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Resumo

Nos últimos anos, o aumento de consumidores ativos na rede de distribuição, transformaram a
estrutura de mercado numa estrutura mais moderna, independente, flexível e distribuída. A nova
tendência de transações peer-to-peer (P2P) nos sistemas de energia, onde consumidores tradi-
cionais se transformam em prosumers que podem maximizar a utilização de energia, partilhando-a
com os seus vizinhos. A presença de mecanismos P2P desempenha também um papel fundamental
na difusão de fontes de energia renováveis na rede. Assim, emerge o mercado P2P onde prosumers
e consumidores podem fazer transações de energia sem nenhuma arbitragem convencional no pro-
cesso de transação. Porém, embora as transações de energia locais permitam a existência de redes
mais descentralizadas e abertas, estes modelos têm um impacto significativo no controlo, operação
e planeamento da rede de distribuição.

Neste trabalho é apresentado um modelo melhorado com o objetivo de avaliar o impacto das
transações P2P no congestionamento da rede de distribuição, onde as restrições da rede de dis-
tribuição são consideradas bem como a incerteza associada aos recursos renováveis e à carga.
A função objetivo foi modelada para minimizar os custos com as transações de cada consumi-
dor/prosumer. Assim, foi desenvolvida uma ferramenta computacional para alcançar o objetivo
estabelecido. Esta ferramenta foi validada utilizando um ramo adaptado do sistema de teste IEEE
119 bus, na qual foram considerados diferentes situações operacionais em três casos de estudo,
considerando diferentes tecnologias renováveis e sistemas de armazenamento de energia instal-
adas em cada consumidor e/ou prosumer.

Nesse sentido, a dissertação apresenta uma análise alargada relativa ao impacto dos mercados
energéticos P2P no sistema de distribuição, em particular em termos de custos, congestionamentos
e perfis de tensão. Os resultados da simulação indicam que a introdução de tecnologias facilita-
doras das smart grids levou a benefícios técnicos e económicos tanto para a rede de distribuição
como para os seus utilizadores. Nomeadamente com: uma redução nos custos para cada uti-
lizador, uma melhoria na qualidade dos perfis de tensão, redução no congestionamento bem como
um alisamento do perfil de carga da comunidade, da perspetiva da rede.

Palavras-chave: Comunidades de Energia, Congestionamento na Rede de Distribuição, Fontes
de Energia Renovável, Geração distribuída, Limites da Rede, Qualidade dos perfis de tensão, Rede
de Distribuição, Tecnologias Facilitadoras das Smart Grids, Transações Peer to Peer
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Abstract

In recent years the increasing number of consumers participating in the distribution grid has mo-
tivated the transformation of the energy market’s structure into a more modern, independent, flex-
ible and decentralised system. The novel trend of peer to peer (P2P) transactions has allowed
traditional consumers to become prosumers, capable of maximising the usage of their energy pro-
duction by sharing it with their neighbours. The P2P mechanisms also play a fundamental role in
promoting the deployment of renewable energy sources (RES) throughout the grid. Thus, the P2P
market has emerged to allow both prosumers and consumers to trade energy independently from
the conventional market. However, while local energy transactions will allow for a more open
and decentralised grid, it will nevertheless have a significant impact on the planning, control and
operation of distribution grids.

In this work an improved model is presented to evaluating the impact of P2P transactions
on distribution grid congestion, considering its restrictions and the uncertainty associated with
RES generation and load are thoroughly considered. The objective function has been modelled
to minimise the transaction costs of each prosumer/consumer. Accordingly, a computational tool
has been developed. The validity of this tool was tested on a branch adapted from a 119-bus IEEE
test grid, in which different operational scenarios have been considered through 3 case studies,
taking into account the different RES technologies and energy storage systems installed by each
prosumer/consumer.

Summary, this dissertation presents a broad analysis of the impact of P2P energy markets on
the distribution grid, particularly in terms of costs, congestion and voltage profiles. Simulation
results indicate that the introduction of smart grid enabling technologies and P2P transactions has
led to both technical and economic benefits for the distribution grid and its users, with: reduced
costs for all users, improved voltage quality, reduced congestion, and the overall flattening of the
community’s load profile.

Keywords: Distributed Generation, Distribution Network, Distribution Network Congestion,
Energy Community, Grid Constraints, Renewable Energy Sources, Smart Grid Enabling Tech-
nologies, Voltage Quality, Peer-to Peer Transactions
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Chapter 1

Introduction

This chapter presents a brief introduction to the topic, covering the background, problem definition

and the research objectives. Furthermore, the methodology used as well as the structure of this

dissertation are also presented.

1.1 Background

The past decade has seen increased public’ awareness of the damage that will be caused by climate

change, which has pressured governments and businesses to decarbonize the economy [1]. The

electricity sector is key to shift. Traditionally, electricity distribution systems have been viewed

through a hierarchical, unidirectional framework, where power is centrally generated in large,

fossil-powered plants before being transmitted and distributed to low-level consumers.

However, recently, advances in renewable generation and telecommunications have allowed

a new market participant to emerge, an active consumer or ‘prosumer’, that can generate its own

power supply and address some of its energy demand [2]. Consequently, peer-to-peer (P2P) mar-

kets have been developed to allow prosumers to trade energy independently from the conventional

market [3]. Moreover, the presence of many prosumers can not only facilitate the deployment of

renewable energy sources (RESs), at a small scale by increasing the economic viability of small

RES installations, but also at a larger scale by allowing energy demand to fluctuate more and bet-

ter match the variable and uncertain nature of renewable energy generation [4]. In addition, P2P

transactions can affect distribution grid operation; however, whether this impact is positive or neg-

ative remains unclear. Ultimately, this new kind of energy system has shown great potential, as it

is more decentralised, independent and flexible while promoting the deployment of more RESs.

1.2 Problem definition

With the ever-increasing adoption of distributed energy resources (DER), coupled with advances

in energy storage and telecommunications, consumers are being enabled to trade energy directly

with independent producers. The motivation to participate comes from the low marginal costs

1



2 Introduction

associated with DERs and storage systems when compared with retail prices offered by private

service providers. This novel type of transaction is framed within the peer-to-peer (P2P) markets,

wherein small-scale market participants can freely buy and sell energy with their peers, and are

thus called prosumers, since they are both consumers and producers. This type of market can

allow a prosumer to take advantage of his DER by selling surplus power, for example, which

would otherwise be wasted or require a storage system to be used later.

Moreover, in conventional approaches to P2P transactions, grid restrictions are not considered

in practice, but power flowing through the grid must follow the energy balance equations and grid

restrictions. However, implementing a P2P market that accounts for these restrictions in a satis-

factory manner is a complex and difficult challenge. Therefore, this dissertation will investigate

the following research question:

What will be the impact of P2P markets on distribution grid operation?

Furthermore, it is necessary to develop an optimisation model that is capable of operating

under these restrictions and realistically simulates demand and generation, to study the technical

and economic impacts of P2P markets.

1.3 Research objectives

The main objectives of this work are:

• To develop a bibliographic review of the impact of P2P markets on the distribution grid,

with a focus on congestion.

• To create a mathematical formulation to understand the impact of P2P transactions on the

distribution grid, taking into account its physical restrictions.

• To understand P2P energy markets in detail and evaluate their pros and cons.

• To perform several case studies that simulate different load and generation scenarios.

• To evaluate the impact of P2P markets on the operation of the distribution grid in terms of

costs, transaction behaviours, voltage profiles and grid congestion.

1.4 Methodology

This work proposes a model based on stochastic mixed-integer linear programming (SMILP). The

model aims at minimising the total costs of the prosumers, over a 24-hour period, while accounting

for grid restrictions and the operation of smart grid enabling technologies and P2P transactions.

Fig. 1.1 illustrates the approach taken in this work. The distribution network and the interactions

among the consumers/prosumers can be seen, where several actors utilise smart grids enabling

technologies. These technologies allow the existence of P2P transactions and the possibility of

selling energy to the grid. These transactions are analysed in terms of costs, energy mix, P2P
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transactions, congestion and voltage, while considering network constraints to assess the impact

of these transactions on network operation.

The problem is programmed in GAMS 24.1.2 and solved using CPLEX. Moreover, all simu-

lations are conducted in a workstation with two 6-core processors with a frequency of 3.46 GHz

and 96 GB of RAM, running a 64-bit version of Windows.

Figure 1.1: P2P grid and market framework

1.5 Thesis structure

This dissertation is organised into 5 chapters. Aside from the present chapter, Chapter 1, Chapter

2 presents a state of the art, introducing the concepts related on the topic being studied as well as

a bibliographic review of relevant works. Chapter 3 details the mathematical formulation devel-

oped in this work comprised of an objective function and a set of restrictions. In Chapter 4, the

numerical results of the simulations are presented and discussed. Finally, Chapter 5 highlights the

main conclusions of this dissertation as well as its contribution, furthermore some future works

are pointed out.



4 Introduction



Chapter 2

Overview on peer-to-peer markets

The present chapter presents the concepts and state of the art concerning the impacts of peer to

peer electricity trading on the distribution network, with regards to Electricity markets, Peer to

Peer (P2P) markets and the Impact of Peer to Peer markets on the distribution network. Ulti-

mately, a bibliographic review is presented, focusing on literature relevant to this work which are

summarised and categorised by themes and approached topics.

2.1 Electricity markets

2.1.1 Concept

Current electricity markets follow a pool structure wherein a market operator is responsible for

providing a centralised dispatch, for the next day, based on day-ahead electricity sale and purchase

bids. Put simply, bids, consisting of an amount of power and a price, for a given time interval, are

organised in terms of cost. Purchase bids are put in a decreasing order while sale bids are put in

an ascending order, and thus, for each time slot, the market clearing price is set where both bid

curves meet, as depicted in Fig. 2.1 (adapted from [5]).

Besides the spot market mentioned above, electricity producers and buyers are free to negotiate

among themselves. As a consequence electricity can also be traded through bilateral contracts.

Moreover, the independent system operator (ISO) must verify that the dispatch arrived at by market

clearing and bilateral contracts is technically feasible and if it isn’t propose changes to it. Figure

2.2 (adapted from [5]) outlines the interactions and functions of the different market participants.

5
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Figure 2.1: Symmetric Pool market operation

Figure 2.2: Electricity system: mixed operational model

In addition to the day-ahead energy market, there is also an intraday real-time market used to

account for, and balance, real-time uncertainty in load and supply (namely variable RES). More-

over there also exist other non-energy markets, such as, the reserve market meant to assign reserve

capacity throughout a day, as well as the Ancillary Services Market, typically used to reward

services like helping maintain grid frequency [6].

2.1.2 Advantages and challenges

The main future challenges of electricity markets will arise due to the increasingly greater share

of variable renewable generation. In this context, six key challenges have been identified in the

work of [7]:

1. Much higher price volatility from hour to hour and day to day;
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2. Increased relevance of intraday markets;

3. Higher costs for fossil plants due to higher shares of investment depreciation costs;

4. Increased relevance of energy storage and “smart” grids;

5. Higher shares for balancing markets;

6. Increased complexity in balancing supply and demand over time.

Additionally, while in a conventionally structured power system, electricity markets usually

consist of day-ahead and balancing markets, which are cleared sequentially and independently,

with the introduction of stochastic and non-dispatchable renewable energy resources power injec-

tion is uncertain. Consequently, new services such as ancillary services will be required in order

to equilibrate balancing markets [8].

However, there is a plentiful body of literature proposing solutions to these problems, called

"barriers" in [9], and while each barrier is addressed by at least one proposed solution, no single

proposal is able to address all the barriers simultaneously. Consequently, a future-proof market

design must combine different elements of proposed solutions to comprehensively mitigate market

barriers [9]. Furthermore, the introduction of RESs brings with it the capacity to generate low

carbon electricity, which is arguably its single greatest advantage, at a lower levelised cost of

electricity (LCOE) than conventional sources [10].

2.1.3 Energy storage

The volatility in power output of RESs has created a necessity for methods to mitigate it, one

of which being energy storage. There are several types of Energy Storage Systems (ESSs), the

most common being Pumped Hydro-power and Battery Storage Systems (BSSs), however several

novel systems have been presented in the literature, such as using Electric Vehicles (EVs) as

ESSs [11], [12] and hydrogen fuel cells, explored in [13].

Furthermore, besides being use-fool tools to harvest and take advantage of energy that would

otherwise be wasted, as explored in [12] and [14], ESSs will also play a role in increasing the

grid’s resiliency against high-impact low-probability (HILP) events, ie, earthquakes, tsunamis,

etc [15], [16], as well as in smoothing the output of RESs at a power-plant level [13]. Depicted in

Fig. 2.3 is the change in the integration of RESs into the power distribution system [17].
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Figure 2.3: (a) Conventional Power Distribution System. (b) Future Power Distribution System

2.2 Peer to peer markets

2.2.1 Concept

The P2P market structure is intrinsically linked with the emergence of a new market entity: the

prosumer, that can be defined as a consumer with some form of small-scale electricity genera-

tion [18]. Consequently, P2P trading can be described as a next generation energy management

technique for smart grids where prosumers can actively participate in their energy management

either by selling their excess production or by reducing their load through demand response [19].

Shown in Fig 2.4 is a high level overview of the different interactions and interests that each par-

ticipating entity has in the operation of grid-integrated local P2P markets as well as some of the

challenges that arise [19].
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Figure 2.4: Overview of future P2P challenges

2.2.2 Existing Architecture

According to [18] and [19] current P2P market structures proposed in the literature can be di-

vided into tree broad types: 1) decentralised markets, 2) centralised markets and 3) composite or

distributed markets, Fig. 2.5, based on [18].

1. Decentralised markets: in this type participating prosumers are free to negotiate directly

with one another without the presence of any centralised supervision [19]. However [18]

has found that precisely due to the lack of central control this type of market structure does

not maximise social welfare.

2. Centralised markets: where an central entity, such as a community manager, has the respon-

sibility of providing a dispatch such that it maximises social welfare [18]. The community

manager also has the function associated with energy trading to the outside of the commu-

nity [19].

3. Composite/ Distributed market: basically a mix of the other two types, prosumers are free

to directly negotiate with each-other or can engage in the market through a community

manager [19]. Moreover, unlike in a decentralised market, prosumer information is shared

with the community manager [18].
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Figure 2.5: Categories of P2P trading structures

Finally [19] has identified two layers to a P2P energy trading network, namely, a virtual layer

and a physical layer. The virtual layer is comprised of: an information system, to enable commu-

nication between market participants, monitoring market activity and must be capable of setting

restrictions on participants decisions to ensure network security and stability; market operation, to

provide dispatching, payment rules and bidding format; pricing mechanism, to match supply and

demand; energy management system (EMS), that has real-time access to supply and demand data,

using it to develop a prossumer’s generation and consumption profile and subsequently produce an

appropriate bidding strategy. At last, the physical layer consists of the hardware which provides

grid access, metering and communication [19].

2.2.3 Advantages and Challenges

The development of P2P markets has gone hand in hand with the increasing deployment of small-

scale RESs generation at a distribution grid level and as such aims at mitigating some of the

resulting challenges.

The main benefits of implementing a P2P scheme arrived at by the literature include:

• Increased renewable deployment [20]

• Reduced peak demand [19];

• Balancing and congestion management through better operation of distributed energy re-

sources [20];
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• Reduced reserve requirements [19];

• Provision of ancillary services to the main power grid [21];

However there are, at present, some limitations. For example, current literature assumes that

wholesale markets can be used as "price takers" yet with the wide deployment of P2P markets this

can no longer be the case. As such further research needs to be undertaken in order to determine

what impact large scale usage of P2P markets will have on wholesale markets . Another problem

lies in the physical flow of electricity. Whereas power may be traded on a P2P basis, the actual

grid acts as a pool with peers not actually exchanging electricity physically [21].

2.3 Impact of the P2P market on the distribution network

As the current distribution grid infrastructure has not been designed with distributed generation

(DG) in mind there is a necessity for investigating what impact DG and P2P markets will have on

it, Fig. 2.6 [22].

Consequently, several pieces of work have analysed the consequences of P2P and DG on

the distribution grid in terms of its lines load factor and its buses voltage profiles. Typically by

comparing a base case without DG and several cases with increasing levels of DG.

In terms of voltage profiles, [23] has analysed the case of an unbalanced distribution network

with and without wind generation plus ESS while [24] compared several cases with increasing

levels of DG and EV load, also in a distribution grid. In both papers’ base cases bus voltage

decreased as the bus in question was further from the feeder bus, which is typical in a radial grid.

However with DG the opposite was true with voltage profiles increasing with the level of DG.

Regarding congestion, both [25] and [26] noted that peak load could be reduced with the

implementation of a P2P system, wtih [24] remarking that there could be a reversal of power flow

at a "fairly low penetration" of DG.

Figure 2.6: Distribution network with DG and P2P
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2.4 Literature review

In this section a systematic literature review as been performed in order to classify each paper in

terms of problem type and approach given its category with the goal of stressing the contribution

of this piece of work, distinguishing it form precious works.

2.4.1 Energy communities

Most literature has focused on providing market models for the operation of renewable energy

communities, indeed, [27–32] have put forwards models for operating an energy community based

on a market with the later two incorporating P2P energy trading. Moreover, [33] besides providing

a market model has also performed an investigation on the legal framework for energy communi-

ties at an Italian and European level and has identified several key barriers for the proliferation of

this kind of legal entity.

The authors in [34] has put forwards a novel decision making methodology for energy com-

munities with the goal of optimising the production portfolio. The work in [22] has identified

identifies which functions a community energy management system must be capable of perform-

ing to achieve the given objectives and has also constructed Unified Modelling Language (UML)

case diagrams for such functions. The work of [35] has analysed the techno-economic bene-

fits of community-owned versus individually-owned energy assets considering the network/grid

constraints. The authors in [36] have presented an agent-based transactive energy (TE) trading

platform while deploying a simulated-annealing-based Q-learning algorithm to develop bidding

strategies for ESSs to participate in the TE markets. Also, [37] has proposed an optimal scheduling

method for a zero net energy community micro-grid with customer-owned energy storage systems

(CES). The authors in [38] have reviewed recent advances in the application of game-theoretic

methods to local energy trading scenarios.

Finally, [39] has proposed a review framework which as partly been used to analyse the re-

searched literature concerning energy communities. Thusly, in Table 2.1 a few thematic categories

are defined, based on the work of [39]:

Table 2.1: Some types of energy community framework

Terminology Defenition

VPP Virtual power plant
A cluster of dispersed generator units, controlable loads

and storage systems, agregated in order to operate as

a unique power plant.

VED Virtual energy district
A localised area where different residential and/or

industrial users coexist , requireing or producing energy.

HEM
Home energy

management system

A system to control energy management in domestic

propreties.
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Moreover three different kind of grid layouts for energy communities have been considered,

namely:

• Micro-grid

• Downstream of a supply point

• Distributed around the network

Finally the same source also defines three levels of control:

• Type A: Management of multiple buildings, assets or appliances (aggregated) where assets

and buildings are connected and affect the management of each other.

• Type B: Separate management/ control of individual appliances, assets or buildings with no

connection between each other/ no overall management system.

• Type C: Basic provision of information with no direct management/ control of buildings,

assets or appliances and reliance on user behaviour to take action/ manual control of assets.

With this in mind, Table 2.2 summarises the topics approached by the investigated literature

for the category of energy communities:

As can be seen in Table 2.2 most of the literature as focused on a Virtual Energy district

energy community integrated either downstream of a supply point, for-instance, a substation or

as a micro-grid. Moreover most do not include load prediction methods on their models using

a deterministic model for their work. Energy storage as been taken into account in all papers

except in [31] and [33], furthermore [32], [28–30] have considered some kind of demand response

technique. Finally none have included vehicle to grid (V2G).

Table 2.2: Categorisation of reviewed papers

Ref Type Layout
Control

hierarchy
Prediction
technique

Optimisation
algorithm

Management
type

ESS?
Demand

response?
V2G?

[27] Virtual energy district
Downstream

of a supply point
Decentralised (deterministic) ADMM yes no no

[31] Micro-grid
Downstream

of a supply point

hierarchical

(nano to micro to grid)
C no no no

[32]
Virtual power plant/

energy district

Downstream

of a supply point
Decentralised

MDP- Markov decision process/

Fuzzy Q-learning
A yes Only for ESS no

[29] Virtual power plant
Distributed around

the network
centralised (deterministic) Coalitional game model A yes yes no

[28]
Virtual power plant/

energy district

Downstream

of a supply point
Decentralised

Nash bargaining/

ADMM

yes,

at community

level

yes no

[35] Virtual power plant
Distributed

around the network
(deterministic model)

cooperative game

theory model
A yes no no

[36] Virtual power plant Micro-grid Decentralised
simulated-annealing-based

Q-learning
yes no no

[37] Virtual power plant Micro-grid centralised (deterministic) MIP yes no no

[33]
Building energy

management system
Micro-grid centralised no no no

[30]
Virtual power plant/

energy district

Downstream

of a supply point
centralised

Stochastic Model

Predictive Control (MPC)
A yes yes no
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2.4.2 Peer to peer markets

The literature on this topic has overwhelmingly focused on developing P2P market frameworks,

indeed [27, 28], [40–42] have developed some form of peer to peer market wherein consumers

can buy electricity on the P2P market or from the wider grid and prossumers may also sell their

surplus power. Notably, the authors of [40] have also included uncertainty trading. Moreover, [41]

and [42] have employed block-chain technology in their work. Taking into account a utility’s

point of view, [43] and [44] have put forwards utility focused P2P market designs wherein energy

transactions must be approved by the utility.

Literature reviews have been presented in [45] and [18]. The former as analysed the methods

and technologies used to simulate each aspect in a grid-connected peer-to-peer energy trading

network and attempted to draw some comparisons between the methods used in the reviewed

literature, while the latter has researched recent development trends, challenges and opportunities

of P2P markets based on pilot projects and regulatory and policy changes in Thailand. Also, [46]

has looked at the implementation of a P2P trading mechanism to jointly wind power as well as

reserve generation to compensate the former’s uncertainty.

In this regard, Table 2.3 is a summarises the reviewed works on this topic. Indeed, most no-

ticeably the literature on this topic was overwhelming focused on market design for PV prosumers,

with most papers also contemplating some form of ESSs.

Table 2.3: Summary of analysed literature on P2P markets

Ref Problem category Which RES? Demand response? Storage? EV/ V2G? System under study Algorithm

[27] market design PV
yes,

but not specified

grid connected

energy community
ADDM

[28] market design PV
yes,

but not specified

building

energy community
ADDM

[40] market design PV
yes, EV/ ESS

charging

yes,

but not specified

grid connected

energy community
MILP

[43] market design
simulation: 33-bus

test network
linear programming

[41] market design PV
yes,

but not specified

multi micro-grid

system
Blockchain based

[?] market design PV
yes, EV charging

+space heating
BSS Evs, but no V2G

grid connected

energy community
Blockchain based

[44] day-ahead trading strategy PV
yes,

but not specified

industrial, regional

integrated energy system
Lagrange multiplier method

2.4.3 Energy storage

The reviewed works, as concerns energy storage, have delved into a broad set of problem cate-

gories. However, the literature has largely focused on battery storage systems (BSSs) paired with

a PV system. As a matter of fact, aside from the literature reviews presented in [17] and [11], only

the work of [15] has not considered PV generation.

Literature reviews have been presented in [17] and [11] with the latter investigating which

grid services could be provided by EVs and the former focusing on Optimal Planning of Energy

Storage Units in Distribution Network and Their Impacts on System Resiliency.



2.4 Literature review 15

Azizivahed et al., [47], have investigated the the energy not supplied (EENS) and voltage sta-

bility index (VSI) of distribution networks in dynamic balanced and unbalanced distribution net-

work reconfiguration, including RESs and ESS systems, while [48] has developed a technique for

finding the most suitable voltage source (VS) which can act as a voltage and frequency reference

for a micro-grid with BESS during an outage.

Concerning the use of ESSs as a method for improving grid resiliency, [15] and [16] have

developed frameworks for increasing grid resiliency against low-probability, high-impact events

(HILP), such as earthquakes or severe storms. Both have put forwards novel metrics to quantify

system resiliency and models for optimising the deployment of ESSs to increase resiliency, the

latter used a non-sequential Monte Carlo Simulation framework, while the former employed linear

programming based algorithm.

On the operational front of ESSs, [49] and [12] have proposed operational models for an end-

user with energy storage, RESs generation and with some loads capable of demand response to

participate in TE markets with the goal of optimising cost. While [14] has developed a methodol-

ogy to optimise the size of RESs generation and ESSs systems in order to minimise curtailments.

Finally, [50] has presented novel neural network (NN) based state of health (SoH) estimator

for a lithium-ion (Li-ion) battery based ESS and [13] has surveyed the economic feasibility of

different types of energy storage.

As can be seen in Table 2.4, literature on ESS has overwhelmingly focused on battery storage

systems (BSSs) paired with a PV system. Whereas in terms of usage research is quite varied,

ranging from energy waste reduction to voltage stability, intermittency reduction and resiliency.

Table 2.4: Summary of reviewed literature on energy storage

Ref Problem category Test system Which RES? Which ESS? Demand response? Algorithm
[17] (lit review) + resiliency

[11] (lit review) EV

[49] Cost optimisation - PV BSS
yes, EV charging +

hot water load
obi solver

[47] Voltage stability/ energy not supplyed 119-bus test network PV BSS -
shuffled frog leaping

algorithm (SFLA)

[15] Resiliency
medium-voltage distribution

feeder in Tehran
- BSS linear programming (LP) optimization

[50] SoC estimation 33-bus test grid PV BSS
yes, home

management system
novel neural network

[48] Voltage/ frequency stability PV BSS
yes, energy

management system

[13] Intermittency PV+ wind BSS + fuel cell -

[12] Cost/ waste optimisation
(model is made for

an individual end user)
PV+ wind BSS + EV

yes,

EV charging

mixed-integer linear

programming (MILP)

+ genetic algorithm

[16] Resiliency IEEE 69-bus test system PV+ wind
yes,

but not specified
- MILP

[14] capacity/ waste optimisation PV+ wind BSS
golden section Fibonacci

tree optimisation (GSFTO) algorithm
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2.4.4 Distribution network congestion

The body of literature surveyed on distribution network congestion has no singular point of focus

unlike previous categories like research on P2P markets. Indeed, works on this topic have studied

problems such as voltage quality, costs optimisation, intermittency, congestion and the impact of

data quality on system state estimation. Furthermore, besides [51] and [24], the presence of RES

has been considered (either PV or Wind), with [51] and [52] also contemplating flexible loads.

Fassina et al. [24] and Munikoti et al. [53] have studied the impact on voltage profiles on a

distribution grid of distribution generation sources, with the former also including EV charging

load and analysing the steady state impact while the latter assessed the impact of photo-voltaic

generation on the voltage quality of the distribution network with a novel method impact of photo-

voltaic generation on the voltage quality of the distribution network.

Parizy et al. [26] has proposed a novel optimisation algorithm with two levels. The first aims

at finding the minimum incentive that will result in a desired level of RESs penetration based on

3 penalties for emitting air pollution and power losses. The second is a mixed integer non-linear

programming (MINLP) based algorithm that finds the optimal sizing and location of RES such

that it minimises energy costs.

Nayak et al. [23] has studied the power-flow of a wind farm equipped with a battery energy

storage system (BESs). While [51] has developed a two-level sensitivity analysis framework with

the goal of such an analysis is to allow system operators to quantify the sensitivity of their distri-

bution system state estimation (DSSE), at a medium voltage (MV) level, to changes in low voltage

(LV) data from home energy management system (HEMS) such as a demand response signal or

appliance parameters. Finally, [52] and [25] have put forwards models for coordinating electricity

and heat/cooling demand with varying renewable generation.

As can be ascertained by analysing Table 2.5 research on distributed network congestion isn’t

overwhelmingly focused on a single problem category. Moreover, most authors have included

some form o RES generation.

Table 2.5: Summary of literature concerning Distribution Network Congestion

Ref Problem category Test system Which RES? Which ESS? Demand response? Algorithms

[26] Cost optimisation IEEE 24-node system PV+ wind
yes,

but not specified
mixed integer non-linear programming

[23] Intermittency
37-bus unbalanced

radial distribution network
Wind BSS backward forward sweep algorithm

[51]
Impact of HEMS

data quality on

DSS estimation

IEEE 13-bus MV distribution system yes
Karush–Kuhn–Tucker

conditions from the HEMS and

DSSE optimization formulations

[24] Voltage quality radial distribution network

[52]
RES curtailment

optimisation
6-bus/ 30-bus distribution grid PV+ wind (heat storage) yes MILP

[25] Reduce grid congestion modified IEEE 33-node distribution network PV+ wind
Mixed Integer Quadratically

Constrained Program (MIQCP) problem

[53] Voltage quality
modified version of IEEE 37 bus and

IEEE 123 bus test systems
PV
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2.5 Chapter Summary

In this chapter, a state of the art was presented throughout four sections. The first delved into

the concept, advantages and challenges of electricity markets, as well as the role played by en-

ergy storage in these. The second explained the concept, existing architecture, advantages and

challenges of P2P markets. The third presented an overview on the consequences of the deploy-

ment of P2P markets in the distribution network. Finally, a fourth section was made in which

an extensive bibliographic review of relevant literature is presented with an added categorisation

of reviewed works by topic and aspects approached. Based on the reviewed works, it is possible

to verify the absence of works which simultaneously take into account the effect of smart grid

enabling technologies with P2P transactions by way of analysing their impact on the grid.
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Chapter 3

Mathematical formulation

This chapter presents the mathematical formulation used to model user behaviour in a peer-to-

peer envi ronment with the presence of distributed energy resources. It is based on the work of [54]

, built upon a new set of restrictions to account for network constraints. The model is formulated as

a stochastic mixed-integer linear programming (MILP) optimisation problem to minimise the total

cost of each prosumer. Furthermore, key assumptions and the utilised solar generation prediction

model are described.

3.1 Objective function

In the present work the objective function aims to minimise the total cost of each prosumer, as

shown in equation (3.1). Essentially, the formula is the difference between the cost of total ac-

quired power by each prosumer w, during a period ∆t, and the cost of total injected power by each

prosumer w, during a period ∆t.

∑
s

ρs ∑
w

∑
t
(λ bought

t,s .Pbought,T
w,t,s .∆t −λ

sold
t,s .Psold,T

w,t,s .∆t) (3.1)

3.2 Restrictions

3.2.1 Energy transactions

The following equations present restrictions regarding energy transactions on the energy market

between prosumers and with the wider grid. Equation (3.2) states that for a given prosumer, w,

bought energy must come either from the grid or another prosumer. The following restriction

(3.3) asserts that for each prosumer, w, energy sold must go to the grid or to another prosumer.

Finally, equation (3.4) states that, for the community as a whole, total energy bought must equal

total energy sold.

Pbought,T
w,t,s = Pbought,grid

w,t,s +Pbought,local
w,t,s (3.2)

19



20 Mathematical formulation

Psold,T
w,t,s = Psold,grid

w,t,s +Psold,local
w,t,s (3.3)

∑
w

Pbought,local
w,t,s = ∑

w
Psold,local

w,t,s (3.4)

Equations (3.5 to 3.7) represent the energy transactions among prosumers and the grid. Equa-

tion (3.5) states that the total power sold by each of the community’s prosumers equals to all

the power sold by PV systems and discharge of EVs and ESS systems. Equations (3.6 and 3.7)

establish a possible limit on the total power acquired by the community, where N can impose a

maximum on energy obtained from the grid as a complementary strategy to demand response.

Psold,T
w,t,s = Psold,PV

w,t,s +Psold,EV
w,t,s +Psold,ESS

w,t,s (3.5)

Pbought,T
w,t,s ≤ N.x2

w,t ′,s (3.6)

Pbought,T
w,t,s ≤ N.(1− x2

w,t ′,s) (3.7)

Equation (3.8) shows the balance of power. It states that each prosumer must have a balance

between its acquired energy from various sources, and its load. In other words, the sum of total

power acquired, either from the grid or the local market, plus power from its PV panels, ESSs

systems and EVs must equal the sum of inflexible loads, flexible loads, such as controllable appli-

ances, and the charging demands of its EV and ESSs systems.

Pbought,T
w,l,s +PPV,used

w,l,s +PEV,used
w,l,s +PESS,used

w,l,s = Pin f lexibleload
w,t,s +PEV,load

w,t,s +PESS,load
w,t,s +∑

c
Papliances

w,t ′,c,s

(3.8)

Finally a prosumer’s photovoltaic production is defined in (3.9) must be either used or sold in

its entirety at all times.

PPV,used
w,h,s +PPV,sold

w,h,s = PPV,gen
w,h,s ∀w, t (3.9)

3.2.2 Controllable appliances

Controllable appliances include devices such as a dish washer or washing machine. These typi-

cally operate in pre-defined cycles which means that the durations and load profiles of their work-

cycles are known. Thus, considering the presence of demand response their work periods can be

shifted to a time of lower prices. This type of load is modelled using equations (3.10 to 3.16).

Equation (3.10) defines the power consumed by a controllable appliance as the sum of the

power consumed by the appliance during each phase. The device can operate at distinct phases

such as startup, running, finishing and stopping.
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Pappliance
w,t ′,c,s = ∑

f
(x f ase

w,t,c,s.P
f ase

w, f ,c,s) (3.10)

Restriction (3.11) states that each piece of controllable equipment cannot be simultaneously

operating at more than one phase of its work-cycle.

∑
f

x f ase
w,t,c,s ≤ 1 (3.11)

Expressions (3.12 to 3.15) enforce the logical sequence among the operating phases.

y f ase
w,t, f ,c,s ≤ 1 (3.12)

y f ase
w,t, f ,c,s = y f ase

w, f ,c,s,(t+T duration
w, f ,c,s )′

(3.13)

y f ase
w,t, f ,c,s − z f ase

w,t, f ,c,s = x f ase
w,t, f ,c,s − x f ase

w, f ,c,s,(t−1)′ (3.14)

z f ase
w,t, f ,c,s = y f ase

w,t ′, f+1,c,s (3.15)

Finally, equation (3.16) sets the number of times a specific appliance should operate during

the optimisation period.

∑
t

y f ase
w,t, f ,c,s = Nw,c,s (3.16)

3.2.3 Electric vehicles

Equations (3.17 to 3.23) describe the behaviour of Electric vehicles (EVs). In equation (3.17) a

balance is defined among the power provided by an EVs for its prosumer’s self-use together with

the sold by the EVs and the power discharged by the Evs affected by its discharge efficiency.

Charging and discharging limits are presented in equations (3.18) and (3.19), respectively.

During the period between EV’s arrivals and departures, its charging or discharging power is

bounded by 0 and a maximum value used to represent a previously defined charging or discharging

rate.

Finally, state-of-charge (SOC) conditions are set in equations (3.20) to (3.23). In addition,

EVs must be fully charged by its time of departure.

PEV,used
w,t,s +Psold,EV

w,t,s = η
EV,discharging
w,s .PEV,discharging

w,t,s (3.17)

0 ≤ PEV,charging
w,t,s ≤ REV,charging

w,s .x3
w,t ′ w ∈ [T a

w,s,T
d

w,s] (3.18)
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0 ≤ PEV,discharging
w,t,s ≤ REV,discharging

w,s .(1− x3
w,t ′) w ∈ [T a

w,s,T
d

w,s] (3.19)

SOCEV
t,w,s = SOCEV,ini

t,w,s +CEEV
w,s .P

EV,charging
w,t,s .∆t −PEV,discharging

w,t,s .∆t ∀w i f t = T a
w,s (3.20)

SOCEV
t,w,s = SOCEV,ini

t−1,w,s +CEEV
t,s .PEV,charging

w,t,s .∆t −PEV,discharging
w,t,s .∆t ∀w, t ∈ t = [T a

w,s −T b
w,s] (3.21)

SOCEV,min
w,s ≤ SOCEV

t,w,s ≤ SOCEV,max
w,s (3.22)

SOCEV
t,w,s = SOCEV,max

w,s ∀w, i f t = T d
w,s (3.23)

3.2.4 Energy storage systems

Each prosumer’s ESS system is modelled using equations (3.24) to (3.29). These equations work

in a similar manner to the previously described EVs. Charging and discharging limits are defined

in equations (3.25) and (3.26). SOC is defined in equations (3.27) to (3.29).

PESS,used
w,t,s +Psold,ESS

w,t,s = η
ESS,discharging
w,s .PESS,discharging

w,t,s (3.24)

0 ≤ PESS,charging
w,t,s ≤ RESS,charging

w,s .x4
w,t ′ ∀w, t (3.25)

0 ≤ PESS,discharging
w,t,s ≤ RESS,discharging

w,s .(1− x4
w,t ′) ∀w, t (3.26)

SOCESS
t,w,s = SOCESS,ini

t−1,w,s +CEESS
t,s .PESS,charging

w,t,s .∆t −PESS,discharging
w,t,s .∆t ∀w, t ≥ 1 (3.27)

SOCESS
t,w,s = SOCEV,ini

w,s ∀w i f t = 1 (3.28)

SOCESS,min
t,w,s ≤ SOCESS

t,w,s ≤ SOCESS,max
w,s ∀w, t (3.29)

3.2.5 HVAC systems

Equations (3.30) to (3.32) define a simplified model for the heating, ventilation and air condition-

ing systems (HVAC) which aims primarily at maintaining temperature within defined parameters.
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Temperature variation is calculated based on (3.30) which is in turn based on an equivalent thermal

system. Furthermore, the temperature may change in-between a minimum and maximum values

according to the defined scenarios and its power.

θw,t+1 = βw,s ∗θw,t +(1+βw,s)(θ
0
w,t,s +COPw,s ∗Rw,s ∗PHVAC

w,t,s (3.30)

θ
min
w ≤ θw,t+1 ≤ θ

max
w ∀w, t (3.31)

0 ≤ PHVAC
w,t ≤ PHVAC,max

w,t ∀w, t (3.32)

3.2.6 Kirchhoff’s laws

3.2.6.1 Kirchhoff’s current law

A major main technical impediments to distribution grid operation is Kirchhoff’s current law,

wherein the sum of all currents entering a bus must be equal to the sum of all outward flows. This

applies to both active and reactive powers in equations (3.33 and 3.34), respectively.

∑
w

Pbought,T
w,t,s,k −Psold,T

w,t,s,k

+∑
w

PPV,used
w,t,s +∑

w
PEV,used

w,t,s +∑
w

PESS,used
w,t,s

+∑
in,k

Pw,t,s − ∑
out,k

Pw,t,s

= ∑
out,w

Pin f lexibleload
w,t,s +∑

w
Pappliance

w,t ′,c,s,i

+∑
w

PEV,charging
w,t,s +∑

w
PESS,charging

w,t,s +∑
in,k

1
2

PLk,s,t,w

∑
out,k

1
2

PLk,s,t,w

(3.33)

∑
w

Qbought,T
w,t,s,k −Q

+∑
w

QPV,used
w,t,s +∑

w
QEV,used

w,t,s +∑
w

QESS,used
w,t,s

+∑
in,k

Qw,t,s − ∑
out,k

Pw,t,s

= ∑
out,w

Qin f lexibleload
w,t,s +∑

w
Qappliance

w,t ′,c,s,i

+∑
w

QEV,charging
w,t,s +∑

w
QESS,charging

w,t,s +∑
in,k

1
2

QLk,s,t,w

∑
out,k

1
2

QLk,s,t,w

(3.34)
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In equation (3.33), inward active power flows include PV generation, power from EV and

ESS discharge, total energy acquired (both from the grid and local market) and active power not

supplied. In terms of outward power flows, inflexible load, load from controllable appliances,

EVs and ESSs charging load, power sold to the grid and losses were considered. In equation

(3.34) similar formulation is present concerning reactive power.

3.2.6.2 Kirchhoff’s voltage law

All feeders must also comply with Kirchhoff’s voltage law. Notably these equations are not lin-

ear nor convex making it difficult to integrate them into more complex problems. As such, the

variables MPk and MQk have been created to represent maximum transfer capacity and thus avoid

non-linearity. Moreover, two assumptions have also been considered. Firstly, when accounting

for distribution grids, the difference between voltage angles (θk) is relatively small, this results

in a geometrical simplification where sinθk = θk and cosθk = 1. Secondly, the magnitude of the

voltage in each bus are assumed to be close to its nominal value. As such, expression (3.35) and

(3.36) represent the linear active and reactive power flow equations, respectively, where Vi corre-

sponds to the voltage drop at node i (3.37) and θk defines the line connecting buses i and j (3.38),

wherein, i, j ∈ w/{0}.

|Pk,t,s − (Vnom(∆Vi,s,t −∆Vj,s,t)gk −V 2
nombkθk,t,s)| ≤ MPk(1−µk,t) (3.35)

|Qk,t,s − (Vnom(∆Vi,s,t −∆Vj,s,t)bk −V 2
nomgkθk,t,s)| ≤ MQk(1−µk,t) (3.36)

∆V min ≤ ∆Vi,s,t ≤ ∆V max (3.37)

θk,s,t = θi,s,t −θ j,s,t (3.38)

3.2.7 Power flow limits

Apparent power flow, which cannot be greater than or equal to the nominal value on any given

line, is further represented as S =
√

P2 +Q2. In addition, the maximum flow capacity of each line

must respect the power flow limits (3.39).

P2
k,s,t +Q2

k,s,t ≤ (Smax
k )2 (3.39)

Finally, active and reactive power losses are represented in (3.40) and (3.41), respectively.

PLk,s,t =
Rk(P2

k,s,t +Q2
k,s,t)

V 2
nom

(3.40)
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QLk,s,t =
xk(P2

k,s,t +Q2
k,s,t)

V 2
nom

(3.41)

3.3 Assumptions

The following assumptions have been made in this work. First, concerning HVAC operation,

many specific operating periods have been set considering users´ needs and comfort levels. Con-

sequently, with these periods in mind, the temperature was assumed to vary within 24ºC and 28

ºC. Second, electricity prices follow the same trends as demand. Third, voltage deviations should

be less than ±5% of the nominal value. Finally that for node 1 voltage is the nominal value with

a corresponding 0º angle. Moreover, ESSs and EVs are assumed to have charging/discharging

efficiencies of 90% and 95%, respectively.

3.4 Uncertainty and Variability

PV generation is characterised by variability and uncertainty. Therefore, to realistically model

its behaviour a stochastic algorithm presented in [55] is used. In this paper 20 synthetic hourly

solar radiation series are generated. Then, from this data an average profile is created. Given this

average solar radiation profile, an average power output profile is calculated by plugging it into

the power curve. Then, using Cholesky factorisation to attribute its initial generation conditions,

a new profile is generated, as well as two more assuming a ± 5% uncertainty in solar radiation.

Figure, 3.1. In addition, to the PV, the uncertainties associated with the load profile are considered

to be ±1%. Furthermore, the price is assumed to follow the demand trend.
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Figure 3.1: Solar PV power output uncertainty characterisation, example
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3.5 Chapter summary

In this chapter, the mathematical formulation of the objective function and associated restrictions

are presented and explained. The aim is to minimise each user’s total costs of acquiring electricity.

The model considers the presence of P2P energy transactions, two forms of energy storage (fixed

ESS systems and EVs capable of discharging energy - V2G), distributed generation through PV

installations and the grid’s physical constraints. Moreover, the model is developed as a MILP

optimisation problem. Additionally, the model simulating PV output is briefly presented along

with the key assumptions.



Chapter 4

Case study, results and analysis

In this chapter , three case studies are presented and used to test the validity of the mathematical

model described in Chapter 3. A detailed description of each case is given, and the numerical

results of every case study are presented and discussed. The goal is to analyse the impact of

P2P transactions on the distribution grid while considering its physical restrictions. Hence, we

conducted a study of the different characteristics of each prosumer/consumer and their respective

technologies. Finally, the key conclusions regarding the energy transaction costs, grid congestion

and voltage profiles are summarised.

4.1 System description

The system used to validate the methodology proposed in the previous chapter is based on a

branch of a 119-bus IEEE test grid, depicted in Fig. 4.1, chosen to represent a typically structured

distribution grid, with two branches downstream of a feeder bus. Line data is shown in Appendix

A.1, Table A.1 . Lastly, Table 4.1 indicates each prosumer/consumer’s location in the grid.

Figure 4.1: Used Test grid

27
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Table 4.1: Client’s corresponding bus

Bus Client
Pro_1 w1

Pro_2 w2

Pro_3 w3

School w10

Pro_4 w4

Pro_5 w5

Pro_6 w6

Con_1 w7

Con_2 w8

Con_3 w9

4.2 Case description

The methodology proposed in Chapter 3 has been tested in two different case studies and compared

with a default case, meant to represent the current status of grid operation. Importantly, before

performing any kind of meaningful analysis, one must first understand the differences among the

cases. Therefore, before describing each case in detail let us first enumerate the common aspects.

• Unless specified, client (consumer/prosumer) type is residential by default;

• In cases 1 and 2, both prosumers and consumers have controllable loads and HVAC;

• In the P2P market, prosumers can buy and sell energy (from their PV generation and/or

EV/ESS storage);

• Consumers may only buy energy from the P2P market or the grid, ie, can’t sell to the P2P

market;

With these considerations in mind, as well as the assumptions previously presented in Chapter

3, each case can be described as follows.

4.2.1 Case 0

Case 0 is the benchmark, meant to represent the current status of the distribution grid. There is no

P2P, all clients are consumers and there is no distributed generation or storage. Moreover, the total

demand is lower since flexible loads and HVAC aren’t considered, along with the inefficiencies as-

sociated with the use of energy storage. Table 4.2 summarises this case, individually highlighting

which technologies are present as well as the type of P2P transactions available.
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Table 4.2: Case 0: available technologies and P2P transaction per client

Client Type EV ESS PV P2P
w1 Consumer no no no no

w2 Consumer no no no no

w3 Consumer no no no no

w4 Consumer no no no no

w5 Consumer no no no no

w6 Consumer no no no no

w7 Consumer no no no no

w8 Consumer no no no no

w9 Consumer no no no no

w10
Consumer

(school)
no no no no

4.2.2 Case 1

This case introduces the P2P market structure. There is a mix of residential consumers and pro-

sumers, along with a service prosumer (school). Except for the latter, these users will have similar

load profiles, the consequences of which shall be discussed later. Moreover, residential prosumers

will have similarly sized PV generation and ESS/EV storage capacity, whereas w10 won’t have

EV but will own larger ESS and PV systems. Case 1 is summarised in Table 4.3, but more detailed

data is presented in Table A.2, Appendix A.2.

Table 4.3: Case 1: available technologies and P2P transaction per client

Client Type EV ESS PV P2P
w1 Prosumer yes no yes both

w2 Prosumer no no yes both

w3 Prosumer yes yes yes both

w4 Prosumer yes yes yes both

w5 Prosumer yes yes yes both

w6 Prosumer no yes yes both

w7 Consumer yes no yes buy

w8 Consumer yes no yes buy

w9 Consumer no no yes buy

w10
Prosumer

(school)
no yes yes both
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4.2.3 Case 2

In this case, two residential users (w2 and w9) are now industrial prosumers. This is meant to intro-

duce a greater variety of load profiles, and thus more varied transactional behaviour, and evaluate

their impact on the developed model. Furthermore, it can be inferred that having a monotonous set

load profiles, among all users, due to a lack of user diversification, will discourage P2P transactions

since all users would want to buy and sell power at the same time. Consequently, introducing two

new low-voltage industrial users adds more heterogeneous demand, thus increasing the opportuni-

ties for P2P transactions. A description of this case is shown in Table 4.4, and more comprehensive

data can be found in Table A.3, Appendix A.2.

Table 4.4: Case 2: available technologies and P2P transaction per client

Client Type EV ESS PV P2P
w1 Prosumer yes no yes both

w2
Prosumer

(industrial)
no no yes both

w3 Prosumer yes yes yes both

w4 Prosumer yes yes yes both

w5 Prosumer yes yes yes both

w6 Prosumer no yes yes both

w7 Consumer yes no yes buy

w8 Consumer yes no yes buy

w9
Consumer

(industrial)
no no yes buy

w10
Prosumer

(school)
no yes yes both

4.3 Results and discussion

In this section, the numerical results for all three case studies are presented, compared and dis-

cussed. The goal is to evaluate the impacts that the implementation of a P2P market, distributed

energy resources (DER) and smart grid enabling technologies will have on the system presented

in Section 4.1.

4.3.1 Costs

To review the change in energy costs among the cases, they were compared with each other in

terms of the total costs per user, average cost per unit of energy (case vs. case and consumer vs.

prosumer) and total cost for the community. As seen in Fig. 4.2, the costs decreased for all actors

from Case 0 to Case 1, with a 16.1% reduction in total costs, on average. Regarding Case 2, due
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to w2 and w9 becoming an industrial prosumer and consumer, respectively, their total costs have

increased while all other participants experienced no change. This can be justified by the increased

energy demand of the industrial actors.
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Figure 4.2: Cost comparison between scenarios

In Table 4.5, an increase in the load is visible with every case, which is due to the introduction

of new flexible loads (washing machines, dishwashers, HVAC) that were not previously present, ie,

Case 0’s total load corresponds only to Case 1’s inflexible loads. Furthermore, in Case 2, users w2

and w9 are changed into industrial prosumers which have a higher inflexible demand. However,

the most notable change among the cases is the 22% decrease in the unit cost of energy, which

can be attributed to the presence of PV generation, decreasing the amount of energy that needs to

be acquired, and the deployment of ESS and EV V2G systems, which allow energy to be bought

during periods of lower prices to be consumed throughout periods of higher prices. Additionally,

there was a 16.1% reduction in total costs from Case 0 to Case 1 despite the overall increase in

load.

Finally, as shown in Table 4.6, prosumers have lower overall unit costs of energy than con-

sumers, in Cases 1 and 2 (-2.8%, Case 1; -8.2%, Case 2); however, all users have decreased costs

when compared with the control case. This can be justified by the presence of P2P transactions

despite their relatively small scale because they are fixed and most energy is bought from the grid,

Table 4.5: Total costs per case

Case Total costs (Ccents) Total load (kWh) Average Unit cost (Ccents/kWh)
0 2162.330 763.433 2.832
1 1812.744 822.453 2.204
2 1849.948 838.215 2.207
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which allows prosumers to generate income and partially offset their costs, whereas consumers

are only benefited from a reduction in costs.

Table 4.6: Consumer v prosumer, average unit cost of energy

Average unit cost (Ccents/kWh)
Type Case0 Case1 Case2

Prosumer - 2.198 2.158

Consumer 2.832 2.245 2.334

4.3.2 Energy mix

Here, an analysis of each user’s source of energy is made. The purpose was to discover which

mechanism (storage, PVgen or P2P market) had the greatest contribution and on what grounds.

As previously stated, in Case 0, all energy is purchased from the grid, whereas in Cases 1 and 2,

power may also be procured from PV generation, storage (EV and ESS) or the P2P market.

Figure 4.3 shows each prosumer’s energy mix by source. Most of the consumed energy is

directly provided by the grid (as opposed to indirectly, i.e., through storage), supplying an average

of 72.5% of each prosumer’s energy, followed by PV generation, with about 17%, and storage

(8.5%), and the P2P is responsible for the smallest proportion, only 2%. Moreover, all the energy

discharged by the storage systems (EV+ESS) has been charged from grid power, with most power

traded on the P2P market coming from the community’s storage systems.
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Figure 4.3: Case 1: energy mix by prosumer

Looking globally at the community, Fig. 4.4, shows that it is only responsible for roughly 19%

of its own energy supply. This is due to the relatively small size of the PV installations, which are
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not capable of generating a surplus large enough to be able to charge the storage systems during the

day. Moreover, most of the storage capacity lies in the prosumers’ EVs, which are not connected

to the house, and thus, being unavailable throughout significant parts of the day since they are also

used for transit, which limits their use as storage systems. However, as studied later, the biggest

impact of P2P and DER is not on the overall energy mix, but on the way that demand is distributed

throughout the day.

Aside from analysing the energy mix as a whole, an individual hourly energy mix profile can

also be studied. Figure 4.5 shows prosumer w4’s energy mix profile as well as its total load, on

an hourly basis. Looking at this figure, two periods call for attention: one from 1:00 to 4:00 and a

second from 17:00 to 22:00, where the sum of the input energy, from all sources, is greater than the

total load (minus charging demand). Indeed, only the first event can be explained by the presence

of EV and ESS charging demand. The second period, however, is because of the surplus power

being sold on the P2P market, even though the prosumer is simultaneously purchasing energy

from the grid. Another observation is that the prosumer’s PV generation is complemented by its

ESS system and purchases on the P2P market during the morning to midday demand peak, while

in the evening, demand is mostly covered by the prosumer’s EV discharge. Finally, about 74%

of w4’s energy comes from the grid, and the remaining 26% of power, resultant of smart grid

enabling technologies and largely concentrated during the second half of the day, helps to create a

concentrated period of increased self-sufficiency.
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Figure 4.4: Case 1: community’s energy mix
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Figure 4.5: Case 1: w4 hourly energy mix and total load (excluding EV+ESS charging loads)

4.3.3 Load profiles

In this section, a detailed analysis is made of the load and generation profiles of all users, both

individually and as a whole. The impact of price-sensitive, flexible loads together with PV gener-

ation and the net load of EV and ESS storage is investigated. Furthermore, the consequences of

having different types of users (residential, services, industrial) will also be studied.

The consequences of the introduction of P2P technologies are clearly visible in Fig. 4.6, which

shows the community’s total grid demand profile, per case. Comparing Case 1 with Case 0, the

daytime demand peak at 13:00 has been reduced by 45.5% while the evening peak at 19:00 has

been reduced by 42.9% . Moreover, grid demand on both Cases 1 and 2 is smaller from roughly

7:00 to 23:00 when compared with the base case.

However, a new peak has been created for Case 2 at 1:00, about 200% larger than the previous

demand (Case 0 to Case 1), which is entirely due to ESS and EV charging demand, where the latter

can only be charged or discharged when the vehicle is at home. This time constraint leads to high

charging loads during the night-time since it’s the only opportunity where the EV can replenish the

energy discharged during transit and V2G operation, where prices are low and it doesn’t have to

output power to the house or the P2P market. This is also a great example of the avalanche effect,

where new load valleys and peaks are created because of the large-scale presence of price-sensitive

loads.
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Figure 4.6: Total community grid demand per case

Fig. 4.7 displays the net load of the community’s DER. It explains the differences in grid

demand from Case 0 (with no DER) to Case 1. The charging of energy storage systems creates a

large load during the early morning hours while, together with PV generation, providing a base-

load power supply during day and evening times. As discussed later, the evening supply of stored

power will be largely traded in the P2P market.

Moreover, one can see that charging of storage systems only happens during the early morning

hours. This can be explained by the fact that prices at this time are the lowest while PV generation

isn’t large enough to provide a storable surplus during the day. Indeed, due to the overall small size

of PV installations, the only prosumer to produce excess power is w10, whose surplus is entirely

absorbed by other prosumers and consumers through the P2P market, without necessitating energy

storage. Concerning photovoltaic generation, shown in Fig. 4.8, peak output is achieved at 13:00.

Each prosumer has an installed capacity of 2 kWp, excluding w10, who has 6kWp.

In this work, the community’s total demand was also analysed, including the community’s to-

tal load without EV and ESS charging demand, i.e., only the sum of inflexible loads, controllable

loads and HVAC, which are shown by user (Fig. 4.9) and by load type (Fig. 4.10). The commu-

nity’s load profile is largely set by inflexible loads which comprise 92.9% of total demand, and is

characterised by two major load peaks, one at around midday and another during the evening.
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Figure 4.7: Case 1: community’s usage of the distributed energy resources
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Figure 4.8: Case 1: PV generation
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Figure 4.9: Case 1: community’s total and individual load profiles, excluding EV and ESS chang-
ing loads
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Figure 4.10: Case 1: community’s demand profile by load type, excluding EV and ESS changing
loads

Finally, we can compare the load profiles of different types of users, namely residential pro-

sumers, industrial prosumers and schools, as shown in Fig. 4.11.Case 1’s w2 prosumer is charac-

terised by two load peaks, 6:00 to 9:00 and 17:00 to 21:00, which correspond to the time when a

full-time worker is at home and awake.
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Figure 4.11: Different types of load profiles

However, Case 1’s w9 has its peak load from 11:00 to 13:00. For the remaining users, their

periods of peak load largely coincide with working hours because they are industrial/ services

prosumers. Lastly, having different types of users and consequently different load profiles in a

P2P market environment is useful in the sense that not everyone will have peak power demand or

surplus at the same time, which allows for better energy sharing through trade.

4.3.4 P2P market transactions

In this section the transactional activity in the P2P market is studied, the major trading periods are

identified as well as the source and destination of traded energy, namely which users and systems

(PV, ESS, EV) provide power.

Figure 4.12 shows the hourly P2P market activity. Market transactions are concentrated around

two periods of the day: one smaller midday period from 8:00 to 14:00, with a peak at 13:00 hours,

and a larger evening period from 15:00 to 24:00, peaking at 18:00. These largely correspond

to the two load peaks seen in Fig. 4.9. However, the first period sees a significantly smaller

trading volume because PV generation is the highest, and thus, a consumer/prosumer’s need for

"imported" energy is lower. The opposite is true for the second, evening period, which involves

almost no solar generation. Consequently, since prosumers can’t produce their own energy, they

must buy it, which results in a greater trading volume. Notably, the energy being sold during the

evening is almost entirely supplied by the storage systems, either ESS or EV.
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Figure 4.12: Case 1: Summary of P2P transactions (sold - positive axis; bought - negative axis)

Finally, the price tends to follow demand, with peaks at 12:00 and 19:00, with the midday

period having lower prices. This is, once more, due to the presence of PV generation at this time,

which reduces the demand for "imported" energy, and thus price.

Figure 4.13 and Table 4.7 indicate P2P market transactions depending on the source and des-

tination user. Prosumers w1, w2 and w6 together with consumers w7, w8 and w9 only bought

energy, whereas prosumer w4 was the only market participant to buy and sell power, with the rest

only selling. Prosumer w10, the school, was responsible for 45% of the total energy sold, largely

due to the larger capacity of its PV and ESS systems.

Table 4.7: Case 1: P2P market transactions (in kWh) by source/destination

From/to w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 Total sold
w1 \ 0

w2 \ 0

w3 0.4 \ 0.40

w4 \ 5.29 5.29

w5 0.97 \ 2.69 3.66

w6 \ 0.00

w7 \ 0.00

w8 \ 0.00

w9 \ 0.00

w10 2.03 2.35 1.77 1.65 \ 7.80

Total bought 0.4 0.97 0 2.03 0 7.98 2.35 1.77 1.65 0 17.15
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Figure 4.13: Case 1: P2P market transactions

Concerning Case 2, simulations have resulted in a very similar outcome and, as such, the same

principles apply as in Case 1.

4.3.5 Congestion and voltage quality

Finally, the last analysis was conducted on the congestion of each line and the voltage deviation

in each bus where the different cases were compared.

Figure 4.14 displays the load through each line for all three cases, while Table 4.8 does the

same but for the capacity factor as well, showing the variation among the cases. In Case 0, 6 of

the 10 lines were overloaded with an average capacity factor of 1.13 across all lines, whereas there

were only 1 and 2 lines overloaded in Cases 1 and 2, respectively. There was a 15.37% decrease

in line capacity factor from Case 0 to Case 1, with the most notable improvements being on

lines 4 and 7. This is due to the presence of distributed generation, which decreased the amount of

energy that has to be imported, coupled with smart grid facilitating technologies (like p2p, demand

response and storage), which allow the community to waste less of their distributed generation that

would otherwise be lost to the mismatch between demand and supply.
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Figure 4.14: Line congestion

As previously stated, the difference between Cases 1 and 2 is the presence of industrial players,

w2 and w9, which are characterised by higher energy demand. This results in a slight increase in

the capacity factor of those lines that are directly upstream from them.

Fig. 4.15 shows the voltage profiles across the different cases. Predictably, in all cases, voltage

drops more when nodes are farther away from the feeder bus. Consequently, the most downstream

bus, w6, presents the greatest voltage drop. However, with the introduction of Case 1 to the grid,

there was a remarkable improvement in voltage quality across all buses, with the biggest benefits,

in absolute terms, occurring in buses w4 to w6. Moreover, there was an average improvement of

37.19% in voltage quality from Case 0 to Case 1.

Table 4.8: Line capacity factor across all cases

Line
Capacity factor (%) % change from previous case

Case 0 Case 1 Case 2 Case 0 to 1 Case 1 to 2
line1 108.47 92.27 96.88 -14.93 5

line2 98.54 98.54 103.46 0 5

line3 117.02 97.02 97.02 -17.09 0

line4 157.45 97.45 97.45 -38.11 0

line5 86.71 86.71 86.71 0 0

line6 86.71 86.71 86.71 0 0

line7 175.64 95.64 95.64 -45.55 0

line8 100.63 100.63 105.66 0 5

line9 100.63 80.63 84.66 -19.88 5

line10 99.48 81.48 85.55 -18.10 5

Average 113.13 91.71 93.97 -15.37 2.5
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Figure 4.15: Voltage profiles

Table 4.9: Percentage change in voltage profiles across all cases

% change from previous case
Prosumer (bus) Case 0 to 1 Case 1 to 2

w1 37.06 0

w2 22.01 -21

w3 27.15 0

w4 40.20 0

w5 41.74 0

w6 44.65 0

w7 38.22 0

w8 40.53 -10

w9 45.82 -10

w10 34.51 -10

Average 37.19 -5.10

In Case 2, once more there was a worsening of performance on the buses directly upstream

of w9 and w2, again due to their increased load. Despite the greater load, voltage deviations

in Case 2 were still smaller than in Case 0. Thus, based on the results, it can be concluded

that the deployment of smart grid technologies, including P2P transactions, has generally led to

improvements in the congestion and voltage profiles.

Finally, while it wasn’t the case in the case studies analysed in this work, an argument could

be made that excess PV output might lead to greater congestion. For example, in a radial net-

work where one branch is mainly exporting energy to another mostly importing branch, through



4.4 Chapter summary 43

P2P transactions, the lines connecting these two branches might become congested. However,

the presence of energy storage can mitigate this effect by absorbing excess PV generation and

distributing throughout the day, thus limiting congestion while avoiding wasting PV power.

4.4 Chapter summary

In this chapter, the system used to simulate the mathematical formulation presented in Chapter 3

is described, together with the three case studies used to validate the model. The first case was

meant to be a benchmark that represents current distribution grid operation, i.e., without a P2P

market and distributed energy resources, while the other two cases introduced these technologies

to the grid, along with a different combination of user types.

Then, the numerical results were presented, analysed and compared among the cases in terms

of costs (community total, user total, user average cost per unit of energy and average cost per unit

of energy of consumers vs prosumers), energy mix (for individual users and for the community

as a whole), demand and supply profiles, and grid congestion and voltage quality. Briefly, the

main conclusions were that: costs were lower for all users after introducing Case 1 conditions,

with prosumers having lower energy costs per kWh than consumers on average; the main two load

peaks (as seen from the grid) were significantly reduced thanks to the deployment of PV generation

and storage systems; however, the charging demand of the storage systems created an entirely new

demand peak; P2P market transactions were concentrated around the previously mentioned pair of

demand peaks, contributing to their decrease; and congestion and voltage quality were improved

with the presence of P2P transactions.
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Chapter 5

Conclusion and future work

In this chapter, the main conclusions of this dissertation are presented, as well as a summary of

the work. Furthermore, several ideas for future works are proposed to advance the study of the

impact of P2P markets on the distribution grid.

5.1 Conclusion

In this dissertation, a stochastic MILP model was developed that is capable of simulating the

operation of a distribution grid with smart grid technologies and P2P transactions, which takes

into account the grid’s physical restrictions and aims to minimise the users’ total costs. This model

was used to simulate three case studies that represented different load and generation scenarios

based on several mixes of prosumer and consumer types. The numerical results were obtained by

applying the developed mathematical formulation on an adapted branch of a 119-bus IEEE test

grid with 10 users. Consequently, the analysis of the three case studies resulted in the following

conclusions:

• In terms of costs, the total cost was reduced on a collective basis since the energy cost of

every user was lowered. Moreover, it was noted that, while the unit cost of energy was lower

for everyone after the introduction of smart grid enabling technologies and P2P transactions,

prosumers paid less per kWh on average than consumers.

• Regarding the community’s overall load profile, the two major demand peaks that were

initially present were significantly reduced after the introduction of smart grid enabling

technologies and P2P transactions. However, a new load peak was created after introducing

the charging demand of the ESSs and EVs.

• Transactions on the P2P market were concentrated during the demand peaks, contributing

to their reduction.

• Finally, after introducing the smart grid enabling technologies and P2P transactions, the

voltage profiles and grid congestion were both improved.

45
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In conclusion, this work has highlighted the benefits of introducing smart grid enabling tech-

nologies, such as distributed generation and storage, together with P2P transactions, which provide

both technical and economic benefits to the distribution grid and its users.

5.2 Future works

Possible future works on this topic involve:

• Extending the analysis beyond a one-year period.

• Including more case studies, such as not allowing storage systems to charge from the grid,

and considering larger PV systems and using P2P transactions as an alternative to energy

storage.

• Increasing the scale of the controllable loads as a percentage of total load and investigating

their effects on congestion and voltage profiles.



Appendix A

System data and results

A.1 System data

Table A.1: Line data

Line From bus To bus R(Ω) X(Ω) Line capacity (MVA)
1 Substation Pro_1 0,0625 0,0265 1,2

2 Pro_1 Pro_2 0,1501 0,234 0,8

3 Pro_2 Pro_3 0,1347 0,0888 0,5

4 Pro_3 School 0,2307 0,1203 0,5

5 School Pro_4 0,447 0,1608 0,5

6 Pro_4 Pro_5 0,1632 0,0588 0,5

7 Pro_5 Pro_6 0,33 0,099 0,5

8 Pro_1 Con_1 0,1501 0,234 0,5

9 Con_1 Con_2 0,1347 0,0888 0,5

10 Con_2 Con_3 0,2307 0,1203 0,5

A.2 Case data

Table A.2: Case 1: detailed user data

Client Bus Type
EV ESS PV capacity

(kWp)
P2P?

Capacity (kWh)
Max charging/

discharging rate (kW)
Capacity (kWh)

Max charging/
discharging rate (kW)

w1 Pro_1 Prosumer 16 3.3 2 both

w2 Pro_2 Prosumer 2 both

w3 Pro_3 Prosumer 24 7.2 4 0.6 2 both

w4 Pro_4 Prosumer 22 6.6 3 0.6 2 both

w5 Pro_5 Prosumer 16 3.3 3 0.6 2 both

w6 Pro_6 Prosumer 3 0.6 2 both

w7 Con_1 Consumer 24 7.2 2 buy

w8 Con_2 Consumer 24 7.2 2 buy

w9 Con_3 Consumer 2 buy

w10 School Prosumer (school) 9 1.8 6 both
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Table A.3: Case 2: detailed user data

Client Bus Type
EV ESS PV capacity

(kWp)
P2P?

Capacity (kWh)
Max charging/

discharging rate (kW)
Capacity (kWh)

Max charging/
discharging rate (kW)

w1 Pro_1 Prosumer 16 3.3 2 both

w2 Pro_2
Prosumer

(industrial)
4 both

w3 Pro_3 Prosumer 24 7.2 4 0.6 2 both

w4 Pro_4 Prosumer 22 6.6 3 0.6 2 both

w5 Pro_5 Prosumer 16 3.3 3 0.6 2 both

w6 Pro_6 Prosumer 3 0.6 2 both

w7 Con_1 Consumer 24 7.2 2 buy

w8 Con_2 Consumer 24 7.2 2 buy

w9 Con_3
Consumer

(industrial)
4 buy

w10 School Prosumer (school) 9 1.8 6 both
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