-one L1 
0.0123 ↓ 11.90 ± 4.03 ↓ 0.71 ± 0.46 0.662 0.78 0.55 NA - - 

Alcohols 

2,6-Dimethyl- 

6-hepten-2-ol L1 
0.0002B ↓ 36.42 ± 12.89 ↓ 0.78 ± 0.46 0.748 0.84 0.63 NA - Lipid metabolism40  

1-Methyl-4-propan-2-

ylcyclohex-2-en-1-ol L2 
0.0026 ↓ 13.49 ± 5.75 ↓ 0.57 ± 0.45 0.698 0.81 0.57 NA - Lipid metabolism40  

Monoterpene alcohols 

3,7-Dimethylocta-1,6-

dien-3-ol (Linalool)L1 
0.0355 ↓ 28.00 ± 13.53 ↓ 0.55 ± 0.45 0.635 0.75 0.51 HMDB0036100 Feces29  Lipid metabolism29  

4-Methyl-1-propan-2-

ylcyclohex-3-en-1-ol L1 

(Terpinen-4-ol) 

<0.0001B ↓ 28.84 ± 8.35 ↓ 0.91 ± 0.47 0.766 0.87 0.65 HMDB0035833 
Feces; Cell 

lines29, 40  
Lipid metabolism29  

Alkenes 

4-Methyldec-1-ene L2 

 
0.0321 
 

↓ 18.31 ± 9.75 
 

↓ 0.47 ± 0.45 
 

0.635 
 

0.75 
 

0.52 
 

NA 
 

- 
 

- 
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Chemical name 

(IUPAC) or common 

name 

p-value 
Variation 

± uncertainty (%) 

Effect size 

± ESSE 
AUC Spec Sens HMDB29 Matrices  

Potential 

biochemical 

pathway 

Cycloalkenes 

2,2,7,7-Tetramethyl-

tricyclo[6.2.1.0¹,⁶]-

undeca-3,5,9-triene 

(4,5,9,10-dehydro-

isolongifolene) L2 

0.0379 ↓ 15.98 ± 8.18 ↓ 0.48 ± .045 0.634 0.76 0.50 HMDB0059829 Saliva29  
Steroid  

Metabolism49 

Terpenes 

3,7,7-Trimethylbicyclo 

[4.1.0] hept-3-ene (3-

Carene) L1 

0.0108 ↓ 16.72 ± 6.46 ↓ 0.64 ± 0.46 0.672 0.78 0.54 HMDB0035619 Feces29 Lipid metabolism29 

3-Methyl-6-(propan-2-

ylidene)cyclohex-1-ene 

(Isoterpinolene) L2 

0.0062 ↓ 18.79 ± 8.17 ↓ 0.58 ± 0.45 0.676 0.79 0.56 HMDB0061938 Saliva29 Lipid metabolism29  

Others 

2,2,2,8a-Tetramethyl-

3,4,4a,5,6,8a-hexahydro-

2H-chromene 

(Dihydroedulan IA) L2 

0.0251 ↓ 12.58 ± 5.46 ↓ 0.56 ± 0.45 0.629 0.77 0.52 NA - - 

5-Methyl-2-(propan-2-

yl)cyclohexyl acetate L1 

(Menthyl acetate)  

0.0139 ↓ 12.89 ± 5.09 ↓ 0.61 ± 0.45 0.662 0.77 0.54 HMDB0041264 - Lipid metabolism29  
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Chemical name 

(IUPAC) or common 

name 

p-value 
Variation 

± uncertainty (%) 

Effect size 

± ESSE 
AUC Spec Sens HMDB29 Matrices  

Potential 

biochemical 

pathway 

2,6,6,10-Tetramethyl-1-

oxaspiro[4.5]dec-9-ene 

(Theaspirane) L1 

0.0096 ↓ 13.36 ± 5.23 ↓ 0.62 ± 0.45 0.668 0.78 0.55 HMDB0036823 Urine29  

Energetic 

metabolism; cell 

signaling; 

membrane 

stabilization29 

Unidentified VOCs 

Unknown 1 L4 0.0137 ↓ 12.70 ± 6.38 ↓ 0.48 ± 0.45 0.661 0.77 0.53 NA - - 

Unknown 2 L4 <0.0001B ↓ 49.99 ± 17.13 ↓ 0.88 ± 0.47 0.822 0.92 0.73 NA - - 

Unknown 3 L4 0.0006B ↓ 23.54 ± 8.13 ↓ 0.74 ± 0.46 0.727 0.84 0.62 NA - - 

Unknown 4 L4 <0.0001B ↓ 55.31 ± 13.34 ↓ 1.30 ± 0.49 0.883 0.95 0.80 NA - - 

Unknown 5 L4 0.0031 ↓ 14.50 ± 6.14 ↓ 0.58 ± 0.45 0.695 0.81 0.58 NA - - 

Unknown 6 L4 <0.0001B ↓ 71.24 ± 10.61 ↓ 1.12 ± 0.48 0.768 0.86 0.66 NA - - 

Unknown 7 L4 0.0093 ↓ 15.01 ± 6.08 ↓ 0.61 ± 0.45 0.665 0.77 0.54 NA - - 

Unknown 8 L4 0.0056 ↓ 16.23 ± 7.55 ↓ 0.53 ± 0.45 0.684 0.81 0.60 NA - - 

Unknown 9 L4 <0.0001B ↓ 16.12 ± 6.57 ↓ 0.60 ± 0.45 0.808 0.90 0.70 NA - - 

Unknown 10 L4 0.0205 ↓ 16.39 ± 7.42 ↓ 0.55 ± 0.45 0.659 0.76 0.54 NA - - 

Unknown 11 L4 0.0043 ↓ 21.05 ± 7.98 ↓ 0.69 ± 0.46 0.677 0.78 0.55 NA - - 

The statistical significance (p-values), percentage of variation, effect size (ES), standard error (ESSE), AUC, specificity (spec.) and sensitivity (sens.) are represented for each 
VOC, as well as the HMDB (human metabolome database) code (when available), the matrices where the compound was previously found and the potential biochemical pathways 
where the compound participates. NA not available. L1Identified metabolites (GC-MS analysis of the metabolite of interest and a chemical reference standard of suspected 
structural equivalence, with all analyses performed under identical analytical conditions within the same laboratory).54 L2 Putatively annotated compounds (spectral (MS) similarity 
with NIST database), when standards were not commercially available.54; L4 Unidentified54; BAlterations remaining significant after Bonferroni correction, with cut-off p-value of 
7.69 × 10−4 (0.05 divided by 65 analysed VOCs). 
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Table 3.3: List of VCCs significantly altered in PCa group compared to controls. 

Chemical name 

(IUPAC) or common 

name 

p-value 
Variation  

± uncertainty (%) 

Effect size  

± ESSE 
AUC Spec. Sens HMDB29 Matrices  

Potential 

biochemical 

pathway 

Alpha-ketoaldehydes 

Oxaldehyde L1 

(Glyoxal) 
0.0342 ↓ 8.67 ± 4.23 ↓ 0.48 ± 0.44 0.612 0.73 0.48 NA - 

Peroxidation of 

polyunsaturated 

fatty acids50 

2-Oxopropanal L1 

(Methylglyoxal/ 

Pyruvaldehyde) 

0.0101 ↓ 22.35 ± 9.58 ↓ 0.59 ± 0.45 0.638 0.76 0.53 HMDB01167 Urine; Blood29  

Pyruvate 

metabolism; 

Glycine, serine 

and threonine 

metabolism50 

Alkanals 

Decanal L1 0.0210 ↓ 18.28 ± 7.52 ↓ 0.60 ± 0.45 0.649 0.76 0.55 HMDB0011623 
Saliva; Feces; 

Urine; Blood29  

Alcohols and fatty 

acids metabolism; 

amino acids and 

carbohydrate 

catabolism40, 48 

Alkenals 

But-2-enal L1 

(2-Butenal) 

 

0.0040 

 

↓ 22.64 ± 7.33 

 

↓ 0.78 ± 0.46 

 

0.686 

 

0.78 

 

0.56 

 

HMDB0034233 

 

Feces; Saliva29 

 

Lipid 

peroxidation51,52 
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Chemical name 

(IUPAC) or common 

name 

p-value 
Variation  

± uncertainty (%) 

Effect size  

± ESSE 
AUC Spec. Sens HMDB29 Matrices  

Potential 

biochemical 

pathway 

Alkanes 

Hexadecane L1 0.0308 ↑ 30.23 ± 10.86 ↑ 0.54 ± 0.45 0.642 0.76 0.51 HMDB33792 Feces; Saliva29  NA 

Ketones 

Butan-2-one L1 

(2-Butanone) 
0.0003B ↑ 39.88 ± 8.81 ↑ 0.84 ± 0.45 0.732 0.83 0.61 HMDB0000474 

Saliva; Feces; 

Urine; Blood10,29  

Fatty acid and 

carbohydrate 

metabolisms53 

 

Pentan-2-one L1 

(2-Pentanone) 
0.0356 ↑ 53.36 ± 18.02 ↑ 0.52 ± 0.45 0.638 0.75 0.51 HMDB34235 

Saliva; Feces;  

Urine29 

Fatty acid 

metabolism41 

 

Cyclohexanone L1 0.0021B ↑ 30.89 ± 8.65 ↑ 0.69 ± 0.45 0.704 0.82 0.59 HMDB0003315 Feces29 
Fatty acid  

metabolism41 

Aromatic aldehydes 

3-Phenylpropanal L1 

(3-Phenyl-

propionaldehyde) 

<0.0001B ↑ 38.35 ± 7.11 ↑ 1.01 ± 0.47 0.757 0.85 0.65 HMDB33716 - 

Alcohols and fatty 

acids metabolism; 

amino acids and 

carbohydrate 

catabolisms40, 48  

2-Phenyl-

acetaldehydeL1 

(Phenyl-acetaldehyde)  

<0.0001B ↑ 50.66 ± 15.08 ↑ 0.60 ± 0.45 0.765 0.85 0.65 HMDB06236 Feces29  
Phenylalanine 

metabolism20 
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Chemical name 

(IUPAC) or common 

name 

p-value 
Variation  

± uncertainty (%) 

Effect size  

± ESSE 
AUC Spec. Sens HMDB29 Matrices  

Potential 

biochemical 

pathway 

Unidentified VCCs 

Unknown 12 L4 0.0026 ↑ 136.48 ± 25.12 ↑ 0.72 ± 0.45 0.698 0.81 0.58 NA - - 

Unknown 13 L4 0.0126 ↓ 21.71 ± 8.37 ↓ 0.65 ± 0.45 0.669 0.78 0.54 NA - - 

The statistical significance (p-values), percentage of variation, effect size (ES), standard error (ESSE), AUC, specificity (spec.) and sensitivity (sens.) are represented for each 
VOC, as well as the HMDB (human metabolome database) code (when available), the matrices where the compound was previously found and the potential biochemical pathways 
where the compound participates. NA not available. L1Identified metabolites (GC-MS analysis of the metabolite of interest and a chemical reference standard of suspected 
structural equivalence, with all analyses performed under identical analytical conditions within the same laboratory).54 L2 Putatively annotated compounds (spectral (MS) similarity 
with NIST database), when standards were not commercially available.54; L4 Unidentified54; BAlterations remaining significant after Bonferroni correction, with cut-off p-value of 
0.0025 (0.05 divided by 20 analysed VCCs). 
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3.1.4.2 Definition of a multi-biomarker panel for PCa diagnosis 

The smallest panel of metabolites that best predict PCa comprised 6 metabolites, 

namely hexanal, 2,5-dimethylbenzaldehyde, 4-methylhexan-3-one, dihydroedulan IA, 

methylglyoxal and 3-phenylpropionaldehyde. This panel showed an AUC of 0.856, a 

sensitivity of 72%, a specificity of 96% and an accuracy of 79% taking into consideration 

the internal validation (Fig. 3.2). Regarding the external validation set, the 6-biomarker 

panel showed an AUC of 0.904, a sensitivity of 89%, a specificity of 83% and an accuracy 

of 86% (Fig. 3.2 and Table S5). 

Although integration of volatile compounds in specific biochemical pathways is still 

difficult to accomplish, MetPA tool20 was used for identification of the most relevant 

metabolic pathways where the discriminant compounds are involved. The results revealed 

that methylglyoxal is involved in pyruvate metabolism and glycine, serine and threonine 

metabolism, phenylacetaldehyde in phenylalanine metabolism and hexanal in steroid 

hormone biosynthesis (Fig. S4). 

To overcome the lack of knowledge about the role of volatile compounds in the 

metabolic pathways, Spearman’s correlation indexes were computed using all identified 

metabolites (L1 and L2 in Tables 3.2, 3.3, S1 and S2) significantly altered in urine of PCa 

patients (Fig. 3.3). The magnitude and the sign of correlations can provide identification of 

metabolites in the same metabolic pathway or under some common regulatory 

mechanisms. Stronger positive correlations (r > 0.7 and p < 0.0001) were observed for 

2,6,6,10-tetramethyl-1-oxaspiro[4.5]dec-9-ene with 5-methyl-2-(propan-2-yl)cyclohexyl 

acetate (r = 0.75), hexadecane with cyclohexanone (r = 0.72), 3-phenylpropionaldehyde 

with cyclohexanone (r = 0.77), 3-phenylpropionaldehyde with hexadecane (r = 0.71) and 3-

phenylpropionaldehyde with phenylacetaldehyde (r = 0.76).  

 

 

Figure 3.2: Description, % of variation and assessment of the diagnostic performance of the 6-

biomarker panel using the training (AUC = 0.856; sensitivity = 72%; specificity = 96%) and the 

external (AUC = 0.904; sensitivity = 89%; specificity = 83%) sets through ROC analysis. 
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Figure 3.3: Heatmap with the Spearman’s correlations among the 30 identified and putatively 

identified metabolites significantly altered. C1: 2-hexanone; C2: hexanal; C3: 2-methylcyclopentan-

1-one; C4: 4-methylhexan-3-one; C5: 5-methylheptan-2-one; C6: 4-methyldec-1-ene; C7: 3,7,7-

trimethylbicyclo[4.1.0] hept-3-ene; C8: 2,6-dimethyl-6-hepten-2-ol; C9: 3-methyl-6-(propan-2-

ylidene)cyclohex-1-ene; C10: 4,6-dimethylheptan-2-one; C11: 3,7-dimethylocta-1,6-dien-3-ol; C12: 

3,4-dimethylcyclohex-3-ene-1-carbaldehyde; C13: 1-methyl-4-propan-2-ylcyclohex-2-en-1-ol; C14: 

terpinen-4-ol; C15: 2,5-dimethylbenzaldehyde; C16: 2-hydroxy-2-methyl-1-phenylpropan-1-one; 

C17: dihydroedulan IA; C18: 5-methyl-2-(propan-2-yl)cyclohexyl acetate; C19: 2,6,6,10-tetramethyl-

1-oxaspiro[4.5]dec-9-ene; C20: 4,5,910-dehydroisolongifolene; C21: 2-butanone; C22: 2-pentanone; 

C23: cyclohexanone; C24: hexadecane; C25: phenylacetaldehyde; C26: 3-phenylpropionaldehyde; 

C27: 2-butenal; C28: decanal; C29: glyoxal; C30: methylglyoxal 
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3.1.5 Discussion  

 

In this study, two HS-SPME/GC-MS approaches were used to more comprehensively 

uncover the volatile profile of urine from PCa patients compared with previous reports,8–10 

unveiling a total of 263 different volatile compounds. Multivariate analysis showed that both 

VOCs and VCCs urinary signature allowed for accurate discrimination between PCa and 

control groups. A major strength of this study lies in its design, with the inclusion of an 

external validation set to validate the models obtained through MVA of the training sets, 

after variable selection. These external validation sets disclosed satisfactory sensitivity 

(78% for VOCs and VCCs), high specificity (94% for VOCs and 100% for VCCs) and high 

accuracy (86% for VOCs and 89% for VCCs). Interestingly, all false negatives observed in 

VOCs model were from obese and/or alcoholic subjects, whereas the false positive was a 

control with prostatitis (Table 3.1). Among the four false negatives observed in VCCs model, 

three were also obese subjects and one with ischemic heart disease, which may 

compromise renal function (Table 3.1). These confounding factors might justify the 

misclassifications. Notwithstanding, specificity and accuracy were superior to previously 

published in similar studies.8,9 Furthermore, individually, all discriminant metabolites 

disclosed sensitivity (ranging from 48 to 80%; Tables 3.2 and 3.3) higher than the one 

reported for serum PSA (20.5%).4 

The idea of using multiple biomarkers rather than a single biomarker has gained 

strength as a means to improved performance,25 since the metabolomic signature of a 

disease is comprised of groups of connected metabolites that change in concert.26 

Furthermore, this approach ensures that an arbitrary change in a single metabolite will not 

lead to a false diagnosis.26 In line with this, a biomarker panel was herein defined consisting 

in the combination of 6 discriminatory metabolites. A small panel of biomarkers was 

selected in this work envisaging the development of a sensing material27 tuned in specificity 

and selectivity for these compounds to be applied in an “e-nose” in near future. This 6-

biomarker panel unveiled good prediction of PCa from non-cancer patients, providing 

accuracies of 79% and 86% in the internal and external sets, respectively. The small sample 

size in external set can be considered a limiting factor in this study, though this is the first 

study, to our knowledge, to use an external set for validation of a volatile biomarker panel 

of PCa in urine. Importantly, the four patients with BPH and one patient with prostatitis 

included in the external set as controls were correctly classified by the panel. These prostate 

non-malignant conditions are well-recognized confounders in the context of serum PSA 

screening, as elevated levels of this biomarker are detected in BPH and prostatitis.25 So, 

taking into consideration the results of the internal and external validations, the diagnostic 
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performance of the 6-biomarker panel outperforms not only PSA sensitivity but also fPSA / 

tPSA sensitivity and specificity. 

In our study, three classes of compounds stood out as discriminant of PCa from 

controls, namely alcohols, aldehydes and ketones. A significant decrease was found in the 

levels of four alcohols, specifically terpinen-4-ol, 2,6-dimethyl-6-hepten-2-ol, 1-methyl-4-

propan-2-ylcyclohex-2-en-1-ol, and 3,7-dimethylocta-1,6-dien-3-ol (Table 3.2). This may be 

related with changes in several metabolic pathways, namely hydrocarbon metabolism,28 

fatty acid β-oxidation,29 intensification of cellular membrane synthesis30 and alterations in 

the activity of some important enzymes, namely CYP 45031 and alcohol dehydrogenases.28 

Several studies have demonstrated the intracellularly increased concentrations of reactive 

oxygen species (ROS) in cancer cells,32,33 which are capable of causing the oxidation of 

biologically crucial molecules such as DNA, RNA, proteins and lipids. ROS-mediated 

oxidation of polyunsaturated fatty acids (also termed lipid peroxidation) increases alkanes 

formation, which after hydroxylation through CYP 450 leads to the production of alcohols.31 

Additionally, it has been proposed that terpinen-4-ol and α-terpineol (an isomer of terpinen-

4-ol) can interfere with immune response, as they were able to inhibit the production of 

inflammatory mediators.34 Furthermore, α-terpineol was shown to have cytotoxic and 

apoptotic effects in PCa cell lines, which may be correlated with down-regulation of various 

proteins that mediate cell proliferation, cell survival, metastasis, and angiogenesis.35 3,7-

Dimethylocta-1,6-dien-3-ol may have an exogenous source, since it is present in several 

food products like cinnamon or citrus fruits.29 However, an endogenous origin cannot be 

ruled out since this compound is involved in lipid metabolism.29 In addition, the 

supplementation with 3,7-dimethylocta-1,6-dien-3-ol in PCa immortalised cell lines and in 

tumour xenografts showed an induction of apoptosis and inhibition of cell proliferation.36 

Referring to aldehydes, urinary levels of hexanal, 3,4-dimethylcyclohex-3-ene-1-

carbaldehyde, glyoxal, methylglyoxal, decanal, and 2-butenal were found significantly 

decreased in PCa patients, whereas 2,5-dimethylbenzaldehyde, 3-phenylpropionaldehyde 

and phenylacetaldehyde were significantly increased in PCa compared to controls (Tables 

3.2 and 3.3). Aldehydes are involved in the metabolism of alcohols and fatty acids,37,38 and 

can also be produced during amino acid and carbohydrate catabolism.37,38 The presence of 

aldehydes may also be related with the excessive production of ROS,9 known to induce lipid 

peroxidation, which originates the formation of over 200 types of highly reactive and 

extremely toxic aldehydes.39 This may explain the higher levels of 2,5-

dimethylbenzaldehyde, 3-phenylpropionaldehyde and phenylacetaldehyde detected in 

urine of PCa patients. In agreement with our findings, other metabolomic studies have also 
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observed a trend for increased production of certain aldehydes in PCa compared to control 

groups.8–10 

The levels of nine ketones were also found significantly altered in urine from PCa 

patients, including 2-hexanone, 2-methylcyclopentan-1-one, 4-methylhexan-3-one, 5-

methylheptan-2-one, 4,6-dimethylheptan-2-one, 2-hydroxy-2-methyl-1-phenyl-propan-1-

one, 2-butanone, 2-pentanone and cyclohexanone (Tables 3.2 and 3.3). Of note, increased 

levels of 2-butanone10 and decreased 5-methylheptan-2-one levels40 were previously 

associated with PCa in urine samples and cell lines, respectively. Alterations in the levels 

of ketones might be related with carcinogenic processes, such as protein metabolism and 

ketogenic pathway dysregulations.28 Some important ketones present in the human body 

are products of fatty acid metabolism, having acetyl-CoA as a precursor.41 The increase in 

ketone levels can also be associated with high oxidation rate of fatty acids and glycation.42 

During glycation, ROS are formed and contribute to the glycation-induced protein 

modifications, normally designated glycoxidation.43 

The exact metabolic pathways which constitute the biological origin of VOCs and VCCs 

is not completely elucidated yet. Thus far, only one study reported on the cancer-specific 

biochemical origin of VOCs.44 This goal is very difficult to accomplish as VOCs are produced 

during metabolic cascades as degradation products of the metabolites directly involved in 

metabolic pathways, and, consequently, conservative methods are unable to determine the 

VOCs real metabolic origin.44 Notwithstanding, some metabolites altered in the PCa group 

were associated with known biochemical pathways, namely pyruvate metabolism, glycine, 

serine and threonine metabolism, phenylalanine metabolism and steroid hormone 

biosynthesis (Fig. S4). However, it is important to take into account that some of the 

significantly altered metabolites may not be directly cancer-derived but reflect other local or 

systemic body responses (e.g., inflammation and/or necrosis). 

Considering the correlation coefficient (Fig. 3.3) observed among all identified 

metabolites (L1 and L2 in Tables 3.2 and 3.3 and Tables S1 and S2) found significantly 

different between cancer and control, the significant decrease in the levels of 2,6,6,10 -

tetramethyl-1-oxaspiro[4.5]dec-9-ene correlated with the significant decrease in the levels 

of 5-methyl-2-(propan-2-yl)cyclohexyl acetate, suggesting a possible relationship in PCa 

disturbed biochemical pathways. Furthermore, we also observed several strong 

correlations between alterations found in the levels of ketones, aldehydes and alkanes, 

suggesting a probable association of these compounds with PCa altered metabolism. 

Despite the small sample size that may lead to bias in statistical power and precision, our 

results disclose a volatile biomarker panel that has the potential to be used as a non-
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invasive diagnostic tool for PCa with good performance. Notwithstanding, the use of a GC-

MS approach in routine clinical practice has important limitations, including high cost, non-

portability, time consuming process, and the need for considerable operator expertise.45 To 

overcome these limitations, the use of portable gas-sensing devices such as ‘’e-noses” is a 

more suitable approach for routine clinical use.45 Some research groups have already 

demonstrated that “e-nose” technology is able to detect the “odour fingerprint” emanated 

from urine of PCa patients in a simple and fast way.13,14 

The knowledge on the urinary volatile signature of PCa acquired with this study has the 

potential to allow for the development of a sensor optimized for the recognition of volatiles 

with chemical groups herein elucidated and consequently with greater capabilities of 

chemical discriminations and diagnostic accuracy. However, e-nose devices are incapable 

to determine the identity and concentration of individual compounds responsible for 

discrimination between urine samples and, therefore, do not provide information about the 

metabolic pathways affected by the disease.46 Furthermore, the reproducibility of “e-nose” 

results can be affected by sensor drift over time, affecting instrument reproducibility.47 In the 

future, a best diagnostic approach may rely in the use of low-cost “e-nose” device for 

assessing the presence of PCa in a rapid, non-invasive way, followed by targeted 

assessment of known volatile biomarkers by GC-MS technology for diagnostic confirmation. 

The combination of e-nose and GC-MS technologies may provide a powerful tandem 

diagnostic tool potentially allowing for early non-invasive diagnosis of PCa with high 

accuracy.  

 

 

3.1.6 Conclusions 

 

 In the present study, a comprehensive volatile metabolomic signature of urine from 

PCa patients was obtained that covered the profile of a large number of volatile carbonyl 

compounds reported for the first time. A panel of 6 volatile biomarkers was established for 

PCa diagnosis, disclosing a good prediction of new PCa and control samples in an external 

validation cohort. Indeed, the 6-biomarker panel unveiled higher sensitivity and accuracy 

compared to serum PSA, as well as higher sensitivity and specificity than fPSA/tPSA. The 

knowledge gained from the definition of PCa volatile signature in urine samples has the 

potential to be used in the development of an electronic nose device containing sensing 

materials tuned for specificity and selectivity, thus improving accuracy. Furthermore, the 

alterations found in the levels of some metabolites (methylglyoxal, phenylacetaldehyde and 

hexanal) suggest dysregulations in pyruvate metabolism, glycine, serine and threonine 
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metabolism, phenylalanine metabolism and steroid hormone biosynthesis in prostate 

carcinogenesis. Nonetheless, the biochemical origin of volatile metabolites remains mostly 

unknown and further studies focused on the understanding of regulatory mechanisms 

regarding their release at cellular level are required. In conclusion, our findings strengthen 

the value of urinary volatilome for PCa diagnosis and disclose a biomarker panel that has 

potential to be used as an accurate diagnostic tool for this malignancy. Further studies will 

be performed in order to validate these results in an independent larger cohort. 
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3.1.8 Supporting information 

 

 

 

Figure S1. PCA scores scatter plot (Pareto scaling; 2 components) obtained for the HS-SPME/GC-

MS chromatograms of all samples (control and PCa) (gray circles) and QCs samples (purple 

squares). (A) VOCs (R2X=0.345); (B) VCCs (R2X=0.423). QCs samples are grouped together, which 

prove the reproducibility of the analytical techniques. 

 

 

 

Figure S2. Statistical validation of the PLS-DA models by permutation testing (200 permutations; 2 

components). (A) VOCs model (Intercepts: R2 = (0.0, 0.487), Q2 = (0.0, -0.237)). (B) VCCs model 

(Intercepts: R2 = (0.0, 0.189), Q2 = (0.0, -0.144)). 
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Figure S3. PLS-DA scores scatter plots (Pareto scaling; 2 components) obtained for control without 

hypertension (dark blue circles) vs. control with hypertension (light blue squares) (LV= 2, R2X= 0.193; 

R2Y = 0.617; Q2= -0.145) (n= 28 controls without hypertension vs. n = 14 controls with hypertension). 

 

 

 

Figure S4. Metabolic pathway analysis performed by the MetPA tool in Metaboanalyst 3.0. Pathway 

topology analysis depicting dysregulated metabolic pathways in PCa patients. The X-axis represents 

the pathway impact values, and the Y-axis indicates the -log of p-values from the pathway enrichment 

analysis. The color of the nodes links to the p-values and the node radius is linked to the pathway 

impact values. 
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Table S1. List of VOCs significantly altered in PCa group compared to controls. They are characterized by their IUPAC name, retention time, characteristic 

ions (m/z), Kovat indices (KI) from literature, experimental Kovat indices, NIST R-match and CAS registry number. 

Name Retention time m/z KI from literature Experimental KI or 

standards 

R-match CAS number Identification 

Level1 

Hexan-2-one 
(2-Hexanone) 

4.61 58;57;100;85;71 790 794 785 591-78-6 L1 

Hexanal 4.80 56; 57; 72; 55;99 800 802 823 66-25-1 L1 

2-Methylcyclopentan-1-one 5.91 98; 55; 69;80 847 846 735 1120-72-5 L1 

4-Methylhexan-3-one 6.86 57; 85; 72; 58; 114;55 853 884 920 17042-16-9 L2 

Unknown 1 7.92 59; 56; 55; 76; 84; 65; 

57 

- 921 - - L4 

5-Methylheptan-2-one 9.22 58; 71; 70; 

55;57;56;59;87;74 

971 966 659 18217-12-4 L1 

4-Methyldec-1-ene 10.00 57; 56; 41;71;112;55 1041 992 685 13151-29-6 L2 

3,7,7-Trimethylbicyclo[4.1.0] 

hept-3-ene (3-Carene) 

10.40 93;79;77;92;121;80; 

94;105; 136; 53 

1011 1006 907 13466-78-9 L1 

2,6-Dimethyl-6-hepten-2-ol 10.47 59;69;56;109;68;124 996 1008 650 32779-58-1 L1 

3-Methyl-6-(propan-2-

ylidene)cyclohex-1-ene 

(Isoterpinolene) 

10.68 121; 93;136; 79; 91; 

77;105;107;67; 53 

1023 1015 842 586-63-0 L2 

4,6-Dimethylheptan-2-one 11.82 58;85;69;84;59;57;53 1045 1052 802 19549-80-5 L2 

3,7-Dimethylocta-1,6-dien-

3-ol (Linalool) 

13.19 71; 93; 69; 55; 80; 

121; 67 

1082 1098 708 78-70-6 L1 

Unknown 2 13.73 119; 108; 99; 107; 70; 

120; 111; 139 

- 1116 - - L4 

Unknown 3 13.84 79; 91; 94; 

109;119;77;121;81 

- 1120 - - L4 

3,4-Dimethylcyclohex-3-

ene-1-carbaldehyde 

14.11 67;138;95;91;79;93; 

105 

1130 1129 805 18022-66-7 L1 
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Name Retention time m/z KI from literature Experimental KI or 

standards 

R-match CAS number Identification 

Level1 

1-Methyl-4-propan-2-

ylcyclohex-2-en-1-ol 

15.09 93;139;69;121;111;55

;71; 81 

1122 1162 675 

 

29803-81-4 L2 

Unknown 4 15.74 100; 55; 81; 70; 69; 

128; 56; 67 

- 1184 - - L4 

4-Methyl-1-propan-2-

ylcyclohex-3-en-1-ol 

(Terpinen-4-ol) 

16.00 59; 93; 121; 136; 

67;81;68;79;91 

1189 1193 904 98-55-5 L1 

Unknown 5 16.26 135; 55; 91; 164; 136; 

79; 53; 65; 77; 105 

- 1202 - - L4 

Unknown 6 16.35 61;89;143;81;75;137; 

135;115;55;67 

- 1205 - - L4 

2,5-Dimethylbenzaldehyde 16.50 133; 134; 105; 91; 77 1208 1176 841 5779-94-2 L1 

2-Hydroxy-2-methyl-1-

phenylpropan-1-one 

18.45 59;77;105;50;106;51; 

78 

1278 1277 808 7473-98-5 L1 

2,5,5,8-Tetramethyl-3,4,4,6-

tetrahydro-2-H-chromene 

18.60 179;107;84;55;95;91;

77;69 

1293 1287 600 41678-32-4 L2 

5-Methyl-2-(propan-2-yl) 

cyclohexyl acetate 

(Menthyl acetate) 

18.80 95; 138; 81; 123; 96; 

82; 94; 67 

1304 1296 709 89-48-5 L1 

2,6,6,10-Tetramethyl-1-

oxaspiro[4.5]dec-9-ene 

(Theaspirane) 

19.40 138; 82; 96; 83; 139; 

109; 55; 123 

1302 1312 837 36431-72-8 L1 

Unknown 7 20.53 56; 67; 79; 83;147; 

53;114; 89; 98; 52 

- 1358 - - L4 

Unknown 8 21.43 135; 73; 79; 70; 91; 

77; 133; 55; 123; 67 

- 1392 - - L4 

Unknown 9 21.83 91; 67; 53; 79;77 - 1408 - - L4 

Unknown 10 24.68 69; 105; 129; 59; 93; 

68; 67; 77 

- 1522 - - L4 
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1
1

8
 

Name Retention time m/z KI from literature Experimental KI or 

standards 

R-match CAS number Identification 

Level1 

Unknown 11 24.74 57; 55; 191; 113; 70; 

56; 117; 69 

- 1525 - - L4 

2,2,7,7-

Tetramethyltricyclo[6.2.1.0¹,

⁶]undeca-3,5,9-triene 

(4,5,9,10-

dehydroisolongifolene) 

25.22 107;159;205;131;91;1

17;220;163;105;187 

1544 1546 678 NA L2 

1: Viant MR, Kurland IJ, Jones MR and Dunn WB (2017) How close are we to complete annotation of metabolomes? Curr Opin Chem Biol 36:64-69. L1: Identified metabolites 
(GC-MS analysis of the metabolite of interest and a chemical reference standard of suspected structural equivalence, with all analyses performed under identical analytical 
conditions within the same laboratory); L2: Putatively annotated compounds (spectral (MS) similarity with NIST database), when standards were not commercially available; L4: 
Unidentified. 

 

 

Table S2. List of VCCs significantly altered in PCa group compared to controls. They are characterized by their IUPAC name, retention time, characteristic ions, 

Kovat indices (KI) from literature, experimental Kovat indices, NIST R-match and CAS registry number. 

Name Retention time m/z KI from 

literature 

Experimental KI 

or standards 

R-match CAS number Identification Level 

Unknown 12  16.19 163;207;164;143;113 - 1194 - - L4 

Butan-2-one 

(2-Butanone) 

17.35;17.43 56;250;86;195;267 1335 1235/1238 838;844 78-93-3 L1 

Pentan-2-one 

(2-Pentanone) 

19.31 253;42;41;56;72;100;182 1434 1305 868 107-87-9 L1 

Buten-2-al 

(2-Butenal) 

20.09 250;182;161;195;117 265 1339 1335 721 123-73-9 L1 

Cyclohexanone 24.91 82;67;293;81;112;276; 

54;55 

1635 1549 759 108-94-1 L1 

Hexadecane 25.69 72;57;71;85;55;56 1600 1613 836 544-76-3 L1 
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1
1

9
 

Name Retention time m/z KI from 

literature 

Experimental KI 

or standards 

R-match CAS number Identification Level 

Unknown 13 28.20 95;107;75;83;108;319; 

161;182;289 

- 1765 - - L4 

Phenylacetaldehyde 29.44 91,117, 65; 182, 315, 297, 

77, 161, 134 

1832 1919 755 122-78-1 L1 

3-Phenylpropanal 

(3-Phenylpropionaldehyde) 

30.67 91;104;105;117;77;103; 

65;271;130 

1931 1980 703 104-53-0 L1 

Decanal 31.80 239;170;182;55;57;69; 

240 

1954 2130 825 112-31-2 L1 

Oxaldehyde  

(Glyoxal) 

33.54 182;161;195;167;117;99;4

48;93;119 

1935 2221 933 107-22-2 L1 

2-Oxopropanal 

(Methylglyoxal/ 

Pyruvaldehyde) 

34.30 182;265;161;195;167; 

117;99;119;168 

2174 2260 935 78-98-8 L1 

1: Viant MR, Kurland IJ, Jones MR and Dunn WB (2017) How close are we to complete annotation of metabolomes? Curr Opin Chem Biol 36:64-69. L1: Identified metabolites 
(GC-MS analysis of the metabolite of interest and a chemical reference standard of suspected structural equivalence, with all analyses performed under identical analytical 
conditions within the same laboratory); L2: Putatively annotated compounds (spectral (MS) similarity with NIST database); L4: Unidentified. 

 

 



 

120 

 

Table S3. Confusion matrix obtained for VOCs and VCCs considering the external validation sets 

(n=18 PCa patients plus n=18 cancer-free controls). 

 
T

ru
e
 C

la
s
s
e
s
 

 Predicted Classes 

 VOCs  VCCs 

 Case Control  Case Control 

Case 14 4  14 4 

Control 1 17  0 18 

 

 

Table S4. Spearman’s correlation indexes and corresponding p-values obtained for age with the set 

of metabolites found altered in PCa compared to controls. 

Metabolites r p 

VOCs   
2-Hexanone -0.08 0.4578 
Hexanal 0.00 0.9670 
2-Methylcyclopentan-1-one  -0.10 0.3915 
4-Methylhexan-3-one  -0.01 0.9114 
Unknown 1 -0.15 0.1860 

5-Methylheptan-2-one  -0.22 0.0514 
4-Methyldec-1-ene  -0.15 0.1674 
3,7,7-Trimethylbicyclo[4.1.0] hept-3-ene (3-Carene) 0.00 0.9764 
2,6-Dimethyl-6-hepten-2-ol  -0.29 0.0082 
3-Methyl-6-(propan-2-ylidene)cyclohex-1-ene (Isoterpinolene)  -0.22 0.0483 
4,6-Dimethylheptan-2-one -0.25 0.0249 
3,7-Dimethyl-1,6-octadien-3-ol (Linalool) -0.23 0.0358 
Unknown 2 -0.28 0.0115 

Unknown 3 -0.32 0.0038 

3,4-Dimethylcyclohex-3-ene-1-carbaldehyde -0.31 0.0041 
1-Methyl-4-propan-2-ylcyclohex-2-en-1-ol  -0.30 0.0071 
Unknown 4 -0.39 0.0004 

4-Methyl-1-propan-2-ylcyclohex-3-en-1-ol (Terpinen-4-ol) -0.36 0.0010 
Unknown 5 -0.19 0.0814 

Unknown 6 0.20 0.0742 

2,5-Dimethylbenzaldehyde 0.19 0.0929 
2-Hydroxy-2-methyl-1-phenylpropan-1-one  -0.23 0.0368 
2,5,5,8-Tetramethyl-3,4,4,6-tetrahydro-2-H-chromene -0.14 0.2157 
5-Methyl-2-(propan-2-yl) cyclohexyl acetate (Menthyl acetate)  -0.16 0.1505 
2,6,6,10-Tetramethyl-1-oxaspiro[4.5]dec-9-ene (Theaspirane)  -0.13 0.2397 
Unknown 7 -0.09 0.4011 

Unknown 8 -0.20 0.0692 

Unknown 9 -0.16 0.1543 

Unknown 10 -0.24 0.0333 

Unknown 11 -0.05 0.6494 

2,2,7,7-Tetramethyltricyclo[6.2.1.0¹,⁶]undeca-3,5,9-triene 
(4,5,9,10-dehydroisolongifolene)  -0.19 0.0889 
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Metabolites r p 

VCCs   
Unknown 12 0.12 0.2991 

2-Butanone 0.04 0.7035 
2-Pentanone 0.02 0.8925 
2-Butenal -0.02 0.8418 
Cyclohexanone 0.03 0.7650 
Hexadecane 0.04 0.7433 
Unknown 13 -0.01 0.9429 

Phenylacetaldehyde 0.20 0.0705 
3-Phenylpropionaldehyde  0.09 0.4186 
Decanal -0.17 0.1341 
Oxaldehyde (Glyoxal) -0.08 0.5009 
2-Oxopropanal (Methylglyoxal/Pyruvaldehyde) -0.07 0.5409 

 

 

Table S5. Confusion matrix obtained for the panel of 6 metabolites considering the external validation 

set (n=18 PCa plus n=18 controls) (sensitivity: 88%, specificity: 83% and accuracy: 86%). 
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 Predicted classes 

 Case Control 

Case 16 2 

Control 3 15 
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3.2.1 Abstract 

 

Our group recently developed a urinary 6-biomarker panel for the diagnosis of 

prostate cancer (PCa) which has a higher level of accuracy compared to the serum prostate 

specific antigen (PSA) test. Herein, urine from an independent cohort of PCa patients and 

cancer-free controls was analyzed to further validate the discriminative power of that panel. 

Additionally, urine from patients diagnosed with bladder cancer (BC) and renal cancer (RC) 

were included to evaluate the site-specificity of the panel. Results confirmed the ability of 

the 6-biomarker panel to discriminate PCa patients from controls, but not from other 

urological cancers. To overcome this limitation, an untargeted approach was performed to 

unveil discriminant metabolites among the three cancer types. A 10-biomarker panel 

comprising the original panel plus four new metabolites was established to discriminate PCa 

from controls, BC, and RC, with 76% sensitivity, 90% specificity, and 92% accuracy. This 

improved panel also disclosed better accuracy than serum PSA test and provides the basis 

for a new non-invasive early detection tool for PCa. 

 

 

Keywords: 

Prostate cancer; Renal cancer; Bladder cancer; Volatile organic compounds; Urinary 

biomarkers; Detection 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

126 

 

3.2.2 Introduction 

 

Globally, prostate cancer (PCa) ranks first amongst all male urological cancers and 

second in incidence of all cancers in men [1]. Due to its asymptomatic nature at early 

stages, long latency period, and potential for cure [2], PCa is a perfect candidate for 

screening programs. Currently, early PCa detection is mostly based on digital rectal 

examination (DRE) and serum prostate specific antigen (PSA) assessment, which stratify 

patients for subsequent prostate biopsy [2,3]. However, these procedures have serious 

limitations and have led to overdiagnosis and consequent overtreatment of low-risk 

patients, unnecessary biopsies, and unwarranted radical prostatectomies [4]. Indeed, the 

standard serum PSA cut-off of 4 ng/mL has failed to meet the criteria required for an 

effective biomarker due to its limited sensitivity (20.5%), specificity (51–91%) [5,6], area 

under the curve (AUC) (0.53–0.83), and accuracy (62–75%) [7]. Based on these limitations, 

several research groups have proposed new candidate biomarkers for PCa detection (e.g., 

prostate cancer antigen 3 (PCA3) and prostate health index (PHI)) [8–10]. PCA3 score has 

63% sensitivity, 88% specificity, and an AUC of 0.82, considering a cut-off of 35 [9]. 

However, the definition of the ideal cut-off for this biomarker remains controversial [8]. PHI 

combines total serum PSA, free PSA (fPSA), and [-2]proPSA (p2PSA) and outperforms 

serum PSA with an AUC ranging from 0.70 to 0.77 [10]. 

Metabolic rewiring has recently been recognized as a hallmark of cancer cells [11], 

boosting the search for innovative PCa detection strategies based on the study of tumor-

associated metabolic alterations [12–15]. Volatile organic compounds (VOCs) are end 

products of cellular metabolism, especially promising as potential non-invasive biomarkers 

for translation into the clinic due to the recent advancements in the development of 

electronic-nose (e-nose) sensors [16]. In this vein, we have recently reported a urinary 

biomarker panel for PCa diagnosis comprising six volatile compounds, that outperformed 

PSA sensitivity and accuracy [17]. Here, we extend our previous work to further validate the 

biomarker panel in an independent cohort of PCa patients and also to assess the 

performance of the panel for discriminating PCa from other common urological cancers, 

namely bladder cancer (BC) and renal cancer (RC). 
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3.2.3 Material and Methods 

 

3.2.3.1 Study Population 

Urine samples were collected at the Portuguese Oncology Institute of Porto from a total 

of 80 men, comprising 20 PCa patients, 20 BC patients, 20 RC patients, and 20 cancer-free 

individuals (controls) (Table S1). This study was performed in accordance with the 

Declaration of Helsinki and approved by the Portuguese Oncology Institute of Porto (IPO 

Porto) Ethics Committee (Reference 282R/2017). All subjects included in the study provided 

signed informed consent. Early morning voided urine samples (without fasting) were 

centrifuged and the supernatants were immediately frozen at -80 ºC until analysis. 

 

3.2.3.2 Sample Preparation for GC-MS Based Metabolomic Analysis 

Preparation of urine samples and analytical conditions followed the protocol described 

by Lima et al. [17]. To detect a large number of volatile compounds, two different analysis 

procedures based on headspace solid-phase microextraction (HS-SPME) coupled to GC-

MS were performed. VOCs were analyzed directly in the headspace of the urine, while 

VCCs (mostly aldehydes and ketones) were analyzed after a derivatization step of urine 

with O-(2,3,4,5,6-pentafluorobenzyl) hydroxylamine hydrochloride (PFBHA). Quality control 

(QC) samples (a pool of all urine samples) were analyzed at the same conditions on every 

eight samples, to ensure the reproducibility of the method. All samples were extracted and 

injected randomly. 

 

3.2.3.3 GC-MS Analysis 

VOCs and VCCs analyses were performed in a 436-GC (Bruker Daltonics, Billerica, 

MA, USA) coupled to a Bruker Scion SQ MS detector (Bruker Daltonics) and a 436-GC 

(Bruker Daltonics) coupled to an EVOQ TQ-MS (Bruker Daltonics), respectively. Details on 

software, GC and MS acquisition parameters, and metabolite identification are described in 

Lima et al. [17]. 

 

3.3.3.4 Data Pre-Processing and Statistical Analysis 

Data pre-processing was performed in MZmine 2.18 [18] using the parameters 

previously described in Lima et al. [17]. In the untargeted models, a variable selection 

approach was applied to reduce the data and eliminate the variation from uncontrolled 

confounding factors [19]. This variable selection was based on the t-test (MetaboAnalyst 

4.0 software) [20] and all variables with p-value > 0.05 were removed from the matrix. 
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Finally, the untargeted models were scaled to pareto and the models based in the biomarker 

panel were scaled to unit variance (UV). 

Multivariate statistical analysis (MVA) included principal component analysis (PCA) to 

detect trends and possible outliers, followed by partial least squares discriminant analysis 

(PLS-DA). In addition, the robustness of all PLS-DA models was confirmed through 7-fold 

cross validation and permutation test in SIMCA-P 15 (Umetrics, Umeå, Sweden). 

Unpaired Student’s t-test with Welch correction test (normal distribution) or unpaired 

Mann–Whitney U-test (non-normal distribution) were applied to all metabolites with VIP 

higher than 1 in the untargeted models (VOCs and VCCs) (GraphPad Prism 6, San Diego, 

CA, USA). In addition, percentage of variation and effect size were computed for all 

statistically significant metabolites. The metabolites significantly altered in all comparisons 

(PCa vs. BC, PCa vs. RC, and PCa vs. controls) were considered specific for PCa. 

To select the most important metabolites among these, a PLS-DA algorithm was 

applied. The selected biomarker panel was used to construct a classification model and the 

corresponding receiver operating characteristic (ROC) curve using the MetaboAnalyst 4.0 

software [20]. 

 

 

3.2.4 Results 

 

3.2.4.1 Evaluation of the Diagnostic Performance of 6-Volatile Biomarker Panel 

A targeted metabolomics approach (Figure 3.4a) was first performed to build a partial 

least squares discriminant analysis (PLS-DA) model comprising only the six volatile 

metabolites included in the previously defined PCa biomarker panel, specifically 2,5-

dimethylbenzaldehyde, 3-phenylpropionaldehyde, 4-methylhexan-3-one, dihydroedulan IA, 

hexanal, and methylglyoxal (MG). The classification model confirmed that this 6-biomarker 

panel was able to discriminate PCa from controls (Figure S1A), as validated by permutation 

tests (Figure S2A), with 84% sensitivity, 80% specificity, 82% accuracy, and an AUC of 0.83 

(Figure S2B). However, the panel was unable to discriminate PCa from either BC (Figure 

S1B) or RC (Figure S1C). To overcome this limitation, an untargeted approach was 

conducted, seeking to identify new biomarkers able to discriminate PCa from the other 

urological cancers. 
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3.2.4.2 Untargeted Volatile Profiling Unveils Discriminant Metabolites among Urological 

Cancers 

The untargeted approach consisted on the comparison of the urinary volatile profiles 

(VOCs and volatile carbonyl compounds (VCCs)) of PCa patients with that of BC and RC 

patients. Results disclosed a good separation of PCa from BC and RC in the PLS-DA 

models (Table S2). Overall, 50 metabolites showed a variable importance to the projection 

(VIP) higher than 1 comparing PCa vs. BC, from which 35 were found significantly different. 

Comparison of PCa vs. RC unveiled a total of 62 metabolites with VIP > 1, from which 47 

were significantly different. Subsequently, only the metabolites that met the criteria of 

statistical significance in the three comparisons (PCa vs. BC, PCa vs. RC, and PCa vs. 

controls) were considered for further analysis, namely ethylbenzene, heptan-3-one, heptan-

2-one, 4-(2-methylpropoxy)butan-2-one, methyl benzoate, 3-methyl-benzaldehyde, and an 

unknown metabolite (Figure S3; Tables S3 and S4). 
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Figure 3.4: (a) Representative GC-MS chromatograms of VOCs and VCCs present in urine of PCa 

patients (green arrows indicate the 6 volatiles (numbers 1-6) in former biomarker panel and blue 

arrows the surplus 4 volatiles (numbers 7-10), with the correspondence of numbers to metabolite 

identities present in b). (b) Heatmap illustrating the mean levels (normalized peak areas) of 

metabolites included in the 10-biomarker panel. Rows correspond to the mean normalized peak area 

of each metabolite with the sample groups in the columns. (c- f) PLS-DA scores scatter plots (UV 

scaling; 2 components) obtained for the 10-biomarker panel of (c) PCa (n = 18, blue squares) vs. 

cancer-free controls (n = 19, green circles), (d) PCa (n = 18, blue squares) vs. BC (n = 18, red 

circles), (e) PCa (n = 18, blue squares) vs. RC (n = 20, yellow circles), (f) PCa (n = 17, blue squares) 

vs. cancer-free controls plus BC and RC (n = 58, pink circles). (g, h, i, j) Assessment of the diagnostic 

performance of the PLS-DA models obtained for the 10-biomarker panel of (g) PCa vs. cancer-free 

controls (AUC = 0.95; sensitivity = 78%; specificity = 100%; accuracy = 89%), (h) PCa vs. BC (AUC 

= 0.88; sensitivity = 72%; specificity = 100%; accuracy = 86%), (i) PCa vs. RC (AUC = 0.89; sensitivity 

= 72%; specificity = 90%; accuracy = 82%), (j) PCa vs. cancer-free controls plus BC and RC (AUC 

= 0.90; sensitivity = 76%; specificity = 97%; accuracy = 92%). 
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3.2.4.3 Definition of an Improved Biomarker Panel for PCa Diagnosis 

The seven candidate biomarkers disclosed by untargeted analysis were assessed for 

their ability to perfect an extended biomarker panel providing the best combination of 

sensitivity, specificity, and accuracy for PCa detection. Considering a PLS-DA based 

algorithm, four metabolites were selected, namely ethylbenzene, heptan-2-one, methyl 

benzoate, and 3-methylbenzaldehyde (Figure S4). Therefore, a final 10-biomarker panel 

was defined for PCa diagnosis (Figure 3.4b), composed by hexanal, 4-methylhexan-3-one, 

dihydroedulan IA and MG (significantly decreased), and 3-phenylpropionaldehyde, 2,5-

dimethylbenzaldehyde, ethylbenzene, heptan-2-one, methyl benzoate, and 3-

methylbenzaldehyde (significantly increased). Finally, PLS-DA models obtained with this 

improved biomarker panel revealed a clear separation between PCa vs. controls (Figure 

3.4c), PCa vs. BC (Figure 3.4d), and PCa vs. RC (Figure 3.4e). Furthermore, the panel 

disclosed 78% sensitivity, 100% specificity, 89% accuracy, and an AUC of 0.95 for PCa vs. 

controls (Figure 3.4g); 72% sensitivity, 100% specificity, 86% accuracy, and an AUC of 0.88 

for PCa vs. BC (Figure 3.4h); and 72% sensitivity, 90% specificity, 82% accuracy, and an 

AUC of 0.89 for PCa vs. RC (Figure 3.4i). To provide a more global perspective of the 10-

biomarker panel performance, a final PLS-DA model was computed comparing PCa vs. 

controls plus BC plus RC (Figure 3.4f). This model showed a good separation between the 

two groups with 76% sensitivity, 97% specificity, 92% accuracy, and an AUC of 0.90 (Figure 

3.4j). The robustness of all PLS-DA models was confirmed through permutation testing 

(Figure S5). 

 

 

3.2.5 Discussion 

 

The major novelty of this study design was the inclusion of patients with other urological 

cancers to evaluate the performance of the biomarker panel to discriminate not only PCa 

vs. cancer-free individuals, but also PCa vs. BC and RC (2nd and 3rd most common 

urological cancers in males, respectively) [21]. This critical point is often overlooked in 

traditional biomarker studies, thus disregarding the cancer site specificity of the biomarker 

(s). Although the performance of our 6-biomaker panel to accurately identify PCa patients 

vs. control subjects was confirmed, it failed to discriminate PCa from both BC and RC. This 

result was not completely surprising as tumor cells share some metabolic abnormalities to 

promote cancer cell survival and growth [11], which may make the discrimination among 

different cancer types difficult. Indeed, three out of the six biomarkers included in the panel 

(2,5-dimethylbenzaldehyde, 3-phenylpropionaldehyde, and MG) disclosed the same trend 
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in all urological cancers vs. controls (Figure 3.4b), explaining the lack of discriminatory 

power. One well-established metabolic feature of cancer cells is increased aerobic 

glycolysis over oxidative respiration, which unavoidably leads to MG accumulation [19]. 

Particularly, MG is known as a highly toxic and reactive carbonyl compound that 

spontaneously glycates proteins, nucleic acids, and lipids [22]. MG detoxification is 

accomplished mainly by glyoxalase-1, and both high expression and activity of this enzyme 

have been demonstrated in PCa, BC, and RC [23], explaining the decrease in MG urinary 

levels in all urological cancers compared to controls. 

Those results demonstrated that BC or RC patients may be false positives in a PCa 

screening strategy based on the 6-biomarker panel, constituting a relevant limitation in 

clinical practice. To overcome this, we performed an untargeted metabolomic study to look 

for new biomarkers capable of discriminating PCa from the other urological cancers. This 

approach allowed the improvement of the previously established biomarker panel through 

the addition of four new volatile compounds, discriminative of PCa vs. BC and RC. Thus, 

the improved panel included five aldehydes (hexanal, 2,5-dimethylbenzaldehyde, 3-

phenylpropionaldehyde, MG, 3-methylbenzaldehyde), two ketones (4-methylhexan-3-one, 

heptan-2-one), two aromatic hydrocarbons (methyl benzoate and ethylbenzene), and one 

polycyclic organic compound (dihydroedulan IA). From these, only hexanal [24–27], MG 

[28], heptan-2-one [25,29], and ethylbenzene [26,30] were previously associated with 

cancer. Besides MG, it is difficult to ascertain the metabolic origin of these volatile 

compounds since they are end products of several cellular processes, including lipid 

peroxidation, protein carbonylation, glycation, and amino acid and lipid metabolisms [31–

33]. 

In the last decade, several candidate biomarkers have been proposed using 

metabolomic approaches, including mainly amino acids and derivatives, organic acids, and 

sugars [15]. Overall, the 10-biomarker panel disclosed similar or even better performance 

for PCa detection compared with those candidate biomarkers. Moreover, the discrimination 

of PCa from other urological cancers has been understudied, comprising only one study 

which failed to demonstrate discriminative power [34]. Hence, the accurate classification of 

PCa using the 10-biomarker panel in a cohort comprising other urological cancers is an 

important achievement. Notably, the 10-biomarker panel outperforms not only PSA [5–7], 

but also PCA3 [9] and PHI [10] in differentiating PCa patients from controls. 

These results emphasize the potential of volatile biomarkers for development of a non-

invasive screening tool for clinical diagnosis. However, the analytical techniques used in 

metabolomic approaches might not be feasible for real-time diagnostic applications due to 
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several limitations, such as low sample throughput, high costs, and the requirement for 

trained personnel and sophisticated software. Thus, future research may rely on the 

translation of the volatile signatures detected by GC-MS analysis to the application of a fast, 

cheap, and portable e-nose device. In this regard, our defined panel holds the potential for 

development of an optimized e-nose with sensor arrays targeting specific PCa-related 

volatile compounds for routine clinical use with high accuracy for PCa diagnosis. 

 

 

3.2.5 Conclusions 

 

In conclusion, we propose an improved volatile urinary biomarker panel to 

simultaneously discriminate PCa from cancer-free subjects and carriers of other common 

urological cancers, holding the potential for the development of a non-invasive early 

detection tool for PCa that outperforms serum PSA sensitivity and accuracy. In the future, 

we plan to extend the PCa-specificity of this novel panel, testing larger cohorts of cancer 

patients and controls, including common non-urological cancers in males (e.g., lung and 

colorectal cancers). Furthermore, taking into consideration that benign prostate 

hyperplasia, urinary tract infection, and prostatitis are important confounding factors in PSA 

test, we also plan to include urine samples from patients with these diseases. 
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3.2.7 Supporting information 

 

 

 

Supplementary Figure 1. PLS-DA scores scatter plots (UV scaling; 2 components) obtained for the 

urinary 6-biomarker panel of (A) PCa patients (n = 19, blue squares) vs. cancer-free controls (n = 

20, green circles); (B) PCa (n = 20, blue squares) vs. BC (n = 19, red circles); and (C) PCa (n = 19, 

blue squares) vs. RC (n = 20, yellow circles). 

 

 

 

 
Supplementary Figure 2. (A) Statistical validation of the PLS-DA model obtained for the 6-

biomarker panel, by permutation testing (200 permutations; 2 components) PCa vs. cancer-free 

controls [Intercepts: R2 = (0.0, 0.0866), Q2 = (0.0, -0.234)]; (B) Assessment of the diagnostic 

performance of the PLS-DA model obtained for the 6-biomarker panel through receiver operating 

characteristic (ROC) curve, PCa vs. controls (AUC = 0.834; sensitivity = 84%; specificity = 80%; 

accuracy = 82%). 
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Supplementary Figure 3. Boxplots from all metabolites that were simultaneously significantly different between PCa vs. BC, PCa vs. RC and PCa vs. cancer 

free-controls (****p-value < 0.0001, ***p-value < 0.001, **p-value < 0.01, *p-value < 0.05).   
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Supplementary Figure 4. VIP scores computed through a PLS-DA based algorithm to select the 

metabolites that best discriminate the groups: (A) PCa vs. BC; (B) PCa vs. RC. 

 

 

 

 
Supplementary Figure 5. Statistical validation of the PLS-DA model obtained for the 10-biomarker 

panel, by permutation testing (200 permutations; 2 components). (A) PCa vs. controls [Intercepts: 

R2 = (0.0, 0.167), Q2 = (0.0, -0.237)]; (B) PCa vs. BC [Intercepts: R2 = (0.0, 0.2), Q2 = (0.0, -0.238)]; 

(C) PCa vs. RC [Intercepts: R2 = (0.0, 0.18), Q2 = (0.0, -0.241)]; (D) PCa vs. controls plus BC and RC 

[Intercepts: R2 = (0.0, 0.157), Q2 = (0.0, -0.229)]. 
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Supplementary Table 1. Demographic and clinical data of prostate cancer (PCa), bladder cancer 

(BC) and renal cancer (RC) patients and cancer-free controls included in this study. 

Characteristics PCa BC RC Controls 

Number of subjects 20 20 20 20 
Mean Age ± SD (years) 67 ± 8.1 69 ± 8.6 71 ± 7.7 58 ± 2.8 
Clinical stage, n (%)     
0 - 9 (47%) 2 (10%) - 
I 7 (35%) 6 (32%) 11 (55%) - 
II 3 (15%) 2 (11%) 1 (5%) - 
III 2 (10%) - 5 (25%) - 
IV 6 (30%) 2 (11%) 1 (5%) - 
Not available 2 (10%) - - - 

 

 

Supplementary Table 2. 7-Fold cross validation parameters obtained for PLS-DA models of VOCs 

and VCCs in the untargeted approach. 

 
 VOCs VCCs 

Comparison LV R2X R2Y Q2  LV R2X R2Y Q2 

PCa vs. BC  2 0.544 0.773 0.655  2 0.414 0.742 0.554 

PCa vs. RC 2 0.403 0.772 0.477  2 0.702 0.628 0.394 
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Supplementary Table 3. List of VOCs and VCCs significantly altered in PCa group compared to BC, RC and cancer-free controls. 

  PCa vs. BC                         PCa vs. RC PCa vs. Controls 

Chemical name 

(IUPAC)  

Protocol p-value Variation ± 

uncertainty 

(%) 

Effect 

size ± 

ESSE 

p-value Variation ± 

uncertainty 

(%) 

Effect 

size ± 

ESSE 

p-value Variation ± 

uncertainty (%) 

Effect size 

± ESSE 

Ethylbenzene VOCs 0.0021 91.15 ± 16.80 0.83 ± 

0.45 

0.0004 62.77 ± 12.00 1.23 ± 

0.67 

0.0002 68.59 ± 13.07  1.21 ± 0.66  

Heptan-3-one VOCs 0.0021 69.75 ± 15.41 1.04 ± 

0.65 

0.0048 50.64 ± 12.83 0.98 ± 

0.64 

0.0007 72.56 ± 13.35 1.24 ±0.67 

Heptan-2-one (2-

Heptanone) 

VOCs 0.0005 126.37 ± 24.58 0.98 ± 

0.64 

0.0082 87.09 ± 22.36 0.84 ± 

0.63 

0.0003 137.2 ± 23.00 1.10 ±0.65 

Methyl benzoate VOCs 0.0002 200.05 ± 26.93 1.15 ± 

0.66 

<0.0001 350.68 ± 26.59 1.48 ± 

0.69 

<0.0001 430.1 ± 27.21 1.56 ± 0.70 

Unknown 1 VOCs 0.0061 175.99 ± 31.57 0.92 ± 

0.64 

0.0013 267.36 ± 32.60 1.09 ± 

0.65 

0.0075 195.7 ± 30.10 0.99 ± 0.65 

3-Methyl-

benzaldehyde 

VCCs <0.0001 305.49 ± 39.22 0.96 ± 

0.64 

<0.0001 572.98 ± 36.09 1.27 ± 

0.67 

0.0003 476.8 ± 34.50 1.27 ± 0.67 

 The statistical significance (p-values), percentage of variation, effect size (ES), standard error (ESSE) are represented for each volatile compound.  
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Supplementary Table 4. List of VOCs and VCCs significantly altered in PCa group compared to BC, RC and cancer-free controls. They are characterized by 

their IUPAC name, retention time, characteristic ions (m/z), Kovat indices (KI) from literature, experimental KI, NIST R-match, CAS registry number and human 

metabolome database (HMDB) code. 

Chemical name 

(IUPAC) 

Protocol Retention 

time 

m/z KI from 

literature 

Experimental KI R-match CAS 

number 

Identification 

Level [1] 

HMDB [2] 

Ethylbenzene VOCs 6.44 91; 106; 51; 65; 

77;78; 92; 50; 

105 

855 - 853 100-41-4 L1 HMDB0059905 

Heptan-3-one VOCs 7.10 57; 85; 72; 114 877 884 845 106-35-4 L2 HMDB0031482 

Heptan-2-one VOCs 7.20 58; 71; 59 891 887 835 110-43-0 L1 HMDB0003671 

4-(2-Methylpropoxy) 

butan-2-one 

VOCs 8.47 71;72; 57; 55; 

101; 89 

964 - 735 31576-33-7 L2 - 

Methyl benzoate VOCs 13.29 105; 77; 55; 51; 

136; 57; 71; 50 

1094 - 856 93-58-3 L1 HMDB0033968 

Unknown 1 VOCs 10.75 57; 59; 69; 89; 

56; 71; 87; 58 

- 1009 - - L4 - 

3-Methyl-

benzaldehyde 

VCCs 29.98 315; 77; 91; 

182; 65; 79; 

285; 78, 89 

1845 - 788 620-23-5 L1 HMDB0029637 

L1: Identified metabolites (GC-MS analysis of the metabolite of interest and a chemical reference standard of suspected structural equivalence, with all analyses performed under 
identical analytical conditions within the same laboratory); L2: Putatively annotated compounds (spectral (MS) similarity with NIST database); L4: Unidentified. 
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4.1.1 Abstract 

 

Prostate cancer (PCa) is a global health problem that affects millions of men every year. In 

the last decade, metabolomics and related subareas, such as lipidomics, have 

demonstrated an enormous potential to identify novel mechanisms underlying PCa 

development and progression, providing a good basis for the development of new and more 

effective therapies and diagnostics. In this study, a multi-platform metabolomics and 

lipidomics approach, combining untargeted mass spectrometry (MS) and nuclear magnetic 

resonance (NMR)-based techniques, was applied to PCa tissues to investigate 

dysregulations associated with PCa development, in a cohort of 40 patients submitted to 

radical prostatectomy for PCa. Results revealed significant alterations in the levels of 27 

metabolites and 21 phospholipid species in PCa tissue compared with adjacent non-

malignant tissue, suggesting dysregulation in 13 metabolic pathways associated with PCa 

development. The most affected metabolic pathways were amino acid metabolism, 

nicotinate and nicotinamide metabolism, purine metabolism, and glycerophospholipid 

metabolism. A clear interconnection between metabolites and phospholipid species 

participating in these pathways was observed through correlation analysis. Overall, these 

dysregulations may reflect the reprogramming of metabolic responses to produce high 

levels of cellular building blocks required for rapid PCa cell proliferation. 

 

Keywords: prostate cancer; tissue; metabolomics; lipidomics; mass spectrometry; nuclear 

magnetic resonance spectroscopy; metabolic pathways 
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4.1.2 Introduction 

 

 In 2020, prostate cancer (PCa) was the second most diagnosed cancer and the fifth 

leading cause of mortality in men, worldwide (1). The majority of new cases were diagnosed 

in men between 65-74 years of age (median of 66 years), while the median age of death 

was 80 years (2). As life expectancy has increased over the past few decades, it is expected 

that the number of PCa cases will increase accordingly. Hence, timely detection of PCa is 

important to assure treatment with fewer side-effects and a better quality of life. Currently, 

early PCa detection mostly relies on prostate specific antigen (PSA) blood test, but PSA 

screening is a controversial topic since this biomarker is prostate-specific but not cancer-

specific (3), entailing overdiagnosis and overtreatment (4). Imaging techniques (e.g., 

transrectal ultrasound, multiparametric magnetic resonance imaging) have also been used 

for PCa detection but concerns remain regarding their ability to detect small yet clinically 

significant cancers (5). Hence, prostate biopsy (PB), an invasive procedure that can result 

in health complications (e.g., haemoejaculate, haematuria, fever, pain) (6), is mandatory for 

definitive PCa diagnosis (7). After PCa’s histopathological confirmation, the Gleason score 

(GS) (the most common PCa grading system) and clinical stage are key to determine which 

treatment modality [e.g., active surveillance, radical prostatectomy (RP), radiotherapy, 

androgen deprivation therapy (ADT)] should be applied (8). Despite the high likelihood of 

cure offered by RP as primary treatment for localized PCa, approximately 20-40% of 

patients will develop biochemical recurrence (BCR) after RP (9, 10). Thus, there is an urgent 

need for more effective diagnostic tools and precision therapies tackling tumor 

aggressiveness and risk of recurrence.  

 Metabolomics has been widely used, in parallel with other -omics approaches (e.g., 

genomics, transcriptomics, proteomics), to unravel the complexity of PCa development and 

progression, disclosure of new diagnostic and prognostic biomarkers and new potential 

therapeutic targets (11-13). These studies have been performed using urine, serum/plasma, 

tissue, or cell lines (14). In particular, metabolomic studies performed in PCa tissue focused 

on the investigation of altered metabolic pathways involved in PCa development and 

identification of potential therapeutic targets. The use of tissues has the advantage of 

matching samples collected from the same individual, thus allowing to substantially reduce 

confounding factors, such as age, comorbidities, or lifestyle (15). Some metabolic 

alterations associated with PCa development in several studies, performed in different 

matrixes (e.g. urine and tissue), included a significant decrease in citrate levels and an 

increase in the levels of lactate, alanine, succinate, malate, and fumarate (14, 16, 17), 

suggesting alterations in tricarboxylic acid (TCA) cycle and energetic metabolism. In 
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addition, decreased levels of polyamines (e.g., spermine and spermidine) were reported, 

indicating that PCa cells lose their capability to synthesize polyamines (14, 16, 17). 

Important alterations in amino acid metabolism have also been associated with PCa, due 

to the significant alterations in the levels of glutamate, tyrosine, arginine, proline, and 

sarcosine (14, 16, 17). Finally, alterations in lipid profile are also a hallmark of PCa (14, 16, 

17), particularly dysregulations in the levels of several fatty acids (14, 16, 17) and 

metabolites involved in cellular membrane metabolism, like choline, choline-related 

compounds and phospholipids (PL) (16).  

 Herein, we report on a multi-platform metabolomics and lipidomics study, combining 

untargeted mass spectrometry (MS) and nuclear magnetic resonance (NMR)-based 

approaches, which investigated the metabolic alterations characterizing PCa tissues 

compared with matched adjacent non-malignant tissues. To the best of our knowledge, this 

is the first study that integrates the metabolome and lipidome fingerprints of PCa tissues to 

unravel the metabolic dysregulations associated with PCa development.  

 

 

4.1.3 Material and Methods  

 

4.1.3.1 Chemicals 

 All chemicals were of analytical grade. Aspartic acid (99%), benzoic acid (99.5%), 

chloroform (≥99.9%), desmosterol (≥84%), deuterium oxide containing 0.05 wt% 3-

(trimethylsilyl) propionic- 2,2,3,3-d4 acid (TSP) sodium salt, glutamine (98%), malic acid 

(97%), methanol (≥ 99.9%), methoxyamine hydrochloride, myo-inositol (≥99%), N,O-

bis(trimethylsilyl) trifluoroacetamide (BSTFA with 1% of trimethylchlorosilane), nonanoic 

acid (≥97%), phenylalanine (≥98%), proline (≥99%), serine (≥ 98%), tyrosine (≥ 98%), uracil 

(≥ 99%), urea (99%), were purchased from Sigma Aldrich (Madrid, Spain). Deuterium oxide 

(D2O) was provided by Eurisotop (Saint-Aubin, France). HPLC grade dichloromethane was 

purchased from Fisher Scientific Ltd. (Loughborough, UK). Ammonium molybdate, sodium 

dihydrogen phosphate dihydrate and perchloric acid were purchased from Panreac 

(Barcelona, Spain), Riedell-de Haen (Seelze, Germany) and Chem-Lab NV (Zedelgem, 

Germany), respectively. PL standards were purchased from Avanti Polar Lipids, Inc. 

(Alabaster, AL, USA). Mobile phase constituents namely acetonitrile and methanol were 

purchased from Fisher Scientific (Leicestershire, UK) with a degree of purity suitable for 

HPLC. 
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4.1.3.2 Subjects and sample collection 

 All tissue samples included in this study were collected after RP at the Portuguese 

Oncology Institute of Porto (IPO Porto) from PCa patients without previous neoadjuvant 

therapy. The study was approved by the Ethics Committee of the IPO-Porto (Reference 

282R/2017) and informed written consent was obtained from all patients. Matched PCa and 

adjacent non-malignant tissues were collected from a cohort comprising 40 patients. PCa 

(n = 40) and adjacent non-malignant tissues (n = 40) were divided into slices, immediately 

frozen and stored at -80 ⁰C until analysis. An experienced pathologist evaluated all collected 

samples to distinguish between tumoral and adjacent non-malignant tissue (Figure 4.1). 

Detailed information of the patients is provided in Table 4.1. 

 

 

Figure 4.1: Schematic representation of PCa and adjacent non-malignant tissue collected from one 

patient included in the study. 
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Table 4.1: Clinical data of the PCa patients 

PCa patients (n=40) 

Age    

Mean (standard deviation) 63.3 (5.5) 

Serum PSA (ng/mL)  

4-10 22 (55%) 

>10 16 (40%) 

NA   2 (5%) 

Gleason score   

5   1 (2.5%) 

6 15 (37.5%) 

7 23 (57.6%) 

8   1 (2.5%) 

NA: Not available 

 

 

4.1.3.3 Sample extraction and preparation  

Polar and lipophilic metabolites were extracted from tissue samples using a method 

previously described (18). Briefly, a combination of methanol (4 mL/g), chloroform (4 mL/g), 

and water (0.85 mL/g plus 2 mL/g) was added to 100 mg (± 10 mg) of each tissue sample. 

The solvents were added stepwise (three steps), between each stepwise addition of 

extraction solvents, the samples were vigorously agitated (vortex). After solvent addition, 

samples were centrifuged (1000 g for 15 min at 4 ⁰C), which allowed the separation of an 

upper phase containing the polar metabolites (methanol/water), a lower phase with lipophilic 

compounds (chloroform) and the sediment with tissue debris and other cellular components. 

For gas chromatography-mass spectrometry (GC-MS) analysis, 100 µL of polar phase was 

combined with 60 µL of the lipophilic phase. The remaining polar and lipophilic phases were 

used for proton (1H) NMR spectroscopy and hydrophilic interaction liquid chromatography-

tandem mass spectrometry (HILIC-MS/MS) analyses, respectively. For both GC-MS and 

HILIC-MS/MS, an aliquot of all samples was pooled to define a quality control (QC) for 

evaluation of analytical precision. All extracts were dried under a stream of nitrogen and 

stored at -80 ⁰C until analysis.  

Sample preparation for GC-MS consisted in the treatment of the dried extracts with 

methoxyamine followed by derivatization with BSTFA containing 1% TCMS, accordingly to 

a previously described protocol (19). For NMR analyses, the dry aqueous extracts were 

resuspended in phosphate buffer (100 mM, pH 7.4, in D2O containing 0.05 mM TSP), 

centrifuged (12 000 g for 5 min at 4 ºC) and transferred to 5 mm NMR tubes, as previously 
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described (20). Finally, for lipidomics HILIC-MS/MS analyses, the total amount of PL 

present in the lipidic extracts was first quantified using the phosphorus assay previously 

described (21). After PL quantification, the dried lipid extracts were resuspended in 

dichloromethane to achieve a PL concentration of 1µg/µL. Finally, 10 µL of each sample, 

containing 10 µg of PL, was mixed with the internal standards [8 µL of a PL standard mixture 

containing 0.04 µg 1,2-dimyristoyl-sn-glycero-3-phosphocholine (dMPC), 0.04 µg 1,2-

dimyristoyl-sn-glycero-3-phosphoethanolamine (dMPE), 0.04 µg N-palmitoyl-D-erythro-

sphingosyl-phosphorylcholine (NPSM), 0.04 µg 1-nonadecanoyl-2-hydroxy-sn-glycero-3-

phosphocholine (LPC), 0.16 µg 1,2-dipalmitoyl-sn-glycero-3-phosphatidylinositol (dPPI), 

0.024 µg 1,2-dimyristoyl-sn-glycero-3-phospho-(10-rac-) glycerol (dMPG), 0.08 µg 1,2-

dimyristoyl-sn-glycero-3-phospho-L-serine (dMPS), 0.16 µg 1,2-dimyristoyl-sn-glycero-3-

phosphate (dMPA), 0.04 µg C17 Ceramide (d35:1)] and 82 µL of starting eluent, performing 

a total volume of 100 µL (22). Samples were randomly analyzed in all methodologies, and 

QC samples were injected on every 10 samples in GC-MS and HILIC-MS/MS analyses. 

 

4.1.3.4 GC-MS analysis  

The GC-MS conditions were the same used in previous studies (23, 24). Briefly, the 

analysis was performed in a 436-GC model, equipped with a column Rxi-5Sil MS (30 m × 

0.25 mm × 0.25 µm) (Restek Corporation, U.S., Bellefonte, PA, USA), coupled with a EVOQ 

triple quadrupole (TQ) mass spectrometer (Bruker Daltonics, Bremen, Germany). A Bruker 

MS workstation software (version 8.2.1, Bruker Daltonics, Bremen, Germany) was used. 

The oven temperature was fixed at 70 ºC for 2 min, then increased to 250 ºC (rate 15 

ºC/min), held for 2 min, and finally increased to 300 ºC (rate 10 ºC/min) and held for 8 min. 

The injection was performed in split mode (ratio 1/5) and the carrier gas was helium C-60 

(Gasin, Porto, Portugal) with a flow rate of 1 mL/min. The temperatures of injector port, 

transfer line, and manifold were 250 ºC, 250 ºC and 40 ºC, respectively. The emission 

current was 50 µA and the electron multiplier was set in relative mode to an auto tune 

procedure. The analysis was performed in full scan mode and all mass spectra were 

acquired in the electron impact (EI) mode with a mass range of 50 to 1000 m/z (24).  

Metabolites were identified by comparison of the mass spectra and Kovats indices (KI), 

determined using a commercial hydrocarbon mixture (C8-C20), obtained for tissue samples 

with the National Institute of Standards and Technology database (NIST 14, Gaithersburg, 

MD, USA). Metabolite identification was confirmed using standard compounds analyzed 

under the same conditions, when commercially available.  



 

155 

 

4.1.3.5 1H NMR analysis  

The parameters considered in 1H NMR analysis were based in a previous work (20). 

The 1D 1H NMR analysis was performed on a Bruker Avance III HD 600 MHz spectrometer 

(Bruker BioSpin, Rheinstetten, Germany) equipped with a cryoprobe, at 26.85 °C (300 K). 

Briefly, the acquisition parameters of the standard pulse sequence (noesypr1d) were: 4 s 

relaxation delay, 100 ms mixing time, 256 transients, 64k complex data points, 10 080.646 

Hz spectral width and 3.25 s acquisition time. Each free induction decay was multiplied by 

a 1.0 Hz exponential line-broadening function, manually phased and baseline corrected, 

and chemical shifts referenced internally to TSP at δ = 0.0 ppm.  

For metabolite identification, 2D NMR experiments, namely total correlation 

spectroscopy (TOCSY) and heteronuclear single quantum coherence (HSQC) spectra, 

literature (25, 26), and the Biological Magnetic Resonance Data Bank (27) were used. 

 

4.1.3.6 Lipidomic HILIC-MS/MS analysis 

The lipid extracts were analyzed by HILIC-MS/MS on a high-performance liquid 

chromatography system (Ultimate 3000 Dionex, Thermo Fisher scientific, Bremen, 

Germany) equipped with an autosampler coupled online to the Q-Exactive hybrid 

quadrupole Orbitrap mass spectrometer, using a method previously described with some 

modifications (22). The solvent system consisted of two mobile phases: mobile phase A 

[acetonitrile/methanol/water, 50:25:25 (v/v/v) with 5 mM ammonium acetate] and mobile 

phase B [acetonitrile/methanol, 60:40 (v/v) with 5 mM ammonium acetate]. Initially, 5% of 

mobile phase A was held isocratically for 2 min, followed by a linear increase to 48% of A 

within 8 min. A new linear increase to 65% A within 5 min was followed by a maintenance 

period of 2 min, returning to the initial conditions in 3 min and held for more 10 min. A volume 

of 5 µL of each sample, was injected into the Ascentis Si column HPLC Pore column (15 

cm × 2.1 mm, 2.7 µm, Sigma-Aldrich), with a flow rate of 200 µL/min, at 35 ºC. 

The mass spectrometer was operated using a positive/negative switching toggles 

between positive (electrospray voltage 3.0 kV) and negative (electrospray voltage -2.7 kV) 

ion modes. The capillary temperature and the sheath gas flow were 250 °C and 15 U, 

respectively. Data was acquired at full scan mode with a high resolution of 70 000, automatic 

gain control (AGC) target of 1×106, in a m/z range of 400-1600, 2 microscans, and 

maximum inject time (IT) of 100 ms. The tandem mass spectra (MS/MS) were obtained with 

a resolution of 17 500, AGC target of 1×105, 1 microscan, maximiun IT of 50 ms. The cycles 

consisted of one full-scan mass spectrum and ten data-dependent MS/MS scans, which 

were repeated continuously throughout the experiments with a dynamic exclusion of 60 s 
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and intensity threshold of 2×104. Normalized collision energyTM (CE) ranged between 25, 

30 and 35 eV. Data acquisition was performed using the Xcalibur data system (V3.3, 

Thermo Fisher Scientific, Bremen, Germany).  

Putative identification of lipid species was performed through MZmine 2.53 (28) using 

a custom database search build using the retention time (RT) of internal standards and the 

exact masses from Lipid Maps database (29). The phosphatidylcholine (PC) and 

sphingomyelin (SM) species were identified and semi-quantified in the positive mode as [M 

+ H]+ ions, whereas the negative mode as [M − H]− ions was considered for 

phosphatidylethanolamine (PE) and phosphatidylinositol (PI). Class confirmation and 

identification of fatty acid composition was achieved through MS/MS analysis as described 

in reference (30). The MS/MS spectra representative of each class are shown in Figures 

S1-S4. Briefly, PC and SM class confirmations were accomplished through the MS/MS of 

[M + H]+ ions by detection of the product ion of exact mass 184.0739, corresponding to the 

phosphocholine polar head. Confirmation of PE class was accomplished by the 

identification of the typical neutral loss of 141 Da, characteristic of the polar head of 

phosphoethanolamine, seen in the MS/MS of [M + H]+ ions. Finally, PI class was confirmed 

by the detection of the phosphoinositol head group (m/z 241.0113) in the MS/MS spectra 

of the [M − H]− ions. Fatty acid composition of each PC, PE and PI species was determined 

in analysis of the MS/MS data in negative mode, respectively by the analysis of MS/MS 

spectra of the [M + CH3COO]− ions for the PC species and analysis of MS/MS spectra of 

the [M − H]− ions for the PE and PI species and  by detecting the product ions corresponding 

to the fatty acyl chains ([RCOO]−). For SM class, the sphingoid base and fatty acyl amide 

substituent were deduced in MS/MS spectra of [M + H]+ ions. In addition, ions were 

confirmed by retention time and accuracy of the mass measurements < 5 ppm. Relative 

quantification of each class was achieved by summing the normalized ion areas of all PL 

species within each class.  

 

4.1.3.7 Data pre‑processing 

MZmine 2.53 (28) was used for pre-processing of GC-MS and HILIC-MS/MS data, 

comprising baseline correction, peak detection, chromatogram deconvolution and 

alignment. The parameters used for pre-processing of GC-MS data were: RT range 4.4-

26.0 min, m/z range 50-600, MS data noise level 1.5×105, m/z tolerance 0.2, chromatogram 

baseline level 1.5×104 and peak duration range 0.02-1.18 min. All RT-m/z pairs identified 

as contaminants (e.g., from column, fiber, among others) were manually removed from the 

matrix. Data was normalized by the total area of the chromatograms and scaled to pareto. 
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The parameters used for pre-processing of HILIC-MS/MS data acquired in the positive 

mode were: RT range 0.9-12 min, m/z range 400-1420, MS data noise level 1.0×105, m/z 

tolerance 0.01, chromatogram baseline level 9×104 and peak duration range 0.03-2.00 min; 

while for HILIC-MS/MS negative mode were: RT range 0.01-20 min, m/z range 400-1000, 

MS data noise level 1.0×105, m/z tolerance 0.01, chromatogram baseline level 9×104 and 

peak duration range 0.03-2.00 min. Data from the positive and negative modes were 

combined, duplicate peaks were removed and the final matrix was normalized by the total 

area of all identified lipid species and scaled to pareto. For 1H NMR, water resonances were 

removed from de matrix and the spectra were aligned using the recursive segment-wise 

peak alignment method (31) (R 3.3.3 software). The final matrix was normalized by the total 

area of the spectrum and scaled to unit variance (UV). For all data, an additional step of 

variable selection was applied to remove uninformative variables (32), based on an 

univariate test (t-test) and considering a significance level of 0.05 (MetaboAnalyst) (33). 

 

4.1.3.8 Statistical analysis 

The strategy used for statistical analysis was the same for all methodologies carried 

out in this work and comprised both multivariate statistical analysis (MVA) and univariate 

statistical analysis. MVA was performed using SIMCA-P 15 (Umetrics, Sweden) and 

included principal component analysis (PCA) and partial least squares discriminant analysis 

(PLS-DA). PCA was used to visualize sample distribution including QCs clustering, while 

PLS-DA was applied to evaluate the discriminant capability of the data. Furthermore, 

sevenfold cross-validation and permutation test (200 permutations) were performed to 

validate the PLS-DA models. Additionally, receiver operating characteristic analysis (ROC) 

was performed, along with the area under the curve (AUC), sensitivity, specificity, and 

accuracy (MetaboAnalyst) (33). For all metabolites and lipid species with variable 

importance to the projection (VIP) greater than one, univariate statistical analysis was 

performed, including a normality test (Shapiro–Wilk test), unpaired Student’s t-test with 

Welch correction for normal distribution, and unpaired Mann-Whitney test for non-normal 

distribution. Additionally, percentage of variation and uncertainty, effect size and standard 

error (ESSE) (34), Bonferroni correction (35) and AUC were computed for each discriminant 

metabolite and lipid species.  

Metabolic pathway analysis was performed in the MetPA tool (Metaboanalyst) (33) 

using all significantly altered metabolites and lipid species to disclose which metabolic 

pathways were dysregulated in PCa tissue. Only statistically different metabolic pathways 

(p < 0.05) involving at least two significantly altered metabolites or lipid species were 
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considered. Finally, the Spearman’s rank correlation coefficient was computed between all 

the significantly altered metabolites and lipid species defining a threshold of p ≤ 0.0001 (R 

version 4.0.3) (36). The correlation matrix was created using the R package Hmisc (37). 

 

 

4.1.4 Results and Discussion 

 

To increase the metabolome coverage of PCa tissue, three complementary analytical 

platforms were used for characterization of PCa and adjacent non-malignant tissue 

samples. GC-MS and 1H NMR spectroscopy enabled the detection of polar and semi-polar 

metabolites, such as amino acids, organic acids, sugars, among others, while HILIC-MS/MS 

was applied to detect complex lipid species, such as PLs. Overall, 151 metabolites were 

detected, corresponding to 110 by GC-MS and 62 by 1H NMR (21 in common with GC-MS), 

and 477 lipid species by HILIC-MS/MS. As recommended for MS-based untargeted 

metabolomic approaches (38), QCs were included in the GC-MS and HILIC-MS/MS 

analyses to provide a representation of the variability within the data acquired. As depicted 

in Figure S5, the cluster of QC samples in the PCA model was more compact than the 

distribution of all biological samples under study, confirming the reproducibility of the GC-

MS and HILIC-MS/MS analyses.  

To examine trends and possible outliers in the metabolic and lipid profiles of PCa and 

adjacent non-malignant tissue samples, PCA was first performed using the data obtained 

by GC-MS, 1H NMR and HILIC-MS/MS (Figure S6). Overall, no separation was observed 

in PCA models and only one outlier was excluded from GC-MS data. The metabolic 

differences existing between PCa and adjacent non-malignant tissue were further 

investigated through PLS-DA (Figure 4.2A, C and E). The three models showed a 

satisfactory performance to discriminate both groups. The GC-MS model showed an AUC 

of 0.88, 82% sensitivity, 90% specificity and 86% accuracy (Figure 4.2B), while the 1H NMR 

model unveiled an AUC of 0.84, 78% sensitivity, 70% specificity and 74% accuracy (Figure 

4.2D) and, finally, the HILIC-MS/MS model showed an AUC of 0.83, 83% sensitivity, 75% 

specificity and 79% accuracy (Figure 4.2F). All PLS-DA models were validated through 

permutation tests (Figure S7). 
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Figure 4.2: (A) PLS-DA scores scatter plot (pareto scaling; 2 latent variables) obtained for the GC–

MS metabolic profile of PCa tissue (n=39, blue squares) vs. adjacent non-malignant tissue (n=40, 

green circles), after variable selection; (B) ROC curve of the PLS-DA model obtained through GC–

MS; (C) PLS-DA scores scatter plot (UV scaling; 2 latent variables) obtained for the 1H NMR 

metabolic profile of PCa tissue (n=40, blue squares) vs. adjacent non-malignant tissue (n=40, green 

circles), after variable selection; (D) ROC curve of the PLS-DA model obtained through 1H NMR; (E) 

PLS-DA scores scatter plot (pareto scaling; 2 latent variables) obtained for the HILIC–MS/MS 

metabolic profile of PCa tissue (n=40, blue squares) vs. adjacent non-malignant tissue (n=40, green 

circles), after variable selection; (F) ROC curve of the PLS-DA model obtained through HILIC-

MS/MS. (G) Pathway topology analysis depicting the dysregulated metabolic pathways associated 

with PCa development, performed using the set of metabolites and PL species found statistically 

different between PCa and adjacent non-malignant tissue.The node colors represent the p-values 

from the pathway enrichment analysis and the node radius indicate the pathway impact values. 

Dysregulations in metabolic pathways corroborated by correlation analysis are marked with 

asterisks. 
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Considering all analytical platforms, 48 metabolites/PL species showed VIP >1 in PLS-

DA models and significantly altered levels (p-value < 0.05) between PCa and adjacent non-

malignant tissue, namely 15 from GC-MS, 12 from 1H NMR and 21 from HILIC-MS/MS 

(Table 4.2, Tables S1, S2 and S3). These metabolites included 14 amino acids and 

derivatives, 3 fatty acids and derivatives, 2 nucleotide derivatives, 4 organic acids and 

derivatives, 1 pyridine derivative,1 pyrimidine derivative, 1 purine derivative, 1 sugar alcohol 

and 21 PL species [6 phosphatidylcholines (PCs), 9 phosphatidylethanolamines (PEs), 4 

phosphatidylinositols (PIs) and 2 sphingomyelins (SMs)]. From the 48 metabolites/PL 

species, 17 remained statistically significant after Bonferroni correction (Table 4.2), namely 

alanine, aspartic acid, proline, serine, taurine, oleamide, uracil, benzoic acid, malic acid, 

urea, niacinamide, myo-inositol, and 5 PL species [PE(34:2), PE(36:3), PI(36:1), PI (36:2) 

and PI (38:2)]. Regarding the relative comparison of total PL classes (Table S4), 

significantly altered levels were found for lysophosphatidylglycerol (LPG), 

phosphatidylglycerol (PG) and PI classes, which were upregulated in PCa, and 

diacylglycerols (DG) and SM classes, which were downregulated. 

Most of the amino acids, organic acids and nucleotide derivatives were previously 

found altered in PCa tissue compared with adjacent non-malignant tissue (39-44). To our 

knowledge, 9 metabolites were, for the first time, detected as significantly altered in PCa 

tissue, namely 1-methylhistidine, serine, tryptophan, benzoic acid, nonanoic acid, UDP-

glucose/UDP-galactose, niacinamide, oleamide, and urea. Though, 4 metabolites were 

previously found altered in PCa by analysis of other sample matrices (urine and serum), 

namely serine (45), tryptophan (46), 1-methylhistidine (46, 47), and benzoic acid (45). 

Furthermore, arachidonic acid was previously reported as significantly increased in PCa 

tissues (48), which contradicts our results as a significant decrease of the levels of this 

metabolite was observed in this study. 

Regarding the PL species identified in the present study, PC(34:2), PC(36:3), PC(36:2), 

PC(36:1), PI(36:1), PI(38:2) and SM(d34:1) were previously found altered in PCa tissue and 

implicated in PCa development (49-51). In addition, the significant decrease of the SM class 

in PCa agrees with previous literature (43), while a significant increased in the levels of 

SM(d42:1) was previously reported (51) contradicting our results. To the best of our 

knowledge, the significant alterations in the levels of DG, LPG, PG and PI classes, as well 

as, PC(34:3), PC(38:7), PI(34:1) and PI(36:2) species, were detected in PCa tissue for the 

first time in this study. Moreover, the identification of specific PE molecular species (Table 

S3) changing in PCa tissue was seen in this work for the first time, despite alterations in the 

levels of PE class have been previously described (43, 52). 
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Table 4.2: List of metabolites and PL species found significantly altered in PCa tissue compared to 

adjacent non-malignant tissue by GC–MS, 1H NMR spectroscopy and HILIC-MS/MS. 

Name p-value 

Variation 

± uncertainty 

(%) 

Effect size 

± ESSE 
AUC 

Up/ down 

regulated 

Analytical 

platform 

Amino acids and derivatives 

1-Methyl-

histidine L2 

0.0125 13.1 ± 4.8 0.57 ± 0.45 0.66 Up 1H NMR 

Alanine L2 0.0006B 15.6 ± 4.0 0.80 ± 0.46 0.70 Up 1H NMR 

Aspartic acid L1 <0.0001B 8194 ± 26.1 1.73 ± 0.52 0.85 Up GC-MS 

Creatine L2 0.0037 -15.65 ± 5.37 -0.71 ± 0.45 0.69 Down 1H NMR 

Glutamine L1 0.0085 98.4 ± 23.7 0.63 ± 0.45 0.67 Up GC-MS 

Isoleucine L2 0.0073 9.8 ± 3.8 0.56 ± 0.45 0.67 Up 1H NMR 

Leucine L2 0.0021 12.1 ± 3.7 0.70 ± 0.45 0.70 Up 1H NMR 

Phenylalanine L1 0.0152 26.1 ± 10.2 0.57 ± 0.45 0.66 Up GC-MS 

Proline L1 <0.0001B 241 ± 16.4 1.53 ± 0.50 0.85 Up GC-MS 

Serine L1 0.0008B 105 ± 26.9 0.58 ± 0.45 0.72 Up GC-MS 

Taurine L2 0.0001B -19.6 ± 5.0 -0.98 ± 0.46 0.74 Down 1H NMR 

Tryptophan L2 0.0086 26.3 ± 8.6 0.60 ± 0.45 0.68 Up 1H NMR 

Tyrosine L1 0.0041 53.6 ± 15.7 0.61 ± 0.45 0.69 Up GC-MS 

Valine L2 0.0244 8.3 ± 3.4 0.51 ± 0.45 0.66 Up 1H NMR 

Fatty acids and derivatives 

Arachidonic 

acid L2 

0.0093 -36.3 ± 17.7 -0.56 ± 0.45 0.67 Down GC-MS 

Nonanoic acid L1 0.0208 -8.2 ± 3.8 -0.51 ± 0.45 0.65 Down GC-MS 

Oleamide L2 <0.0001B -31.8 ± 8.3 -1.02 ± 0.47 0.79 Down GC-MS 

Nucleotide derivatives 

NAD+ L2 0.0021 -35.6 ± 13.7 -0.71 ± 0.45 0.70 Down 1H NMR 

UDP-Glucose/ 

UDP-GalactoseL2 

0.0023 25.7 ± 7.2 0.71 ± 0.45 0.70 Up 1H NMR 

Organic acids and derivatives 

Benzoic acid L1 <0.0001B -23.3 ± 8.7 -0.68 ± 0.45 0.76 Down GC-MS 

Fumaric acid L2 0.0352 19.1 ± 8.1 0.48 ± 0.45 0.66 Up 1H NMR 

Malic acid L1 <0.0001B 153 ± 14.5 1.34 ± 0.49 0.87 Up GC-MS 

Urea L1 <0.0001B 48.9 ± 10.0 0.89 ± 0.46 0.75 Up GC-MS 

Pyridine derivative 

Niacinamide L2 0.0003B 25.8 ± 6.1 0.84 ± 0.46 0.72 Up 1H NMR 
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Name p-value 

Variation 

± uncertainty 

(%) 

Effect size 

± ESSE 
AUC 

Up/ down 

regulated 

Analytical 

platform 

Pyrimidine derivative      

Uracil L1 0.0011B 76.2 ± 15.8 0.79 ± 0.46 0.71 Up GC-MS 

Purine derivative 

Hypoxanthine L2 0.0096 34.3 ± 11.0 0.61 ± 0.45 0.64 Up GC-MS 

Sugar alcohol 

Myo-inositol L1 0.0007B -39.7 ± 11.6 -0.95 ± 0.47 0.71 Down GC-MS 

Phosphatidylcholine species 

PC(34:2) L2 0.0332 18.38 ± 6.12 0.62 ± 0.45 0.64 Up HILIC-MS/MS 

PC(34:3) L2 0.0310 -11.41 ± 5.14 -0.53 ± 0.45 0.64 Down HILIC-MS/MS 

PC(36:1) L2 0.0319 12.45 ± 5.36 0.49 ± 0.45 0.62 Up HILIC-MS/MS 

PC(36:2) L2 0.0216 15.95 ± 5.35 0.62 ± 0.45 0.65 Up HILIC-MS/MS 

PC(36:3) L2 0.0050 17.37 ± 5.53 0.65 ± 0.45 0.67 Up HILIC-MS/MS 

PC(38:7) L2 0.0028 -17.85 ± 6.19 -0.71 ± 0.45 0.69 Down HILIC-MS/MS 

Phosphatidylethanolamine species 

PE(34:1) L2 0.0231 22.02 ± 8.55 0.52 ± 0.45 0.65 Up HILIC-MS/MS 

PE(34:2) L2 <0.0001B 45.93 ± 8.08 1.03 ± 0.47 0.75 Up HILIC-MS/MS 

PE(36:1) L2 0.0370 17.06 ± 7.41 0.48 ± 044 0.62 Up HILIC-MS/MS 

PE(36:3) L2 <0.0001B 43.68 ± 7.96 1.01 ± 0.47 0.76 Up HILIC-MS/MS 

PE(38:3) L2 0.0155 22.56 ± 7.88 0.58 ± 0.45 0.65 Up HILIC-MS/MS 

PE(38:5) L2 0.0342 18.12 ± 7.71 0.48 ± 0.45 0.62 Up HILIC-MS/MS 

PE(40:6) L2 0.0019 30.38 ± 7.71 0.77 ± 0.45 0.70 Up HILIC-MS/MS 

PE(P-38:5) L2 0.0415 -10.59 ± 5.39 -0.46 ± 0.44 0.64 Down HILIC-MS/MS 

PE(P-40:7) L2 0.0152 -13.98 ± 6.04 -0.57 ± 0.48 0.68 Down HILIC-MS/MS 

Phosphatidylinositol species 

PI(34:1) L2 0.0118 24.45 ± 8.43 0.58 ± 0.45 0.66 Up HILIC-MS/MS 

PI(36:1) L2 <0.0001B 40.40 ± 7.63 0.99 ± 0.46 0.77 Up HILIC-MS/MS 

PI(36:2) L2 <0.0001B 40.58 ± 6.32 1.19 ± 0.48 0.79 Up HILIC-MS/MS 

PI(38:2) L2 0.0001B 36.48 ± 7.63 0.90 ± 0.46 0.63 Up HILIC-MS/MS 

Sphingomyelin species 

SM(d34:1) L2 0.0059 -11.81 ± 4.42 -0.64 ± 0.45 0.67 Down HILIC-MS/MS 

SM(d42:1) L2 0.0027 -14.69 ± 5.10 -0.70 ± 0.45 0.70 Down HILIC-MS/MS 

L1: Formally identified metabolites by comparison of a reference standard analyzed under the same conditions 
within the same laboratory (53); L2: Putatively annotated compounds according to similarity with databases (53); 
B: Alterations remaining significant after Bonferroni correction, with a p-value cut-off of 0.0015 (0.05 divided by 
33 tested metabolites) for GC–MS data, p-value cut-off of 0.0018 (0.05 divided by 28 tested PL species) for 1H 
NMR and p-value cut-off of 0.0016 (0.05 divided by 31 tested metabolites) for HILIC-MS/MS. 
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The altered metabolites suggested significant (p-value <0.05) dysregulations in 11 

metabolic pathways associated with the development of PCa using the MetPA tool (54) 

(Figure 4.2G, Table S5), namely aminoacyl-tRNA biosynthesis (phenylalanine, glutamine, 

aspartic acid, serine, valine, alanine, isoleucine, leucine, tryptophan, tyrosine, proline), 

arginine biosynthesis (aspartic acid, glutamine, urea, fumaric acid), valine, leucine and 

isoleucine biosynthesis (isoleucine, leucine, valine), alanine, aspartate and glutamate 

metabolism (aspartic acid, alanine, glutamine, fumaric acid), phenylalanine, tyrosine and 

tryptophan biosynthesis (phenylalanine, tyrosine), nicotinate and nicotinamide metabolism 

(aspartic acid, NAD+, niacinamide), pantothenate and CoA biosynthesis (valine, aspartic 

acid, uracil), ascorbate and aldarate metabolism (myo-inositol, UDP-glucose), 

phenylalanine metabolism (phenylalanine, tyrosine), glyoxylate and dicarboxylate 

metabolism (malic acid, serine, glutamine), and histidine metabolism (1-methylhistidine, 

aspartic acid). To evaluate a potential relationship among the metabolites participating in 

the same metabolic pathway, correlation analysis was performed using all metabolites/PL 

species found significantly different between PCa vs. adjacent non-malignant tissue. From 

these, 39 metabolites/PL species revealed relevant positive and negative correlations (p-

value ≤ 0.0001) (Figure 4.3, Table S6), corroborating potential dysregulations in aminoacyl-

tRNA biosynthesis, arginine biosynthesis, valine, leucine and isoleucine biosynthesis, 

alanine, aspartate and glutamate metabolism, phenylalanine, tyrosine and tryptophan 

biosynthesis, nicotinate and nicotinamide metabolism, pantothenate and CoA biosynthesis, 

phenylalanine metabolism, and glyoxylate and dicarboxylate metabolism. Moreover, 

dysregulations in purine metabolism (glutamine, hypoxanthine and urea) and 

glycerophospholipid metabolism (PCs and PEs) were supported by strong correlations 

among the participating metabolites/PL species, despite the lack of statistical significance 

in the MetPA tool (Table S5 and S6). Interestingly, strong correlations were also observed 

between metabolites participating in different metabolic pathways, such as uracil with 

several amino acids (leucine, alanine, tryptophan, phenylalanine, aspartic acid), and 

niacinamide and taurine with several PL species (Figure 4.3, Table S6). 
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Figure 4.3: Correlation matrix obtained from the significantly altered metabolites/PL species found 

between PCa and adjacent non-malignant tissue. Circle size is proportional to the correlation 

coefficient and only correlations with p-value ≤ 0.0001 are represented. Metabolite abbreviations: 1-

MH, 1-methylhistidine; Ala, alanine; Asp, aspartic acid; Fum, fumaric acid; Glu, glutamine; Hyp, 

hypoxanthine; Iso, Isoleucine; Leu, leucine; MA, malic acid; NM, niacinamide; Phe, phenylalanine; 

Pro, proline; Tau, taurine; Trp, tryptophan; Tyr, tyrosine; U, uracil; UDP-Glu/UDP-Gal, UDP-

glucose/UDP-galactose; Val, valine.  

 

Most of the metabolic pathways found dysregulated in PCa in this study were 

associated with the upregulation of several amino acids and derivatives, namely aminoacyl-

tRNA biosynthesis, arginine biosynthesis, valine, leucine and isoleucine biosynthesis, 

alanine, aspartate and glutamate metabolism, phenylalanine, tyrosine and tryptophan 

biosynthesis, phenylalanine metabolism, and histidine metabolism. Importantly, 
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dysregulations in these pathways were corroborated by strong correlations among amino 

acids participating in the same pathway. Amino acids are key intermediates in several 

biological reactions, providing intermediates for TCA cycle (energetic metabolism), 

nucleotide synthesis, pyridine synthesis, purines and thymidylate production, and lipid 

synthesis (17, 55-59). Furthermore, amino acids have the ability to activate the mammalian 

target of rapamycin (mTOR), which is essential for anabolic metabolism, cell growth (60-

62), tumor progression and therapy resistance (63), and, ultimately, reprogramming of 

metabolic responses in cancer cells. Hence, the significant alterations in amino acid levels 

observed in our study suggest an upregulation of amino acid metabolism to produce high 

levels of cellular building blocks required for rapid PCa cell proliferation. This assumption is 

corroborated by the observed alteration in purine metabolism, which provides essential 

components for DNA and RNA synthesis, as well as energy and cofactors to stimulate cell 

survival and proliferation (64). Purine and amino acid metabolisms are closely 

interconnected because several amino acids (e.g., glutamine, glycine, aspartic acid) are 

substrates required for purine de novo biosynthetic pathway, particularly in rapid 

proliferating cancer cells (64).  

Dysregulations in nicotinate and nicotinamide metabolism were corroborated by the 

negative correlation (Table S6) between NAD+ and niacinamide (also known as 

nicotinamide), which is expected since NAD+ is produced de novo from niacinamide in a 

short sequence of enzyme-catalyzed reactions referred as salvage pathway (65). NAD+ is 

essential for aerobic glycolysis and other energy metabolic pathways (e.g., TCA cycle, 

oxidative phosphorylation, fatty acid metabolism), as well as for DNA repair mechanisms 

and several cellular signaling regulatory pathways. The NAD+ levels in cells can be 

modulated by enzymatic consumption, particularly by cyclic ADP-ribose (ADPR) synthases 

such as CD38, which is the primary NAD’ase in mammalian cells (66). However, a 

decreased expression of CD38 and consequent increase in NAD+ levels have been 

reported in PCa (66), which contrasts with the downregulation of NAD+ and upregulation of 

niacinamide observed in our study. Still, Dudka et al. also reported significantly lower NAD+ 

levels in PCa compared with adjacent non-malignant tissue (43), in accordance with our 

findings. Regarding the correlations found between niacinamide and several PL species 

(particularly PEs) in this study, it may be explained by the essential role of nicotinamide 

phosphoribosyl transferase (NAMPT) for PL synthesis in PCa cells (67), which may link 

nicotinate and nicotinamide metabolism with glycerophospholipid metabolism. 

Regarding glycerophospholipid metabolism, a significant increase in the levels of 

several PEs and PCs was observed in PCa tissue. PEs and PCs are the most abundant PL 
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species in cellular membranes, playing a major role in their structure and function (68). 

Considering that cancer cells disclose a highly proliferative phenotype, and consequent high 

demand of cellular membrane components, this increase in the levels of the major cellular 

membrane components might be expected (60). Interestingly, the PCs and PEs found 

upregulated in PCa were mainly composed by palmitic acid (16:0), stearic acid (18:0), oleic 

acid (18:1), and linoleic acid (18:2). In addition, two plasmalogen PEs, namely PE(P-38:5) 

and PE(P-40:7), stand out as they were downregulated in PCa tissue. The significant 

decrease in the levels of alkenyl-ether lipid species was previously associated with other 

cancers (e.g. pancreatic cancer (69) and esophageal cancer (70)). The role of 

plasmalogens in cancer metabolism is not fully understood, although several potential 

biological functions have been associated with these lipid species, including reduction of PL 

surface tension and viscosity, control of cellular membrane fusion and remodeling, 

regulation of membrane proteins, membrane vesicle structure, storage of cellular 

messengers, and cellular signaling (71, 72). Most importantly, plasmalogens act as 

endogenous antioxidants (71), which may justify the observed significant decrease in the 

levels of these PL species in PCa tissue.   

Concerning PIs, we observed a significant increase in the levels of this class of lipids 

in PCa tissue, particularly composed by stearic (18:0) and oleic (18:1) acids, which is in 

accordance with a previous study (49). PIs are key regulators of membrane binding of 

proteins and protein activity at the cell interface (73), contributing for cell membrane fluidity 

(49). Furthermore, PIs are an important precursor of signaling molecules (73), including the 

lipid secondary messenger phosphatidylinositol (3,4,5)-trisphosphate (PIP3), a key 

participant in PI3-kinase pathway (63). Thus, the increase in the levels of PIs in PCa tissue 

might be related with the role of these molecules in intracellular signal transduction of PI3-

kinase pathway. Indeed, the oncogenic activation of PI3K pathway has been associated 

with PCa (63). 

Finally, we also observed a significant decrease in the levels of SMs. These lipid 

species are essential bioactive components of cell membrane (74, 75), as they can interact 

with proteins and cholesterol at the membrane surface (76). The decrease in the levels of 

SMs may be associated with the activation of sphingomyelinase since these enzymes can 

be activated by the metabolic products of arachidonic acid (50). Remarkably, a significant 

decrease in the levels of arachidonic acid was also observed in our study. Furthermore, the 

arachidonic acid pathway has previously been associated with PCa development and 

progression (50). 
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4.1.5 Conclusions 

 

This work unveiled alterations in the levels of 27 metabolites and 21 PL species 

participating in 13 metabolic pathways, in PCa. Novel and significant alterations included 

the upregulation of 1-methylhistine, serine, tryptophan, UDP-glucose/UDP-galactose, 

niacinamide, urea, and several PC, PE and PI species, and the downregulation of nonanoic 

acid, benzoic acid, oleamide, two plasmalogen PEs and one SM specie. Interestingly, the 

dysregulated PL species included mainly palmitic (16:0), stearic (18:0), oleic (18:1) and 

linoleic (18:2) acids in their composition.  

The metabolic pathways most affected in PCa tissue were amino acid metabolism, 

nicotinate and nicotinamide metabolism, purine metabolism, and glycerophospholipid 

metabolism. Importantly, a clear interconnection among these pathways was observed 

through correlation analysis. Dysregulation in these metabolic pathways may be related 

with activation of mTOR and PI3-kinase pathway to produce high levels of cellular building 

blocks required for rapid PCa cell proliferation. These results emphasize that the 

combination of GC-MS and NMR-based metabolomics with lipidomics provides a more 

comprehensive characterization of PCa tissue and a better understanding of metabolic 

alterations occurring in PCa development. 
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4.1.7 Supporting information  

 

 

 

Figure S1: Representative MS/MS spectra of phosphatidylcholine (PC) lipid species. A) HILIC-

MS/MS spectrum of the [M + H]+ ion at m/z 758.6 of the lipid species PC (34:2). Confirmation of PL 

class was achieved by the identification of phosphocholine polar head, ion at m/z 184.1 (formula: 

C5H15NO4P; exact mass: 184.0739); B) HILIC-MS/MS spectrum of the [M + CH3COO]- ion at m/z 

816.6 of the lipid species PC (34:2). The typical neutral loss of 74 Da, corresponding to the loss of 

methyl acetate (i.e., -CH3COOCH3 with formation of ions at m/z 742.5), and the product ions at m/z 

168.0 (formula: C4H11NO4P; exact mass:168.0425), corresponding to the N-

dimethylaminoethylphosphate anion (i.e., phosphocholine polar head without a methyl group), 

corroborate the identification of the PC class. Fatty acid composition was confirmed by the 

identification of product ions corresponding to the fatty acyl chains as [RCOO]-. The product ions 

observed at m/z 255.2 and 279.2, corresponding to fatty acyl carboxylate anions 16:0 (R1COO-) and 

18:2 (R2COO-) allowed to identify the fatty acyl composition of PC (16:0/18:2). 

 A 
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Figure S2: Representative MS/MS spectra of phosphatidylethanolamine (PE) lipid species. A) 

HILIC-MS/MS spectrum of the [M + H]+ ion at m/z 718.5 of the lipid species PE (34:1). Confirmation 

of the PL class was achieved by the identification of phosphoethanolamine polar head corresponding 

to the neutral loss of 141 Da (formula: C2H8NO4P; exact mass: 141.0191). B) HILIC-MS/MS spectrum 

of the [M + H]- ion at m/z 716.5 of the lipid species PE (34:1). The class confirmation was 

accomplished by the presence of the phosphoethanolamine polar head that correspond to the 

product ion at m/z 140.0 (formula: C2H7NO4P; exact mass: 140.0113). Fatty acid composition was 

confirmed by the identification of product ions corresponding to the fatty acyl chains as [RCOO]-. The 

product ions observed at m/z 255.2 and 281.2, corresponding to fatty acyl carboxylate anions of 16:0 

(R1COO-) and 18:1 (R2COO-), allowed to identify the fatty acyl composition of PE (16:0/18:1). 

 A 
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Figure S3: Representative MS/MS spectrum of phosphatidylinositol (PI) lipid species. HILIC-MS/MS 

spectrum of the [M + H]- ion at m/z 863.6 of the lipid species PI (36:1). Confirmation of PL class was 

achieved by the identification of the phosphoinositol head group that correspond to the product ion 

at m/z 241.0 (formula: C6H10O8P; exact mass: 241.0113). Fatty acid composition was confirmed by 

the identification of product ions corresponding to the fatty acyl chains as [RCOO]-. The product ions 

observed at m/z 281.3 and 283.3, corresponding to fatty acyl carboxylate anions of 18:1 (R1COO-) 

and 18:0 (R2COO-) allowed to identify the fatty acyl composition of PI (18:0/18:1). 
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Figure S4: Representative MS/MS spectra of sphingomyelin (SM) lipid species. A) HILIC-MS/MS 

spectrum of the [M + H]+ ion at m/z 703.5 of the lipid species SM (d34:1). Confirmation of PL class 

was achieved by the identification of the phosphocholine polar head corresponding to the product 

ion at m/z 184.1 (formula: C5H15NO4P; exact mass: 184.0739), and the product ion of sphingoid base 

at m/z 264.3, corresponding to [Sphingosine d18:1-2H2O+H]+. The mass difference of 238 Da 

between the product ions at m/z 502.5 ([M-(183-H2O)+H]+) and 264.3, plus 18 Da, allowed to infer 

the presence of 16:0 as fatty acyl amide substituent. B) HILIC-MS/MS spectrum of the [M + 

CH3COO]- ion at m/z 761.5 of the lipid species SM (d34:1). The typical loss of 74 Da corresponding 

to the loss of methyl acetate (formula: C3H6O2; exact mass: 74.0368) and the product ion at m/z 

168.0 (formula: C4H11NO4P; exact mass:168.0425), corresponding to the phosphocholine polar 

head without a methyl group, corroborate the identification of the SM class. 

 A 

 B 
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Figure S5: PCA scores scatter plots (Pareto scaling; 2 components) obtained for (A) GC-MS 

(R2X=0.346) and (B) HILIC-MS/MS (R2X=0.749) data of all samples under study (n = 80, blue circles) 

and QCs (n = 8, red circles). 

 

 

 

Figure S6: PCA scores scatter plots obtained for (A) GC-MS data (Pareto scaling; 2 components, 

R2X=0.354), (B) 1H NMR data (UV scaling; 2 components, R2X=0.233) and HILIC-MS/MS data 

(Pareto scaling; 2 components, R2X=0.741) of PCa (n = 40, blue squares) compared with adjacent 

non-malignant tissue (n = 40, green circles). 
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Figure S7: Statistical validation of the PLS-DA models obtained for (A) GC-MS [Intercepts: R2 = (0.0, 

0.425); Q2 = (0.0, -0.133)], (B) 1H NMR [Intercepts: R2 = (0.0, 0.315); Q2 = (0.0, -0.179)], and (C) 

HILIC-MS/MS [Intercepts: R2 = (0.0, 0.0989); Q2 = (0.0, -0.114)] data of PCa vs. adjacent non-

malignant tissue by permutation testing (200 permutations; 2 components). 

 

 

Table S1: List of metabolites significantly altered in PCa vs. adjacent non-malignant tissue detected 

through GC-MS. Metabolites are characterized by their retention time (RT), most characteristic ions 

(m/z), Kovats indices (KI) from literature, experimental KI, R match (NIST), identification level, as 

well as the HMDB (Human Metabolome Database) code. 

Name RT m/z 
KI from 

literature 

Experimen-

tal KI a 

R 

match 

Identifi-

cation 

level b 

HMDB c 

Urea 7.13 
147/189/

73 
- - 910 L1 HMDB0000294 

Benzoic 

acid 
7.25 

105/179/

77 
- - 906 L1 HMDB0001870 

Serine 7.32 
116/132/

73 
- - 751 L1 HMDB0000187 

Proline 7.71 
142/73/ 

143 
- - 912 L1 HMDB0000162 

Uracil 8.07 
241/99/ 

255 
- - 867 L1 HMDB0000300 

Nonanoic 

acid 
8.31 

73/75/ 

215 
- - 781 L1  HMDB0000847 

Aspartic 

acid  
8.87 

73/160/ 

130 
- - 823 L1 HMDB0000191 

Malic acid  9.38 
73/147/ 

233 
- - 928 L1 HMDB0000156 

Phenyl-

alanine 
10.55 

73/218/ 

192 
- - 886 L1 HMDB0000159 

Glutamine 11.61 
73/156/ 

155 
- - 896 L1 HMDB0000641 
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Name RT m/z 
KI from 

literature 

Experimen-

tal KI a 

R 

match 

Identifi-

cation 

level b 

HMDB c 

Hypoxan-

thine  
11.88 

265/73/ 

280 
1811 1809 920 L2 HMDB0000157 

Tyrosine 12.76 
218/73/ 

219 
- - 959 L1 HMDB0000158 

Myo-

inositol 
13.73 

73/147/ 

217 
- - 937 L1 HMDB0000211 

Arachido-

nic acid 
15.79 73/75/79 2417 2463 860 L2 HMDB0001043 

Oleamide 16.23 
75/131/ 

73 
2427 2512 912 L2 HMDB0002117 

a: Experimental Kovats RI determined using a commercial hydrocarbon mixture (C8–C20); b: Viant MR, Kurland 
IJ, Jones MR, Dunn WB. How close are we to complete annotation of metabolomes? Curr Opin Chem Biol. 
2017;36:64-9. c: Wishart DS, Tzur D, Knox C, Eisner R, Guo AC, Young N, et al. HMDB: the Human Metabolome 
Database. Nucleic Acids Res. 2007;35(Database issue):D521-6; L1: Identified metabolites (GC-MS analysis of 
the metabolite of interest and a chemical reference standard of suspected structural equivalence, with all 
analyses performed under identical analytical conditions within the same laboratory); L2: Putatively annotated 
compounds (MS spectral similarity with NIST database). 

 

 

Table S2: List of metabolites significantly altered in PCa vs. adjacent non-malignant tissue detected 

through 1H NMR spectroscopy. Metabolites are characterized by their 1H chemical shift (multiplicity), 

the identification level, as well as the HMDB (Human Metabolome Database) code. 

Name δH ppm (multiplicity) 
Identification 

level a 
HMDB b 

1-Methylhistidine 7.12 (s), 8.12 (s) L2 HMDB0000001 

Alanine 1.47 (d), 3.78 (q) L2 HMDB0000161 

Creatine 3.04(s), 3.93 (s) L2 HMDB0000064 

Fumaric acid 6.51 (s) L2 HMDB0000134 

Isoleucine 0.94 (t), 1.02 (d), 1.25 (m), 

1.46(m), 1.96 (m), 3.64 (d) 

L2 HMDB0000172 

 

Leucine 0.96 (d), 0.97 (d), 1.67 (m), 1.70 

(m), 3.73 (m) 

L2 HMDB0000687 

 

NAD+ 4.23 (m), 4.37 (m), 4.42 (dd), 

4.49 (m), 4.54 (m), 4.76 (t), 6.04 

(d), 6.08 (d), 8.18 (s), 8.20 (m), 

8.43 (s), 8.84 (d), 9.15 (d),  

9.34 (s) 

L2 HMDB0000902 
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Name δH ppm (multiplicity) 
Identification 

level a 
HMDB b 

Niacinamide 7.58 (dd), 8.24 (dd), 8.70(dd), 

8.94 (s) 

L2 HMDB0001406 

Taurine 3.28 (t), 3.41 (t) L2 HMDB0000251 

Tryptophan 3.30 (dd), 3.47 (dd), 4.05 (dd), 

7.19 (m), 7.27 (m), 7.31 (s), 7.54 

(d), 7.72 (d) 

L2 HMDB0000929 

UDP-Galactose 5.62 (dd), 5.99 (d), 6.00 (d), 7.96 

(d) 

L2 HMDB0012305 

UDP-Glucose 5.55 (dd), 5.9 (d), 5.99 (d), 7.96 

(d) 

L2 HMDB0000286 

Valine 1.00 (d), 1.05 (d), 2.26 (m), 3.60 

(d) 

L2 HMDB0000883 

a: Levels of confidence in metabolite identification defined as described in Viant MR, Kurland IJ, Jones MR, 
Dunn WB. How close are we to complete annotation of metabolomes? Curr Opin Chem Biol. 2017;36:64-9. L2: 
Putatively annotated compounds (spectral similarity with database). b: Metabolite ID as described in Wishart 
DS, Tzur D, Knox C, Eisner R, Guo AC, Young N, et al. HMDB: the Human Metabolome Database. Nucleic 
Acids Res. 2007;35 (Database issue):D521-6; s: singlet, d: doublet, t: triplet, dd: doublet of doublets, m: multiplet 
 

 

Table S3: List of metabolites significantly altered in PCa vs. adjacent non-malignant tissue, detected 

through HILIC-MS/MS. Lipid species are characterized by their retention time (RT), molecular ions 

(m/z) in positive and negative modes, fatty acid chains identified by MS/MS, formula, and 

identification level. Lipid species are labelled as X(C:N), where X is the lipid class abbreviation, C is 

the number of carbon atoms in fatty acids and N is the number of double bonds. The 'P-' prefix is 

used for plasmenyl species to indicate the alk-1-enyl ether substituent. All lipid species were 

identified by retention time, mass accuracy and confirmation of polar head group by MS/MS, 

whenever possible the fatty acid chains were also identified by MS/MS. Molecular species with 

known fatty acyl constituents are labelled using (sn-1/sn-2) nomenclature, considering that smaller 

and saturated fatty acids are commonly present at the sn-1 position in animals, while unsaturation 

fatty acids are located at sn-2. Lipid class abbreviations: PC, phosphatidylcholine; SM, 

sphingomyelin; PE, phosphatidylethanolamine; PI, phosphatidylinositol. 

Lipid 

species 

(C:N) 

RT 
Calculate

d m/z 

Observed 

m/z 

Error 

(ppm) 

Fatty acyl 

chains 

(C:N) 

Formula 

Identi-

fication 

level a 

PC identified as [M + H]+ 

PC(34:2) 6.60 758.5700 758.5701 0.1556 (16:0/18:2) C42H80NO8P L2 

PC(34:3) 6.78 756.5543 756.5541 -0.3053 (16:1/18:2) C42H78NO8P L2 

PC(36:1) 6.45 788.6169 788.6160 -1.2059 (18:0/18:1) C44H86NO8P L2 
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Lipid 

species 

(C:N) 

RT 
Calculate

d m/z 

Observed 

m/z 

Error 

(ppm) 

Fatty acyl 

chains 

(C:N) 

Formula 

Identi-

fication 

level a 

PC(36:2) 6.46 786.6013 786.6006 -0.8670 (18:1/18:1) 

and 

(18:0/18:2) 

C44H84NO8P L2 

PC(36:3) 6.47 784.5856 784.5842 -1.8338 - C44H82NO8P L2 

PC(38:7) 6.30 804.5543 804.5543 -2.8973 - C46H78NO8P L2 

PE identified as [M − H]− 

PE(34:1) 2.73 716.5230 716.5234 0.5583 (16:0/18:1) C39H76NO8P L2 

PE(34:2) 2.74 714.5070 714.5082 1.6795 (16:0/18:2) 

and 

(16:1/18:1) 

C39H74NO8P L2 

PE(36:1) 2.68 744.5543 744.5546 0.4029 (18:0/18:1) 

and 

(16:0/20:1) 

C41H80NO8P L2 

PE(36:3) 2.68 740.5230 740.5251 2.8358 (18:1/18:2) 

and 

(16:0/20:3) 

C41H76NO8P L2 

PE(38:3) 2.63 768.5540 768.5545 0.7055 (18:1/20:2) C43H80NO8P L2 

PE(38:5) 2.61 764.5230 764.5243 1.7004 (18:1/20:4) 

and 

(16:0/22:5) 

C43H76NO8P L2 

PE(40:6) 2.53 790.5300 790.5385 -0.2530 (18:0/22:6) C45H78NO8P L2 

PE(P-38:5) 2.57 748.5280 748.5295 2.0040 (P-18:1/20:4) 

and 

(P-16:0/22:5) 

C43H76NO7P L2 

PE(P-40:7) 2.53 772.5280 772.5278 -0.2589 (P-18:1/22:6) C45H76NO7P L2 

PI identified as [M − H]− 

PI(34:1) 1.30 835.5340 835.5340 <0.0001 (16:0/18:1) C43H81O13P L2 

PI(36:1) 1.30 863.5650 863.5643 -0.8106 (18:0/18:1) C45H85O13P L2 

PI(36:2) 1.30 861.5490 861.5494 0.4643 (18:1/18:1) 

and 

(18:0/18:2) 

C45H83O13P L2 

PI(38:2) 1.30 889.5810 889.5789 -2.3607 (18:0/20:2) 

and 

(18:1/20:1) 

 

C475H87O13P L2 

SM identified as [M + H]+ 

SM(d34:1) 7.79 703.5754 703.5748 -0.8542 (d18:1/16:0) C39H79N2O6

P 

L2 
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Lipid 

species 

(C:N) 

RT 
Calculate

d m/z 

Observed 

m/z 

Error 

(ppm) 

Fatty acyl 

chains 

(C:N) 

Formula 

Identi-

fication 

level a 

SM(d42:1) 7.20 815.7006 815.7003 -0.3690 - C47H95N2O6

P 

L2 

a: Levels of confidence in metabolite identification defined as described in Viant MR, Kurland IJ, Jones MR, 
Dunn WB. How close are we to complete annotation of metabolomes? Curr Opin Chem Biol. 2017;36:64-9; 
L2: Putatively annotated compounds according to similarity with databases and MS/MS spectra. 

 

 

Table S4: List of lipid classes significantly altered in PCa tissue compared to adjacent non-malignant 

tissue by HILIC-MS/MS. Relative comparison of each lipid class was performed by sum of normalized 

ion areas of all lipid species (identified only by RT and mass accuracy) within each class. 

Class p-value 
Variation 

± uncertainty (%) 
Effect size 

± ESSE 
AUC 

Up/ down 
regulated 

DGs 0.0102 -29.7 ± 13.2 -0.59 ± 0.45 0.65 Down 

LPGs 0.0141 43.3 ± 15.0 0.53 ± 0.45 0.76 Up 

PGs 0.0195 27.5 ± 9.6 0.56 ± 0.45 0.65 Up 

PIs 0.0082 17.4 ± 5.2 0.70 ± 0.45 0.67 Up 

SMs 0.0244 -9.5 ± 4.4 -0.51 ± 0.45 0.65 Down 

DGs: diacylglycerols; LPGs: lysophosphatidylglycerol; PGs: Phosphatidylglycerols; PIs: 
phosphatidylinositols; SMs: sphingomyelins. 

 

 

Table S5: Dysregulated metabolic pathways associated with PCa obtained from the metabolic 

pathway analysis performed in the MetPA tool (Metaboanalyst) considering all metabolites/PL 

species found statistically different between PCa and adjacent non-malignant tissue.  

Metabolic pathway Metabolites p-value Source 

Aminoacyl-tRNA biosynthesis Phenylalanine; Glutamine; 
Aspartic acid; Serine; Valine; 
Alanine; Isoleucine; Leucine; 
Tryptophan; Tyrosine; Proline 

<0.0001 KEGG 

Arginine biosynthesis Aspartic acid; Glutamine; Urea; 
Fumaric acid 

0.0001 KEGG 

Valine, leucine and isoleucine 
biosynthesis 

Leucine; Isoleucine; Valine 0.0004 KEGG, 
SMP 

Alanine, aspartate and 
glutamate metabolism 

Aspartic acid; Alanine; Glutamine; 
Fumaric acid 

0.0022 KEGG, 
SMP 

Phenylalanine, tyrosine and 
tryptophan biosynthesis 

Phenylalanine; Tyrosine 0.0024 KEGG, 
SMP 

Nicotinate and nicotinamide 
metabolism 

Aspartic acid; NAD+; Niacinamide 0.0031 KEGG, 
SMP 

Pantothenate and CoA 
biosynthesis 

Valine; Aspartic acid; Uracil 0.0062 KEGG, 
SMP 



 

184 

 

Metabolic pathway Metabolites p-value Source 

Ascorbate and aldarate 
metabolism 

Myo-inositol; UDP-Glucose 0.0107 KEGG 

Phenylalanine metabolism Phenylalanine; Tyrosine 0.0168 KEGG, 
SMP 

Glyoxylate and dicarboxylate 
metabolism 

Malic acid; Serine; Glutamine 0.0264 KEGG 

Histidine metabolism 1-Methylhistidine; Aspartic acid 0.0414 KEGG, 
SMP 

Valine, leucine and isoleucine 
degradation 

Valine; Isoleucine; Leucine 0.0471 KEGG, 
SMP 

Citrate cycle (TCA cycle) Malic acid; Fumaric acid 0.0623 KEGG, 
SMP 

beta-Alanine metabolism Aspartic acid; Uracil 0.0680 KEGG, 
SMP 

Galactose metabolism UDP-Glucose; Myo-inositol 0.1053 KEGG, 
SMP 

Glycine, serine and threonine 
metabolism 

Serine; Creatine 0.1469 KEGG, 
SMP 

Purine metabolism Glutamine; Hypoxanthine; Urea 0.1475 KEGG, 
SMP 

Glycerophospholipid 
metabolism 

PC; PE 0.1688 KEGG 

Arginine and proline 
metabolism 

Creatine; Proline 0.1837 KEGG, 
SMP 

Pyrimidine metabolism Glutamine; Uracil 0.1913 KEGG, 
SMP 

Tyrosine metabolism Tyrosine; Fumaric acid 0.2142 KEGG, 
SMP 

PC, phosphatidylcholine; PE, phosphatidylethanolamine 

 

 

Table S6: Spearman’s rank correlation coefficient obtained between all significantly altered 

metabolites/PL species in PCa vs. adjacent non-malignant tissue, with a threshold of p ≤ 0.0001. 

Metabolite pair r p-value Metabolic pathways 

Val Iso 0.87 <0.0001 Aminoacyl-tRNA biosynthesis; Valine, 
leucine and isoleucine biosynthesis; 
Valine, leucine and isoleucine 
degradation 

Val Leu 0.90 <0.0001 Aminoacyl-tRNA biosynthesis; Valine, 
leucine and isoleucine biosynthesis; 
Valine, leucine and isoleucine 
degradation 

Iso Leu 0.87 <0.0001 Aminoacyl-tRNA biosynthesis, Valine, 
leucine and isoleucine biosynthesis; 
Valine, leucine and isoleucine 
degradation 

Tau NAD 0.57 <0.0001 - 

Ala Fum 0.48 <0.0001 Alanine, aspartate and glutamate 
metabolism 

Val 1-MH 0.57 <0.0001 - 

Iso 1-MH 0.58 <0.0001 - 

https://www.metaboanalyst.ca/MetaboAnalyst/Secure/pathway/ResultView.xhtml
https://www.metaboanalyst.ca/MetaboAnalyst/Secure/pathway/ResultView.xhtml


 

185 

 

Metabolite pair r p-value Metabolic pathways 

Leu 1-MH 0.60 <0.0001 - 

Ala 1-MH 0.44 0.0001 - 

Fum 1-MH 0.50 <0.0001 - 

Val Trp 0.45 <0.0001 Aminoacyl-tRNA biosynthesis 

Iso Trp 0.57 <0.0001 Aminoacyl-tRNA biosynthesis 

Leu Trp 0.53 <0.0001 Aminoacyl-tRNA biosynthesis 

1MH Trp 0.59 <0.0001 - 

Ala NM 0.44 0.0001 - 

NAD NM -0.65 <0.0001 Nicotinate and nicotinamide metabolism 

Fum UDP-Glu/ 
UDP-Gal 

0.55 <0.0001 - 

PC(34:2) PC(36:2) 0.69 <0.0001 Glycerophospholipid metabolism 

Fum PC(36:3) 0.43 0.0001 - 

PC(34:2) PC(36:3) 0.56 <0.0001 Glycerophospholipid metabolism 

PC(36:2) PC(36:3) 0.60 <0.0001 Glycerophospholipid metabolism 

Tau PC(38:7) 0.66 <0.0001 - 

SM(d34:1) PC(38:7) 0.53 <0.0001 - 

Tau PE(34:1) -0.50 <0.0001 - 

NM PE(34:1) 0.50 <0.0001 - 

PC(36:2) PE(34:1) 0.50 <0.0001 Glycerophospholipid metabolism 

Tau PI(36:2) -0.43 0.0001 - 

NM PI(36:2) 0.45 <0.0001 - 

PC(34:2) PI(36:2) 0.50 <0.0001 Glycerophospholipid metabolism 

PC(36:2) PI(36:2) 0.67 <0.0001 Glycerophospholipid metabolism 

PC(36:3) PI(36:2) 0.46 <0.0001 Glycerophospholipid metabolism 

PE(34:1) PI(36:2) 0.57 <0.0001 Glycerophospholipid metabolism 

Fum PE(36:3) 0.46 <0.0001 - 

NM PE(36:3) 0.44 <0.0001 - 

UDP-Glu/ 
UDP-Gal 

PE(36:3) 0.47 <0.0001 - 

PC(34:2) PE(36:3) 0.52 <0.0001 Glycerophospholipid metabolism 

PC(36:2) PE(36:3) 0.77 <0.0001 Glycerophospholipid metabolism 

PC(36:3) PE(36:3) 0.58 <0.0001 Glycerophospholipid metabolism 

PE(34:1) PE(36:3) 0.68 <0.0001 Glycerophospholipid metabolism 

PI(36:2) PE(36:3) 0.79 <0.0001 Glycerophospholipid metabolism 

Ala PI(36:1) 0.45 <0.0001 - 

Tau PI(36:1) -0.50 <0.0001 - 

PC(36:2) PI(36:1) 0.45 <0.0001 Glycerophospholipid metabolism 

PE(34:1) PI(36:1) 0.68 <0.0001 Glycerophospholipid metabolism 

PI(36:2) PI(36:1) 0.82 <0.0001 Glycerophospholipid metabolism 

PE(36:3) PI(36:1) 0.66 <0.0001 Glycerophospholipid metabolism 

Tau PE(34:2) -0.45 <0.0001 - 

NAD PE(34:2) -0.45 <0.0001 - 

NM PE(34:2) 0.45 <0.0001 - 

PC(34:2) PE(34:2) 0.66 <0.0001 Glycerophospholipid metabolism 
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Metabolite pair r p-value Metabolic pathways 

PC(36:2) PE(34:2) 0.75 <0.0001 Glycerophospholipid metabolism 

PC(36:3) PE(34:2) 0.44 0.0001 Glycerophospholipid metabolism 

PE(34:1) PE(34:2) 0.60 <0.0001 Glycerophospholipid metabolism 

PI(36:2) PE(34:2) 0.76 <0.0001 Glycerophospholipid metabolism 

PE(36:3) PE(34:2) 0.84 <0.0001 Glycerophospholipid metabolism 

PI(36:1) PE(34:2) 0.56 <0.0001 Glycerophospholipid metabolism 

PC(36:2) PE(36:1) 0.61 <0.0001 Glycerophospholipid metabolism 

PE(34:1) PE(36:1) 0.89 <0.0001 Glycerophospholipid metabolism 

PI(36:2) PE(36:1) 0.58 <0.0001 Glycerophospholipid metabolism 

PE(36:3) PE(36:1) 0.68 <0.0001 Glycerophospholipid metabolism 

PI(36:1) PE(36:1) 0.65 <0.0001 Glycerophospholipid metabolism 

PE(34:2) PE(36:1) 0.64 <0.0001 Glycerophospholipid metabolism 

Tau PE(P-40:7) 0.52 <0.0001 - 

SM(d34:1) PE(P-40:7) 0.65 <0.0001 Glycerophospholipid metabolism 

PC(38:7) PE(P-40:7) 0.78 <0.0001 Glycerophospholipid metabolism 

Ala PE(40:6) 0.46 <0.0001 - 

Fum PE(40:6) 0.45 <0.0001 - 

UDP-
Glu/UDP-
Gal 

PE(40:6) 0.49 <0.0001 - 

PC(36:2) PE(40:6) 0.66 <0.0001 Glycerophospholipid metabolism 

PC(36:3) PE(40:6) 0.50 <0.0001 Glycerophospholipid metabolism 

PE(34:1) PE(40:6) 0.55 <0.0001 Glycerophospholipid metabolism 

PI(36:2) PE(40:6) 0.54 <0.0001 Glycerophospholipid metabolism 

PE(36:3) PE(40:6) 0.68 <0.0001 Glycerophospholipid metabolism 

PI(36:1) PE(40:6) 0.54 <0.0001 Glycerophospholipid metabolism 

PE(34:2) PE(40:6) 0.69 <0.0001 Glycerophospholipid metabolism 

PE(36:1) PE(40:6) 0.69 <0.0001 Glycerophospholipid metabolism 

SM(d34:1) PE(P-38:5) 0.64 <0.0001 Glycerophospholipid metabolism 

PC(38:7) PE(P-38:5) 0.58 <0.0001 Glycerophospholipid metabolism 

PE(P-40:7) PE(P-38:5) 0.86 <0.0001 Glycerophospholipid metabolism 

PE(34:1) PI(34:1) 0.75 <0.0001 Glycerophospholipid metabolism 

PI(36:2) PI(34:1) 0.66 <0.0001 Glycerophospholipid metabolism 

PE(36:3) PI(34:1) 0.59 <0.0001 Glycerophospholipid metabolism 

PI(36:1) PI(34:1) 0.85 <0.0001 Glycerophospholipid metabolism 

PE(36:1) PI(34:1) 0.63 <0.0001 Glycerophospholipid metabolism 

PE(40:6) PI(34:1) 0.49 <0.0001 Glycerophospholipid metabolism 

SM(d34:1) SM(d42:1) 0.58 <0.0001 Glycerophospholipid metabolism 

UDP-Glu/ 
UDP-Gal 

PE(38:3) 0.46 <0.0001 - 

PC(36:2) PE(38:3) 0.66 <0.0001 Glycerophospholipid metabolism 

PC(36:3) PE(38:3) 0.60 <0.0001 Glycerophospholipid metabolism 

PE(34:1) PE(38:3) 0.60 <0.0001 Glycerophospholipid metabolism 

PI(36:2) PE(38:3) 0.60 <0.0001 Glycerophospholipid metabolism 

PE(36:3) PE(38:3) 0.84 <0.0001 Glycerophospholipid metabolism 

PI(36:1) PE(38:3) 0.56 <0.0001 Glycerophospholipid metabolism 
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Metabolite pair r p-value Metabolic pathways 

PE(34:2) PE(38:3) 0.62 <0.0001 Glycerophospholipid metabolism 

PE(36:1) PE(38:3) 0.63 <0.0001 Glycerophospholipid metabolism 

PE(40:6) PE(38:3) 0.71 <0.0001 Glycerophospholipid metabolism 

PI(34:1) PE(38:3) 0.61 <0.0001 Glycerophospholipid metabolism 

UDP-Glu/ 
UDP-Gal 

PE(38:5) 0.50 <0.0001 - 

PC(36:2) PE(38:5) 0.71 <0.0001 Glycerophospholipid metabolism 

PE(34:1) PE(38:5) 0.77 <0.0001 Glycerophospholipid metabolism 

PI(36:2) PE(38:5) 0.52 <0.0001 Glycerophospholipid metabolism 

PE(36:3) PE(38:5) 0.79 <0.0001 Glycerophospholipid metabolism 

PI(36:1) PE(38:5) 0.48 <0.0001 Glycerophospholipid metabolism 

PE(34:2) PE(38:5) 0.66 <0.0001 Glycerophospholipid metabolism 

PE(36:1) PE(38:5) 0.82 <0.0001 Glycerophospholipid metabolism 

PE(40:6) PE(38:5) 0.67 <0.0001 Glycerophospholipid metabolism 

PE(P-38:5) PE(38:5) 0.44 0.0001 Glycerophospholipid metabolism 

PI(34:1) PE(38:5) 0.52 <0.0001 Glycerophospholipid metabolism 

PE(38:3) PE(38:5) 0.72 <0.0001 Glycerophospholipid metabolism 

PC(34:2) PC(34:3) 0.47 <0.0001 Glycerophospholipid metabolism 

SM(d34:1) PC(34:3) 0.66 <0.0001 Glycerophospholipid metabolism 

PC(38:7) PC(34:3) 0.70 <0.0001 Glycerophospholipid metabolism 

PE(P-40:7) PC(34:3) 0.59 <0.0001 Glycerophospholipid metabolism 

PE(P-38:5) PC(34:3) 0.52 <0.0001 Glycerophospholipid metabolism 

PC(36:2) PC(36:1) 0.71 <0.0001 Glycerophospholipid metabolism 

PE(34:1) PC(36:1) 0.62 <0.0001 Glycerophospholipid metabolism 

PI(36:2) PC(36:1) 0.48 <0.0001 Glycerophospholipid metabolism 

PE(36:3) PC(36:1) 0.58 <0.0001 Glycerophospholipid metabolism 

PI(36:1) PC(36:1) 0.52 <0.0001 Glycerophospholipid metabolism 

PE(34:2) PC(36:1) 0.56 <0.0001 Glycerophospholipid metabolism 

PE(36:1) PC(36:1) 0.80 <0.0001 Glycerophospholipid metabolism 

PE(40:6) PC(36:1) 0.75 <0.0001 Glycerophospholipid metabolism 

PI(34:1) PC(36:1) 0.47 <0.0001 Glycerophospholipid metabolism 

PE(38:3) PC(36:1) 0.54 <0.0001 Glycerophospholipid metabolism 

PE(38:5) PC(36:1) 0.67 <0.0001 Glycerophospholipid metabolism 

Tau PI(38:2) -0.47 <0.0001 - 

NM PI(38:2) 0.46 <0.0001 - 

UDP-Glu/ 
UDP-Gal 

PI(38:2) 0.44 0.0001 - 

PE(34:1) PI(38:2) 0.68 <0.0001 Glycerophospholipid metabolism 

PI(36:2) PI(38:2) 0.74 <0.0001 Glycerophospholipid metabolism 

PE(36:3) PI(38:2) 0.72 <0.0001 Glycerophospholipid metabolism 

PI(36:1) PI(38:2) 0.81 <0.0001 Glycerophospholipid metabolism 

PE(34:2) PI(38:2) 0.54 <0.0001 Glycerophospholipid metabolism 

PE(36:1) PI(38:2) 0.56 <0.0001 Glycerophospholipid metabolism 

PE(40:6) PI(38:2) 0.46 <0.0001 Glycerophospholipid metabolism 

PI(34:1) PI(38:2) 0.77 <0.0001 Glycerophospholipid metabolism 



 

188 

 

Metabolite pair r p-value Metabolic pathways 

PE(38:3) PI(38:2) 0.70 <0.0001 Glycerophospholipid metabolism 

PE(38:5) PI(38:2) 0.49 <0.0001 Glycerophospholipid metabolism 

Leu U 0.51 <0.0001 - 

Ala U 0.43 0.0001 - 

Trp U 0.53 <0.0001 - 

Leu Phe 0.45 <0.0001 Aminoacyl-tRNA biosynthesis 

U Phe 0.70 <0.0001 - 

Fum Hyp 0.43 0.0001 - 

U Hyp 0.72 <0.0001 - 

Phe Hyp 0.83 <0.0001 - 

NM Asp 0.46 <0.0001 Nicotinate and nicotinamide metabolism 

PI(36:1) Asp 0.54 <0.0001 - 

PI(38:2) Asp 0.42 0.0001 - 

U Asp 0.43 0.0001 Pantothenate and CoA biosynthesis; 
beta-Alanine metabolism 

Asp Pro 0.79 <0.0001 Aminoacyl-tRNA biosynthesis 

Leu MA 0.44 <0.0001 - 

Ala MA 0.56 <0.0001 - 

U MA 0.49 <0.0001 - 

Phe MA 0.51 <0.0001 - 

Hyp MA 0.45 <0.0001 - 

Val Urea 0.45 <0.0001 - 

Leu Urea 0.52 <0.0001 - 

Ala Urea 0.51 <0.0001 - 

Fum Urea 0.44 0.0001 Arginine biosynthesis 

1-MH Urea 0.43 0.0001 - 

U Urea 0.66 <0.0001 - 

Phe Urea 0.87 <0.0001 - 

Hyp Urea 0.74 <0.0001 Purine metabolism 

Asp Urea 0.46 <0.0001 Arginine biosynthesis 

Pro Urea 0.46 <0.0001 - 

MA Urea 0.59 <0.0001 - 

Ala Glu 0.49 <0.0001 Aminoacyl-tRNA biosynthesis; Alanine, 
aspartate and glutamate metabolism 

Phe Glu 0.63 <0.0001 Aminoacyl-tRNA biosynthesis 

Hyp Glu 0.63 <0.0001 Purine metabolism 

MA Glu 0.56 <0.0001 Glyoxylate and dicarboxylate metabolism 

Urea Glu 0.69 <0.0001 Arginine biosynthesis; Purine metabolism 

Ala Tyr 0.42 0.0001 Aminoacyl-tRNA biosynthesis 

U Tyr 0.62 <0.0001 - 

Phe Tyr 0.87 <0.0001 Aminoacyl-tRNA biosynthesis; 
Phenylalanine, tyrosine and tryptophan 
biosynthesis; Phenylalanine metabolism 

Hyp Tyr 0.74 <0.0001 - 

MA Tyr 0.57 <0.0001 - 

Urea Tyr 0.84 <0.0001 - 
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Metabolite pair r p-value Metabolic pathways 

Glu Tyr 0.78 <0.0001 Aminoacyl-tRNA biosynthesis 

Metabolite abbreviations: 1-MH, 1-methylhistidine; Ala, alanine; Asp, aspartic acid; Fum, fumaric 
acid; Glu, glutamine; Hyp, hypoxanthine; Iso, isoleucine; Leu, leucine; MA, malic acid; NM, 
niacinamide; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PI, phosphatidylinositol. Phe, 
phenylalanine; Pro, proline; SM, sphingomyelin; Tau, taurine; Trp, tryptophan; Tyr, tyrosine; U, uracil; 
UDP-Glu/UDP-Gal, UDP-glucose/UDP-galactose; Val, valine. 
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4.2.1 Abstract  

 

Introduction: The inherent sensitivity of metabolomics allows the detection of subtle 

alterations in biological pathways, making it a powerful tool to study biomarkers and the 

mechanisms that underlie cancer. 

Objectives: The purpose of this work was to characterize the urinary metabolic profile of 

prostate cancer (PCa) patients and cancer-free controls to obtain a holistic coverage of PCa 

metabolome. 

Methods: Two groups of samples, a training set (n = 41 PCa and n = 42 controls) and an 

external validation set (n = 18 PCa and n = 18 controls) were analyzed using a dual 

analytical platform, namely gas chromatography-mass spectrometry (GC– MS) and proton 

nuclear magnetic resonance spectroscopy (1H NMR). 

Results: The multivariate analysis models revealed a good discrimination between cases 

and controls with an AUC higher than 0.8, a sensitivity ranging from 67 to 89%, a specificity 

ranging from 74 to 89% and an accuracy from 73 to 86%, considering the training and 

external validation sets. A total of 28 metabolites (15 from GC–MS and 13 from 1H NMR) 

accounted for the separation. These discriminant metabolites are involved in 14 biochemical 

pathways, indicating that PCa is highly linked to dysregulation of metabolic pathways 

associated with amino acids and energetic metabolism. 

Conclusion: These findings confirmed the complementary information provided by GC–

MS and 1H NMR, enabling a more comprehensive picture of the altered metabolites, 

underlying pathways and deepening the understanding of PCa development and 

progression. 

 

 

 

Keywords: 

Prostate cancer; Metabolome; Gas chromatography–mass spectrometry; Proton nuclear 

magnetic resonance spectroscopy; Urine; Biomarkers 
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4.2.2 Introduction 

 

Metabolomics is a powerful technology which allows to define a metabolic snapshot 

that can be used for identifying novel biomarkers of numerous diseases (Lucarelli et al. 

2015). Prostate cancer (PCa), represents an attractive model for metabolite profiling owing 

to the fact that, in addition to the metabolic features associated with cancer development 

and progression common to all malignancies (e.g., high glycolytic metabolism) (Warburg 

1956), PCa cells lose their capacity to accumulate zinc, which in turn is assumed to inhibit 

the ability to accumulate citrate (Pértega-Gomes and Baltazar 2014). Since this feature is 

unique to neoplastic prostate cells, it may be hypothesized that metabolomic alterations 

result in a distinctive and specific metabolic signature of these cells. 

Several metabolomic studies have been conducted to study the metabolome of urine 

from PCa patients, mainly through GC–MS (Bianchi et al. 2011; Jentzmik et al. 2010; Khan 

et al. 2013; Lima et al. 2019; Stabler et al. 2011; Struck-Lewicka et al. 2015; Wu et al. 2011), 

while studies performed through 1H NMR are more scarce (MacKinnon et al. 2019; Pérez-

Rambla et al. 2017; Zaragoza et al. 2014; Zheng et al. 2017), and none has combined these 

two analytical approaches for a more comprehensive analysis of the PCa metabolome. MS 

and 1H NMR provide complementary information about different metabolites, so the 

integration of both techniques can be a major advantage to obtain a more holistic coverage 

of the metabolome (Aboud and Weiss 2013; Lindon et al. 2004). Previous metabolomic 

studies performed in urine from PCa patients have associated PCa with alterations in amino 

acids metabolism (Bianchi et al. 2011; Khan et al. 2013; Pérez-Rambla et al. 2017; 

Sreekumar et al., 2009; Stabler et al. 2011; Struck-Lewicka et al. 2015), mainly in glycine, 

serine and threonine metabolism (Bianchi et al. 2011; Khan et al. 2013; Sreekumar et al. 

2009; Stabler et al. 2011). Beyond alteration in amino acid metabolism, PCa has been also 

associated with alterations in lipid (Struck-Lewicka et al. 2015; Zheng et al. 2017) and 

energetic (Struck-Lewicka et al. 2015; Wu et al. 2011) metabolisms. 

In this study we sought to further explore the metabolic fingerprint of urine from PCa 

patients by applying a combination of GC–MS and 1H NMR analytical platforms. In addition, 

biological interpretation of the observed metabolic changes was undertaken to better 

understand the metabolic reprogramming associated with PCa development. 
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4.2.3 Materials and methods 

 

4.2.3.1 Chemicals 

All chemicals were of analytical grade. l-(-)-arabitol (≥ 98%), gluconic acid (≥ 99%), d-

glucose (≥ 99.5%), d-mannitol (≥ 98%), methanol (≥ 99.9%), methoxamine hydrochloride, 

myo-inositol (≥ 99%), N,O-bis(trimethylsilyl) trifluoroacetamide (BSTFA with 1% of 

trimethylchlorosilane), oxalic acid (≥ 99%), propylene glycol (≥ 98%), sarcosine (≥ 97%), 

sodium hydroxide (≥ 97%), l-(+)-threose (≥ 60%) and d-threitol (≥ 99%) were purchased 

from SigmaAldrich (Madrid, Spain). Deuterium oxide and deuterium oxide containing 0.05 

wt% 3-(trimethylsilyl) propionic-2,2,3,3-d4 acid (TSP) sodium salt were supplied by 

Eurisotop (Saint-Aubin, France) and Sigma-Aldrich (Madrid, Spain), respectively. 

 

4.2.3.2 Subjects 

All urine samples were collected at the Portuguese Oncology Institute of Porto, 

centrifuged (3076×g, 20 min at 4 °C) and the supernatants were immediately frozen at − 80 

°C until analysis. All 119 individuals (59 PCa patients and 60 cancer-free control subjects) 

enrolled in this study signed an informed consent. Detailed information on Gleason score 

and some important biochemical and clinical parameters of PCa patients and control 

subjects is provided in Supplementary Table 1. Both PCa and control samples were 

randomly divided into two groups, a training set, comprising 70% of all samples (41 PCa 

and 42 cancer-free controls), and an external set, corresponding to 30% of all samples (18 

PCa and 18 cancer-free controls). This study was approved by the Ethics Committee of the 

Portuguese Oncology Institute of Porto (Reference 282R/2017). 

 

4.2.3.3 Sample preparation 

For GC–MS analysis, urine samples (200 µL) were prepared according to the protocol 

described by Chan et al. (2011). Quality controls (QCs) samples, consisting of a pool of all 

urine samples, were also analyzed by GC–MS on every eight samples under the same 

experimental conditions. For 1H NMR analysis, 800 µL of urine from each sample were 

prepared according to the protocol described by Pinto et al. (2016). All samples were 

randomly prepared and analyzed. 

 

4.2.3.4 GC–MS analysis 

The GC–MS analysis was performed in an EVOQ-436 gas chromatograph, equipped 

with a CombiPAL automatic autosampler (Varian, Palo Alto, CA) and a Bruker Triple 
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Quadrupole mass detector. The injections were performed in split mode (ratio 1/5) and the 

acquisition conditions were previously described (Lima et al. 2018). 

For metabolite identification, reference standards were used, whenever available. 

Alternatively, a putative identification was performed using the National Institute of 

Standards and Technology (NIST 14) database spectral library, and a comparison of the 

experimental and theoretical Kovats index. 

 

4.2.3.5 1H NMR analysis 

The 1H NMR spectra were recorded on a Bruker Avance III HD 600 MHz spectrometer 

equipped with a cryoprobe, at 26.85 °C (300 K). An 1D 1H NMR spectrum was acquired 

using a standard pulse sequence (noesypr1d) with 4 s relaxation delay, 100 ms mixing time, 

128 transients, 64k complex data points, 10,080.646 Hz spectral width and 1.82 s 

acquisition time. Each free induction decay was multiplied by a 1.0 Hz exponential line-

broadening function, manually phased and baseline corrected, and chemical shifts 

referenced internally to TSP at δ = 0.0 ppm. Peak assignments were carried out with basis 

on 2D NMR experiments (total correlation spectroscopy, TOCSY; and heteronuclear single 

quantum coherence, HSQC), literature (Diaz et al. 2013; Monteiro et al. 2016) and the 

Biological Magnetic Resonance Bank (Ulrich et al. 2008). 

 

4.2.3.6 Data pre‑processing 

MZmine 2 (Pluskal et al. 2010) was used for pre-processing of GC–MS data. The 

parameters used were: RT range 4.4–26.0 min, m/z range 50–600, MS data noise level 1.0 

× 105, m/z tolerance 0.2, chromatogram baseline level 1.0 × 104 and peak duration range 

0.02–1.2 min. To refine the data, all RT-m/z pairs identified as contaminants and with a 

relative standard deviation higher than 30% in QCs samples, were removed from the matrix; 

1H NMR data preprocessing included the exclusion of water (δ 4.71–4.89) and urea (δ 5.66–

5.99) signals, followed by alignment using the recursive segment-wise peak alignment 

method (Veselkov et al. 2009) (R 3.3.3 software). 

In both approaches, the data were normalized by the total area of the chromatograms 

and, to remove uninformative variables and simplify the data, a variable selection method 

was applied (Xi et al. 2014). This variable selection was based in a univariate test (t test), 

and was performed using MetaboAnalyst (Chong et al. 2018). Consequently, all variables 

disclosing p ≥ 0.05 were removed from the matrix. Finally, GC–MS and 1H NMR data were 

scaled to pareto and unit variance (UV), respectively. 
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4.2.3.7 Statistical analysis 

GC–MS and 1H NMR data were used to perform multivariate (MVA) and univariate 

statistical treatments. MVA included unsupervised analysis (Principal Component Analysis 

[PCA]) and supervised analysis (Partial Least Squares Discriminant Analysis [PLS-DA]). To 

confirm that no overfitting was observed in PLS-DA models, a sevenfold cross validation 

and permutation test were performed (SIMCA-P 15, Umetrics, Sweden). For GC–MS and 

1H NMR data, receiver operating characteristic curves (ROC), area under the curve (AUC), 

sensitivity, specificity and accuracy were computed (MetaboAnalyst) (Chong et al. 2018) 

using both internal and external sets. 

The univariate statistical analysis (GraphPad Prism 6, USA) was performed for all 

metabolites with Variable Importance to the Projection (VIP) greater than one. This analysis 

included: normality test (Shapiro–Wilk test); unpaired Student’s t test with Welch correction 

test (normal distribution), or unpaired Mann–Whitney test (non-normal distribution); 

percentage of variation; effect size (Berben et al. 2012); and Bonferroni correction (Aickin 

and Gensler 1996). For all metabolites significantly altered, AUC, sensitivity, and specificity 

were calculated (Chong et al. 2018). 

To better understand the biological relevance of the significantly altered metabolites, a 

metabolic enrichment analysis using the MetPa tool of Metaboanalyst was performed 

(Chong et al. 2018). Moreover, a correlation network analysis (Gephi 0.9.2, Bastian et al. 

2009) of all significantly altered metabolites was carried out to search for possible 

correlations between metabolites. 

Finally, the Spearman’s rank correlation coefficient was computed between age and 

the set of metabolites found altered in PCa in order to discard age as a potential 

confounding factor. In addition, the possible influence of arterial hypertension (AH) and 

dyslipidemia in the urinary metabolic profile was also studied through PLS-DA using the 

control group (Supplementary Table 1). 

 

 

4.2.4 Results and discussion 

 

4.2.4.1 Urinary metabolic profile of PCa vs. control 

In this study, a total of 193 metabolites were detected in urine of PCa patients and 

controls through the combination of GC–MS (yield: 151 metabolites) and 1H NMR 

spectroscopy (yield: 52 metabolites, of which 10 were common to both analytical 

techniques) (Supplementary Fig. 1). 
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The projection of all samples (PCa, controls and QCs) in a PCA model revealed a good 

reproducibility of the GC–MS acquisition since a QCs clustering was observed in the scores 

scatter plot (Supplementary Fig. 2). Furthermore, PCA was also performed for both GC–

MS and 1H NMR data to detect trends and possible outliers among the samples. In GC–MS 

data, two outlier PCa urine samples were excluded from the model, whereas in 1H NMR 

data, four PCa and one control urine samples were excluded (Supplementary Fig. 1). The 

PLS-DA models obtained for the training sets after variable selection (Fig. 4.4) showed a 

clear separation between PCa and control groups for both analytical strategies. In addition, 

permutation testing unveiled no overfitting of the GC–MS and 1H NMR data (Supplementary 

Fig. 4). For GC–MS model, an AUC of 0.840, a sensitivity of 73%, a specificity of 74% and 

an accuracy of 73% (Fig. 4.4) was obtained, whereas the 1H NMR model showed an AUC 

of 0.874, a sensitivity of 78%, a specificity of 83% and an accuracy of 81% (Fig. 4.4) (internal 

validation). Furthermore, considering the external validation set, 16 PCa and 15 control 

urine samples (from a total of 18 samples per group) were correctly classified by the GC–

MS approach, while 12 PCa and 16 controls were correctly classified by the 1H NMR model. 

Therefore, taking into consideration the external sets, the GC–MS model showed an AUC 

of 0.960, a sensitivity of 89%, a specificity of 83% and an accuracy of 86%, and the 1H NMR 

model unveiled an AUC of 0.824, a sensitivity of 67%, a specificity of 89% and an accuracy 

of 78% (Fig. 4.4 and Supplementary Table 2). However, the small sample size, in the 

validation set, may lead to bias in statistical power and precision. 
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Figure 4.4: A: PLS-DA scores scatter plot (Pareto scaling; two components) obtained for the GC–

MS metabolic profle of urine of PCa patients (orange squares) vs. cancer-free controls (blue circles) 

(training model), after variable selection; B: Assessment of the diagnostic performance of the PLS-

DA model obtained for GC–MS using the training set (AUC = 0.840, sensitivity = 73%, specifcity = 

74%, accuracy = 73%) and the external set (AUC = 0.960, sensitivity = 89%, specifcity = 83%, 

accuracy = 86%) through ROC analysis; C: PLS-DA scores scatter plot (UV scaling; 2 components) 

obtained for the 1H NMR metabolic profle of urine of PCa patients (orange squares) vs. cancer-free 

controls (blue circles) (training model), after variable selection; D: Assessment of the diagnostic 

performance of the PLS-DA model obtained for 1H NMR using the training set (AUC = 0.874, 

sensitivity = 78%, specifcity = 83%, accuracy = 81%) and the external set (AUC = 0.824, sensitivity 

= 67%, specificity = 89%, accuracy = 78%) through ROC analysis. 

 

Since a statistically significant difference (p-value ≤ 0.001) in age was observed 

between PCa (64.3 ± 6.1 years for GC–MS and 63.1 ± 5.3 years for 1H NMR) and controls 

(59.2 ± 2.6 years for GC–MS and 58.81 ± 2.7 years for 1H NMR), its potential contribution 

as a confounding factor in the set of metabolites found altered between PCa and controls 

was evaluated, but no statistically relevant correlations were found (|r|≤ 0.38, p > 0.001) 

(Supplementary Table 3). The impact of AH and dyslipidemia on urine metabolic profile was 

also evaluated in the control group, revealing no predictive power (Q2 = 0.137 and Q2 = 
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0.011 for GC–MS and 1H NMR, respectively) in the PLS-DA models (Supplementary Fig. 

5), so AH and dyslipidemia were not confounding factors. 

For the GC–MS approach, 34 metabolites showed a VIP > 1; among them, 15 were 

found significantly different between the two groups under study (PCa vs. control) (Table 

4.3, Supplementary Table 4). For the 1H NMR approach, 19 metabolites disclosed a VIP > 

1, from which 13 were significantly different between PCa and control groups (Table 4.3, 

Supplementary Table 5). These discriminant metabolites included four amino acids, six 

organic acids, eight sugars, two ketones, one alkaloid and seven unidentified compounds 

(Table 4.3, Supplementary Tables 4 and 5). 

Among the metabolites significantly altered in PCa, we highlight sarcosine, which was 

previously reported as a non-invasive biomarker for PCa diagnosis and progression 

(Sreekumar et al. 2009). As matter of fact, our results confirmed the results of Sreekumar 

et al. (2009), since in that study sarcosine showed an AUC of 0.67 in urine supernatants 

and a similar AUC value (0.65) was found in our study (Table 4.3) (Sreekumar et al. 2009).  

 

 

Table 4.3: List of metabolites significantly altered in urine from PCa patients compared to controls 

by GC-MS and 1H NMR spectroscopy. 

Name p-value 
Variation 

± uncertainty (%) 

Effect size 

± ESSE 
AUC Sens Spec 

Analytical 

platform 

Amino acids-derivatives 

2-Furoyl- 

glycine L2 
0.0009 ↓ 44.02 ± 16.00 ↓ 0.78 ± 0.46 0.74 0.85 0.62 1H NMR 

Leucine L2 0.0048 ↑ 9.73 ± 3.80  ↑ 0.57 ± 0.45 0.68 0.80 0.55 1H NMR 

Sarcosine L1 0.0167 ↑ 48.18 ± 14.46  ↑ 0.60 ± 0.44 0.65 0.68 0.60 GC-MS 

Valine L2 0.0336 ↑ 11.47 ± 5.07  ↑ 0.51 ± 0.45 0.67 0.80 0.54 1H NMR 

Organic acids/alcohol 

2-Hydroxy-

isobutyrate L2 
0.0034 ↑ 12.66 ± 3.94 ↑ 0.69 ± 0.46 0.67 0.80 0.55 1H NMR 

2-Hydroxy-

valerate L2 
<0.0001B ↑ 15.64 ± 3.62 ↑ 0.93 ± 0.47 0.76 0.86 0.61 1H NMR 

Gluconate L1 0.0103 ↓ 18.33 ± 8.20 ↓ 0.55 ± 0.44 0.66 0.50 0.79 GC-MS 

Oxalate L1 0.0137 ↑ 50.02 ± 14.45 ↑ 0.62 ± 0.44 0.65 0.73 0.55 GC-MS 
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Name p-value 
Variation 

± uncertainty (%) 

Effect size 

± ESSE 
AUC Sens Spec 

Analytical 

platform 

Pyruvate L2 0.0233 ↑ 30.71 ± 10.64 ↑ 0.58 ± 0.45 0.65 0.77 0.51 1H NMR 

Propylene 

glycol L1 
0.0218 ↑ 299.2 ± 57.35 ↑ 0.48 ± 0.44 0.65 0.50 0.79 GC-MS 

Sugars 

D-Glucose L1 0.0023 ↓ 28.97 ± 10.39 ↓ 0.72 ± 0.45 0.69 0.70 0.69 GC-MS 

D-Mannitol L1 0.0027 ↓ 33.81 ± 14.29 ↓ 0.62 ± 0.44 0.69 0.78 0.60 GC-MS 

D-Threitol L1 0.0120 ↑ 40.25 ± 16.85 ↑ 0.48 ± 0.44 0.66 0.70 0.62 GC-MS 

L-Arabitol L1 0.0173 ↓ 27.59 ± 11.59 ↓ 0.61 ± 0.44 0.65 0.68 0.57 GC-MS 

L-Fucitol L2 0.0037 ↓ 15.56 ± 12.19 ↓ 0.65 ± 0.44 0.69 0.63 0.67 GC-MS 

L-Threose L1 0.0169 ↑ 17.10 ± 6.86 ↑ 0.51 ± 0.44 0.65 0.70 0.67 GC-MS 

Myo-inositol L1 0.0091 ↓ 15.44 ± 10.51 ↓ 0.55 ± 0.44 0.67 0.63 0.76 GC-MS 

Ribitol L2 0.0202 ↓ 27.30 ± 13.44 ↓ 0.51 ± 0.44 0.65 0.65 0.64 GC-MS 

Ketones 

Acetone L2 0.0066 ↑ 11.38 ± 3.87 ↑ 0.63 ± 0.46 0.68 0.79 0.55 1H NMR 

Hydroxy- 

acetone L2 
0.0420 ↑ 17.52 ± 8.07 ↑ 0.53 ± 0.45 0.64 0.76 0.51 1H NMR 

Alkaloid 

Trigonelline L2 0.0344 ↓ 23.75 ± 12.42 ↓ 0.49 ± 0.45 0.63 0.76 0.50 1H NMR 

Unknowns 

Unknown 1 L4 0.0370 ↓ 23.11 ± 12.37 ↓ 0.47 ± 0.44 0.63 0.63 0.60 GC-MS 

Unknown 2 L4 0.0392 ↑ 22.98 ± 9.10 ↑ 0.50 ± 0.44 0.64 0.60 0.60 GC-MS 

Unknown 3 L4 0.0004B ↓ 34.25 ± 13.71 ↓ 0.69 ± 0.45 0.73 0.74 0.80 GC-MS 

Unknown 4 L4 0.0006B ↑ 16.36 ± 4.46 ↑ 0.78 ± 0.46 0.73 0.83 0.61 1H NMR 

Unknown 5 L4 0.0094 ↑ 14.175 ± 5.26 ↑ 0.58 ± 0.45 0.67 0.79 0.56 1H NMR 

Unknown 6 L4 

 

 

0.0011 

 

 

↓ 49.49 ± 19.05 

 

 

↓ 0.75 ± 0.46 

 

 

0.72 

 

 

0.83 

 

 

0.60 

 

 

1H NMR 
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Name p-value 
Variation 

± uncertainty (%) 

Effect size 

± ESSE 
AUC Sens Spec 

Analytical 

platform 

Unknown 7 L4 0.0392 ↓ 45.40 ± 17.75 ↓ 0.72 ± 0.46 0.73 0.83 0.62 1H NMR 

L1: Identified metabolites (GC-MS applied to the analysis of both the metabolite of interest and a chemical 
reference standard of suspected structural equivalence, with all analyses performed under identical analytical 
conditions within the same laboratory) (Viant et al., 2017); L2: Putatively annotated compounds (similarity with 
databases) (Viant et al., 2017); L4: Unidentified (Viant et al., 2017); B: Alterations remaining significant after 
Bonferroni correction, with cut-off p-value of 0.0015 (0.05 divided by 34 tested metabolites) for GC-MS data, 
and cut-off p-value of 0.0003 (0.05 divided by 19 analyzed metabolites) for 1H NMR; NA: Not available 

 

 

Besides sarcosine, seven other compounds found altered in PCa urines in this study 

were also previously associated with PCa in other metabolomic studies, namely the 

significant increases in valine (Pérez-Rambla et al. 2017), leucine (Pérez-Rambla et al. 

2017) and pyruvate (Kumar et al. 2015) levels and the significant decreases in arabitol 

(Struck-Lewicka et al. 2015), myo-inositol (Stenman et al. 2011), gluconate (Jung et al. 

2013) and glucose (Vaz et al. 2012) levels. Importantly, to the best of our knowledge, this 

study is the first to report significant increased levels of 2-hydroxyisobutyrate, 2-

hydroxyvalerate, oxalate, propylene glycol, d-threitol, l-threose, acetone and 

hydroxyacetone, as well as significant decreased levels of 2-furoylglycine, mannitol, l-

fucitol, ribitol and trigonelline in urine of PCa patients. 

 

4.2.4.2 Biological interpretation 

Using the MetPA tool (Chong et al. 2018), 14 metabolic pathways were found 

significantly altered (p < 0.05) in PCa (Fig. 4.5), namely valine, leucine and isoleucine 

synthesis and degradation; pentose phosphate pathway; glycine, serine and threonine 

metabolism; pentose and glucuronate interconversions; pantothenate and CoA 

biosynthesis; glycolysis or gluconeogenesis; pyruvate metabolism; propanoate metabolism; 

galactose metabolism; nicotinate and nicotinamide metabolism; ascorbate and aldarate 

metabolism; synthesis and degradation of ketone bodies; and glyoxylate and dicarboxylate 

metabolism. The most significantly altered metabolic pathways were those associated with 

amino acids metabolism, although most of the dysregulated pathways were involved in 

energy metabolism. Dysregulations of energetic metabolism are expected since cancer 

cells have a greater need for energy to sustain high cell proliferation levels (Pértega-Gomes 

and Baltazar 2014). It is now recognized that cancer cells upregulate the glycolytic pathway, 

even in the presence of oxygen, to produce energy (the so called “Warburg effect”) 

(Warburg 1956). Moreover, it has been demonstrated that glucose-6-phosphate 

dehydrogenase (G6PD), a key enzyme in energetic metabolism (pentose phosphate 
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pathway), is upregulated in PCa cells (Tsouko et al. 2014), promoted by androgen receptor 

(AR) signaling. AR signaling also upregulates glycolysis and glucose transporters (GLUT), 

subsequently increasing glucose uptake (Fraga et al. 2015; Gonzalez-Menendez et al. 

2018). GLUT also has an important role in tumor progression and regulation of cell death 

(Fraga et al. 2015; Gonzalez-Menendez et al. 2018), highlighting the close relationship 

alteration in energetic metabolism and PCa development and progression (Tsouko et al. 

2014). 

On the other hand, amino acids also play an important role in metabolism of glucose, 

lipids, and protein synthesis, which are essential for cell division and, consequently, cancer 

progression (Pérez-Rambla et al. 2017). In addition, branched-chain amino acids (leucine, 

valine and isoleucine) can activate mammalian target of rapamycin (mTOR), which is an 

important regulator of cell growth, proliferation and migration (Pópulo et al. 2012). 

To better understand the metabolic alterations associated with PCa, a correlation 

network was computed using the set of significantly altered metabolites (Fig. 4.6). Three 

main clusters were identified, namely: Cluster A, linking most of the metabolites found 

significantly decreased in PCa and reflecting mainly alterations in sugar metabolism; Cluster 

B, connecting pyruvate, oxalate, sarcosine and two unidentified compounds, which may be 

attributed to the alterations in glycine, serine and threonine metabolism, and glyoxylate and 

dicarboxylate metabolism; and Cluster C, linking valine, leucine, acetone, 2-

hydroxyvalerate and 2-hydroxyisobutyrate, which may reflect the alteration in the 

biosynthesis and degradation of valine, leucine and isoleucine and in propanoate 

metabolism. 
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Figure 4.5: Metabolic pathway analysis of the set of metabolites found statistically different between 

PCa and controls. Pathway topology analysis depicting dysregulated metabolic pathways in PCa 

patients. The X-axis represents the pathway impact values, and the Y-axis indicates the -log of p-

values from the pathway enrichment analysis. The node colors represent the p-values and the node 

radius indicate the pathway impact values. (A: Valine, leucine and isoleucine biosynthesis (pyruvate, 

leucine and valine) (p = 0.0006); B: Pentose phosphate pathway (gluconic acid, d-glucose and 

pyruvate) (p = 0.0011); C: Glycine, serine and threonine metabolism (sarcosine, pyruvate and 

hydroxyacetone) (p = 0.0035); D: Pentose and glucuronate interconversions (l-arabitol, ribitol and 

pyruvate) (p = 0.0046); E: Pantothenate and CoA biosynthesis (pyruvate and valine) (p = 0.0132); 

F: Glycolysis or gluconeogenesis (pyruvate and glucose) (p = 0.0172); G: Pyruvate metabolism 

(pyruvate and propylene glycol) (p = 0.0183); H: Propanoate metabolism (valine and acetone) (p = 

0.0217); I: Valine, leucine and isoleucine degradation (leucine and valine) (p = 0.0279); J: Galactose 

metabolism (d-glucose and myo-inositol) (p = 0.0292); K: Nicotinate and nicotinamide metabolism 

(pyruvate and trigonelline) (p = 0.0333); L: Ascorbate and aldarate metabolism (pyruvate and myo-

inositol) (p = 0.0347); M: Synthesis and degradation of ketone bodies (acetone) (p = 0.0393); N: 

Glyoxylate and dicarboxylate metabolism (oxalate and pyruvate) (p = 0.0422)). 
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Figure 4.6: Correlation network of all significantly altered metabolites found in urine from PCa 

patients compared with controls, unveiling three main clusters (A-C) of metabolite correlations. Node 

colors indicate variation direction (pink for metabolites significantly increased and blue for 

metabolites significantly decreased in PCa) and node size reflects the effect size of variation in PCa 

compared with controls. Only relevant (p < 0.01) positive correlations were found, and grey and black 

lines correspond to r < 0.5 and r ≥ 0.5, respectively. Line thickness represents correlation coefficient 

magnitude with thicker lines reflecting stronger correlations. 

 

 

4.2.5 Conclusions 

 

Metabolic reprogramming of cancer cells is essential to support tumor survival and 

progression. As a consequence, metabolic pathways altered in cancer have attracted 

increasing attention as potential targets for therapeutic exploitation. The combined GC–MS 

and 1H NMR metabolomics approach used in the present study provided a more holistic 

understanding of the metabolic pathways associated with PCa development and 

progression. Significant alterations in the levels of 21 metabolites were found in urine of 

PCa patients, of which 13 were reported for the first time as associated with PCa disease 

(namely, 2-hydroxyisobutyrate, 2-hydroxyvalerate, oxalate, propylene glycol, d-threitol, l-

threose, acetone, hydroxyacetone, 2-furoylglycine, mannitol, l-fucitol, ribitol and trigonelline) 

and 8 corroborated previously reported studies (sarcosine, valine, leucine, pyruvate, 
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arabitol, myo-inositol, gluconate and glucose). The majority of the significantly altered 

metabolites was associated with dysregulations in 14 metabolic pathways mainly related to 

valine, leucine and isoleucine biosynthesis; pentose phosphate pathway; and glycine, 

serine and threonine metabolism, which denotes that PCa development and progression is 

deeply connected to alterations in amino acids and energetic metabolism of cancer cells. 

This work highlights the complementarity between GC–MS and 1H NMR analytical 

techniques, thus allowing the definition of a more comprehensive picture of the dysregulated 

metabolic pathways associated with PCa and deepening the understanding of PCa 

development and progression. Further studies based on a larger cohort of patients are 

needed to validate these promising results. 
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4.2.7 Supporting information 

 

 

 

 

Supplementary Figure 1: Representative (A) GC-MS chromatogram and (B) 1H NMR spectrum of 

a urine sample from a control individual. 

 

 

 

Supplementary Figure 2: PCA scores scatter plot (Pareto scaling; 2 components) obtained for the 

GC-MS chromatograms of all samples (control and PCa) (green circles) and QCs (grey squares) 

(R2X=0.415). QCs are grouped together, thus proving the reproducibility of the analytical technique. 
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 Supplementary Figure 3: PCA scores scatter plot obtained for (A) the GC-MS data (Pareto scaling; 

2 components) (R2X=0.444), and (B) 1H NMR data (UV scaling; 2 components) (R2X=0.293) of PCa 

samples (orange squares) and controls (blue circles). The circumvent samples were considered 

outliers. 

 

 

 

Supplementary Figure 4: Statistical validation of the PLS-DA models by permutation testing (200 

permutations; 2 components). (A) GC-MS model (Intercepts: R2= (0.0, 0.269), Q2= (0.0, -0.132). (B) 

1H NMR model (Intercepts: R2= (0.0, 0.469), Q2= (0.0, -0.144)). 
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Supplementary Figure 5: PLS-DA scores scatter plots: (A) obtained for control individuals without 

dyslipidemia (dark blue circles) vs. with dyslipidemia (light blue squares) (GC-MS data) (Pareto 

scaling; 2 components) (LV= 2, R2X=0.404; R2Y=0.501; Q2= 0.137) (Dyslipidemia n=20 vs. non-

dyslipidemia n=22); (B) obtained for control individuals without hypertension (dark blue circles) vs. 

with hypertension (light blue squares) (1H NMR data) (UV scaling; 2 components) (LV= 2, R2X=0.285; 

R2Y=0.557; Q2= 0.011) (Hypertension n=15 vs. non-hypertension n=27). 
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Supplementary Table 1: Demographic and clinical data of the PCa patients and cancer-free controls included in the training and external validation sets. 

Characteristics 

PCa patients 
 

Controls 

Training set 
GC-MS 

External set 
GC-MS 

Training set 
 1H NMR 

External set 
 1H NMR 

Training set 
GC-MS 

External set 
GC-MS 

Training set 
 1H NMR 

External set 
 1H NMR 

Number of subjects 
 

41 18 41 18 42 18 42 18 

Age (years)         
Mean (standard 

deviation)  
64.3 (6.12) 61.8 (5.90) 63.1 (5.25) 64.8 (7.80) 59.2 (2.60) 60.2 (3.35) 59.8 (2.73) 58.7 (3.03) 

Serum PSA (ng/mL)         
<4 3 (7.3%) 1 (5.6%) 2 (4.9%) 2 (11.1%) - - - - 

4-10 23 (56.2%) 14 (77.8%) 26 (63.4%) 11 (61.1%) - - - - 
>10 15 (36.6%) 3 (16.7%) 13 (31.7%) 5 (27.8%) - - - - 

Gleason score (GS)         
3+3 7 (17.1%) 2 (11.1%) 7 (17.1%) 2 (11.1%) - - - - 
3+4 14 (34.2%) 12 (66.7%) 18 (43.9%) 8 (44.4%) - - - - 
4+3 9 (22%) 2 (11.1%) 9 (22%) 2 (11.1%) - - - - 
4+4 6 (14.6%) 1 (5.6%) 4 (9.8%) 3 (16.7%) - - - - 
4+5 5 (12.2%) - 3 (7.3%) 2 (11.1%) - - - - 
5+4 - 1 (5.6%) - 1 (5.6%) - - - - 

Clinical stage         
I 4 (9.8%) 2 (11.1%) 3 (7.3%) 3 (16.5%) - - - - 
II 19 (46.4%) 11 (61.1%) 20 (48.8%) 10 (55.6%)     
III 15 (36.6%) 4 (22.2%) 15 (36.6%) 4 (22.2%) - - - - 
IV 3 (7.3%) 1 (5.6%) 3 (7.3%) 1 (5.6%) - - - - 

Alcoholism 5 (12.2%) 6 (33.3%) 8 (19.5%) 3 (16.7%) 3 (7.1%) - 3 (7.1%) - 
Smoking - 2 (11.1%) 1 (2.4%) 1(5.6%) 6 (14.3%) 1 (5.6%) 4 (9.5%) 3 (16.7%) 
Obesity  7 (17.1%) 3 (16.7%) 7 (17.1%) 3 (16.7%) 8 (19%) 2 (11.1%) 7 (16.7%) 3 (16.7%) 
Cardiac condition 9 (22%) 2 (11.1%) 6 (14.6%) 5 (27.8%) 1 (2.4%) - 1 (2.4%) - 
Arterial hypertension 18 (43.9%) 11 (61.1%) 22 (53.7%) 7 (38.9%) 14 (33.3%) 9 (50%) 15 (35.7%) 8 (44.4%) 
Dyslipidemia 14 (34.1%) 11 (61.1%) 18 (43.9%) 7 (38.9%) 20 (47.6%) 5 (25.8%) 18 (42.9%) 7 (38.9%) 
Diabetes mellitus 7 (17.1%) 5 (27.8%) 9 (22%) 3 (16.7%) 5 (11.9%) 2 (11.1%) 6 (14.3%) 1 (5.6%) 
Hypertriglyceridemia 1 (2.4%) - 1 (2.4%) - - - - - 
Hypercholesterolemia 2 (4.9%) 1 (5.6%) 2 (4.9%) 1 (5.6%) 4 (9.5%) 1 (5.6%) 3 (7.1%) 2 (11.1%) 
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Characteristics 

PCa patients 
 

Controls 

Training set 
GC-MS 

External set 
GC-MS 

Training set 
 1H NMR 

External set 
 1H NMR 

Training set 
GC-MS 

External set 
GC-MS 

Training set 
 1H NMR 

External set 
 1H NMR 

Benign prostatic 
hyperplasia 

- - - - 12 (28.6%) 5 (25.8%) 15 (35.7%) 2 (11.1%) 

Prostatitis - - - - 2 (4.8%) - 1 (2.4%) 1 (5.6%) 
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Supplementary Table 2: Confusion matrix obtained for GC-MS and 1H NMR data considering the 

external validation sets (n=18 PCa samples plus n=18 control samples) (sensitivity: 89%, specificity: 

83% and accuracy: 86% for GC-MS and sensitivity: 67%, specificity: 89% and accuracy: 78% for 1H 

NMR). 
T

ru
e
 C

la
s
s
e

s
 

 Predicted classes 

 GC-MS 1H NMR 

 Case Control   Case Control 

Case 16 2   12 6 

Control 3 15   2 16 

 

 

 

Supplementary Table 3: Spearman’s correlation indexes and corresponding p-values obtained for 

age with the set of metabolites found altered in PCa compared to controls. 

Metabolites r p 
GC-MS   
Propylene glycol -0.05 0.661 
Unknown 1 0.01 0.894 
Sarcosine 0.30 0.006 
Oxalate 0.24 0.027 
L-Threose 0.09 0.408 

L-Threitol -0.03 0.785 
L-Fucitol -0.20 0.066 
Ribitol -0.15 0.186 
L-Arabitol -0.25 0.022 
D-Glucose -0.27 0.014 
Gluconate -0.19 0.094 
D-Mannitol -0.27 0.013 
Unknown 2 0.20 0.065 

Myo-inositol -0.08 0.457 

Unknown 3 -0.21 0.054 
1H NMR   
2-Hydroxyvalerate 0.12 0.308 

Leucine 0.14 0.236 
Valine 0.11 0.345 
2-Hydroxyisobutyrate 0.10 0.374 
Acetone 0.25 0.028 
Pyruvate 0.38 0.001 
Unknown 4 0.33 0.004 
Unknown 5 0.27 0.016 
Hydroxyacetone -0.21 0.064 

Trigonelline -0.22 0.055 

2-Furoylglycine -0.30 0.008 

Unknwon 6 -0.25 0.025 

Unknown 7 -0.25 0.026 
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Supplementary Table 4: List of metabolites significantly altered in PCa group compared to controls detected through GC-MS. Metabolites are characterized 

by their name, retention time, most characteristic ions (m/z), Kovat indices (KI) from literature, experimental KI, R match (NIST), identification level, as well as 

the HMDB (human metabolome database) code, the matrices where the compound was previously found and the potential biochemical pathways in which the 

compound participates. 

Name Retention 

time 

m/z KI from 

literature 

Experimental KI  R match Identification 

Level (Viant et 

al., 2017) 

HMDB (Wishart 

et al., 2018) 

Matrices Potential 

biochemical 

pathway 

Propylene 

glycol 

4.88 117; 73; 147; 118; 

148; 66; 75; 133; 

59 

- - 717 L1 HMDB0001881 Blood; 

Cerebrospinal 

Fluid; Feces; 

Saliva; Urine; 

Sweat (Wishart 

et al., 2018) 

Pyruvate 

metabolism 

(Chong et al., 

2018) 

Unknown 1 5.93 93; 151; 121; 95; 

73; 50; 91; 77; 59; 

63 

- 1086 - L4 - - - 

Sarcosine 6.31 116; 73; 147; 117; 

59; 190; 74; 233; 

75 

- - 784 L1 HMDB0000271 Blood; 

Cerebrospinal 

Fluid; Feces; 

Saliva; Urine; 

Tissue (Kumar et 

al., 2015; Putluri 

et al., 2011; 

Sreekumar et al., 

2009; Wishart et 

al., 2018) 

Glycine, serine 

and threonine 

metabolism 

(Chong et al., 

2018) 
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Name Retention 

time 

m/z KI from 

literature 

Experimental KI  R match Identification 

Level (Viant et 

al., 2017) 

HMDB (Wishart 

et al., 2018) 

Matrices Potential 

biochemical 

pathway 

Oxalate 6.41 73; 147; 148; 74; 

149; 66; 72; 59; 

219; 190; 113 

- - 650 L1 HMDB0002329 Blood; Feces; 

Saliva; Urine; 

Sweat (Wishart 

et al., 2018) 

Glyoxylate and 

dicarboxylate 

metabolism 

(Chong et al., 

2018)  

L-Threose 9.61 73;147; 205; 117; 

103; 161; 89; 133; 

74 

- - 711 L1 NA - Non-enzymatic 

glycation by 

ascorbate 

(Nagaraj and 

Monnier, 1995) 

L-Threitol 9.91 73; 147; 217; 103; 

205; 117; 204; 

189; 133; 191 

- - 927 L1 HMDB0004136 Blood; 

Cerebrospinal 

Fluid; Feces; 

Urine (Wishart et 

al., 2018) 

Carbohydrate 

metabolism 

(Wishart et al., 

2018)  

L-Fucitol 11.93 73; 117; 147; 217; 

103; 205; 219; 

319; 231; 129 

1770 1751 864 L2 HMDB0041500 - Carbohydrate 

metabolism 

(Wishart et al., 

2018) 

Ribitol 12.01 73; 103; 147; 217; 

74; 205; 129; 117; 

75 

1747 1761 787 L2 HMDB0000508 Blood; 

Cerebrospinal 

Fluid; Feces; 

Urine (Wishart et 

al., 2018) 

Pentose and 

glucuronate 

intercom-

versions 

(Chong et al., 

2018) 
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Name Retention 

time 

m/z KI from 

literature 

Experimental KI  R match Identification 

Level (Viant et 

al., 2017) 

HMDB (Wishart 

et al., 2018) 

Matrices Potential 

biochemical 

pathway 

L-Arabitol 12.43 73; 147; 103; 217; 

205; 129; 307; 

117; 319; 218 

- - 812 L1 HMDB0001851 Blood; 

Cerebrospinal 

Fluid; Feces; 

Urine (Struck-

Lewicka et al., 

2015; Wishart et 

al., 2018) 

Pentose and 

glucuronate 

inter-

conversions 

(Chong et al., 

2018) 

D-Glucose 12.66 73; 105; 77; 51; 

206; 147; 75; 134; 

135; 217 

- - 625 L1 HMDB0000122 Blood; Breast 

Milk; 

Cerebrospinal 

Fluid; Feces; 

Saliva; Sweat; 

Urine; Cell lines 

(Vaz et al., 2012) 

(Wishart et al., 

2018) 

Pentose 

phosphate 

pathway; 

Glycolysis or 

Gluconeo-

genesis 

Galactose 

metabolism 

(Chong et al., 

2018) 

Gluconate 12.73 73; 147; 205; 319; 

160; 217; 74; 117; 

103 

- - 636 L1 HMDB0000625 Blood; Feces; 

Urine; Tissue 

(Jung et al., 

2013; Wishart et 

al., 2018) 

Pentose 

phosphate 

pathway 

(Chong et al., 

2018) 

D-Mannitol 13.04 73; 147; 217; 103; 

204; 189; 219; 

205; 75; 74; 451 

 - 662 L1 HMDB0000765 Cerebrospinal 

Fluid; Feces; 

Saliva; Urine 

(Wishart et al., 

2018) 

Fructose and 

mannose 

metabolism 

(Wishart et al., 

2018) 



 

219 

 

2
1

9
 

Name Retention 

time 

m/z KI from 

literature 

Experimental KI  R match Identification 

Level (Viant et 

al., 2017) 

HMDB (Wishart 

et al., 2018) 

Matrices Potential 

biochemical 

pathway 

Unknown 2 13.81 73; 75; 119; 217; 

57; 103; 71; 193; 

204; 117 

- 2128 - L4 - - - 

Myo-inositol 14.14 71; 115; 84; 95; 

149; 120; 89; 97; 

90; 101 

- - 902 L1 HMDB0000211 Blood; Breast 

Milk; 

Cerebrospinal 

Fluid; Feces; 

Saliva; Sweat; 

Urine; Prostatic 

fluid; Tissue 

(Serkova et al., 

2008; Stenman 

et al., 2011; 

Wishart et al., 

2018) 

Galactose 

metabolism; 

Ascorbate and 

aldarate 

metabolism  

(Chong et al., 

2018) 

Unknown 3 17.47 130; 117; 131; 57; 

101; 55; 129; 71; 

75; 

- 2636 - L4 - - - 

L1: Identified metabolites (GC-MS analysis of the metabolite of interest and a chemical reference standard of suspected structural equivalence, with all analyses performed under 
identical analytical conditions within the same laboratory); L2: Putatively annotated compounds (MS spectral similarity with NIST database); L4: Unidentified.  
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Supplementary Table 5: List of metabolites significantly altered in urine from PCa compared to 

controls, detected through 1H NMR spectroscopy. Metabolites are characterized by their 1H chemical 

shift (multiplicity), the identification level, as well as the HMDB (human metabolome database) code, 

the matrices where the compound was previously found and the potential biochemical pathways in 

which the compound participates. 

Name δH ppm 

(multiplicity) 

Identifica-

tion level 

(Viant et 

al., 2017) 

HMDB (Wishart 

et al., 2018) 

Matrices Potential 

biochemical 

pathway 

2-Furoylglycine 

 

3.93 (s); 6.65 

(dd); 7.19 (d); 

7.70 (d) 

L2 HMDB0000439 Blood; Feces; 

Urine (Wishart 

et al., 2018) 

Fatty acids 
metabolism 

(Wishart et al., 
2018) 

2-Hydroxy-

isobutyrate 

1.36 (s) L2 HMDB0000729 Blood; Feces; 

Saliva; Urine 

(Wishart et al., 

2018) 

- 

2-Hydroxyvalerate 0.85 (t); 1.35 

(m); 1.60 (m); 

1.70 (m); 4.00 

(dd) 

L2 HMDB0001863 Blood; Feces; 

Urine (Wishart 

et al., 2018) 

Lipid metabolism 
(Wishart et al., 

2018) 

Acetone 2.22 (s) L2 HMDB0001659 Blood; Breast 

Milk; Cerebro-

spinal Fluid; 

Feces; Saliva; 

Urine (Wishart 

et al., 2018) 

Propanoate 

metabolism; 

Synthesis and 

degradation of 

ketone bodies 

(Chong et al., 

2018) 

Hydroxyacetone 2.14 (s); 4.39 

(s) 

L2 HMDB0006961 Feces; Urine 

(Wishart et al., 

2018) 

Glycine, serine 
and threonine 
metabolism 

(Chong et al., 
2018) 

Leucine 0.96 (t); 1.70 

(m); 3.73 (m) 

L2 HMDB0000687 Blood; Breast 

Milk; Cerebro-

spinal Fluid; 

Feces; Saliva; 

Sweat; Urine; 

Cell lines; 

Tissue (Lodi 

and Ronen, 

2011; 

Sreekumar et 

al., 2009; 

Wishart et al., 

2018) 

Valine, leucine 

and isoleucine 

biosynthesis; 

Valine, leucine 

and isoleucine 

degradation 

(Chong et al., 

2018) 
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Name δH ppm 

(multiplicity) 

Identifica-

tion level 

(Viant et 

al., 2017) 

HMDB (Wishart 

et al., 2018) 

Matrices Potential 

biochemical 

pathway 

Pyruvate 2.35 (s) L2 HMDB0000243 Blood; Breast 

Milk; Cellular 

Cytoplasm; 

Cerebro-spinal 

Fluid; Feces; 

Saliva; Sweat; 

Urine (Kumar 

et al., 2015; 

Wishart et al., 

2018) 

Valine, leucine 
and isoleucine 
biosynthesis; 

Pentose 
phosphate 
pathway; 

Glycine, serine 
and threonine 
metabolism; 
Pantothenate 

and CoA 
biosynthesis; 
Glycolysis or 

Gluconeogenesi
s; Pyruvate 
metabolism; 

Nicotinate and 
nicotinamide 
metabolism; 

Ascorbate and 
aldarate 

metabolism; 
Glyoxylate and 
dicarboxylate 
metabolism; 
Pentose and 
glucuronate 

interconversions 
(Chong et al., 

2018) 
Trigonelline 4.44 (s); 8.09 

(t); 8.84 (d); 

8.85 (d); 9.13 

(s) 

L2 HMDB0000875 Blood; Feces; 

Urine (Wishart 

et al., 2018) 

Nicotinate and 
nicotinamide 
metabolism 

(Chong et al., 
2018) 

Valine 0.99 (d); 1.05 

(d); 2.28 (m); 

3.61 (d) 

L2 HMDB0000883 Blood; Breast 

Milk; Cerebro-

spinal Fluid; 

Feces; Saliva; 

Sweat; Urine; 

Cell line (Lodi 

and Ronen, 

2011; Wishart 

et al., 2018) 

Valine, leucine 
and isoleucine 
biosynthesis; 
Pantothenate 

and CoA 
biosynthesis; 
Propanoate 
metabolism; 

Valine, leucine 
and isoleucine 

degradation 
(Chong et al., 

2018) 
Unknown 4 3.66-3.65 (s) L4 - - - 

Unknown 5 3.68-3.67 (s) L4 - - - 

Unknown 6 8.81-8.77 (d) L4 - - - 

Unknown 7 
  

9.078-9.006 (s) L4 - - - 
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L2: Putatively annotated compounds (spectral similarity with database); s: singlet, d: doublet, t: triplet, dd: 
doublet of doublets, m: multiplet; L4: Unidentified. 
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It is well established that reprogramming of cellular metabolism is one of the defining 

features of cancers, including PCa (Eidelman et al. 2017; Zadra et al. 2018). Considering 

that metabolomics is defined as the characterization of all metabolites in a biological sample 

(Bujak et al. 2015), it is easy to understand why this approach is ideal to uncover the 

metabolic phenotype associated with PCa development and progression. As a matter of 

fact, several previous studies successfully applied metabolomics to accomplish this goal 

(reviewed in Lima et al. 2016; Lima et al. 2021; Lima et al. 2018). Considering the success 

of these studies, the two main goals of this thesis were to uncover new potential biomarkers 

for the non-invasive PCa screening and to perform a comprehensive characterization of the 

metabolic alterations associated with PCa development and progression. 

 

In Chapter 3, the urinary volatile signature of PCa patients was characterized through 

HS-SPME-GC-MS in order to provide new potential biomarkers for the non-invasive 

screening of PCa. Results showed that the urinary volatile profile was able to clearly 

discriminate between PCa and cancer-free controls (Section 3.1). PCa presence was 

associated with dysregulation in the levels of 43 volatile compounds. Despite the difficulty 

to associate volatile compounds with known biochemical pathways (Lee et al. 2018), some 

metabolites altered in the PCa group were link to dysregulation in 4 metabolic pathways, 

namely pyruvate metabolism, glycine, serine and threonine metabolism, phenylalanine 

metabolism and steroid hormone biosynthesis. However, the most relevant result was the 

disclosure of a 6-biomarker panel, comprising hexanal, 2,5-dimethylbenzaldehyde, 4-

methylhexan-3-one, dihydroedulan IA, methylglyoxal and 3-phenylpropionaldehyde, able to 

differentiate between PCa and control urine samples. Considering the internal set, this 6-

biomarker panel showed an area under the curve (AUC) of 0.856, 72% sensitivity, 96% 

specificity and 79% accuracy. Considering the external set, this 6-biomarker panel showed 

an area under the curve (AUC) of 0.904, 89% sensitivity, 83% specificity and 86% accuracy. 

Thus, this biomarker panel outperforms PSA accuracy (62–75%) (Louie et al. 2015), 

sensitivity (20.5%) (Kearns et al. 2018; Wolf et al. 2010) and AUC (varying from 0.53 to 

0.83) (Louie et al. 2015), and showed a similar specificity (ranging from 51 to 91%) (Kearns 

et al. 2018; Wolf et al. 2010). One of the most important confounding factors for PSA test is 

the presence of other prostate diseases like benign prostate hyperplasia (BPH) and 

prostatitis (Dimakakos et al. 2014). Importantly, in our study (Section 3.1), the cancer-free 

control group of the external set included patients with both pathologies that were correctly 

classified by the defined panel. The application of external validation set is extremely 

important since it allows to independently confirm the predictive accuracy of the model, 
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proving that no overfitting occurs and consequently providing statistical strength to the 

obtained results (Gholamy 2018; Liu et al. 2017). Furthermore, the inclusion of an external 

validation set, in our study, is a step forward compared to previous volatilomic works 

performed in PCa urine (Jiménez-Pacheco et al. 2018; Khalid et al. 2015; Smith et al. 2010). 

We next sought to validate the urinary 6-biomarker panel in an independent set of 

samples collected from PCa patients and cancer-free controls (Section 3.2). Importantly, 

in this second study, the site specificity of this 6-biomarker panel was also explored, with 

the inclusion of urine samples from patients with other urological cancers, namely bladder 

cancer (BC) and renal cancer (RC). BC and RC are anatomically close to the prostate, and 

both are also highly prevalent cancers in men (Bray et al. 2018). A target approach was 

initially employed to confirm the discriminant capability of the 6-biomarker panel defined in 

Section 3.1. When considering only PCa and cancer-free control samples, the results 

attested the discriminant capability of the 6-biomarker panel, with a performance similar to 

the one obtained in the first study (Section 3.1), namely an AUC of 0.83, 84% sensitivity, 

80% specificity and 82% accuracy. However, the 6-biomarker panel failed to discriminate 

PCa from BC and RC (Section 3.2). The site-specificity of a biomarker panel is frequently 

disregarded in metabolomic studies. To the best of our knowledge, only two previous 

studies tried to discriminate PCa from other cancers, but also without success 

(Gamagedara et al. 2012; Peng et al. 2010). This lack of discrimination between different 

cancers was expected since it is well established that tumor cells share some metabolic 

abnormalities to promote cancer cell survival and proliferation. These studies strengthen 

the idea that discrimination between different cancers should be more studied to obtain a 

specific biomarker panel of each tumor. Remarkably, the study presented in Section 3.2 

proved that the addition of 4 biomarkers, namely ethylbenzene, heptan-2-one, methyl 

benzoate, and 3-methylbenzaldehyde, to the former 6-biomarker panel, solved the problem 

of site specificity. Indeed, this improved 10-biomarker panel shows an excellent discriminant 

capability between PCa samples and all other samples included in the study (cancer-free 

controls, BC and RC) with an AUC of 0.90, 76% sensitivity, 97% specificity and 92% 

accuracy, proving the huge potential of urinary volatolome as a source for PCa screening 

biomarkers. 

Unfortunately, the GC-MS applicability in clinical practice is limited due to high-cost, 

non-portability, laborious process, and the need of a highly qualify operator (Wilson et al. 

2011). Contrastingly, chemical system sensors, like “electronic nose” (“e-nose”), are 

inexpensive, portable and allow a quick analysis of volatile signature of urine samples, but 

they are unable to identify the volatile compounds (Capelli et al. 2016; Wilson et al. 2011). 
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Thus, the combination of GC-MS and e-nose technologies may be an ideal approach to 

achieve a non-invasive test for PCa screening. Therefore, the proposed 10-biomarker panel 

could be applied for the development of an optimized e-nose in the future, to detect 

specifically this PCa volatile signature and be used in clinical practice for inexpensive, non-

invasive and high throughput PCa screening. 

 

In Chapter 4, tissue (Section 4.1) and urine (Section 4.2) samples from PCa patients 

were analyzed through different analytical platforms to provide an in-depth understanding 

of the metabolic alterations associated with PCa development and progression. 

Tissue is the ideal matrix to disclose metabolic alterations specific of cancer cells and 

allow to greatly reduce confounding factors, through the use of matched samples (samples 

from the same patient) but tissue collection is extremely invasive. In contrast, urine is a non-

invasive matrix, with high availability, and low complexity when compared with other 

biofluids (e.g., serum or plasma) (Bujak et al. 2015; Gomez-Cebrian et al. 2019). However, 

it is important to take into consideration that urine composition can be affected by several 

external factors, such as genetic factors and/ or presence of other comorbidities (Nagrath 

et al. 2011; Walsh et al. 2006). Therefore, the study of both matrices is complementary. 

A multi-platform metabolomics strategy, combining GC-MS, 1H NMR, and HILIC-

MS/MS, was employed to allow a more holistic study of the PCa tissue metabolome 

(Section 4.1). All analytical platforms were able to provide a good discrimination between 

PCa and adjacent non-malignant tissue (from the same patient after prostatectomy), and 

the combination of all methodologies allows to associate PCa with alterations in the levels 

of 27 metabolites and 21 phospholipid species and suggesting dysregulations in 14 

metabolic pathways, predominantly in amino acid and glycerophospholipid metabolisms.  

To obtain a more holistic characterization of urine metabolome, the non-volatile 

compounds present in the same urine samples used in Section 3.1 were analyzed through 

GC-MS and 1H NMR (Section 4.2). Interestingly, when comparing the diagnostic 

performance of the volatile metabolome (Section 3.1), with the discriminatory performance 

obtained for the non-volatile urinary metabolome, using the external set, it is possible to 

infer that the volatilomic approach allows a better separation between PCa and cancer-free 

controls, once almost all the evaluated parameters have better performances in volatilomics 

models. These results reinforce the idea that volatilomic studies are the ideal approach to 

uncover new biomarkers for PCa screening.  

Importantly in Sections 4.1 and 4.2, MS-based techniques and NMR showed high 

complementarity and the combination of these analytical platforms allowed a more 
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comprehensive coverage of the metabolome. However, it is also possible to infer that GC-

MS data allowed a better discrimination between samples than NMR data. The lower 

performance of NMR may be related with a lower sensitivity (from micromolar to millimolar) 

(Crook et al. 2020), the absence of separation step and most importantly with the 

physiochemical characteristic of the metabolites (Lima et al. 2018; Turi et al. 2018). 

When comparing the metabolic alterations associated with PCa presence in tissue 

(Section 4.1) and urine (Section 4.2) samples, only three metabolites were reported 

concordantly altered in both studies, namely leucine, valine, myo-inositol. This apparent low 

translatability between urine and tissue samples could have several explanations. Firstly, 

urinary metabolome contains information of cancer-derived metabolites, but also of 

metabolites related with other local or systemic body responses to PCa development and 

progression, while tissue metabolome is more specific of PCa cell. Secondly, tissue studies 

evaluate the metabolic alterations directly in their origin, whereas metabolites present in 

urine samples undergo to an excretion process that include several steps, like renal 

concentration (Wishart 2019). Finally, it is important to consider that non-malignant adjacent 

tissue was considered as control in the tissue metabolomic study (Section 4.1). The tissue 

collection was performed by an experienced pathologist, but metabolic alterations could 

precede histological alterations, so adjacent non-malignant tissue may not be metabolically 

similar to healthy/ normal prostate tissue (Boudonck et al. 2009; Sun et al. 2018). 

Considering that the urinary study (Section 4.2) was performed using cancer-free controls, 

this difference in the health state of the control group may limit the potential translatability 

of the results between tissue and urine. 

Notably, it must be stressed that concordant results were found between tissue 

(Section 4.1) and urine (Section 4.2) when considering the dysregulated metabolic 

pathways in PCa. Indeed, 5 metabolic pathways were associated with PCa presence in 

both studies (Sections 4.1 and 4.2), namely ascorbate and aldarate metabolism, glyoxylate 

and dicarboxylate metabolism, nicotinate and nicotinamide metabolism, pantothenate and 

CoA biosynthesis and valine, leucine and isoleucine synthesis (Figure 5.1). Furthermore, 

one metabolic pathway reported in the volatilomics profile of PCa urine samples was also 

associated with PCa in the tissue metabolome study (Sections 3.1 and 4.1), namely the 

phenylalanine metabolism. Interestingly, one metabolic pathway was associated with PCa 

development and progression in all three studies (glycine, serine and threonine metabolism) 

(Sections 3.1, 4.1 and 4.2). A summary of these metabolic pathways and their potential 

role in PCa development and progression will be given hereafter (Figure 5.2). 
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Figure 5.1: Venn diagram of all potentially metabolic pathways dysregulated in PCa, described in 

Sections 3.1, 4.1 and 4.2. 

.
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Figure 5.2: Simplified schematic representation of the seven metabolic pathways associated with PCa development and progression in both urine and tissue 

samples (Sections 3.1, 4.1 and 4.2). The dashed lines represent multiple step reactions.  

.
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Glycine, serine and threonine metabolism was the only metabolic pathway that was 

associated with PCa in all three studies (Sections 3.1, 4.1 and 4.2) highlighting its 

importance in PCa metabolism. Overall, it is well established that alteration in the enzymes 

involved in this metabolic pathway play an important role in proliferation, invasion and cell 

death (Khan et al. 2013; Lima et al. 2016; Sreekumar et al. 2009). Furthermore, upregulation 

of this pathway was associated with oncogenesis and tumor maintenance (Pérez-Rambla 

et al. 2017). Additionally, serine and glycine metabolism provide essential precursors for 

proteins, nucleic acids and lipids synthesis, which are crucial building-blocks for cancer cell 

progression (di Salvo et al. 2013) and sarcosine is an intermediate compound in choline 

metabolism, which is crucial for cellular membrane components synthesis (Smith-Palmer 

2019). 

Other two metabolic pathways directly related with amino acid metabolism were also 

associated with PCa, namely valine, leucine and isoleucine synthesis (Section 4.1 and 4.2) 

and phenylalanine metabolism (Section 3.1 and 4.1). Branched-chain amino acids 

(BCAAs) (valine, leucine, and isoleucine) are involved in the metabolism of glucose, lipid, 

and protein synthesis (Wishart et al. 2018). Furthermore, BCAAs can also be used by the 

cells to produce energy (Pérez-Rambla et al. 2017). Additionally, BCAAs can activate 

mTOR, an important regulator of cell growth, proliferation and migration (Holecek 2018; 

Wishart et al. 2018), being well established that mTOR activation plays a central role in 

cancer development and progression (Populo et al. 2012). On the other hand, restriction in 

levels of  tyrosine and phenylalanine have several consequences in PCa cell lines, including 

alterations in glucose metabolism, induction of cell death (Fu et al. 2010) and inhibition of 

invasion and metastasis (Fu et al. 2003). These results highlighted the close relationship 

between PCa development and amino acid metabolism. 

The significant alteration in the levels of pyruvate (Section 4.2), myo-inositol (Sections 

4.1 and 4.2) and UDP-glucose (Section 4.1) indicates that PCa development and 

progression are associated with an alteration in ascorbate and aldarate metabolism. This 

metabolic pathway is related with both carbohydrate (Tao et al. 2015) and glutathione 

metabolisms, so the alteration in ascorbate and aldarate metabolism could be correlated 

with both energetic metabolism and redox homeostasis, which are known to play an 

important role in cancer development and progression (Park et al. 2018). 

The other metabolic pathways associated with PCa are involved mainly in energetic 

metabolism, namely nicotinate and nicotinamide metabolism, pantothenate and CoA 

biosynthesis, and glyoxylate and dicarboxylate metabolism. Importantly, glyoxylate and 

dicarboxylate metabolism is directly correlated with glycine, serine, and threonine 
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metabolism, once this last pathway provides essential metabolites (hydroxypyruvate and 

glyoxylate) for glyoxylate and dicarboxylate metabolism (Kanehisa et al. 2000), highlighting 

the interconnection between the different metabolic pathways that were involved in PCa 

development and progression. Nicotinate and nicotinamide metabolism leads to the 

production of the coenzymes nicotinamide-adenine dinucleotide (NAD) and nicotinamide-

adenine dinucleotide phosphate (NADP) (Frolkis et al. 2010; Jewison et al. 2014). NAD is 

important in several cellular processes including redox homeostasis, mitochondrial function, 

and cell death (Sampath et al. 2015). Furthermore, nicotinamide phosphoribosyltransferase 

(NAMPT), a key enzyme in this pathway, is overexpressed in PCa. The inhibition of NAMPT 

shows anti-tumor activity leading to ATP depletion and consequently cell death (Sampath 

et al. 2015). Finally, pantothenate and CoA biosynthesis was other metabolic pathway 

associated with PCa development. Pantothenate, is a precursor of coenzyme A (CoA) 

(Leonardi et al. 2007) and CoA is a key compound in several cellular mechanisms, including 

cell growth, synthesis of phospholipids, synthesis and degradation of fatty acids, and 

tricarboxylic acid (TCA) cycle (Leonardi et al. 2007).  
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Chapter 6 – Conclusions and future perspectives 
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The recognition that “omic” technologies, in particular metabolomics and its subareas 

volatilomics and lipidomics, are crucial tools to detect early metabolic alterations that occur 

in cancer development and progression opens the window to the study of potential 

applications of these alterations in clinical practice. Metabolomics has the potential to 

provide biomarkers for cancer diagnosis, for the development of new therapeutic targets 

and to disclose the molecular mechanisms involved in cancer development and 

progression. The experimental work performed under the scope of this thesis highlights the 

importance of metabolomic studies in PCa research area.  

Regarding to PCa screening, the urinary volatilomics analysis was suitable to define a 

10-biomarker panel for PCa screening (accuracy of 92%) that outperforms PSA accuracy 

(62-75%). Importantly, this biomarker panel was able to discriminate not only PCa from 

cancer-free controls but also from other urological cancers (renal and bladder cancers). So, 

these results revealed that the urinary volatile profiling encompasses a huge potential for 

non-invasive PCa screening. 

The metabolic characterization of PCa samples performed in this thesis allowed to 

extend the knowledge about PCa metabolic phenotype and to corroborate some previous 

findings, e.g., the association of PCa development and progression with dysregulation in 

amino acid metabolism, highlighting the complementarity among different analytical 

platforms (GC-MS, 1H NMR and HILIC-MS/MS), as well as the complementarity between 

urinary and tissue metabolomic studies. Notably, the dysregulation in ascorbate and 

aldarate metabolism, glycine, serine and threonine metabolism, glyoxylate and 

dicarboxylate metabolism, nicotinate and nicotinamide metabolism, pantothenate and CoA 

biosynthesis, valine, leucine and isoleucine synthesis and phenylalanine metabolism were 

reported in urine and tissue metabolomic studies. Furthermore, the detailed characterization 

of PCa tissue lipidome was one of the most important achievements of the present work, 

especially considering that this is an understudied subarea of metabolomics in PCa 

research.  

Despite the promising results obtained, more studies are needed to fully understand 

the PCa metabolome and take advantages of these findings in clinical practice. For future 

research directions, we highlight the importance to validate the proposed 10-biomarker 

panel in a larger cohort including indolent and aggressive PCa and other prostate 

pathologies (e.g., BPH or prostatitis), and include patients with other high prevalent cancers 

(e.g., lung and colon cancer). The development of an “e-nose” apparatus with specificity for 

the detection of this panel may provide a new accurate, non-invasive, rapid and low-cost 

tool for PCa screening. Moreover, it will be crucial to clearly understand the biological origin 
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of the volatile biomarkers, which may be performed by fluxomic studies using isotopically 

labeled compounds. Finally, target studies to evaluate the enzymatic activity of the enzymes 

involved in the metabolic pathways proposed as important for PCa development and 

progression are also needed. 
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