
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Deploy-Oriented Specification of Cloud
Native Applications

André Gomes

Master in Informatics Engineering and Computing

Supervisor: Prof. Jácome Cunha

Co-Supervisors: Hugo Sousa & David Mota

July 20, 2023

Deploy-Oriented Specification of Cloud Native
Applications

André Gomes

Master in Informatics Engineering and Computing

Approved in oral examination by the committee:

President: Prof. Nuno Macedo
Referee: Prof. Nuno Laranjeiro

July 20, 2023

Abstract

This dissertation, conducted within the context of DevScope, aimed to address internal perfor-
mance issues by developing an Internal Developer Platform (IDP). The research comprehensively
analyzed the background concepts necessary for understanding and building an IDP. This included
an in-depth study of the state of the art to understand current solutions, their implementation, and
the tools related to different parts of an IDP. A key aspect of an IDP is defining a standard for
applications. Therefore, a case study was conducted to determine the suitability of our chosen
standard for DevScope. As a result of this research, two tools were developed. The first is a
’job’ that gathers app definition files from multiple repositories and deploys the apps they define.
The second, the Canaveral CLI, creates definition files according to the chosen standard for De-
vScope’s projects. The Canaveral CLI tool was evaluated for usability, yielding mostly positive
results and indicating improvement areas. This research serves as an introduction to the emerg-
ing field of Platform Engineering, providing an initial attempt to apply these new practices in a
real-world scenario. It offers a foundation for future development in this area, contributing to the
evolution of software engineering practices to support developers and improve performance within
the company.

Keywords: Standard, Platform Engineering, Internal Developer Platform, IDP, DevOps
ACM Classification: Software and its engineering → Software notations and tools → System

description languages → Architecture description languages

i

Resumo

Esta dissertação, realizada no contexto da DevScope, teve como objetivo abordar questões de de-
sempenho interno através do desenvolvimento de uma Internal Developer Platform (IDP). A in-
vestigação analisou exaustivamente os conceitos de base necessários para compreender e construir
uma IDP. Isto incluiu um estudo aprofundado do estado da arte para compreender as soluções ac-
tuais, a sua implementação e as ferramentas relacionadas com as diferentes partes de uma IDP. Um
aspeto fundamental de uma IDP é a definição de um standard para as aplicações. Por conseguinte,
foi efectuado um estudo de caso para determinar a adequação do nosso standard escolhido para
DevScope. Como resultado desta investigação, foram desenvolvidas duas ferramentas. A primeira
é um "job" que reúne ficheiros de definição de aplicações de vários repositórios e implementa as
aplicações que definem. A segunda, o Canaveral CLI, cria ficheiros de definição de acordo com o
standard escolhido para os projectos da DevScope. A ferramenta Canaveral CLI foi avaliada em
termos de usabilidade, com resultados maioritariamente positivos e indicando áreas de melhoria.
Esta investigação serve de introdução ao campo emergente da Engenharia de Plataformas, propor-
cionando uma tentativa inicial de aplicar estas novas práticas num cenário real. Oferece uma base
para o desenvolvimento futuro nesta área, contribuindo para a evolução das práticas de engenharia
de software para apoiar os programadores e melhorar o desempenho dentro da empresa.

Palavras-chave: Standard, Engenharia de Plataformas, Internal Developer Platform, IDP, De-
vOps

Classificação ACM: Software and its engineering → Software notations and tools → System
description languages → Architecture description languages

ii

Acknowledgements

First and foremost, I extend my deepest gratitude to DevScope for allowing me to undertake this
dissertation work with their team. My sincere appreciation goes to David Mota, the Academy
Manager, whose everyday guidance significantly shaped my research trajectory. His mentorship
went beyond professional advice, empowering me with the tools to forge my path forward. A spe-
cial thanks to Hugo Sousa, the Tech Lead of the DevOps team, whose brilliance and dedication are
unparalleled. His ability to brainstorm a myriad of solutions when I felt stuck was truly instrumen-
tal in propelling this research to its completion. I would also like to acknowledge the contributions
of José António Silva, Director of R&D, who made this project feasible by supporting the pursuit
of this theme. His vote of confidence was integral to the initiation and progression of this study.

I am immensely grateful to my coordinator, Professor Jácome Cunha, for his unwavering
support since the inception of this project. His courage to delve into this theme when others
hesitated and his constructive criticism guided me on how to navigate the complexities of this
research.

To my girlfriend and partner in crime, Adriana, thank you for being my pillar of strength. Your
patience in listening to my daily frustrations, your commitment to working alongside me despite
the challenges of your own bachelor’s work, and the difficulties of maintaining a long-distance
relationship are a testament to your resilience and love.

Bidón, Seixas, Mariana, Svet, Tété, Kebab, Rita and António, to my friends who have been
with me throughout this five-year journey, your support has been indispensable. The challenges
we have weathered together and the mutual assistance we have provided each other have been
pivotal in shaping my academic experience. My thanks also goes out to all others that were my
collegues and were beside me on my jorney, since the first days sitting beside me in "queijos" to
crying alongside me in the last Serenata.

In the realm of personal gratitude, I owe much to my family. More specifically, to my sister,
who has been an enduring source of inspiration. Her selfless dedication to my well-being, often
prioritizing my needs above her own, exemplifies the spirit of familial love and has been a beacon
during challenging times.

Lastly, my heartfelt thanks go out to Bia, Luís, Ricardo, Hugo, Magá and Caju, as well as
my other friends from my hometown, Famalicão. A big thanks to my Erasmus friends, that gave
me an incredible six months with them, and more specifically to Guida, Camila, Diogo and Dara,
that were my portuguese comfort in far away lands. Clara comes after, because I had no idea how
much I would get to know her and become close to her. In six months, going from acquaintances
to spending the days together was a fountain of joy.

This work is a testament to the combined efforts of all mentioned above and many more who
have contributed to this journey, knowingly or unknowingly. My deepest thanks to you all.

André Gomes

iii

“Outside of a dog, a book is man’s best friend.
Inside of a dog it’s too dark to read.”

Groucho Marx

iv

Contents

1 Introduction 1
1.1 Context . 1
1.2 Motivation . 2
1.3 Problem . 3
1.4 Solution Perspective . 3
1.5 Document Structure . 4

2 Background 5
2.1 DevOps . 6

2.1.1 Benefits, Impact, Challenges, and Best Practices 6
2.1.2 Case Studies and Success Stories . 7
2.1.3 Conclusion . 8

2.2 Platform Engineering . 8
2.2.1 Principles of Platform Engineering . 9
2.2.2 When is Platform Engineering Applicable? 10

2.3 IDP . 11
2.3.1 Dynamic Configuration Management 11
2.3.2 Standardization by Design . 12
2.3.3 Foundations . 12
2.3.4 Pain Points Solved by IDP . 13
2.3.5 Parts of an IDP . 14
2.3.6 Building an IDP . 15
2.3.7 Benefits of an IDP with Platform Orchestrator 16

2.4 DevEx . 17
2.4.1 Internal Developer Platforms and DevEx 18

2.5 Team Topologies . 18
2.5.1 Overview of the Book . 18
2.5.2 The Four Team Topologies . 18
2.5.3 The Platform Team in Detail . 19
2.5.4 Relation to Platform Engineering and Internal Developer Platform 19

3 State of the Art 20
3.1 Standards . 21

3.1.1 OAM . 22
3.1.2 Score . 23
3.1.3 Comparison . 24

3.2 Platform Orchestrator . 24
3.2.1 Backstage . 25

v

CONTENTS vi

3.2.2 Port . 26
3.2.3 KubeVela . 27
3.2.4 Crossplane . 28
3.2.5 Humanitec’s Platform Orchestrator . 29

4 Case Study 31
4.1 eShopOnContainers . 32

4.1.1 Architecture . 32
4.1.2 Deployment Options and Requirements 32
4.1.3 Integration with OAM . 34

5 Implemented Tools for Aiding Developers Adopting OAM 35
5.1 Cataloguer . 35
5.2 Canaveral CLI . 36

5.2.1 Requirements Elicitation . 37
5.2.2 The default Command . 39
5.2.3 The merge Command . 39
5.2.4 The definitions Command . 40
5.2.5 The create Command . 41

6 Validation 42
6.1 Design . 42

6.1.1 Lab . 42
6.1.2 Tasks . 43
6.1.3 Evaluation . 43

6.2 Results . 45
6.3 Discussion . 46
6.4 Threats to Validity . 49

7 Conclusion 52
7.1 Future Work . 52

Bibliography 54

Webography 56

A Listings 59

List of Figures

4.1 eShopOnContainers reference application development architecture 33

5.1 Cataloguer’s flow chart . 36

vii

List of Tables

3.1 Comparison between Open Application Model and Score 25

6.1 Respondents information, including company role and total time taken 45
6.2 Time taken to answer each lab question and average time per question 46
6.3 NASA-TLX subscale evaluation results . 46
6.4 NASA-TLX pairwise comparison results . 47
6.5 NASA-TLX subscales weighted ratings and final rating 47
6.6 SUS scores per statement and final score . 48

viii

Listings

A.1 Default OAM file . 59
A.2 eShopOnContainers OAM file . 60

ix

x

ABBREVIATIONS AND SYMBOLS xi

Abbreviations and Symbols

ACK Alibaba Cloud Container Service for Kubernetes
ACR Azure Container Registry
AI Artificial Intelligence
AKS Azure Kubernetes Service
API Application Programming Interface
AWS Amazon Web Services
BI Business Intelligence
CAMEL Cloud Application Modelling and Execution Language
CD Continuous Deployment
CI Continuous Integration
CLI Command Line Interface
CQRS Command Query Responsibility Segregation
CRUD Create Read Update Delete
CUE Configure Unify Execute
DDD Domain-Driven Design
DORA DevOps Research and Assessment
Dev Development
DevEx/DX Developer Experience
GCP Google Cloud Platform
HTTP HyperText Transfer Protocol
IDL Infrastructure Definition Language
IDP Internal Developer Platform
IaC Infrastructure as Code
IoT Internet of Things
JSON JavaScript Object Notation
LDAP Lightweight Directory Access Control
NASA-TLX NASA Task Load Index
OAM Open Application Model
Ops Operation
PaaS Platform as a Service
RAM Random Access Memory
RBAC Role-Based Access Control
RQ Research Question
R&D Research and Development
SSH Secure SHell
SUS System Usability Scale
TOSCA Topology and Orchestration Specification for Cloud Applications
UI User Interface
UWP Universal Windows Platform
VM Virtual Machine

Chapter 1

Introduction

No longer is it enough just to deliver a product to the hands of the consumer and consider the

job done. The current software development landscape, particularly in the context of cloud tech-

nologies, is constantly changing and evolving. This includes the rise of multi-cloud deployment

environments, adding a new layer of complexity that needs careful management. The need is not

only to keep up with the latest trends and technologies but also to understand and navigate the

increasingly complex terrain of cloud-based solutions. With the vast array of services and tech-

nologies available, from serverless computing to data analytics and machine learning tools, staying

updated and making the right choices have become complex tasks. This is a problem faced by ev-

ery company with a software development team, especially those leveraging or planning to shift

to the cloud, or even more challenging, to multi-cloud environments. It is a challenge that is not

easily solved and demands a strategic approach, continuous learning, and adaptation.

There is a need to find a way to streamline the process of creating new projects and maintain

the ones already in production. Creating a new project should not only be fast but also follow the

best practices and standards that a company defines. Standards provide a way to have a common

ground for all projects, so that there is a common language and a common way of doing things, and

that also serves as a way to connect different services that will use the project, such as monitoring

and logging services.

This is a way to reduce the cognitive load of developers, by not having to learn a new way of

doing things for each new project, facilitate the integration of tools into the project, and work on

the normal but not desired existent division of Developers and Operators so that developers can be

more aware of Operation work and context.

1.1 Context

This work was developed in a company context by working at DevScope1, a Portuguese Microsoft2

partner company based in Porto that provides software solutions to clients in different areas, such

1https://devscope.net/
2https://www.microsoft.com/

1

https://devscope.net/
https://www.microsoft.com/

Introduction 2

as retail, healthcare, or real estate. DevScope focuses on being an early adopter of technology to

quickly gain expertise on new technologies and provide the best solutions to their clients.

The company has around 150 employees and is divided into different teams, each one with

a different focus. The team Analytics and Business Intelligence (BI) is responsible for creating

dashboards and reports that provide insights into the client’s data. The Products team is responsible

for creating products that are then sold to clients. The Portals team is responsible for creating

portals that clients use to manage their data. The DevOps team is responsible for creating the

infrastructure used by the other teams to deploy their solutions and maintain the infrastructure.

The Artificial Intelligence (AI) team is responsible for creating solutions that use AI to provide

insights into the client’s data.

1.2 Motivation

With the various departments and variety of projects, together with a lack of defined standards set

from the start, a performance gap was created inside DevScope. Currently, for the same functions

that are used across projects, different tools are used. For example, there are different code sources

(GitHub3, Azure DevOps4), different deployment processes (Azure DevOps, GitHub Actions5,

Terraform6), and different monitoring services (Azure Monitor7, Grafana8, Prometheus9)

To streamline the process of setting up new projects, we must establish abstraction layers for

the tools and related concepts we frequently use. This approach would standardize tooling across

different projects, allowing for uniformity and ease of use. More importantly, it would enable the

swapping out or updating of underlying tools without disrupting how we use them. This flexibility

is crucial in a rapidly evolving technological landscape as it allows us to adapt to the latest trends

and innovations without altering our workflows. It ensures we can always harness the best of

current technologies without drastically changing how we work with our tools.

The objective is to keep innovating, but not at the cost of relearning everything for each new

project, all while keeping a high level of observability. This means that there is a need to have a

way to know what is the state of a running piece of software to be aware and notified of possible

errors or anomalies.

To achieve this, there is a need for a way to define the intentions of the project, and then have

a way to transform these intentions into configurations that the tools can use. These intentions can

be defined in a document or a set of documents that can be versioned and stored in a repository.

This allows for the possibility of having a way to track the changes that were made to the project,

as well as the possibility of reverting to a previous state of the project.

3https://github.com/
4https://azure.microsoft.com/products/devops
5https://github.com/features/actions
6https://www.terraform.io/
7https://azure.microsoft.com/products/monitor
8https://grafana.com/
9https://prometheus.io/

https://github.com/
https://azure.microsoft.com/products/devops
https://github.com/features/actions
https://www.terraform.io/
https://azure.microsoft.com/products/monitor
https://grafana.com/
https://prometheus.io/

1.3 Problem 3

1.3 Problem

Product teams at DevScope are responsible for developing and maintaining various applications,

ranging from web applications to databases and serverless functions. These applications are de-

ployed to different environments, such as Azure Web Apps10, Azure Kubernetes Service (AKS)11,

and Azure Functions12. When working at this scale and variety of infrastructures, it is imperative

to have a general overview of all parts of the system and be able to drill down into specific parts

to debug or troubleshoot. This seems to be a common problem for any team that works in a dis-

tributed architecture or with many services, where the relationship between services may not be

immediately clear.

The path to abstract tools and environment and to manage them more efficiently, is to define a

standard that can be used across projects. Initial research on this topic was made from the side of

DevScope, which was expanded for this work, and led to choosing one standard to be adopted.

After the decision of choosing the standard to adopt, no internal changes were made, because,

by the definition of the word standard, it is only a standard if it is highly adopted. This indicates

that the standard has not yet been widely adopted. This creates the issue of needing to understand

the standard and how to utilize it, which is a challenge shared by any organization that decides to

embrace the standard.

Thus, three research questions were defined:

RQ1 Which mechanisms can we use to define cloud applications?

RQ2 What is the best mechanism to define cloud applications inside DevScope?

RQ3 How can we lessen the burden of adopting the chosen mechanism?

1.4 Solution Perspective

The perspective of solving the problem presented in this dissertation can be divided into four

distinct stages.

The first step involved an extensive review of existing literature and state-of-the-art practices

related to the specification of cloud applications. This groundwork was crucial to understanding

the challenges and potentials associated with these applications and their management in multi-

cloud environments. From this, we were able to choose an existing standard to be used inside

DevScope.

Following this, the chosen standard was applied in a case study. The goal was to verify its

feasibility in a practical, real-world scenario and understand its capacity to meet the requirements

of being functional in the context of DevScope.

10https://azure.microsoft.com/products/app-service/web
11https://azure.microsoft.com/products/kubernetes-service
12https://azure.microsoft.com/products/functions/

https://azure.microsoft.com/products/app-service/web
https://azure.microsoft.com/products/kubernetes-service
https://azure.microsoft.com/products/functions/

Introduction 4

In the third stage, a tool was designed and implemented to facilitate the adoption of this stan-

dard. The tool aimed to lower the learning curve and make it easier for developers to create

application definitions that comply with the standard.

Finally, we conducted an empirical study where the usability of the implemented tool was as-

sessed. This study was carried out with potential users, yielding satisfactory results and validating

the tool’s usability and practical applicability in a live environment.

Each stage plays a critical role in the dissertation, illuminating the problem, exploring a po-

tential solution, applying the solution in practice, and evaluating its effectiveness. The subsequent

chapters will discuss each stage’s details and outcomes.

1.5 Document Structure

The structure of this thesis is as follows:

• Chapter 1 introduces this work, by explaining the problem tackled and the proposed solu-

tion.

• Chapter 2 provides all the necessary information to understand this work’s setting by ex-

plaining the theoretical pillars of this theme.

• Chapter 3 builds on top of the previous chapter by demonstrating the practical current ap-

plication of the theoretical concepts.

• Chapter 4 presents a case study that aims to validate the usage of the chosen standard inside

DevScope.

• Chapter 5 introduces the tools created to support using the chosen standard inside DevScope.

• Chapter 6 explains the method used to validate the tools created, via a lab experiment sub-

jected to possible future users.

• Chapter 7 concludes this work by summarizing the main contributions and future work.

Chapter 2

Background

This chapter provides an in-depth discussion and clarification of several key concepts and terms

that are integral to the work presented in this thesis. A comprehensive understanding of these

concepts is necessary to fully appreciate the discussions and analyses that follow in the subsequent

chapters.

The concepts covered herein span various fields and topics, including software development

methodologies, cognitive psychology, and organizational structure. Despite their diverse origins,

these concepts are crucially interlinked and collectively form the framework underpinning the

arguments and propositions made in this thesis.

Each concept is explored in detail in its own dedicated section, where its definition, signifi-

cance, and role in the broader context of this work are explained. The concepts presented include:

DevOps This refers to practices combining software development and IT operations. It aims

to shorten the systems development life cycle and provide continuous delivery with high

software quality. The motto "You build it, you run it" encapsulates the philosophy of shared

responsibility (see section 2.1).

Platform Engineering A specialized field of engineering that focuses on creating and maintain-

ing software platforms that serve as the foundation upon which software applications are

built and run. It is a practical application of DevOps principles, providing tools and envi-

ronments that assist developers (see section 2.2).

Internal Developer Platform Known as IDP, this is a platform that provides a suite of tools,

environments, and resources that developers need to build, test, and deploy software effi-

ciently. It encapsulates the principles of self-service and DevOps, promoting independence

and productivity among developers. Platform Engineering provides the best practices for

building an IDP (see section 2.3).

Dynamic Configuration Management A system where workloads are configured dynamically

based on the environment, context, and resource definitions. Developers provide workload

specifications, and the platform handles environment-specific configurations, ensuring con-

sistency across all environments (see section 2.3.1).

5

Background 6

Standardization By Design Process where a developer or platform engineering team creates a

resource definition for a not-yet-standardized resource. This new definition can then be

used to create workload specifications for other workloads using the same resource. This

process is repeated until all resources are standardized, promoting consistency and reuse of

resources across the team or organization (see section 2.3.2).

Developer Experience Often abbreviated as DX, this concept encompasses a developer’s total

experience while using a specific product, system, or service. It includes considerations

such as usability, performance, documentation quality, and the level of support available

(see section 2.4).

Team Topologies This term refers to the organizational structure of teams within a company.

How teams are organized can significantly impact communication, collaboration, and the

overall effectiveness of an organization (see section 2.5).

2.1 DevOps

DevOps is a software development methodology that emphasizes collaboration and integration

between development (Dev) and operations (Ops) teams [9]. It aims to streamline the entire soft-

ware development life cycle, from planning and development to deployment and maintenance.

DevOps focuses on breaking down silos, improving communication, and fostering a culture of

shared responsibility among team members.

The adoption of DevOps practices has become increasingly crucial in today’s fast-paced and

competitive software industry. DevOps addresses the traditional challenges organizations face,

such as lengthy release cycles, an inadequate collaboration between teams, and a lack of alignment

between development and operations.

By recognizing the importance of DevOps and understanding its benefits, organizations can

effectively leverage this methodology to improve their software development processes. The sub-

sequent sections will delve deeper into DevOps’s principles, culture, tools, and application, specif-

ically focusing on its relevance to cloud-native applications.

2.1.1 Benefits, Impact, Challenges, and Best Practices

DevOps, characterized by its transformative impact and array of benefits, promotes improved soft-

ware development, operations, and overall organizational efficiency. Simultaneously, its adoption

also presents challenges requiring strategic handling through effective best practices [12].

Key advantages of DevOps include faster time-to-market, enhanced collaboration, improved

software quality, and increased operational efficiency. DevOps provides the capability for organi-

zations to deliver high-quality software rapidly through automated and streamlined development

processes. The practices, such as infrastructure as code (IaC) and containerization, offer scalability

and flexibility in managing software systems.

2.1 DevOps 7

DevOps also encourages a culture of continuous learning, shared responsibility, and enhanced

communication, breaking down traditional silos between development and operations teams. This

significantly contributes to business agility, fostering innovation, and growth.

However, integrating DevOps methodologies often meets resistance due to established cul-

tural norms, legacy systems, and technical debt. The key to a smoother transition lies in fostering

trust and transparency, and gradually modernizing systems while prioritizing technical debt re-

duction. Standardization and comprehensive documentation are crucial to avoid inconsistencies

and collaboration difficulties. Toolchain complexity, security, and compliance concerns must be

addressed proactively by carefully selecting and integrating tools and implementing security prac-

tices throughout the software development life cycle [13].

To ensure successful DevOps implementation, organizations should adopt an iterative ap-

proach aligned with Agile principles, promote continuous learning, and establish feedback mech-

anisms [40]. By addressing these challenges, refining their practices to their specific context, and

leveraging continuous improvement, organizations can harness the full potential of DevOps.

2.1.2 Case Studies and Success Stories

Numerous organizations have successfully implemented DevOps practices and witnessed transfor-

mative outcomes in their software delivery processes. This section presents selected case studies

and success stories that highlight the benefits and impact of DevOps in real-world scenarios.

Case Study: Netflix [17]
Netflix, a global streaming service, is renowned for its DevOps adoption and continuous

innovation. Netflix transformed its software delivery processes by embracing a DevOps

culture and leveraging cloud technologies. They automated infrastructure provisioning, im-

plemented a microservices architecture and built a robust Continuous Integration and Con-

tinuous Deployment (CI/CD) pipeline. As a result, Netflix achieved faster time-to-market,

improved system reliability, and the ability to rapidly scale its services to millions of users

worldwide.

Case Study: Amazon [16]
Amazon, one of the world’s largest e-commerce companies, implemented DevOps prac-

tices to drive innovation and agility in its software development. By adopting a culture of

experimentation, automated testing, and continuous delivery, Amazon accelerated the de-

ployment of new features and services. This allowed them to quickly adapt to customer

demands and gain a competitive edge in the market. Amazon’s success story demonstrates

the transformative impact of DevOps on large-scale enterprise environments.

Success Story: Etsy [18]
Etsy, an online marketplace for handmade and vintage items, embraced DevOps to enhance

its software development and deployment capabilities. Etsy achieved shorter development

cycles and improved code quality by implementing a culture of collaboration, automated

Background 8

testing, and continuous deployment. They leveraged monitoring and observability tools to

detect and resolve issues promptly, ensuring a seamless shopping experience for their users.

Etsy’s success story showcases how DevOps can drive innovation and customer satisfaction

in e-commerce platforms.

Success Story: Target [19]
Target, a leading retail corporation, undertook a DevOps transformation to modernize its

software delivery processes. Target significantly reduced lead times and increased deploy-

ment frequency by adopting Agile methodologies, continuous integration, and infrastruc-

ture automation. This allowed them to respond quickly to market trends and deliver new

features and updates to their customers. Target’s success story exemplifies how DevOps

enables large enterprises to embrace agility and customer-centricity.

These case studies and success stories provide concrete examples of organizations that have

reaped the benefits of DevOps adoption. DevOps has demonstrated its potential to drive efficiency,

agility, and customer satisfaction across various domains, from industry giants to innovative star-

tups.

2.1.3 Conclusion

Beyond being a collection of tools and practices, DevOps signifies a cultural shift promoting

collaboration and shared responsibility across development and operations teams.

Specific DevOps practices such as IaC, containerization, continuous integration, delivery (CI/CD),

and microservices architecture are pivotal in effectively delivering scalable software in cloud en-

vironments. Challenges in adoption, including cultural resistance and legacy systems, were dis-

cussed alongside best practices to address them, such as standardization and prioritizing security.

The tangible benefits of DevOps, evidenced by case studies from organizations like Netflix and

Amazon, highlight its transformative impact on faster delivery, system reliability, and increased

agility.

In conclusion, DevOps catalyzes a paradigm shift, enabling organizations to respond swiftly

to market demands with high-quality software. Embracing DevOps principles allows businesses

to accelerate their digital transformation journey. DevOps adoption will be essential to maintain

competitiveness as the technological landscape continues to evolve.

2.2 Platform Engineering

Platform engineering is the discipline of designing and building toolchains and workflows that

enable self-service capabilities for software engineering organizations in the cloud-native era. It

involves creating internal developer platforms (IDPs) that provide golden paths and paved roads

matching the preferred abstraction level of individual developers [37].

The advent of cloud computing brought significant advancements in scalability, availability,

and operability. However, it also introduced complexity to software setups. Engineers now had

2.2 Platform Engineering 9

to master multiple tools, such as Helm1 charts and Terraform modules, to deploy and test code

changes across complex, multi-cluster microservice environments.

Organizations embraced DevOps practices to bridge the gap between development and op-

erations and address the challenges of increasing complexity. However, achieving a successful

DevOps transformation was unrealistic for many companies due to resource constraints and a lack

of necessary expertise [14].

Organizations began establishing internal platform teams responsible for building IDPs to em-

power developers and enhance their productivity in cloud-native environments. These IDPs allow

developers to choose the right level of abstraction for running their applications and services,

reducing their reliance on senior colleagues for assistance.

Platform engineering is not limited to a specific cloud provider or technology stack. It is an

approach that focuses on designing and implementing the necessary infrastructure components,

services, and tools to support the deployment and management of cloud-native applications across

various environments. It encompasses decisions related to infrastructure provisioning, container-

ization, networking, monitoring, and CI/CD pipelines.

Platform engineering and the implementation of IDPs bring numerous benefits to organiza-

tions. They empower developers, simplify infrastructure management, and enhance collaboration,

ultimately leading to faster innovation and improved efficiency.

Within DevScope, there is one team that supports the deployment and management of cloud-

native applications, and with the rise of the popularity of Platform Engineering, the initial planning

phases of what could be an IDP started. Inside the DevOps team, a subteam was created to further

investigate and develop the planning of this new tool.

2.2.1 Principles of Platform Engineering

Platform engineering is guided by a set of principles that help shape the development and oper-

ation of internal platforms. These principles ensure that the platform is effective, user-centric,

and provides a seamless experience for developers [28]. Here are the key principles of platform

engineering:

Clear Mission and Role
A clear mission statement is essential for platform engineering. It helps keep the develop-

ment of the internal platform focused and aligned with organizational goals. Additionally,

the platform team must have a distinct role to avoid becoming just another operations team

that deals with ad hoc issues. By having a clear mission and role, the platform team can es-

tablish a strategic direction and prioritize initiatives that enhance the developer experience.

Treat the Platform as a Product
Platform engineering requires adopting a product mindset. The team responsible for devel-

oping the platform should treat it as a product and apply product management principles.

1https://helm.sh/

https://helm.sh/

Background 10

This includes making incremental upgrades to the platform based on user feedback, treat-

ing developers as clients, and actively seeking their input. By treating the platform as a

product, platform engineers can iterate and improve the platform’s features, usability, and

performance over time.

Focus on Common Problems
Identifying and addressing common problems is a key principle of platform engineering.

Common problems refer to pain points or friction that developers frequently encounter when

building and deploying applications. Instead of addressing individual issues in isolation,

platform engineers focus on solving common problems faced by multiple developers. This

approach ensures that the platform provides solutions that have a broad impact and improves

the overall developer experience.

Aggregating is Valuable
Although a platform may be perceived as a cost center that does not directly produce out-

comes for clients, its value lies in aggregating services and providing golden paths for de-

velopers. Platform engineering involves gluing together different services and components

to create a cohesive and unified experience for developers. This aggregation simplifies com-

plex tasks, reduces cognitive load, and ensures a smoother experience for developers, ulti-

mately increasing their productivity and efficiency.

Do Not Reinvent the Wheel
Platform engineering emphasizes leveraging existing solutions rather than reinventing the

wheel. Using off-the-shelf components and industry-standard options is preferable instead

of building custom solutions for existing problems. In-house software solutions may lag

behind industry standards and require significant resources to maintain. By adopting estab-

lished technologies and leveraging commercial vendors, platform engineers can focus on

creating the platform itself rather than building every component from scratch.

2.2.2 When is Platform Engineering Applicable?

Platform engineering is not limited to large teams; it can be valuable for teams of varying sizes.

While small teams may find it burdensome and have a lower return on investment, as the team

size surpasses approximately 20 developers, the benefits of platform engineering become more

apparent [14].

Delaying the development and implementation of an IDP can lead to challenges. For example,

relying on a DevOps team or individual for deployments can create dependencies and bottlenecks.

If such a team or individual becomes unavailable, it can disrupt the deployment process. Therefore,

starting the production of an IDP at the right time is crucial to avoid potential hardships and ensure

smooth operations within the development life cycle.

2.3 IDP 11

2.3 Internal Developer Platform

The Internal Developer Platform (IDP) is a comprehensive framework encompassing the various

technologies and tools platform engineering teams employ to create efficient workflows for devel-

opers [24]. The IDP aims to lower cognitive load across the engineering organization and enable

developer self-service without abstracting away context or making the underlying technology in-

accessible. It is important to note that IDPs are not out-of-the-box solutions but are built using

a combination of different tools and technologies, including open-source, proprietary, and self-

developed solutions. Developer portals may be included in an IDP, but they do not constitute the

entirety of the platform.

An important property of an IDP relies on how it configures applications, ensuring proper

functionality and compatibility. This configuration should be dynamic, based on environment and

context. It can be explained based on two key concepts: Dynamic Configuration Management and

Standardization by Design.

2.3.1 Dynamic Configuration Management

Some definitions are used for understanding the concept of Dynamic Configuration Management:

Workload Any program or application that runs on any computer. It can be a single process or a

group of processes that work together to perform a specific task. Today, the terms workload,

application, software, and program are used interchangeably [20].

Workload Specification Structured file that describes everything a workload needs to run suc-

cessfully without environment-specific configuration. It is a declarative description of the

workload’s desired state.

Resource Definition A workload specification is made up of resources that are defined by re-

source definitions. A resource definition is a structured file that describes a single resource,

such as a database, a message queue, or a service.

Dynamic Configuration Management is the process of dynamically configuring workloads

based on the environment, context, and resource definitions [42]. It is meant for developers not to

worry about the environment-specific configuration of their workloads. The platform takes care of

the configuration based on the environment and context. The platform also ensures that the config-

uration is consistent across all environments. Developers create workload specifications, based on

resources defined by their own definitions. The platform then uses these workload specifications

to configure the workloads dynamically.

As the simplest example for a workload specification, a developer can define a workload spec-

ification for a web application that uses a database. The workload specification would contain

two resources, the web application, and the database. The web application would be defined by

a resource definition describing it and its dependencies. The database would be defined by a re-

source definition describing it and its dependencies. The platform would then use these workload

Background 12

specifications to configure the web application and the database dynamically, by creating these

components and their dependencies in the environment.

2.3.2 Standardization by Design

A scenario that happens in the situations described in section 2.3.1 is when no resource definition

exists for a specific resource. In this case, the developer has to create a resource definition for

the resource. The developer can then use this resource definition to create workload specifica-

tions for other workloads that use the same resource and other developers from the same team or

organization. This is the process of standardization by design. The developer creates a resource

definition for a not-yet-standardized resource. The developer then uses this resource definition

to create workload specifications for other workloads that use the same resource. This process is

repeated until all resources are standardized.

This creation of resource definition can be made by the developer, or better, by a set of devel-

opers in charge of developing the IDP. This set of developers is called the platform engineering

team. The platform engineering team is responsible for creating resource definitions for all re-

sources that are not yet standardized. This process is repeated until all resources are standardized

[46].

2.3.3 Foundations

The foundations of an IDP are based on key elements that contribute to its functionality and effec-

tiveness [38]. These foundations include:

• Infrastructure orchestration: The ability to efficiently coordinate and manage infrastruc-

ture resources.

• Application configuration: Configuring applications to ensure proper functionality and

compatibility.

• Deployment management: Managing the deployment of applications and services in a

controlled and automated manner.

• Environment management: Efficiently managing different environments, such as devel-

opment, staging, and production.

• Role-Based Access Control (RBAC): Implementing access control mechanisms to ensure

appropriate permissions and restrictions based on roles within the organization.

Application configuration is the foundation that enables the other elements to function effec-

tively. It is the process of configuring applications to ensure proper functionality and compatibil-

ity. Application configuration is crucial to the IDP, enabling the platform to dynamically configure

applications based on the environment and context, and it is done based on the two concepts ex-

plained above: Dynamic Configuration Management and Standardization by Design.

2.3 IDP 13

2.3.4 Pain Points Solved by IDP

Pain points in a business context refer to the challenges or issues that hinder an organization’s

workflow or efficiency. These obstacles could potentially stymie growth and productivity. An

IDP aims to address such pain points by providing seamless, integrated, and efficient solutions,

tailored to enhance the developers’ productivity and reduce time to market [29]. This section

explores various pain points organizations commonly face, and how an IDP mitigates these to

streamline the overall development process.

Organization
IDPs primarily aim to tackle the pervasive issue of lack of standardization in many develop-

ment environments. Without standardization, environments often fall prey to configuration

drift. Disparate scripts scattered across different teams further complicate this issue. This

lack of a consistent, standardized process is a clear pain point in software development

operations.

Another critical issue that IDPs seek to resolve is the absence of a unified developer expe-

rience. Developers face challenges when moving between teams, products, or individual

features without such consistency. This inconsistency can impede productivity and slow the

overall development process, underlining the need for a solution like IDP.

Finally, performance issues that arise without an IDP constitute a third significant pain point.

These issues can negatively impact an organization’s DevOps Research and Assessment

(DORA) metrics. A decline in these metrics directly signifies a fall in software delivery per-

formance, thereby emphasizing the essential role of IDPs in ensuring operational efficiency

and competitive advantage.

Operations
Repetitive tasks and a lack of automation are common issues experienced in environments

without an IDP. Operations teams frequently find themselves entangled in recurring tasks

that could be streamlined through automation. These repetitive tasks drain valuable time

and resources, resulting in significant inefficiencies and underscoring the need for solutions

like IDPs.

Moreover, without an IDP, operations teams often inadvertently become a bottleneck for de-

velopers. As developers lack self-service capabilities, they must rely heavily on operations

teams to run their required tasks. This dependency can slow down the development process

and hinder the fluid operation of the teams, further emphasizing the utility of an IDP.

The challenge of scalability and maintenance is another significant pain point that IDPs

address. In the absence of an IDP, setting up and maintaining the infrastructure becomes a

daunting task. This challenge becomes even more pronounced as the organization grows,

and its needs for scalability increase. The lack of an effective scaling solution can restrict

growth and hamper productivity, pointing to the necessity of implementing IDPs for smooth

and sustainable growth.

Background 14

Developers
In an environment without an IDP, developers often encounter delays and dependencies due

to a lack of self-service capabilities. This dependency on operations teams for many basic

tasks can slow development and increase project timelines, highlighting the need for IDP-

supported self-service features.

Additionally, the absence of an IDP can force developers to engage with complex toolchains

that lie outside their primary area of expertise. The cognitive load of understanding and man-

aging these tools can detract from their main coding tasks, leading to inefficiencies. With

an IDP in place, such toolchain complexities can be abstracted away, allowing developers

to focus on their coding responsibilities.

Furthermore, poor developer experience is a prevalent issue in environments that do not

leverage IDPs. This unfavorable experience can stem from a lack of documentation, fre-

quent context switching, and limited visibility into the underlying technology and tools.

These factors together can significantly hinder the overall developer experience, emphasiz-

ing the importance of an IDP in providing a conducive and productive working environment

for developers.

2.3.5 Parts of an IDP

Platform teams construct an IDP by integrating various platform tooling. While some compo-

nents, such as CI and registry, are already well-established and developed parts of an IDP, new

components have emerged as crucial parts of the platform [23]. These components include:

• Service Catalogs, Developer Portals, or Platform UIs: These interfaces serve as the entry

point for developers to interact with the IDP and its constituent parts. They provide a cen-

tralized location for developers to discover and access the capabilities of the IDP. Examples

of such interfaces include Backstage2, LeanIX3, and Port4.

• Platform Orchestrator: The platform orchestrator serves as the centerpiece of an IDP and

enables dynamic configuration management. It offers a range of interfaces, such as Appli-

cation Programming Interfaces (APIs), Command Line Interfaces (CLIs), or User Interfaces

(UIs), to facilitate the management and orchestration of workloads. Examples of platform

orchestrators include Humanitec5 and KubeVela6.

• Kubernetes Control Planes: These control planes act as abstraction layers on top of Kuber-

netes7, simplifying its complexity for developers. They provide additional features and func-

tionalities that enhance the developer experience. Examples of Kubernetes control planes

2https://backstage.io/
3https://www.leanix.net/
4https://www.getport.io/
5https://humanitec.com/
6https://kubevela.io/
7https://kubernetes.io/

https://backstage.io/
https://www.leanix.net/
https://www.getport.io/
https://humanitec.com/
https://kubevela.io/
https://kubernetes.io/

2.3 IDP 15

include Crossplane8, Kubermatic9, RedHat OpenShift10, Rafay11, Giantswarm12, Ambas-

sador13, and Okteto14.

• Infrastructure Control Planes: These control planes operate as abstraction layers on top

of IaC tools. They reduce complexity for developers by providing simplified interfaces and

workflows for managing infrastructure resources. Examples of infrastructure control planes

include Terraform Cloud, Atlantis15, and Spacelift16.

These different components work together to form a cohesive IDP, enabling developers to

leverage its capabilities and streamline their development processes.

2.3.6 Building an IDP

Building an IDP involves adopting specific approaches and methodologies to ensure its effective-

ness. Several approaches have been explored[24], including:

UI-First Approach
Taking a UI-first approach to building an IDP is not considered ideal as it abstracts away too

much of the delivery setup and underlying infrastructure. While developer portals serve as

interfaces to the IDP, they alone do not constitute a comprehensive IDP solution.

GitOps Methodology
The GitOps methodology aligns with the code-based workflows of developers. It empha-

sizes using Git as the single source of truth for defining and managing infrastructure and

application configurations. However, GitOps may not scale well, leading to exponential

growth in static configuration files and unstructured manifests.

Static Internal Developer Platform
A static Internal Developer Platform enables developers to deploy updated images from one

stage to another, as long as the underlying infrastructure remains unchanged. While this

approach works for many cases, the configuration files remain static, and manual scripts are

required to manage static environments and infrastructure.

A platform orchestrator serves as a combination of interfaces, such as APIs, CLIs, or UIs,

that enable dynamic configuration management within an IDP. The platform orchestrator follows

a specific pattern:

8https://www.crossplane.io/
9https://www.kubermatic.com/

10https://www.redhat.com/en/technologies/cloud-computing/openshift
11https://rafay.co/
12https://www.giantswarm.io/
13https://www.getambassador.io/
14https://www.okteto.com/
15https://www.runatlantis.io/
16https://spacelift.io/

https://www.crossplane.io/
https://www.kubermatic.com/
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://rafay.co/
https://www.giantswarm.io/
https://www.getambassador.io/
https://www.okteto.com/
https://www.runatlantis.io/
https://spacelift.io/

Background 16

1. Read and interpret workload configuration and context.

2. Match the correct configuration templates and resources.

3. Create application configurations based on the workload specifications.

4. Deploy the workload into the target environment, ensuring its dependencies are properly

wired up.

By adopting a platform orchestrator, the IDP transitions from static configuration files to dy-

namic configurations generated by the orchestrator based on a single source of truth, the workload

specification.

2.3.7 Benefits of an IDP with Platform Orchestrator

The adoption of a platform orchestrator within an IDP brings several benefits and addresses issues

that arise from static setups [22]. These benefits include:

• Standardization by design: The platform orchestrator facilitates differentiation between

environment-agnostic and environment-specific elements, enabling sharing of workload and

infrastructure profiles across different teams and applications.

• Reduced maintenance overhead: Standardization achieved through the platform orches-

trator results in reduced maintenance efforts and documentation requirements for existing

setups.

• Reduced change failure rate by eliminating configuration drift: With workload speci-

fications remaining consistent across environments and resource matching centralized, the

platform orchestrator helps prevent configuration drift and reduces the likelihood of errors

caused by incorrect configurations.

• Leveled abstraction: The platform orchestrator offers high-level interfaces that allow ex-

ploration of workload profiles and infrastructure profiles while maintaining the ability to

move quickly without losing context.

• Reduced cognitive load for developers: The dynamic configuration management provided

by the platform orchestrator reduces the cognitive load on developers, allowing them to

focus more on their coding tasks.

• Increased self-service for developers without added responsibility: Developers gain

more self-service capabilities through the platform orchestrator, enabling them to add com-

ponents easily by declaring them and providing parameterized environment variables. This

eliminates the need for constant communication between developers and operations teams.

2.4 DevEx 17

• Enabling new features and ways of working: The platform orchestrator simplifies the

launching of new environments and provides comprehensive end-to-end audit logs for de-

bugging purposes, offering enhanced features and capabilities within the IDP.

By incorporating a platform orchestrator into an IDP, organizations can unlock the potential for

improved developer productivity, reduced operational bottlenecks, and enhanced overall efficiency

in their software delivery processes.

2.4 Developer Experience

Developer Experience (DevEx) emphasizes the lived experience of developers and the friction

points they encounter in their day-to-day work [15]. It goes beyond productivity, extending into

business performance through efficiency, product quality, and employee retention. A study by

McKinsey in 2020 found that organizations with better work environments for their developers had

revenue growth four to five times greater than their competitors [11]. DevEx is a multifaceted con-

cept encompassing how developers feel about, think about, and value their work. Socio-technical

factors and human factors such as clear project goals and psychological safety in the team influ-

ence it.

Three core dimensions encapsulate the full range of friction types developers encounter: feed-

back loops, cognitive load, and flow state. These emerged from the application of prior research,

providing a practical model for understanding DevEx.

Feedback loops The speed and quality of responses to actions performed by developers are cru-

cial. Shortening feedback loops allows developers to complete their tasks quickly with

minimal friction. Conversely, slow feedback loops interrupt the development process and

lead to frustration and delays. To improve DevEx, organizations should aim to reduce these

delays by optimizing both development tools and human hand-off processes

Cognitive Load This refers to the mental processing required for a developer to perform a task.

When cognitive load is high due to issues such as poorly documented code or systems,

developers need to devote extra time and effort to complete tasks and avoid mistakes. Re-

ducing cognitive load involves eliminating unnecessary hurdles in the development process

and creating well-organized code and documentation. Additionally, providing easy-to-use,

self-service tools can help streamline the steps for development and release

Flow State This is a mental state in which a developer is fully immersed in a task, leading to in-

creased productivity and innovation. Factors that enhance flow state include autonomy over

work structure, clear team and project goals, and engaging in stimulating and challenging

tasks. To improve flow state, disruptions should be minimized and developers should be

given autonomy and opportunities to work on fulfilling challenges

Background 18

2.4.1 Internal Developer Platforms and DevEx

IDPs can play a significant role in improving DevEx. Regarding feedback loops, by providing

faster and more easy ways to provision infrastructure, IDPs can reduce the time it takes to deploy

code, as well as the time it takes to get feedback on the code. The increase in monitoring and

observability also serves to reduce feedback loops, by providing a way for developers to know

more easily when something goes wrong and being able to fix it faster.

IDPs can also help reduce cognitive load by providing self-service tools that are easy to use

and well-documented. By providing a single interface for developers to use, IDPs can also help

reduce the cognitive load of having to learn multiple tools and interfaces.

Finally, IDPs can help improve flow state by providing a platform for developers that provides

autonomy and opportunities to work on fulfilling challenges. By providing a platform that allows

developers to work on the tasks they want to work on, IDPs can help developers achieve flow

state.

2.5 Team Topologies

2.5.1 Overview of the Book

"Team Topologies" by Manuel Pais and Matthew Skelton [10] provides a comprehensive guide

to building and managing effective software teams. The book introduces a unique approach to

organizing and structuring teams for optimizing software delivery. It presents four fundamental

team topologies and three interaction modes that can be used to reduce the cognitive load on teams

and streamline software development processes.

2.5.2 The Four Team Topologies

The book identifies four fundamental team topologies that act as a template for effective organiza-

tion design. These are:

Stream-aligned team These teams are aligned to a single, valuable stream of work, which could

be a product, a service, or a set of features. Their goal is to deliver change to the product

or service as quickly as possible, and they are cross-functional, containing all the skills

necessary to deliver value to the end customer.

Enabling team These teams help the stream-aligned teams overcome obstacles and develop new

capabilities. They have a broad knowledge of software delivery and can assist other teams

in adopting new technologies and practices.

Complicated-subsystem team These teams are responsible for areas of the system that require

deep, specialized knowledge and that can’t be divided among other teams. They work on

the parts of the system that are too complex to be handled by a single stream-aligned team.

2.5 Team Topologies 19

Platform team These teams provide a platform or set of services that are used by the stream-

aligned teams. The platform reduces the cognitive load on the stream-aligned teams by

providing a reliable, easy-to-use service that abstracts away complexities.

2.5.3 The Platform Team in Detail

The Platform team plays a crucial role in the team topology structure. It provides a foundation

of self-service APIs, tools, services, knowledge, and support, which are arranged as a compelling

internal product. Autonomous delivery teams can make use of the platform to deliver product

features at a higher pace, with reduced coordination. The platform team’s value can be measured

by the value of the services they provide to product teams. In large organizations, a platform

is composed of groups of other fundamental team types: stream-aligned, enabling, complicated

subsystem, and platform.

2.5.4 Relation to Platform Engineering and Internal Developer Platform

The concept of the Platform team is closely related to Platform Engineering and the IDP. The

platform provided by the Platform team is essentially an IDP, a self-service setup that allows

developers to access, manage, and utilize software infrastructure. The IDP is designed to reduce

the cognitive load on developers and streamline the development process.

Platform Engineering, on the other hand, is the practice of building, managing, and improving

this platform. It involves creating a platform that is easy to use, reliable, and fit for purpose. The

Platform team, in essence, is a Platform Engineering team, and their product is the IDP. Therefore,

the Platform team topology provides a framework for the creation and management of an IDP.

Chapter 3

State of the Art

This chapter serves as a comprehensive exploration of the state-of-the-art technologies related to

the thesis topic. After introducing the foundational concepts in the previous chapter, the relevant

technologies pertaining to this project are presented, concluding with a summary of the entire

chapter.

Introduction to App Definition Standards To establish a common ground, section 3.1 intro-

duces app definition standards. Specifically, it delves into two key standards: Score1 and Open

Application Model2 (OAM). Score, a widely recognized standard, offers a structured approach

to define, deploy, and manage cloud-native applications. Additionally, OAM provides a speci-

fication for describing application components and their relationships, enabling the creation of

portable and interoperable applications across multiple platforms. Understanding these app defi-

nition standards lays the groundwork for exploring advanced application orchestration techniques

in the subsequent sections.

Introduction to Platform Orchestrators Section 3.2 explores various platform orchestrators

that play a pivotal role in modern software development. These orchestrators offer powerful ca-

pabilities for managing and automating application deployment and life cycle management. The

following platform orchestrators will be discussed in detail:

1. Backstage: An open-source platform developed by Spotify, designed to provide a unified

developer experience and facilitate organizational collaboration.

2. Port: A cloud-native application platform that simplifies the deployment and management of

applications across multiple environments, offering a declarative approach to configuration.

3. Kubevela: A Kubernetes-native platform that enables the composition and deployment of

applications using higher-level abstractions, enhancing developer productivity and simpli-

fying application management.

1https://score.dev/
2https://oam.dev/

20

https://score.dev/
https://oam.dev/

3.1 Standards 21

4. CrossPlane: An open-source Kubernetes add-on that enables the provisioning and managing

of cloud infrastructure resources using Kubernetes APIs, promoting infrastructure-as-code

practices.

5. Humanitec Platform Orchestrator3: A developer-centric platform that streamlines the de-

ployment and management of applications across diverse environments, providing seamless

integration with various tools and services.

Examining these platform orchestrators gives us insights into their capabilities, features, and

potential use cases. This knowledge gives us a broader understanding of the platform orchestration

landscape and sets the stage for proposing innovative solutions in subsequent chapters.

3.1 Standards

A standard in technology and software development is a set of guidelines, rules, or specifications

defining a common design and implementation framework. It may outline protocols, conventions,

and best practices that have been established by consensus within a particular industry or commu-

nity [3].

Standards are fundamental in the software development industry for several reasons. Firstly,

they provide a common ground for developers to build upon, which helps in improving interop-

erability and reducing complexity. They can facilitate communication between different systems

and components by providing a common language that all systems understand. This promotes

consistency, reliability, and efficiency in software development, making it easier for developers to

collaborate, share code, and integrate systems.

However, a set of guidelines or rules can only be considered a standard if it is widely accepted

and used by the community it serves. A standard’s utility is proportional to its acceptance, as a

standard that is not widely adopted fails to provide the benefits of interoperability, predictability,

and consistency that are the hallmarks of a successful standard.

Two such standards have emerged in cloud-native application development: OAM and Score.

These standards exist to simplify and standardize the process of building, deploying, and managing

cloud-native applications. They seek to abstract away the complexities associated with underlying

infrastructure and provide a high-level, declarative model for defining applications. We will delve

into these two standards and compare them in the following sections.

Another two standards were considered, but will not be expanded upon. Topology and Orches-

tration Specification for Cloud Applications (TOSCA) is a standard created in 2013 to describe

service components and their relationships and what is needed to be preserved across deployments

in different environments to enable interoperable deployment of cloud services and their manage-

ment throughout the complete life cycle [6]. Although tools exist that implement this standard, due

to its age and lack of continued improvement and support, it does not look like a viable option for

the more recent landscape of Platform Engineering [39]. The Cloud Application Modelling and

3https://humanitec.com/products/platform-orchestrator

https://humanitec.com/products/platform-orchestrator

State of the Art 22

Execution Language (CAMEL) is a successor of TOSCA, that also allows for the specification of

multiple domains related to multi-cloud applications [7], but as TOSCA, it did not face adoption

and continuous development and also, there does not exist any available tool that implements this

standard.

3.1.1 Open Application Model

The Open Application Model (OAM) [48] is an open standard for defining cloud-native appli-

cations. It offers an application-centric approach, emphasizing the application rather than the

container or orchestrator. OAM enables robust application delivery across various environments,

including Kubernetes, cloud, or Internet of Things (IoT) devices. OAM’s flagship platform is

KubeVela, designed to simplify and expedite the deployment and management of applications

across today’s hybrid, multi-cloud environments.

The model of OAM includes five main entities: Components, Traits, Policies, Workflow, and

Applications.

1. Components: These describe a runnable unit and its description.

2. Traits: Traits are overlays that augment or modify a component with additional operations-

specific features, such as how scaling is performed.

3. Policies: Policies offer a method to apply application-level configuration options that affect

all components.

4. Workflows: Workflows enable developers to define how the application should be deployed,

using individual workflow steps that enable multiple types of actions, from deploying com-

ponents to communicating with other services.

5. Applications: An application assembles a set of component instances, their traits, and the

application scopes in which they are placed, combined with configuration parameters and

metadata.

OAM provides a high degree of extensibility, allowing developers to define their own com-

ponents, traits, and workflow steps better to adapt the usage of OAM to specific use cases. This

extensibility is achieved through the use of the CUE4 (Configure Unify Execute) language, a data

constraint language that allows developers to define the set of properties that are accepted by a

component, trait, or workflow step. This enables developers to define parameters that contain

specific business logic, standards, etc.

OAM is being leveraged by a number of prominent projects and platforms [47] such as KubeVela,

Alibaba Cloud Container Service for Kubernetes5 (ACK), Crossplane, Meshery6, and more. They

4https://cuelang.org/
5https://www.alibabacloud.com/product/kubernetes
6https://meshery.io/

https://cuelang.org/
https://www.alibabacloud.com/product/kubernetes
https://meshery.io/

3.1 Standards 23

provide a managed cloud-native application platform centered on Kubernetes and OAM. Sev-

eral companies, including JD.com7, Bytedance8, and China Merchants Bank9, have successfully

adopted the OAM to simplify the development and deployment of cloud-native applications and

improve their services’ scalability and reliability.

3.1.2 Score

Score is an open-source specification designed to simplify the deployment process for developers

by focusing on a workload-centric approach over an infrastructure-centric approach [45]. This

approach enables developers to define the runtime requirements of their workloads in a platform-

agnostic manner. Score serves as a single source of truth for workload configuration, shields

developers from container orchestration and tooling complexity, and implements a declarative

approach for infrastructure management. Cloud-native developers frequently face configuration

differences between environments. When the technological stack in each setting changes, this

becomes considerably more challenging. If one uses Docker Compose10 for local development

but Helm Charts for Kubernetes-based development, one must learn Docker Compose and Helm

and keep them in sync.

Infrastructure-centric development leads to developers having to stay on top of the tech and

tools of every environment their applications run in. This often results in bottlenecks across the

delivery cycle. Ensuring that a local configuration change is reflected appropriately in a remote

environment and vice versa might be an intricate, multi-stakeholder endeavor.

The primary components of Score are Workloads and Transformers [31].

• Workloads: These are the definitions of the runtime requirements of an application. They

can be considered the application’s blueprint, providing the necessary details such as the

code to run, the runtime environment, and resource requirements.

• Transformers: These are platform-specific agents that interpret the workload specifications

and transform them into configurations the target platform can understand.

Transformers play a crucial role in the implementation of the Score specification. They in-

terpret and convert the workload definitions into a form the target platform can understand. For

example, a transformer can convert a Score workload definition into a Kubernetes Deployment or

a Docker Compose file, depending on the platform where the application is to be deployed. This

ensures that the deployment process remains consistent across different platforms, reducing the

complexity and the possibility of configuration errors.

7https://global.jd.com/
8https://www.bytedance.com/
9https://english.cmbchina.com/

10https://docs.docker.com/compose/

https://global.jd.com/
https://www.bytedance.com/
https://english.cmbchina.com/
https://docs.docker.com/compose/

State of the Art 24

The Score specification is designed to be extensible, allowing developers to create custom

workloads that suit their specific use cases. This can include defining custom resource require-

ments, environment variables, or any other runtime requirements specific to an application. Ad-

ditionally, Score’s transformer-based architecture allows for the creation of custom transformers,

further enhancing its extensibility by supporting new target platforms or specific platform config-

urations.

In sum, Score provides a streamlined and developer-centric approach to application deploy-

ment. By focusing on workload specifications and providing a platform-agnostic, extensible spec-

ification, Score simplifies the deployment process and reduces the chances of configuration errors,

speeding up the software delivery process and improving developer productivity. Advocating for a

workload-centric (over an infra-centric) approach are ways to remove bottlenecks, speed up team

delivery, and bring back joy and flow into developers’ days.

3.1.3 Comparison

OAM and Score are specifications designed to streamline the development and deployment of

cloud-native applications. They both aim to abstract away the complexities of underlying infras-

tructure and enable developers to focus more on application logic. However, they have different

approaches and components [30]. The comparison between the two standards can be seen in table

3.1.

In conclusion, both OAM and Score offer valuable solutions to the challenges of developing

and deploying cloud-native applications, but their differences in focus, components, and approach

may make one more suitable than the other depending on the specific needs and preferences of the

development team [25].

3.2 Platform Orchestrator

A Platform Orchestrator is a pivotal IDP component, designed to augment self-service capabili-

ties [26]. It facilitates the deployment of workloads, including all dependencies, across diverse

environments via a singular workload specification. Its principal function is to enable Dynamic

Configuration Management.

Situated at the heart of an IDP, a Platform Orchestrator bolsters the platform’s self-service ca-

pabilities. It allows developers to concentrate on creating a single workload specification, thereby

eliminating the need for environment-specific values. The orchestrator interprets the workload

specification based on the context at deployment, ensuring the provision of all necessary compo-

nents for the workload to function.

3.2 Platform Orchestrator 25

Table 3.1: Comparison between Open Application Model and Score

Criteria Open Application Model Score
Focus The OAM is focused on the applica-

tion, offering a modular, extensible,
and portable design for modeling ap-
plication deployment with a consistent
API. It is more about the application
and its components than about the in-
frastructure

Score focuses on the workload, provid-
ing a specification that allows devel-
opers to describe their workload run-
time requirements in an accessible and
declarative way, independently of the
target platform and environment

Components The OAM includes five key entities:
Components, Traits, Policies, Work-
flows, and Application

Score does not explicitly define com-
ponents like OAM but offers a declar-
ative approach to infrastructure man-
agement where developers describe a
workload’s resource dependencies

Use Cases OAM is used by large companies like
Alibaba Cloud, JD.com, Bytedance,
and China Merchants Bank

As of the last update, there are not
many known cases of companies using
Score, as it’s a newer standard

Extensibility OAM is fully extensible and allows
for the creation of custom components,
traits, and workflow steps

Score is also extensible and allows de-
velopers to create custom transform-
ers to translate Score specifications into
various platform configurations

Application OAM is more suited for complex,
cloud-native applications that might re-
quire more customization and extensi-
bility

Score might be a better fit for simpler
applications or for developers who pre-
fer a more workload-centric approach

3.2.1 Backstage

Backstage is an open-source platform developed by Spotify for building developer portals and

internal tools for large-scale software development [41]. It provides a unified and customizable

interface for managing software services’ life cycle and software teams’ workflows.

Backstage offers several key features that address the challenges associated with managing a

diverse set of software services within an organization:

• Service Catalog: Backstage allows teams to create a catalog of their services, providing a

central location to discover and understand various services within an organization.

• Plugin Architecture: Backstage is highly extensible through its plugin architecture, en-

abling customization and integration with existing tools and services.

• Developer Portals: Backstage enables the creation of developer portals that serve as a

self-service platform for developers, offering documentation, code examples, and other re-

sources.

• Collaboration: Backstage promotes collaboration by allowing teams to contribute and

maintain service information, share knowledge, and collaborate on projects.

State of the Art 26

• Automation and Tooling: Backstage integrates with various tools and services used in the

software development life cycle, providing automation and streamlined workflows.

• Scalability: Backstage is designed to handle the needs of large-scale organizations with

many services, teams, and contributors.

One of the primary use cases of Backstage is serving as a developer portal. As a developer

portal, Backstage provides a central hub for developers to access documentation, code examples,

and other resources related to the services within an organization. Developers can discover and

understand available services, explore their dependencies, and collaborate with other teams.

Backstage empowers developers to find the necessary information by offering a self-service

platform, leading to increased productivity and streamlined development processes. It centralizes

the knowledge and documentation associated with services, making it easier for developers to

onboard, contribute, and maintain the codebase.

Backstage serves as the service catalog for an IDP. While it is an essential component of an

IDP, it’s important to note that Backstage is not the brains of the IDP, such as a platform orches-

trator. Instead, Backstage acts as a centralized interface and knowledge hub, allowing developers

to discover, understand, and collaborate on services.

Backstage complements other components within an IDP by providing a unified view of the

services and their associated metadata. It integrates with various tools and services to offer a

seamless developer experience, helping teams leverage the full potential of an IDP for efficient

software development.

DevScope explored Backstage and attempted to start the building of an IDP using Backstage,

but as seen in section 2.3.6, this consists of taking an UI-First approach to building an IDP, which

is not considered ideal.

3.2.2 Port

Port is an internal development platform designed to provide a single interface for DevOps en-

gineers and developers [34]. The platform aims to simplify DevOps tasks in large organizations,

which have become increasingly complex and fragmented across various tools. Port addresses this

issue by providing a comprehensive view of the architecture and deploying new resources from a

single window [27].

Port’s interface is highly customizable, providing users with the building blocks to construct a

portal tailored to their specific workflow. This customization is facilitated through a builder-based

approach, which utilizes low-code components to maximize accessibility and flexibility.

Port’s functionality revolves around two main capabilities. Firstly, it offers comprehensive vis-

ibility into DevOps by enabling engineers to define a software catalog that includes pertinent data

about microservices, environments, cloud resources, and permissions. This visibility is extended

to alert management, where Port consolidates and presents alerts in context, tied to the relevant

software catalog entity [33].

3.2 Platform Orchestrator 27

Secondly, Port enables the self-provisioning of components, such as environments and mi-

croservices, which aims to reduce the number of help tickets filed between developers and op-

erations. This self-provisioning extends to alert resolution, where developers can acknowledge,

investigate, or revert a version with a single click. Additionally, Port provides cloud resource per-

mission management, giving developers detailed insights into permissions and access, enabling

them to identify and manage shadow permissions.

Port is designed to integrate seamlessly into the IDP environment, serving as a single pane of

glass for all DevOps information. This allows for greater visibility and streamlines the interac-

tion between different components of the DevOps architecture. Its low-code, modular approach

ensures that it can be easily adapted and customized according to the specific needs of an IDP.

Backstage and Port both provide solutions for internal development. However, they differ

in their approaches and features. While Backstage is open-source and focuses on managing mi-

croservices, Port is not open-source and provides more extensive functionality for managing and

visualizing DevOps tasks. It provides a more comprehensive view of the software architecture and

allows for deploying new resources from a single interface [35].

3.2.3 KubeVela

KubeVela is an open-source platform designed to simplify deploying and managing applications

on Kubernetes. It provides a higher-level abstraction for defining and managing complex applica-

tions, allowing developers to focus on application logic rather than infrastructure details [44]. It

includes several notable features:

• Deployment as Code: KubeVela enables users to declare their deployment plan as a work-

flow, which can be run automatically with any CI/CD or GitOps system.

• Built-in Security, Compliance, and Observability: KubeVela provides Lightweight Di-

rectory Access Control (LDAP) integrations, multi-cluster authorization and authentication,

and fine-grained RBAC modules.

• Support for Multi-Cloud Environments: KubeVela natively supports multi-cluster and

hybrid-cloud scenarios, including progressive rollout across test, staging, and production

environments.

• Lightweight and Highly Extensible Architecture: KubeVela is designed to be lightweight

but highly extensible, allowing for efficient application delivery management.

In several unique aspects, KubeVela distinguishes itself from other platforms, such as CI/CD

tools, GitOps tools, Platforms as a Service (PaaS), Helm, and Kubernetes [43]. It enhances the

continuous delivery process by incorporating modern application delivery best practices, setting it

apart from generic CI/CD tools. In addition, it adopts and improves upon the GitOps process by

introducing multi-cluster and hybrid-cloud capabilities, which goes beyond the functionalities of

traditional GitOps tools.

State of the Art 28

Moving away from the constraints of traditional PaaS, KubeVela is fully programmable, of-

fering unprecedented flexibility and control over infrastructure and tooling. Concerning Helm

and similar platforms, KubeVela takes a step further by naturally deploying Helm charts and sup-

porting other encapsulation formats. This effectively turns KubeVela into a versatile application

delivery control plane.

Lastly, KubeVela leverages the Open Application Model and Kubernetes to make application

delivery enjoyable. Integrating these open standards and technologies gives KubeVela a unique

edge over conventional Kubernetes platforms.

The workflow of KubeVela simplifies the process of deploying and managing applications on

Kubernetes:

1. Application Definition: Developers define their application using an OAM file.

2. OAM Controller: The OAM controller interprets the OAM file and generates a Kubernetes-

native deployment specification.

3. Kubernetes Deployment: The generated deployment specification is applied to the cluster.

4. Traits Integration: KubeVela integrates the traits defined in the OAM file during deploy-

ment.

5. Observability and Management: KubeVela provides observability and management fea-

tures for deployed applications.

KubeVela, with its declarative approach and extensible architecture, can act as the core or-

chestration layer within an IDP. It allows for automated deployment workflows, enhances security

and observability, and supports multi-cloud/hybrid environments. Its flexible nature makes it a

powerful tool for managing application deployment and life cycle within an IDP.

3.2.4 Crossplane

Crossplane is an open-source and cloud-native control plane that offers robust application orches-

tration across diverse cloud providers [32]. Known for its highly extensible backend, Crossplane

leverages its unique components to manage applications and infrastructure seamlessly.

Built on the solid foundation of Kubernetes, Crossplane shares its battle-tested reliability and

security features, which are pivotal in orchestrating and managing applications and infrastructure.

Crossplane’s unique components, including API Aggregation, Infrastructure Definition Language

(IDL), Resource Controllers, and Composition Engine, work together to provide efficient and

flexible orchestration solutions.

The API Aggregation enables the creation of custom APIs to suit individual orchestration

needs, while the IDL is a declarative language for specifying infrastructure requirements. The Re-

source Controllers manage the life cycle of resources, and the Composition Engine brings diverse

cloud resources into a unified entity, easing their administration.

3.2 Platform Orchestrator 29

Crucial to the role of an Application Orchestrator, Crossplane supports IaC, which simplifies

the management and provisioning of cloud infrastructure using declarative configuration files.

This means developers can focus on crafting a single workload specification, allowing Crossplane

to interpret it based on the deployment context and provide necessary components.

Workflow with Crossplane encompasses several steps: defining the desired infrastructure using

Crossplane’s declarative API, deploying the configuration, managing resources through resource

controllers, and modifying or decommissioning resources as required. Crossplane ensures that

the actual state of the infrastructure always aligns with the declared state, allowing for dynamic

configuration management.

Crossplane can be a critical component of an IDP by providing a unified API that abstracts the

complexities of infrastructure management. Its IaC capabilities allow developers to declaratively

define the desired state of the infrastructure, simplifying the management of environments for

development, testing, and production.

The extensibility of Crossplane further facilitates integration with various cloud providers and

existing technologies, making it a potent tool for crafting a bespoke IDP to meet unique organiza-

tional needs.

In conclusion, Crossplane’s capacity to manage infrastructure across multiple cloud providers

and its extensibility makes it an excellent choice for the foundation of an IDP. Successful im-

plementation, however, calls for careful planning and a clear understanding of an organization’s

specific infrastructure requirements and development workflows.

3.2.5 Humanitec’s Platform Orchestrator

The Humanitec’s Platform Orchestrator is a critical component of Humanitec’s IDP, serving as a

rules engine that standardizes operations for platform teams and facilitates self-service operations

for developers [36].

Upon every git-push event, the Orchestrator interprets the resources and configurations re-

quired for a workload to run, generates app- and infrastructure-level configurations based on rules

established by the platform team, and executes these configurations.

The operation of the Orchestrator adheres to a "Read-Match-Create-Deploy" workflow pattern:

1. Read: The Orchestrator reads the description of the workload and its dependent resources,

referred to as the workload specification or Score file, from the CI pipeline.

2. Match: The Orchestrator identifies the context, such as a deployment to a specific environ-

ment type, and matches the correct rules provided by the platform team.

3. Create: The Orchestrator generates the app and infrastructure configurations, aligning the

developer’s abstract request with the rules and defaults defined by the platform team.

4. Deploy: The Orchestrator creates or updates the resources and deploys the workload inde-

pendently or in conjunction with a dedicated CD tool.

State of the Art 30

Integration of the Orchestrator into an existing setup is achieved through its connection to the

CI pipeline and toolchain via drivers. These drivers extend to IaC modules and cloud APIs, such

as those provided by Amazon Web Services11 (AWS) or Google CLoud Platform12 (GCP).

Score and Humanitec’s Platform Orchestrator collaborate to simplify application development

and deployment. Once Score is configured using a score.yaml file added to the workloads

repository, the same file may be utilized even if the underlying technology stack changes. Mean-

while, Humanitec’s Platform Orchestrator parses the Score requirements and dynamically gener-

ates the final app and infrastructure configurations. In this way, Score provides the specifications,

and Humanitec’s Platform Orchestrator performs the deployments based on those specifications.

Addressing the research questions outlined in Section 1.3, we are now equipped to answer

RQ1: "Which mechanisms can we use to define cloud applications?". Within Section 3.1, four po-

tential standards for defining cloud applications were delineated. While the TOSCA and CAMEL

standards were briefly introduced, they were not exhaustively explored due to their insufficient

capabilities or unsuitability in addressing our problem statement. Contrarily, OAM and Score -

the remaining two standards - are currently under active development and refinement. They offer

simplicity in use and are accompanied by auxiliary tools, KubeVela and Humanitec’s Platform

Orchestrator respectively, that aid in practically applying these standards.

Concerning RQ2: "What is the best mechanism to define cloud applications inside DevS-

cope?", our evaluation has effectively distilled the options to two standards: OAM and Score.

From these, OAM appears to be the more advantageous choice. This selection is based on the

notion that the primary focus when constructing an IDP should be on developing robust solutions

for programmers, not merely on the tools (in this instance, Application Orchestrators) that assist

in creating these solutions. While orchestration tools exist for both OAM and Score, there is a

critical difference - KubeVela, for OAM, is open-source, whereas Humanitec’s orchestrator for

Score is proprietary. This open-source feature of KubeVela is a decisive factor for DevScope, as it

promotes transparency and allows the tool to be refined as needed. However, this research ques-

tion cannot be deemed fully answered at this stage, as the compatibility of the chosen standard

with DevScope still needs to be confirmed, and for that, the study to ascertain this is continued in

chapter 4.

11https://aws.amazon.com/
12https://cloud.google.com/

https://aws.amazon.com/
https://cloud.google.com/

Chapter 4

Case Study

In this chapter, we present a comprehensive case study that aims to validate the usage of the Open

Application Model inside DevScope.

The case study is a crucial component of our research, practically demonstrating the concepts

and theories discussed in the preceding chapters. By delving into a real-world scenario, we can

assess the viability of using the chosen standard within a specific organizational context.

This case study aimed to apply OAM to a project, to validate the usage inside DevScope.

Instead of choosing an internal project, we chose an open-source, complex, example application,

that uses a combination of different tools used for DevScope’s projects, namely Microsoft tools,

such as Azure services, C#1 and .NET2 frameworks, to try and encompass all DevScope projects,

instead of focusing only in one.

We have carefully selected the eShopOnContainers3 repository to fulfill the aforementioned

objectives. Microsoft created this purposefully excessively complicated program to demonstrate

microservices architecture in a hands-on manner. Because of its architecture over complexity

compared to DevScope projects, it is an excellent option for our case study, because if the standard

can be applied to an extreme instance, it should also work for smaller scenarios in principle. It was

also chosen because of the technology similarities between DevScope projects and this repository

and the fact that most DevScope projects base themselves on this architecture.

The eShopOnContainers project represents an intricate and sophisticated software system, en-

compassing diverse functionalities and architectural intricacies. By subjecting eShopOnContain-

ers to the OAM specification, we aim to assess the efficacy of OAM in defining applications of

significant complexity, thus evaluating its potential for adoption within DevScope.

Through this case study, we will analyze the eShopOnContainers repository, examining its ar-

chitecture, deployment requirements, and integration with OAM. By doing so, we aim to provide

empirical evidence and insights that shed light on the practical implications and benefits of deploy-

ing OAM-based cloud-native applications within DevScope. This case study acts as a crucial step

1https://learn.microsoft.com/en-us/dotnet/csharp/
2https://dotnet.microsoft.com/
3https://github.com/dotnet-architecture/eShopOnContainers

31

https://learn.microsoft.com/en-us/dotnet/csharp/
https://dotnet.microsoft.com/
https://github.com/dotnet-architecture/eShopOnContainers

Case Study 32

toward achieving our overall research goals and contributes to the growing body of knowledge in

the field of cloud-native application development and deployment.

4.1 eShopOnContainers

The eShopOnContainers repository is an open-source project developed by Microsoft. It is a com-

prehensive reference application for building and deploying cloud-native e-commerce applications

using a microservices architecture. The repository provides a valuable example of a complex and

scalable system, showcasing various architectural patterns, technologies, and best practices com-

monly employed in modern application development.

4.1.1 Architecture

This reference application is cross-platform at the server and client-side, thanks to .NET 7 services

capable of running on Linux4 or Windows containers depending on the Docker5 host, and to Xa-

marin6 for mobile apps running on Android7, iOS8, or Windows9/Universal Windows Platform10

(UWP), as well as any browser for the client web apps. The architecture proposes a microservice-

oriented architecture implementation with multiple autonomous microservices (each one owning

its own data/db) and implementing different approaches within each microservice (simple CRUD

(Create Read Update Delete) vs. DDD (Domain-Driven Design)/CQRS (Command Query Re-

sponsibility Segregation) patterns) using Hypertext Transfer Protocol (HTTP) as the communica-

tion protocol between the client apps and the microservices and supports asynchronous commu-

nication for data updates propagation across multiple services based on Integration Events and

an Event Bus, such as RabbitMQ 11 or Azure Service Bus12. The detailed architecture and the

interaction between services are detailed in figure 4.1. The application employs a service orches-

tration mechanism, often implemented using Kubernetes, to manage the microservices’ life cycle,

scaling, and resilience. It allows efficient allocation of resources, load balancing, and automated

scaling based on demand.

4.1.2 Deployment Options and Requirements

eShopOnContainers supports various deployment options and has specific requirements to ensure

its proper functioning:

4https://www.linux.org/
5https://www.docker.com/
6https://dotnet.microsoft.com/en-us/apps/xamarin
7https://www.android.com/
8https://apple.com/ios/
9https://www.microsoft.com/windows/

10https://learn.microsoft.com/windows/uwp/
11https://www.rabbitmq.com/
12https://azure.microsoft.com/products/service-bus/

https://www.linux.org/
https://www.docker.com/
https://dotnet.microsoft.com/en-us/apps/xamarin
https://www.android.com/
https://apple.com/ios/
https://www.microsoft.com/windows/
https://learn.microsoft.com/windows/uwp/
https://www.rabbitmq.com/
https://azure.microsoft.com/products/service-bus/

4.1 eShopOnContainers 33

Figure 4.1: eShopOnContainers reference application development architecture

1. Container Orchestration Platforms: To deploy eShopOnContainers, a container orches-

tration platform like Kubernetes is required. Kubernetes provides the necessary capabilities

for managing and scaling microservices effectively.

2. Docker: Each microservice in eShopOnContainers is packaged as a Docker container.

Therefore, a Docker runtime environment is needed to build, distribute, and run the con-

tainers.

3. Cloud Providers: The application is designed to be cloud-agnostic and can be deployed on

various cloud platforms, such as Azure, AWS, or GCP. The chosen cloud provider should

support the required infrastructure, networking, and storage services.

4. Infrastructure Dependencies: eShopOnContainers may require additional infrastructure

services like databases, message brokers, or cache stores, depending on the specific deploy-

ment scenario. These dependencies need to be provisioned and configured accordingly.

5. Networking and Security: Proper networking configuration and security measures must

be in place to ensure secure communication between the microservices and protect sensitive

data.

Deploying eShopOnContainers involves considering these deployment options and meeting

the specific requirements to create a scalable, resilient, and efficient cloud-native application.

Case Study 34

4.1.3 Integration with OAM

Our process to create an OAM yaml file for the eShopOnContainers repository was as follows:

We began the procedure by analyzing the existing docker-compose.yml files: the base

docker-compose file consisting of 21 services; docker-compose.override.yml file designed

for local development, housing 21 services and 3 volumes; and docker-compose.prod.yml,

crafted for production deployment, consisting of 17 services. During this analysis, we focused

on the services representing critical parts of the architecture, scrutinizing each service’s informa-

tion. This included attributes such as name, Docker image or path to Docker image build context,

dependencies, environment variables, ports, and volumes.

With this foundation established, we began constructing the OAM application, component by

component. This iterative process involved the addition of a component, deployment to AKS

via KubeVela, and rigorous testing to ensure the component operated as intended. Subsequent

components were not added until the successful operation of the preceding one was confirmed.

We prioritized components with no dependencies, concluding with those possessing the most de-

pendencies. Certain Docker images had to be generated and subsequently uploaded to an Azure

Container Registry13 (ACR) to facilitate availability to the cluster. Environment variables and

endpoints were appended directly to the OAM yaml file, bypassing import from a .env file.

Throughout the OAM application construction, the KubeVela CLI was used to deploy the

application to the AKS cluster. The application was continuously updated and redeployed to the

cluster as new components were integrated, ensuring that each added component was functioning

correctly, both independently and in relation to its dependencies.

Upon successfully adding all components, we created the application definition file in list-

ing A.2. The OAM application for eShopOnContainers was fully operational and performed as

expected.

From this case study, we chose an appropriate example for our goal, analyzed its architecture

and dependencies, and created an OAM definition file. With the possibility of this creation and

the correct functioning of OAM and KubeVela, we concluded that this standard is a proper fit

for DevScope’s needs. This case study also answers RQ2: "What is the best mechanism to define

cloud applications inside DevScope". From chapter 3, we could only answer partially, by choosing

the standard without validating it. We can now conclude that OAM is the option to continue

developing DevScope’s IDP. For RQ3: "How can we lessen the burden of adopting the chosen

mechanism?", the provided solutions will be introduced in chapter 5.

13https://azure.microsoft.com/products/container-registry

https://azure.microsoft.com/products/container-registry

Chapter 5

Implemented Tools for Aiding
Developers Adopting OAM

This chapter outlines the implementation details of two tools developed during this thesis: Cata-

loguer and Canaveral CLI. Both tools were written in Python1 and are integral to managing and

deploying cloud-native applications.

Cataloguer was made as an assisting tool. Considering the future adoption of OAM as the

standard, there will need to be a way to manage all of the projects inside the IDP, which for now,

is planned to have OAM and KubeVela integrated. So Cataloguer is the solution to import the

projects into KubeVela.

Canaveral CLI is a command line interface that aims to simplify the adoption of the OAM at

DevScope and simplify the creation of OAM files for new and existing projects.

These two tools contribute to the broader cloud-native application deployment and manage-

ment field. The following sections will provide a detailed overview of each tool’s operation and

usage.

5.1 Cataloguer

Cataloguer was created to automate the importing of applications into KubeVela. This Python tool

traverses GitHub organization’s repositories, scanning for the presence of a vela.yaml file at the

root of each repository. If such a file is identified, Cataloguer generates a KubeVela application

for that repository. This tool’s importance is reflected in its automation in creating a centralized

view of DevScope’s projects via KubeVela, by creating an application catalog there.

Cataloguer’s functionality is achieved by using the GitHub API to retrieve all repositories

under a given organization. It iterates through these repositories, checking for a vela.yaml file

at the root of each repository. When it identifies a repository with a vela.yaml file, it examines

1https://www.python.org/

35

https://www.python.org/

Implemented Tools for Aiding Developers Adopting OAM 36

the namespaces2 utilized by the application. If these namespaces do not exist, the tool creates

them.

To prevent the application from being immediately deployed upon creation, Cataloguer intro-

duces a suspend step to the OAM workflow if one is not present already. Subsequently, it creates

the application in KubeVela. This process can be seen on figure 5.1. However, the application

is only added to the KubeVela cluster and not deployed to the Kubernetes cluster, providing an

overview of all applications available for deployment.

Start
Retrieve

repositories links

While there are
repositories

if repo has
vela.yaml

Yes

Find
namespaces
and create

Add suspend
step

Add application
to KubeVela

Finish

No

Yes

No

Figure 5.1: Cataloguer’s flow chart

Although Cataloguer simplifies the onboarding process of projects into KubeVela, it requires

the presence of a vela.yaml file in each repository. This prerequisite leads to the creation of the

second tool, Canaveral CLI, which is responsible for generating this file, and will be detailed in

the following section.

5.2 Canaveral CLI

The internal project, Canaveral, was initiated to function as DevScope’s IDP, thereby simplifying

the software development life cycle by aggregating all the responsibilities in a single platform.
2Kubernetes namespaces: https://kubernetes.io/docs/concepts/overview/

working-with-objects/namespaces/

https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/

5.2 Canaveral CLI 37

This platform aids in crafting a systematic workflow for automating the deployment process, re-

lying on standards, abstractions, and best practices that are applicable across projects, irrespective

of their technology stack and deployment target environment. The initial step towards realizing

this goal involved the adoption of a standard for defining applications, an undertaking fulfilled by

the Open Application Model.

The Open Application Model’s utility includes two scenarios: the development of a definition

file for existing applications and the creation of a definition file for freshly generated apps. The for-

mer scenario has a higher probability of occurrence due to the abundance of production-deployed

applications that can be integrated into the IDP. However, the latter scenario is of keen interest,

considering its use for deploying novel applications developed for the IDP.

Concurrently, a solid understanding of the standard itself is requisite to enable developers

to effectively utilize this standard, a process that may add to the cognitive load. However, our

endeavor is not to merely generate files for each project and integrate them into the project reposi-

tories without due consent, an action that may be perceived as forceful and discourage cooperation

towards the standard’s adoption.

To circumvent this, we aim to ease the adoption process by providing an efficient learning

path, facilitating understanding of the standard, and creation of definition files. The Canaveral

CLI tool plays a pivotal role here.

The Canaveral CLI facilitates the adoption of the Open Application Model in alignment with

the aforestated vision. This CLI tool can create a definition file for an existing or a new application

under development. Its development extensively utilizes two libraries: Typer3 and PyInquirer4.

Typer forms the backbone for creating a Command Line Interface in Python, while PyInquirer

enables the creation of interactive command line user interfaces, an essential requirement for the

Canaveral CLI.

The Canaveral CLI introduces four commands: create, default, definitions, and merge. The

specific functionalities of each command will be discussed in the subsequent sections.

5.2.1 Requirements Elicitation

The requirements elicitation process was executed through two interview sessions, the insights

of which formed the cornerstone for the development of Canaveral. The interviewees included

the Research and Development (R&D) Director of DevScope, the Tech Lead of the Cloud Native

Engineering department, the Team Leader of the Cognitive Services Team, and a software devel-

oper from the same team. The intention of these interviews was two-fold, aimed at understanding

the overarching vision of the project and grasping the practical needs of the team that would be

adopting Canaveral.

Each interview delved into various topics such as current methods employed, their deficien-

cies, the project’s motivations and vision, and the issues they sought to resolve with Canaveral.

Emphasis was laid on discerning measurable objectives and potential solutions, along with their

3https://typer.tiangolo.com/
4https://inquirerpy.readthedocs.io/en/latest/

https://typer.tiangolo.com/
https://inquirerpy.readthedocs.io/en/latest/

Implemented Tools for Aiding Developers Adopting OAM 38

evaluation metrics. The current project’s state, anticipated outcomes, and the necessary future

steps were also discussed in depth. The understanding of DORA metrics and current processes at

DevScope were also elicited to understand the status quo and how Canaveral could contribute to

its enhancement.

Functional Requirements Functional requirements were identified as follows:

1. Command Line Interface: The system shall provide a command line interface to facilitate

easy integration with existing processes and tools.

2. Default Application Generation: The system shall have the ability to generate a default ap-

plication, with all essential components, that can serve as a foundation for the development

of applications and be modified according to the application’s specific needs.

3. New Application Creation: The system shall incorporate a command to create a new appli-

cation, thus assisting users in understanding the process and eventually building their own

applications. This includes creating an OAM file for the application in a simple and intuitive

manner.

4. Merge OAM files: The system shall support a command to merge OAM files, allowing for

the combination of two applications while maintaining a separation of concerns and pro-

moting component reusability. This entails merging two OAM files based on a predefined

set of rules.

Non-Functional Requirements Non-functional requirements were categorized into the follow-

ing:

1. Usability: The tool should provide ease of use, enabling its adoption by other teams and

accommodating developers with varying familiarity with the OAM.

2. Learnability: The tool must present learning opportunities of OAM, facilitating knowledge

enhancement while using the tool.

3. Maintainability: The tool should offer ease of maintenance to allow for its upkeep by

the adopting team. Updates to the OAM standard should be seamlessly incorporated into

the tool to keep it current. Furthermore, the tool’s design should prioritize extensibility to

facilitate future developments and enhancements.

4. Compatibility: The tool should ensure ease of integration with existing technologies, oper-

ating and interacting within the existing technology ecosystem effectively.

5.2 Canaveral CLI 39

5.2.2 The default Command

The default command, being the most straightforward of the four available commands, outputs

the default vela.yaml file. This command is initiated with the call to canaveral default,

which creates a new fitt named vela.yaml and populates it with default content.

The default content embodies every integral part of the OAM:

1. A Component of type webservice, which is a commonly used type. This component has

a required parameter, image, and two additional commonly used non-required parameters.

These include port, set to the default value of "80" and expose set to "true", and env, illus-

trating an example of how to define an environment variable.

2. A Trait associated with the component, in this case, a simple one of type scaler that accepts

a property named "replicas" to determine the number of replicas for the component.

3. A Policy of type topology that ascertains the deployment environment of the component.

This is a widely used policy whose default values of parameters ensure that the application

is deployed to the cluster where KubeVela is running, specifically, the namespace "prod".

4. A Workflow with a single step of type deploy for deploying the application to the cluster,

combined with the aforementioned policy to assert that the cluster is local and the namespace

is "prod".

The generated file is enriched with YAML comments that point to the documentation for each

part of the OAM. This facilitates users in understanding the roles and functions of each part, as

well as how to employ them, and modifying the file to suit their needs with confidence.

By executing this simple command, the user can effortlessly create a vela.yaml file, avail-

able on listing A.1, that can be the blueprint for deploying their application to KubeVela.

5.2.3 The merge Command

The merge command was recognized as a possible simple, yet important addition to the Canaveral

CLI during requirements elicitation interviews with the team interested in using Canaveral on their

ongoing project.

The merge command is designed to uphold the principle of separation of concerns [8]. This

principle allows developers, who are typically more acquainted with the applications they create,

to focus on defining components and traits that they are familiar with. Meanwhile, they are less

burdened by the infrastructure and deployment procedures, areas where their expertise may be

lacking, which are encapsulated in policies and workflows.

The inspiration for this feature was Docker’s docker-compose tool. Docker-compose allows

specifying one or more Compose files by repeating the flatt-f. With a command, such as run or

build, the files are merged, overriding matching fields between files. This operation is more akin

to patching than merging, and the resulting file is not outputted; only the operation is performed

with the resulting values.

Implemented Tools for Aiding Developers Adopting OAM 40

OAM does not support this kind of modularity in its schema out of the box. If it did, we would

have utilized it. Instead, we created this feature for the Canaveral tool by defining our patching

rules for the OAM standard.

The command can be used with canaveral merge <file1-path> <file2-path>,

resulting in a new vela.yaml file populated with the merged contents of the two input files.

5.2.4 The definitions Command

To address the requirement for the Canaveral CLI to remain current and in sync with ongoing

standard updates, the definitions command was developed.

The OAM standard is built on the concept of types; each component, trait, policy, and work-

flow can belong to one of many possible types. This feature masks the underlying complexity and

creates useful abstractions. Each type correlates to a Kubernetes manifest suite, including deploy-

ments, services, configmaps, and more. Such correlation is achieved through a set of files created

using the CUE language. These files are maintained within the open-source KubeVela GitHub

repository, which houses a catalog of types and their corresponding Kubernetes implementations.

The repository is also responsible for keeping the OAM documentation current.

The challenge was ensuring the CLI tool was consistently up-to-date with the most recent

catalog of types. The more straightforward approach was to extract this information from the

documentation. However, the documentation might not always be current, thereby limiting the

tool’s ability to self-update. To access the most recent data, it was necessary to go directly to the

source: the CUE files in the KubeVela repository.

Thanks to the GitHub API, retrieving the CUE files from the repository was straightforward.

Parsing these files to extract the necessary information presented a greater challenge. The CUE

files are not always organized in a consistent and easily parsable way. Furthermore, no existing

Python library could parse CUE files. As CUE is written in Go5, its compatibility with Python is

limited.

Thus, the solution was to create a dedicated parser for the CUE files. This parser would

interpret the files and provide the information in an easily usable format. The parser was designed

to be flexible and expandable, accommodating potential future needs for additional information.

The definitions command was implemented upon successfully creating the parser. When

called using canaveral definitions, this command scans the KubeVela repository. It checks

each .cue file for its use status and parses those still in active use, creating a Python dictionary in

the process. This dictionary is then converted into a JSON6 file stored locally. This file serves as

a source of updated information about the types and is referred to by the CLI tool.

The user can manually run the definitions command if they suspect the information might

be outdated. However, ideally, the tool should be capable of updating itself autonomously, possibly

via webhooks, in response to changes in the KubeVela repository or the OAM specification. The

procedure of this command is not run on every start-up of the tool, because it is not necessary to

5https://go.dev/
6https://www.json.org/

https://go.dev/
https://www.json.org/

5.2 Canaveral CLI 41

check for updates of the standard that often, as it would cause an unnecessary overhead for anyone

using the tool. This feature is particularly crucial for the operation of the subsequent create

command, which relies on accurate, up-to-date information to construct OAM files.

5.2.5 The create Command

The final command to be discussed, create, synthesizes the functionalities of the previous three

commands. The intent behind this command is to provide developers with a simple and interactive

way to create an OAM file for an ongoing or newly started project. The aim is to minimize the

required OAM knowledge, thus reducing cognitive load and offering an educational experience

about the OAM standard.

The command is initiated by entering canaveral create, which launches an interactive

process guiding the user in creating the OAM file.

Initially, the user is presented with an overview of the tool’s purpose, the OAM file contents,

and the file creation procedure. After ensuring the user understands this preliminary information,

the tool prompts the user to input the application’s name. Upon entering the application’s name, the

tool presents the concept of Components, describing what they are and the required information for

defining one. The user is then prompted to define the first (mandatory) component, supplying the

name, type, and Docker image. When asked for the type, a brief explanation of types is presented,

along with a link to the relevant documentation for further reading.

Following the definition of the first component, the user can opt to add another component or

proceed with only the initially defined one. The same procedure is followed for each subsequent

component if additional components are added.

Next, the tool briefly introduces Traits, maintaining a consistent format with the previous

component explanation to facilitate comprehension. From this point forward, it is not mandatory

to provide information about traits, policies, or workflows; users can opt to skip any of these

sections, creating an OAM file consisting solely of components.

If the user decides to add traits, they must specify the trait type only, as traits do not require a

unique name. The tool draws from the list of traits produced by the definitions command to

propose options for the user. The procedure is similar for policies and workflows: an introductory

explanation is provided, and users can choose to add items by selecting a type and name. It is

reiterated that adding these elements is optional.

At the end of the process, a warning informs the user that the resulting file might be incomplete

and additional fields might need to be filled. The user must confirm their understanding of this

message before the file is created.

The information gathered from the interactive session and the data retrieved by the definitions

command are used to generate the OAM file. The tool automatically populates fields with default

values and marks sections where the user must provide input for mandatory fields lacking default

values.

Chapter 6

Validation

In this chapter, we delve into the rigorous validation process designed to assess the usability of the

developed tool under investigation. Validation, a vital part of software engineering, ensures that

the developed solutions are functional, efficient, and user-friendly.

The validation process in this study is divided into four sections: ‘Design’, where the methods

used are presented, ‘Results’, where the data obtained is present, ‘Discussion’, where conclusions

are drawn from the data, and ’Threats to Validaty’, that outlines the drawbacks of this study.

6.1 Design

This section provides detailed insights into the design of the validation approach, which was in-

tended to evaluate the usability of the Canaveral CLI. The primary aim was to create a hands-on

user experience for the IT/DevOps personnel and software developers at DevScope, which con-

sisted of two main components: a lab for practical exploration of the tool and a feedback form

for users to express their evaluations and thoughts about the tool. The evaluation process was first

shared within DevScope, to gather interested volunteers to answer, and at a later point, individual

requests were made, to gather as many responses as possible.

6.1.1 Lab

To prevent users from being distracted by setup procedures, individual lab environments were set

up using Azure Lab Services1. Each environment was an individual virtual machine (VM) with all

the required tools already installed. The VM template, based on CentOS-Based 8.4, was equipped

with 2 cores and 4GB of RAM.

The VMs contained a debug version of the Canaveral CLI, designed to track the execution

time of each command and keep duplicates of all the OAM files created. In addition, a command

logging tool named Snoopy2 was installed on the VMs to ensure all command executions were

recorded.
1https://labs.azure.com/
2https://github.com/a2o/snoopy

42

https://labs.azure.com/
https://github.com/a2o/snoopy

6.1 Design 43

The individual lab VMs were integrated with Microsoft Teams3, the primary communication

tool used at DevScope, via Azure Lab Services. A tab within a dedicated Teams channel was set

up, granting each user access to their own VM. Users could connect to these VMs using SSH from

their preferred shell.

6.1.2 Tasks

To gather user feedback, a form was created using Microsoft Forms4. It began with an introduction

to the tool and the purpose of the form, followed by a series of nine exercises designed to introduce

users to the functionalities of the Canaveral CLI and the OAM standard.

The exercises were as follows:

1. Execute the help command

2. Run the version command

3. Create a default OAM file

4. Create an OAM file with a single component

5. Create an OAM file with two components and one trait

6. Create an OAM file with one component and one policy

7. Create an OAM file with one component and one workflow, with two workflow steps

8. Run the merge command

9. Create an OAM file for the user’s current project

At the end of some exercises, users had a link available to a VelaUX5 page. This page dis-

played several sample applications deployed on an AKS cluster, providing practical examples of

the results of deploying the applications they defined in the OAM files.

6.1.3 Evaluation

Upon completing the exercises, users were asked to fill out the NASA Task Load Index (NASA-

TLX) [21, 4] and System Usability Scale (SUS) [1] questionnaires, which are standard tools used

in the industry for evaluating usability.

The NASA-TLX is a widely used, subjective, multidimensional assessment tool that rates

perceived workload to assess a task, system, or other aspects of performance. It consists of six

dimensions: Mental Demand, Physical Demand, Temporal Demand, Performance, Effort, and

Frustration.
3https://www.microsoft.com/microsoft-teams/
4https://forms.office.com/
5https://kubevela.io/docs/reference/addons/velaux/

https://www.microsoft.com/microsoft-teams/
https://forms.office.com/
https://kubevela.io/docs/reference/addons/velaux/

Validation 44

In the traditional method of administering the NASA-TLX, participants first perform a pair-

wise comparison between all pairs of dimensions to decide which of the two contributes more to

their workload. The frequency of selection for each dimension provides a weight that is factored

into calculating the overall workload score. After these weights are determined, each dimension

is rated on a scale of 0 to 100, where 100 represents the worst possible score, implying a higher

workload or lower performance.

In our study, however, we altered this order. Participants were first asked to rate each di-

mension based on their experience with the task before performing pairwise comparisons. This

order of administration was chosen to explore if the immediate rating of the task experience might

influence the subsequent pairwise comparisons and, thus, the weights assigned to each dimension.

The overall score for NASA-TLX is calculated by multiplying each dimension’s weight by the

score given by the user and then summing these results. The final score is normalized to a 0-100

scale, with lower scores indicating less perceived workload and, thus, better usability.

SUS is a simple, ten-item scale giving a global view of subjective usability assessments. It

consists of ten statements to which users rate their level of agreement on a five-point scale, ranging

from 1 (Strongly Disagree) to 5 (Strongly Agree). The statements are alternately positive and

negative from one to the next.

The overall SUS score is calculated by first summing the score contributions from each item.

For positively worded items (1, 3, 5, 7, and 9), the score contribution is the scale position minus 1.

For negatively worded items (2, 4, 6, 8, and 10), the contribution is 5 minus the scale position. The

sum of the scores is then multiplied by 2.5 to obtain the overall value of SUS, which will range

from 0 to 100, with a higher score indicating better usability.

S1 I think that I would like to use this system frequently.

S2 I found the system unnecessarily complex.

S3 I thought the system was easy to use.

S4 I think that I would need a technical person’s support to use this system.

S5 I found the various functions in this system were well integrated.

S6 I thought there was too much inconsistency in this system.

S7 I would imagine that most people would learn to use this system very quickly.

S8 I found the system very cumbersome to use.

S9 I felt very confident using the system.

S10 I needed to learn many things before I could get going with this system.

Like the lab, the form was made available to users through a specific tab on the Microsoft

Teams channel. Users could then use SSH to interact with their VM and access the form in their

browser or as a Teams pop-up window.

6.2 Results 45

6.2 Results

Conducting the usability analysis of the software tool within an organization comprising approx-

imately 150 employees, we recognize that only a subset of these individuals, approximately 100,

can be considered valid possible users of this tool. This number is attributed to roles associated

with software development, whereas employees in non-technical roles, including management po-

sitions, were not included in the evaluation due to the nature of their roles and their lack of inter-

action with the tool. We received 11 responses to our evaluation form, employing the NASA-TLX

and SUS methodologies. Although this may initially seem to be a low response rate, it is essential

to consider the challenges inherent in data collection within a corporate environment, including

time availability, competing priorities, and the voluntary nature of the study. While the findings

from these 11 participants may not capture the entire picture of the user base, they nonetheless

provide valuable insight into the tool’s usability.

The table 6.1 presents the identifiers of each respondent, their roles within DevScope, and the

total time taken to answer both the lab and the evaluation form.

Table 6.1: Respondents information, including company role and total time taken

ID Role Total Time
1 Tech Lead | Cloud Native Engineer 08:10
2 Systems Engineer 18:28
3 Systems Engineer 52:06
4 Software Developer 49:13
5 Systems Engineer 38:59
6 Team Leader 32:14
7 Software Developer 28:09
8 Software Developer 24:41
9 Intern 35:29
10 Software Developer 14:24
11 Software Developer 29:11
Average 30:11

For the tasks, the time taken to perform each task was collected and is presented on table 6.2

in the form of minutes and seconds, as well as the averages for each question.

From the NASA-TLX method, we gathered the score attributed to each subscale (table 6.3),

the results from the pairwise comparison, more specifically, the weights of each dimension (table

6.4) and the calculated scores for each dimension, together with the final score of the method (table

6.5).

For the System Usability Scale, the score for each statement, the final computed score, and

averages can be seen in table 6.6.

Validation 46

Table 6.2: Time taken to answer each lab question and average time per question

ID Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Total
1 00:20 00:09 00:13 01:48 00:43 00:30 00:41 00:07 01:33 06:04
2 00:08 00:12 00:25 01:35 00:58 01:50 01:38 01:08 02:43 10:37
3 00:12 00:14 01:00 01:03 01:14 01:13 02:03 02:41 01:00 10:40
4 00:09 00:13 00:23 01:14 01:09 00:56 01:25 00:21 06:04 11:54
5 00:22 00:18 00:06 01:00 04:15 03:42 01:50 00:33 01:30 13:36
6 00:48 00:16 00:20 01:05 02:46 01:34 01:15 00:46 03:37 12:27
7 01:01 00:42 00:39 01:54 01:50 00:53 01:16 00:18 02:40 11:13
8 01:02 00:26 00:22 01:34 02:14 00:55 01:29 00:58 01:14 10:14
9 01:06 00:23 00:40 02:11 02:03 01:07 01:23 02:03 03:43 14:39
10 00:17 00:15 00:27 01:15 01:11 00:36 00:54 00:23 01:34 06:52
11 00:18 00:19 00:28 01:33 00:59 00:50 00:33 00:42 01:21 07:03
Avg 00:33 00:19 00:28 01:28 01:50 01:20 01:23 00:56 02:34 10:50

Table 6.3: NASA-TLX subscale evaluation results

ID Mental
Demand

Physical
Demand

Temporal
Demand Performance Effort Frustration

Level
1 50 20 60 70 60 50
2 40 30 30 80 20 10
3 30 20 30 10 20 0
4 70 60 20 20 70 50
5 50 30 30 60 50 0
6 10 10 50 0 10 0
7 50 40 40 70 40 30
8 30 30 30 0 0 0
9 80 70 50 30 60 70
10 20 20 10 0 10 0
11 30 0 20 10 20 0
Average 41.82 30.00 33.64 31.82 32.73 19.09

6.3 Discussion

The usability analysis of the software tool was conducted with a representative subset of potential

users from the organization, with 11 responses gathered for evaluation. While the sample size is

small considering the organization’s size, the diversity of roles amongst the participants provides

a comprehensive perspective on the usability of the software tool.

The analysis of the data from Table 6.1 shows that the total time, which includes elements

such as the setup of the lab, answering the evaluation form, as well as performing the tasks, was

relatively diverse among participants, with an average around 30 minutes. However, it is important

to consider that this total time frame includes aspects beyond just the task execution. Differences

in this broad time frame can be attributed to variations in the participants’ experience, proficiency,

or comprehension of the tasks.

A more significant metric per the feedback is the time taken to answer the lab questions, which

6.3 Discussion 47

Table 6.4: NASA-TLX pairwise comparison results

ID
Mental
Demand
Count

Physical
Demand
Count

Temporal
Demand
Count

Performance
Count

Effort
Count

Frustration
Level
Count

1 3 0 5 3 2 2
2 3 0 4 1 5 2
3 4 1 4 3 3 0
4 3 1 5 0 3 3
5 4 2 5 3 1 0
6 1 0 4 4 4 2
7 4 1 2 3 5 0
8 3 4 5 0 1 2
9 2 1 4 4 2 2
10 2 1 3 3 3 3
11 2 0 4 1 4 4
Average 2.82 1.00 4.09 2.27 3.00 1.82

Table 6.5: NASA-TLX subscales weighted ratings and final rating

ID Mental
Demand

Physical
Demand

Temporal
Demand

Perfor-
mance Effort Frustration

Level
Weighted
Rating

1 150 0 300 210 120 100 58.67
2 120 0 120 80 100 20 29.33
3 120 20 120 30 60 0 23.33
4 210 60 100 0 210 150 48.67
5 200 60 150 180 50 0 42.67
6 10 0 200 0 40 0 16.67
7 200 40 80 210 200 0 48.67
8 90 120 150 0 0 0 24.00
9 160 70 200 120 120 140 54.00
10 40 20 30 0 30 0 8.00
11 60 0 80 10 80 0 15.33
Average 123.64 35.45 139.09 76.36 91.82 37.27 33.58

directly measures the interaction of the participants with the software tools. The data from Table

6.2 shows noticeable variability in this regard, with the average time spent on each task displaying

interesting trends. Specifically, participants generally took longer to complete Questions 4 to 9.

This increased time consumption is primarily due to these questions requiring creating OAM files,

which inherently tends to be more time-consuming. Therefore, this suggests that these questions

posed a greater challenge to the participants, offering valuable insights into the practical usability

of the software tools.

The NASA-TLX methodology provided a broader understanding of the software tool’s per-

ceived workload and user experience. From the data presented in Table 6.3, participants rated

Mental Demand highest on average, followed by Effort and Temporal Demand. This suggests that

the tool was perceived as mentally challenging and time-consuming, indicating areas for potential

Validation 48

Table 6.6: SUS scores per statement and final score

ID S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 SUS Score
1 4 3 3 4 4 3 3 3 4 2 57.5
2 4 1 4 1 3 1 4 1 3 1 82.5
3 4 2 3 1 5 1 2 3 4 2 72.5
4 3 1 2 4 4 1 2 3 3 3 55
5 3 2 4 2 3 3 3 3 3 2 60
6 4 1 3 2 4 1 5 2 4 3 77.5
7 3 2 4 4 3 2 2 3 2 3 50
8 3 2 5 2 4 1 4 1 3 2 77.5
9 4 2 5 3 4 3 5 3 4 2 72.5
10 4 1 5 1 4 1 5 1 4 4 85
11 3 1 3 3 3 2 3 2 3 2 62.5
Average 3.55 1.64 3.73 2.45 3.73 1.73 3.45 2.27 3.36 2.36 68.41

improvement. The low average Frustration Level score indicates that the tool did not cause signif-

icant frustration amongst participants despite the perceived mental demand and effort. The high

variance in Performance scores might be from a misunderstanding that lower scores are better,

despite the positive connotation of the name of this dimension, which was specified in the form

question, but not put enough emphasis for all respondents to see.

"Examining Table 6.4, we can observe that Temporal Demand carries the greatest average

weight, implying that the time required to complete tasks was of significant concern for the partic-

ipants. This observation, coupled with the weighted ratings in Table 6.5, reinforces that Temporal

Demand and Mental Demand were the most influential subscales for the participants, reinforcing

the need to address these aspects in future iterations of the software tool. However, it is important

to note that despite the high demands, the Frustration Level remains comparatively low across par-

ticipants. This suggests that even though the tasks may be challenging and the OAM remains an

unfamiliar concept to the users, the relatively low levels of frustration could facilitate the adoption

of the standard. This is a significant finding, considering one of the primary objectives of the tool

is to promote the adoption of the standard."

As for the SUS scores in Table 6.6, they ranged from 50 to 85, with an average score of

68.41. This average score indicates a generally positive user experience, given that a SUS score

above 68 is often interpreted as above average [5]. Therefore, despite the complexities involved in

answering some questions, the user experience was, on average, quite positive.

Based on the feedback provided by the respondents, there are several key points and implica-

tions to consider.

Participant P4 found the tool simple to use, however, he questioned its practicality when work-

ing with more complex, real-world applications. The tool’s abstraction tends to pose limitations

when the applications don’t conform to the "standard" and necessitate manual edits in the yaml

file. This feedback suggests a demand for the tool to handle exceptions and maintain utility even

after manual edits are made to the templates.

6.4 Threats to Validity 49

The user also indicated that the tool fell short in managing modern applications that are a mix

of Kubernetes and Cloud services. This may signify a need for the tool to evolve in its capability

to handle such mixed environments. The respondent proposes that the tool might be better suited

for simpler architectures or newly created projects, hinting there may be a market for its use in

those areas.

The respondent proposed a few suggestions for future improvements, such as the development

of "common" application templates, and the ability to edit existing specifications using the tool’s

abstractions. The feedback underscores the need for enhanced interactivity to recover from errors

without restarting the whole process.

Participant P8’s comment is largely positive, appreciating the tool, form, and overall job. The

user’s feedback reaffirms the utility and user experience of the tool. However, they did mention

confusion with the tool’s name, suggesting the necessity for a more intuitive and easily memorable

name to avoid miswriting.

In conclusion, the feedback received from users, albeit with differing tonality, yields valuable

insights into the potential for enhancements while also affirming the existing strengths of the tool.

The constructive criticism and suggestions shed light on avenues for future development, aiming

to enhance its applicability across a wider range of applications and improve user-friendliness.

Simultaneously, the positive feedback confirms certain appreciated aspects, such as the tool’s sim-

plicity and user interface, indicating a generally positive user experience.

While the data suggests that the software tool is currently usable and does not induce sig-

nificant frustration, there are identifiable areas for refinement, most notably the time required to

complete tasks and the mental demand of using the software tool. These areas of improvement,

highlighted by our users’ experiences, call for further investigation. Therefore, continuing the

study, ideally with a larger sample size, is recommended to confirm these findings and identify

more specific enhancements. By synthesizing positive and constructive feedback, we can better

focus our development efforts and strive towards delivering a more efficient and user-friendly tool.

At this point, we can answer RQ3: "How can we lessen the burden of adopting the chosen

mechanism?". After developing the Canaveral CLI tool, we got a baseline for a tool that presents

this capability, by allowing the creation of OAM files and, at the same time, introducing and

teaching its users about the standard, to be able to become more familiarized with it slowly. There

is room for improvement, regarding how to utilize the tool, by making it more clear and accessible.

6.4 Threats to Validity

The validity of the findings in this research is subject to several potential threats. This section

categorizes these threats into four broad categories: internal, external, construct, and conclusion

validity, following the classification proposed by Cook and Campbell [2].

"

Validation 50

Internal Validity Internal validity corresponds to the degree to which the observed effects can

be attributed to the variables we have manipulated, as opposed to other potential confounding

elements. Within the scope of this study, a key threat to internal validity might be the variable

levels of expertise among the participants. Participants with more experience or familiarity with

similar software tools could potentially perceive the tool as less demanding and easier to use,

which may have an influence on their NASA-TLX and SUS scores.

To mitigate this threat, we made efforts to provide consistent training and guidance to all

participants, regardless of their initial skill level, to ensure a standard level of understanding across

the board.

Upon examining the data, there was no clear correlation between higher expertise and signif-

icantly lower NASA-TLX or higher SUS scores, suggesting that our mitigation strategies were

effective. However, we acknowledge that this does not entirely eliminate the possibility of the

influence of expertise, and future studies may aim to further explore this aspect."

External Validity External validity relates to the generalizability of the study’s findings. While

it’s true that our study involved a limited number of participants, posing a potential threat to exter-

nal validity due to the sample’s representativeness, the diversity in the user experiences reported

offers a valuable perspective. The diverse set of user profiles encompassing varying expertise and

backgrounds enhances the breadth of our sample. Even though it’s numerically limited, it still

represents a broad spectrum of potential future users of the software tool.

This diversity among our participants helps compensate for the small sample size to some

extent, enabling a more comprehensive evaluation of the software tool’s usability than the numbers

might suggest. However, for future studies, including a larger and more varied participant pool

would provide an even more comprehensive understanding of the software tool’s usability across

different user types.

"

Construct Validity Construct validity refers to how well the measurement tools accurately rep-

resent the concept being studied. In our case, we used the NASA-TLX and SUS instruments

which are widely recognized and utilized in assessing the usability and the perceived mental effort

of using a tool—precisely the constructs we aimed to investigate.

However, while these tools are proven to be efficient in their intended purposes, it’s also im-

portant to consider potential threats to construct validity. For instance, they rely heavily on par-

ticipants’ self-reporting, which can be influenced by a range of subjective factors such as social

desirability bias, or difficulty in accurately recalling or articulating their experiences. Nevertheless,

given the widespread use and consistent performance of both NASA-TLX and SUS in evaluating

similar constructs in various contexts, we maintain a high level of confidence in their ability to

accurately measure the variables of interest in our study."

6.4 Threats to Validity 51

Conclusion Validity Conclusion validity pertains to the degree of confidence we can have in the

relationship between the intervention and the observed outcome. In this study, we administered

the NASA-TLX and SUS evaluations post-use of the tool, and hence, the wide range of scores

obtained can only be attributed to the participants’ experiences with the tool. This provides us

with a solid basis to draw conclusions about the tool’s impact on user experience and usability.

However, the broad variation in scores does indicate a spectrum of user experiences and per-

ceptions, which adds a layer of complexity when drawing definitive conclusions. It is essential to

note that this diversity in responses is not necessarily a threat but rather an opportunity to learn

about a wide array of user experiences.

Concerning RQ3: "How can we lessen the burden of adopting the chosen mechanism?", our

primary objective was to devise a practical solution that facilitates the seamless adoption of the

chosen mechanism while empowering users to harness its full potential. In response to this crucial

question, we meticulously crafted the Canaveral CLI, a powerful tool designed to streamline and

simplify the process of creating OAM files and integrating the OAM standard into the users’

workflow. This tool was then validated using two methods: NASA-TLX and SUS, which proved

the good usability of the tool and the lack of workload associated with it’s usage.

Chapter 7

Conclusion

This dissertation began with the goal of initiating the development of DevScope’s Internal Devel-

oper Platform, by selecting a suitable standard and facilitating its adoption. A tool was created to

assist in generating definition files that use the standard, aiming to simplify the adoption process.

Our exploration of the vast and rapidly evolving landscape of Platform Engineering tools led

us to the Open Application Model, which we found to be a good fit for DevScope. The tool

developed to facilitate the adoption of this standard was evaluated for usability and found to be

above average, although the results from the NASA-TLX were mixed. While not entirely negative,

they were not entirely positive either, indicating room for improvement.

One of the limitations of this study was the variability in the types of employees who responded

to the survey, coupled with a relatively small number of responses considering the available sample

size. This may have influenced the results and should be considered when interpreting the findings.

This work has practical implications as it represents a first attempt at creating a tool to assist

with adopting a standard in Platform Engineering. The standards are emerging, but there is cur-

rently no straightforward way to integrate them into real-world scenarios. Furthermore, we have

made a small attempt to evolve an existing standard by introducing modularity to it, via the merge

command of the Canaveral CLI tool.

7.1 Future Work

The field of Platform Engineering is rapidly advancing and as we continue to build DevScope’s

IDP, it is crucial to stay up-to-date on these developments. The tool created in this study should

not be seen as a final product, but rather a stepping stone towards the broader picture of the future

IDP.

While the initial feedback from the NASA-TLX indicates usability is above average, there is

clear room for improvement. Future work could focus on identifying specific areas of the tool that

users find demanding or frustrating, aiming to reduce cognitive load and enhance user experience.

Furthermore, adopting and integrating emerging standards in the platform engineering domain

should be continuously explored and evaluated.

52

7.1 Future Work 53

Increasing the number of survey respondents, possibly by expanding the survey to include

external users, could provide a more comprehensive understanding of the tool’s usability and areas

for improvement.

In conclusion, this work introduces the new world of Platform Engineering, a new step in

software engineering to support developers. Through the lens of a real use case, it provides an

initial attempt to apply and build upon these new practices. As we continue to explore and develop

in this area, we look forward to the advancements and improvements that will undoubtedly emerge.

Bibliography

[1] John Brooke. “SUS: A quick and dirty usability scale”. In: Usability Eval. Ind. 189 (Nov. 30,
1995).

[2] William R. Shadish, Thomas D. Cook, and Donald T. Campbell. Experimental and quasi-
experimental designs for generalized causal inference. Boston: Houghton Mifflin, 2001.
623 pp. ISBN: 978-0-395-61556-0.

[3] W Theunissen, Derrick Kourie, and Bruce Watson. “Standards and agile software develop-
ment”. In: (Jan. 1, 2003).

[4] Sandra G. Hart. “Nasa-Task Load Index (NASA-TLX); 20 Years Later”. In: Proceedings of
the Human Factors and Ergonomics Society Annual Meeting 50.9 (Oct. 1, 2006). Publisher:
SAGE Publications Inc, pp. 904–908. ISSN: 2169-5067. DOI: 10.1177/154193120605000909.
URL: https://doi.org/10.1177/154193120605000909 (visited on 06/28/2023).

[5] Aaron Bangor, Philip Kortum, and James Miller. “Determining what individual SUS scores
mean: adding an adjective rating scale”. In: Journal of Usability Studies 4.3 (May 1, 2009),
pp. 114–123.

[6] P. Lipton, Simon Moser, and Thomas Spatzier. “Topology and Orchestration Specification
for Cloud Applications Version 1.0”. In: 2013. URL: https://www.semanticscholar.
org/paper/Topology-and-Orchestration-Specification-for-Cloud-
Lipton-Moser/53f1f74521b7c3df4dc8602019890c6cb54b2359 (visited on 06/30/2023).

[7] Alessandro Rossini et al. The Cloud Application Modelling and Execution Language (CAMEL).
Mar. 8, 2017. DOI: 10.18725/OPARU-4339.

[8] Joseph Ingeno. Software architect’s handbook: become a successful software architect by
implementing effective architecture concepts. Birmingham Mumbai: Packt Publishing, 2018.
564 pp. ISBN: 978-1-78862-406-0.

[9] Leonardo Leite et al. “A Survey of DevOps Concepts and Challenges”. In: ACM Computing
Surveys 52.6 (Nov. 14, 2019). Pages: 35, 127:1–127:35. ISSN: 0360-0300. DOI: 10.1145/
3359981. URL: https://doi.org/10.1145/3359981 (visited on 11/28/2022).

[10] Matthew Skelton and Manuel Pais. Team Topologies. First edition. Portland, OR: IT Revo-
lution, 2019. ISBN: 978-1-942788-81-2.

[11] Laura LaBerge et al. How COVID-19 has pushed companies over the technology tipping
point—and transformed business forever. Oct. 2020, p. 9. URL: https://www.mckinsey.
com/capabilities/strategy-and-corporate-finance/our-insights/
how-covid-19-has-pushed-companies-over-the-technology-tipping-
point-and-transformed-business-forever#/ (visited on 06/30/2023).

54

https://doi.org/10.1177/154193120605000909
https://doi.org/10.1177/154193120605000909
https://www.semanticscholar.org/paper/Topology-and-Orchestration-Specification-for-Cloud-Lipton-Moser/53f1f74521b7c3df4dc8602019890c6cb54b2359
https://www.semanticscholar.org/paper/Topology-and-Orchestration-Specification-for-Cloud-Lipton-Moser/53f1f74521b7c3df4dc8602019890c6cb54b2359
https://www.semanticscholar.org/paper/Topology-and-Orchestration-Specification-for-Cloud-Lipton-Moser/53f1f74521b7c3df4dc8602019890c6cb54b2359
https://doi.org/10.18725/OPARU-4339
https://doi.org/10.1145/3359981
https://doi.org/10.1145/3359981
https://doi.org/10.1145/3359981
https://www.mckinsey.com/capabilities/strategy-and-corporate-finance/our-insights/how-covid-19-has-pushed-companies-over-the-technology-tipping-point-and-transformed-business-forever#/
https://www.mckinsey.com/capabilities/strategy-and-corporate-finance/our-insights/how-covid-19-has-pushed-companies-over-the-technology-tipping-point-and-transformed-business-forever#/
https://www.mckinsey.com/capabilities/strategy-and-corporate-finance/our-insights/how-covid-19-has-pushed-companies-over-the-technology-tipping-point-and-transformed-business-forever#/
https://www.mckinsey.com/capabilities/strategy-and-corporate-finance/our-insights/how-covid-19-has-pushed-companies-over-the-technology-tipping-point-and-transformed-business-forever#/

BIBLIOGRAPHY 55

[12] Mayank Gokarna and Raju Singh. “DevOps: A Historical Review and Future Works”. In:
2021 International Conference on Computing, Communication, and Intelligent Systems
(ICCCIS). 2021 International Conference on Computing, Communication, and Intelligent
Systems (ICCCIS). np: 6. Feb. 2021, pp. 366–371. DOI: 10.1109/ICCCIS51004.2021.
9397235.

[13] Nasreen Azad and Sami Hyrynsalmi. “DevOps Challenges in Organizations: Through Pro-
fessional Lens”. In: Software Business. Ed. by Noel Carroll et al. Lecture Notes in Busi-
ness Information Processing. Cham: Springer International Publishing, 2022, pp. 260–277.
ISBN: 978-3-031-20706-8. DOI: 10.1007/978-3-031-20706-8_18.

[14] Ronan Keenan, Nigel Kersten, and Caitlyn O’Connell. 2023 State of DevOps Report - Plat-
form Engineering Edition | Puppet by Perforce. 11. Puppet, Jan. 18, 2023, p. 49. URL:
https://www.puppet.com/resources/state-of-platform-engineering
(visited on 02/04/2023).

[15] Abi Noda et al. “DevEx: What Actually Drives Productivity: The developer-centric ap-
proach to measuring and improving productivity”. In: Queue 21.2 (May 3, 2023), Pages
20:35–Pages 20:53. ISSN: 1542-7730. DOI: 10.1145/3595878. URL: https://dl.
acm.org/doi/10.1145/3595878 (visited on 06/13/2023).

https://doi.org/10.1109/ICCCIS51004.2021.9397235
https://doi.org/10.1109/ICCCIS51004.2021.9397235
https://doi.org/10.1007/978-3-031-20706-8_18
https://www.puppet.com/resources/state-of-platform-engineering
https://doi.org/10.1145/3595878
https://dl.acm.org/doi/10.1145/3595878
https://dl.acm.org/doi/10.1145/3595878

Webography

[16] C. Aaron Cois. DevOps Case Study: Amazon AWS. Feb. 4, 2015. URL: https://insights.

sei.cmu.edu/blog/devops-case-study-amazon-aws/ (visited on 06/25/2023).

[17] C. Aaron Cois. DevOps Case Study: Netflix and the Chaos Monkey. Apr. 29, 2015. URL:

https://insights.sei.cmu.edu/blog/devops-case-study-netflix-

and-the-chaos-monkey/ (visited on 06/25/2023).

[18] Caroline Donnelly. Case study: What the enterprise can learn from Etsy’s DevOps strat-

egy | Computer Weekly. ComputerWeekly.com. June 9, 2015. URL: https : / / www .

computerweekly.com/news/4500247782/Case-study-What-the-enterprise-

can-learn-from-Etsys-DevOps-strategy (visited on 06/25/2023).

[19] Damon Brown. Target CIO explains how DevOps took root inside the retail giant. The

Enterprisers Project. Jan. 16, 2017. URL: https://enterprisersproject.com/

article/2017/1/target-cio-explains-how-devops-took-root-inside-

retail-giant (visited on 06/25/2023).

[20] Stephen Bigelow. What is a Workload in Computing? Data Center. Dec. 2020. URL: https:

//www.techtarget.com/searchdatacenter/definition/workload (visited

on 06/30/2023).

[21] Sandra Hart, Phil So, and Brian Gore. TLX @ NASA Ames - Home. Dec. 15, 2020. URL:

https://humansystems.arc.nasa.gov/groups/TLX/ (visited on 06/28/2023).

[22] Chris Stephenson. The Rise of Internal Developer Platforms | Humanitec. Nov. 28, 2020.

URL: https://humanitec.com/blog/the-rise-of-internal-developer-

platforms (visited on 06/08/2023).

[23] Kaspar Grünberg. The Inner Workings of an Internal Developer Platform | Humanitec.

Apr. 9, 2021. URL: https://humanitec.com/blog/the-inner-workings-of-

an-internal-developer-platform (visited on 06/08/2023).

[24] Kaspar Grünberg. What Is an Internal Developer Platform? | Humanitec. July 29, 2021.

URL: https://humanitec.com/blog/what-is-an-internal-developer-

platform (visited on 06/08/2023).

56

https://insights.sei.cmu.edu/blog/devops-case-study-amazon-aws/
https://insights.sei.cmu.edu/blog/devops-case-study-amazon-aws/
https://insights.sei.cmu.edu/blog/devops-case-study-netflix-and-the-chaos-monkey/
https://insights.sei.cmu.edu/blog/devops-case-study-netflix-and-the-chaos-monkey/
https://www.computerweekly.com/news/4500247782/Case-study-What-the-enterprise-can-learn-from-Etsys-DevOps-strategy
https://www.computerweekly.com/news/4500247782/Case-study-What-the-enterprise-can-learn-from-Etsys-DevOps-strategy
https://www.computerweekly.com/news/4500247782/Case-study-What-the-enterprise-can-learn-from-Etsys-DevOps-strategy
https://enterprisersproject.com/article/2017/1/target-cio-explains-how-devops-took-root-inside-retail-giant
https://enterprisersproject.com/article/2017/1/target-cio-explains-how-devops-took-root-inside-retail-giant
https://enterprisersproject.com/article/2017/1/target-cio-explains-how-devops-took-root-inside-retail-giant
https://www.techtarget.com/searchdatacenter/definition/workload
https://www.techtarget.com/searchdatacenter/definition/workload
https://humansystems.arc.nasa.gov/groups/TLX/
https://humanitec.com/blog/the-rise-of-internal-developer-platforms
https://humanitec.com/blog/the-rise-of-internal-developer-platforms
https://humanitec.com/blog/the-inner-workings-of-an-internal-developer-platform
https://humanitec.com/blog/the-inner-workings-of-an-internal-developer-platform
https://humanitec.com/blog/what-is-an-internal-developer-platform
https://humanitec.com/blog/what-is-an-internal-developer-platform

WEBOGRAPHY 57

[25] Villalba Fernando. How is Score different to the Open Application Model and Kubevela?

Dec. 23, 2022. URL: https://score.dev/blog/score-vs-open-application-

model-kubevela (visited on 06/27/2023).

[26] Kaspar Grünberg. What is a Platform Orchestrator? | Humanitec. July 11, 2022. URL:

https://humanitec.com/blog/what-is-a-platform-orchestrator (vis-

ited on 06/30/2023).

[27] Ron Miller. Port internal development platform gives visibility into DevOps architecture.

TechCrunch. Nov. 3, 2022. URL: https://techcrunch.com/2022/11/03/port-

platform-provides-visibility-into-devops-architecture/ (visited on

06/27/2023).

[28] Lori Perri. What Is Platform Engineering? Gartner. Oct. 5, 2022. URL: https://www.

gartner.com/en/articles/what- is- platform- engineering (visited on

06/09/2023).

[29] Jon Skarpeteig. Hitting the right level of abstractions when building an Internal Devel-

oper Platform. Nov. 24, 2022. URL: https://platformengineering.org/blog/

right-level-of-abstraction-internal-developer-platform (visited on

06/08/2023).

[30] Susa Tünker. How is Score different from other tools? Dec. 16, 2022. URL: https://

score.dev/blog/how-is-score-different-from-other-tools (visited on

06/27/2023).

[31] Susa Tünker. Score - One YAML to rule them all. Nov. 8, 2022. URL: https://score.

dev/blog/score-one-yaml-to-rule-them-all (visited on 06/27/2023).

[32] Nic Cope et al. crossplane/crossplane. original-date: 2018-09-08T00:10:35Z. June 30, 2023.

URL: https://github.com/crossplane/crossplane (visited on 06/30/2023).

[33] Zohar Einy. Alert Management With an Internal Developer Portal | Port. June 27, 2023.

URL: https://www.getport.io/usecases/unify-alerts (visited on 06/27/2023).

[34] Zohar Einy. Port. Section: ecosystem. June 27, 2023. URL: https://internaldeveloperplatform.

org/developer-portals/port/ (visited on 06/27/2023).

[35] Zohar Einy. Spotify Backstage Alternative: Compare Port to Backstage | Port. June 27,

2023. URL: https://www.getport.io/compare/backstage-vs-port (visited

on 06/27/2023).

[36] Luca Galante. Platform Orchestrator. June 30, 2023. URL: https://humanitec.com/

products/platform-orchestrator (visited on 06/30/2023).

[37] Luca Galante. What is platform engineering? June 8, 2023. URL: https://platformengineering.

org/blog/what-is-platform-engineering (visited on 06/08/2023).

[38] Internal Developer Platform. June 19, 2023. URL: https://internaldeveloperplatform.

org/ (visited on 06/25/2023).

https://score.dev/blog/score-vs-open-application-model-kubevela
https://score.dev/blog/score-vs-open-application-model-kubevela
https://humanitec.com/blog/what-is-a-platform-orchestrator
https://techcrunch.com/2022/11/03/port-platform-provides-visibility-into-devops-architecture/
https://techcrunch.com/2022/11/03/port-platform-provides-visibility-into-devops-architecture/
https://www.gartner.com/en/articles/what-is-platform-engineering
https://www.gartner.com/en/articles/what-is-platform-engineering
https://platformengineering.org/blog/right-level-of-abstraction-internal-developer-platform
https://platformengineering.org/blog/right-level-of-abstraction-internal-developer-platform
https://score.dev/blog/how-is-score-different-from-other-tools
https://score.dev/blog/how-is-score-different-from-other-tools
https://score.dev/blog/score-one-yaml-to-rule-them-all
https://score.dev/blog/score-one-yaml-to-rule-them-all
https://github.com/crossplane/crossplane
https://www.getport.io/usecases/unify-alerts
https://internaldeveloperplatform.org/developer-portals/port/
https://internaldeveloperplatform.org/developer-portals/port/
https://www.getport.io/compare/backstage-vs-port
https://humanitec.com/products/platform-orchestrator
https://humanitec.com/products/platform-orchestrator
https://platformengineering.org/blog/what-is-platform-engineering
https://platformengineering.org/blog/what-is-platform-engineering
https://internaldeveloperplatform.org/
https://internaldeveloperplatform.org/

WEBOGRAPHY 58

[39] Paul Kirvan. What is TOSCA (Topology and Orchestration Specification for Cloud Ap-

plications)? – TechTarget Defini. Cloud Computing. Apr. 2023. URL: https://www.

techtarget.com/searchcloudcomputing/definition/TOSCA-Topology-

and-Orchestration-Specification-for-Cloud-Applications (visited on

06/30/2023).

[40] Dennis M. How to Pick the Best Software Development Process - Digital Agile Solu-

tions Software Development Insights. Section: Software Development. Apr. 30, 2023. URL:

https://softwaredevelopmentinsights.com/how-to-pick-the-best-

software-development-process/ (visited on 06/25/2023).

[41] Patrik Oldsberg et al. Backstage. original-date: 2020-01-24T22:39:49Z. Feb. 5, 2023. URL:

https://github.com/backstage/backstage (visited on 02/05/2023).

[42] Chris Stephenson. What is Dynamic Configuration Management? | Humanitec. Feb. 7,

2023. URL: https://humanitec.com/blog/what-is-dynamic-configuration-

management (visited on 06/08/2023).

[43] Jianbo Sun. Introduction | KubeVela. June 25, 2023. URL: https://kubevela.io/

docs/ (visited on 06/30/2023).

[44] Jianbo Sun et al. kubevela/kubevela. original-date: 2020-07-03T06:13:20Z. Feb. 5, 2023.

URL: https://github.com/kubevela/kubevela (visited on 02/05/2023).

[45] Susa Tünker et al. Score. original-date: 2022-10-31T16:17:28Z. June 27, 2023. URL: https:

//github.com/score-spec/spec (visited on 06/27/2023).

[46] Fernando Villalba. Standardization by design | Humanitec. Mar. 21, 2023. URL: https:

//humanitec.com/blog/standardization-by-design (visited on 06/08/2023).

[47] Lei Zhang. OAM | Open Application Model Specification. June 27, 2023. URL: https:

//oam.dev/ (visited on 06/27/2023).

[48] Lei Zhang et al. oam-dev/spec: Open Application Model (OAM). Version 0.3.0. URL: https:

//github.com/oam-dev/spec (visited on 02/16/2023).

https://www.techtarget.com/searchcloudcomputing/definition/TOSCA-Topology-and-Orchestration-Specification-for-Cloud-Applications
https://www.techtarget.com/searchcloudcomputing/definition/TOSCA-Topology-and-Orchestration-Specification-for-Cloud-Applications
https://www.techtarget.com/searchcloudcomputing/definition/TOSCA-Topology-and-Orchestration-Specification-for-Cloud-Applications
https://softwaredevelopmentinsights.com/how-to-pick-the-best-software-development-process/
https://softwaredevelopmentinsights.com/how-to-pick-the-best-software-development-process/
https://github.com/backstage/backstage
https://humanitec.com/blog/what-is-dynamic-configuration-management
https://humanitec.com/blog/what-is-dynamic-configuration-management
https://kubevela.io/docs/
https://kubevela.io/docs/
https://github.com/kubevela/kubevela
https://github.com/score-spec/spec
https://github.com/score-spec/spec
https://humanitec.com/blog/standardization-by-design
https://humanitec.com/blog/standardization-by-design
https://oam.dev/
https://oam.dev/
https://github.com/oam-dev/spec
https://github.com/oam-dev/spec

Appendix A

Listings

1 ap iVers ion : c o r e . oam . dev / v 1 b e t a 1

2 kind : A p p l i c a t i o n

3 metadata :

4 name: d e f a u l t −app # change to your app name

5 spec :

6 components:

7 - name: f i r s t −component

8 type : w e b s e r v i c e # more types available at https://kubevela.

io/docs/end-user/components/references

9 p r o p e r t i e s :

10 image: h e l l o − wor ld

11 p o r t s :

12 - port : 80

13 expose : t rue
14 env:

15 - name: TEST_ENV

16 va lue : "test"

17 t r a i t s :

18 - type : s c a l e r # more types available at https://kubevela.io/

docs/end-user/traits/references

19 p r o p e r t i e s :

20 r e p l i c a s : 2

21 # For App definition, define only components, and possibly

traits

22 # For App deployment, define policies and workflow

23 p o l i c i e s :

24 - name: t a r g e t − prod

59

Listings 60

25 type : t o p o l o g y # more types available at https://kubevela.

io/docs/end-user/policies/references

26 p r o p e r t i e s :

27 c l u s t e r s : ["local"]

28 namespace: "prod"

29 workflow:

30 s t e p s :

31 - name: d e p l o y 2 p r o d

32 type : d ep lo y # more types available at https://kubevela.io/

docs/end-user/workflow/built-in-workflow-defs

33 p r o p e r t i e s :

34 p o l i c i e s : ["target-prod"]

Listing A.1: Default OAM file

1 ap iVers ion : c o r e . oam . dev / v 1 b e t a 1

2 kind : A p p l i c a t i o n

3 metadata :

4 name: eshop −on− c o n t a i n e r s

5 spec :

6 components:

7 - name: seq

8 type : w e b s e r v i c e

9 p r o p e r t i e s :

10 image: d a t a l u s t / seq : l a t e s t

11 env:

12 - name: ACCEPT_EULA

13 va lue : "Y"

14 - name: s q l d a t a

15 type : w e b s e r v i c e

16 p r o p e r t i e s :

17 image: mcr . m i c r o s o f t . com / mssql / s e r v e r :2019− l a t e s t

18 p o r t s :

19 - port : 1433

20 expose : t rue
21 name: s q l d a t a

22 env:

23 - name: ACCEPT_EULA

24 va lue : "Y"

Listings 61

25 - name: SA_PASSWORD

26 va lue : "Pass@word"

27 - name: n o s q l d a t a

28 type : w e b s e r v i c e

29 p r o p e r t i e s :

30 image: mongo

31 - name: b a s k e t d a t a

32 type : w e b s e r v i c e

33 p r o p e r t i e s :

34 image: r e d i s : a l p i n e

35 - name: r a b b i t m q

36 type : w e b s e r v i c e

37 p r o p e r t i e s :

38 image: r a b b i t m q :3−management − a l p i n e

39 p o r t s :

40 - port : 5672

41 expose : t rue
42 name: r a b b i t m q

43 # API’s

44 - name: i d e n t i t y − a p i

45 type : w e b s e r v i c e

46 p r o p e r t i e s :

47 image: c a n a v e r a l c r . a z u r e c r . i o / eshop / i d e n t i t y . a p i : l i n u x −

l a t e s t

48 env:

49 - name: C o n n e c t i o n S t r i n g

50 va lue : S e r v e r = s q l d a t a ; D a t a b a s e = M i c r o s o f t .

eShopOnConta ine r s . S e r v i c e . I d e n t i t y D b ; User Id = sa ;

Password =Pass@word ; E n c r y p t =True ;

T r u s t S e r v e r C e r t i f i c a t e =True
51 p o r t s :

52 - port : 80

53 expose : t rue
54 name: i d e n t i t y − a p i

55 dependsOn:

56 - s q l d a t a
57 - name: c a t a l o g − a p i

58 type : w e b s e r v i c e

59 p r o p e r t i e s :

60 image: c a n a v e r a l c r . a z u r e c r . i o / eshop / c a t a l o g . a p i : l i n u x − l a t e s t

Listings 62

61 env:

62 - name: C o n n e c t i o n S t r i n g

63 va lue : S e r v e r = s q l d a t a ; D a t a b a s e = M i c r o s o f t .

eShopOnConta ine r s . S e r v i c e s . Cata logDb ; User Id = sa ;

Password =Pass@word ; E n c r y p t =True ;

T r u s t S e r v e r C e r t i f i c a t e =True
64 - name: Even tBusConnec t ion

65 va lue : r a b b i t m q

66 p o r t s :

67 - port : 80

68 expose : t rue
69 name: c a t a l o g − a p i

70 - port : 81

71 expose : t rue
72 name: c a t a l o g − a p i g r p c

73 dependsOn:

74 - s q l d a t a
75 - rabbitmq
76 - name: o r d e r i n g − a p i

77 type : w e b s e r v i c e

78 p r o p e r t i e s :

79 image: c a n a v e r a l c r . a z u r e c r . i o / eshop / o r d e r i n g . a p i : l i n u x −

l a t e s t

80 env:

81 - name: C o n n e c t i o n S t r i n g

82 va lue : S e r v e r = s q l d a t a ; D a t a b a s e = M i c r o s o f t .

eShopOnConta ine r s . S e r v i c e s . Order ingDb ; User Id = sa ;

Password =Pass@word ; E n c r y p t =True ;

T r u s t S e r v e r C e r t i f i c a t e =True
83 - name: Even tBusConnec t ion

84 va lue : r a b b i t m q

85 p o r t s :

86 - port : 80

87 expose : t rue
88 name: o r d e r i n g − a p i

89 - port : 81

90 expose : t rue
91 name: o r d e r i n g − a p i g r p

92 dependsOn:

93 - s q l d a t a

Listings 63

94 - rabbitmq
95 - name: o r d e r i n g − b a c k g r o u n d t a s k s

96 type : w e b s e r v i c e

97 p r o p e r t i e s :

98 image: c a n a v e r a l c r . a z u r e c r . i o / eshop / o r d e r i n g .

b a c k g r o u n d t a s k s : l i n u x − l a t e s t

99 env:

100 - name: C o n n e c t i o n S t r i n g

101 va lue : S e r v e r = s q l d a t a ; D a t a b a s e = M i c r o s o f t .

eShopOnConta ine r s . S e r v i c e s . Order ingDb ; User Id = sa ;

Password =Pass@word ; E n c r y p t =True ;

T r u s t S e r v e r C e r t i f i c a t e =True
102 - name: Even tBusConnec t ion

103 va lue : r a b b i t m q

104 p o r t s :

105 - port : 80

106 expose : t rue
107 name: o r d e r i n g − b t

108 dependsOn:

109 - s q l d a t a
110 - rabbitmq
111 - name: payment − a p i

112 type : w e b s e r v i c e

113 p r o p e r t i e s :

114 image: c a n a v e r a l c r . a z u r e c r . i o / eshop / payment . a p i : l i n u x − l a t e s t

115 env:

116 - name: Even tBusConnec t ion

117 va lue : r a b b i t m q

118 p o r t s :

119 - port : 80

120 expose : t rue
121 name: payment − a p i

122 dependsOn:

123 - rabbitmq
124 - name: webhooks − a p i

125 type : w e b s e r v i c e

126 p r o p e r t i e s :

127 image: c a n a v e r a l c r . a z u r e c r . i o / eshop / webhooks . a p i : l i n u x −

l a t e s t

128 env:

Listings 64

129 - name: C o n n e c t i o n S t r i n g

130 va lue : S e r v e r = s q l d a t a ; D a t a b a s e = M i c r o s o f t .

eShopOnConta ine r s . S e r v i c e s . WebhooksDb ; User Id = sa ;

Password =Pass@word ; E n c r y p t =True ;

T r u s t S e r v e r C e r t i f i c a t e =True
131 - name: Even tBusConnec t ion

132 va lue : r a b b i t m q

133 dependsOn:

134 - s q l d a t a
135 - rabbitmq
136 - name: b a s k e t − a p i

137 type : w e b s e r v i c e

138 p r o p e r t i e s :

139 image: c a n a v e r a l c r . a z u r e c r . i o / eshop / b a s k e t . a p i : l i n u x − l a t e s t

140 env:

141 - name: C o n n e c t i o n S t r i n g

142 va lue : b a s k e t . d a t a

143 - name: Even tBusConnec t ion

144 va lue : r a b b i t m q

145 p o r t s :

146 - port : 80

147 expose : t rue
148 name: b a s k e t − a p i

149 - port : 81

150 expose : t rue
151 name: b a s k e t − a p i g r p c

152 dependsOn:

153 - basketdata
154 - i d e n t i t y − api
155 - rabbitmq
156 # # Web Apps

157 # TODO Add - ./ApiGateways/Mobile.Bff.Shopping/apigw:/app/

configuration | May need to create custom image

158 - name: mo b i l e sh o pp in ga p i g w

159 type : w e b s e r v i c e

160 p r o p e r t i e s :

161 image: envoyproxy / envoy:v1 . 1 1 . 1

162 env:

163 - name: I d e n t i t y U r l

164 va lue : h t t p : / / i d e n t i t y − a p i

Listings 65

165 p o r t s :

166 - port : 80

167 expose : t rue
168 # TODO Add - ./ApiGateways/Web.Bff.Shopping/apigw:/app/

configuration | May need to create custom image

169 - name: webshoppingapigw

170 type : w e b s e r v i c e

171 p r o p e r t i e s :

172 image: envoyproxy / envoy:v1 . 1 1 . 1

173 env:

174 - name: I d e n t i t y U r l

175 va lue : h t t p : / / i d e n t i t y − a p i

176 p o r t s :

177 - port : 80

178 expose : t rue
179 - name: webshoppingagg

180 type : w e b s e r v i c e

181 p r o p e r t i e s :

182 image: c a n a v e r a l c r . a z u r e c r . i o / eshop / webshoppingagg: l i n u x −

l a t e s t

183 env:

184 - name: u r l s _ _ b a s k e t

185 va lue : "http://basket-api"

186 - name: u r l s _ _ c a t a l o g

187 va lue : "http://catalog-api"

188 - name: u r l s _ _ o r d e r s

189 va lue : "http://ordering-api"

190 - name: u r l s _ _ i d e n t i t y

191 va lue : "http://identity-api"

192 - name: u r l s _ _ g r p c B a s k e t

193 va lue : "http://basket-api:81"

194 - name: u r l s _ _ g r p c C a t a l o g

195 va lue : "http://catalog-api:81"

196 - name: u r l s _ _ g r p c O r d e r i n g

197 va lue : "http://ordering-api:81"

198 - name: Cata logUrlHC

199 va lue : "http://catalog-api/hc"

200 - name: Order ingUrlHC

201 va lue : "http://ordering-api/hc"

202 - name: I d e n t i t y U r l H C

Listings 66

203 va lue : "http://identity-api/hc"

204 - name: BasketUrlHC

205 va lue : "http://basket-api/hc"

206 - name: PaymentUrlHC

207 va lue : "http://payment-api/hc"

208 p o r t s :

209 - port : 80

210 expose : t rue
211 dependsOn:

212 - nosq ldata
213 - s q l d a t a
214 - i d e n t i t y − api
215 - rabbitmq
216 - ordering − api
217 - c a t a l o g − api
218 - basket − api
219 - name: m o b i l e s h o p p i n g a g g

220 type : w e b s e r v i c e

221 p r o p e r t i e s :

222 image: c a n a v e r a l c r . a z u r e c r . i o / eshop / m o b i l e s h o p p i n g a g g : l i n u x −

l a t e s t

223 env:

224 - name: u r l s _ _ b a s k e t

225 va lue : "http://basket-api"

226 - name: u r l s _ _ c a t a l o g

227 va lue : "http://catalog-api"

228 - name: u r l s _ _ o r d e r s

229 va lue : "http://ordering-api"

230 - name: u r l s _ _ i d e n t i t y

231 va lue : "http://identity-api"

232 - name: u r l s _ _ g r p c B a s k e t

233 va lue : "http://basket-api:81"

234 - name: u r l s _ _ g r p c C a t a l o g

235 va lue : "http://catalog-api:81"

236 - name: u r l s _ _ g r p c O r d e r i n g

237 va lue : "http://ordering-api:81"

238 - name: Cata logUrlHC

239 va lue : "http://catalog-api/hc"

240 - name: Order ingUrlHC

241 va lue : "http://ordering-api/hc"

Listings 67

242 - name: I d e n t i t y U r l H C

243 va lue : "http://identity-api/hc"

244 - name: BasketUrlHC

245 va lue : "http://basket-api/hc"

246 - name: PaymentUrlHC

247 va lue : "http://payment-api/hc"

248 p o r t s :

249 - port : 80

250 expose : t rue
251 dependsOn:

252 - nosq ldata
253 - s q l d a t a
254 - i d e n t i t y − api
255 - rabbitmq
256 - ordering − api
257 - c a t a l o g − api
258 - basket − api
259 - name: o r d e r i n g − s i g n a l r h u b

260 type : w e b s e r v i c e

261 p r o p e r t i e s :

262 image: c a n a v e r a l c r . a z u r e c r . i o / eshop / o r d e r i n g . s i g n a l r h u b

: l i n u x − l a t e s t

263 env:

264 - name: Even tBusConnec t ion

265 va lue : r a b b i t m q

266 - name: I d e n t i t y U r l

267 va lue : h t t p : / / i d e n t i t y − a p i

268 dependsOn:

269 - nosq ldata
270 - s q l d a t a
271 - i d e n t i t y − api
272 - rabbitmq
273 - ordering − api
274 - c a t a l o g − api
275 - basket − api
276 - name: webspa

277 type : w e b s e r v i c e

278 p r o p e r t i e s :

279 image: c a n a v e r a l c r . a z u r e c r . i o / eshop / webspa: l i n u x − l a t e s t

280 env:

Listings 68

281 - name: ASPNETCORE_ENVIRONMENT

282 va lue : "Development"

283 - name: Cata logUrlHC

284 va lue : "http://catalog-api/hc"

285 - name: Order ingUrlHC

286 va lue : "http://ordering-api/hc"

287 - name: I d e n t i t y U r l H C

288 va lue : "http://identity-api/hc"

289 - name: BasketUrlHC

290 va lue : "http://basket-api/hc"

291 - name: PaymentUrlHC

292 va lue : "http://payment-api/hc"

293 p o r t s :

294 - port : 80

295 expose : t rue
296 dependsOn:

297 - webshoppingagg
298 - webshoppingapigw
299 t r a i t s :

300 - type : ga teway

301 p r o p e r t i e s :

302 c l a s s I n S p e c : t rue
303 domain: "spa.eshop.hugosousa.me"

304 ht tp :

305 "/": 80

306

307 - name: webmvc

308 type : w e b s e r v i c e

309 p r o p e r t i e s :

310 image: c a n a v e r a l c r . a z u r e c r . i o / eshop / webmvc: l i n u x − l a t e s t

311 env:

312 - name: ASPNETCORE_ENVIRONMENT

313 va lue : "Development"

314 - name: P u r c h a s e U r l

315 va lue : "http://webshoppingapigw"

316 - name: Cata logUrlHC

317 va lue : "http://catalog-api/hc"

318 - name: Order ingUrlHC

319 va lue : "http://ordering-api/hc"

320 - name: I d e n t i t y U r l H C

Listings 69

321 va lue : "http://identity-api/hc"

322 - name: BasketUrlHC

323 va lue : "http://basket-api/hc"

324 - name: PaymentUrlHC

325 va lue : "http://payment-api/hc"

326 p o r t s :

327 - port : 80

328 expose : t rue
329 dependsOn:

330 - webshoppingagg
331 - webshoppingapigw
332 t r a i t s :

333 - type : ga teway

334 p r o p e r t i e s :

335 c l a s s I n S p e c : t rue
336 domain: "mvc.eshop.hugosousa.me"

337 ht tp :

338 "/": 80

339 - name: webhooks − c l i e n t

340 type : w e b s e r v i c e

341 p r o p e r t i e s :

342 image: c a n a v e r a l c r . a z u r e c r . i o / eshop / webhooks . c l i e n t : l i n u x −

l a t e s t

343 env:

344 - name: Token

345 va lue : "6168DB8D-DC58-4094-AF24-483278923590"

346 - name: WebhooksUrl

347 va lue : "http://webhooks-api"

348 - name: S e l f U r l

349 va lue : "http://webhooks-client"

350 p o r t s :

351 - port : 80

352 expose : t rue
353 dependsOn:

354 - webhooks − api
355 - name: w e b s t a t u s

356 type : w e b s e r v i c e

357 p r o p e r t i e s :

358 image: c a n a v e r a l c r . a z u r e c r . i o / eshop / w e b s t a t u s : l i n u x − l a t e s t

359 env:

Listings 70

360 - name: ASPNETCORE_ENVIRONMENT

361 va lue : "Development"

362 - name: C a t a l o g U r l

363 va lue : "http://catalog-api/hc"

364 - name: O r d e r i n g U r l

365 va lue : "http://ordering-api/hc"

366 - name: B a s k e t U r l

367 va lue : "http://basket-api/hc"

368 - name: I d e n t i t y U r l

369 va lue : "http://identity-api/hc"

370 - name: PaymentUrl

371 va lue : "http://payment-api/hc"

372 - name: mvc

373 va lue : "http://webmvc/hc"

374 - name: spa

375 va lue : "http://webspa/hc"

376 # - name: HealthChecksUI__HealthChecks__0__Name

377 # value: "WebMVC HTTP Check"

378 # - name: HealthChecksUI__HealthChecks__0__Uri

379 # value: "http://webmvc/hc"

380 # - name: HealthChecksUI__HealthChecks__1__Name

381 # value: "WebSPA HTTP Check"

382 # - name: HealthChecksUI__HealthChecks__1__Uri

383 # value: "http://webspa/hc"

384 # - name: HealthChecksUI__HealthChecks__2__Name

385 # value: "Web Shopping Aggregator GW HTTP Check"

386 # - name: HealthChecksUI__HealthChecks__2__Uri

387 # value: "http://webshoppingagg/hc"

388 # - name: HealthChecksUI__HealthChecks__3__Name

389 # value: "Mobile Shopping Aggregator HTTP Check"

390 # - name: HealthChecksUI__HealthChecks__3__Uri

391 # value: "http://mobileshoppingagg/hc"

392 # - name: HealthChecksUI__HealthChecks__4__Name

393 # value: "Ordering HTTP Check"

394 # - name: HealthChecksUI__HealthChecks__4__Uri

395 # value: "http://ordering-api/hc"

396 # - name: HealthChecksUI__HealthChecks__5__Name

397 # value: "Basket HTTP Check"

398 # - name: HealthChecksUI__HealthChecks__5__Uri

399 # value: "http://basket-api/hc"

Listings 71

400 # - name: HealthChecksUI__HealthChecks__6__Name

401 # value: "Catalog HTTP Check"

402 # - name: HealthChecksUI__HealthChecks__6__Uri

403 # value: "http://catalog-api/hc"

404 # - name: HealthChecksUI__HealthChecks__7__Name

405 # value: "Identity HTTP Check"

406 # - name: HealthChecksUI__HealthChecks__7__Uri

407 # value: "http://identity-api/hc"

408 # - name: HealthChecksUI__HealthChecks__8__Name

409 # value: "Payment HTTP Check"

410 # - name: HealthChecksUI__HealthChecks__8__Uri

411 # value: "http://payment-api/hc"

412 # - name: HealthChecksUI__HealthChecks__9__Name

413 # value: "Ordering SignalRHub HTTP Check"

414 # - name: HealthChecksUI__HealthChecks__9__Uri

415 # value: "http://ordering-signalrhub/hc"

416 # - name: HealthChecksUI__HealthChecks__10__Name

417 # value: "Ordering HTTP Background Check"

418 # - name: HealthChecksUI__HealthChecks__10__Uri

419 # value: "http://ordering-backgroundtasks/hc"

420 p o r t s :

421 - port : 80

422 expose : t rue
423 t r a i t s :

424 - type : ga teway

425 p r o p e r t i e s :

426 c l a s s I n S p e c : t rue
427 domain: "health.eshop.hugosousa.me"

428 ht tp :

429 "/": 80

430

431 p o l i c i e s :

432 - name: t opo logy − l o c a l

433 type : t o p o l o g y

434 p r o p e r t i e s :

435 c l u s t e r s : ["local"]

436

437 workflow:

438 s t e p s :

439 - name: d e p l o y 2 d e f a u l t

Listings 72

440 type : d ep lo y

441 p r o p e r t i e s :

442 p o l i c i e s : ["topology-local"]

Listing A.2: eShopOnContainers OAM file

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	List of Listings
	1 Introduction
	1.1 Context
	1.2 Motivation
	1.3 Problem
	1.4 Solution Perspective
	1.5 Document Structure

	2 Background
	2.1 DevOps
	2.1.1 Benefits, Impact, Challenges, and Best Practices
	2.1.2 Case Studies and Success Stories
	2.1.3 Conclusion

	2.2 Platform Engineering
	2.2.1 Principles of Platform Engineering
	2.2.2 When is Platform Engineering Applicable?

	2.3 IDP
	2.3.1 Dynamic Configuration Management
	2.3.2 Standardization by Design
	2.3.3 Foundations
	2.3.4 Pain Points Solved by IDP
	2.3.5 Parts of an IDP
	2.3.6 Building an IDP
	2.3.7 Benefits of an IDP with Platform Orchestrator

	2.4 DevEx
	2.4.1 Internal Developer Platforms and DevEx

	2.5 Team Topologies
	2.5.1 Overview of the Book
	2.5.2 The Four Team Topologies
	2.5.3 The Platform Team in Detail
	2.5.4 Relation to Platform Engineering and Internal Developer Platform

	3 State of the Art
	3.1 Standards
	3.1.1 OAM
	3.1.2 Score
	3.1.3 Comparison

	3.2 Platform Orchestrator
	3.2.1 Backstage
	3.2.2 Port
	3.2.3 KubeVela
	3.2.4 Crossplane
	3.2.5 Humanitec's Platform Orchestrator

	4 Case Study
	4.1 eShopOnContainers
	4.1.1 Architecture
	4.1.2 Deployment Options and Requirements
	4.1.3 Integration with OAM

	5 Implemented Tools for Aiding Developers Adopting OAM
	5.1 Cataloguer
	5.2 Canaveral CLI
	5.2.1 Requirements Elicitation
	5.2.2 The default Command
	5.2.3 The merge Command
	5.2.4 The definitions Command
	5.2.5 The create Command

	6 Validation
	6.1 Design
	6.1.1 Lab
	6.1.2 Tasks
	6.1.3 Evaluation

	6.2 Results
	6.3 Discussion
	6.4 Threats to Validity

	7 Conclusion
	7.1 Future Work

	Bibliography
	Webography
	A Listings

