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Resumo

A biomassa é uma fonte renovável que pode trazer uma alternativa às fontes atualmente utilizadas
para aquecimento, eletricidade ou combustíveis para transportes, e é utilizada na produção de
produtos químicos. Isto torna a procura de biomassa como fonte de energia uma vantagem quanto
ao impacto ambiental, mas também contribui para a criação de empregos. Em particular, biomassa
baseada em florestas pode ter um papel importante numa gestão mais eficiente das florestas ao
contribuir para um ecossistema florestal saudável.

No entanto, um dos principais factores que impedem uma maior adoção da biomassa é o
desafio de conseguir operações de cadeia de abastecimento mais sustentáveis e resilientes. Os
custos logísticos associados ao armazenamento e ao transporte, juntamente com a sua disponibili-
dade sazonal e a sua degradação ao longo do tempo, impedem uma adoção e uma utilização mais
amplas da biomassa florestal para várias aplicações. Como tal, uma gestão eficiente da cadeia
de abastecimento que se centre na redução dos custos operacionais, evitando simultaneamente a
degradação da biomassa, é vital para aumentar a eficiência e a resiliência da cadeia de abastec-
imento. Neste contexto, o trabalho a desenvolver visa desenvolver uma abordagem baseada na
otimização multi-objetivo para apoiar a tomada de decisões relativas à conceção da cadeia de
abastecimento e decisões de planeamento sob incerteza. O principal objetivo é conseguir alcançar
as melhores soluções de compromisso entre a eficiência de custos e a resiliência.
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Abstract

Biomass is a renewable source of energy that could bring an alternative to currently used sources
for heat, electricity, transportation fuels, or in the production of chemicals. This makes pursuing
biomass as a source of energy a clear advantage regarding the environmental impact, but also in
contributing to the creation of new jobs. In particular, forest-based biomass, can also play a key
role in achieving a more efficient forest management by contributing to a healthier forest ecosys-
tem. However, one of the biggest factors that prevents a major adoption of biomass is the challenge
in achieving a more sustainable and resilient supply chain operations. The associated logistic costs
related to storage and transportation, together with its seasonal availability and degradation over
time, hinders a wider adoption and utilization of forest-based biomass for various applications. As
such, an efficient management of the supply chain that focuses on lowering operational costs, while
preventing the biomass degradation is vital to enhance SC efficiency and resiliency. In this con-
text, the work to be developed aims to develop a multi-objective optimization-based approach to
support decision-making regarding supply chain design and planning decisions under uncertainty.
The main goals is to be able to achieve the best compromise solutions between cost-efficiency and
resiliency.
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Chapter 1

Introduction

This section aims to present an introduction to the dissertation topic "Biomass Supply Chain de-

sign and planning under uncertainty". The following subsections will present the context in which

the developed work is integrated (subsection 1.1), the motivation behind the used approach (sub-

section 1.2), the main goals of the work to be developed in this dissertation (subsection 1.3), the

methodology adopted (subsection 1.4), and the dissertation structure (subsection 1.5).

1.1 Contextualization

The design and planning of forest-to-bioenergy supply chains (SC) is getting more and more criti-

cal as sustainability goals become more stringent towards, not only the increased use of renewable

energy sources, but also the recognition of the importance of more sustainable forest management

policies. So, with energy produced by biomass being less pollutant and capable of improving sus-

tainability, there is an interest for biomass to substitute the currently widely adopted fossil fuels.

Sources of biomass feedstock include starch and sugar based, agricultural residues and live-

stock products, urban and industrial woody wastes and landfills, forest biomass, herbaceous energy

crops, short rotation woody crops, oily crops, energy crops and algae[6]. The work to be developed

in this dissertation will focus on biomass sources from forest-related activities.

Being an alternative to fossil fuels, there is an interest to make the production of biomass as

sustainable, resilient, and efficient as possible. The efficient management of biomass supply chains

(BSC) should result in a greater availability of biomass, and a more robust supply chain that will

contribute to a more sustainable management of forests [7].

Biomass is used for heating, energy and the production of bioproducts. Its efficiency as an

energy source however is dependant on multiple factors, such as rain, humidity and wind. Main

costs of the biomass supply chain come from transport and storage activities, as well as material

deterioration. In this context, decisions regarding resource allocation such as where to setup equip-

ment and storage units as well as transport routes are crucial. Also important for the deployment

of more efficient and sustainable SC are material flows and inventory management, particularly

under these highly stochastic and dynamic environments. As the entity in charge of supplying

1



2 Introduction

biomass, agreements must be made with owners of forests to collect the residues resulting from

foresting activities and with bioenergy plants which dictate the demand for processed biomass.

Since transportation and storage represent the main costs in the supply chain, after collecting

the biomass there is a need to process it using methods such as chipping which increases bulk

density of biomass or unitising the biomass by processing straw into bales, this is known as baling

[8]. These processes help reduce the necessary storage space and number of trips by truck.

In conclusion, the design and planning of forest-to-bioenergy supply chains have become in-

creasingly important due to stricter sustainability goals and the demand for renewable energy

sources. Efficient management of biomass supply chains is crucial for ensuring a sustainable

flow of biomass, considering factors such as resource allocation, transport routes, and processing

methods.

1.2 Motivation

Biomass is primarily constituted by plants, wood and waste and presents itself as a source for

heating, energy and can be used in the production of bioproducts, such as chemicals. As such,

biomass has been considered a sound alternative to fossil fuels.

Beyond the economic advantages of exploring biomass as an energy source, the utilization of

forest-agri-residues for bioenergy and biofuels could contribute to the improvement of air quality

by reducing greenhouse gas (GHG) emissions that would come from mass burning facilities. Other

environmental and social advantages would be decreasing waste mass and saving landfill spaces,

diminishing fire risks through the collection of post-thinning residues, creation of job opportunities

and the reduction of fossil fuel dependency [9].

While the use of biomass contributes to a more desirable situation for the climate, there are still

challenges relating to the availability of biomass and its economic viability. As for availability,

forest biomass is commonly scattered over a wide region, usually being generated from forest man-

agement activities and forest products manufacturing. So, there is an uncertainty not only related

to when and where biomass is available for collecting but also the quality of the residues collected.

On the other hand, the relatively low density of energy also results in high costs of transport and

storage. The moisture and energy content, particle size, ash and contaminant contents present in

biomass also constitutes a challenge, since it influences the selection of pre-processing operations

such as sorting, chipping and drying as well as the conversion technologies, the conversion yields,

and the transportation costs. In this context, more effective design and planning approaches are

needed, addressing not only the biomass supply chain cost efficiency, but also balancing it with

sustainability and resiliency strategies.

At this moment, biomass supply chain management (SCM) has not been explored so much in

the context of sustainability and resiliency. According to [9], the number of publications that have

addressed data analysis methods in this context is lacking.
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1.3 Main goals of the dissertation

The main goal of this project is to develop a decision-support system for SC design and planning,

based on optimization techniques capable of integrating different data sources to capture the main

features of real stochastic environments. In this context, the developed model should withstand

disruptive events such as forest fires. The resulting plan should give information encompassing

both, strategic and tactical decisions, including: where to collect and store biomass material (at

the roadside or at an intermediate storage facility); where the intermediate storage facilities should

be located; when, where and how to process the collected biomass, and the amounts transported

along the supply chain to fulfill the overall power plants demand.

Due to the highly uncertain context associated to the availability of biomass, the developed

approach should provide robust plans able to cope with unexpected events and promote more

resilient practices in this sector.

The system will be tested and assessed in a case study based on a representative real-world

situation.

The successful development of a model capable of optimizing a biomass supply chain is ex-

pected to bring benefits at the social, economic and ecological level. A sustainable and profitable

way to explore biomass resources would result in a more economically viable practice, less pol-

lutant emissions to the environment, and also in job creation in forest-dependant communities, as

well in contributing to achieving energy independence.

1.4 Adopted methodology

This section will introduce the methodology adopted in this dissertation. The methodology’s fea-

tures and capabilities are also summarised.

The adopted optimisation-based methodology will help evaluate the impact of disruptive events

in the biomass supply chain and will serve as a decision-support system for strategic decisions

within the supply chain. The proposed approach uses previously computed scenarios that modify

the availability of unprocessed biomass depending on the impact of disruptive events which in this

case are wildfires.

A two-stage stochastic model therefore seems adequate to incorporate the uncertainty of the

supply chain. The model returns the strategic decisions made at the beginning of the planning

horizon which are made by the biomass supplier without knowing if and what particular disruptive

events will occur.

The first step is to determine what network nodes are present in the biomass supply chain and

their requirements. Then, the integration of different scenarios and their effects on the supply

chain is necessary for the model development.

Furthermore, a two-stage stochastic multi-objective model based on a MILP (mixed integer

linear programming) mathematical formulation is developed. The model was developed in python

using Google OR-Tools with the SCIP (Solving Constraint Integer Programs) solver. The model’s
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input is from a previous work, where the coordinates of the network points and their characteristics

are present. The distances between network nodes using GIS (Geographic Information System)

are also provided. The model’s multi-objective approach is used combining normalisation of each

objective with a weighted-sum method.

By analysing the results from the model’s solutions applied to various deterministic and a

stochastic approach, the model is validated against a previously developed simulation model. The

methodology will serve as a decision-support system capable of evaluation the effects of uncer-

tainty in the biomass supply chain.

1.5 Dissertation structure

The structure of this dissertation results from the work realized in this project. The final structure

is comprised of six chapters. The purpose of this section is to provide context into each chapter

and the overall structure of the document.

In Chapter 2 an in-depth contextualization and literature review is made about the biomass

supply chain. The supply chain structure, details, and attempts to improve it are included and

presented. There is also a review on the studies which include stochasticity in the design of

optimisation models for the supply chain.

Chapter 3 refers to the problem of this dissertation’s focus, as well as its the defining charac-

teristics and objectives.

Chapter 4 exposes the modelling approach used in this work, explaining the model’s compo-

nents and defining characteristics.

In Chapter 5 the model is validated and the results from applying the model are exposed. The

results originating from different scenarios are analysed and discussed in relation to each other.

In the end, Chapter 6 contains final remarks and conclusions resulting from this dissertation.

Possible extensions of the work and other variations are discussed.



Chapter 2

Background and Literature Review

In this section the fundamental knowledge and theoretical aspects essential to the development of

the dissertation topic will be exposed.

The following subsections will explain the biomass supply chain and what it consists of and

also the importance of optimization based techniques in the development of effective decision

support systems.

2.1 The biomass supply chain

In order to develop a reliable optimization model and understand its output, it is necessary to know

what actors and processes are involved in the biomass supply chain. According to [8], the logistics

of bioenergy and biofuel generation make up the majority of costs. Therefore improvements in

logistics and overall supply chain operations may play a significant role in a more widespread

utilization of biomass.

The processes involved in a typical biomass supply chain may include ground preparation and

planting, cultivation, harvesting, handling, storage, in-field/forest transportation, road transporta-

tion and utilization of the fuel at the power station [8]. Biomass fuel sources typically include

farms or forests and the transportation infrastructure usually involves trucks travelling by road

routes. Transportation by ship and train is less advantageous because of the usually short dis-

tances that the fuel needs to be transported. Transport of biomass fuel by truck also provides more

flexibility than the alternatives.

From the harvesting of biomass to its delivery to a power station, a biomass supplier must

manage these six different activities [8]:

1. Harvesting or collection of the biomass in the field or forest. This can be done manually or

with the assistance of machinery. Typically this process is denominated "logging".

2. Storage of the biomass. Because of the seasonal availability of biomass and the year-round

demand of it by the power stations, storage is of necessity. Biomass can be stored by the

roadside or at intermediate stations.

5



6 Background and Literature Review

3. Loading and unloading of the vehicles transporting the biomass.

4. Transport of the biomass along the supply chain.

5. Processing of the biomass to increase ease of transport and density. This can be done at any

stage of the supply chain, as long as harvesting has occurred.

6. Distribution of biomass to the bioenergy plants.

An example of different paths from forest feedstock to energy conversion is shown below

(figure 2.1).

Figure 2.1: Example of forest biomass supply chain, as illustrated in [1]

2.1.1 Biomass harvesting and collection

The biomass feedstock can be divided into three generations. First-generation biofuel consists pri-

marily of edible food crops. The exploration of this type of feedstock may compromise the food

supply [6] and as a result non-food related feedstock has become more attractive. The second-

generation of biofuels are the result from processing dry matter from plants, woody crops, agricul-

tural residues and waste from municipal landscaping or citizen gardening activities [10]. Finally,

third-generation biofuel is produced from algae.

The harvesting and collection of biomass is an activity related to uncertainty within the supply

chain because of its seasonal availability. There is a limited time period when biomass is available
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to be collected, determined by the crop harvesting period, weather conditions and the need to re-

plant the fields [8]. Harvesting efficiency depends on the size of harvesting areas and whether they

are clustered or scattered across a wide region.

There are situations in which biomass is not readily available and harvesting operations must

be completed, this is the case for agricultural residues and energy crops such as corn stover where

the feedstock is the remainder of the plant and is only available after harvesting corn [11].

In [12], biomass collection can be categorized in two types of supply chain. The supply chain

is characterized as a push system (supply-driven) if the biomass at each supply area is fully har-

vested/collected and as a pull system (demand-driven) if harvesting/collecting activities stop once

the demand for biomass has been reached. A supply-driven approach to the collection of biomass

is used when the collection must happen within a certain time frame as to not disturb agricultural

or foresting activities and the storage space at the supply areas is limited. A demand-driven col-

lection is done at supply areas with enough storage capacity for the leftover biomass at the site.

This can be done in forests where biomass is left at the harvest site to lose moisture [13]. Leav-

ing biomass to dry also has the benefit of reducing the overall weight of foresting residues and

thus increasing the energetic density, this reduces the cost of transporting large volumes of water

embedded in biomass but results in an increase of trips to the forest [13].

Upon collection, different types of biomass are gathered in different forms. Using a forage

harvester, agricultural residues can be collected in the form of round bales, square bales or loose

chop [14]. In the case of forest residues they are collected loose or they can be bundled at the site

to ease the transportation [15]. However these residues can also be processed at the forest sites

when using chip trucks to create wood chips [12].

It is important to note that the scattered availability of biomass presents challenges during

collection activities. Long distances between supply areas, storage facilities and conversion sites

result in higher transportation costs but even within the same supply site there may be various

spread out piles of available biomass which pose an issue for the collecting process [12]. This

issue requires a routing decision regarding the collection of biomass within a single supply area

[16].

Collection is dependant on the seasonal availability of biomass. Agricultural biomass supply

relies on the crops’ harvesting season [8] and in some cases collection activity in forest areas is

halted during winter months [17, 18]. This seasonal availability can result in an abundance of

supply areas relative to resources at hand during some periods and a shortage of supply areas

at times. During periods of abundance a decision of where to allocate resources must be made,

making the scheduling of collecting biomass feedstock a complex issue [12].

Biomass quality varies from supply point due to external events, being another contributor to

uncertainty. This does not impact supply-driven collection, however it does influence demand-

driven collection since energy content depends on the quality of biomass [8].

The focus of this work will be in forest-related biomass feedstock available from various sup-

ply areas. This feedstock can be collected using machinery as seen in figure 2.2.
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Figure 2.2: Forestry-related biomass collecting [2]

2.1.2 Storage options

When evaluating storage decisions, the quantity of biomass to store, the type of storage system

and the location of the storage units are all taken into consideration.

Considering the uncertainty of biomass availability, storage of biomass is necessary to meet

bio-energy plant demand throughout the year [19, 8, 12]. Facilities with drying capabilities also

help avoid quality degradation of the biomass due to infections, fermentation and material loss,

while also increase the energy content of the biofuel by reducing its moisture [8].

2.1.2.1 Location

The location of the storage units can be at the power station, at an intermediate site or in the

farm/forest [8, 19]. The latter case can also be referred as roadside storage.

Storage of agricultural biomass feedstock at the farms has a time constraint associated with

the need to prepare the farms for planting season [11]. However, forest sites can be the storage

space for forest residues for several months after harvest, with the added advantage of reducing

the moisture content of the residues through open-air drying [12].

The use of intermediate storage allows for large volumes of stored biomass as well as for a

longer duration. It is important to note that using intermediate storage implies an added number of

trips transporting biomass, first from the forest/farm to the intermediate storage and then from the

storage to the power station [8]. Because of the additional transportation requirements, this choice

of location may increase the total logistics cost. The results in [13] show that the integration of
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an intermediate terminal resulted in an overall cost reduction compared to transporting biomass

directly from the suppliers to the energy plants. The cost reduction came from the reduction

in moisture content in biomass while in storage, which made transportation more inefficient. A

higher level of moisture content also results in lower energy values, demanding a higher volume

of biomass to be delivered.

When situated at the end user’s location, stored biomass can be dried using the heat from the

plant [20].

2.1.2.2 Types of storage

Biomass can be stored by roadside or in storage facilities. These facilities can be open-air or

enclosed, as shown in figure 2.3. For enclosed facilities there are options such as drying by hot air

injection or roofed with metal or plastic [8]. Open-air storage provides lower cost however there

is an associated significant loss of biomass material and the moisture content cannot be controlled

[20]. For this reason it is best to consider this option only in arid locations. Drying capabilities in

enclosed warehouses help avoid quality degradation of the biomass due to infections, fermentation

and material loss, while also increase the energy content of the biofuel by reducing its moisture

[8].

Grinding or densification can be done at intermediate storages to reduce storage costs and

transportation costs from the terminal to the bioenergy plant [20].

Storage facilities are categorized in terms of ownership, being self-owned warehouses, pub-

lic warehouses or subcontracted warehouses. Owning the warehouse brings advantages such as

control and exposure of the brand to the market, but also brings substantial fixed costs. Public

warehouses allow for flexibility to change location, size and quantity of products to store. More-

over, subcontracted warehouses generate lower costs while also providing flexibility[20].

2.1.2.3 Quality loss

Storing biomass for a long duration is associated with quality deterioration, material loss, fire

danger or even formation of microbes dangerous to human health [8]. However, depending on the

type of storage, it can also help in preventing adverse effects. In [8], the differences in material loss

are compared between closed warehouse with external drying, covered storage without external

drying and ambient storage covered with plastic film. In spite of showing that ambient storage

results in a higher material loss, it is concluded that the cheaper option still provides cost savings.

In [21] a study was conducted reviewing dry matter losses in woody biomass storage. In

the case of freshly cut un-dried woody biomass, microorganisms are the main cause for material

decay in pile storage. Soft rot or staining fungi may be present in the wood before harvesting,

and will continue to act upon arranging the biomass in a pile. The soil, which contains other

microorganisms which harm biomass, and water, which may introduce bacteria that start infections

in the wood, are also responsible for biomass deterioration.
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Temperature is another factor that contributes to the growth rate of wood decaying fungi, most

of these grow at an optimal rate between 20-32ºC [22].

All wood decay fungi and bacteria require a minimum level of moisture for deterioration to

occur, and freshly chipped biomass has very high moisture content, this moisture content is even

higher during late spring or summer.

Negative consequences may arise from microbiological wood decay in storage. Self-heating

can lead to ignition, loss of dry matter and excess moisture [21]. With this in mind, it is important

to understand all the decay mechanisms that act upon biomass to better manage quality loss during

storage of woody biomass.

For birch wood chips the monthly dry matter losses are expected to be between 0.7 and 2.3%.

To avoid material loss it is recommended to not mix various biomass feedstocks within the same

piles, organize the wood chips in a windrow shape, minimize compaction during construction of

windrows, and limit storage time to 3-4 months [21].

Figure 2.3: Covered storage of biomass [3]

2.1.3 Transport of biomass

Transport by truck is the preferred mode of transport in the bio-energy supply chain. Costs related

to transportation may account for up to a third of costs related to delivered forest biomass [23].

Road transportation is advantageous due to the flexibility it offers and the short distances involved

in the biomass industry [20]. For long distance transport, moving biomass by ship or train are

available options to consider [24].

In cases where various modes of transportation are used, trucks can be used to deliver biomass

from the supply areas to shipment points and from these points a higher volume can be carried and
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delivered. This type of distribution is called hub-and-spoke network [12]. It may bring benefits

related to cost reduction but turns the logistics into a more complex system adding planning and

scheduling of the shipment points with the trucks.

While biomass is being transported, the travel time translates to costs in depreciation of qual-

ity, insurance, maintenance (tires, brakes, lubrication) and labour. Fuel consumption is another

cost related to travel distance [25, 8]. In [8], traveling time included the return trip and the load-

ing/unloading process. It is also mentioned that the vehicle’s load is limited by the volume of the

cargo and not by the weight since biomass has low density. However in [26] it is concluded that

while densification of biomass results in a decrease of transport movement, there comes a point

of redundancy where further densification does not bring any benefit and the transport is instead

limited by weight. The baling or bundling of biomass could reduce costs in transportation and

in storage, improving the efficiency of the supply chain [8, 15]. In figure 2.4, it is presented an

example of a large volume of processed biomass being unloaded after transportation with higher

density in comparison with feedstock found in supply areas. In [25] the cost of paying the truck

drivers was considered, even in days where trucks were idle.

Figure 2.4: Example of a truck unloading biomass [4]

2.1.4 Pre-processing

Pre-processing of the biomass is done with the intent of increasing the energy density and de-

creasing the volume of biomass. The definition of pre-treatment techniques according to [19] is

any processing that is not exclusively mechanical manipulation. However, in this section all types

of manipulation will be listed and addressed. Pre-processing techniques include ensiling, drying,

pelletization, torrefaction, pyrolisis, sorting and grinding/chipping [19, 12]. Chipping is a process

that transforms wood into small bits or "chips", as presented in figure 2.5. This process will be

considered in the work to be developed in this dissertation.

The type of pre-processing technique is based on the type of biomass and also harvesting

method. Biomass derived from agricultural activities usually goes through a grinding operation

before being collected as bales, these make transportation and storage more efficient. If a forage

harvester is utilized in the collection activity then grinding is not necessary [12]. For forest-based
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biomass the type of feedstock may demand comminution or not. Sawdust and mill shavings can

be used in the conversion process without any treatment while non-merchantable logs, tops and

branches larger in dimension need comminution [12].

Chipping of forest residues can be done at the harvest site using chipping trucks, intermediate

terminals or at the conversion facilities. Moving chipped resources is more efficient for trans-

portation due to the densification of biomass [12]. However, chippers located at forest sites like

truck-mounted chippers offer a lower productivity output than large mobile chippers at terminals

[27]. Therefore the cost of moving unprocessed forest residues can be offset by the greater ef-

ficiency of chippers present at intermediate facilities. In [27] it is noted that residues should be

moved for short distances and once transformed into chips they are transported over the longer

distance.

Drying biomass results in more efficient combustion and gasification processes by reducing

moisture levels. It also brings the benefit of providing biomass with a greater resistance to decom-

position and fire hazards. Moreover, the weight reduction from drying aids transporting activities,

decreasing their costs [26, 19]. While dependent on the weather and season [28], leaving biomass

to dry in the open air can be considered as an option that does not rely on energy expenditure.

Treatment by pelletisation consists of drying and pressing of biomass under high pressure,

producing cylindrical pieces of compressed and extruded biomass with increased bulk density

and lower moisture content [29]. Pellets ease handling and transporting operations, having greater

effects on longer transport distances [26]. Pellets can be stored for long periods without significant

dry matter loss [30].

Pyrolisis is the direct thermal decomposition of biomass in an oxygen-free environment [29],

it is process that involves high temperatures where the resulting products are present in gas and

liquid form and also solid char. Torrefaction is also a process that is done in the absence of oxygen,

making use of atmospheric pressure and high temperatures to achieve a product with low moisture

content and high calorific value in comparison to fresh biomass [29].

2.2 Approaches to address uncertainty and increase Biomass Supply
Chain resiliency

In this subsection, strategies to optimize the resiliency of the biomass supply chain under uncer-

tainty will be addressed and the results listed. These strategies involve mathematical programming

and heuristic algorithms. The biomass supply chain can be divided into different aspects and prob-

lems to solve such as: network design problems, scheduling problems, facility location problems,

vehicle routing problems, and technology selection problems.

In [31], the authors incorporate supply chain uncertainties such as biomass element charac-

teristics, transport-related parameters, raw material pricing, biomass availability, market demand

and selling price of final product to avoid an overestimation of financial performance in the supply

chain. A hybrid framework is utilized integrating a stochastic Monte Carlo Simulation model with

element targeting approach (BELCA-P-graph model) for scheduling and economic analysis in the
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Figure 2.5: Wood chips [5]

biomass supply chain. Each input of biomass feedstock ratio was generated by the BELCA-P-

graph model. The results showed that shortage of biomass contributed to the decrease of the mean

Net Present Value by 1.39%-12.21% compared to not considering biomass shortage. The mean

Net Present Value decreased by 11.59%-12.21% when taking into account storage capacity. It is

concluded that uncertainty in synthetic gas demand and selling price significantly impacted the

mean Net Present Value.

In [32], a Geographic Information System (GIS) is utilized in the logistic model to minimize

uncertainty. Power generation plant location and capacity, logistic model design and interaction

between logistic model and local conditions are evaluated. For overall profitability, it is concluded

that for lower availability of agricultural residues the optimal pre-treatment technique is compres-

sion while torrefaction becomes the best option once availability increases due to significant cost

reductions in storage. Using GIS, an estimated 0.02% reduction in transportation cost is achieved

and a 0.01% reduction in CO2 emission.

A mixed-integer linear programming model (MILP) for designing a multistage biofuel supply

chain under uncertain conditions is developed in [33], utilizing conditional value at risk (CVaR) to

evalute the financial risk on the optimal design and planning of the supply chain. The MILP model

integrates multistage stochastic programming and takes into account biomass and biofuel demand

as well as biomass feedstock seasonality. In this study the fast backward reduction method is used

to decrease the number of scenarios. The results show that transportation cost is the aspect most

affected by risk aversion. Higher risks is also responsible for a preference for lignocellulose-based

biofuel at production facilities and an overall decrease in biofuel production.

In [8], the authors refer how a multi-biomass approach, defined by combining multiple biomass

chains could be used to minimize the share of capital costs. This approach has the positive effect
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of mainly reducing the total system cost, particularly in the stage of storage, as the yearly inflow

of biomass may smoother requiring a more reduced storage space. Moreover, smoother resource

requirements could impact equipment and labor usage. An example is given of using two biomass

sources instead of one, resulting in a 15% to 20% cost reduction. The main reason this approach

has not been heavily researched involves the complexity of the supply chain when a variety of

biomass streams are involved. Another issue of the multi-biomass approach is that when convert-

ing biomass into fuel the result will be a mixture of various biomass materials with varying fuel

characteristics, or a fuel that does not maintain its characteristics throughout the year because of

the seasonal availability of resources. While there are energy conversion technologies which are

tolerant to various fuel characteristics, others are extremely sensitive even to small variations. It

is important for the sources of biomass to be capable of similar treatment from the same equip-

ment, requiring the fewest or no adjustments to maintain the advantage of cost reduction. In [8]

it is concluded that a cheaper storage solution leads to significant cost reduction for the whole

biomass logistics function, the cheapest biomass type available is recommended when choosing

this approach. However multi-agricultural biomass approach seems attractive for systems where

expensive storage solutions are used, to reduce the storage space required.

A model based on a Vehicle Routing Problem (VRP) is used in [10] to determine total trans-

portation costs and emissions of carbon dioxide of second-generation biomass (SGB) processing in

Overijssel. This paper determines the economic and environmental trade-offs between the mobile

and fixed pyrolysis plants as well as between biofuel production and the convenience of refining

and electricity production. The results show that the use of second-generation biomass processing

is expensive compared to fossil fuels, oil and refined oil achieved from this method are at least

65% more expensive than their fossil counterparts.

A resilient approach to planning the supply chain needs to accommodate the occurrence of

disruptive events. In [34] a simulation study is done utilizing discrete event simulation through

Flexsim with GIS. The study focuses on providing a decision-making tool taking into account the

influence of fires in increasing the supply of biomass and demand variability from the power plants.

The tool developed provides a comparison of costs generated by the use of intermediate storage

and additional chippers in varying scenarios of supply and demand uncertainty, thus increasing the

supply chain’s resiliency under disruptive events.

Moisture content variation in wood chips is addressed in [35]. Here, a mixed integer program-

ming (MIP) model is used to determine the optimal delivery of wood chips from forest supply

areas to power plants and terminals. Since the energy density present in wood chips decreases

with a higher moisture content, a greater amount of chips may have to be provided to power plants

to meet the agreed caloric value demanded. An optimal assignment of chippers and transportation

synchronization to process forest residues at supply areas is also one of the main objectives of

the model. The model takes into account the variation of moisture content while the chips are in

storage and it reports a 5% increase in profits over considering a fixed storage time with expected

moisture content at the end of that period.
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From the various approaches analysed, the use of a MIP model is adequate to accurately rep-

resent the behaviour of the biomass supply chain. As such, the chosen approach to address uncer-

tainty in this work utilised a two-stage stochastic model based on mixed integer programming.

2.3 Stochastic optimisation

This section aims to a brief literature review on optimization models targeting uncertainty aspects

related to SC operations.

In [36] a two-stage stochastic formulation is presented, taking into account the variability of

moisture and ash content in the total cost of producing biofuels and how they affect the design of

the biomass supply chain. The model takes as input various facilities and their locations, as well

as multiple biomass conversion technologies. The objective is to minimize the total costs, taking

into account investment, transportation, facility selection, and the distribution of biomass. In the

study’s results it is noted that the depot capacity was the factor for the supply chain not being able

to meet the demand for biochar from the power plants and bioethanol from the cities.

Another example of a two-stage stochastic programming model is presented in [37], here

the model is developed to maximize the profit obtained and minimize emissions under different

sources of uncertainties. The uncertainties considered for this problem were varying biomass

availability and prices. Various scenarios were included with different values for these two param-

eters. According to the authors, the application of the developed model could contribute to a more

flexible supply chain.

The uncertainty of user load and energy price is considered in an optimisation problem in [38].

A two-stage stochastic programming model was developed for the optimization of a biomass in-

tegrated energy system configuration, with the objective being to maximize the annual profit. The

results showed that by changing the conditions of equipment configuration capacity and operating

parameters, the solution was able to reduce the system operation risk due to random variation of

uncertainty factors compared to a deterministic solution.

Despite these important contributions, it is worth noting the lack of works specifically ad-

dressing the high variability and seasonality associated to the availability of biomass material.

This work will focus on this particular challenge of biomass supply chains management.



16 Background and Literature Review



Chapter 3

Case study and Problem Definition

This chapter will focus on the case study considered for the design of the optimisation model.

Each section is related to the approach used in this work. In 3.1 the case study is detailed.

3.1 Context

For the considered case study the role of a biomass supplier is assumed and its supply chain’s

problems studied. The biomass supplier is in charge of collecting unprocessed biomass from

scattered supply areas in forests, processing the biomass via "chipping" and delivering the wood

"chips" to a set of power plants. The expected amount of wood "chips" delivered by the supplier

to each power plant is contractually agreed for each month.

The unprocessed biomass collected by the supplier consists of residues found in forests nat-

urally or through forestry activities. These residues can be twigs, branches, leaves, and barks

originated from trees and bushes. The supplier negotiates access to the forest residues with forest

owners to be able to produce biomass. For convenience, these residues are moved from the forests

into roadside piles to facilitate access for "chippers" and trucks. Since there are numerous supply

areas, piles are scattered along the supplier’s zone of interest.

In this study it is considered that the biomass supplier has at his disposal an unlimited number

of trucks to transport both unprocessed and processed biomass. However, the number of "chippers"

is limited to five. Each "chipper" has a production rate, which dictates how much biomass it can

process in an hour, and defined usage costs for both standard and extra hours. To be able to

use a specific "chipper", the biomass supplier must pay a fixed cost corresponding to the desired

machine. "Chippers" with higher productivity have a higher fixed acquisition cost and hourly

costs. Which "chippers" to use will be one of the core decisions to address.

The supplier makes use of intermediate warehouses to act as storage for biomass and process-

ing centres. In this case study biomass processing into wood "chips" only occurs in intermediate

warehouses. Similarly to the "chippers", to be able to use an intermediate terminal a fixed cost

must be paid. Terminals with more capacity have an associated higher fixed cost. Besides the cost

and capacity of a given terminal, its location is also an important factor that is taken into account

17
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when deciding which terminals to use. The location of the terminal may greatly influence the

transport related costs therefore, the list of chosen intermediate terminals will be the other core

decision addressed.

The focus of this study is on the supplier’s tactical and strategic decisions. Strategic decisions

are less frequent, are usually costly, and are often taken a small number of times. Tactical decisions

are taken more often but usually have a smaller financial impact compared to strategic decisions.

Therefore, this study will be focused on the following main decisions:

Strategic level:

• Investment in new intermediate warehouses (based on location, cost, and capacity);

• Investment in new "Chippers" (based on processing needs, productivity, and cost).

Tactical level:

• Inventory management;

• Material flows across the supply chain;

• Processing hours per "chipper".

In order to improve the overall supply chain efficiency and resiliency the decisions mentioned

above need to be made with the intent to strike a necessary balance between profitability and

unnecessary material loss. The profitability of the biomass supply chain is a difficult pursuit

because of its characteristic seasonal dependence on biomass material and significant transport

costs. At the same time, to keep the supply chain’s sustainability in mind the avoidance of waste

and as a consequence the resilience should be a priority.

3.2 Defining resilience in the context of the BSC

The topic of resilience in the biomass supply chain has been mentioned throughout the reviewed

literature. However, it seems clear that an appropriate quantification and evaluation of supply chain

resiliency is still an open challenge. In this regard a comprehensive analysis on how resiliency has

been understood in biomass supply chain will be presented, as well as the metric that will be

proposed in this work.

Resilience in the context of a supply chain is often approached from multiple perspectives,

resulting in different definitions and metrics. It has been considered as the ability to react after

a disruption in some cases while in others it is viewed as preparing for disruptions in a proactive

manner [39]. In [40], resiliency as a property of supply chain networks is defined as "the ability of

a system to return to its original state or move to a new, more desirable state after being disturbed",

underlining that a resilient supply chain should also be flexible and adaptive.

A multidisciplinary perspective on the definition of supply chain resilience is proposed in

[41] as "The adaptive capability of the supply chain to prepare for unexpected events, respond to



3.2 Defining resilience in the context of the BSC 19

disruptions, and recover from them by maintaining continuity of operations at the desired level

of connectedness and control over structure and function". This definition was reached after the

authors analysed the concept of resiliency on different subjects such as ecological, social, psycho-

logical, economics, organizational, and emergency management.

In [39], a combination of reactive and proactive effort is included in the definition of supply

chain resilience resulting in "the adaptive capability of a supply chain to reduce the probability of

facing sudden disturbances, resist the spread of disturbances by maintaining control over structures

and functions, and recover and respond by immediate and effective reactive plans to transcend the

disturbance and restore the supply chain to a robust state of operations". This definition also

associates concepts such as flexibility, adaptability and agility.

An example of resilience being measured in the biomass supply chain is present in [42], where

a blue-sky or baseline scenario is considered in which the supply of biomass is not affected by

any disruption and a black-sky scenario where disruptions in the supply chain occur. The biomass

delivered is observed in each scenario, with the black-sky scenario having a reduction in biomass

delivery of -11.3%. Resilience in this paper is measured as the percentage of loss of biomass

delivered in black-sky scenario versus the blue-sky scenario, indicating that a smaller decline in

biomass delivery relative to the blue-sky scenario would correspond to a more resilient supply

chain, in this case the resilience to weather conditions.

A systematic literature review investigating the current status of resilience in forest biomass

and bioenergy supply chain is done in [43]. The definition for biomass supply chain resilience

given in the article is "the capability of forest biomass and bioenergy supply chain networks to

return from sustained difficulties, for sustainable development during and after a foreseeable or

unforeseeable event in a short period of time, by an efficient preventive-progressive procedure and

with high performance quality, in keeping with environmental, economic, social, technical, and

strategic standards". The study exposes barriers and enablers of biomass supply chain resilience

in different dimensions and proposes that future works evaluate the interactions between these

components and reach a conclusion about advantages, disadvantages and their importance in a

resilience context.

In [44], value-at-risk (VaR) and conditional value-at-risk (CVaR) are used to measure and

quantify disruption risks in a stochastic mixed integer programming model that determines sup-

plier selection and customer order scheduling under risk of disruption. Although resilience is

not mentioned in the referenced work, these same measures could be used to quantify resilience

according to the aforementioned definitions.

Taking into account all the literature examples and definitions stated before, resiliency in this

paper will be measured by the loss of useful biomass in the considered planning horizon. In

practice, this measurement is achieved by taking into account the loss of unprocessed biomass at

both piles in supply areas or terminals, and loss of wood "chips" at terminals. Additionally, any

biomass left at piles at the end of the scenario is considered as lost. To avoid deterioration, an

effort has to be made to process the available biomass into wood chips as early as possible. Wood

chips suffer from deterioration, but at a much slower rate than raw forest biomass. Disruptive
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events, in this case wildfires, will force the system to exert more effort to maintain a low amount

of deterioration throughout the planning period.

In this case, a disruption in the supply chain will not impact the ability to satisfy the demand

of the power plants. Instead, the inability to collect and process biomass has as consequences the

loss of useful fuel and impact to the forests’ ecosystems and their management. Uncollected or

abandoned biomass material in forests may lead to propagation of infectious bacteria capable of

degrading the forest and increase the risk of fires.

The focus of this dissertation is to increase the biomass supply chain’s resilience to uncertain

disruptive events while keeping in mind its profitability. With this in mind, a Two-Stage Stochas-

tic Multi-Objective model based on a MILP (Mixed Integer Linear Programming) mathematical

formulation is presented. The model determines which warehouses to open , which "chippers" to

acquire, when to collect each available pile of biomass, how many processing hours to dedicate

each time period to convert unprocessed biomass into "chips", and when to deliver the processed

"chips" to the power plants. The model follows a multi-objective approach to maximize the re-

silience of the supply chain and to minimize costs.

3.3 Problem definition

Considering the previous description, the problem being addressed can be defined as follows.

Considering a set of known elements and data, namely:

• Geographical coordinates of supply areas, intermediate warehouses, and power plants;

• Intermediate warehouse storage capacity;

• Cost of purchasing intermediate warehouse;

• Expected quantity of available biomass;

• Time interval where biomass is available to be processed;

• Expected demand of processed biomass to be delivered;

• Chipper processing speed;

• Hourly cost of chipper usage;

• Cost of purchasing a chipper;

• Transporting truck capacity for processed and unprocessed biomass;

• Cost of truck transporting biomass.

The goal is to determine:

• To open an intermediate warehouse or not;
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• Geographical coordinates of intermediate warehouses;

• Allocation of chipping trucks to supply areas;

• To purchase or rent an additional chipper or not.

Decisions

A set of strategic and tactical decisions will be determined.

Strategic decisions comprise the highest level of organizational business decisions and are

usually less frequent and made by the organization’s executives. Decisions made at this level

involve significant expenditure. However, they are generally non-repetitive in nature and are taken

only after careful analysis and evaluation of many alternatives.

Tactical decisions occur with greater frequency (weekly or monthly). The impact of these

types of decisions is medium regarding risk to the organisation and impact on profitability

Strategic Level:

• Infrastructure (location, capacity, size and type);

• Biomass (sourcing and location);

• Biomass storage environment selection (near supply areas or at intermediate warehouses).

Tactical Level:

• Inventory (quantity, storage or order timing);

• Fleet management (transportation model, shipping size, route and scheduling).

3.3.1 Objectives

Define evaluation criteria capable of indicating that one decision is preferable to others (define

objective function)

• Minimize total costs;

• Maximize supply chain resilience.

3.3.2 Constraints

Identify which constraints limit the decisions to be taken (Define sets of equations or inequalities)

• Amount of biomass transported in a trip cannot exceed a truck’s capacity;

• Amount of biomass stored cannot exceed a warehouse’s storage or available space near a

supply area;

• Amount of energy content delivered to a power plant cannot exceed the demand;

• Due to biomass loss during transportation and storage, the actual amount of biomass re-

quired should be higher than the ideal demand [32].
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Chapter 4

Solution approach

This section demonstrates the proposed modelling approach for the biomass supply chain prob-

lem intended to serve as a decision-support tool. A two-stage stochastic model is adopted and

explained in detail in the following sections.

4.1 Main concepts and assumptions

The developed model in this work was a two-stage stochastic model. Being a stochastic optimi-

sation program, some parameters are uncertain, in this case the biomass availability. First stage

decisions need to be made before the realization of any uncertain data while second stage decisions

are made dependent on the data that becomes available.

As part of the two-stage stochastic model, various scenarios were included with varying levels

of stress applied to the supply chain and each with its own probability. In each scenario, the

biomass supplier has as options the same chippers to buy and the intermediate terminals to open.

A baseline scenario is included where a disruptive event does not occur. All remaining scenarios

are characterized by the intensity of the wildfire disrupting the supply chain. A higher intensity

wildfire affects piles among a larger area and results in more available biomass within the same

time period. The biomass availability level represents a good parameter to introduce a necessary

trade-off between profitability and resilience. Attempting to avoid big losses of biomass material

through deterioration implies an increase in costs which decreases profitability. Therefore, the

biomass supplier is faced with a decision. This study aims to provide a decision-making tool that

the biomass supplier can utilize to balance both objectives and arrive at a reasonable solution.

There are no variations in demand for all scenarios considered, the total amount of wood chips

to be delivered in each scenario is of 38075 tons.

4.1.1 Stochastic approach

A two-stage stochastic approach involves two distinct phases of decision making. The first stage

decisions are made at the beginning of the planning horizon taking into consideration all the sce-

narios and their probabilities. The second stage decisions are made during the planning horizon

23
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and are scenario specific.

In this model binary decision variables are included to keep track of the first stage decisions.

These are what intermediate terminals are chosen and what chippers are acquired. A decision

variable λo takes value 1 if terminal o is open and available. When this is the case, the opened

terminal is able to store both unprocessed and processed biomass. The decision variable λk fol-

lows the same principle, taking the value 1 if chipper k has been acquired which allows biomass

processing to occur at a terminal.

In the case of the second stage decisions the following decision variables are used. Continuous

decision variables track the number of hours worked per chipping crew. This information provides

context for the preferred chippers used, since the machines have different hourly costs and pro-

ductivity rates for processing biomass. The number of hours also indicates if a decision to work

extra hours to avoid biomass deterioration in a certain time period is made. Moreover, tracking the

number of standard and extra hours allows for a better understanding of the time periods where

the supply chain is more stressed.

The continuous variables constituting the biomass flows from and into the intermediate termi-

nals allow for a detailed view of the choices involving transportation.

4.1.2 Disruptive events

In order to assess how resilient the biomass supply chain is, the effects of disruptive events will

be tested. In this study the considered disruptive events are wildfires that happen in the hottest

months of the year. The occurrence of a wildfire results in a sudden increase in available biomass

material in the same month. The rise in supply will stress the supply chain in the same time period,

requiring more chipping hours and transport costs to avoid big material losses. Operations take

place between March and November to avoid the most rainy periods of the year. The following

picture highlights which months have a higher risk of wildfires.

Figure 4.1: Possible occurrence of wildfires

In the face of a disruptive event a decision needs to be made regarding all the sudden available

biomass. A higher workload on chipping crews and possible opening of new terminals will avoid

huge material losses within a time period at the expense of increased transport and extra hours

costs.

The probability of each scenario occurring was obtained from running an adapted optimisation

model from the one proposed by [45] that simulates the dynamics of a wildfire. This model takes

into account various parameters such as wind speed and direction, the ignition point, the type and
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density of vegetation, and the slope. The vegetation’s type and density, as well as the slope are

taken from real maps provided by ICNF, the Portuguese Institute for the Conservation of Nature

and Forests. The remaining parameters such as wind and ignition points were assigned random

values. A fire duration period was also defined bases on the average duration of wildfires in that

region. The output is a matrix of burned points, the period in which the fire occurs, and the affected

regions of the biomass piles. Depending on the number and size of trees present in these biomass

piles regions, an estimated volume of wood is calculated. Each region has a conversion ratio of

burned wood converted to biomass since it will no longer have quality for the wood market. This

conversion ratio is based on the forest’s typology of the region, with parameters such as tree age,

variety, and density.

To achieve the scenarios and their probabilities, the model was run 500 times generating as

output the piles affected and the estimated biomass generated as a result of the wildfire. The

results were then split into wildfire severity levels with estimated biomass intervals of 10 000

tons. The number of generated scenarios in each level was used to obtain the probability of each

scenario considered in this dissertation.

4.1.3 Multi-objective approach

The developed model aims to simultaneously maximize the expected profit and the expected re-

silience of the supply chain. As such, the model has two objectives to satisfy. Following the

weighted sum method, the multi-objective problem is represented by a single objective. This

objective can be modified according to the weight assigned to the profit and resilience.

The optimisation model will incorporate a multi-objective solution and each objective needs

to be defined in order to evaluate the results. In the case of profit it was defined as achieving

the highest possible profit at the end of a scenario, taking into account the revenue obtained from

delivering biomass to the power plants and the costs associated with opening terminals, acquiring

chippers, transport, and "chipper" usage. Resilience was defined as the symmetric of the total tons

of biomass lost during the planning horizon.

The solution depends on the priority assigned to each objective. A weighted-sum approach

was used to solve the multi-objective problem and determine sound trade-offs between costs and

resiliency under a stochastic environment. A normalization approach was taken for each objective,

adapted from [46], represented in the following equation:

F trans
i =

Fi(x)−Fo
i

Fmax
i −Fmin

i
(4.1)

, where F trans
i represents the normalized values of objective function (i), resulting in all ob-

jective functions scaled from zero to one, Fi(x) represents the solution of the given objective, and

Fmax
i and Fmin

i represent the upper and lower bounds of each objective function (i).
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Biomass content loss

The loss of biomass content throughout the supply chain was incorporated using a fixed decay

rate. The decay rate of unprocessed biomass was much bigger than the decay rate of processed

biomass. This biomass degradation occurs both at supply piles and intermediate terminals.

Biomass availability in a certain pile p is affected by the unprocessed biomass decay rate,

resulting in a loss of material at the pile. This useful content loss is represented by the variable

πspt . The biomass loss occurs between time periods, affecting the material present at a pile in the

previous time period.

Biomass material present at a terminal o suffers from degradation according to the same prin-

ciple, with the added detail that after processing via chipper, the amount lost due to decay is much

smaller. The variables tracking unprocessed biomass and wood chips content loss are χsot and νsot ,

respectively.

Variables δ w
sot and δ u

sot keep track of the stock present in a terminal o. It is assumed that

any material lost is immediately disposed of and the storage space is recovered. The resulting

storage space results in a higher availability for the intermediate terminal to receive input flow of

surrounding piles.

Expected profit

The expected profit takes into account the revenue and all the costs considered in the model.

Revenue is calculated by multiplying the decision variable that represents the amount of wood

chips delivered to power plants in tons (βsomt) with the parameter that represents the price of sale

per ton delivered (pm).

The initial investment costs are represented by the cost of acquiring a chipper (ck) multiplied

by a binary variable that contains the value 1 if that chipper was used (λk). The cost of opening

terminals follows the same logic, the cost of an intermediate terminal (co) is multiplied by the

binary variable that has the value 1 if the intermediate terminal was used (λo). These costs are

associated with the first stage decisions.

The costs resulting from chipping activity are calculated from multiplying the number of stan-

dard hours worked by a chipper in a time period (εskot) with the standard hourly chipping cost of

using that chipper (wk), these are summed with the costs from overtime chipping activity which

follow the same logic (ε∗
skot and w∗

k).

Transport costs from the piles to the intermediate terminals are calculated using the decision

variable that tracks the amount of unprocessed biomass transported from a pile to a terminal in a

time period (µspot), multiplying it by the distance from the pile to the terminal (dpo) and the unit

transportation cost of unprocessed biomass (ou), the result from the multiplication is then divided

by the transportation capacity of each truck (ce). The same method is applied for the transport

costs of wood chips between intermediate terminals and power plants. The decision variable that

tracks the amount of wood chips transported from a terminal to a power plant in a time period

(βsomt) is multiplied by the distance between the intermediate terminal and the power plant (dom)
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and the unit transportation costs of wood chips (ow), the result from the multiplication is then

divided by the transportation capacity of each truck (ce).

Expected resilience

The expected resilience is calculated using the symmetric of the total tons of biomass lost during

the planning horizon.

It is calculated by summing the amount of unprocessed biomass lost due to degradation in

all terminal(χsot), the amount of wood chips lost due to degradation in all terminal(νsot), and the

amount of unprocessed biomass lost due to degradation in all piles (πspt) over the planning horizon

and adding the amount of unprocessed present in all piles at the end of the planning horizon (ρspt).

4.2 Two-stage Stochastic Multi-objective model

In the following section the model is formulated, with its sets, parameters, decision variables,

objectives and constraints stated.

Sets

S Set of scenarios

T Set of macro planning periods, T = {0, ..., |T |−1}
P Set of piles of raw material at the roadside

M Set of power plants

O Set of intermediate warehouses

K Set of chipping machines/crews

E Set of transport trucks
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Parameters

ps Probability of scenario s ∈ S occurring (%)

aspt Availability of unprocessed biomass in pile p ∈ P (ton) in macro period t ∈ T

in scenario s ∈ S (ton)

dmt Demand of wood chips at plant m ∈ M in period t ∈ T (ton)

cO
o Storage capacity in terminal o ∈ O (ton)

co Terminal opening cost (C)

ce Transportation capacity of each truck (ton)

ck Cost of acquiring a chipper (C)

n Number of available trucks

rk Productivity of chipper k ∈ K (ton/h)

yk;y∗k Maximum standard and extra-hours working time of chipper/crew k ∈ K

(h/day)

yt Number of days in a period t ∈ T

wk;w∗
k Standard and overtime hourly chipping cost of using chipper k ∈ K (C/h)

ow Unit transportation cost of wood chips (C/ton/km)

ou Unit transportation cost of unprocessed biomass (C/ton/km)

di j Distance between point of origin i (pile or terminal) and point of destination j

(terminal or power plant) (km)

pm Price paid for wood chips unit delivered to plant m ∈ M (C/ton)

xu Degradation rate of unprocessed biomass (ton/month)

xw Degradation rate of wood chips (ton/month)
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Decision variables

λo 1, if terminal o ∈ O is open; 0, otherwise

λk 1, if chipper k ∈ K is in use; 0, otherwise

βsomt Amount of wood chips transported from terminal o ∈ O to plant m ∈ M in

period t ∈ T in scenario s ∈ S (ton)

µspot Amount of unprocessed biomass transported from pile p ∈ P to terminal o ∈ O

in period t ∈ T in scenario s ∈ S (ton)

δ w
sot Amount of wood chips stored at terminal o ∈ O at period t ∈ T in scenario

s ∈ S (ton)

δ u
sot Amount of unprocessed biomass stored at terminal o ∈ O in period t ∈ t (ton)

in scenario s ∈ S (ton)

εskot Number of standard hours used by machine/crew k ∈ K in terminal o ∈ O in

period t ∈ T in scenario s ∈ S (h/month)

ε∗
skot Number of overtime hours used by machine/crew k ∈ K in terminal o ∈ O in

period t ∈ T in scenario s ∈ S (h/month)

χsot Amount of unprocessed biomass lost due to degradation in terminal o ∈ O in

period t ∈ T in scenario s ∈ S (ton)

νsot Amount of wood chips lost due to degradation in terminal o∈O in period t ∈ T

in scenario s ∈ S (ton)

πspt Amount of unprocessed biomass lost due to degradation in pile p ∈ P in period

t ∈ T in scenario s ∈ S (ton)

ρspt Amount of unprocessed biomass present in pile p ∈ P in period t ∈ T in sce-

nario s ∈ S (ton)

Model [M1]

Expected profit:

max P = ∑
s∈S

ps( ∑
m∈M

∑
o∈O

∑
t∈T

βsomt ∗ pm

− ∑
k,o,t

εskot ∗wk + ε
∗
skot ∗w∗

k

− ∑
p∈P

∑
t∈T

∑
o∈O

dpo ∗µspot ∗ou

ce

− ∑
o∈O

∑
m∈M

∑
t∈T

dom ∗βsomt ∗ow

ce
)

− ∑
o∈O

co ∗λo

− ∑
k∈K

ck ∗λk

(4.2)
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Expected resilience:

min R = ∑
s∈S

ps(∑
t∈T

(∑
o∈O

χsot +νsot + ∑
p∈P

πspt)+ ∑
p∈P

ρsptend )

,∀s ∈ S
(4.3)

Subject to:

∑
o∈O

βsomt ≤ dmt ∀m ∈ M,∀t ∈ T,∀s ∈ S (4.4)

∑
o∈O

εskot ≤ ykytλk ∀t ∈ T,∀k ∈ K,∀s ∈ S (4.5)

∑
o∈O

ε
∗
skot ≤ y∗kytλk ∀t ∈ T,∀k ∈ K,∀s ∈ S (4.6)

δ
u
sot +δ

w
sot <= cO

o ∀t ∈ T,∀o ∈ O,∀s ∈ S (4.7)

δ
u
sot = δuso(t−1)−χsot + ∑

p∈P
µspot − ∑

k∈K
(εskot + ε

∗
skot)rk ∀o ∈ O,∀t ∈ T,∀s ∈ S (4.8)

δusot1 = ∑
p∈P

µspot1 − ∑
k∈K

(εskot1 + ε
∗
skot1)rk ∀o ∈ O,∀s ∈ S (4.9)

δ
w
sot = δwso(t−1)−νsot + ∑

k∈K
(εskot + ε

∗
skot)rk − ∑

m∈M
βsomt ∀o ∈ O,∀t ∈ T,∀s ∈ S (4.10)

δwsot1 = ∑
k∈K

(εskot1 + ε
∗
skot1)rk − ∑

m∈M
βsomt1 ∀o ∈ O,∀s ∈ S (4.11)

ρspt = ρsp(t−1)(1− xu)+aspt − ∑
o∈O

µspot ∀o ∈ O,∀t ∈ T,∀s ∈ S (4.12)

ρspt1 = aspt1 − ∑
o∈O

µspot1 ∀o ∈ O,∀s ∈ S (4.13)

χsot = δsuot ∗ xu ∀o ∈ O,∀t ∈ T,∀s ∈ S (4.14)
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νsot = δswot ∗ xw ∀o ∈ O,∀t ∈ T,∀s ∈ S (4.15)

πspt = ρspt ∗ xu ∀p ∈ P,∀t ∈ T,∀s ∈ S (4.16)

µpot ≤ cO
o ∗λo ∀p ∈ P,∀o ∈ O,∀t ∈ T (4.17)

βomt ≤ cO
o ∗λo ∀o ∈ O,∀m ∈ M,∀t ∈ T (4.18)

∑
k∈K

(εkot + ε
∗
kot)rk ≥ ∑

m∈M
βomt ∀o ∈ O,∀t ∈ T,∀s ∈ S (4.19)

0 ≤ εkot ≤ yk ∀k ∈ K,∀p ∈ P,∀t ∈ T (4.20)

0 ≤ ε
∗
kot ≤ y∗k ∀k ∈ K,∀p ∈ P,∀t ∈ T (4.21)

Figure 4.2 represents the relationship of the biomass logistics supply chain with the considered

decision variables associated with the operations.

Figure 4.2: Logistics supply chain.

The objective function 4.2 maximizes the total profit by taking into account the revenue gen-

erated from the sales of wood chips to the power plants and measuring the costs. These are the

hourly costs of chipping operations taking into account overtime work, expenses resulted from



32 Solution approach

transporting unprocessed biomass and wood chips, costs related to the opening of intermediate

terminals, and costs associated with acquiring chippers.

The objective function 4.3 minimizes the amount of wasted biomass material during the sce-

narios considered. Wasted biomass here consists of useful biomass lost due to degradation in piles

(πspt), in terminals (χsot), wood chips material lost due to degradation in terminals (νsot), and also

the remaining biomass left at piles at the end of a scenario (ρspt).

The multi-objective function 4.22 uses the normalization method in 4.1 and a weighted-sum

approach to achieve a result that maximizes profit and resilience and prioritizes one or the other

depending on the priority given.

Constraint 4.4 defines the amount of processed biomass delivered to a power plant must not be

greater than the demand of that plant m at period t. Constraint 4.5 defines that the number of stan-

dard processing hours is upper bounded by the maximum standard hours in a period t. Constraint

4.6 ensures that the number of extra processing hours is upper bounded by the maximum extra

hours in a period t. Constraint 4.7 defines that the amount of stored biomass in a terminal is upper

bounded by the terminal’s capacity Constraints 4.8 and 4.9 ensure that the amount of unprocessed

biomass at a terminal is determined by the amount in the previous period plus the amount received

from piles and subtracting the amount processed in the current time period plus the amount lost

due to degradation. Constraints 4.10 and 4.11 ensure that the amount of processed biomass at

terminal is determined by the amount in the previous period plus the amount processed in the cur-

rent period minus the amount sent to plants plus the amount lost due to degradation. Constraints

4.12 and 4.13 ensure that the amount of available at a pile is calculated by taking into account

the amount available in the previous period with degradation applied, adding the new incoming

supply in that period and subtracting the amount of biomass that was transported away from the

pile. Constraints 4.14, 4.15, and 4.16 are calculations of lost biomass material. Constraints 4.17

and 4.18 indicate that material can only be transported into or out of an intermediate terminal if

it has been purchased. Constraint 4.19 defines that the number of hours worked by a chipper at

a terminal times the productivity of that chipper must be greater than or equal to the amount of

wood chips delivered from that terminal. Constraints 4.19 and 4.21 make sure that the possible

standard and overtime working hours are within bounds.

The multi-objective function is calculated using the weighted sum method and the normalized

values of the expected profit and resilience. multi-objective function:

max F = αPtrans +(1−α)Rtrans (4.22)

, where Ptrans
s and Rtrans

s are the result of the normalization formula demonstrated in 4.1.
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Results analysis and discussion

This chapter presents the obtained results after applying the developed two-stage stochastic pro-

gramming model to the considered scenarios.

The results achieved are meant to serve as a tool to aid in decision making and to evaluate

the different trade-offs that occur when choosing to prioritize a certain objective. An analysis

of the tests conducted should contribute to a more informed and detailed view into the effect of

uncertainties and disruptive events in the biomass supply chain.

The application of the optimisation model will allow for a collection of information about the

impact of cost-saving in the overall resilience of the biomass supply chain. An interpretation of

the differences in planning and resource allocation given different scenario considerations could

provide aid for decision-making.

For all the presented tests, the model was run on a machine with an Intel Core i5-7400 3.00GHz

CPU and 16GB 2133MHz DDR4 RAM. The model was developed and tested using Python 3.9.13

with Google OR-TOOLS using the SCIP solver.

5.1 Optimisation model validation

In order to verify the model’s integrity, the results after running the optimisation model with only

the baseline scenario were compared to a previously validated simulation model present in [34]

using the same input parameters except the biomass decay detail.

The baseline scenario does not include the occurrence of any disruptive events (wildfires) and

has the same intermediate terminals and chippers available as the compared simulation model.

Moreover, the demand from the power plants and the biomass availability match the base simula-

tion model ran in [34].

As the simulation model was focused on minimizing total costs, the results taken from the

reference are compared to the ones from the optimisation model after giving full priority to max-

imizing profit over resilience. The baseline scenario considered has 3 power plants and 52 piles

of biomass, 5 intermediate terminals, and 4 chippers. The resulting costs and their comparison

33
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with the simulation model can be observed in table 5.1. The resource allocation results of the op-

timisation model’s solution were to buy chippers 1 and 2. The solution also included the opening

of 4 intermediate warehouses. These decisions match the ones obtained in the simulation refer-

ence model. The chipper usage cost differences arise from the simulation model’s inclusion of

deployment costs, which occur every time a chipper is re-located from one intermediate ware-

house to another. In this case, the deployment costs of the simulation model (500 C) match the

difference observed in costs related to chipping activities. The difference in transport costs can be

explained by the loss of biomass material at supply piles in the optimisation model’s case, which

results in less biomass material to be transported to intermediate warehouses. Another factor that

contributes to the reduction in transport cost in comparison to the reference model is the simu-

lation model’s constraint that forces all available biomass to be collected and transported to an

intermediate warehouse within the considered time periods.

Table 5.1: Cost comparison between reference simulation base model and baseline scenario of
optimisation model

Cost Simulation ([34]) Optimisation model (present work)

Fixed
Intermediate warehouses: 12 000C

Chippers: 7 500C
Intermediate warehouses: 12 000C

Chippers: 7 500C

Chippers (C)
Chippers used: C1, C2

Chipper usage cost: 358 987C
Chippers used: C1, C2

Chipper usage cost: 333 230C
Transport Transport cost: 244 810C Transport cost: 217 713C
Total cost 623 297C 570 443C

In spite of the previously mentioned differences between the costs obtained in each model, the

optimisation model can be considered validated since it appears to follow the same behaviour in

resource allocation as the considered reference.

5.2 Deterministic analysis

In this section scenarios with varying levels of wildfire intensity will be analysed in terms of

the model solution obtained. For each scenario, resilience and profit are plotted over 20 points

according to the weight assigned to each objective.

As previously mentioned, the difference between each scenario is related to the intensity of

the disruptive event, namely which and how many piles are affected by a wildfire. Therefore, the

supply chain will respond to varying levels of biomass availability spikes that occur in a specific

month.

5.2.1 Baseline scenario (no wildfire occurrence)

The baseline scenario does not include a disruptive event, the total biomass available is considered

deterministic with the value of 45530 tons. In figure 5.1 the results from the model’s solutions can

be seen plotted according to weight distribution between profit and resilience. The deterministic
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model contains 5 076 decision variables and 4 765 constraints. The model run time for the base-

line deterministic scenario was of 8 minutes and 30 seconds to achieve twenty solutions that are

represented in figure 5.1. All solutions were optimal.

A common characteristic of all the plotted scenarios results is that the first point plotted which

has any weight attributed to profit (resilience weight = 0.95 and profit weight = 0.05) performs

significantly better than the solution focusing only on resilience. Here, the model appears to arrive

at a solution where the profit is considerably higher while maintaining roughly the same value for

the resilience metric. In this case the values for resilience weight = 1 and profit weight = 0 were

439 tons of biomass lost and a profit of 146 643C while the values for resilience weight = 0.95

and profit weight = 0.05 resulted in 467 tons of biomass lost and a profit of 423 846C.

Figure 5.1: Pareto front approximation for baseline scenario.

To compare the trade-offs between prioritizing an objective over the other, the results of the

weight distribution with a 0.95 to 0.05 split as well as the results for an equal distribution split

were compared in table 5.2.

Table 5.2: Baseline scenario weight distribution result comparison

Weight distribution Profit Tons of biomass lost Total biomass
delivered

Rw = 0.95, Pw = 0.05 423 846C 467 tons 36 470 tons (95%)
Rw = 0.5, Pw = 0.5 562 518C 1 868 tons 38 075 tons (100%)
Rw = 0.05, Pw = 0.95 647 956C 8 009 tons 38 075 tons (100%)

In the solution with the weight distribution Rw = 0.95 and Pw = 0.05, a bigger investment was

made to prevent biomass loss. This included the acquisition of the two most productive chippers

(C1 and C3) which imply a bigger hourly cost. In this solution an effort was made to process as

much biomass as soon as possible. Therefore, 380 tons out of the 467 tons of biomass lost were
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from already processed wood chips at terminals, with the rest being biomass lost at supply piles.

As the focus was not entirely on profit, the biomass delivered did not correspond completely to

the demand.

The solution for the weight distribution Rw = 0.05 and Pw = 0.95, out of the 8009 tons of

biomass lost, none came from the intermediate terminals and instead consisted of biomass left and

lost at piles. In this solution only the minimum required biomass from piles was transported and

processed so the demand was met and the profit was prioritized.

The chippers acquired and intermediate terminals opened in the selected weight distributions

are shown in table 5.3.

Table 5.3: Resource selection for baseline scenario solution

Weight distribution Chippers acquired (C) Terminals opened (T)
Rw = 0.95, Pw = 0.05 C1, C3 T1, T2, T4, T5
Rw = 0.5, Pw = 0.5 C1, C2 T1, T2, T4, T5

Rw = 0.05, Pw = 0.95 C1, C2 T1, T2, T4, T5

For the equal split solution, all the terminals were opened except the most expensive one

(intermediate terminal 3) and the chippers acquired were chipper 1 with high productivity rate

and hourly cost and chipper 2 with lower productivity rate and hourly cost. As for the chipper

usage, chipper 1 was most utilized with 1583 hours worked compared to chipper 2 with 752 hours

worked.

The option with more focus on resilience (Rw = 0.95 and Pw = 0.05) differs from the others

by choosing to acquire chipper 3 instead of chipper 2. Chipper 3 has a higher productivity rate but

is also more expensive to use.

The values of investment costs, which consist of expenses from opening terminals and acquir-

ing chippers, and operational costs, which consist of transport and chipping usage costs are shown

in figures 5.2 and 5.3. The values in the x axis represent the respective weight distributions. A

label of "0.95/0.05" in the x axis represents a weight distribution of resilience weight = 0.95 and a

profit weight of 0.05.

Figure 5.2: Investment costs for baseline scenario.
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Figure 5.3: Operational costs for baseline scenario.

By analysing figures 5.2 and 5.3 it is possible to see a decrease in both investment costs and

operational costs as the focus shifts from resilience to profit. When the focus is solely on profits

the highest investment and operational costs are achieved. There is a drop off in investment costs

going from the weight distribution 0.8/0.2 to 0.75/0.25, this explains why the 0.75/0.25 weight

distribution is able to achieve higher operational costs and still result in an overall lower total cost

than the previous weight distribution.

5.2.2 Low intensity wildfire scenario

In this section a scenario was considered with a wildfire occurring on the fourth month affecting

a total of 5 piles. The total available biomass in this scenario is of 56 675 tons. The results from

the model’s solutions can be seen in figure 5.4. The highlighted point represents the solution for

a weight distribution of resilience weight = 0.5 and profit weight = 0.5. The deterministic model

contains 5 076 decision variables and 4 765 constraints. The model run time for the low intensity

wildfire deterministic scenario was of 6 minutes and 45 seconds to achieve twenty solutions that

are represented in figure 5.4. All solutions were optimal.

As done with the baseline scenario, a table was created exposing the trade-offs between prior-

itizing one objective over another. The values are shown in table 5.4.

For this scenario, the same logic and behaviour was observed in the solution as in the results

from the baseline scenario. In the results prioritizing resilience, extra hours and an additional

chipper are utilized to avoid big losses in biomass material resulting in all the losses coming from

wood chips stored at terminals. The solution prioritizing profit once again only transports and

processes the necessary biomass material to meet the demand from the power plants.

Table 5.4: Low intensity wildfire scenario weight distribution result comparison

Weight distribution Profit Tons of biomass lost Total biomass
delivered

Rw = 0.95, Pw = 0.05 300 879C 974 tons 37 580 tons (99%)
Rw = 0.5, Pw = 0.5 406 294C 2 200 tons 38 075 tons (100%)
Rw = 0.05, Pw = 0.95 688 388C 19 823 tons 38 075 tons (100%)
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Figure 5.4: Pareto front approximation for scenario with low intensity wildfire.

The chosen chippers and intermediate terminals for each considered weight distribution are

shown in table 5.5.

Table 5.5: Resource selection for low intensity wildfire scenario

Weight distribution Chippers acquired (C) Terminals opened (T)
Rw = 0.95, Pw = 0.05 C1, C2, C3 T1, T2, T4, T5
Rw = 0.5, Pw = 0.5 C1, C2, C3 T1, T2, T4, T5

Rw = 0.05, Pw = 0.95 C1, C2 T1, T2, T4, T5

In this scenario, for the equal split solution an additional chipper was acquired compared to the

baseline solution and the same number of intermediate warehouses opened. The additional chipper

acquired (chipper 3) has higher productivity rate and hourly cost. The most utilized chipper was

chipper 1 with 1512 hours, followed by chipper 3 with 886 hours and then chipper 2 with 298

hours and no extra hours were utilized. Therefore, it seems the solution shows an advantage in

acquiring an additional chipper to process all the excess biomass instead of utilizing extra chipping

hours, which are costly.

The solution for the weight distribution focused on profit (Rw = 0.05 and Pw = 0.95) does

not acquire chipper 3 unlike the solutions for the other weight distributions. Chipper 3 has an

expensive hourly usage rate so it would make sense to avoid using it if the focus is on profit.

The evolution in investment and operational costs can be seen in figures 5.5 and 5.6.
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Figure 5.5: Investment costs for low intensity wildfire scenario.

Figure 5.6: Operational costs for low intensity wildfire scenario scenario.

By analysing the evolution of investment and operational costs it is possible to see a decrease in

both values as the priority shifts from resilience to profit. When the priority is solely on resilience

the investment costs are highest and from the distribution Rw = 0.5 and Pw = 0.5 to Rw = 0.45

and Pw = 0.55 there is another shift in investment costs. This shift is caused by the decision not to

acquire chipper 3.

5.2.3 High intensity wildfire scenario

The high intensity wildfire scenario considered for this section affected a total of 34 piles of

biomass, the highest out of every created scenario. The wildfire takes place in the fourth month and

the total available biomass is 107 125 tons. Figure 5.7 shows the solution results for the consid-

ered scenario with the point of equal weight distribution (Rw = 0.5 and Pw = 0.5) highlighted. The

deterministic model contains 5 076 decision variables and 4 765 constraints. The model run time

for the high intensity wildfire deterministic scenario was of 8 minutes to achieve twenty solutions

that are represented in figure 5.7. All solutions were optimal.

Table 5.6 shows the results for the previously addressed weight distributions. For this sce-

nario when resilience is prioritized all chippers were acquired and all intermediate terminals were

opened due to the excessive amounts of available biomass added. In this scenario the biggest dif-

ferences in profit and resilience values are also observed. The reason for the increase in profit for
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Figure 5.7: Pareto front approximation for scenario with high intensity wildfire.

the solution with resilience weight = 0.05 and profit weight = 0.95 is the geographical availability

of the piles which suffer from a spike in available biomass. This results in big savings in trans-

port costs from piles to intermediate terminals. Once again, when profit was given most priority

the solution only transported and processed the biomass needed to meet the demand of the power

plants, which is the same for every considered scenario.

Table 5.6: High intensity wildfire scenario weight distribution result comparison

Weight distribution Profit Tons of biomass lost Total biomass
delivered

Rw = 0.95, Pw = 0.05 -807 886C 9 215 tons 35 867 tons (94%)
Rw = 0.5, Pw = 0.5 256 424C 27 623 tons 38 075 tons (100%)
Rw = 0.05, Pw = 0.95 714 721C 72 943 tons 38 075 tons (100%)

The chosen chippers and intermediate terminals for the considered weight distributions are

shown in table 5.7.

Table 5.7: Resource selection for equal weight split solution in low intensity wildfire scenario

Weight distribution Chippers acquired (C) Terminals opened (T)
Rw = 0.95, Pw = 0.05 C1, C2, C3, C4 T1, T2, T3, T4, T5
Rw = 0.5, Pw = 0.5 C1, C2, C3 T1, T2, T3, T4, T5

Rw = 0.05, Pw = 0.95 C1, C2 T1, T2, T4, T5

In comparison to the baseline solution, an additional chipper was acquired (chipper 3) and an

additional intermediate terminal was opened (terminal 3). Chipper 3 provides higher productivity

rate to accommodate the spike in biomass availability . The additional terminal allows for more

biomass to be processed and stored, reducing the rate at which it decays resulting in considerable
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savings of biomass material. The significant increase of biomass material available results in lower

profits when compared to the other considered scenarios.

In this case the solution with the highest priority on resilience acquires additionally chipper 4

which has the highest investment cost. With all the chippers available all the available biomass

can be processed as soon as it becomes available and therefore avoiding big material losses. The

solution that focuses on profit (Rw = 0.05 and Pw = 0.95) includes the purchase of only chipper 1

and chipper 2 and does not open intermediate terminal 3 to save on costs. If in this solution only

the necessary biomass is processed to meet the demand then there is no need to invest in additional

storage space or chippers.

The evolution in investment and operational costs for the high intensity wildfire scenario can

be seen in figures 5.8 and 5.9.

Figure 5.8: Investment costs for high intensity wildfire scenario.

Figure 5.9: Operational costs for high intensity wildfire scenario.

When resilience is given the most priority the investment costs are the highest given the sig-

nificant increase in biomass availability. As such from the weight distribution of Rw = 1 and Pw

= 0 to Rw = 0.60 and Pw = 0.40 the solution includes the acquisition of every chipper and inter-

mediate terminal available. From Rw = 0.55 and Pw = 0.45 to Rw = 0.50 and Pw = 0.50 chipper

4 is no longer included in the solution. Another cost decrease happens at the distribution Rw =

0.40 and Pw = 0.60 where chipper 3 is not acquired and the final decrease at Rw = 0.35 and Pw

= 0.65 happens due to the exclusion of intermediate Terminal 3 in the solution. The operational
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costs follow the expected behaviour of decreasing as the profit priority increases, stagnating from

the weight distribution of Rw = 0.10 and Pw = 0.90 onward.

5.3 Two-stage stochastic programming model solution

This section includes the results and analysis of the two-stage stochastic programming model

based on mixed integer programming. The results represent a solution that takes into consideration

a total of 25 scenarios, each with an corresponding expected probability of occurrence, with 24 of

them containing a disruptive event (wildfire) in one of the three previously explained considered

time periods. The obtained results do not represent an ideal solution for each scenario but instead

a solution introducing a compromise that is sufficiently prepared for every scenario.

The solutions according with the weight distribution given to the profit and resilience objec-

tives can be observed in figure 5.10, the highlighted point indicates the equal weight distribution.

The deterministic model contains 126 684 decision variables and 119 125 constraints. The model

run time for the baseline deterministic scenario was of 35 minutes to achieve twenty solutions that

are represented in figure 5.10. All solutions were optimal.

Figure 5.10: Pareto front approximation for the stochastic solution.

As was done with the individual scenario results, the solutions for the weight distributions of

Rw = 0.95 and Pw = 0.05, Rw = 0.5 and Pw = 0.5, and Rw = 0.05 and Pw = 0.95 are highlighted

and analysed. These results are depicted in expected values for profit and resilience in Table 5.8.

The biomass delivered almost satisfies the demand for the weight distribution of Rw = 0.95 and

Pw = 0.05 and fully satisfies the demand for the other selected distributions. When focusing on

resilience, delivering processed biomass has the benefit of clearing storage space in intermediate

terminals.
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Table 5.8: Optimisation model weight distribution result comparison

Weight distribution Profit Tons of biomass lost Total biomass delivered
Rw = 0.95, Pw = 0.05 89 356C 1 722 tons 37 039 tons (97%)
Rw = 0.5, Pw = 0.5 483 684C 8 004 tons 38 075 tons (100%)

Rw = 0.05, Pw = 0.95 670 124C 25 429 tons 38 075 tons (100%)

The results in table 5.8 are expected given the results shown for individual scenarios above.

The supply chain’s necessity to be resilient to uncertain disruptive events results in compromises

made in terms of resource management. Looking at the choices for chippers and intermediate

terminals in table 5.9.

Table 5.9: Resource selection considering every scenario

Weight distribution Chippers acquired (C) Terminals opened (T)
Rw = 0.95, Pw = 0.05 C1, C2, C3, C4 T1, T2, T3, T4, T5

Rw = 0.5, Pw = 0.5 C1, C2 T1, T2, T4, T5

Rw = 0.05, Pw = 0.95 C1, C2 T1, T2, T4, T5

The equal split solution includes the choice of chipper 1 with a productivity of 20 tons of

biomass processed per hour and chipper 2 with half the productivity of chipper 1. These chippers

have a very low acquisition cost compared to chipper 3 and 4. All terminals except terminal 3

were included in the solution, which is the most expensive but also the intermediate terminal with

the most capacity. These choices are in line with the results from the individual results. As high

intensity wildfire scenarios were not considered as very likely to occur, the optimisation model

solution’s choice of chippers seems appropriate. The considered solution that focuses on profit

includes the same investment decisions. For the weight distribution of Rw = 0.95 and Pw = 0.05

all chippers are acquired and all intermediate terminals are opened.

The evolution in investment and operational costs for the stochastic solution is shown in figures

5.11 and 5.12.

Figure 5.11: Investment costs for the stochastic solution.
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Figure 5.12: Operational costs for the stochastic solution.

Investment costs stay constant from the weight distribution of Rw = 0.5 and Pw = 0.5 until

Rw = 0 and Pw = 1, this translates to the acquisition of chippers 1 and 2 which are the least

expensive and opening intermediate terminals 1, 2, 4 and 5. On Rw = 0.55 and Pw = 0.45 chipper

3 is included in the solution on top of the other mentioned chippers and terminals, increasing the

investment cost. From Rw = 0.75 and Pw = 0.25 to Rw = 0.60 and Pw = 0.40 all terminals are

opened and chippers 1, 2, and 3 are acquired. From Rw = 0.85 and Pw = 0.15 to when the focus is

solely on resilience, every terminal and chipper is included in the solution and the investment cost

is highest. Operational costs decrease as the focus shifts from resilience to profit. A considerable

difference in operational costs occurs from the solution where the focus is solely on resilience

compared to the weight distribution Rw = 0.95 and Pw = 0.05.

By analysing the different solutions achieved, a biomass supplier could make an informed

decision taking into account the supplier’s biases toward resilience and profit. A biomass supplier

could for instance prefer to store and preserve as much biomass as possible during the planning

horizon in order to guarantee meeting the demand of power plants in the future, in the case of a

lack of biomass availability in the following year.

5.4 Deterministic and stochastic comparison

In this section the results from the solutions obtained in the previously analysed individual deter-

ministic scenarios and the stochastic approach will be compared.

The considered deterministic scenarios are the baseline scenario where no wildfire occurs, a

scenario including a low intensity wildfire affecting 5 piles of biomass, and a scenario involving a

high intensity wildfire affecting 34 piles of biomass. The stochastic solution includes 25 scenarios,

including the previously mentioned scenarios used in the deterministic approaches. In the stochas-

tic approach the probability of no wildfire occurrence or of a low intensity wildfire are higher than

the probability of scenarios that include higher intensity wildfires.

For a better ease of comparison, the results of every considered deterministic and stochastic

solution for a weight distribution of resilience weight = 0.5 and profit weight = 0.5 is presented in

table 5.10.
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Table 5.10: deterministic vs stochastic results comparison for equal weight distribution

Baseline
deterministic

Low intensity
wildfire

deterministic

High intensity
wildfire

deterministic

Stochastic
approach

Profit 562 518C 406 294C 256 425 C 483 684C

Tons of
biomass lost

1 868 tons 2 200 tons 27 623 tons 8 004 tons

Biomass
delivered

38 075 tons (100%) 30 075 tons (100%) 30 075 tons (100%) 38 075 tons (100%)

Chippers
acquired (C)

C1, C2 C1, C2, C3 C1, C2, C3 C1, C2

Terminals
opened (T)

T1, T2, T4, T5 T1, T2, T4, T5 T1, T2, T3, T4, T5 T1, T2, T4, T5

For the deterministic solutions, the equal focus on profit and resilience results in a lower profit

when the biomass availability is high. The higher biomass availability present in higher intensity

wildfire scenarios requires more effort to avoid biomass material loss, resulting in higher chipping

and transporting costs. At the same time, a higher biomass availability results in more biomass

being lost due to degradation since the solution has to keep profit as a goal. The expected profit in

the stochastic approach has the second highest value present in table 5.10, this is reflective of the

probabilities in the scenarios considered.

The stochastic solution includes the acquisition of chippers 1 and 2 as well as intermediate

terminals 1, 2, 4 ,and 5. This consists of the same initial investment decisions as in the baseline

solution. If the biomass supplier chooses to follow the solution obtained in the stochastic ap-

proach, the supply chain will achieve the desired results when no wildfire occurs. However, this

decision compromises the supply chain’s ability to respond to the occurrence of wildfires. If a low

intensity wildfire occurs, the non inclusion of chipper 3 (as in the low intensity wildfire determin-

istic solution) will result in bigger biomass losses unless a significant amount of extra hours are

utilized which will result in a lower profit. In the event of a high intensity wildfire, the biomass

supplier will be missing chipper 3 as well as intermediate terminal 3 and as such will obtain worse

results in either profit or biomass loss.

The stochastic solution is not expected to outperform the deterministic solutions. Instead it

presents a solution that compromises the ability to perform optimally in certain scenarios while

simultaneously being prepared to achieve acceptable results considering every scenario and its as-

sociated probability. In this way, the stochastic approach acts as a risk management tool. With the

considered scenarios and probabilities, the stochastic solution obtained considers that the invest-

ment in chipper 3 and intermediate terminal 3 is not advisable since it would result in significant

profit losses in cases where those resources are not necessary for an optimal solution.
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Chapter 6

Conclusions and future work

In this chapter conclusions about the work done throughout the project are presented. The ob-

jectives of this dissertation are revisited and evaluated, with a focus on confirming that the initial

goals were fulfilled. Suggestions for future work are also included, keeping in mind improvements

to be made.

6.1 Conclusions

The goal of this dissertation was to develop a decision-support system for a biomass supply chain,

based on an optimisation methodology taking uncertainty into account to enhance the supply

chain’s resilience to disruptive events. In this dissertation, a two-stage stochastic multi-objective

model based on a MILP (Mixed Integer Linear Programming) mathematical formulation was de-

veloped. The optimisation model was developed considering the characteristics of a forest biomass

supply chain. The disruptive events considered were wildfires that impact the supply chain in

the form of a spike in the biomass availability. The developed optimisation model used a multi-

objective approach using a weighted sum method to achieve varying solutions based on the priority

given to each objective, profit and resilience. Resilience in this work was defined as the ability of

a supply chain to be flexible under the occurrence of disruptive events and was measured by the

the loss of useful biomass in the considered planning horizon. The developed optimisation model

was validated against a simulation model, proving the behaviour of the model was as intended and

the results trustworthy. Three different deterministic scenarios and a stochastic approach consider-

ing all the scenarios and their probabilities were tested and compared in terms of results achieved

when varying the weight distribution between profit and resilience.

The developed optimisation model’s solution provides the selected chippers to acquire and

intermediate terminals to open considering scenario or scenarios given as input. Other decision

variables of the optimisation model provide insight into operational decisions that occur during

the planning horizon such as the amount of standard and extra hours spent processing biomass

during each time period (month) in the planning horizon. Additional decision variables tracking

47
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the biomass lost at piles and intermediate terminals allowed a quantifiable measure of resilience

to evaluate the performance of the supply chain.

Regarding the performance of the model when considering various deterministic scenarios,

the changes in objective priority from resilience-focused to profit-focused showed a consistent

behaviour of increase in profit but also useful biomass material lost. When focusing solely on

profit, higher intensity wildfire scenarios achieved higher profit values due to the ability to trans-

port only the closest biomass available and processing only the necessary amount of biomass to

meet the demand of the power plants, thus reducing transporting and chipping costs. The results

in the deterministic scenarios aiming for a split priority between profit and resilience show that as

the biomass availability increases, investment costs into new chippers and intermediate terminals

increase, profit decreases due to the effort required to avoid losing useful biomass, and the total

amount of biomass lost also increases. For the equal split weight distributions, in every solution

the biomass demand of the power plants was met. The achieved stochastic solution included com-

promises, being less prepared for the occurrence of wildfires than the deterministic approaches but

being able to optimally respond to a scenario that did not involve a wildfire occurrence.

In terms of overall conclusions, the optimisation model developed in this work seems able to

be used as a decision-support system, assisting in the selection of strategic decisions and taking

into account uncertain events in a biomass supply chain. The model also provides a detailed view

into the investment and operational costs, the number of standard and overtime hours worked by

the chipping crews, the amount of biomass stored and processed, and the amount of biomass lost

both at piles and intermediate terminals in the form of unprocessed material or processed wood

chips. This dissertation’s objectives are then considered fulfilled, as this work has demonstrated

itself to be of advantageous as a decision-support system in supply chain management.

6.2 Future work

The proposed optimisation-based methodology was developed for the forest-to-bioenergy sector.

Despite that, it would be possible to use the methodology to develop new optimisation models for

not only energy sectors but also other sectors involving supply chain and logistics. Additionally,

the considered uncertainties and disruptive events which can affect supply are also present in other

industries, making it appropriate to be replicate the approaches developed in this work to other

cases.

Future work could be developed to incorporate different types of uncertainty, such as limited

transport units, transport delays, demand unpredictability, or even machine failure.

Additionally, other constraints could be integrated in the optimisation model such as penalties

for unsatisfied deliveries, the inability to collect from certain piles that are being affected by a

wildfire in a time period, and chipper unavailability while travelling between intermediate termi-

nals. In this work only the possibility of buying a chipper or intermediate terminal was considered.

However, additional constraints could be implemented to allow for the renting of chippers and in-

termediate terminals, allowing for strategic decisions in the middle of the planning horizon.
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To further improve the developed model’s credibility and accuracy, real-life practical data

could be used to determine the input parameters of the model. Values such as chipper productivity,

intermediate terminal storage, investment and upkeep costs, truck capacity, and selling price of

wood chips could be modified to represent specific practical cases. Moreover, the number of

considered scenarios could be increased to achieve a more trustworthy end solution.

Finally, an integration of this optimisation model into a simulation model with a dashboard

would benefit decision-makers, allowing for a clearer view into the effects of the decisions taken.
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