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Abstract

The success of a software system is highly correlated to its reliability, which is a growing concern
for mobile applications due to their ubiquitous nature and large user base. In this context, Design-
by-Contract proposes a systematic specification of contracts that define the interaction between
components to build more robust and correct software. However, the few existing studies suggest
a low usage of this methodology by practitioners. Although its theoretical advantages are widely
discussed in the literature, the lack of empirical evidence about its benefits and the absence of
standard patterns and tools is considered to be the main reason for the industry’s skeptical view on
its adoption.

This research is the first large-scale empirical study on the presence and use of contracts in
Android applications. By evaluating approximately 4,000 applications, it is possible to derive
recommendations for practitioners, researchers, and tool builders. More specifically, this study
considers applications written in Java or Kotlin and explores, among other questions, (i) how
and to what extent contracts are used in Android applications, (ii) how contract usage evolves
in an application, and (iii) whether contracts are used safely in the context of program evolution
and inheritance. The results show that (i) although most applications do not specify contracts,
annotation-based approaches are the most popular among practitioners , (ii) was not found any
positive correlation between the number of contracts and the increase in the program’s size, and
(iii) there are many potentially unsafe specification changes when the program evolves and in
subtyping relationships.

These results show the necessity for additional efforts to provide more specialized libraries
for contract specification, including in the Java and Kotlin languages. At the same time, it is also
necessary to reinforce the dissemination and teaching of this software design methodology to close
the gap between the industry and academia.

Keywords: design by contract, android applications, assertions, verification, software reliability

ACM Classification: General and reference → Cross-computing tools and techniques → Empir-
ical studies; General and reference → Cross-computing tools and techniques → Reliability.
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Resumo

O sucesso de um sistema de software está altamente correlato com a sua fiabilidade. Esta é uma
preocupação crescente em aplicações móveis devido à sua natureza ubíqua e ao seu grande número
de utilizadores. Neste contexto, Design-by-Contract defende a especificação sistemática de con-
tratos que definem a interação entre componentes para construir software mais robusto e cor-
reto. Contudo, os poucos estudos existentes sugerem uma baixa utilização desta metodologia por
profissionais. Apesar das vantagens teóricas serem amplamente discutidas na literatura, a falta de
evidência empírica sobre os seus benefícios e a carência por padrões e bibliotecas standards são
consideradas as principais razões pela visão cética da indústria relativamente à sua adoção.

Este trabalho é o primeiro estudo empírico de larga escala sobre a utilização e a presença de
contratos em aplicações Android. Deste modo, ao analisar cerca de 4,000 aplicações, é possível
extrair um conjunto de recomendações para outros profissionais, investigadores e criadores de
ferramentas e bibliotecas. Mais especificamente, este estudo considera aplicações escritas em
Java e Kotlin e explora, entre outras questões, (i) em que medida e de que forma contratos são
utilizados em aplicações Android, (ii) de que forma os contratos evoluem numa aplicação e (iii) se
contratos são utilizados de forma segura no contexto de evolução do programa e de herança. Os
resultados mostram que (i) apesar da maioria dos programas não usarem contratos, representações
baseadas em anotações são as mais populares entre profissionais, (ii) não foi encontrada qualquer
correlação positiva entre o número de contratos e o aumento do tamanho da aplicação, e (iii)
existem várias ocorrências de alterações de especificações potencialmente não seguras quando o
programa evolui e no contexto de relações de subtyping.

Estes resultados mostram a necessidade por esforços em construir bibliotecas e ferramentas
mais especializadas para especificação de contratos, incluindo nas linguagens Java e Kotlin. Ao
mesmo tempo, é também necessário reforçar a disseminação e ensino desta metodologia de design
de software para aproximar a indústria da academia.

Palavras-Chave: design by contract, aplicações android, asserções, verificação, fiabilidade do
software

Classificação ACM: General and reference → Cross-computing tools and techniques → Empiri-
cal studies; General and reference → Cross-computing tools and techniques → Reliability.
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"For I saw with my own eyes sights
Which rough sailors, whose only schooling

Is observation and long experience,
Take as knowledge, evident and sure,

And which those with higher intelligence
Who use their skills and learning

To penetrate earth’s secrets (if they could),
Dismiss as false or feebly understood"

Luís de Camões, The Lusiads, Canto V
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Chapter 1

Introduction

This chapter provides an introduction and an overview of the problem under study. Section 1.1

presents the context of the problem and its main concepts. Section 1.2 addresses the motivation

that leads to this work. Section 1.3 defines the problem under investigation, its research questions,

and its main contributions. Finally, Section 1.4 presents the structure of this document.

1.1 Context

Software is increasingly ubiquitous in our daily life, and its complexity is ever-increasing. This is

both an opportunity — to advance human well-being and extend its capabilities — and a challenge

— a greater dependency on software and its correct functioning. Since software is becoming more

embedded in our day-to-day life, considering reliability while designing and developing software

is crucial for today’s society.

According to Meyer (1997), software reliability encompasses correctness — the capability to

accomplish tasks as defined by the specification — and robustness — the flexibility to react cor-

rectly to abnormal conditions. In this context, software components are often seen as the weakest

link when addressing the reliability of a system (Murthy, 2018). Hence, to address both quality fac-

tors, and supported by earlier works in formal verification, formal specification, and Hoare logic

(Naur, 1966; Hoare, 1969; Floyd, 1993), Bertrand Meyer consolidated the Design-by-Contract

(DbC) methodology, which advocates for formal and precise specifications, contracts, in software

components to define the interaction between clients and suppliers and to assert each party’s rights

and obligations. Those specifications can are expressed as pre-conditions, post-conditions, or class

invariants. A pre-condition defines the properties that must hold when a method is invoked. A

post-condition states the properties that the method guarantees when it returns. Lastly, invariants

are specifications associated with fields that must hold during the object’s lifetime.

Generally, when a contract is broken, the program throws an exception, which helps detect

errors early and facilitates debugging (Aniche, 2022). Additionally, they serve as living docu-

mentation by clearly stating the expectations of each module during their interaction which is

fundamental in reusability patterns (Wei et al., 2011).

1



Introduction 2

However, the contract specification support depends on each language, and most do not pro-

vide native support for Design-by-Contract. Still, as is the case for Java and Kotlin languages,

there are some constructs like asserts and exceptions and even third-party libraries that allow de-

velopers to take advantage of this technique in their projects (Dietrich et al., 2017). Nonetheless,

these multiple non-native approaches contribute to a fragmentary and non-standardized usage of

DbC.

1.2 Motivation

The success of a software system is highly correlated to its reliability. This fact is even more

apparent when considering critical systems whose failure could result in loss of life, significant

property damage, or damage to the environment (Knight, 2002). For this reason, investigating

techniques capable of improving software reliability, such as DbC, is particularly interesting to

the industry, academia, and society in general.

Moreover, object-oriented programming is an industry standard and supports most software

built today. This paradigm relies on dividing work between flexible, modular, and reusable soft-

ware components that interact with each other. This requires particular caution when designing

software so those values — reusability, extendibility, and compatibility — don’t come at the cost

of reliability (Meyer, 1997). Features usually found in those languages, such as inheritance, poly-

morphism, and dynamic binding, can also present additional challenges to designing correct and

robust components (Xu and Xu, 2010).

This urgency to build reliable software is a growing concern for mobile applications. Many

companies are adopting iOS and Android as target platforms for their apps in critical domains

such as mobility, health, finance, and government. Additionally, according to Tao and Edmunds

(2018), smartphone users have reached 2.5 billion by 2018, with over 2 million apps available

on the App Store and Google Play. Additionally, data from 2022 shows that Android represents

approximately 43% of the overall operative system market share, followed by Windows (29%),

and then iOS (18%) (Stats, 2023). Therefore, faults in mobile apps, particularly Android apps,

can impact millions of users. Hence, the importance of reliability techniques research for mobile

applications.

Since the 1980s, many researchers have advocated Design-by-Contract as an efficient tech-

nique to aid the identification of failures (Aniche, 2022), improve code understanding (Fairbanks,

2019), and improve testing efforts (Tantivongsathaporn and Stearns, 2006) which directly or indi-

rectly contribute to the improvement of reliability. Still, to our knowledge, there are no previous

studies on the presence and usage of contracts in Android applications or any study that includes

the Kotlin language. Even though there is some investigation on standard Java applications (Estler

et al., 2014; Dietrich et al., 2017), as Jha and Nadi (2020) states, researchers need to distinguish

mobile applications when performing studies related to programming language features due to

their differences in nature, size, and libraries used. Therefore, the present work not only fills a gap
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in the empirical study of contracts but also represents a source of knowledge to compare how the

adoption and usage of contracts in Android applications differ from standard Java applications.

After all, more empirical evidence about what types of constructs and language features prac-

titioners use to represent contracts can help builders create or improve existing libraries and tools

to increase DbC adoption. This knowledge also serves practitioners to understand DbC’s current

practices better, helping them discover and decide between different implementation approaches

of this technique for their projects. Other researchers can also use this data to draw additional

studies and to foster further discussion along with the increasing interest in these empirical studies

about language features.

1.3 Problem Statement

Design-by-Contract has been receiving attention from academia since its formulation in the 1980s.

Still, although a considerable amount of work presumes the advantages and limitations of the

technique, there are not sufficient empirical studies on the usage of DbC by practitioners. More

particularly, studies targeting Kotlin or Android applications are non-existent to our knowledge.

This lack of information about how the industry uses contracts is an obstacle to the continuous

creation and improvement of tools and libraries by researchers and builders (Schiller et al., 2014).

Additionally, insufficient empirical evidence about the benefits of contracts hampers their adoption

by practitioners and the establishment of DbC as a software design standard (Tantivongsathaporn

and Stearns, 2006).

Therefore, this work aims to study the presence and usage of contracts in a large dataset

of Android applications written in Java or Kotlin while also analyzing whether practitioners use

contracts safely in the context of inheritance relations and while the project evolves. The generated

empirical data leads to a more comprehensive view of the adoption rate and usage patterns among

Android developers and the language features employed.

To support this study, an artifact is developed to execute an automated examination of contracts

in Android applications and produce the empirical data necessary for this work’s discussion. This

artifact is written in Java and is based on the static code analysis tool proposed by Dietrich et al.

(2017).

1.3.1 Research Questions

In this work, we address the following research questions (RQ):

RQ1. How and to what extent are contracts used in Android applications?
Are Android developers using contracts in their applications? What types of representations

are used? Are pre-conditions, post-conditions, and invariants used equally?

RQ2. How does contract usage evolve in an application?
As time evolves, do applications that use contracts reinforce its usage? How does the number

of contracts change between two versions of the same application?
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RQ3. Are contracts used safely in the context of program evolution and inheritance?
Are there instances where a contract evolution can lead to a client break? Do we find contracts

that violate Liskov’s Substitution Principle (LSP)?

1.3.2 Contributions

The main contribution of this work is to increase current knowledge about the usage and adop-

tion of contracts by real-world applications and, more particularly, by Android applications. As

mentioned earlier, more empirical data about contract adoption and usage in the industry can be

valuable for practitioners, tool builders, and researchers. In particular, this study fills the missing

data related to Android applications and the Kotlin language.

Additionally, as a result, this study provides an extension of the tool proposed by Dietrich et al.

(2017) to analyze contracts in Java and Kotlin source code. In this process, this tool was refactored

to facilitate the extension of its support to other languages.

In summary, the contributions of this dissertation are:

• Creation and categorization of a list of language features, tools, and libraries to represent

contracts in Android applications.

• Creation of a pipeline that builds a large-scale dataset of Java and Kotlin open-source

projects, including inclusion criteria and size optimization.

• Extension of the static analysis tool proposed by Dietrich et al. (2017) to analyze Kotlin

code and to investigate additional Android-specific contracts.

• Reporting of empirical data about contract adoption and usage as a result of the study of a

large-scale dataset of Android applications.

• A set of recommendations for practitioners, researchers, and tool builders about contract

adoption and research.

1.4 Document Structure

This document is structured as follows:

• Chapter 2 introduces the reader to fundamental concepts and discussions related to the

methodology under study, Design-By-Contract. It also summarizes related work, includ-

ing empirical studies and their findings on contract, assertions, and annotations usage.

• Chapter 3 describes the proposed solution by explaining the dataset creation process and

how the static analysis tool produces data that support each research question’s discussion.

This chapter also presents the contract constructs under study and how they are categorized.

• Chapter 4 presents the results and findings of the empirical study of a large-scale Android

applications dataset.
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• Finally, Chapter 5 presents final remarks about this work, describing its main results by

listing a set of implications to practitioners, tool builders, and researchers.



Chapter 2

Background and Related Work

This chapter introduces fundamental concepts related to the technique under investigation, Design-

by-Contract, and discusses related work. The section 2.1 defines software reliability and intro-

duces the notion of robustness and correctness, which are essential to understand DbC. Then,

section 2.2 explains the motivations and philosophy behind the technique and discusses its ad-

vantages and limitations. Last, Section 2.3 presents the existing empirical studies on contracts,

asserts, and annotations usage.

2.1 Software Reliability

The definition of software reliability has been proposed by many authors with a general consensus.

For instance, Myers (1976) states that reliability is the probability that the software will execute

for a particular period of time without failures, considering the cost of each failure encountered.

McConnell (2004) defines reliability as the ability of a system to perform its requested functions

under stated conditions whenever required - having a long mean time between failures. Similarly,

(Meyer, 1997) states that reliable software is software that is both correct - performs its exact

tasks, as defined by the specification - and robust - reacts appropriately to abnormal conditions.

Thus, in Meyer’s definition, robustness complements correctness. While correctness ensures that

the system does what it is supposed to do, robustness makes sure that when a case arises outside

the specification, the system does not cause a catastrophic event. Due to Meyer’s important role in

Design-by-Contract, his definition of software reliability is central to our work.

Meyer’s definition of correctness highlights another important idea: correctness is a relative

notion. As the author states, a software system is neither correct nor incorrect by itself. We can

only determine the correctness of a system when we compare it against a certain specification.

Therefore, a correct software system is a system that is consistent with its specification. By impli-

cation, we can only build reliable software if we have a well-defined specification. As we’ll see in

the next sections, the role of specifications is central to the Design-by-Contract methodology.

6



2.2 Design-By-Contract Methodology 7

2.2 Design-By-Contract Methodology

2.2.1 The Problem and Motivations

The Design-by-Contract (DbC) term was formulated by Bertrand Meyer while designing the Eiffel

language. Eiffel was made public in 1986 and was conceived as a tool to create reliable commercial

software by providing native support for contracts specification. Meyer’s vision of contracts as

lightweight specifications was an important milestone, but the notion of contracts dates earlier to

the works of Robert Floyd, Tony Hoare, and Edgar Dijkstra on logical reasoning in procedural

programming and formal specification and verification of software (Hoare, 1969; Floyd, 1993;

Fairbanks, 2019).

New challenges to achieve reliable software systems were uncovered with the rise of object-

oriented programming (OOP) and particularly with one of its core values, reusability. This paradigm

is based on the concept of objects (and classes) that, while encapsulating data and behavior, in-

teract with each other to perform a task. Programming languages that support this paradigm offer

many mechanisms that allow the developer to make use of encapsulation and inheritance to en-

hance reusability. Still, as Jazequel and Meyer (1997) argues, the lack of a precise specification in

a reusable module can lead to awful consequences, such as the ones that will be presented next.

A well-known example of this problem is the Ariane 5 Flight 501 explosion in 1996. The

issue was caused by the software system when trying to convert an unexpectedly large value to a

16-bit signed integer. Since the value exceeded the range representable by 16 bits, an overflow

error was thrown and not properly handled (Lann, 1997). In this case, we have a clear example

of a robustness issue when the system was not able to "graciously" handle the unexpectedly large

number generated for the horizontal bias. Additionally, there was a lack of a precise and visible

specification that the horizontal bias should fit in 16-bit signed integer. In this specific example,

the introduction of a precise specification in the reusable component could have led to the team

finding the issue during the development or validation phase before the flight.

More recently, in 2014, a security vulnerability known as the "Heartbleed Security Vulner-

ability" was found in the OpenSSL library that provides an implementation of internet security

protocols like SSL and TLS. In short, due to a missing security check, an attacker could send in a

heartbeat request a payload length much larger than the actual record size, receiving copies from

the actual payload and the memory content adjacent to it (Carvalho et al., 2014). Thus, attackers

could easily retrieve passwords and private keys by exploiting this issue. Once again, the devel-

opment and testing team did not detect a missing check while implementing and reviewing the

code. This could have been avoided if a precise specification had been added to the code bringing

attention to this behavior.

2.2.2 The Notion of Contract

In order to prevent problems like the ones described in the previous section, Bertrand Meyer advo-

cates for the specification of contracts that regulates the interaction between software components.
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As the author argues, since object-oriented programming is all about creating modular components

that many other modules will reuse, an issue in robustness or correctness can quickly propagate,

increasing its negative effect (Meyer, 1997). Therefore, with contracts, modules cooperate on

the basis of precisely defined specifications avoiding the occurrence or the propagation of faulty

behavior. Those contracts not only ensure the correct functioning at runtime but also serves as

documentation for developers, code reviews, and testers. This is extremely important in critical

systems and systems that deal with complex financial operations (Murthy, 2018; Aniche, 2022).

This idea of contracts is built on top of the very notion of contracts present in society. A

contract is an agreement between at least two parties that defines mutual rights and obligations.

Therefore, a contract protects both sides by clearly identifying which side is to blame if the contract

is broken. As described in section 2.1, a specification, or contract, can help to measure the system’s

reliability and can be translated by a correctness formula of the form of

{P}A{Q}

which means that "any execution of A, starting in a state where P holds, will terminate in a

state where Q holds". Hence, a contract between a client and a supplier in software can assume

three forms: pre-condition, post-condition, or class invariant. Given the correctness formula, the

P assertion is called a pre-condition and Q the post-condition.

A pre-condition specifies what needs to hold when the service is invoked. The client is bound

to satisfy the requirements as stated by the pre-conditions, and the supplier is ensured that certain

properties will be true after the routine call.

A post-condition specifies the state that must be ensured on return. It is the supplier’s responsi-

bility to perform its job as stated by the post-condition. It assures the client that certain properties

will hold after the routine call.

In a more verbose explanation, a contract can be read as the supplier stating that "if you

promise to call the routine r with the pre-conditions satisfied, then I, in return, promise to deliver

a final state in which the post-conditions are satisfied" (Meyer, 1997).

A classic example of applied pre-conditions and post-conditions is considering a push(x)

method that adds x to the end of a stack. Providing that the method is invoked by the client

only when the stack is not full (pre-condition), the supplier promises to add x to the last position

of the stack and to increase the counter by 1 (post-conditions). The client benefits from having the

stack updated, and the supplier does not need to verify whether the stack is full, simplifying its

processing.

Additionally, contracts can also be specified in the form of class invariants. Contrary to pre-

conditions and post-conditions, which are associated with methods, class invariants are defined

for classes’ properties to ensure the consistency of those properties and, by implication, the con-

sistency of the object itself between two consecutive methods invocations.

The question that may arise now is, what should happen when a contract is broken? Generally,

an exception is thrown when a client or a supplier fails to fulfill its obligations. It’s important to
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1 decrement is
2 require
3 count > 0
4 do
5 count := count - 1
6 ensure
7 count = old count - 1
8 end

Listing 2.1: An example of Eiffel asserts on a method that decrements a count.

understand that a contract violation should point to a problem that needs to be fixed rather than

hidden by exception-handling mechanisms (Meyer, 1997). Therefore, for example, contracts are

not intended to validate human input (Aniche, 2022). Still, the development team can decide to

disable assertions in runtime or to provide efficient exception handling and use contracts only for

documentation purposes.

2.2.3 Programming Languages Support

As previously mentioned, the Eiffel language, conceived by Bertrand Meyer in 1985, is intrinsi-

cally associated with contracts. As seen in Listing 2.1, Eiffel provides two keywords - require and

ensure - to specify pre-conditions and post-conditions, respectively. Eiffel also offers a keyword -

invariant - to specify class invariants (see Listing 2.2). A violation of either assertion will throw

an exception indicating a fault. More recently, and first appearing in 2009, Dafny1 is a program-

ming language based on the concept of "Correct by Construction" that offers native support for

specifications in a similar approach to Eiffel.

The first example, Listing 2.1, presents a decrement method that deducts the value one from a

count property. Through the require keyword, the method specified the pre-condition that before

being called, the client must ensure that the count is greater than zero. Additionally, through the

ensure keyword, the same method guarantees that after its execution, the counter will be one value

less than its previous state. If the client fails to fulfill its obligation — only invoke decrement when

the count is greater than zero — then the method does not guarantee to do its job correctly.

In the second Eiffel example, Listing 2.2, a class invariant is being defined through the invari-

ant keyword. In this case, during the object’s lifecycle, the products_count property needs to be

always greater than zero. If this is not verified, the contract is violated, and the program halts its

execution.

At one point, C# also offered native support for contracts through the .NET Framework.

The System.Diagnostics.Contracts namespace provided a way to specify pre-conditions, post-

conditions, and object invariants. Although the C# language is out of the scope of this work,

it’s relevant to note that the .NET team identified that the overwhelming usage of the contracts

1Dafny website: https://dafny.org

https://dafny.org


Background and Related Work 10

1 class
2 SHOPPING_CART
3 feature
4 products_count : INTEGER
5 invariant
6 positive: products_count > 0
7 end

Listing 2.2: An example Eiffel invariant to assert that the products count in a shopping cart
is always greater than zero.

feature was for null handling, which is consistent with the existing empirical studies (Estler et al.,

2014; Schiller et al., 2014). Therefore, the Code Contracts feature was deprecated and replaced

by the nullable references types (Microsoft Learn contributors, 2021).

More relevant to this present study, Java and Kotlin do not offer native support for contract

specifications (Chalin, 2006) unless through the assert keyword. Still, some libraries allow Java

and Kotlin developers to follow DbC on their projects through some constructs. Later in this doc-

ument, more specifically in section 3.2, different approaches and constructs that allow developers

to specify contracts in Java and Kotlin languages will be presented; still, as a reference to this sec-

tion, the example on Listing 2.3 shows how by importing the javax.validation.constraints package,

developers can use some of its annotations to specify pre-conditions and post-conditions. In this

example, we use the @NotNull annotation to assert that the method addProductToList expects a

not null input (pre-condition). If this is respected, the method ensures that, through the @Size

annotation, it will return a list with at least one item (post-condition).

Over the years additional effort has been made to bring a standard contract notation through

the Java Modelling Language (JML). Today, this work continues through the OpenJML project

(Dietrich et al., 2017).

2.2.4 Advantages and Limitations

The motivation behind DbC is to provide a systematic approach to guarantee software reliabil-

ity. This is done through implementations that satisfy well-understood specifications known as

1 @Size(min = 1)
2 List<String> addProductToList(@NotNull String product) {
3 ... add product to the list ...
4 return list;
5 }

Listing 2.3: An example of using annotations to specify pre-conditions and post-conditions
in Java.
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contracts (Meyer, 1992). According to Murthy (2018), the degree of reliability (encompassing

correctness and robustness as advocated by Meyer (1997)) is correlated to the strength of the con-

tract. Stronger and more expressive contracts have a higher probability of catching errors. The

opposite is also true. A program may be correct against a weak contract because this contract does

not offer enough expressiveness to verify incorrect behavior (Naumchev, 2019). To overcome this,

Wei et al. (2011) propose a tool for automatic inference of strong contracts based on the generally

simple ones written by developers.

Another proposal from DbC is to render unnecessary the commonly found method - known

as defensive programming - of adding arbitrary, often redundant, checks that increase software

complexity (Murthy, 2018). Still, as Aniche (2022) argues, there is a distinction between input

validation and contracts, and both practices can be used together.

Theoretical literature has a broad (although not unanimous) consensus that DbC helps to im-

prove software reliability (Murthy, 2018; Wei et al., 2011; Hollunder et al., 2012). The different

advantages appointed by various authors assert this consensus. Generally, authors suggest that

DbC (i) improves code understanding (Fairbanks, 2019; Naumchev, 2019; Wei et al., 2011; Silva

et al., 2020), (ii) helps identify bugs earlier and diagnose the failure (Wei et al., 2011; Aniche,

2022; Casalnuovo et al., 2015; Dietrich et al., 2017; Schiller et al., 2014), and (iii) contributes

to better tests (Wei et al., 2011; Aniche, 2022; Schiller et al., 2014; Algarni and Magel, 2018;

Tantivongsathaporn and Stearns, 2006).

Firstly, DbC improves code understanding by embedding functional requirements in the code

(Naumchev, 2019). Methods can be quickly and better understood by the clear and logical spec-

ification of what will happen (post-conditions) and the required state (pre-conditions) that leads

to the desired effect. This benefits the developer writing code and the code review process (Fair-

banks, 2019). Therefore, as contracts are formally defined for each service, there is a smaller

probability of incomprehension between components (client and supplier) that could lead to errors

(Silva et al., 2020). However, the same authors state that in some contexts, such as component-

based software development, the standard DbC approach is insufficient to specify clear and visible

contracts. Since components can be self-contained units of deployment, contracts can be hidden

as implementation details and, therefore, not visible to clients.

Secondly, the consequence of a contract violation is the halt of the program execution through

an exception throw. In other words, when a pre-condition, post-condition, or class invariant is not

satisfied, there is an alert that an unexpected behavior is occurring (Aniche, 2022). Additionally,

by gaining insight into whether the exception was thrown by a pre-condition, a post-condition, or

a class invariant, we isolate and localize the responsible — whether the client or the supplier —

for the faulty behavior.

Lastly, contracts help to write better tests. The goal of a test is to probe that a method im-

plementation matches its specification; therefore, developers can only write effective tests if they

understand the system’s specifications which can be clearly stated through contracts. This is seen

in how pre-conditions allow developers to filter unimportant arguments (Algarni and Magel, 2018).

In a study by Tantivongsathaporn and Stearns (2006), the authors claim that adopting DbC also
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decreases the time needed to perform tests.

Nevertheless, the ability to specify requirements as contracts, held by many as the primary

motivation for DbC, is considered to be, by others, a limitation in standard DbC approaches,

creating a gap between requirements and code implementation. Naumchev (2019) states that DbC

mechanisms fail to capture some formal properties of certain forms, such as abstract data types

axioms or temporal properties. The literature also mentions a lack of support for reusing recurrent

specifications (Naumchev, 2019; Silva et al., 2020). Those limitations can hinder a more consistent

and broad usage of the technique.

Still, authors recognize the advantages of teaching DbC as an integral part of software design

and implementation modules. The study conducted by Carvalho et al. (2020) supports the previ-

ous statement, where undergraduate students found that learning DbC helped them to understand

software concepts better. Additionally, the authors observed that teaching the technique to stu-

dents without previous programming knowledge was easier than to those with already some skills.

Huisman and Monti (2021) designed a visual tool for high school students to learn programming

with a focus on contract specifications.

2.2.5 Liskov Substitution Principle and Contracts

The Liskov Substitution Principle (LSP) is one of the five SOLID principles. These principles were

organized by Robert C. Martin in 2000 to help to build flexible and maintainable object-oriented

software. Since then, these principles have been considered part of the “software engineering

cannon” (Danisovszky et al., 2019). More specifically, LSP was coined by Barbar Liskov and

derived from the concept of Design-by-Contract by Bertrand Meyer.

This principle states that derived classes should be substitutable for their superclasses. In

other words, if a client class uses a superclass and we substitute this use with a child class, then it

should continue to work correctly (Martin, 2003).

The Listing 2.4 presents an example of a Liskov Substitution Principle violation in Java. It

presents a superclass Account and a subclass JuniorAccount. This subclass inherits the withdraw

method from the superclass, adding the condition that a junior client can only withdraw a maxi-

mum of 100 euros. We now consider a BankClientService class that contains a property of Account

type. According to this principle, the client class is expected to be able to use any of the classes

interchangeably, given the superclass specification. This will not be true for this example because

while it can use an instance of Account to withdraw 200 euros, it will fail to do so if it tries the

same with the JuniorCurrentAccount; hence, a violation of the LSP.

A violation of this principle is primarily an issue with assumptions. In the previous example,

from the designer’s perspective, a JuniorAccount is an Account. Still, since their behavior is differ-

ent, it can lead to clients failing when making wrong assumptions. The importance of assumptions

is why LSP is fundamental in the context of DbC.

When a superclass is annotated with contracts, the client is informed about the assumptions and

the behavior he can rely on when using that class. Therefore, according to LSP, it is expected that

each subclass "will expect no more and provide not less" than their superclass (Martin, 2003). In
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1 class Account {
2 public int balance;
3 void withdraw(int amount) {
4 this.balance -= amount;
5 }
6 }
7

8 class JuniorAccount extends Account {
9 @Override

10 void withdraw(int amount) {
11 assert(amount <= 100);
12 super.withdraw(balance);
13 }
14 }

Listing 2.4: An example of a Liskov Substitution Principle violation.

this context, we can reformulate the LSP by stating that a subclass is substitutable for its superclass

if and only if:

• If pre-conditions are no stronger than the superclass method.

• If post-conditions are no weaker than the superclass method.

In the previous example of Listing 2.4, the subclass JuniorAccount added the pre-condition that

the amount to withdraw must be less or equal to 100 and, therefore, strengthened the pre-condition

existing in the superclass that was none; thus, the example violates the Liskov Substitution Prin-

ciple.

2.3 Empirical Studies

This section explores related work on empirical studies about the usage of contracts by practition-

ers, including the studies’ methodologies and main findings. It also presents important annotation

studies and asserts usage while relating their findings to contracts.

2.3.1 On Contracts Usage

Over the years, some empirical studies have investigated how contracts are used in practice and

if DbC results effectively in fewer defects. Reviewing these studies, we can conclude that there

is little evidence that contracts contribute to increased software reliability. This is contrary to the

already mentioned theoretical studies that assert DbC as one of the main techniques for software

reliability. Despite this, it can also mean that developers do not use DbC to its potential or that

present studies face challenges in adequately measuring quality metrics. Additionally, the different

experiments usually agree that most developers don’t specify contracts, which means there is low

adoption of DbC. For this reason, we may be compelled to agree with Tantivongsathaporn and
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Stearns (2006) in that the industry does not widely adopt this technique due to the lack of studies

that show a significant positive impact from its adoption.

Blom et al. (2002b) and Tantivongsathaporn and Stearns (2006) conducted studies with group

projects composed of university students to understand the correlation of quality and time metrics

with the application of DbC. Both works are only able to conclude weak positive indications. They

could not confirm any impact on quality (maybe due to the difficulty in measuring quality). Still,

they demonstrated that DbC required fewer project person-to-hour resources. Tantivongsathaporn

and Stearns (2006) state that DbC contributes to less time spent on writing tests. Following this

work, Blom et al. (2002a) presented a DbC-based development strategy and a case study applying

it to an enterprise project. In this case, they found evidence that the approach resulted in fewer

errors and decreased development time. In another study, after applying DbC to an automobile

enterprise project, Zhou et al. (2017) concluded that the technique increased reliability in software

components. Components with contracts presented fewer defects than those without contracts.

Chalin (2006) investigated 85 open-source and proprietary Eiffel projects with 7.9 million

lines of code (MLOC). This study found that 5% of code lines were asserts. This is a considerable

amount, but one needs to remember that the authors investigated Eiffel projects, and contracts

are one of the distinctive features of the language. Of these asserts, 50% were pre-conditions,

40% were post-conditions, and 7.1% were class invariants. This preference for pre-conditions is

consistent with other studies. Dietrich et al. (2017) reported to have found 22.969 pre-conditions,

112 post-conditions, and 100 invariants in the last version of their dataset programs. Schiller et al.

(2014) found that 68% of written contracts were pre-conditions. By intuition, we may say that

it is easier and more natural to derive assumptions that must be verified as true for a method to

behave correctly (pre-conditions). Additionally, some developers may see unit tests as equivalents

to post-conditions since both can be used assert the output of the method (Dietrich et al., 2017). On

the other hand, Estler et al. (2014) did not find any preference. Schiller et al. (2014) designed an

automatic contract inference tool that was able to infer more post-conditions than pre-conditions.

This supports our intuition that post-conditions are less used because they are seen as redundant

or because they are more challenging for developers to derive and not because there are fewer

post-conditions than pre-conditions.

Schiller et al. (2014) explored 3.5 MLOC from 95 C# projects that use Code Contracts. The

authors report 43.823 contract clauses being found. Again, it is relevant to stress that those projects

were already known to be using contracts, which doesn’t allow us to draw conclusions about the

contract’s adoption numbers. The authors also categorized contracts into three categories accord-

ing to their usage: Common-case contracts that enforce program properties, Repetitive contracts

that repeat statements present in the code, and Application-specific contracts which enforce richer

semantic properties. They found that over 73% of contracts were related to null checking (this is

consistent with Estler et al. (2014)). Moreover, the authors explain this lack of expressiveness to

annotation burden, lack of support, and lack of training. They also emphasize the importance of

creating design patterns alongside tools and libraries.
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Estler et al. (2014) analyzed a dataset of 21 Eiffel, C# and Java projects with more than 260

MLOC. As in Schiller et al. (2014), those projects were selected for being known to be equipped

with contracts. Therefore, the computed proportion of methods containing specifications (around

40%) may not provide a real insight into how popular is contracts’ usage. Those contracts are

mostly null checks (for the examined Java projects, more than 88% pre-conditions, more than

28% pre-conditions, and more than 50% invariants include null checks). Contrary to other stud-

ies (Schiller et al., 2014; Dietrich et al., 2017) Estler et al. (2014) did not find a developer bias

for pre-conditions over post-conditions but found that pre-conditions are typically bigger (with

more clauses) than post-conditions. Again, this points to developers being more comfortable with

designing pre-conditions. By analyzing the evolution of projects through different versions, the

authors concluded that the average number of clauses per specification (contract strength) is sta-

ble over time and that the method’s implementation changes more frequently than its specification.

Still, they warned that, throughout the program’s evolution, strengthening contracts might be more

frequent than weakening (although they admit that more data is required). This can indicate some

unsafe evolution of contracts.

Lastly, Dietrich et al. (2017) investigated 176 of the most popular Java projects in the Maven

repository, which translated to over 351 MLOC. The results show that the majority of programs

don’t use contracts significantly. This is a common perception. Another significant contribution

was categorizing six different types of contracts — Conditional Runtime Exceptions (CRE), As-

sertions, Annotations, and others — and identifying the various contract constructs available in

Java or third-party libraries for each category. The authors found that CREs are the most used

category, followed by asserts. This is expected since both can be expressed through Java’s features

without requiring third-party libraries. The authors explain that the dataset can suffer from some

bias since it is composed mainly of libraries and not end-user applications, which may explain why

the use of annotations is low. They also use that fact to explain the prevalence of pre-conditions

over post-conditions. Since libraries are to be used by multiple clients, they use pre-conditions to

provide a defensive barrier over their own methods. Still, as mentioned earlier, this dominance of

pre-conditions is consistent with other studies (Chalin, 2006; Schiller et al., 2014). The authors

also studied contract usage through the program’s evolution to find that projects that use contracts

maintain their usage stable or even expand it. They also reported some unsafe evolution of con-

tracts. This can happen when a method strengthens its pre-conditions - enforcing new rules that

the client may not be prepared to submit to - or weakens its post-conditions - breaking the previous

guarantees made to its clients. They also found many violations of the Liskov Substitute Principle

(with prevalence in the annotation type). According to this principle, a sub-type can only weaken

pre-conditions or strengthen post-conditions and class-invariants from its parent (A.Feldman et al.,

2006).

2.3.2 On Asserts Usage

While the Design-by-Contract literature frequently uses the assertion word, this should not be

confused with the assert instruction found in languages like C or Java. Typically, in the context
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of DbC, assertion refers to a way of expressing contract specifications. As previously mentioned,

the assert keyword may be used to specify contracts, but there are other approaches, such as

annotations and CREs, among others. Still, asserts are one of the most popular forms of contracts

(Dietrich et al., 2017) and, therefore, empirical studies related to this tool are relevant for the

discussion on contracts.

Kudrjavets et al. (2006) performed a study on two Microsoft Corporation components with a

code base mainly written in C and C++. Their main conclusion is that increased asserts density

results in a decrease in faulty density. The authors also reported that, in most cases, equipping files

with asserts was more effective for fault detection than some static analysis tools.

Kochhar and Lo (2017) studied a dataset of 185 Apache Java projects available on GitHub to

determine the correlation between assertion usage and defects and to underuse how usage relates

to code ownership and developer experience. They found that adding asserts contributes to fewer

defects, especially when many developers are involved. This agrees with reports from Kudrjavets

et al. (2006) but is not supported by Counsell et al. (2017) that analyzed two industrial Java systems

and found no evidence that asserts were related to the number of defects. Kochhar and Lo (2017)

also concluded that developers with more ownership and experience use asserts more often, which

shows that more advanced programmers see it as valuable practice. In line with other previously

mentioned studies for contracts (Schiller et al., 2014; Estler et al., 2014), most uses are related to

null-checking.

2.3.3 On Annotations Usage

Over the last few years, academia has dedicated significant studies to annotation adoption and

usage. Although an annotation doesn’t necessarily mean a contract specification, as stated earlier,

some annotations can be used as assertions for specifying contracts. Therefore, those studies are

valuable when discussing contracts in practice besides showing the community’s interest in the

empirical investigation of language features. This section discusses important annotation studies

and relates their findings to contracts.

There is a general understanding that there is an ever-growing use of annotations among practi-

tioners (Yu et al., 2021; Grazia and Pradel, 2022). Contrary to Dietrich et al. (2017) that found low

use of annotations-based contracts, we expect to detect a high usage percentage of this contract

category.

Yu et al. (2021) conducted a study on 1,094 GitHub open-source projects to investigate how

annotations are used, evolve, and impact error-proneness. They found a median value of 1.707

annotations per project, denoting this language feature’s popularity, with some developers overus-

ing it. Most annotations are associated with String values (62.57%) and then with Primitive types

(14.98%). They also found a strong positive correlation between annotations usage and developer

ownership and that there is some evidence that their use contributes to fewer faults. A relevant

implication made by the authors is the need for better training and tools to help derive better an-

notations. Other authors made a similar claim for contracts (Schiller et al., 2014). Additionally,
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developers with higher ownership use annotations more often, which agrees with the findings by

Kochhar and Lo (2017) related to assertion usage.

Grazia and Pradel (2022) investigated the evolution of type annotations in 9,655 Python pro-

totypes. This is relevant for contract studying when assuming that some type of annotations can

act as contracts. For instance, annotating a method’s parameter type as an Integer bounds the

client to satisfy that requirement and avoids the supplier having to check for the input type in the

routine’s body. In the same way, annotating a return type gives the client more assurance of what

he is expected to receive from the routine. The authors reported that although type annotations

usage is increasing, less than 10% of potential elements are being annotated. This contradicts the

(general) annotations overuse reported by Yu et al. (2021). More importantly, the study found that

once added, 90.1% of type annotations are never updated. This indicates that specifications are

more stable than implementations which is desirable. Estler et al. (2014) reported a similar find-

ing related to the stability of contracts while the program evolves. Also relevant is that most type

annotations were associated with parameter and return types and less on variable types. Remem-

bering that not all type annotations may be contracts, this may share some common ground on the

developer’s bias between pre-conditions, post-conditions, and class invariants. By last, the authors

found that adding type annotations increased the number of detected type errors. This motivates

the general use of these features to improve software reliability.

2.3.4 Summary

The research works presented in the previous sections assert the community’s interest in studying

language features and their relation with software reliability. However, it is understood that the

existing studies are insufficient to provide a comprehensive view of the state of affairs, especially

on contract adoption and usage. Most of those works were conducted using a dataset of projects

known a priori to be using contracts (Schiller et al., 2014; Estler et al., 2014). Other studies are

solely focused on the Eiffel language, where the use of contracts is expected (Chalin, 2006). Con-

sequently, there is a large gap in the literature about how popular contracts are in the industry. We

consider the works of Dietrich et al. (2017) an important milestone in contract empirical research.

Still, that work examined mostly library applications which can lead to a bias in the results. This

is mostly seen in how the annotations studies showed a rise in its popularity and even an overuse,

but (Dietrich et al., 2017) found low usage of this feature. Therefore, the research opportunities

on contracts are still many and of interest to the community.
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Methodology

This chapter presents and describes the proposed approach to address the research questions pro-

posed in chapter 1. Firstly, section 3.1 describes the dataset, including its origin and building

process. Then, section 3.2 focus on a central part of this work: listing the constructs and defining

the contracts categories we propose to study in this work. Finally, section 3.3 explains how the

contract analysis tool examines the dataset to produce the data required to answer each research

question focusing on its three main components: the usage, evolution, and inheritance studies.

3.1 Dataset

This work examines how and to what extent contracts are used in Android applications. As more

applications are explored, we can assert with a higher certainty that the results propose a more

complete and reliable representation of reality. Therefore, the value of this study broadly correlates

to the number of applications analyzed.

In this section, we first introduce the source of the Android projects, which will be evaluated

through the analysis tool. Then, we outline the pipeline that creates and prepares the dataset

containing those projects.

3.1.1 Data Source

As this work aims to study the presence and use of contracts by practitioners, our dataset is com-

posed of real-world applications. These applications were obtained from F-droid1, an alternative

app store listing over 4.000 free and open-source projects. The fact that it has a large number of

open-source apps (with public source code) on a wide range of domains makes F-Droid a good

option. Apart from native Android applications written in Java or Kotlin, the catalog also contains

projects that use hybrid frameworks (e.g., React Native) that we must exclude from our dataset.

1https://f-droid.org (accessed 6 June 2023)
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3.1.2 Dataset Construction

The dataset that will be evaluated by the contracts tool is built with a pipeline consisting of various

Python scripts. This pipeline filters, downloads, and structures the dataset to be easily read by the

analysis tool. Figure 3.1 presents all steps in the pipeline.

1. Download F-Droid
index

2. Remove non-Github
projects

3. Filter projects

4. Get two versions for
each project

5. Clone projects

6. Clean dataset

7. Organize dataset

F-Droid

Figure 3.1: Dataset pipeline

The first step in the pipeline is to download the F-Droid index, which is a list of URLs for

each project available in the catalog. Excluding this step, all the following steps are data source

independent, meaning the pipeline can easily be used with origins other than F-Droid.

Next, we filter projects listed in this F-Droid index based on the following criteria:

• The application source code is hosted in GitHub;

• The application source code is either Java or Kotlin;

• The GitHub project is not archived;

• The GitHub project has had a commit since 2018.

These inclusion criteria ensure that the project’s source code is easily accessible (through

GitHub, written mainly in Java or Kotlin (the languages we are interested in studying) while guar-

anteeing the project is active and relevant. This step also retrieves additional meta-information
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about each project, including 1) the application name; 2) the GitHub project URL; 3) the source

code primary language; 4) the number of GitHub watchers; 5) the number of GitHub stars; 6) the

number of contributors; 7) the last commit date; 8) the number of merged pull requests; 9) the

number of closed pull requests; and 10) the percentage of accepted pull requests. This information

can help to characterize the dataset.

We try to retrieve two versions for each one of the filtered projects, which is a required step

for the evolution study. We do this by storing a list of the URLs pointing to the two GitHub re-

lease versions. Although our script resolved most of the versioning schemes found, some projects

required manual handling to determine which version was the first and the last.

Finally, the pipeline clones the projects contained in the versions list. As an optional step,

every file that is neither a Java nor a Kotlin file is removed from the dataset, which helps to

decrease its size. In the end, the project folders are zipped and organized in the structure expected

by the contracts tool, as exemplified next:

dataset

accountName-projectName

accountName-projectName-0.zip

accountName-projectName-1.zip

...

All program versions are grouped in a main folder labeled with the GitHub account and the

project’s names. Each version contains as a suffix its index (0 or 1) according to whether they are

the first version or the last. This is the dataset folder that the analysis tool will use to examine the

contracts’ presence and usage.

From the initial list of 4,070 projects in the F-Droid index retrieved on May 21, 2023, we

got 3,215 hosted in GitHub, 3,141 non-duplicated URLs, and 2,390 projects after filtering by the

inclusion criteria. This dataset translated to an overall size of 138,45GB. However, after applying

the optimization script to delete non-desirable files, like images, the size was reduced to 98,26GB.

3.2 Contracts Constructs and Classification

As introduced in section subsection 2.2.3, Java and Kotlin do not offer a native approach to declare

contracts as seen in languages like Eiffel. Still, there are language features and libraries — e.g.

annotations, exceptions, and asserts — that can be used to express contracts in Java and Kotlin

programs. Therefore, it’s crucial to identify those constructs and categorize them. The contracts

tool needs to be able to capture those constructs in the analyzed source code.

We adopted and supported the five categories proposed by Dietrich et al. (2017), which include

Conditional Runtime Exceptions (CREs), APIs, Assertions, Annotations, and Others.

3.2.1 Conditional Runtime Exceptions

When an unhandled exception is thrown, the program halts its execution. This means that an

exception can be used to signal a contract violation. It’s important to note that the exception itself
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does not represent a contract but needs to be associated with a previous check — for example, an

exception thrown inside an if-else block — to be considered so.

The Java (and Kotlin) language offers many exceptions that can be used for this purpose, such

as the IllegalArgumentException. The android.util package offers additional exceptions that we

are also interested in analyzing, such as the case of the AndroidRuntimeException. Appendix A

lists all exceptions being considered by our analysis tool. We expanded the list proposed by Di-

etrich et al. (2017) from 6 to 74 exceptions. Since the exception does not restrict any use case,

it depends on the practitioner’s interpretation, and the context, if the exception is associated with

a contract specification or not. We are also interested in a particular exception, the Unsupporte-

dOperationException, which, according to the Java documentation, is thrown to indicate that the

requested operation is not supported. As Dietrich et al. (2017) argues, this is the strongest possible

pre-condition and can not be satisfied by any client.

In the example in Listing 3.1 we identify the presence of an IllegalArgumentException that

is thrown when the contract shoppingCart.isEmpty() is not respected. In this case, the method

proceedWithCheckout states that it can only perform its task when the shoppingCart has at least

one item. Therefore, this is an example of a pre-condition.

1 public void proceedWithCheckout(List<Item> shoppingCart) {

2 if (shoppingCart.isEmpty()) {

3 throw new IllegalArgumentException();

4 }

5 ...

6 }

Listing 3.1: An example of a method that uses an IllegalArgumentException to signal a
contract violation.

3.2.2 APIs

Over the years, some libraries have proposed APIs that consist of wrappers around conditional

exceptions and other basic constructs. This contributes to a simpler, more verbose, and explicit

representation of contracts. We are interested in the four APIs listed in Table 3.1 and, more

particularly, in the methods presented in Appendix B.

Table 3.1: List of APIs that provide contract representations.

APIs packages

org.apache.commons.lang.Validate.*
org.apache.commons.lang3.Validate.*

com.google.common.base.Preconditions.*
org.springframework.util.Assert.*
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1 import org.apache.commons.lang3.Validate
2

3 fun addToShoppingCart(items: List<Item>): List<Item> {
4 Validate.notEmpty(items)
5 shoppingCart.addAll(items)
6 return shoppingCart
7 }

Listing 3.2: An example of a Kotlin method that uses the notEmpty method from the
Apache’s Validate class to specify a pre-condition.

In the first case, Apache Commons offers the Validate2 class that according to the official

documentation “assists in validating arguments”, which suggests a pre-condition usage. The same

documentation also states that the validation methods follow the following principles:

• A null argument leads to a NullPointerException.

• A non-null argument leads to an IllegalArgumentException.

• An index issue in a collection-type structure leads to an IndexOutOfBoundsException.

We can understand from those principles that the methods provided by the Validate class are

simply wrapping exceptions that we have already listed in section 3.2.1. Still, we can see in the

example of Listing 3.2 that this API contributes to cleaner code compared to a raw CRE-based

solution since we can specify the contracts in a single line and with meaningful wording. In this

example, we are declaring a pre-condition items list is not empty. In other words, the method

addToShoppingCart guarantees that if the client fulfills its obligation to provide a non-empty list

of items, it will be able to perform its job correctly.

Another example of an API is the Guava library from Google, which includes the Precondi-

tions3 class. In this case, the official documentation clearly states that the class includes “static

convenience methods that help a method or constructor check whether it was invoked correctly

(whether its pre-conditions have been met)”. In the example of Listing 3.3 we specify the pre-

condition that the membership discount can only be applied when the user has the member status.

Lastly, Spring Framework also provides the Assert4 class with methods to assist in validating

arguments. In the example of Listing 3.4 we specify the pre-condition that the order’s items must

not be empty. If this happens, the assert throws an IllegalArgumentException. Since this library is

to be used within the Spring framework, we are not expected to find occurrences of its use in the

2https://commons.apache.org/proper/commons-lang/apidocs/org/apache/commons/
lang3/Validate.html (accessed 4 June 2023)

3https://guava.dev/releases/19.0/api/docs/com/google/common/base/Preconditions.
html (accessed 4 June 2023)

4https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/
springframework/util/Assert.html (accessed 4 June 2023)

https://commons.apache.org/proper/commons-lang/apidocs/org/apache/commons/lang3/Validate.html
https://commons.apache.org/proper/commons-lang/apidocs/org/apache/commons/lang3/Validate.html
https://guava.dev/releases/19.0/api/docs/com/google/common/base/Preconditions.html
https://guava.dev/releases/19.0/api/docs/com/google/common/base/Preconditions.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/util/Assert.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/util/Assert.html
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1 import com.google.common.base.Preconditions
2

3 fun applyMembershipDiscount(user: User) {
4 Preconditions.checkArgument(user.isMember)
5 ...
6 }

Listing 3.3: An example of a Kotlin method that uses the checkArgument method from the
Guavas’s Preconditions class to specify a pre-condition.

Android applications we’ll analyze. However, as we want to continue to support what (Dietrich

et al., 2017) presented in their study, we are still including it in ours too.

As we can perceive from the three different APIs and their documentation, they are built to

be used as pre-conditions. The same libraries do not offer any equal approach to specify post-

conditions which clearly shows a bias from tool builders into pre-conditions over post-conditions.

Nevertheless, and against the documentation guidelines, practitioners can still use any of those

API’s methods to check post-conditions.

3.2.3 Assertions

Assertions have been introduced in Java 1.4 and are specified through the assert reserved key-

word. It helps practitioners to verify conditions that must be true during runtime. JVM throws an

AssertionError if the condition is false. However, JVM disables assertion validation by default, re-

quiring it to be explicitly enabled. This means the practitioner may be assuming that the contracts

specified through assertions will be validated at runtime when in fact the assertions are disabled.

This leads to an incorrect, and potentially dangerous, assumption. Having that in mind, assertions

can easily be used to check pre and post-conditions as shown in the example in Listing 3.5. In this

case, the contract associated with the addToShoppingCart method defines two pre-conditions - the

list of items to add to the shopping cart must have a size of greater than zero and smaller or equal

to ten - and a post-condition - the items added to the shopping cart will be present in the shopping

cart list.

1 import org.springframework.util.Assert
2

3 fun createOrder(order: Order) {
4 Assert.notEmpty(order.items, "Order must have at least one item")
5 ...
6 }

Listing 3.4: An example of a Kotlin method that uses the notEmpty method from the Spring’s
Assert class to specify a pre-condition.
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1 public List<Item> addToShoppingCart(List<Item> items){
2 assert !items.isEmpty();
3 assert items.size() <= 10;
4 shoppingCartItems.addAll(items);
5 assert shoppingCartItems.containsAll(items);
6 return shoppingCartItems;
7 }

Listing 3.5: An example of a Java method that uses the asserts to specify pre and post-
conditions.

Kotlin also has its own assert. However, contrary to the Java version, assert in Kotlin is

a function and not a reserved word. This means that any class can define a method with the

name assert, which makes it harder for the analysis tool to distinguish between Kotlin’s assert

or a developer’s custom method that does something else. Additionally, contrary to Java, Kotlin

always executes the assert expression and only uses the -ea JVM flag to decide whether to throw

the exception, which can cause problems on performance-sensitive applications.

Additionally, Kotlin offers other methods — check(), checkNotNull(), require(), and requireNot-

Null() — which, although they throw an IllegalArgumentException or an IllegalStateException

instead of an AssertionError, they were added to the assertions category because of their syntac-

tic similarities. The example on Listing 3.6 uses Kotlin’s methods to specify the same pre and

post-conditions as in the previous Java example on Listing 3.5.

1 fun addToShoppingCart(items: List<Item>): List<Item> {

2 assert(items.isNotEmpty())

3 require(items.size <= 10)

4 shoppingCartItems.addAll(items)

5 check(shoppingCartItems.containsAll(items))

6 return shoppingCartItems

7 }

Listing 3.6: An example of a Kotlin method that uses the assert, require and check methods
to specify pre and post-conditions.

3.2.4 Annotations

Annotations are metadata added to the program providing information that can be used at compile

time or runtime to perform further actions. Java provides many annotations through the java.lang

package. Table 3.2 lists the annotation packages we are particularly interested in studying in the

context of contracts. This is an expansion over Dietrich et al. (2017)’s original list with the addition

of android.annotation and the androidx.annotation packages. Appendix C provides a more the list

of annotations analyzed from each package.
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Table 3.2: List of packages contains annotations for contracts specification.

Annotation packages

javax.annotation.* (JSR305)
javax.annotation.concurrent.* (JSR305)

javax.validation.constraints.* (JSR303, JSR349)
org.jetbrains.annotations.*

org.intellij.lang.annotations.*
edu.umd.cs.findbugs.annotations.*

android.annotation.*
androidx.annotation.*

The annotation-based approach is particularly interesting due to two reasons. Firstly, many

annotations can be associated with the method’s arguments (pre-conditions), the method’s return

values (post-conditions), or the class properties (invariants). Secondly, since annotations are usu-

ally added to the method’s signature or to the class property, there is a greater separation between

the contract specification and the service’s implementation. This means that annotations, like

in the Eiffel’s approach, do not increase the complexity of the method’s implementation, which

happens with CREs, APIs, and assertion-based approaches.

In the example in Listing 3.7 we see how we can use annotations from the javax.validation-

.constraints.* packages to specify contracts. The method states that it can only perform its job,

assuring that it will return a list with a minimum size of 1 (post-condition), if the item identifier

is not null and the quantity is greater or equal to one (pre-conditions). At the same time, the

class property items is associated with a class invariant that states that the shopping cart can

only contain ten items at maximum. Revisiting our earlier statement, we can see in this example

that adding contracts through annotations does not require adding extra checks to the method’s

implementation, contributing to cleaner code.

1 import javax.validation.constraints.*

2

3 class ShoppingCart {

4 @Size(max=10)

5 private val items: List<Item> = mutableListOf()

6

7 @Size(min=1) fun addItem(@NotNull itemUUID: String, @Min(1) quantity: Int):

List<Item> {

8 ...

9 }

10 }

Listing 3.7:
An example of a Kotlin class that uses annotations from javax.validation.constraints.* to
specify contracts.



Methodology 26

1 fun sendBirthdayMessage(birthdate: String?) {
2 isBirthdateValidOrElseThrow(birthdate)
3 val birthdaySplit = birthdate.split("/") // compilation error
4 ...
5 }
6

7 fun isBirthdateValidOrElseThrow(birthdate: String?) {
8 if (birthdate == null) {
9 throw IllegalArgumentException()

10 }
11 ...
12 }

Listing 3.8: An example of Kotlin code that does not compile due to a non-safe call on the
split method.

3.2.5 Others

As mentioned in chapter 2, there are open initiatives in the Java world, like OpenJML and jCon-

tractor, to bring a standard contract notation. As Dietrich et al. (2017) argues, their use is rare and,

therefore, we are also not including them in our study.

Still, we extended the analysis tool to support a particular type of contract introduced in Kotlin

1.3. Kotlin Contracts are an experimental feature that allows the developer to state a method’s

behavior to the compiler explicitly.

Let’s consider the example on Listing 3.8. There is a method sendBirthdayMessage that splits

the birthdate string by the ’/’ character. Before trying to split the string, a second method is invoked

to perform some validations in the birthdate, including checking whether it is null. Although we

can understand that when the control reaches the split call, the birthdate will never be null due to

the validation in the isBirthDateValidOrElseThrow method, the compiler is not able to understand

so, throwing the error “Kotlin: Only safe (?.) or non-null asserted (!!.) calls are allowed on a

nullable receiver of type String?”.

This is the kind of situation — when the developer knows more than the compiler — in that

Kotlin contracts can be useful to establish a contract between the two parts. In the example of

Listing 3.9 we see how to use the contract expression to assure the compiler that if the method

returns, then the birthdate will not be null. In this example, the compiler knows that split is secure

since birthdate will never be null at that point.

This feature, although still liable to receive changes in the future, offers more capabilities that

broaden its use but that are out of this document’s scope. Since it is based on pre-conditions and

post-conditions to specify a contract between two parts — the developer and the compiler — we

decided to include it in our study.
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1 import kotlin.contracts.ExperimentalContracts
2 import kotlin.contracts.contract
3

4 @ExperimentalContracts
5 fun sendBirthdayMessage(birthdate: String?) {
6 isBirthdateValidOrElseThrow(birthdate)
7 val birthdaySplit = birthdate.split("/") // compiles without error
8 ...
9 }

10

11 @ExperimentalContracts
12 private fun isBirthdateValid(birthdate: String?) {
13 contract { returns() implies (birthdate != null) }
14 if (birthdate == null) {
15 throw IllegalArgumentException()
16 }
17 ...
18 }

Listing 3.9: An example of Kotlin code that uses Kotlin Contracts to improve smart-cast
analysis.

3.3 Analysis Tool

After stating in section 3.2 the constructs we are interested in identifying, this section describes

the functioning of the analysis tool that evaluates the dataset and produces the required data to

support this work’s proposed research questions.

3.3.1 Overview

The proposed analysis tool, which is at the core of this work, is based on the one created by

Dietrich et al. (2017) to examine the presence and usage of contracts in Java applications. Our

major contribution to the tool was extending it to support Kotlin source code and more constructs

focused on Android applications. Additionally, the framework’s code also suffered considerable

refactoring and organization to simplify and ease its comprehension and maintainability.

The main effort was to add support for Kotlin source code. The original tool was using the

JavaParser5 library to perform AST analysis of Java code. Since this library is not able to parse

Kotlin source code, we integrated JetBrains’s Kotlin compiler6 to perform this task. This required

us to implement new versions of the tool’s extractors and visitors classes using the methods pro-

vided by the new library to be able to identify contract patterns in Kotlin. We also updated the

JavaParser library to support newer Java versions.

A high-level representation of this tool can be seen in Figure 3.2, where each block corre-

sponds to a script written in Java. Although it is possible to change the order in which these scripts

5https://javaparser.org (accessed 4 June 2023)
6https://github.com/JetBrains/kotlin (accessed 4 June 2023)

https://javaparser.org
https://github.com/JetBrains/kotlin
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are run, there are some dependencies between them since some scripts may require data produced

by previous ones.

In general terms, the tool is divided into three main sections: 1) usage that extracts the list of

contracts present in each program and produces statistics about their use; 2) inheritance that iden-

tifies contracts in overridden methods and validates whether they violate the Liskov Substitution

Principle; and 3) evolution that analyses how identified contracts evolve in later versions of the

application. The following sections describe how each component contributes to answering the

proposed research questions.

1. Collect dataset stats

2. Collect contracts

3. Analyze contracts
usage

4. Collect invocation via
super

5. Compute inheritance
hierarchy

6. Analyze hierarchy
contracts

7. Collect program
version stats

8. Analyze contract
evolution

9. Analyze contract
usage across versions

usage

inheritance

evolution

common

Figure 3.2: An high-level overview of the analysis tool structure.

3.3.2 Usage Study

The usage study occurs in two main steps: identifying contract occurrences and producing statis-

tics about those results.
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The proposed tool uses the JavaParser and JetBrains’s Kotlin compiler libraries to perform

AST analysis of all dataset’s source code file that is either Java or Kotlin. This analysis is done

against a set of extractors to identify occurrences of our defined constructs. Each category requires

different approaches for their identification:

• CREs. During the AST analysis, we look for the pattern - if (<condition>) { throw new

<exception> (<args>) }. When this pattern is found, we check whether the exception be-

longs to the list of CREs considered (see Appendix A). In line with Java’s good practices,

we assume that CREs are used with pre-conditions.

• APIs. Firstly, we check whether the file contains an import declaration to any API package

listed in Table 3.1. If any is found, all call expressions in that file are analyzed to determine

if they are invoking any of the methods provided by the API. As stated in subsection 3.2.2,

we assume the analyzed APIs to be associated with pre-conditions.

• Assertions. Identifying Java asserts is straightforward since the JavaParser provides a visi-

tor method for this particular statement. The complexity lies in identifying Kotlin asserts,

which is not a reserved keyword. To handle this challenge, when analyzing a file, we first

search for any method declaration and any import statement that has a name equal to one

of the expressions — assert, require, requireNotNull, check, checkNotNull. Next, we iden-

tify whether the class invokes any method with one of those names. Suppose a class has

a method declaration/import statement and an invocation with one of these expression’s

names. In that case, we consider it an ambiguous situation, and therefore, we don’t consider

it an assert instance. If the class invokes one of those methods but doesn’t declare/import

any method with that same name, we consider it an assert. This is not a fool-proof approach,

but it minimizes the under-reporting to a residual level. We do not classify assertions either

as pre-conditions or post-conditions.

• Annotations. We check if the source code file contains an import statement to one of the

packages listed in Table 3.2. If that’s the case, we check every annotation in that file to see

if it matches any of those provided by the imported package. We also identify the artifact

to which the annotation is associated: 1) annotations associated with a method’s parameters

are pre-conditions; 2) annotations associated with a method are post-conditions; and 3)

annotations associated with a field are class invariants.

• Others. This category only includes the investigation of the experimental Kotlin Contracts.

To identify occurrences of this construct, we look for the pattern - contract {returns (<con-

dition>) implies (<condition>)}.

In the end, a JSON file is created for each program-version pair to store the identified contracts,

including 1) the file path, 2) the associated condition, 2) the method or property name, 3) the type

of artifact (method or property), 4) the line number, and 5) the contract type. As we’ll see in the

following sections, this information is crucial for the next steps of the experimental studies.
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1 [
2 {
3 "cu": "app/src/main/java/health-tracker/RippleDrawable.java",
4 "condition": "maxRadius != RADIUS_AUTO && maxRadius < 0",
5 "method": "setMaxRadius(int)",
6 "additional_info": "maxRadius must be RADIUS_AUTO or >= 0",
7 "artefact_type": "METHOD",
8 "line": 607,
9 "name": "health-tracker",

10 "abstract_method": false,
11 "type": "CREIllegalArgumentException",
12 "version": "0"
13 }
14 ]

Listing 3.10: An example of a JSON file that stores the identified contracts in a program-
version pair.

The Listing 3.10 shows an example of this JSON file for the version “0” (first version) of a

program named “health-tracker”. In this example, an “IllegalArgumentException” contract was

found in the “non-abstract” method “setMaxRadius(int)” in the line “60” of the class “Ripple-

Drawable”. This exception is thrown when the condition “maxRadius != RADIUS_AUTO &&

maxRadius < 0” fails and is associated with the message “maxRadius must be RADIUS_AUTO or

>= 0”.

In the second step of the usage study, the JSON files are analyzed to produce statistics about the

identified contracts, including the frequency of each category (API, annotation, assertion, ...), class

(pre-conditions, post-conditions, and class invariants), construct (java assert, Guava API, androidx

annotations, ...), to compute the Gini coefficient for each category, and to list the programs with

more contracts for each category.

3.3.3 Evolution Study

In the evolution study, we are interested in knowing what happens to a contract while the applica-

tion evolves. In other words, after identifying a contract in the first version of the application, we’ll

try to see if, in the later version, the contract still exists, was modified or removed. At the same

time, we are also reporting cases when a contract was added to an artifact (method or parameter)

in the later version of the app that was not present in the first. This information provides insights

into how contracts evolve in an application and whether this evolution proposes risks to the client.

At this point, we reiterate that a contract establishes rights and obligations for each part —

the client assumes that the supplier will keep its obligations and vice-versa. Therefore, when a

contract is altered, both parts should be informed and updated accordingly. This is particularly

crucial when a pre-condition is strengthened or when a post-condition is weakened. In the first

case, if the pre-condition is strengthened and the client does not know it, it can fail to cover its
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1 public static void setToolbarContentColorBasedOnToolbarColor(
2 @NonNull Context context,
3 Toolbar toolbar,
4 @Nullable Menu menu,
5 int toolbarColor,
6 final @ColorInt int menuWidgetColor
7 )

Listing 3.11: A Java method signature in version 0 of an application specifying three pre-
conditions.

new obligations, and, therefore, the supplier is not bound to keep its part of the contract. In the

latter case, if the post-condition is weakened, the client may still be making assumptions that the

supplier does not ensure anymore.

To better illustrate this, let us consider the examples on Listing 3.11 and on Listing 3.12. In the

first example, we have a method signature in the first version of the application, and in the second,

we have the same method but in the last version. We identify that the annotation @NonNull was

added to the toolbar parameter in the last version. This is the case of a pre-condition strengthening:

in the first version, the method accepted a null toolbar, but now it requires it to be not null.

Therefore, if the client is not updated, it will fail to cover its new obligation.

To conduct this study, we follow the same approach as Dietrich et al. (2017), firstly creating diff

records from the contracts present at the two versions of a program’s method and then classifying

them according to the evolution patterns listed in Table 3.3.

The algorithm to create diff records is illustrated in Figure 3.3. This is performed by walking

through each contract identified in the usage study (steps 1 and 2). We create a unique index for

each contract in the loop to ensure we are not double-counting occurrences (steps 3 and 4). If the

contract was not analyzed yet, we determine whether the contract belongs to the first version of the

application (step 5). If this is the case, we create a diff record by retrieving all the contracts in both

versions of this contract’s method (steps 5.a and 5.b). Otherwise, if the contract belongs to the last

version of the application (step 6), we determine whether the associated method already existed

1 public static void setToolbarContentColorBasedOnToolbarColor(
2 @NonNull Context context,
3 @NonNull Toolbar toolbar,
4 @Nullable Menu menu,
5 int toolbarColor,
6 final @ColorInt int menuWidgetColor
7 )

Listing 3.12: A Java method signature in version 1 of an application specifying four pre-
conditions.
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in the first version (step 7). If the method existed and its first version didn’t contain contracts, we

create a diff record with only the last version’s contracts (steps 8 and 9). If the first version contains

contracts, we don’t create a diff records to not double-count contracts since they will be reported

by step 5.b. Ultimately, the program outputs the diff records created for each program-version

method (step 10).

After creating the diff records that compare the contracts found in the first and last version of a

program’s method, the analysis tool classifies each record according to the evolution patterns listed

in Table 3.3. Although some changes are impossible to classify automatically without manual

input, most simple cases are successfully classified. The analysis tool also reports instances where

the constraints are the same — the specification was stable — or when a diff record could not be

classified.

Table 3.3: Classification of the diff records produced during the evolution and LSP study.

Classification Description Risk

PreconditionsStrengthened A pre-condition was added to a method or a
clause to an existing pre-condition with the ’&’
or ’&&’ operators.

Potential
risk

PreconditionsWeakened A pre-condition was removed from a method, or
a clause was added to an existing pre-condition
with the ’|’ or ’||’ operators.

No risk.

PostconditionsStrengthened A post-condition was added to a method or a
clause to an existing post-condition with the ’&’
or ’&&’ operators.

No risk.

PostconditionsWeakened A post-condition was removed from a method,
or a clause was added to an existing
post-condition with the ’|’ or ’||’ operators.

Potential
risk.

3.3.4 Liskov Substitution Principle Study

When a method is overridden in a subclass, that class can specify new contracts added to the

ones inherited from the superclass method. In this case and as explained in subsection 2.2.5,

proper handling of contracts should follow the Liskov Substitution Principle, which states that the

subclass method must accept all input that is valid to the superclass method and meet all guarantees

made by the superclass method. In other words, a subclass method can only weaken pre-conditions

and strengthen post-conditions.

This study identifies the potential misuse of contracts in an inheritance context, namely in-

stances of violations of the Liskov Substitution Principle. An example of this situation is shown in

Listing 3.14 and Listing 3.15. In the first code example, we have the TagEntry class that extends

the EntryItem class. It also overrides the setName method inherited from its parent class. In the

second code example, we see the setName method implementation in the superclass EntryItem.
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Figure 3.3: An overview of the algorithm to create diff records of the contracts found in two
versions of a method.
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1 [
2 {
3 "methods": [
4 "getUserWithUsernameAndServer(String,String)",
5 "deleteUser(User)",
6 "updateUser(User)",
7 "getUser()",
8 ],
9 "cuName": "app/src/main/java/com/health-tracker/user/

UsersRepositoryImpl.kt",
10 "className": "user.UsersRepositoryImpl",
11 "parents": [
12 {
13 "programName": "health-tracker",
14 "cuName": "app/src/main/java/com/health-tracker/user/

UsersRepository.kt",
15 "className": "user.UsersRepository",
16 "programVersion": "1"
17 }
18 ]
19 }
20 ]

Listing 3.13: An example of a JSON file that stores a class’s methods and parents.

While the superclass implementation contains no contract, it was added to the subclass implemen-

tation a CRE pre-condition throwing an IllegalStateException when the id property does not end

with the name parameter. Therefore, we are in the presence of a pre-condition strengthening in

the context of inheritance, i.e., a violation of the Liskov Substitution Principle.

To detect those occurrences, the analysis tool first lists all methods in each program-version

pair associated with their respective class. Additionally, it also identifies the class’ parents. List-

ing 3.13 shows the example of JSON file that stores these information for the program “Health

Tracker” in version “1” (last version). In this case, we observe that the “UsersRepositoryImpl”

class contains “four” methods and implements the interface “UserRepository” (parent).

Then, the LSP study follows a similar approach to the evolution study and its diff records

creation algorithm presented in Figure 3.3. The difference is that the diff records are now created

between the subclass and the superclass methods. These records are classified according to the

evolution patterns described in Table 3.3.
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1 public class TagEntry extends EntryItem {
2 public final String id;
3

4 @Override
5 public void setName(String name) {
6 if (name != null) {
7 if (!id.endsWith(name))
8 throw new IllegalStateException("The display name and tag name

need to be equal.");
9 super.setName(name);

10 } else {
11 super.setName(id.substring(SCHEME.length()));
12 }
13 }
14 }

Listing 3.14: A Java class that overrides the setName method from its parent class.

1 public class EntryItem {
2 public void setName(String name) {
3 if (name != null) {
4 this.name = name;
5 this.normalizedName = StringNormalizer.normalizeWithResult(this.

name, false);
6 } else {
7 this.name = "null";
8 this.normalizedName = null;
9 }

10 }
11 }

Listing 3.15: A Java class that provides a setName method.
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Results

After having described the methodology in the last chapter, we now present the results of the

large-scale empirical study on contracts using an Android dataset.

First, section 4.1 presents metrics about the evaluated dataset, including its dimensions. The

section 4.2 provides insights into how and to what extent contracts are used in Android applications

(RQ1), then section 4.3 answers whether the number of contracts increases proportional to the

program’s size (RQ2), and, finally, section 4.4 gives a perspective on the practitioner’s safety

while using contracts in program evolution and inheritance (RQ3).

4.1 Dataset

As described in subsection 3.1.2, the dataset was built from Android applications listed in the

F-Droid catalog following a process of filtering described in the same section. The Table 4.1

presents metrics about the final dataset size used in the empirical evaluation. After applying the

inclusion criteria, we ended up with 2,390 different applications distributed in 1,767 Java and in

623 Kotlin applications. Since we tried to retrieve two versions for each application, we analyzed

4,192 program-version pairs. This means that for 294 applications, it was only possible to retrieve

a single version. While these applications are still evaluated in the context of the usage and LSP

studies, they are not considered for the evolution study. Nevertheless, these numbers support

our proposal to conduct a large-scale empirical study on contracts using a much bigger dataset

compared to all the contract studies discussed in section 2.3.

Additionally, from the same table, we observe that the dataset is biased toward Java appli-

cations. The dataset includes 204,478 Java and 123,222 Kotlin compilation units and, therefore,

Java represents 62.4% of the overall number of compilation units. This bias requires caution when

trying to read this work’s results from the perspective of comparing Java against Kotlin’s use of

contracts. Furthermore, the dataset includes 551,456 classes, 2,682,160 methods, and 300,639

constructors. As we didn’t consider private methods because those methods are not used directly

by a client, and a contract is a bond between a supplier and a client, we analyzed 2,532,399 public,

protected, and internal methods and constructors.

36
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Table 4.1: Dataset metrics.

metric Java Kotlin Both

compilation units 204,468 123,222 327,690
classes 299,824 251,632 551,456
methods (all) 2,079,276 602,884 2,682,160
constructors (all) 205,773 94,866 300,639
methods (public, protected, internal) 1,770,972 482,972 2,253,944
constructors (public, protected, internal) 184,868 93,587 278,455
KLOC including comments 40,041 11,708 51,749

From the standpoint of the dataset’s diversity, it includes apps from various domains, such as

gaming, communication, multimedia, security, health, and productivity, among others. Likewise,

there is also a desirable heterogeneity in the project’s characteristics that contribute to the richness

of this study and assert its findings as a fitting representation of reality. Figure 4.1 shows the dis-

tribution of GitHub-related metrics — including the number of contributors, stars, watchers, and

forks — for the projects that form the evaluated dataset. While the number of contributors de-

scribes the project’s team and its size, the number of stars, watchers, and forks help to assess each

project’s popularity and relevance among other developers. For reference, the maximum outlier

for each metric is 1682 for watchers, 33,689 for stars, 11,633 for forks, and 398 for contributors.

Again, this diversity ensures the quality of the dataset and reduces potential bias.

It is also worth noting the difference in the number of compilation units and classes between

the two languages. Although the dataset contains 1.67 times more Java compilation units than

Kotlin ones, it only includes 1.19 times more Java classes. Since a compilation unit usually repre-

sents a file, this means that there are more classes per file in Kotlin (2.04) than in Java (1.47). This

is expected due to the more restricted Java rules that, for example, only allow a single top-level

public class per file.

4.2 RQ1: How and to what extent are contracts used in Android
applications?

The first research question is concerned with analyzing how popular contracts are among Android

application developers. Additionally, it also proposes to understand some of the practitioners’

habits and preferences in the context of contract usage. The findings presented in this section are

supported by the results produced by the usage study detailed in subsection 3.3.2.

Table 4.2 shows the number of contracts found per category, considering all versions (columns

2 and 3) and considering only the latest version of each application (columns 4 and 5). The same

table also identifies the number of applications containing at least one contract for that category

(columns 6 and 7). From the table’s data, the most obvious conclusion is that, in both languages,
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(a) Number of contributors. (b) Number of stars.

(c) Number of watchers. (d) Number of forks.

Figure 4.1: The distribution of GitHub repositories-related metrics for the dataset’s projects,
without outliers.

annotation-based contracts are the most popular category. More specifically, considering both lan-

guages in the last version, annotations represent 87.1% of the contracts found, followed by CRE

with 9.7%, and then assertions with 2.5%. The results show similar tendencies between Java

and Kotlin, and the only difference is that while Java’s second most popular category is CREs, in

Kotlin, it is assertions. This relatively high percentage of the assertion category in Kotlin is ex-

plained by our inclusion of the four language’s standard library methods listed in subsection 3.2.3,

where require() alone counts 901 total occurrences distributed in 112 last versions.

Finding 1: Most contracts are annotation-based, accounting for 88.31% in Java and 77.44%

in Kotlin of the total number of contracts found.

This distribution in categories’ popularity significantly differs from the findings of Dietrich

et al. (2017). The authors reported that the most common category was CREs and found surpris-

ingly low use of annotations. This may be explained by the difference between the dataset’s nature.

While our dataset is formed mostly of user-focused Android applications, the author’s dataset was
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Table 4.2: Number of contracts found in the dataset by category.

contracts (all ver.) contracts (2nd ver.) applications

Category Java Kotlin Java Kotlin Java Kotlin

API 1,813 10 1,121 9 24 4
annotation 158,400 24,125 139,507 15,068 1,097 541
assertion 3,525 3,746 2,186 2,239 326 232

CRE 26,061 3,292 15,150 2,139 789 287
other - 1 - 1 - 1

mainly Java libraries. In Table 4.3, we can also see that most annotations found to belong to the

androidx.annotation.* package that the authors didn’t consider since it is Android-specific. Never-

theless, the high number of annotation-based contracts found is in line with literature that supports

its increasing popularity (Yu et al., 2021; Grazia and Pradel, 2022).

From Table 4.2, we also verify that the usage of APIs is very low in both languages, and it is

even more residual in Kotlin applications, where only nine instances were found in the latest ver-

sions. The known industry skepticism around adding third-party dependencies to projects, which

may lead to maintainability and support issues in the future, may explain this finding (Backes

et al., 2016; Wang et al., 2020).

Finding 2: The use of APIs to specify contracts is very rare.

In Table 4.3, we have a more detailed perspective by having the frequency of each construct.

Firstly, we again highlight that the high number of annotations found is leveraged mostly by the

androidx.annotation.* package. In APIs, the Guava library constitutes most of the usage. We

were not expecting to see any usage of Spring Framework Asserts since this library was designed

to be used in the Spring framework, but we still found one occurrence. At the same time, we found

no occurrences of the now deprecated FindBugs annotations. Additionally, we identified a single

occurrence of Kotlin Contracts, which may depict the practitioner’s distrust of using a feature still

in an experimental phase.

We now consider Table 4.4, which presents each category’s computed Gini coefficient. The

Gini coefficient measures the inequality among the values of a frequency distribution. In other

words, a Gini coefficient of 0 indicates perfect equality, where all applications have the same

number of contracts. In contrast, a Gini coefficient of 1 means that a single program has all the

contracts. We observe that all coefficients in the table are higher than 0.50, except for Kotlin’s API

usage. The fact that almost all coefficients are very high (close to 1) means that although some

applications use contracts intensively, the majority do not use them significantly. This aligns with

the results found by Dietrich et al. (2017). This conclusion can also be seen from Table 4.5 that

lists the five projects that use more contracts per category. We find that a small group of projects
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Table 4.3: Number of contracts found in the dataset by construct and category.

contracts (all ver.) contracts (2nd ver.) applications

Construct Category Java Kotlin Java Kotlin Java Kotlin

cond. runtime exc. CRE 25,565 3,232 14,887 2,071 779 285
unsupp. op. exc. CRE 511 142 308 116 97 27

java assert assertion 3,525 - 2,217 - 325 -
kotlin assert assertion - 3,868 - 2,370 - 234

guava precond. API 1,798 10 1,121 9 22 4
commons validate API 148 0 3 0 1 0

spring assert API 1 0 1 0 1 0
JSR303, JSR349 annotation 0 0 0 0 0 0

JSR305 annotation 4,195 20 2,133 13 40 4
findbugs annotation 0 0 0 0 0 0
jetbrains annotation 2,310 138 1,596 98 115 20
android annotation 12,003 5,704 7,013 3,414 910 464
androidx annotation 139,933 20,593 86,212 13,811 599 401

kotlin contracts others - 1 - 1 - 1

own a large percentage of the overall use in each category. Additionally, it’s clearly visible from

the assertion and CRE categories that the numbers quickly decrease through the first to the fifth

application showing the unbalanced usage between applications.

Finding 3: Although there are some applications that use contracts intensively, the majority

do not use them significantly.

Lastly, Table 4.6 presents the frequency of each contract type. Once again, we have distinct

results for Java and Kotlin. In Java, we found 63.73% of the classified instances in the last versions

to be pre-conditions, 23.19% are post-conditions, and only 13.08% are class invariants. These

results align with other empirical studies on contracts (Chalin, 2006; Schiller et al., 2014; Dietrich

et al., 2017) that show a clear bias towards pre-conditions. However, Kotlin’s results are very

Table 4.4: Gini coefficient by category.

Category Java Kotlin

assertion 0.70 0.71
API 0.80 0.37

annotation 0.88 0.76
CRE 0.77 0.67
others - 1.00
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Table 4.5: Top five applications using contracts (second versions only) by category.

Category Applications

assertion K1rakishou-Kuroba-Experimental (378), a-pavlov-jed2k (314),
abhijitvalluri-fitnotifications (143), thundernest-k-9 (114),
mozilla-mobile-firefox-android-klar (95)

CRE redfish64-TinyTravelTracker (1,036), nikita36078-J2ME-Loader
(690), abhijitvalluri-fitnotifications (561), lz233-unvcode-android
(561), cmeng-git-atalk-android (447)

API wbaumann-SmartReceiptsLibrary (534), alexcustos-linkasanote
(318), BrandroidTools-OpenExplorer (69), oshepherd-Impeller
(33), MovingBlocks-DestinationSol (30), inputmice-lttrs-android
(24)

annotation MuntashirAkon-AppManager (5,957), Forkgram-
TelegramAndroid (5,552), Telegram-FOSS-Team-Telegram-
FOSS (5,549), MarcusWolschon-osmeditor4android (4,393),
NekoX-Dev-NekoX (4,032)

other zhanghai-MaterialFiles (1)

different from this expected preference hierarchy. From the classified instances of the applications’

last version, we found 38.82% to be post-conditions, 31.73% class invariants, and 29.44% pre-

conditions. This leads to the conclusion that Kotlin developers tend to favor post-conditions over

any other type, while pre-conditions come at the last position. We also highlight that according

to the classification described in subsection 3.3.2, in our study, only annotations may be classified

as post-conditions or class-invariants. This means that in Kotlin, there is a higher number of

annotations associated with the method’s return values and class properties than with the method’s

parameters. To further confirm this statement, we retrieved the top 100 applications with higher

usage per type, which is represented in Figure 4.2 with the outliers hidden. Once again, through

both plots, we see the different preference hierarchies between Java and Kotlin.

Finding 4: Java and Kotlin practitioners display different tendencies when it comes to the

contract type. In Java, there is a clear bias towards pre-conditions, while in Kotlin, post-

conditions are the most frequent type.

Although we can not provide a reason for this finding with certainty, we argue that the differ-

ence in practitioners’ bias for each type reported in Table 4.6 could stem from different behavior

patterns which are demonstrated in Table 4.7 and Table 4.8. These tables list the ten most occur-

ring constructs for each type in the last versions of Java and Kotlin applications. To create these

tables, we followed the classification described in subsection 3.3.2; hence, for example, although

there are 2,217 instances of JavaAssert in Java, these were not included in the list since the analysis

tool doesn’t classify asserts by type.
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Table 4.6: Number of contracts found in the dataset by type.

contracts (all ver.) contracts (2nd ver.) applications

Type Java Kotlin Java Kotlin Java Kotlin

pre-condition 120,671 9,203 72,160 5,744 989 349
post-condition 41,764 11,490 26,253 7,575 829 435

invariants 23,836 9,122 14,811 6,190 643 348
not classified 3,584 3,893 2,267 2,394 279 202
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Figure 4.2: Comparison of the distribution of the identified contract types top 100 applica-
tions with higher usage per type for Java and Kotlin.
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Table 4.7: The top 10 most frequent constructs per type in the last versions of Java applica-
tions.

Pre-conditions Post-conditions

AndroidXNonNull (36,031) AndroidXNonNull (10,359)
AndroidXNullable (14,983) AndroidXNullable (5,954)

CREIllegalArgumentException (7,663) AndroidSuppressLint (3,125)
CREIllegalStateException (3,232) AndroidTargetApi (1,243)
CRENullPointerException (2,230) AndroidXRequiresApi (732)
GuavaPreconditionNotNull (1,021) AndroidXWorkerThread (551)

JSR305NonNull (860) AndroidXKeep (398)
AndroidXStringRes (660) AndroidXCallSuper (380)

CREIndexOutOfBoundsException (656) AndroidXUiThread (326)
JetBrainsNotNull (612) JSR305NonNull(322)

By comparing the two tables, we draw distinct behavior patterns between the two languages.

In the Kotlin constructs reported by Table 4.8, none of the top ten most popular constructs re-

lates to null-checking. But, in Java’s instances reported in Table 4.7, 82.03% of pre-conditions

and 71.12% of post-conditions are associated with null-checking. In this number, we are not

considering potential CREIllegalArgumentException and CREIllegalStateException that could be

associated with null-checking since this would require analyzing the condition present at the if-

statement. This confirms a lack of expressiveness in the contracts specified by Java practitioners,

with most being associated with null-checking, which aligns with previous studies (Schiller et al.,

2014; Estler et al., 2014).

This contrast in null-checking contracts between Java and Kotlin is easily explained by the

languages’ different takes on nullability. In Kotlin, contrary to Java, regular types are non-nullable

by default; therefore, in most cases, practitioners don’t have the need for constructs like An-

droidXNonNull or JSR305NonNull. On the other hand, it is interesting to observe that relaxing

this constraint to allow nullable types is not a common practice since we found no meaningful use

of constraints like AndroidXNullable and similar in Kotlin.

Finding 5: In Java applications’ last versions, at least 77.72% of pre-conditions, 65.63% of

post-conditions, and 61.24% of class invariants are related to null-checking. In the case of

Kotlin, we found only about 3.12% of pre-conditions, 6.00% of post-conditions, and 0.57%

of class invariants to be performing null-checking.

We have also looked into whether there was any relation between the number of contracts in the

last version and any of the GitHub metrics from Figure 4.1. However, no meaningful correlation

was found.
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Table 4.8: The top 10 most frequent constructs per type in the last versions of Kotlin appli-
cations.

Pre-conditions Post-conditions

AndroidXStringRes (1,142) AndroidSuppressLint (2,289)
CREIllegalStateException (772) AndroidXVisibleForTesting (1,663)

CREIllegalArgumentException (748) AndroidXRequiresApi (720)
AndroidXColorInt (523) AndroidXWorkerThread (638)

AndroidXDrawableRes (425) AndroidXMainThread (441)
AndroidXAttrRes (255) AndroidXCallSuper (319)

AndroidXColorRes (195) AndroidXColorInt (237)
AndroidXIdRes (184) AndroidTargetApi (205)

UCREUnsupportedOperationException (116) AndroidXUiThread (195)
AndroidXFloatRange (80) AndroidXAnyThread(184)

4.3 RQ2: How does contract usage evolve in an application?

In the second research question, we proposed to provide insights into how contract usage evolves

in an application, namely on whether the numbers of contracts increase from the application’s first

to the last version.

Table 4.9 presents the number of contracts in the first and second versions by category. In

general, we conclude that for most cases, the number of contracts in each category increased from

the first to the last version. The only categories where the number decreased were the Apache’s

Commons Validate and in JSR305 annotations package for Java. The decrease in JSR305 usage

could be explained by it currently being in a dormant status, or in other words, with no activity

since 2017.

Additionally, to provide a clear view into this question, we computed some metrics to under-

stand how the increase in the program’s size relates to the number of contracts. Those metrics

are listed in Table 4.10, including the average and median values for the number of methods, the

number of contracts, and the ratio between both (contracts per methods number) for the first and

second versions.

First, the table shows there was an average increase of about 109.936 methods per program.

This is expected since the program’s size tends to increase from the first to the second version.

However, a more interesting insight comes from the contracts count. Although the average num-

ber of contracts per program increased, its median value decreased. This means that the dataset

includes outliers with a significant rise in contract usage that considerably affected the average

value.

To confirm this data, we computed the ratio between the number of contracts and the number

of methods for each version of a program. Then, we computed the difference between the second

and the first version’s ratio for each program. The average of these differences is -0.0057, and the

median is -0.0012. Although the values are very small, we conclude that the number of methods
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Table 4.9: Contract elements by type in the first and last version.

contracts (1st vers.) contracts (2nd vers.)

Type category Java Kotlin Java Kotlin

cond. runtime exc. CRE 10,678 1,161 14,887 2,071
unsupp. op. exc. CRE 203 26 308 116

java assert assertion 1,308 - 2,217 -
kotlin assert assertion - 1,498 - 2,370

guava precond. API 677 1 1,121 9
commons validate API 11 0 3 0

spring assert API 0 0 1 0
JSR303, JSR349 annotation 0 0 0 0

JSR305 annotation 2,062 7 1,133 13
findbugs annotation 0 0 0 0
jetbrains annotation 714 40 1,596 98
android annotation 4,990 2,290 7,013 3,414
androidx annotation 53,721 6,782 86,212 13,811

kotlin contracts other - 0 - 1

increases significantly more than the number of contracts.

Finding 6: Although the total and average numbers of contracts increase while its median

decreases by a small factor, we conclude that applications that use contracts continue to use

them. Still, the number of methods increases by a greater scale than the contracts number.

Similarly to our study, Dietrich et al. (2017) also found that the median value of the ratio does

not change much. Still, while we reported a decline between the first and last versions (0.029 to

0.022), they found a rise (0.021 to 0.023). This means that although both studies show general

stability related to contracts usage, contrary to Dietrich et al. (2017) we were not able to find a

positive correlation between the increase in the number of methods and the increase in the number

of contracts.

Table 4.10: Average and median number of methods, contracts, and their ratio for the two
versions.

1st version 2nd version

Metric Median Average Median Average

methods count 310 972,037 356 1,081,973
contracts count 7 64,938 6 79,658

contract-to-method ratio 0.029 0.061 0.022 0.055
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4.4 RQ3: Are contracts used safely in the context of program evolu-
tion and inheritance?

To address whether practitioners tend to misuse contracts in either program evolution or inher-

itance contexts, we build diff records to be classified according to evolution patterns. Some of

these evolution patterns are associated with a potential risk that may lead to client breaks, namely

when preconditions are strengthened or postconditions are weakened. This process was described

in more detail in subsection 3.3.3 and subsection 3.3.4.

It’s important to note that the analysis tool cannot precisely capture all contract changes due

to the variety of constructs we are analyzing and the complexity of their semantics. This can

potentially lead to under-reporting. Nevertheless, Table 4.11 and Table 4.12 still provide valuable

insights into the safety of contract usage and evolution.

First, let’s consider Table 4.11, which displays the frequency of each evolution pattern in the

context of program evolution. At first glance, we may be rushed to conclude that specifications are

generally stable since the most frequent pattern is when a contract remains unchanged from the

first to the second version. Unfortunately, this is not true since the occurrences of contract changes

make up more than 50% of the patterns found. Still, overall, most of the changes are non-critical

ones — including minor changes, pre-conditions weakening, and post-conditions strengthening —

which is a positive finding. Less optimistic is that the second most common pattern is the case

of pre-conditions strengthening, one of the two cases that potentially offers risk. In summary,

although many contracts remain unchanged and most changes are not critical, we still found many

occurrences that can lead to potential breaks.

Finding 7: There are instances of unsafe contract changes while the program evolves, par-

ticularly cases of pre-conditions strengthening.

Last, we look at Table 4.12, which presents the results found for evolution patterns in the

context of inheritance. We observe that the pre-conditions strengthening pattern makes up almost

50% of classified instances. We also note that from the classified instances, most parts are related

to contract changes which means a lack of stability in specifications. Both in the evolution and the

inheritance study, we found low occurrences of post-conditions weakening when compared to the

other classifications. Also, compared to the reports from Dietrich et al. (2017), our results indicate

a greater ratio of pre-conditions strengthening per pre-conditions found.

Finding 8: There are instances of unsafe contract changes in an overriding context that

violate the Liskov Substitution Principle, particularly cases of pre-conditions strengthening.
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Table 4.11: Contract evolution in the context of program evolution.

Evolution Critical Count

unchanged no 32,070
minor change no 199

pre-conditions weakened no 13,870
post-conditions strengthened no 9,906
pre-conditions strengthened yes 20,870
post-conditions weakened yes 5,461

unclassified ? 8,307

Table 4.12: Contract evolution in the context of inheritance.

Evolution Critical Count

unchanged no 158
minor change no 1

pre-conditions weakened no 3
post-conditions strengthened no 71
pre-conditions strengthened yes 232
post-conditions weakened yes 0

unclassified ? 145



Chapter 5

Conclusion

5.1 Summary

Object-oriented programming is an industry-standard that supports most software today. One of

its core principles is the division of work between different reusable components where clients use

services provided by suppliers. Still, this focus on creating modular components that interact with

each other brings challenges when designing reliable software due to potential misunderstandings

between clients and suppliers and the propagation of errors through the interaction. Over the years,

many authors have proposed a systematic application of Design-by-Contract, where interaction

between modules is defined through formal specifications to reduce errors.

This work presents a large-scale empirical study of the usage and evolution of contracts in

Android applications. We evaluated 2,390 open-source Java and Kotlin applications. Since we

analyzed two different versions for most applications, our dataset comprised 4.192 application-

version pair which translated into 327,690 compilation units. Based on source code static anal-

ysis, we extracted and classified contract occurrences from that dataset. We also identified and

classified contract changes according to evolution patterns in the context of program evolution

and inheritance. The proposed dataset creation pipeline and the analysis tool enable an easily

replicated experiment.

Overall, many of this work’s findings confirmed already-known practitioners’ practices and

preferences presented in previous empirical studies. Nevertheless, the focus on Android programs

made it possible to acquire particular insights into this type of application and distinct usage pat-

terns between the Java and Kotlin languages. The section 5.2 summarizes the answers to the

research questions according to the findings. Additionally, from these results, we can extract

implications in the form of recommendations for practitioners, tool builders, and researchers, pre-

sented in section 5.3.
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5.2 Answers to Research Questions

The answers to the research questions proposed in subsection 1.3.1 are summarized in the follow-

ing way:

RQ1. How and to what extent are contracts used in Android applications?
The results show that the consistent and meaningful use of contracts is concentrated in a small

number of applications. Still, when applications use contracts, annotation-based approaches are

the most frequent in Java and Kotlin, where the androidx.annotation package is the most popu-

lar. This study found different types and preferences between the two languages. While in Java,

63.73% of the classified instances are pre-conditions, Kotlin programs display a more equally dis-

tributed selection with 38.82% post-conditions at the top. We also found that more than 50% of

the classified contracts in Java are related to null-checking, extremely high compared to Kotlin’s

numbers of less than 10%.

RQ2. How does contract usage evolve in an application?
After comparing the number of contracts in both versions of the applications, we found that, on

average, the number of contracts increased. Still, this was caused by some outliers that increased

its usage intensively, driving up the average. In fact, the median value decreased. Furthermore,

after computing the contract-to-method ratio, we found that this ratio decreased between versions

— a median decrease of -0.0057 and an average decrease of -0.0012. Although by a residual

factor, we observed that the number of contracts declined as the program grew.

RQ3. Are contracts used safely in the context of program evolution and inheritance?
The analysis tool builds different records of contracts appearing in both versions of the ap-

plications and contracts present in inheritance relations. After categorizing each diff record, we

found that contract changes are widespread, meaning a lack of specifications’ stability. From those

changes, pre-conditions strengthening is the most classified pattern. These results clearly show a

potentially unsafe use of contracts that may lead to client breaks.

5.3 Recommendations

From the findings presented in this work, we were able to derive implications for practitioners,

researchers, tool builders, and academia in general. These implications can be translated into

recommendations to increase and improve Design-by-Contract usage.

Recommendations for practitioners. Although the academic literature recommends adopting

contracts to build more reliable software, this study shows that most practitioners do not use con-

tracts. Additionally, Java practitioners display an obvious bias for pre-conditions over any other

type of specifications (RQ1), which should be tackled by promoting education on DbC principles

and by new tools. Furthermore, practitioners, particularly for Java, should strive to write more ex-

pressive contracts than the commonly found null-checking ones. As described in section 2.1, this

is extremely important because a program may be correct against a weak contract but fail when
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contracts are more expressive. Last, practitioners should be made aware of the potential risks of

some contract changes in the context of program evolution and inheritance (RQ3).

Recommendations for researchers and tool builders. Due to the visible fragmentation of tech-

nologies and approaches to specifying contracts (RQ1), ideally, both Java and Kotlin standard

libraries should be equipped with specialized constructs to specify contracts and with proper offi-

cial documentation. Alternatively, researchers and tool builders must create libraries to standardize

contract specifications in the Java and Kotlin languages. The presented results suggest that this li-

brary be built around annotation-based contracts, given its popularity among practitioners (RQ1).

An annotation-based approach, where specifications are added to the program as metadata, is

similar to Eiffel’s approach, where the assertions don’t obfuscate the method’s implementation.

Creating patterns to guide contract specifications could also raise DbC’s safe and efficient usage

(RQ3). Additionally, due to the lack of expressiveness in contracts (RQ1), tools to aid practitioners

in deriving new contracts could offer a valuable contribution to creating stronger specifications.

Another contribution could be a continuous integration plugin to detect contract violations in the

context of program evolution and inheritance (RQ3).

Recommendations for academia. The presented findings prove that there is still a broad gap

between the academic literature and the industry’s actual use of contracts; where although litera-

ture proposes many advantages related to contract usage, in practice, only some applications use

them significantly. More evidence and proof should be studied and presented to the industry to

foster practitioners’ adoption and to close this gap. Potential new research directions are given in

section 5.5.

5.4 Limitations and Threats to Validity

In this section, we discuss limitations and potential threats to this study’s validity and its results.

Our study suffers from the same limitations presented by Dietrich et al. (2017) due to the similarity

of the methodologies used.

Firstly, the evaluation only evaluated open-source projects since the proposed methodology

is based on source code analysis, and it would have been challenging to have access in enough

quantity to closed-source commercial code. Nevertheless, having commercial apps in our dataset

would contribute to the richness of this study. Also, in the context of the dataset build process,

the fact that some program’s versions had to be resolved manually to determine the app’s first and

later versions could lead to wrongly ordered versions affecting the evolution results.

The contracts extraction process is complex due to the various approaches and constructs to

express contracts in Java and Kotlin. This is relatively more challenging than if the evaluation

studied Eiffel applications with its standard way of defining contracts that could be easily identi-

fied by the analysis tool. Therefore, our constructs list may be incomplete, and we may be missing

some patterns. Additionally, a limitation of our tool is that it doesn’t recognize custom APIs or

custom annotations created by practitioners. Lastly, our tool follows a naïve approach to asso-

ciate each construct to a type (pre-conditions, post-conditions, and invariants). We perform that
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association according to the libraries’ documentation, which defines the construct’s purpose. We

are not considering that the practitioner may use the constructs outside the intended purpose. For

example, while Google’s Guava library clearly states that the Preconditions class should be used

to check pre-conditions, a practitioner may be using it to check post-conditions.

In the evolution and inheritance studies, the analysis tool tries to classify contract changes

according to some evolution patterns. Since this classification is mechanical and, again, due to the

variety of constructs, we may not be able to classify all instances. This limitation is seen when,

for example, a method in the first version has an annotation constraint which is later changed to

an assert in its second version. The analysis tool cannot understand whether the contract was

strengthened or weakened. Also, in the inheritance study, the fact that we don’t consider the li-

braries used by each application (due to size and time constraints) can result in an under-reporting.

For example, the application may be overriding methods provided by one of its imported libraries

which would not be considered by the analysis tool.

5.5 Future Work

Despite this work fulfilling its stated goals, the proposed solution presents some limitations de-

scribed in section 5.4, which can be improved. Additionally, further research can be conducted to

achieve more insights into how the industry uses contracts.

Firstly, we identify potential improvements to the analysis tool’s capabilities:

• Support for other languages. This work added support for Kotlin source code to a pre-

existing tool that could only investigate contracts in Java programs. Still, further work can

be done to increase this tool’s capabilities by adding new languages.

• Improve contract classification by type. In this work, CREs and API contracts were classi-

fied as pre-conditions according to the respective library’s documentation or grey literature

that states their intended purposes to validate arguments. Still, developers could use those

constructs outside their intended purpose, resulting in a wrong classification. Additionally,

the proposed tool does not classify asserts as pre-conditions or post-conditions, which may

be improved.

Now, we list potential research directions that could provide new information about contracts

and their use:

• Understand what makes a program use contracts significantly. In this study, we understood

that some programs use contracts intensively, and others do not use them meaningfully.

Additionally, some programs increase their usage from the first to the last version while

others decrease it. It would be important to find whether common characteristics or patterns

are shared between programs that use many contracts. Some aspects to consider could be

the team size, seniority of team members, business domain, code metrics, and others...
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• Understand whether a correlation exists between projects that use contracts and those with

higher-quality code. An crucial insight would be to determine whether practitioners that use

contracts intensively are also the ones who write higher-quality code. These metrics may

include Cyclomatic Complexity (MVG), coupling between object classes, and cohesion in

methods, among others...

• Understand the challenges and obstacles to specifying contracts. Since this study found

that only some applications use contracts intensively, it would be valuable for this domain to

discover the challenges and obstacles that developers face that hamper DbC adoption. This

study should be conducted with practitioners to understand the causes and draw actions to

solve those challenges.
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Appendix A

List of Conditional Runtime Exceptions
analyzed

Table A.1: List of exceptions analyzed in the CRE category.

CREs Constructs

AndroidRuntimeException MissingResourceException

ArithmeticException NegativeArraySizeException

ArrayStoreException NoSuchElementException

ArrayStoreException NullPointerException

BufferOverflowException ParcelFormatException

BufferUnderflowException ParseException

ClassCastException ProviderException

CompletionException ProviderNotFoundException

ConcurrentModificationException RejectedExecutionException

DOMException SQLException

DateTimeException SecurityException

EmptyStackException TypeNotPresentException

EnumConstantNotPresentException UncheckedIOException

FileSystemAlreadyExistsException UndeclaredThrowableException

FileSystemNotFoundException UnsupportedOperationException

IllegalArgumentException WrongMethodTypeException

IllegalMonitorStateException AcceptPendingException

IllegalStateException AccessControllException

IncompleteAnnotationException AlreadyBoundException

IndexOutOfBondException AlreadyConnectedException

LSException ArrayIndexOutOfBondsException

MalformedParameterizedTypeException BadParceableException
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MalformedParametersException CancellationException

UnsupportedAddressTypeException UnsupportedCharsetException

WritePendingException ZoneRulesException

CancelledKeyException PatternSyntaxException

ClosedDirectoryStreamException StringIndexOutOfBoundsException

ClosedFileSystemException ReadOnlyBufferException

ClosedFileSystemException ReadOnlyFileSystemException

ClosedSelectorException ReadPendingException

ClosedWatchServiceException ShutdownChannelGroupException

ConnectionPendingException StringIndexOutOfBoundsException

NonReadableChannelException UnknownFormatConversionException

NonWritableChannelException UnknownFormatFlagsException

NotYetBoundException UnresolvedAddressException

NotYetConnectedException UnsupportedTemporalTypeException

NumberFormatException OverlappingFileLockException



Appendix B

List of API’s methods analyzed

Table B.1: List of the methods analyzed from each API.

Annotations analyzed

Apacha lang2 Validate

allElementsOfType()

isTrue()

noNullElements()

notEmpty()

notNull()

Apacha lang3 Validate

allElementsOfType()

exclusiveBetween()

inclusiveBetween()

assignableFrom()

isInstanceOf()

matchesPattern()

notBlank()

validIndex()

validState()

Guava Preconditions

checkArgument()

checkState()

checkElementIndex()

checkPositionIndex()

checkNotNull()
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checkPositionIndexes()

Spring Assert

doesNotContain()

hasLength()

hasText()

notEmpty()

noNullElements()

isInstanceOf()

isAssignable()

state()

isNull()

isTrue()

notNull()



Appendix C

List of Annotations analyzed

Table C.1: List of annotations analyzed per package.

Annotations analyzed

JSR305

@CheckForNull @CheckForSigned

@MatchesPattern @Nonnegative

@Nonnul @Nullable

@OverridingMethodsMustInvokeSupper @ParametersAreNonnullByDefault

@RegEx @Signed

@Syntax @Syntax

@Tainted @Untainted

@WillClose @WillCloseWhenClosed

@WillNotClose @Guardedby

@Immutable @NotThreadSafe

@ThreadSafe

JSR303, JSR349

@Null @DecimalMin

@NotNull @Size

@AssertTrue @Digits

@AssertFalse @Past

@Min @Future

@Max @Pattern

@DecimalMax

JetBrain

@Contract @NotNull
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@Nullable @PropertyKey

@TestOnly

IntelliJ

@BoxLayoutAxis @CalendarMonth

@CursorType @FlowLayoutAlignment

@FontStyle @HorizontalAlignment

@InputEventMask @ListSelectionMode

@PatternFlags @TabLayoutPolicy

@AdjustableOrientation @Flow

@Identifier @TabPlacement

@TitledBorderJustification @TitledBorderTitlePosition

@Language @MagicConstant

@Pattern PrintFormat

@PrintFormat @RexExp

@Subst

FindBugs

@CheckForNull @NonNull

@Nullable @PossiblyNull

@FontStyle @HorizontalAlignment

@UnkownNullness @CreateObligation

@DischargesObligation @CleanupObligation

Android @AndroidSupressLint @AndroidTargetApi

Androidx

@AnimatorRes @AnimRes

@AnyRes @AnyThread

@AnyThread @ArrayRes

@AttrRes @BinderThread

@BinderThread @BoolRes

@CallSuper @CheckResult

@ChecksSdkIntAtLeast @ColorInt

@ColorLong @ColorRes

@ContentView @DimenRes

@Dimension @NotInline

@DrawableRes @FloatRange
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@FloatRange @FontRes

@FontRes @FractionRes

@FractionRes @GuardedBy

@GuardedBy @HalfFloat

@IdRes @InspectableProperty

@IntDef @IntegerRes

@InterpolatorRes @IntRange

@Keep @LayoutRes

@LongDef @MainThread

@MainThread @MenuRes

@NavigationRes @NonNull

@Nullable @PluralsRec

@Px @RawRes

@RequiresApi @RequiresFeature

@RequiresPermission @RestrictTo

@Size @StringDef

@StringRes @StyleableRes

@StyleRes @TransitionRes

@UiThread @VisibleForTesting

@WorkerThread @XmlRes
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