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Resumo

A Monitorização de recém-nascidos é uma tarefa árdua que é executada continuamente em cada
Unidade de Cuidados Intensivos Neonatais. Devido ao delicado estado de equilíbrio na saúde dos
recém-nascidos, a monotorização de sinais vitais é essencial, uma vez que permite uma deteção
atempada de problemas médicos, contribuindo ativamente para o bem estar e saúde do indivíduo
pré-termo. De forma convencional, os recém-nascidos são monitorizados através de sondas fixas
na pele. No entanto, estes instrumentos podem danificar a epiderme e aumentar o risco de infeção,
bem como causar desconforto ou dor à criança.

Evoluções recentes nas técnicas de Visão por Computador possibilitaram o desenvolvimento
de algorítmos de monotorização baseados em imagem, que representam uma alternativa sem con-
tacto para a extração de sinais fisiológicos tais como batimento cardiaco e ritmo respiratório. Van-
tagens da monotorização sem contacto incluem redução nos danos causados à epiderme, limitação
do número de sondas e monitores usados (deixando maior área de superfície corporal para outros
cuidados).

Neste estudo, um método para extração continua e sem contacto do batimaneto cardiaco e
respiratório foi desenvolvido, fazendo uso de câmeras de video comuns. A técnica desenvolvida
baseia-se na deteção de variações subtis na cor da luz refletida pela pele. Ao bater, o coração induz
o fluxo de sangue que se propaga até aos capilares mais superficiais. Por esse motivo, o volume de
sangue dentro desses mesmo capilares varia intermitentemente, resultando no fenómeno de Blood
Volume Pulse (BVP). Uma vez que a absorvância do sangue difere da dos tecidos envolventes,
diferentes volumes sanguineos nos capilares induzirão diferenças na cor da luz refletida pela pele,
que pode ser registada possibilitando a extração de um sinal temporal. Este sinal é equivalente
ao sinal PPG que pode ser extraido por aparelhos como o oximetro de pulso, no entanto a sua
extração é feita sem contacto e por isso é comummente referido como remote PGG (ou rPPG). O
sinal rPPG possui informação valiosa que pode ser usada para a extração dos ritmos cardiaco e
respiratório. Para além do desenvolvimento do método para extração dos sinais vitais, foi também
empregue um método para amplificação de variação de cores em video. Este método permite a
enfatização do BVP, fenómeno que permite a extração dos ditos sinais vitais. Para além disso, a
mesma técnica foi utilizada para magnificar os movimentos respiratórios.

O método desenvolvido provou ser bem sucedido não só nas condições mais simples, mas
também em algumas das condições desafiantes impostas pelo dataset usado. Estas condições, as
mais prováveis de serem encontradas aquando dos testes numa NICU, são a presença de batimen-
tos cardiacos elevados, uma vez que os recém-nascidos apresentam um batimento cardiaco muito
superior ao dos adultos em repouso, e condições de luz não homogenéas. Para estas condições, o
método apresentou um RMSE de 1.05 e 1.55 bpm, respetivamente, o que se traduz em erros rela-
tivos de 1.6% and 2.3%. No que diz respeito ao ritmo respiratório, os resultados para os mesmos
desafios foram 3.56 e 3.37 bpm.
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Abstract

Monitoring of newborns is a challenging task, which is carried daily at every Neonatal Intensive
Care Unit (NICU). Due to the delicate state of equilibrium in neonates’ health, vital sign monitor-
ing is important, as it allows for early detection of medical issues and therefore actively contributes
for the infant’s well-being and health. Conventionally, newborns are monitored via probes affixed
to their skin. However, such instruments may cause damage to the epidermis and increase the risk
of infection as well as promote great discomfort or even pain to the infant.

Recent discoveries and developments in Computer Vision techniques made it possible to de-
velop image-based monitoring algorithms, which represent a non-contact alternative to record
physiological signals such as heart and respiratory rates. Advantages of contactless monitoring
methods include reduction in skin breakdown, minimizing the number of probes and monitors
used, which leaves more body surface-area for other care.

In this study, a framework for contactless and continuous Heart and Respiratory Rates extrac-
tion using ordinary color video cameras was developed. The technique employed is based on the
detection of subtle variations in the color of the light reflected by the skin. The pulsating action of
the heart induces blood flow, which propagates to the most superficial capillary vessels. For that
reason, as the blood travels back and forth, its volume inside the said capillaries varies intermit-
tently, a phenomenon referred to as Blood Volume Pulse (BVP). As the absorbance of the blood
differs from that of the surrounding tissues, different volumes of blood at the most superficial
vessels, result in differences in the hue of the light reflected by the skin, which can be extracted
over time to form an extremely informative time signal. The time signal inherent to these hue
variations is equivalent to the PPG signal, which can be extracted with medical devices such as
the pulse oximeter. Its extraction does not require contact with the patient and, hence the signal is
often called remote PPG signal (or rPPG). The rPPG signal provides valuable information, which
can be used for the extraction of the Heart and Respiratory Rates, among other medically relevant
information. In addition to the contactless vital sign extraction method, a technique for subtle
change magnification in video was employed. This method allowed the visualization of BVP, phe-
nomenon which makes the extraction of the vital signs possible. Furthermore, the same technique
was used to magnify the respiratory movements.

The framework developed with the a database specific for adult subjects and later validated
in neonatal subjects proved to be successful not only in simple conditions but also in some of the
challenges covered in the dataset. These challenges, which are the most probable to be faced when
dealing with the NICU environment, are the presence of high and fluctuating heart rates, due to
the increased heart rate of newborns when in comparison with that of adults and uneven lighting
conditions, since the lighting distribution inside a NICU is not necessarily homogeneous and may
cast shadows on the infants’ faces. For these challenges, concerning the heart rate extraction,
the framework presented a RMSE of 1.05 and 1.55 bpm, respectively, which translates to relative
errors of 1.6% and 2.3%. With respect to the respiratory rate, the results for the same challenges
were of 3.56 AND 3.37 bpm.
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Chapter 1

Introduction

Preterm birth, defined by delivery before the completion of 37 weeks of gestation [1], represents

a huge risk factor for neurological impairment and disability [2]. Its complications are the second

leading cause of death among children under 5 years of age, responsible for approximately 1

million deaths in 2015 [3]. In addition, preterm birth not only prejudices the infants and their

families but also the health services, once the infant may spend months in hospital increasing

related costs [4, 5].

Repercussions induced by preterm birth may vary according to the length of the gestational

period. Shorter gestational periods bring higher risks, due to greater immaturity of the organs and

body functions, thus being associated with increasing mortality, disability and intensity of neonatal

care required. This being said, preterm birth may be segmented into: extremely preterm (<28

weeks), very preterm (28 to 32 weeks), and moderate or late preterm (32 to 37 completed weeks

of gestation) [6]; the latter representing approximately 75% of all preterm births [7]. Preterm

birth which results from a gestational period bellow 22 to 25 weeks (depending on the country

and institution) may be considered beyond the limit of viability and therefore should be careful

discussed by parents and health care providers as it may not justify the high mortality rates and

inevitable complications [8].

Data from 184 countries revealed that the global average preterm birth rate was 11.1%, which

sums up to roughly 15 million babies born prematurely in the year of 2010 [6]. From the countries

taken in consideration it can be inferred that, prematurity is undoubtedly considered a global

problem. Overall preterm birth rate has been rising steadily, due to several premises of the current

society. Such premises are the rise in rates of multiple births, as well as greater used of assisted

reproduction techniques and more obstetric intervention [2], which have been proven as causal

factors for this type of delivery.

Other causes inherent to preterm birth are distributed along diverse etiologic pathways, such

as maternal medical conditions, obstetric complications, major congenital anomalies or isolated

spontaneous deliveries. Particularly in late preterms, medically indicated elective cesarean sec-

tions were responsible for the majority of all deliveries [9]. When it comes to maternal medical

conditions, a panoply of factors have been proved to contain strong causal correlations with an

1
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increasing risk of premature delivery. Such factors may have distinct origins, namely behavioral,

psychological and social. It is widely known that some unfavorable lifestyle practices are asso-

ciated with less propitious pregnancy outcomes, among which high risk of prematurity. These

include not only tobacco [10], alcohol and drug use during pregnancy but also unhealthy nutri-

tional habits and improper physical efforts [11]. Psychosocial status may also be associated with

increased rates of preterm birth. This is influenced by stress, anxiety, depression, mastery, and

self-esteem among others [12].

In spite of the increase in survival rates for preterm babies throughout the years, premature

delivery is still a associated with complications both while in the Neonatal Intesnive Care Unit

(NICU) and throughout adult life [13]. Compared with infants with regular gestation periods,

preterms tend to have higher rates of temperature instability, hemodynamic instability, respiratory

distress, apnea, hypoglycemia, seizures, jaundice, kernicterus, feeding difficulties, periventricular

leucomalacia, and re-hospitalisations [7].

To fight the health repercussions of preterm birth, the World Health Organization (WHO) has

proposed 10 main recommendations for both the mother and the newborn. These include Ante-

natal cortico steroids, Magnesium sulfate for fetal protection against neurological complications

and Antibiotic administration, recommended for women with preterm prelabour rupture of mem-

branes 1.

One other factor, which can improve the outcomes of preterm birth is an effective monitoring

of the infant’s vital signs in the first weeks after delivery. This action can provide useful insights

on the baby’s state of health and foresee a wide range of complications. Vital signs, commonly

referred to as vitals, are a group of the most important medical signs, which are indispensable

for monitoring the patient’s progress during hospitalisation [14]. These consist of blood pressure,

temperature, pulse rate (also known as heart rate) and respiratory rate, though it has been sug-

gested that they could be complemented with other parameters, such as nutritional status, pulse

oximetry [15] and even pain measures [16].

Heart rate and respiratory rate are two of the most informative vital signs. They represent an

integral part of standard clinical assessment of children with acute illnesses 2 and are also used in

routine checkups form infancy to adulthood. By carefully observing these two parameters, and in

particular their comparison with the reference ranges, it is possible to anticipate the occurrence of

several complications [17]. For these specific vital signs, reference ranges are not static throughout

life. Respiratory rate declines from birth to early adolescence, with the steepest fall apparent in

infants under 2 years of age, while median heart rate increases from 127 beats per min at birth to

a maximum of 145 beats per min at about 1 month, before decreasing to 113 beats per min by 2

years of age [18]. Figure 1.1 shows the median and centiles of respiratory rate and heart rate for

healthy children from birth to 18 years of age, obtained and published by Fleming et al. [18].

1WHO recommendations on interventions to improve preterm birth outcomes. Published in November 2015
2Fever in under 5s: assessment and initial management. Guidelines published by NICE (National Institute for

Health and Care Excellence) in November 2019
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Figure 1.1: Median and Centiles of Respiratory Rate and Heart Rate for healthy children from
birth to 18 years of age, adapted from [18]

Body temperature, the third vital sign, is extremely important and its variability is often the

first cue for many health problems. Hypothermia, for an instance, causes a decrease in core body

temperature, while infections usually result in temperature rising from the widely recognized nor-

mal value : 37oC [19], in a phenomenon commonly known as fever. In NICUs, body temper-

ature monitoring is particularly important. While, adults, children and even full-term newborns

are able to regulate their body temperature, babies born prematurely have no such ability, once

their thermoregulation system only matures in the last trimester of pregnancy [20]. For that rea-

son both incubators and temperature monitoring play an essential role in providing conditions for

the neonate’s development, by controlling the newborn’s body temperature and stimulating the

womb’s conditions.

Incubators also allow pulse oxymeters for oxygen saturation monitoring. These devices can

calculate the percentage of arterial oxyhemoglobin based on the distinct characteristics of light

absorption in the red and infrared spectra by oxygenated versus deoxygenated hemoglobin by

taking advantage of the variation in light absorption caused by the pulsatility of arterial blood.

In spite of its current limitations, pulse oximetry is regarded as an essential element of patient
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monitoring in pediatric intensive and perioperative care [21].

1.1 Motivation

According to the World Health Organization (WHO), the number of preterm births per year is

continuously rising3. Once preterm birth complications are estimated to be responsible for 35%

of the world’s 3.1 million annual neonatal deaths [6], efforts should be continuously made to

address this global problem. While measures that can reduce preterm birth rates are being studied

worldwide, it is still relevant to develop methods, which can alleviate the suffering that goes hand

in hand with preterm birth. Preterm infants are at higher risks of having temperature instability,

respiratory distress, apnea, and seizures [7], and therefore exist in fragile state of health. That

being said, accurate monitoring should be preformed in order to guarantee that the babies’ health

status does not deviate severely from the desired, since this deviation could translate to short and

long-term complications or even death.

It is therefore, convenient the development of a more advantageous method of newborn mon-

itoring. Currently, monitoring is performed via probes affixed to the neonate’s skin, which may

cause damage to the epidermis and increase the risk of infection [22]. By using contactless imag-

ing monitoring, there would be a reduction in the number of probes used, which would decrease

skin wearing and overall discomfort and also leave more skin area for other care.

There have been several studies on contactless imaging monitoring. Apart from the scarcity of

algorithms developed specifically for newborns, the majority exploits Far-Infrared light (thermal

imaging) [23], which implies expensive cameras and may require adaptations to the incubator, as

its material is often opaque to radiation in these wavelengths [24].

The development of a method capable of using standard imaging for extraction of neonate’s

HR and RR requires the use of a database comprising of videos and corresponding ground truth

measures. The nonexistence of public databases which focus on neonatal subjects, inflicts the need

for creation of a private database. For that reason, we intended to design, collect and put together

a database which would be used for the development and testing of the mentioned algorithm. This

acquisition would count with a partnership with Centro Materno Infantil do Norte (CMIN), where

recordings would take place.

Notwithstanding, the global health crisis, which arose in the midst of this academic year and

the social constraints imposed in order to fight it, made the acquisition of the said database im-

possible, as it severely delayed the approval of this study by the Ethic’s Committee of the Centro

Hospitalar do Porto. In an attempt to surpass this obstacle, adaptations had to be made to this

master’s thesis. At first, the public databases most used in contactless vital extraction problems

were searched. However, legal and bureaucratic limitations did not allow for their use. Another

dataset of adult subjects was therefore chosen and used [25]. Despite the fact that this database

consisted of adult subjects only, its use for the development of the method was always done with

3https://www.who.int/news-room/fact-sheets/detail/preterm-birth (Acessed on the 4th of
February of 2020)

https://www.who.int/news-room/fact-sheets/detail/preterm-birth
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the final objectives of this thesis in mind, in the sense that, every decision in the pipeline was taken

considering what seemed best for the neonate specific application.

In parallel with the development of the methodology to solve the referred problem, efforts

were made throughout the duration of the academic semester to move forward with the acquisition

at CMIN and database creation, once the extrinsic factors allow. Such efforts included the creation

and design of the study, which accompanied by a data acquisition protocol was submitted to the

ethics committee of the Centro Hospitalar do Porto. A leaflet to be given to the the neonates’

parents was also created and can be seen in Appendix B.

1.2 Goals

This thesis project will focus on addressing contactless monitoring of vital signs using visible

light, as this topic is of extreme potential and its applicability and validation may result in several

benefits. In spite of the dataset used and its limitations, the goal of this thesis is to develop a

framework capable of continuous contactless extraction of the HR and RR in newborn subjects.

For that reason, all methods put together as well as the analysis of the results were performed

having in mind the framework’s applicability for the target subjects. Once global conditions allow,

the acquisition and creation of a database consisting solely of preterm infants participants, will

concede the opportunity to validate the said framework with clinical data. Secondary goals include

applying a video magnification method, allowing for a more immediate monitoring of the babies’

well-being through color changes associated with the beating of the heart. In case the ultimate goal

of replacing the probes used in NICUs is met, benefits would arise, such as decrease in the pain

and discomfort felt by the infant while in the NICU. This would translate to an improvement in

current monitoring methods, better experience for preterms during hospitalization and ultimately

less medical complications.

1.3 Contributions

The development of this master thesis resulted in several outcomes, which will be beneficial for

the scientific community in general:

• Algorithm capable of continuously extracting heart rate and respiratory rate in challenging

lighting conditions.

• Algorithm for contactless monitoring of heart-beats.

1.4 Outline

Apart from the Introduction, this monograph contains 7 more Chapters.

Chapter 2 describes the current paradigm of NICUs and the devices and methods used, whose

comprehension is of great importance for this thesis.
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Chapter 3 constitutes a literature review on contactless monitoring and pain assessment meth-

ods.

Chapter 4 describes the dataset used.

Chapter 5 discusses the methodology and results for Heart Rate extraction.

Chapter 6 elaborates on the topic of Eulerian Video Magnification and its applications.

Chapter 7 explains the methodology and results for Respiratory Rate extraction.

Chapter 9 summarizes the findings and elaborates on proposed future work.



Chapter 2

Background

Whenever a new birth occurs, it is essential that the newborn is assessed and their health status

and individual needs are determined. According to the outcomes of this evaluation, the infant will

be assigned to the location most adequate for the type of care needed. While healthy-appearing

newborns should be kept near the mother, infants who require specialized medical attention, such

as preterm or ill infants, are usually admitted to the special care nursery or NICU [26].

This need for special levels of care in babies whose gestational age is lower than 37 weeks

derives from the immaturity associated with underdevelopment by insufficient time in the womb.

Such immaturity jeopardizes a wide range of organs and body functions, in particular thermoregu-

lation capabilities. Babies who have not had a full gestational period are reported to have a smaller

ratio of body fat to lean mass, once accumulation of this type of tissue will only occur in early

post-natal life (what would be the final weeks of the gestation period in case the baby was born in

term). Since the absence of body fat is associated to greater heat loss, preterms’ ability to regulate

body temperature is impaired in their first weeks of life [27]. Reduced time in the womb also

induces immaturity of the physiological systems, whose outcome is higher sensitivity to stimuli.

This may result in a state of sensory overload in the infant when in a complex and overstimulat-

ing environment such as that of the NICU. Consequences of the so called sensory overload may

comprise undesirable fluctuations in heart rate, respiratory rate, blood pressure, motor and state

systems stability [28].

The respiratory system is affected by prematurity as well. Deficient prenatal lung develop-

ment often results in respiratory disease, which is the single greatest cause of illness and death

in preterm infants [29]. Other insuficciency associated to underdevelopment by insufficient time

in the womb is immaturity of the innate immune system. Preterm infants have reduced quantities

of monocytes and neutrophils, which makes them highly susceptible to neonatal pathogens and

permanent disabilities due to organ damage resulting from either the infection itself or from the

inflammatory response created [30, 31]. The combination of these and other flaws in the bodily

functions of preterm infants makes these individuals extremely vulnerable to the external condi-

tions imposed by the NICU’s environment [32].

7



8 Background

2.1 Neonatal Intensive Care Unit

So as to assure a healthy early development for preterm infants, it is important that all their limi-

tations are taken in consideration. Optimal conditions and an adequate environment for neonates’

growth is provided by incubators, that being the reason why they spend most of their time inside

one. An incubator is a self-contained, crib-like unit, whose purpose is to mimic the conditions

inside the womb by contributing with the maintenance of a rigorously controlled environment.

2.1.1 Incubators

One can find several types of devices inside a NICU, which serve a similar purpose as that of the

incubator. In spite of being open to the air, the radiant warmer is an apparatus, which actively tries

to maintain the infant’s body temperature by providing radiant heat below (through the surface

where the preterm is laying) or above the baby (through infrared emitters). Advantages of the

radiant warmer include open access to infants in need of resuscitation or other procedures, while

still providing sufficient exogenous heat to replace natural body heat losses [33]. this reason it is

commonly used to stabilize infants following delivery room resuscitation and for transportation of

the infant for surgical interventions [34]. Nevertheless, the piece of equipment where the preterm

infant spends the most time is the closed box incubator. This type of incubator differs from others

by holding a closed hood made of a single or double-layered clear dome (usually made of Acrylic

or Plexiglas). Despite allowing high visibility, this hood poses as a physical barrier between the

infant and the family, which is not advantageous. Nevertheless, incubators’ benefits far outweigh

the disadvantages as it has been established that the use of these devices leads to better growth and

improved survival rates for preterm infants [35, 36, 37].

As mentioned above, the inefficiency to regulate body temperature is one of the biggest chal-

lenges a preterm infant has to face in their early days of life. Therefore, a closed box incubator’s

main purpose is to assure temperature stability, by minimising heat loss. Such stability is achieved

passively (by having the closed hood as an insulating element which prevents heat from escap-

ing the incubator) and actively (by injecting heated air to its interior with the help of a ventilator

device). This mechanism protects the preterm against external thermal fluctuations until their

thermoregulatory mechanisms become fully efficient, thus preventing states of hyper or hypother-

mia [38]. Furthermore, closed box incubators are characterized by having a fresh air filtration

system. Besides minimizing the risk of infection, this mechanism allows for regulation of the

relative humidity as well as the percentage of oxygen in the air inside the incubator. Other perks

associated to the incubator include isolation of the neonate from the outside world, thus protecting

them from infection or allergens and even from external stimuli by dampening the sound generated

by the practitioners, families, devices and other sound emitters present in the NICU [39, 40].
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Figure 2.1: Closed box incubator used in the NICU of Centro Materno-Infantil do Norte

2.1.2 Sensors

Like most incubators, the ones used in the NICU of the Centro Materno-Infantil do Norte (CMIN)

integrate several sensors, which are useful for controlling a vast range of parameters inherent to

the incubator’s environment 1. Furthermore, other sensors are used to measure the signs which

have to do with the neonates’ themselves. Table 2.1 summarizes the variables measured as well as

the sensors used to do so.

Table 2.1: Common variables measured and respective sensors both integrated and coupled to the
incubator

Variable Measured Sensor Integrated
Body Mass scale incorporated under the mattress yes
Air Temperature thermistor yes
Oxygen Saturation in Air eletro-galvanic sensor yes
Relative humidity hygrometer yes
Skin Temperature thermistor (inserted in probe) no*
Heart Rate eletrodes no
Respiratory Rate eletrodes no
Oxygen Saturation in Blood pulse oxymeter no
CO2 concentration transcutaneous CO2 monitor no
* Can be connected to the incubator and used for air temperature servo-control.

It is common practice to register the evolution of the infants’ weight over time, which is fol-

lowed on a daily basis in intensive care and once every two days in intermidiate care. For this

purpose, a scale is incorporated under the mattress of the incubator. This device is able to preform

periodic weighings of the neonate as well as to continuously measure differences in the infant’s

weight. Although the weighing mode provides the actual value of the infant’s mass excluding that

1V-2100G Infant Incubator: Operation Manual by Atom Medical Corporation
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of the mattress platform, the mattress and the bed sheet, it requires the nurses’ intervention, who

have to lift and lay down the baby for accurate measure. On the other hand, the weight difference

mode does not require a practitioner’s help. The device does not behave as a force plate in the

sense that it can not discretize distributed weight. Therefore, it is advised that the infant is placed

in the center of the mattress for accurate readings.

In order to maintain the oxygen levels inside the incubator, an oxygen flowmeter is usually

placed between an oxygen source and the incubator. Upon measuring the percentage of oxygen

inside the incubator using an electro-galvanic sensor, the nurse can regulate the flow of oxygen that

enters the incubator through the flowmeter. Oxygen saturation inside the hood can range between

21% (not receiving external flow of oxygen apart from the oxygen contained in atmospheric air)

and 65%. Furthermore, the relative humidity of the air inside the incubator is strictly regulated.

A hygrometer allows for constant measure and in case of low values, a deposit full with distilled

water introduces water vapor in the hood increasing relative humidity.

Apart from the sensors integrated in the incubator itself, all devices allow the insertion of

probes, which are used to monitor signs intrinsic to the neonates themselves, namely the four

vital signs. When it comes to temperature, it can be measured in several distinct ways. The

most common practice in NICUs is to use a skin temperature probe [41]. This sensor is usually

attached anywhere between the navel and the xiphoid process of the preterm and is composed by

a regular thermistor. It can be connected to the incubator and its output used as a parameter for the

servocontrol of the incubator’s active temperature maintenance by providing feedback control to

regulate the heated air environment. [34]. In contrast, control can be also performed manually by

periodically measuring the infant’s temperature using a regular thermometer or using the thermal

sensor integrated in the incubator to measure the temperature of the air and manually setting the

incubator’s temperature accordingly [41].

Regarding heart and respiratory rates, 3 electrodes affixed to the infant’s chest are shared for

the extraction of the two vital signs. These sensors are the ones which occupy the most body

surface-area, as can be seen in Figure 2.2, and thus, their replacement for a contactless substitute

would be the most advantageous. Apart from measuring the two rates, the electrodes also allow

for formation of a simple electrocardiogram (ECG).

Finally, two other variables measured have two do with gas exchange. Oxygen saturation in

the preterm’s blood is measured through a common pulse oxymeter placed on the infant’s hand or

foot. This sensor relies on a technology called photopletismography, which will be mentioned in

the next chapter, as its comprehension is crucial for the understaning of this study. CO2 saturation

levels are also extraced through two different possible methods. The two methods are used dis-

tinctly and depend on the type of ventilation needed by the infant. If the infant is under invasive

ventilation, meaning a tube which conducts oxygen directly to airways usually inserted through

the nostrils, the extraction of CO2 levels is made easy once the tube itself is able to detect the

flow of the said gas in expiration. On the other hand, some preterms do not require ventilation

at all or are ventilated using a continuous positive airway pressure (CPAP) machine [42]. This

device, which contacts with a infant through a mask, does not have the capability to quantify the
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Figure 2.2: Standard monitors and probes used inside a NICU from [23]

CO2 expelled. Therefore, in theses cases a transcutaneous CO2 sensor is attached to the neonate’s

chest [43]. For these sensors to function properly they must be heated [44]. This may induce skin

burns and therefore, nurses must constantly switch the position of the probe. Besides, its results

are claimed not to be very precise.

All of the variables extracted, both inherent to the incubator and the baby, are followed regu-

larly by nurses and physicians, who take use of the external monitors coupled to the incubator to

visualize the evolution of the measured parameters. Figure 2.2 exhibits the external probes as well

as monitors and other devices essential to the incubator’s well functioning.

2.1.3 Pain assessment

Apart from the uninterrupted monitoring of the mentioned vital signs, other chores compose the

daily routine of every NICU and its workforce. Pain assessment is an important task, which is

performed periodically and consists of evaluating and quantifying both chronic and acute pain felt

by an infant at a given time. In order to do so, nurses take in consideration several different factors

such as facial expression, body movement and crying [45]. In addition to such behavioural indica-

tors, neonates exhibit a wide range of physiological responses to painful stimuli as a result of the

activation of the sympathetic nervous system [45, 46]. Changes in physiological indicators include

increased heart rate, respiration, blood pressure, and oxygen saturation. By using pre-established

tools, such as scales which take in consideration several of these responses, it is possible for nurses

to quantify and formalize the pain measured. The scales most frequently cited are the Premature

Infant Pain Profile (PIPP): Neonatal Postoperative Pain Assessment Score (CRIES), Neonatal Fa-

cial Coding System (NFCS), and the Neonatal Infant Pain Scale (NIPS) [47, 48]. These scales

aim specifically for neonates. Since these individuals do not have the ability to express themselves

verbally, its use relies on the interpretation of nurses, therefore being considered hetero-evaluation
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methods. There are, naturally, auto-evaluation scales for use in pediatric patients, such as the

Faces Pain Scale [49], but these will not be addressed as they deviate from the theme of this study.

When it comes to preterm-specific scales, the reference scales and the ones used at CMIN are

the EDIN and N-PASS scales. Once again its use is determined by whether the infant is ventilated

or not, the latter being for newborns under ventilation. Most infants, specially the older ones are

not ventilated invasively nor through the CPAP device, therefore EDIN represents best the method

used by Nurses for acute pain assessment in the NICU in question.

EDIN (Échelle Douleur Inconfort Nouveau-Né) relies on five behavioural indicators of pro-

longed pain to deduce the overall level of pain felt. These indicators, entirely observational, are:

Facial activity; Body Movements; Quality of Sleep; Quality of contact with nurses; Consolability.

Each of these variables are scored on a four point scale, 0 indicating well-being and 3 severe pro-

longed pain. The values for the five variables are then added up. If the sum is equal zero, the baby

is considered to be under no pain. In case the sum falls between 1-4 the pain is classified as light,

5-8 as moderate, 9-12 severe and 12-15 extremely severe. For values between 5 to 15 therapeutic

intervention is advised [50]. Common practice suggests that this assessment should be performed

in 8 hour intervals. In Table 2.2 one can see the EDIN pain scale.

Table 2.2: EDIN pain assessment scale

Indicator Description

Facial activity

0. Relaxed facial activity
1. Transient grimaces with frowning, lip purse and chin quiver or tautness
2. Frequent grimaces, lasting grimaces
3. Permanent grimaces resembling crying or blank face

Body
movements

0. Relaxed body movements
1. Transient agitation, often quiet
2. Frequent agitation but can be calmed down
3. Permanent agitation with contraction of fingers and toes and hyperto-
nia of limbs or infrequent, slow movements and prostration

Quality
of sleep

0. Falls asleep easily
1. Falls asleep with difficulty
2. Frequent, spontaneous arousals, independent of nursing, restless sleep
3. Sleepless

Quality
of contact
with
nurses

0. Smiles, attentive to voice
1. Transient apprehension during interactions with nurses
2 Difficulty communicating. Cries in response to minor stimulation
3 Refuses to communicate. No interpersonal rapport. Moans without
stimulation

Consolability

0. Quiet, total relaxation
1. Calms down quickly in response to stroking or voice, or with sucking
2. Calms down with difficulty
3. Disconsolate. Sucks desperately

In contrast, the N-PASS differs from the previous one not only because it is used on preterms

who are under ventilation but also because it incorporates vital sign variability in addition to
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behavioural indicators. This scale can also assess sedation apart from pain.
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Chapter 3

Literature Review

In order to develop a framework for contactless vital sign extraction that can be adapted to inte-

grate the NICU and serve the healthcare of preterm infents, it is important to discern the scientific

and technical knowledge already unveiled by the scientific community on the topic. In this chap-

ter, a detailed description of the current panorama of contactless HR monitoring (Section 3.2),

contactless RR monitoring (Section 3.3) and video change magnification (Section 3.5) will be

presented.

3.1 Contactless Monitoring

Most methods currently used in a clinical context for HR and RR monitoring are considered non-

invasive. Nevertheless, this does not mean such methods are contact free. In fact, gold stan-

dard methods for HR monitoring, such as Electrocardiography (ECG), Phonocardiography (PCG),

Echocardiography (Echo) and Photoplethysmography (PPG) among others, require contact of the

used instrument with the patients body.

A tendency to evolve to contactless solutions has been rising, partially due to advances in

image capturing technologies and Computer Vision techniques. A contactless approach for vital

sign monitoring presents several advantages over its contact-dependent competition. In spite of the

benefits exhibited throughout this document, contactless solutions come hand in hand with some

drawbacks, namely the fact that the effectiveness of these methodologies in real-life scenarios

depends on various factors such as variation in illumination, motion artifacts, distance from the

camera and quality of the imaging sensors [51]. That being said, there is still a need for clinical

validation of such methods in order for a possibility of them being introduced not only in NICUs

but hospitals everywhere.

This literature review will lean towards computer vision methods for contactless monitoring of

vital signs using exclusively visible and near infra-red light. Tests performed with the incubators at

Centro Materno Infantil do Norte revealed that the material which constitutes their hood is opaque

to thermal radiation, i.e infrared radiation of longer wavelengths, thus making impossible the use

of thermal cameras, despite their wide range of benefits for vital sign monitoring [52, 53, 54]
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3.2 Contactless Heart Rate Monitoring

Recent computer vision guided methods for human pulse estimation, either in infants or adults,

broadly fall in one of two categories [51]:

• Color Guided Techniques: Use the variation in intensity levels of the different color chan-

nels over time to build the feature trajectory, which is fed into a statistical model for HR

estimation.

• Motion Guided Techniques: Pixel tracking over time to detect subtle periodic motion

caused by cardiac pumping action to be used as a feature for pulse estimation.

State of the art methods for both ramifications follow a generic framework divided into three

blocks (Signal Extraction, Signal Estimation and HR Estimation), which are schematically repre-

sented in Figure 3.2. Differences between the two categories of algorithms reside solely in Signal

Extraction (first block), in particular in the steps regarding Region of Interest (ROI) tracking and

Raw Signal Estimation, since the underlying principles to do so are divergent. Differences across

studies inside each technique are intrinsic to individual steps, in which distinct but equivalent

algorithms are used.

3.2.1 Color Guided Techniques

Blood Volume Pulse (BVP) is a concept which refers to the changes of the volume of blood inside

the the microvascular bed of tissue, caused by the rhythmic pulsating action of the heart. When the

ventricles contract, blood is pumped out of the heart and carried to the peripheral vascular system,

filling the capillaries and thus, increasing the volume of blood inside them, momentarily. Due

to the difference in light absorption of blood and surrounding tissue, blood volumetric variations

lead to periodic change in the amount of light absorbed by the region and consequently in light

reflected. These rhythmic fluctuations of the the light intensity are therefore correlated to the HR

and can be easily detected in the skin, fingertips and ears [55]. Figure 3.1 illustrates how PPG may

be used to exploit the BVP phenomenon.

Photopletismography (PPG) is an optical measurement technique, which can be used to detect

BVP. To exploit this phenomenon, a light source (usually operating at red or near infrared wave-

lengths) illuminates the tissue, while a photodetector captures the light that has passed trough

the tissue (transmission mode operation) or reflected by it (reflection mode operation). There are

three main reasons for the use of these wavelengths: the first is due to the main constituent of the

human tissues being water, which absorbs light very strongly in the ultraviolet and far infrared

wavelengths. If this is added to the fact that melanin absorbs the shorter wavelenghts of visible

light, only a small window in the absorption spectra is left, which allows measuring blood volume

in the red and near infrared spectra; the second motive refers to these wavelengths being the iso-

betic wavelengths of haemoglobin, meaning the wavelengths for which there are no differences in

absorption between oxyhaemoglobin (HbO2) and reduced haemoglobin (Hb); the third and last
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Figure 3.1: Representation of Photoplethysmography to exploit Blood Volume Pulse, extracted
from [56]: (a) embodies the variations of reflected light in the skin, a region with a high number
of capillaries; (b) portrays the variations in blood caused by the pumping action of the heart.

reason is that the depth to which light penetrates the tissue depends on the light’s wavelength,

being optimal for this range of wavelenghts [55].

The signal extracted by the photodetector is referred to as the PPG waveform and consists

of two components: The pulsatile component, which contains information on the HR and and a

slowly varying component, related to respiration, vasomotor activity among other factors, which

will be explained further on in this chapter [55]. Suitable filtering, amplification and signal pro-

cessing allow the distinction of both components and subsequent pulse wave analysis [55].

The most common example of the applicability of PPG is the pulse oxymeter, a sensor used to

obtain information about the arterial blood oxygensaturation (SpO2) as well as HR. It functions in

transmission mode operation, meaning that the tissue sample (in this case the fingertip) is placed

between the light source (usually a light-emitting diode or LED) and the photodetector, which

captures the light let through by the finger.

This being said, PPG is the basis of Color Guided Techniques for contactless monitoring of the

HR. However, since the main purpose of such techniques is to work from a distance, adaptations

of PPG had to be performed to allow readings despite the absence of direct contact [57].

Remote Photoplethysmography (rPPG) appeared as a contactless extension of PPG. This tech-

nique has gained acceptance among the scientific community, once in 2008 Verkruysse et al.

proved that reflected ambient light is sufficient to obtain a photoplethysmography signal [58].

Several studies have been published since, which use rPPG as a foundation for HR extraction in

human individuals using both commercial and advanced camera equipment.State of the art meth-

ods follow a generic framework divided in three blocks, which can be seen in Figure 3.2. Each of

these blocks comprises several steps, which may vary across studies.

Fernandez et al. in 2015 [59], used the Viola Jones algorithm [60] for detection of the hu-

man face as a Region of Interest (ROI) definition initial step. In this study, three variations of

the Viola Jones algorithm were trained and integrated to overcome the original’s algorithm poor

performance when leading with non-frontal faces. Afterwards, and since the output of this method
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Figure 3.2: Generalized rPPG algorithm framework from [56]

would include non-face pixels from the corners of the rectangles which serve as bounding-box

for the face, Fernandez et al. added a second step which aims at ROI definition and robust face

tracking over-time and exclusion of unwanted regions by focusing on rectangular patches in the

subject’s forehead. This portion of the algorithm, based on Deformable Parts Model [61], detects

the corners of the eyes for each frame and aligns the frames in a way that the eyes are always

found in the same coordinates. The area above the eyes is then extracted and used as the final

ROI for the PPG waveform extraction. Raw signal extraction (the last step in the Signal extraction

building block) is performed by spatially averaging the intensity values of the ROI pixels for each

of the RGB channels, method known as spatial pooling, which results in three signals (one for

each channel) which resume the variation of average intensity over time. The Signal Estimation

block uses these three raw signals as input, which are then smoothed and normalized as part of

the filtering step. These signals are then decomposed into three independent source signals using

Independent Component Analysis (ICA) and only the range of frequencies of interest is main-

tained by applying a temporal filter. In the case of adult individuals this frequency corresponds

to roughly 1Hz as the normal range for HR in healthy humans individuals is between 60 and 100

bpms. In the final block, or Heart Rate Estimation, this study calculated the inter-beat intervals by

analysing the distance between peaks and, hence obtaining the number of pulsations per minute,

commonly known as heart rate.

Other state of the art methods differ from the one proposed by Fernandez in the several steps

intrinsic to the general framework. For an instance, despite the Viola Jones algorithm being the

most used algorithm in this type of applications [56], other methods for ROI detection were also
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presented, such as face landmark detection or even combinations between Viola Jones and other

methods, for instance Active Appearance Models (AAM) [57] or skin detection algorithms [62]. In

addition, although Fernandez performs spatial pooling on the three channels, Verkruysse showed

that the green channel contains the strongest plethysmographic signal, clearly indicating the fun-

damental HR frequency. Despite ICA being the most common method for dimension reduction,

other methods have been presented in state of the art studies, namely Principal Component Anal-

ysis (PCA) [63]. The aspect in which Fernandez’s study differs the most form other state of the

art methods is the technique used to extract the HR itself. While the current study uses peak de-

tection to calculate the time between beats, most literature uses the Fast Fourrier Transform (FFT)

to extract the maximum response in frequency domain [64, 65, 66].

3.2.2 Motion Guided Techniques

Instead of relying on color changes, caused by the variations in blood volume at the peripheral

blood vessels, Motion Guided Techniques extract the HR from periodic motion of the subject’s

head (generally not observable through naked eyes [67]), which occurs because of the influx of

blood to the head [56]. According to Rouast et al. [56], studies which adopt these methods over

Color Guided Techniques are scarce, representing only 9% of the published studies. This is mainly

due to this technique’s susceptibility to noise due to natural head movements which are inevitable

in a real-world problem.

In this type of algorithms, only the ROI tracking and Raw signal extraction steps differ in

the entirety of the pipeline. In order to take advantage of the pulsatile motion caused by blood

pressure due to caridac pumping, these techniques must incorporate a method to track points

within the ROI. A study conducted by Irani et al. in 2014 [68] used the Viola Jones algorithm

once more to detect the face of the subject in the frame. This algorithm’s output will include

all areas of the face, namely the eyes and the mouth area, which are prone to movement due to

changes in facial expressions. Since this movement does not reflect the beating of the heart, only

the most stable regions of the face, i.e. the forehead and nose regions, were isolated. For these

purpose portions of the area of Viola and Jones bounding box were manually set and optimized

for inclusion of such regions. Afterwards, Good Feature Tracking algorithm, was used to select

the keypoints, from subsections of the ROI preestablished by the Viola and Jones algorithm. This

method extracts each pixels’ eigenvalues, rejecting corners for which their value is minimal or too

close too stronger corners. Lucas Kanade’s tracking algorithm [69] was then used to to extract

the x and y components of the trajectories of said keypoints. Only the y components were further

carried on for processing since the relevant motion is the one caused by the naturally vertical

flow of blood to and from the head. Similarly to Color Guided Techniques this method uses

filtering to dump unwanted frequencies. In this particular case, a pass band filter is used (8th order

Butterworth filter) with cutoff frequency interval of [0.75 5] Hz. Once again, in accordance with

the general framework for contactless HR estimation methods, methods were used to reduce the

dimensionality and to extract the heart rate from the plethysmographic signal. In this case, PCA

was used rather than ICA and Discrete Cosine Transform (DCT) rather than the usual FFT.
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3.3 Contactless Respiratory Rate Monitoring

RR monitoring techniques can also be distinguished into color based (rPPG) or motion based.

Color based methods can be seen as an extension of the Color Guided Techniques for contactless

monitoring of the HR. For an instance, in the previously described study, Fernandez et al. presents

a RR estimation module apart form the HR one already exposed. The value for the RR is derived

from the previously extracted HR, in particular the Heart Rate Variability (HRV). HRV represents

the variation among the intervals between heartbeats and is calculated by performing Power Spec-

tral Density (PSD) estimation using the Lomb periodogram, a method of estimating a frequency

spectrum, based on a least squares fit of sinusoids to data samples, from which is possible to de-

tect the RR. Methods based on motion for the detection of RR rely on different principles of those

in Motion Guided Techniques for extraction of the HR, partially due to the evident chest motion

caused by respiration. A method which utilizes motion cues for extraction of the RR is described

below.Other methods, such as the one proposed by Iozza et al. [70] combine both rPPG derived

RR with motion information obtained from video.

3.4 Newborn specific applications

Although HR and RR extraction has been widely explored in adult individuals, newborn specific

studies are not abundant, and most of those have been published use infrared thermography imag-

ing [23]. Nevertheless, recent studies using visible light images have been divulged with promising

results. Non-contact estimation of HR methods for newborns using standard images was first ad-

dressed in 2012 by Scalise et al [71]. In this study, seven infants were monitored with a webcam

and resorting a special external illumination source.It emitted green light, which was reflected by

the infant’s skin and measured by the camera. One year later Aarts et al. managed to successfully

[72] monitor the HR of 19 newborns without dedicated external light sources. In 13 out of the 19

infants the extracted HR matched that of the gold-standard methods fore more than 90% of the

time.Since then, efforts have been made towards improving newborn specific applications for HR

extraction, which ultimately led up to methods which integrate both HR and RR extraction.

In 2015 Fernando et al. applied Wang et al.’s work [63] to the NICU. In this study, two

regular cameras recording at a resolution of 768x576 and 20 fps were used to capture images of

two different regions of the infant. [73] One camera aimed at the neonate’s face and its purpose

was to estimate HR through color change observation, while the second camera observed the

motion of the chest from which RR it would possible to extract the RR, although this study does

not specify the proceedings. Regarding HR extraction, instead of applying spatial pooling to the

ROI as described in most publications, the author considered keypoints inside the ROI which were

treated as independent rPPG sensors. To make this possible, an online object tracker was used

to track the infant’s face over time. Dense optical-flow was then applied to align skin-pixels in

consecutive frames to make sure each sensor (pixel) was continuously considering the same skin

region. Subsequently, a chrominance based rPPG algorithm was used to extract pulse intervals
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Figure 3.3: Framework of motion robust rPPG method for HR extracted from [73]

from RGB values for every skin-pixel. This method, described in [74], proved to be more robust

to subject motion (in comparison with ICA and PCA) since it can split the variation in reflected

light intensity caused by either blood volume differences or differences in specular reflection due

to motion. By spatially representing these two components it is possible to eliminate motion-

induced outliers. This study innovates in its temporal filtering step. While most methods use a

static bandpass filter, Fernando et al. innovate by applying an adaPtive filter which strengthens

the frequency inherent to the pulse. Finally, and similarly to other state of the art methods, FFT

is applied to convert the signal to the frequency domain and select the peak as the subject’s heart

rate. This process is performed under a 8s time window allowing renovation and update of the

subject’s HR.

A more recent method, which comprises HR and RR extraction in neonate’s was published by

Antognoli et al. in 2019 [75]. For the benefit of robustness several simplifications were imposed,

such as the use of a dedicated light source to inhibit the influence ambient light. This study

was innovative in the sense that it applied a well known technique, Eulerian Video Magnification

(EVC) to the NICU environment. EVM is a technique which amplifies motion or color variations

in time, enabling the visualisation of imperceptible information to the naked eye [67]. Antognoli

et al. start by selecting the 10 second portion of each video which includes less subject motion or

ligh variations. A ROI is then selected manually in such a way that the infant’s thorax is captured

in its full extension. The output of the EVC algorithm is an equivalent to the input video in which

motion due to respiration as well as color changes due to pulse are magnified and clearly visible.

This resulting video is then used in a similarly pipeline as all other methods previously described.

The RGB values for the pixels inside the ROI are averaged into 3 distinct raw signals, of which the

desired component was extracted. Since a Butterworth pass-band filter had already been already

used in the magnification step, filtering the raw signals for the intended frequencies would be

redunant. Power Spectral Density was then applied to the said component and the resulting peaks
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in the desired frequency ranges were detected as HR and RR values for each video.

Although the results of this study allegedly match or even outperform the gold-standard meth-

ods when in comparison with measures directly taken by the physicians its performance is limited

in real world conditions. First of all, EVM based methods are computationally expensive and

therefore make real-time analysis impossible, specially when using big-sized temporal windows.

Secondly, and in the same way as Motion Guided Methods for HR extraction, this method is ex-

tremely sensitive to variations external conditions, namely lighting variations or even camera and

crib shaking, which can nullify the measures when they occur.

3.5 Change detection and Magnification

Video magnification techniques are useful for visualizing small changes in videos, whether caused

by motion or color alterations. Various approaches have been considered in order to reach the goal

of subtle change magnification.

In 2005, Liu et al. [76] created a technique capable of analyzing and amplifying subtle motions

and visualize deformations that would otherwise be invisible. The framework presented firstly

segments a reference frame into regions grouped by proximity, color homogeneity, and correlated

motions. The user identifies the portion to be amplified, allowing for the video to be re-rendered

with the subtle changes of the desired segment magnified. In a similar way, Wang et al. [77]

proposed in 2006 the Cartoon Animation Filter, a method to exaggerate motion within a video

sequence in a perceptually appealing manner. Both methods follow a Lagrangian perspective, a

concept commonly used in fluid dynamics. In this prespective, the trajectory of particles is tracked

over time. For that reason, both methods rely on accurate motion estimation, which results in a

computationally expensive framework.

Eulerian Video Magnification (EVM) appeared as an alternative to Lagrangian approaches for

both motion and color variation magnification in videos. This method, published by Wu et al. [67],

makes use of Laplacian pyramids decomposes the input video sequence into different spatial fre-

quency bands. The same temporal filter is then applied to all bands, which are then amplified by

a given factor and added to the original signal. All levels of the pyramid are then collapsed, gen-

erating the output video. This method, which is described in more detail in Chapter 6, is capable

of amplifying small motion even though motion is not tracked as in the Lagrangian methods pre-

viously presented. Figure 3.4, shows an example of the aplicability of EVM. By applying EVM

to the video represented it is possible to amplify the movement of the arteries caused by BVP, a

phenonmenon explained in Section 3.2.

Due to the increased popularity of EVM and its relatively low computation cost, recent studies

on subtle change magnification have focused on improving the method created by Wu et al. [67].

For instance, Liu et al. [78] developed a method which makes use of EVM as a spatio-temporal

motion analyzer to get the pixel-level motion mapping. It then magnifies the temporal video mo-

tion by warping the images based-on the previous motion mapping. This technique was proved
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Figure 3.4: Eulerian video magnification used to amplify subtle motions of blood vessels arising
from blood flow, extracted from [67].

to improve the results generated by traditional EVM, once it supports larger amplification fac-

tors while being significantly less influenced by frame noise, as it does not involve pixel value

modifying.

3.6 Summary

Scientific research in the last decade has resulted in countless contributions in the field of contact-

less extraction of vital signs, particularly HR and RR. Although two different types of techniques

have been explored by the scientific community, the latter prevails as the most used methodology

by far. As regards neonatal specific applications, rPPG methods have gained popularity due to

its higher robustness to subject and camera movement when in comparison with motion-based

methods. Nevertheless this applications have drawbacks such as the need for a technique to detect

which of the signal’s independent components reflects the pulsatile signal, which may not be triv-

ial. EVM appears as a solution with high potential, despite its high computational cost (still lower

than other alternatives), which may be a hinder for real-time analysis. Its advantages are the fact

that it allows visualisation of the magnified movement, being particularly useful to help families

and caregivers notice the breathing patterns of the infant.
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Chapter 4

Dataset

Since the global situation posed as a preclusion to the acquisition of the videos at CMIN (and

consequent creation of the neonate dataset), the need for a public dataset arose. However, the

nonexistence of datasets with infant subjects has obliged to the use of datasets composed by videos

of adult subjects. The most Common public datasets used in rPPG problems are the MAHNOB-

HCI-Tagg [79]) and the COHFACE dataset1. The first was not originally created specifically for

rPPG algorithms, but for characterisation of multimedia content based on human emotions. For

that purpose, video and physiological data from 30 subjects was collected while being exposed to

different audio-visual stimuli. Among those physiological parameters are the ECG and respiration

amplitude signal, which allows the use of this dataset for contactless Heart and Respiratory Rate

algorithm development. For the acquisitions, professional cameras and lighting setups were used.

The second dataset, contains 160 one-minute long RGB video sequences of 40 healthy subjects

(12 females and 28 males) in 2 different lighting conditions: natural light and studio lighting.

Despite the advantages, such as the high number of participants and the possibility of comparing

our results with most rPPG papers, which are inherent to these datasets’ usage, legal constraints

prevented their utilization.

Alteratively, the dataset used for the work developed was the Public Benchmark Dataset for

Testing rPPG Algorithm Performance created at the Eindhoven University of Technology [25].

Unlike the previously mentioned, this dataset aims to test rPPG tools’ performance in challenging

conditions. It is stated that the capabilities of rPPG technologies and its underlying theory is well

established for simple environments, but not ready for real-world applications. Therefore, more

recent studies on the area focus on improving the technique’s robustness to external factors, specif-

ically trying to reduce or negate the influence of the said factors in the algorithm’s performance.

This dataset was created in order to evaluate and benchmark algorithm’s robustness by including

videos under challenging conditions or factors. The factors incorporated in the dataset are the

most challenging and more common in real world scenarios. According to the literature, these

factors are lighting conditions, subject skin color, high and fluctuating heart rates and presence

of motion, and therefore those are the conditions covered in this dataset. These conditions were

1https://idiap.ch/dataset/cohface
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used to design 3 challenges, which intend to answer a set of research questions about the tool to

be tested:

• Challenge 1 has to do with lighting conditions and skin tone and is supposed to infer how

light intensity, light temperature, uneven light and skin tone variations affect the measure-

ment accuracy of the rPPG tool.

• Challenge 2 considers the influence of both global and rhythmic subject motion on the

accuracy of the rPPG tool.

• Challenge 3 investigates how high and fluctuating heart rates affect the tool’s performance.

The dataset consists of a total of 21 videos of three healthy male participants, and simulta-

neous ECG measures to serve as Ground Truth. In order to evaluate the tools’ response to each

condition independently (and therefore its performance for each challenge), each of the 21 videos

is addressed to one and one challenge only:

• Challenge 1 (Lighting Conditions and Skin Colour) consists of 17 videos: P1LC1, P1LC2,

P1LC3, P1LC4, P1LC5, P1LC6, P1LC7, P2LC1, P2LC2, P2LC3, P2LC4, P2LC5, P3LC1,

P3LC2, P3LC3, P3LC4, P3LC5.

• Challenge 2 (Motion) includes 3 videos: P1M1, P1M2, P1M3.

• Challenge 3 (High and Fluctuating Heart Rates) contains 1 video: P1H1.

While Challenge 1 is represented much more extensively than the other two, accounting for

more than 80% of the dataset, Challenge 2 and Challenge 3 only possess 3 and 1 videos, all of

which of the same participant. Each video’s identifier is defined by concatenating the patients’ ID

(P1, P2 or P3), with the ID of the condition to be tested (LC1 to LC7 for the lighting conditions,

H1 for the high and fluctuating heart rates and M1 to M3 for subject motion). From this moment

forward, each video will be referred to by its identifier.

All 21 videos were recorded with with the JVC GZ-VX815BE HD video camera. The partic-

ipants were seated behind a table making sure that they were in the centre of the lab. A head rest

was used for the videos in Challenges 1 and 3 to eliminate movements of the head. The chin holder

of the head rest had a height of 31 centimetres relative to the desk it was placed on and the camera

was positioned exactly opposite to the head rest at a distance of 80 centimetres. The camera was

placed on a platform 31.5 centimetres high relative to the desk. The videos were recorded at 25

fps, with UXP video quality and at a resolution of 12 MP. The camera was equipped with a F1.2

bright lens making it suitable for recordings at low lighting intensities. After editing, the videos

were exported as avi video files with a resolution of 1080 x 1920 and a frame rate of 30fps using

the H264 video compressor. A 1-lead ECG was provided, from which the ground-truth HR curve

was extracted. An example of the 1-lead ECG provided can be seen in Figure 4.1. The ECG was

measured using the Mobi electrocardiograph, which has a sampling frequency of 1024 Hz. This

device was connected to a laptop with a Bluetooth receiver especially tested for the Mobi. The
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Mobi is CE certified (class 2A, type CF), meaning it is cleared for medical usage in the EU. The

data was synchronised using the sound of the button on the Mobi in the Video, which indicates the

beginning of the recording of the ECG device. All videos, except for that of the third challenge

(video P1H1) had a duration of three minutes. The video entitled P1H1 addressed high heart rates

and for that purpose had a duration of five minutes: the time it took for the patient’s heart rate to

stabilize.

Figure 4.1: Segment of the one-lead ECG provided as Ground Truth for video P1H1 after detrend-
ing.

For the first 17 videos, i.e. those regarding Challenge 1, different lighting conditions were

simulated. All recordings took place at a lab of the Technical University of Eindhoven, which is

sealed from external light sources and equipped with 6 Philips Savio wall fixtures (4 in the wall

facing the subject and 2 in the wall at their right) and 30 Savio fixtures in the ceiling, whose inten-

sity can be set for values between 87 and 255. In order to obtain the different lighting conditions (7

in total: LC1, LC2, LC3, LC4, LC5, LC6 and LC7) different combinations of lights were turned

on at a time and their intensity regulated. While LC1 to LC5 address increasing overall light in-

tensity, LC6 alters light temperature (2700K versus 6500K for all other videos) and LC7 makes

use of the physical distribution of the wall fixtures to create uneven light distribution. The Light

intensity level for each LC was determined using the pocket-lux device by Lichtmess Techniek

Berlin. Table 4.1 summarizes the characteristics of every LC included in the dataset.

Still regarding the first challenge, for the first five LC’s, videos were recorded of all three

participants (of ages 21, 27 and 31), who have different complexions: P1 having light skin, P2

intermediate skin and P3 dark sin. By combining these two factors (Light condition and Skin

tone) it is possible to determine their influence in performance both separately and jointly. In

addition, for Light conditions 6 and 7 videos were recorded of Patient 1 (P1). Figure 4.2 exhibits

frames extracted for each video associated to Challenge 1 (Light Conditions and Skin Tone).

When it comes to Challenge 2, three videos were recorded. Only patient P1 took part in this

portion of the protocol and Light Condition 4 was set for all three videos, as it was considered to

be the most neutral condition for rPPG measurements. The subject was seated behind the desk
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Table 4.1: Detailed description of all Lighting Conditions comprised in the dataset.

Lighting
Condition
(LC)

Light tem-
perature
(Kelvin)

Ceiling fix-
tures

Southern
wall fix-
tures

Western
wall fix-
tures

Light in-
tensity
(lux)

LC1 6500 Off 87 Off .052 x 100
LC2 6500 87 87 Off .363 x 100
LC3 6500 143 143 Off 1.870 x 100
LC4 6500 199 199 Off 7.20 x 100
LC5 6500 255 255 Off 27.2 x 100
LC6 2700 100 100 Off .349 x 100
LC7 6500 Off Off 199 .180 x 100

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q)

Figure 4.2: Sample frames from all videos comprised in Challenge 1: (a) P1LC1, (b) P1LC2,
(c) P1LC3, (d) P1LC4, (e) P1LC5, (f) P2LC1, (g) P2LC2, (h) P2LC3, (i) P2LC4, (j) P2LC5, (k)
P3LC1, (l) P3LC2, (m) P3LC3, (n) P3LC4, (o) P3LC5, (p) P1LC6, (q) P1LC7.

without the head rest and asked to move his head freely for video P1M1. This video aimed at test-

ing simple movements and rotations of the head as if the participant was looking around. For the

other two videos, the subject was asked to make continuous nodding movements at specific fre-

quencies. In P1M2 the motion frequency was set to 60 bpm (a frequency that on average matches

the participants’ HR), while in P1M3 the nodding frequency was set at 90 bpm, which should fall

outside of the selected frequency bandwidth. These videos will test whether the algorithm sees the

signal originated from the rhythmic motion as noise or mistakes it for the HR. In both recordings

the participant was guided by a metronome played on a smartphone.
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For Challenge 3, only Participant 1 was recorded and the LC was once again set to LC4.

Immediately before recording the video the participant is asked to run back and forth for 3 minutes

before being asked to seat and place his head on the head rest.

Logical reasoning is enough to draw predictions on how each condition will influence the

tools’ performances. When it comes to light intensity, it is hypothesized that increasing intensity

will have a strong positive effect on the accuracy of the rPPG measurements, since lower light

intensities translate into noisier images. Uneven light conditions may also reduce signal quality

since it will introduce heterogeneity in the subject’s face and ROI, which will possibly affect the

HR measures. When it comes to light temperature, although it has been discovered that rPPG

signal strength can differ between the RGB channels due to the differences in the spectral light

intensity distribution, it is expected that the obstacle of light temperature can be surpassed by

using Blind Source Separated signals or Chrominance Signals instead of the classic signal from

the green channel only.

4.1 Additional Material

In order to enable variety in testing and to informally test the framework in its early stages of

development, four videos were recorded with a DSLR camera (Canon EOS 70D) coupled with a

lens with a fixed focal distance of 50 mm and an aperture of f/1.8 positioned at the same height

of the subject’s eyes and a distance of 1 meter. These videos consisted of only one subject under

both frontal and artificial light and uneven natural light conditions. For both lighting conditions,

one of the recordings was performed immediately after a short exercise session which intended

to increase the subject’s heart rate. Once the ground truth was obtained from peripheral pulse

palpation at the carotid region, method which is not considered to be unreliable [80], the results

obtained from this video were not considered.

4.2 Validation Dataset

After the period defined for the writing of this dissertation had finished, social constraint policies

were partially withdrawn, which allowed to start the acquisition process. For that reason, a session

was held at CMIN to acquire videos of newborns inside both cribs and incubators alongside with

the respective ground truth at the Intermediate Care Unit. This acquisition session resulted in the

creation of a database which counts with the authorized participation of 6 newborns. For each of

the individuals, one or more five minute videos were recorded with a Kinect V2 for Windows and

the acquisition protocol can be seen in Appendix C. As the pulse oximeter was the only sensor

available this was used to obtain the ground truth. Because of this, no measures could be taken

to infer about the Respiratory Rate and for that reason the extraction of this vital sign could not

be validated in newborn individuals. A second camera was used to record the pulse oximeter’s

monitor, and the HR ground truth was obtained by using the Tesseract OCR engine [81] to extract

the digits inherent to this vital sign for every frame. The two videos were later synced.
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As opposed to dataset used for the tool’s development, in this dataset each video integrates a

combined set of challenges as a result of the uncontrolled acquisition conditions. Furthermore,

in addition to the challenges which were expected to be found in a NICU and are covered in the

development dataset, other challenges were encountered and can be found in this dataset. For these

reasons, this dataset represents a much more challenging set of samples, which best represents the

real-world conditions. For legal purposes no images of the acquired videos may be presented as

these represent sensitive and personal information.

4.3 Future Testing

Nevertheless, both datastes used present flaws and their use should be complemented with other

datasets. Regarding the dataset used for development, the fact that each condition is only repre-

sented by one video makes it impossible to assess reproducibility and consistency. Furthermore,

by only including three participants, the dataset may miss out on certain conditions that might

have impact on real-world applications, such as age, scarring or even intermediate skin tones. Re-

garding the actual scope of this master thesis, which is applying contactless HR and RR extraction

methods to neonatal participants, one could argue that the predominant challenges to be faced

differ from those represented in this dataset. For instance, although head motions may occur, its

magnitude is not usually as exaggerated as those exhibited in this dataset. Most head movements

performed by a baby in an incubator are sparse rather than rhythmic and occur when changing

positions. Similarly, increasingly darker skin tones should not be so challenging firstly because

neonates’ skin (in particular in preterm infants [82]) is thinner than that of adults and therefore

the Blood Volume Pulse phenomenon should be much more evident across all complexions. Sec-

ondly, the darkening effect of the skin with age [79] makes the difference in skin tones more

evident between adults than between neonates.

On the other hand, since the reference ranges of HR and RR of newborn infants (and children in

general) are much higher than that of adult’s, the third challenge imposed by this dataset (High and

Fluctuating Heart Rates) should be addressed more carefully, once the tool must be able to perform

for elevated pulse values. Furthermore, lighting conditions, in particular uneven lighting, would be

one of the most probable challenges encountered in a NICU environment and thus, it is important

to assure that the developed tool does not falter in such conditions. One untested challenge which

might induce major performance issues is specular reflection caused by the incubator’s hood. To

test these premises would require extensive recordings of neonatal participants in a regular NICU

environment.
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Heart Rate

The framework developed in this study relies in its entirety on the HR extraction process and its

secondary products, in the sense that the signals and measures resulting from it will be used as

inputs for other portions of the algorithm, namely for RR extraction, as described in Chapters 7.

For this reason, the development of the algorithm regarding HR extraction was more extensively

developed, since the accomplishment of its purpose would define the success of the following

portions of the framework. Furthermore, the nature of the dataset used, namely the fact that it was

designed specifically for evaluating contactless HR extraction tools, allowed a wider range of tests

than those which could be performed for the other portions of the framework presented.

HR is one of the most informative vital signs, and its acquisition and monitoring is indispens-

able to assure every preterm infant’s well-being inside the NICU. It is true that the benefits of

contactless HR extraction extend way beyond the NICU, however the impact caused by substitu-

tion of the regular methods is way more significant for newborns than for adults. Besides, despite

the abundance of studies covering contactless HR extraction for adults, there are still few stud-

ies on its effectiveness in newborns, specially focusing on videos acquired by low-cost cameras.

For that reason, despite having been developed on a dataset consisting solely of adult subjects,

the construction of the concerned method was guided on every decision by what would be most

beneficial for preterm subjects.

5.1 Methodology

As mentioned in Chapter 3, the typical contactless HR extraction tool is composed of a series of

sequential processes each of which has a particular purpose. Every process (from now on referred

as module) makes use of the result of the previous module to determine its own output which

will be then used by the following module, forming a linear combination of techniques which

ultimately result in the extracted HR. Since rPPG-based tools for HR extraction first appeared,

the order and the purpose of all modules have been firmly established. As a consequence, among

recent published methods there is little variation in the modules used and their order. What does

change between studies are the techniques used for each of the modules. For instance, all published

31
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studies present a module for Region of Interest (ROI) definition following a face detection and

tracking module. Nonetheless, new methods for ROI definition, including different combinations

of skin patches arise frequently.

For that reason, the typical framework was adopted and several techniques were applied and

compared for each module. Figure 5.1 shows the overall pipeline of the HR extraction method,

specifying the modules utilised as well as the various techniques tested for each of these. All

techniques employed will be further explained in more detail. In order to provide the continuous

monitoring of the HR, the proposed method uses a temporal sliding window whose length is

defined by the user. For each position of the window, the rPPG signal is extracted, from which a

single HR value is determined. The window is then moved by a step also defined by the user and

the process is repeated. In the end, the output of this pipeline is a continuous HR evolution curve,

whose length is equal to the number of positions taken by the window until the end of the video.

It is important to notice that this tool has a buffer period with the same length of the window.

Figure 5.1: Framework for Heart Rate measurement from face videos. For each module, the
various techniques employed are enumerated.

5.1.1 Face Tracking and Region of Interest Definition

The first step in any contactless HR extraction algorithm is face detection. This task, performed

by the acclaimed Viola-Jones algorithm [60], results in a bounding-box around the subjects face

for the first frame of the video. The position of that bounding box is then tracked using Median

Flow [83]. Despite the widespread acceptance of the Viola-Jones algorithm, its use comes with a

series of disadvantages, the main one being that it can only detect frontal faces. This fact com-

promises this technique’s use in a NICU environment, since the infants usually have their head

rotated laterally while inside the incubator. For this reason, an alternative method had to be tested.

Furthermore, the use of Median Flow is not robust enough for big movements (such as those pre-

sented in P1M1, P1M2 and P1M3), owing to the fact that this technique struggles to find its target

once lost, which happens frequently with sudden movements [84].

The use of the previously mentioned combination of algorithms was therefore compared to

the detection of facial keypoints, which should be more accurate while not compromising in ro-

bustness. The keypoint detection algorithm used was the DLIB python library’s implementation

of Kazemi et al’s [85] method, which had previously been trained on the iBUG 300-W face land-

mark dataset [86]. This method uses a a cascade of regressors to estimate the position of 68 facial

landmarks in a computationally efficient manner. Figure 5.2 shows the result of the keypoint de-

tection as well as the identifier of each fiducial point for further referencing. The fact that the
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keypoint locator takes less than 1
30 seconds, makes it possible to perform keypoint detection for

every frame, instead of a tracking alternative, which prevents cumulative error propagation from

frame to frame.

(a) (b)

Figure 5.2: (a) Example of facial keypoint detection performed in a frame of video P1LC5; (b)
Identifiers of the 68 facial keypoints detected.

Once the location of the face or its fiducial points is known for each frame, one can situate

particular regions of interest within the frame relative to the known points’ locations. The precision

of this ROI definition is highly dependant on the previous tracking steps and its robustness. In order

to define the ROI location within the frame it is first important to select which facial structure it is

that deserves our methods attention. Both the forehead, the inferior portion of the face, the cheeks

region have been reported in the literature, as well squares containing the entirety of the face,

although the latter has passed out of use due to the amount of non-skin pixels it encompassed,

namely in facial hair, eyes and nostrils. Both the forehead and cheek regions were tested for being

the ones less-susceptible to non-rigid motions, induced by facial expressions, as they exclude the

mouth and eyes areas. This detail is particularly detereminative when it comes to dealing with

newborns since their facial expressions are more exaggerated than that of an adult and they spent

a considerable amount of time crying and frowning.

In addition to the choice of the facial region itself, it is also possible to define the ROI relatively

to different sets of points. A simpler approach would be to define ROI’s location with reference to

the location of the face’s bounding box. In this line of thought, the ROI’s was defined as a simple

rectangle, whose width was set as 60% of the width of the face’s bounding box, once the bounding

box from the Viola-Jones algorithm typically includes background pixels on either sides. The

height of the ROI was set to 20% of that of the bounding box. In case the forehead was chosen to

represent the ROI, the rectangle was aligned with the top of the face’s bounding box, whereas if

the objective was to map the cheeks area the rectangle inherent to the ROI was vertically centered.

In both cases, the ROI was horizontally centered within the face’s bounding box.

Nonetheless, this approach is evidently less robust than defining the ROI’s location according

to the position of the facial fiducial points, mainly because the bounding box assumes a frontal

face and therefore pays no attention to rotations, preserving the ROI’s shape and dimensions when

situations when these should change. To define the forehead according to the facial keypoint’s
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locations, keypoints 19 and 24 longitudes were used to define the ROI’s lateral limits and their lat-

itude to define the ROI’s inferior limit. Once the highest keypoints from the keypoint library were

in the eyebrows, there was no information which could be used to limit the rectangle superiorly.

The ROI’s height was then set as a function of its width to enable adequate scaling if the subject

moves away or to the camera. Figure 5.3 shows the different types of ROIs tested according to the

facial region it maps and how they were calculated.

(a) (b)

(c) (d)

Figure 5.3: Examples extracted from P1LC5 of all the different ROIs tested and its different defi-
nition methods: (a) forehead ROI determined in relation to the face’s bounding box; (b) forehead
ROI determined in relation to the facial landmarks; (c) cheeks ROI determined in relation to the
face’s bounding box; (d) cheeks ROI determined in relation to the facial landmarks;

When it comes to the cheek ROI and its definition process relative to the fiducial points, a

concave hexagon was defined with keypoints 2, 4, 30, 14, 16 and 28 as vertices. Piece-wise linear

wrapping is then applied to wrap the hexagon into a rectangle of fixed shape. For the reason

that each facial landmark has a particular semantic meaning, we can assume that the wrapping

transformation makes each pixel in the resulting rectangular ROI is aligned. Figure 5.4 displays

the cheek ROI after being wrapped to the said rectangle.

Following the wrapping of the cheek area into a rectangle, a skin segmentation step was also

included. Although this was not strictly necessary for adult subjects (Figure 5.4 shows that all

of the pixels covered represent skin areas), this step will prove to be extremely convenient when

dealing with preterm infants, specially those who are under artificial ventilation conditions. It is

common for preterm infants who require intensive care to be ventilated using a continuous positive

airway pressure (CPAP) device, as mentioned in Chapter 2. This device is usually white, and is

connected to the newborn’s airways via the nose. It possesses a tube which usually passes in front
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Figure 5.4: ROI corresponding to the cheeks after it has been wrapped to a rectangle.

of the babies forehead covering most of it and is fixed to the infant’s head through white straps

which wrap around the infant’s face obstructing part of the cheeks.

Despite being ideal surfaces for visualisation of the BVP phenomenon due to the high levels if

irrigation from superficial blood vessels, the selected ROIs map an area which is considerably big

and lacks colour homogeneity as is made evident by Figure 5.4. Such incongruity may be mostly

due to three factors:

• Localized blushing.

• The fact that the face rounds and therefore cannot be considered a perfect Lambertian sur-

face, (i.e. it reflects light differently according to its orientation to the light source).

• The rough relief of the face makes that it receives light in an uneven manner. Specially

when the light source is not directly in front of the subject (Uneven light conditions, such as

P1LC6 or what would be expected in a NICU environment),the nose will project shadows

on the cheeks, for an instance.

All of these result in a high standard deviation for the RGB values of the pixels inside the ROI,

which will harm the signals quality, as will be proved in Section 5.2. In order to surpass this, the

ROI is divided into K smaller rectangles, which will function as independent ROIs and will be

referred to as sensors from this moment on. An increasing number of sensors (K) should translate

to smaller average values of standard deviation for each sensor, justified by the fact that they are

decreasing in size and therefore should map a much more homogeneous patch of skin, as will do

be discussed later on in this chapter. Of course this premise only verifies as long as the sensors are

as close to a perfect square as possible. To assure that and at the same time allow flexibility in the

values of K, we let K be a user defined parameter and calculate the sensor size according to the

following equations:

K =
WH
s2 ⇔ s =

⌊√
WH

K

⌋
(5.1)

where W and H denote the width and the length in pixels of the big ROI and s becomes the

value (also in pixels) to each the nearly squares’ width and height is going to be approximated to.

A =

⌊
W
s

⌋
∧B =

⌊
H
s

⌋
(5.2)
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One can then obtain the number o columns (represented by A) and number of rows(represented

by B) by diving W and H by the size of the side of the ideal square. A and B must be rounded

down to the nearest integer to guarantee that the the last row or column does not have a fraction

of its the desired size, therefore becoming an elongated rectangle. This operation comes with the

cost of the possibility of having a few pixels which are left out bu that drawback is not enough to

justify the use of portions of rows and columns.

w =

⌊
W
s

⌋
∧h =

⌊
H
s

⌋
(5.3)

The near-squares actual dimensions can then be calculated by dividing the integer number

of columns W and rows B by s. The general ROI can then be segmented into Kapprox sensors

distributed over a grid of A columns and B. Each sensor acquires a near-square shape and has w

as width and h as height.

5.1.2 Signal Extraction

After the ROI and its sensors are defined, average pooling is performed for each of the three RGB

channels and for each sensor independently. This means that 3×Kapprox 1D time-signals will be

generated. According to the literature, and as mentioned in Chapter 3, of the three RGB channels

the one which best reflects the BVP phenomenon is the green channel, which is clearly visible in

Figure 5.5 as the peaks in the green channel are more equally spaced and differentiated than in the

other two channels. The signal extracted from this channel has been reported to be enough for HR

extraction in certain conditions.

Figure 5.5: Comparison of the raw signals extracted by spatial pooling of each of the RGB chan-
nels.The top signal is inherent to the red channel, the middle one to the green channel and the
bottom one to the blue channel.

However, using only this channel seems to be fragile in more harsh conditions and presumably

will falter in conditions of non-white illumination and darker subject complexions. Therefore, two
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other signals will be generated from the spatially pooled RGB signals and tested. These signals

are:

• Blind Source Separation (BSS) rPPG signal

• Chrominance rPPG signal

5.1.2.1 Blind Sourse Separation rPPG signal

BSS is a technique used for separating a set of signals into its unobserved sources or original

components, while having no prior information about the mixing process [87]. For instance, if

three microphones are set in a recording room each of which capturing the overall sound of the

room, where three musical instruments are being played simultaneously, BSS can theoretically be

used to separate the signals from the three microphones into the three independent signals from

each of the instruments. In the context of our problem, BSS can be used to separate the three

RGB signals into its source components, which should reflect distinct origins. From the three

resulting signals, one should translate the variation induced by BVP, thus being the rPPG signal

and the other two signals should encode noise originated by motion or lighting variations. The BSS

algorithms most described in the literature is ICA, mentioned in Chapter 3. ICA works by finding

a linear representation of non-Gaussian data so that its components are statistically independent,

or as independent as possible [88]. Despite all its benefits, the use of ICA presents one flaw, which

is that the component which carries the pulse signal is a priori unknown as the components are

presented in no particular order. Therefore, for every sample, the need to select (out of the three

components) which represents the rPPG signal arises.

That being said, ICA was applied to the three RGB signals in order to decompose them into

their independent components. Several methods for component selection were compared, those

being:

• Maximum intensity predominant frequency response

• Maximum correlation with reference sine signal

• KNN and SVM classifiers combining frequency spectra and time domain features.

Commonly, the selection process assumes that the pulse signal shows the strongest periodic-

ity. Two distinct selection methods can be used based on this fact. The first one, more abundant in

literature, is to chose the component which has the highest frequency response for its predominant

frequency. In practice, this means that the FFT is computed for each component and its pre-

dominant frequency selected (by locating the frequency response’s peak). The component which

presents the highest value is considered the rPPG signal.

One other method addressing periodicity is to compare each component to a reference sine

as suggested by Feng etal. [89]. For that purpose, the FFT is computed for all three components

and its predominant frequency is once again extracted. Three reference since are then created,
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each with frequency equal to those extracted. Pearson’s correlation coefficient is then calculated

for each pair of components and respective reference sign after alignment. The component which

correlates the strongest to its reference sine signal is thus the more periodic and adopted as the

pulse signal.

Nonetheless, both methods disregard HRV (a healthy phenomenon that represents a source

of non-periodicity), which we intend to preserve in the signal for other vital signs extraction as

explained in Chapter 7. Furthermore, in case of periodic motion, such as rhythmic head nodding,

as portrayed in this dataset by the videos P1M2 and P1M3, these methods may overlook the actual

pulse signal and mistake it by the motion induced independent component, which naturally is

extremely periodic.

In an attempt to overcome this flaw a third and distinct method was tested. Similarly to what

was described by Monkaresi et al. [87], we used Machine Learning classifiers to chose the pulse

signal from the three independent components. The classifiers compared were SVM’s and k-

Nearest Neighbours (kNN). One difference between Monkaresi et al. [87] and the method em-

ployed in this work are the features adpoted. While the published paper mentioned the use of 9

features (3 per component), we fed the classifiers a total of 12 features (4 per component), which

are:

• The energy of the most predominant frequency;

• The most predominant frequency;

• The correlation coefficient of the component to its reference sine;

• The standard deviation of the height of the component’s peaks;

In order to train the classifiers, random samples from videos P1LC5, P2LC5, P3LC5, P1LC6,

and P1H1 as well as samples from homemade videos which are not part of the used dataset (as

described in , described in Chapter 4) were extracted and annotated. This set of samples was

further divided into training and validation. Since it would be impossible to annotate all samples

for all videos of the dataset, it was only possible to calculate evaluation metrics for the classifiers’

performance using the validation samples. The overall performance of the classifiers was assessed

through their impact on the general performance of the framework.

Not only the reduced number of samples used but also the difficulty to annotate some of

the instances posed as a hindrance for the classifiers’ training. Figure 5.6 shows two different

instances which are quite contrasting in terms of annotation difficulty, due to the contrast between

the components. For each of the instances (a) and (b) the three independent components (which

resulted from ICA) are displayed. In the sample represented by Figure 5.6 (a) it is fairly simple

to visually identify which of three components represents the pulse signal. Due to its increased

periodicity, greater homogeneity in peak height and higher intensity in frequency response, the

first component (on the top) is easily identified as that which represents the rPPG signal. On the

other hand, for the sample represented in Figure 5.6 (b) the same task is nearly impossible, since
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all three components look alike, and so do their power spectra. Samples such as that indicated in

Figure 5.6 (b) are difficult to annotate with a high degree of certainty and may damage the process

of classifier training, but should not be disregarded as they appear frequently in any of the videos

of the dataset.

(a)

(b)

Figure 5.6: Independent Components and their Spectral Analysis for distinct samples (a) refers to
a sample from P1LC5, whereas (b) refers to a sample from P3LC2

5.1.2.2 Chrominance signal

Lastly, chrominance based signals are those which convey color information usually by computing

and relating color-difference components. In 2013, de Haan et al. [74] conducted a study to test

the efficiency of Chrominance based signals in handling challenging conditions in rPPG problems,
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in particular subject motion. In that study, they compared the performance of several chrominance-

based methods (namely RoverG, XoverY , XminαY [74]) among each other and with BSS signals

(namely those resulting from ICA and PCA) and concluded that XminαY was the best performing

of all for the conditions tested. For that reason this will be the signal which will represent the

category of Chrominance based signals in this pipeline and the tests to it performed. In order to

calculate the XminαY signal one must first obtain the Xs and Ys signals according to:

Xs = 3Rn−2Gn (5.4)

Ys = 1.5Rn +Gn−1.5Bn (5.5)

where Rn, Gn and Bn are the normalized versions of the Red, Green, and Blue channels respec-

tively. The normalization of the signals consists in its division by its highest value in order for all

values to be re-scaled to the range between 0 and 1.

S = X f −αYf (5.6)

After calculating Xs and Ys, X f and Yf are simply their bandpass filtered versions. Finally, the

XminαY signal (S) is determined as the difference between X f and the product of α and Yf , in

which α stands for the ratio between the standard deviations of X f and Yf :

α =
σ(X f )

σ(Yf )
(5.7)

The final module of the Signal Extraction block is the most simple but probably the most im-

portant, without which HR extraction would become a much more difficult problem to be solved.

This module consists on filtering the raw rPPG signal. For the Chrominance based signal, the

filtering process is already embedded in the creation of the signal itself, therefore there is no need

to redo that operation, but for the other two signals this step is done separately from its creation.

The filter used was a 8th order Butterworth band-pass filter. When it comes to the definition of

its cut-off frequencies two approaches were used. A common wide band fixed filter was used for

all samples. In this approach the cut-off frequencies were set to [0.7Hz− 4Hz] once these were

the most commonly employed in the literature [56] [89] [90]. A more interesting technique was

also employed. This technique, commonly referred to as adaptive filtering, relies on the fact that

a limit exists to how much the HR can vary in a given interval. For this reason the adaptive filter’s

cutt-off frequencies were different for each sample and based on the determined HR of the pre-

vious sample. The bandwidth of the filter was therefore defined as [HR− 30bpm,HR+ 30bpm].

Figure 5.7 shows how the effect of both fixed and adaptive filtering in a 30 second sample of the

raw Green rPPG signal.
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Figure 5.7: Comparison of the raw signal extracted from the green channel (top) with its bandpass
filtered equivalent (bottom).

5.1.3 Heart Rate Extraction and Post Processing

The last step in HR extraction from rPPG signals concerns the extraction of the predominant fre-

quency of the sampled signal. In this study, this was tested in two very distinct techniques, which

have their own perks and drawbacks. The first and more robust method, most commonly used in

the literature, was to perform Power Spectral Analysis [56], through the act of applying a FFT to

the signal. The HR is then defined as the frequency with the highest response, determined by peak

in the power spectrum of the signal. A second method was to analyse the rPPG signal in respect to

its time domain and determine the position of the peaks (i.e. local maxima), which should mirror

the beats of the heart. Through the calculation of all the intervals (in seconds) between successive

beats, commonly referred as Interbeat Intervals (IBI), the frequency corresponding to each IBI

was determined as its reciprocal multiplied by 60, in order to obtain a value in beats per minute

(bpm):

fi =
60

IBIi
(5.8)

The HR was then chosen as the median of the frequencies ( fi) inherent to all IBIs. The median

was selected over the mean since the former is less sensitive to outliers.

The extraction step can be complemented with a post-processing module, which presents itself

the form of a Variation Threshold. The Variation Threshold technique supports itself in the same

principle as the adaptive filtering as it limits the possible variation between successive HR samples

and assumes the previous sample in case the variation exceeds the threshold., such as had been

done by Poh et al. [90].



42 Heart Rate

5.2 Results and Discussion

The modular nature of this framework generates an overwhelming number of possible pipeline

configurations to test, since for each module, several techniques were employed. Specifically,

there are 96 possible pipeline configurations, each of which has an infinite number of variants

according to the amount of different numbers of sensors (Kapprox) tested. To be able to find the

optimal combination of techniques without having to test all possible configurations, a cumulative

approach for technique selection was used. This approach, inspired in wrapper feature selection

methods often employed in Machine Learning problems, assures that the the optimal configura-

tion which is being achieved considers method interaction, instead of addressing the modules’

performance independently.

In our cumulative selection approach (which can be compared to a forward feature selec-

tion approach in wrapper methods), we start by evaluating the performance of the least sophisti-

cated configuration of techniques (Baseline Configuration). After the Baseline Configuration is

evaluated, module analysis is performed sequentially from the pipeline’s starting module (Face

detection and tracking) to its finishing module (post-processing). For each module, the various de-

scribed techniques are ranked according to how they influence the pipeline’s performance. Once

the best technique for a given module is found, it replaces its homologous in the Baseline Config-

uration. As we advance through the modules, we create new configurations, which consist of the

best techniques for the modules evaluated so far and the Baseline configuration’s techniques for

the modules yet to be evaluated. In the end, after evaluation is performed for every module, the

optimal configuration is established. Table 5.1 summarizes the configurations created during this

process and provides each of them with an identifier.

Since each module delivers a distinct contribution to the general framework, it would be inap-

propriate to evaluate their influence according to the same the standards. For instance, the purpose

of the first modules (Face Detection and Tracking; ROI definition; Signal Extraction and Filtering)

is to maximize the quality of the signal extracted so that the the last two modules (HR extraction

and Post-Processing) can use it to accurately obtain the HR. For that reason, different metrics were

used to evaluate different modules, according to the modules’ purpose.

5.2.1 Face Detection and Tracking

The first two modules are responsible for locating the face within the frame and tracking its posi-

tion over time. This is an extremely important step, since the location of the ROI, from which the

rPPG signal will be extracted, will be obtained from the information resulting from this module.

Failure in accurately and consistently defining the position of the face will resulted in a deficient

ROI definition and consequent extraction of a meaningless signal, which will completely invalidate

the extraction of the HR measures and therefor the whole framework.

For that reason, it is expected of the technique used in this module to be robust enough to

locate the face’s position and its orientation in a wide variety of conditions, which will for sure be

encountered in a real-world NICU environment. The technique employed should be able not only
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Table 5.1: Description and identifiers of the pipeline configurations tested

Identifier Description Similar to

Baseline
Viola-Jones and Median Flow + Forehead ROI +
Kapprox = 1 + Green channel rPPG signal + Fixed

filtering + FFT + No post-processing
1

C1
Landmark Detection + Forehead ROI + Kapprox = 1 +

Green channel rPPG signal + Fixed Filtering + FFT + No
post-processing

1

C2
Landmark Detection + Cheeks ROI + Kapprox = 1 +

Green channel rPPG signal + Fixed Filtering + FFT + No
post-processing

1

C3
Landmark Detection + Cheeks ROI + Kapprox = 9 +

Green channel rPPG signal + Fixed Filtering + FFT + No
post-processing

1

C4
Landmark Detection + Cheeks ROI + Kapprox = 16+

Green channel rPPG signal + Fixed Filtering + FFT + No
post-processing

1

C5
Landmark Detection + Cheeks ROI + Kapprox = 50 +

Green channel rPPG signal + Fixed Filtering + FFT + No
post-processing

1

C6
Landmark Detection + Cheeks ROI + Kapprox = 100 +

Green channel rPPG signal + Fixed Filtering + FFT + No
post-processing

1

C7
Landmark Detection + Cheeks ROI + Kapprox = 9 +

Chrominance rPPG signal + Fixed Filtering + FFT + No
post-processing

1

C8
Landmark Detection + Cheeks ROI + Kapprox = 9 + BSS

rPPG signal + Fixed Filtering + FFT + No
post-processing

1

C9
Landmark Detection + Cheeks ROI + Kapprox = 9 +

Green channel rPPG signal + Adaptive Filtering + FFT +
No post-processing

1

C10
Landmark Detection + Cheeks ROI + Kapprox = 9 +

Green channel rPPG signal + Adaptive Filtering + Peak
Analysis + No post-processing

1

C11
Landmark Detection + Cheeks ROI + Kapprox = 9 +

Green channel rPPG signal + Adaptive Filtering + Peak
Analysis + Variation Threshold

1
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to detect and track and the face in challenging light conditions but more importantly to cope with

head movements and eccentric head positions, once newborn’s will be able to rotate their head

while lying inside the incubator. Furthermore, the more stable the tracking method is, the better,

as even slight flickering of the determined face’s position may introduce noise in the rPPG signal,

specially when dealing with small ROI.

The two techniques tested were a combined use of the Viola Jones algorithm (for face detec-

tion) and subsequent tracking by Median Flow algorithm and the sole use of a facial landmark

detection library for every frame. Because there is no ground truth for facial position included

in the dataset, and annotation of the face’s position for every frame was impractical, performance

comparison for these two methods had to be done on the basis of domain knowledge and observa-

tion.

As mentioned in Chapter 4, only three of the videos included in the dataset addressed head

motion, which makes these the most adequate to use for this module’s evaluation. In all other

videos, the participant’s had their head supported by a head rest, which ruled out any type of

rigid motion. For that reason, these videos could only be used for facial detection performance

evaluation and not for evaluation of the precision in tracking itself. For all participants (and thus

skin complexions) as well as for all lighting conditions both methods presented no failures and

were entirely accurate in detecting the face for all frames of every video.

However, when it comes to videos P1M1, P1M2 and P1M3 (those which include head motion)

considerable discrepancies were found between the performance of the two techniques. Since the

Viola Jones algorithm is only capable of detecting frontal faces, there is an imminent drawback to

the use of this technique. This drawback means that the algorithm will only work if the camera is

positioned strictly in front of the subjects face, at least at the initial time of recording, when face

detection is performed. Although this factor may not influence the algorithms’ overall performance

for this dataset, since all videos start with the subject facing the camera, it will most certainly

pose an impediment when dealing with newborns inside an incubator, as one cannot restrain the

neonate’s head position.

The mentioned limitation, combined with the fact that Median Flow relies on the bounding

box from one to obtain the bounding box’s position in the following frame, makes this technique

extremely fragile for dealing with head motion. As can be seen in Figure 5.8, once the head is

turned sideways, this technique fails to accurately detect the face’s position. Features from inside

the bounding box are then tracked between consecutive frames, meaning that if the bounding box

of one frame is slightly deflected from its supposed position, it will include other structures other

than the face, possibly background. As a consequence, the tracking portion of the algorithm will

not only attempt to track the face but also the other structures contained in the bounding box,

degrading its content and propagating the error which had been introduced. This error will then

directly affect all forthcoming frames, even those where the face is again facing the camera, as

made evident by Figure 5.8 (a).

Landmark detection was therefore considered superior to the combination of Viola-Jones and

Median Flow, since it can cope with a much higher angle of head rotation and at the same time
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(a)

(b)

Figure 5.8: Comparison of Tracking Methods’ accuracy when dealing with Head Motion: (a)
The use of Viola Jones for Face Detection and Median Flow for subsequent tracking may propa-
gate error if the bounding box happens to be shifted; (b) When using Landmark Detection error
propagation is impossible since keypoint detection is performed for each frame independently.

has no possibility of accumulating error, shown in Figure 5.8 (b), since the fiducial points are

detected for each frame independently. Moreover, landmark detection provides much more pre-

cise and complete information on the position of the facial structures, which will enable a much

more flexible ROI definition. For all those reasons, Landmark Detection replaced Viola-Jones and

Median Flow in the Face Detection and Tracking modules of the Baseline Configuration, creating

configuration C1, whose composition can be consulted in Table 5.1.

5.2.2 ROI selection

To address the impact of using distinct facial structures as ROI we compare the performance of the

previously created configuration C1 (which uses the forehead as the ROI) with a new configuration

C2, which only differs from the former by having ROI defined around the cheeks region. Since

the most immediate goal of this module is to provide the best conditions to extract the signal,

its performance should reflect more directly on the quality of the extracted signal rather than the

accuracy of the final HR extraction. For that reason, a metric which reflects the extracted signal’s

quality needs to be introduced, that metric being Signal-to-Noise Ratio (SNR).

SNR compares the level of a desired signal to the level of background noise it contains and

can be calculated by the ratio of the energy around the desired frequencies and the remaining

energy contained in the spectrum, which reflects noise. This metric was calculated according to

the following equation:

SNR = 10log10

(
∑((U( f )× Ŝ( f ))2

∑((1−U( f )× Ŝ( f ))2

)
(5.9)

where S( f ) is the spectrum of the rPPG signal, f is the frequency in beats per minute, U( f ) is

a binary template window and the value is presented in dB. When analysing the SNR for a given
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signal, negative values will mean the energy of the noise frequencies is higher than that of the

desired frequencies.

The choice of which frequency is considered as desired, and therefore goes in the numerator,

is usually defined by the most predominant frequency (i.e. the peak in the power spectrum).

However, in the context of this problem, the frequency regarded as desired should be defined by

the HR extracted from the ECG as this represents the ground truth. This is done to prevent highly

periodic signals of random frequencies to be regarded as having high SNR.

For that reason, the template window U( f ) is multiplied by the square of the normalized fre-

quency response of the signal. This window’s values are set to 1 for the chosen frequency and the

5 bins closest to it as well as that frequency’s first harmonic and the 10 bins closest to it, as shown

in Figure 5.9. The fact that 5 and 10 bins were used instead of exactly the fundamental frequency

and its first harmonic was to not consider HRV as noise, once this is a healthy phenomenon which

should not be disregarded, as mentioned before. Besides that reason, by using multiple bins around

the ground truth frequency we assure, rPPG signals whose predominant frequency is slightly de-

viated from its supposed value are not regarded as poor quality signals, distinguishing them from

completely arbitrary rPPG signals.

Figure 5.9: SNR calculation uses a template passing 5 bins in the 512 bin spectrum, centered
around the contact sensor pulse rate (10 bins around the first harmonic) to allow for heart-rate
variability. The SNR is measured by the energy ratio of the components inside and outside the
template. from [74]

Table 5.2 displays the average SNR of all 30 second samples extracted using configurations C1

and C2. The average SNR is presented by video to provide a more detailed view on the influence

of each ROI in each of the conditions, allowing to assess the performance of these configurations

for all three challenges.

After analysing Table 5.2, it is evident that, regardless of the chosen region, participants with

darker skin tones consistently present lower SNR. This is a phenomenon which is not exclusive

to rPPG and can also be encountered when dealing with PPG signals from pulse oxymeters for an

instance, once high degrees of melanin may conceal BVP [91] [92].
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Table 5.2: Effect of ROI selection on the rPPG signal SNR

C1 C2
P1H1 0.511679 -3.042
P1LC1 -2.08301 -1.5578
P1LC2 1.469669 0.006101
P1LC3 4.672141 1.739569
P1LC4 6.573577 3.194916
P1LC5 6.412619 3.396959
P1LC6 0.912877 -1.84869
P1LC7 2.392935 2.974369
P1M1 -0.66871 -0.76924
P1M2 4.120398 -1.25695
P1M3 -7.97976 -1.57556
P2LC1 -8.93493 -4.49823
P2LC2 -7.14645 -5.29417
P2LC3 -7.07065 -4.77595
P2LC4 -6.71044 -4.66715
P2LC5 -6.97931 -5.26607
P3LC1 -5.84706 -5.64595
P3LC2 -7.45471 -5.32919
P3LC3 -5.67233 -5.32685
P3LC4 -6.11048 -5.89743
P3LC5 -6.96168 -4.99319

Although this discrepancy in performance for different skin complexions will be present through-

out the analysis of the results, it becomes clear that the use of cheek region as ROI helps to at-

tenuate this difference, as it has distinct impact in the performance for different types of videos.

In a general manner, it can be stated that the extraction of the rPPG signal from the cheek area

harms the quality of all signals inherent to participant 1, who has a lighter skin complexion, while

improving the quality for the other two patients (darker skin tones). This improvement can be

justified by the fact that the skin of the cheeks is less thick and more irrigated than the skin of the

forehead, thus making BVP more evident for participants who have darker skin tones. Inherently,

more evident BVP results in a considerably easier rPPG signal extraction for these subjects, thus

shortening the difference in performance for subjects with lighter and darker complexions.

The decrease in performance for the lighter skin tone participant may be justified by the in-

creasing ROI heterogeneity inherent to the use of the cheeks region’s. As can be seen in Fig-

ure 5.10, the average variance of the pixels inside the ROI is considerably lower for the first

participant (P1) when using the forehead in comparison to using the cheeks as ROI. The same is

true for the other two participants, as shown in the Appendix A.

In all possibility, by combining the use of the cheek area with a heterogeneity reduction pro-

cess, one would obtain better results than what could be achieved by using the forehead as a whole.

For this reason, C2 is considered to be the configuration with the most potential, in the context of
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Figure 5.10: Comparison of Tracking Methods’ accuracy when dealing with Head Motion.

this problem, once it is pretended from the framework to behave similarly for subjects with differ-

ent skin tones. It is nonetheless evident that this configuration would benefit from an heterogeneity

reduction method.

5.2.3 Sensor size

As mentioned previously, the use of the cheeks region gives rise to an inconvenience, which is

the lack of homogeneity inside the ROI. As made evident by Figures 5.4 and 5.10, the average

variance within this region is considerate and hence, signal generation by pixel value averaging

will be damaged if the ROI is considered as a whole. In order to counteract this effect, the ROI

was segmented into smaller, near-square sensors. The consequence of considering smaller sensors

independently, rather than utilizing the ROI as a whole is that each sensor will map smaller and

more homogeneous regions of the skin. By having less color variance, and being more invulnera-

ble to shadows, movements or lighting variations, these smaller sensors should originate a signal

with more quality.

Figure 5.12 proves that dividing the ROI in increasingly smaller sensors decreases the average

variance per sensor, as expected, and thus improves the overall sensor homogeneity. However,

analysing the frames independently is not enough to guarantee the superiority of the multi-sensor

approach, once it only addresses the spatial aspect of the matter. To complement this static anal-

ysis, it is essential to consider how using multiple and independent sensors affects the quality of

the signal extracted over time.



5.2 Results and Discussion 49

Figure 5.11

Figure 5.12: Comparison of Tracking Methods’ accuracy when dealing with Head Motion.

For that reason, the average SNR was once again calculated, to compare the influence of using

different sized sensors on the quality of the extracted rPPG signal. As explained in Section 5.1,

when using multiple sensors, not all contribute to the calculation of the final HR value. Although

the rPPG signal is extracted and their inherent HR frequency computed for each and every sensor,

only some of them are selected to define the final HR measure. As proposed by Niu et al. [93], the

sensors are sorted by their HR value and the l middle HR values are averaged, as they should pose

as the most stable. That being said, for every sample, the SNR was calculated as the average SNR

of the l sensors which actively contributed to define the final HR value.

Different quantities (and hence sizes) of sensors were compared. To do so, configuration C2,

which makes use of the whole ROI as one unique sensor, was compared to other configurations

(C3, C4, C5, C6) which were in no way different than the former apart from relying on an increas-

ing amount of sensors: K = 9, K = 16, K = 50, K = 100, respectively. Table 5.3

The analysis of the presented results conveys that in a general manner, dividing the ROI in

smaller independent sensors enhances the average signal quality, to a certain extent. As portrayed

in Table 5.3, the use of nine sensors culminates in a significant increase in the SNR for all videos,

with little exceptions. However, as the number of sensors is further extended and their size dimin-

ishes, the average quality of the signal becomes progressively worse for 16, 50 and 100 sensors.

This can be explained by the fact that for smaller sensors there is a greater influence of the noise

induced by the camera’s sensor. If the number of pixels to be averaged for rPPG signal extraction

is small, the presence of a few pixels whose value is influenced by noise will greatly disturb the

average. If the number of pixels were to be higher, the presence of a few pixels affected by noise

would be diluted in the totality of values to be averaged. Furthermore, when using smaller sensors,

slight head motion may result in a displacement of the same skin regions between adjacent sen-
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Table 5.3: Effect of Sensor size on the rPPG signal’s SNR

C2 C3 C4 C5 C6
P1LC1 -1.79 3.69 0.49 -0.42 -0.76
P1LC2 0.18 4.61 1.74 1.08 0.76
P1LC3 1.89 6.00 2.63 2.98 1.90
P1LC4 3.33 5.75 2.09 2.88 1.85
P1LC5 3.49 6.27 3.00 3.15 2.11
P1LC6 -1.82 3.29 0.45 0.41 -0.06
P1LC7 3.07 4.65 0.33 -0.45 -0.35
P2LC1 -5.13 -7.32 -7.63 -7.98 -8.24
P2LC2 -5.25 -4.51 -6.49 -6.89 -7.41
P2LC3 -7.48 -5.25 -6.34 -6.99 -7.39
P2LC4 -7.02 -4.48 -6.40 -6.83 -6.61
P2LC5 -5.43 -4.51 -6.61 -7.17 -7.33
P3LC1 -6.96 -4.40 -4.28 -4.30 -4.12
P3LC2 -5.45 -2.34 -2.13 -2.57 -2.51
P3LC3 -3.51 -2.22 -3.20 -3.11 -3.63
P3LC4 1.07 -1.81 -2.26 -3.04 -3.19
P3LC5 -6.48 -2.53 -2.98 -3.43 -3.58
P1M1 -9.08 -1.22 -0.80 -0.25 -0.51
P1M2 -5.54 14.32 14.46 14.44 14.34
P1M3 -5.99 -12.53 -12.51 -12.20 -12.01
P1H1 -2.92 0.38 -3.58 -2.86 -3.82

sors. This does not occur with the usage of larger sensors, as casual flickering of the landmarks’

positions is not enough to make the skin region mapped in one sensor to move and disengage its

assigned sensor.

This circumstance suggests that there is an optimal value for the number and size of the sen-

sors. The ideal sensor quantity emerges from a trade-off between sensor homogeneity and distor-

tion induced by sensor noise and subject movement. For that reason, this balance depends on a

variety of factors such as the camera’s properties, its distance to the subject, the intensity of the

subject movements, among others. As a result, the ideal number of sensors, which was found to

be 9 for this dataset, may not be the same for other datasets and this parameter should therefore be

adjusted when dealing with other environments such as the NICU’s.

5.2.4 Signal Extraction

All the modules evaluated so far were optimized in order to facilitate the signal extraction pro-

cess and maximize the quality of the extracted signal. Nonetheless, the signal itself and its ex-

traction process represent a very important step in the determination of the HR. Distinct signals

present unique properties and are therefore expected to behave contrastingly in divergent condi-

tions, which will reflect different performances for the different challenges presented. As men-

tioned in Section 5.1, the three types of signals tested are the most commonly presented in the
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literature: signal from the Green-Channel, BSS signal and Chrominance signal. As stated before,

to the use of a BSS signal is associated a supplementary step, which is, for every sample, the

choice of the component which best represents the BVP. In order to perform a fair comparison

between the three signals, it is first mandatory to determine which method is the best to perform

the said component selection.

5.2.4.1 ICA Component Selection

In order to independently test the several methods for ICA component selection, 300 random

samples were stored from videos P1LC5, P2LC5, P3LC5, P1LC6, P1H1 and homemade videos

which are not part of the used dataset. For each sample, ICA was applied and the 3 resulting

components were once again stored as well as annotations of which component corresponded to

the rPPG signal.

From the 300 samples used, 240 were randomly selected to train the classifiers (KNN and

SVM) and the remaining 60 were used to test the four component selection methods described in

Section 5.1.

Tables 5.4, 5.5, 5.7 and 5.6 show the confusion matrices of the prediction on the 60 test samples

previously generated, performed by the SVM classifier, KNN classifier, highest FFT peak and

correlation with the reference sine, respectively.

Table 5.4: Confusion Matrix SVM

True
Comp. 1 Comp. 2 Comp. 3

Pr
ed

. Comp 1. 16 0 0
Comp. 2 2 24 0
Comp. 3 2 0 16

Table 5.5: Confusion Matrix KNN

True
Comp. 1 Comp. 2 Comp. 3

Pr
ed

. Comp 1. 16 0 2
Comp. 2 2 24 0
Comp. 3 2 0 14

Table 5.6: Confusion Matrix PEAK

True
Comp. 1 Comp. 2 Comp. 3

Pr
ed

. Comp 1. 13 2 2
Comp. 2 4 21 0
Comp. 3 3 1 14
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Table 5.7: Confusion Matrix SINE

True
Comp. 1 Comp. 2 Comp. 3

Pr
ed

. Comp 1. 13 2 2
Comp. 2 3 21 1
Comp. 3 4 1 13

Although this poses as a multi-class classification problem, the three target classes have no

particular and distinct meaning once the order of the components given by the ICA algorithm is

arbitrary. In other words, there are no specific characteristics that make a signal belonging to a

certain class, and therefore analysing each class separately has no significance in the context of

this problem. That being said, the problem can be converted to a binary classification problem,

in which it is only known if the classification method hits or misses the correct component. For

that reason, the global accuracy was calculated for each of the four methods from its respective

confusion matrix. From this calculation results a accuracy of 0.93 for the SVM classifier; 0.90 for

the the KNN classifier; 0.80 for the sine correlation approach and 0.78 for the traditional highest

FFT peak.

Figure 5.13 exhibits how poor component selection influences the final results. In particular,

this figure shows the use of configuration C8 for HR extraction in video P1LC3. For the extraction

presented on the top figure, the FFT peak method was used to select the rPPG signal from the three

ICA components, while for the bottom figure, the method used was SVM. For both graphs, every

visible peak in the solid lines, which represent the extracted HR curve, correspond to a failure in

selecting the rPPG from the three independent components. In these cases, the chosen component

does not reflect the pulse and, thus its predominant frequency is arbitrary, most probably being very

different from the supposed value. It is also possible, though unlikely, that the wrongfully chosen

component possesses a predominant frequency which is close to that expected of the rPPG signal.

In such cases it is impossible to visually identify the failure in component selection. Comparing

both figures also displays the differences in using the two mentioned methods and proves SVM

superiority for this video, which can be widened for all other videos.

These results match those published by Mokaresi et al. [87] and, thus help establish the use

of a classifier, and in particular SVMs, as the most accurate method for ICA component selection.

However, these conclusions should be considered with caution, as the number of both training

and validation samples was scarce. Moreover, the samples used were predominantly extracted

from the Public Benchmark Dataset for Testing rPPG Algorithm Performance, therefore existing

the possibility of overfitting. Once access is granted to a new dataset, preferably of newborn

participants, these tests should be performed once again to confirm the results presented.

5.2.4.2 Signal Comparison

Once the best method for component selection in BSS signals is defined, it becomes possible

to fairly compare the three different types of signals extracted. Table 5.8 displays once again the
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(a)

(b)

Figure 5.13: Comparison best and worst (svm and highest peak, respectively) method for ICA
component selection

average SNR for configurations C3, C7 and C8, which are in all aspects identical, except the signal

type used.

It would be expected that both BSS and Chrominance signals would manifest an improvement

in signal quality, particularly when dealing with non-white illumination (as portrayed in video

P1LC6) and darker skin complexions. However, such did not occur and in fact the Green channel

derived signal outperformed the other two methods for all conditions imposed by this dataset,

which contradicts most literature on the topic. For that reason, all signals were once again tested

once the optimal pipeline configuration was reached. Further testing should be performed on a

more extensive dataset, in order to substantiate any signal type choice.
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Table 5.8: Effect of different signal extraction methods on the rPPG signal’s SNR

C3
(Green)

C7
(BSS)

C8
(Chrom.)

P1LC1 3.69 2.24 -0.08
P1LC2 4.61 3.83 2.30
P1LC3 6.00 5.18 3.69
P1LC4 5.75 5.96 4.88
P1LC5 6.27 6.60 4.37
P1LC6 3.29 3.02 2.93
P1LC7 4.65 4.72 3.78
P2LC1 -7.32 -7.74 -8.25
P2LC2 -4.51 -5.64 -5.84
P2LC3 -5.25 -6.04 -6.43
P2LC4 -4.48 -5.99 -5.56
P2LC5 -4.51 -5.92 -5.73
P3LC1 -4.40 -4.18 -3.71
P3LC2 -2.34 -2.51 -2.34
P3LC3 -2.22 -1.67 -1.14
P3LC4 -1.81 -2.57 -2.45
P3LC5 -2.53 -2.60 -2.11
P1M1 -1.22 -1.25 -0.62
P1M2 14.32 12.09 4.11
P1M3 -12.53 -10.43 -1.74
P1H1 0.38 -1.47 -0.95

5.2.5 HR extraction and Post-Processing

Once all modules relative to signal extraction were evaluated and their best techniques set, the

quality of the extracted rPPG signal can be considered as close to maximized as possible, for all

the conditions tested. It then becomes essential to use the extracted signal to obtain the continuous

HR - the final output of this portion of the framework.

As mentioned in Section 5.1, two distinct methods were employed and compared. Similarly to

what has been performed for all other modules’ evaluations, two identical pipeline configurations

(C9 and C10) were established, the only difference between them being that the former used the

Spectral Analysis to determine the HR from the rPPG signal while the latter used Peak Analy-

sis. Since these techniques will in no way influence the quality of the rPPG signal, as they will

make no alterations to it, new metrics have to be introduced to evaluate the performance of the

module in question. These metrics address the final result and its relation with the ground truth

values extracted from the ECG and thus, their use allows to analyse the performance of the over-

all pipeline. The metrics to be used are the root mean squared error (RMSE) and the Pearson’s

product-moment correlation.

The RMSE was calculated for every sample and averaged per video. As can be seen in Ta-

ble 5.9, the error calculated was lower for all instances when using Peak Analysis rather than
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Spectral Analysis. As had already been discussed when analysing previous modules, the higher

presence of melanin severely degrades the quality of the extracted rPPG signal, which results in

poor HR extraction. This phenomenon justifies the discrepancy presented in the RMSE between

participants P2 and P3 and P1.

Table 5.9: RMSE calculated for the continuous HR curves extracted with configurations C9 and
C10.

C9 C10
P1LC1 4.38 1.54
P1LC2 2.44 1.52
P1LC3 2.38 0.75
P1LC4 1.93 0.94
P1LC5 1.21 0.74
P1LC6 15.65 5.58
P1LC7 3.63 2.05
P2LC1 38.69 13.38
P2LC2 12.77 3.98
P2LC3 29.35 6.11
P2LC4 12.99 6.40
P2LC5 10.09 6.80
P3LC1 38.56 8.92
P3LC2 27.05 7.01
P3LC3 22.12 7.76
P3LC4 20.15 5.79
P3LC5 32.00 9.56
P1M1 26.94 17.89
P1M2 3.51 3.49
P1M3 29.39 29.88
P1H1 1.90 1.23

Pearson product-moment correlation was also calculated between the ground truth HR curve

and the HR curve extracted with configurations C9 and C10. This metric addresses the linear

correlation between two continuous variables dividing the co-variance of the two variables by the

product of their standard deviations. It is expressed as a value between 1 and -1, in which 1 means

total positive linear correlation, 0 means no linear correlation, and -1 means total negative linear

correlation. Table 5.10 compares the Pearson’s product-moment correlation for all the videos

when using configurations c9 and C10.

After analysing these two metrics, it becomes evident that Peak Analysis outperformed the

use of the FFT. Spectral Analysis should in theory be more robust, once it is not disturbed by

a moderate presence of spectral noise. In fact, when analysing the power spectrum of the rPPG

signal, originated by the FFT, there should be no error in the extracted HR as long as the response

of the unwanted frequencies does not surpass that of the desired frequency. On the other hand, as

all local maxima (peaks) of the rPPG are used to determine the HR through Peak Analysis, any
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Table 5.10: Correlation between the continuous HR curves extracted with configurations C9 and
C10 and the ground-truth HR curve.

C9 C10
P1LC1 0.02 0.77
P1LC2 0.45 0.76
P1LC3 0.80 0.98
P1LC4 0.69 0.93
P1LC5 0.89 0.95
P1LC6 0.49 0.72
P1LC7 0.64 0.81
P2LC1 -0.17 0.20
P2LC2 -0.34 0.24
P2LC3 0.50 0.66
P2LC4 0.21 0.11
P2LC5 0.46 0.40
P3LC1 -0.05 0.00
P3LC2 -0.11 0.34
P3LC3 -0.27 0.07
P3LC4 -0.03 0.41
P3LC5 -0.08 0.16
P1M1 -0.36 0.11
P1M2 -0.09 -0.20
P1M3 0.17 -0.05
P1H1 0.90 0.95

kind of signal noise may result in unwanted peaks to be inserted in between real peaks, severely

affecting the interval between the adjacent beats and deteriorate the HR extraction.

However, there are also disadvantages associated to the use of the FFT, the main downside

being its limitations in terms of frequency resolution. When using the FFT to compute the sig-

nals power spectrum, the number of frequency bins, and consequently the frequency resolution is

defined as half of the number of instances which constitute the given signal. Once the sampling

frequency of the extracted rPPG signal is low, in order to achieve a reasonable frequency resolu-

tion it is mandatory to use a signal with big enough length. However, increasing the length of each

sample’s signal comes with the cost of losing HR measures, as the entire length of the video has

to be divided in bigger portions. This downside inherent to the FFT and the fact that all previous

modules were employed so as to reduce the amount of noise in the extracted rPPG signal, justifies

the superiority in accuracy of using Peak Analysis for HR extraction.

The last module to be analysed is the Post-Processing Module. Regarding this module, the

tests performed were to compare the presence or absence of the technique above described in

more detail. As can be derived from the analysis of Table 5.11, the use of the post-processing

technique did not consistently improve the results for all videos. However, for those which were

of most interest, meaning those which represent challenges which will likely be faced in a NICU

environment such as P1LC6, P1LC7 and P1H1, this technique proved to be efficient in reducing
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the RMSE.

Table 5.11: RMSE calculated for the continuous HR curves extracted with configurations C10 and
C11.

C10 C11
P1LC1 1.54 1.67
P1LC2 1.52 0.90
P1LC3 0.75 0.87
P1LC4 0.94 0.83
P1LC5 0.74 0.68
P1LC6 5.58 3.89
P1LC7 2.05 1.55
P2LC1 13.38 11.81
P2LC2 3.98 3.11
P2LC3 6.11 3.80
P2LC4 6.40 2.60
P2LC5 6.80 2.56
P3LC1 8.92 18.16
P3LC2 7.01 5.98
P3LC3 7.76 5.16
P3LC4 5.79 2.99
P3LC5 9.56 5.64
P1M1 17.89 21.83
P1M2 3.49 3.51
P1M3 29.88 29.87
P1H1 1.23 1.05

5.3 Overall Performance

With the evaluation of the techniques for the last two modules finished, the configuration which

proved to be best, having in mind the challenges to be faced when dealing with newborn partic-

ipants was C11. As expected, this pipeline’s performance was not equal for all videos as each

poses as a different challenge to test the tools accuracy. As has been noted in all modules’ eval-

uations, the accuracy varies significantly across participants given that they have different skin

tones. Although the accuracy of the framework for subjects with darker complexions has been

lower than the accuracy for the participant with lighter complexion, it can be stated that the tool

still managed to extract the continuous HR for these subjects with mild success. In fact, if the

Lighting condition with less light intensity is discarded, the framework managed to always obtain

RMSE below 4 bpm for participant P2 and below 6 bpm for participant P3. It is expected that, for

neonatal participants the tool’s performance resembles more that of participant P1 once newborn’s

have thinner skin and with less concentration of melanin for the first few weeks of life.

When it comes to Challenge 3 proposed by the dataset, the tool did not present acceptable

results which leads to the conclusion that it is not yet ready to deal with rhythmic and exaggerated
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movement such as what is presented in videos P1M1, P1M2, P1M3. While the RMSE values

for videos P1M1 and P1M3 clearly indicate the lack of robustness of the framework to deal with

head motion, the RMSE calculated for video P1M2 may indicate otherwise. The reason why this

particular value was so low is that the subject was nodding his head at rhythm of 60 bpms, which

is extremely close to the 64 bpm of average HR which can be seen from the ground truth inherent

to that video.

Regarding the challenging conditions which matter the most in the context of this problem,

namely high and fluctuating heart rates (P1H1) and uneven lighting conditions (P1LC7) the results

were convenient and support that the tool developed should have little or no difficulties when

dealing with these specific challenges in a NICU environment. As can be seen in Figure 5.14,

the extracted HR curve closely matches the continuous HR curve extracted from the ECG, being

capable of detecting the slightest changes in HR even for uneven lighting conditions. Equivalent

plots can be found for every video in the dataset in Appendix A.

Bland-Altman analysis was also performed to assess the agreement between the HR extracted

from the rPPG signal and the ECG signal. Once the mean of the distributions close to zero and

few samples fall outside the range [mean−1.96σ ,mean+1.96σ ] it can be concluded that the two

methods for continuous HR extraction are correlated. Once again, Bland-Altman plots for every

video of the dataset can be found in Appendix A.

5.4 Summary

Considering the results explored above, the final and optimal configuration for contactless HR

extraction WAS C11, whose description can be seen in Table 5.1. The tests performed in the Public

Benchmark Dataset for Testing rPPG Algorithm Performance created at the Eindhoven University

of Technology [25] led to conclude that the developed framework is capable of dealing with high

and fluctuating heart rates as well as adverse lighting conditions. This should function as proof

of concept that the developed tool would perform accordingly for neonatal subjects. However,

extensive tests should be performed with newborn subjects and under real-world conditions to

validate this assumption.



5.4 Summary 59

(a)

(b)

Figure 5.14: Continuous HR curve extracted using configuration C11 from videos (a) P1H1 and
(b) P1LC7.
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(a)

(b)

Figure 5.15: Bland-Altman plots for the extracted HR curve of videos: (a) P1H1; (b) P1LC7.



Chapter 6

Eulerian Video Magnification

Monitoring of vital signs in newborns, regardless of being contactless or not, is unquestionably

valuable for clinical motives, in the sense that it allows healthcare professionals to assess the

neonate’s well-being and in case something is wrong, to quickly determine the cause. However,

there is more to newborn monitoring other than its clinical purpose. Parents enjoy being able to

often check-in on their newborn children. Since this is many times inconvenient for the parents,

who have to walk to the infant’s room, most buy baby-monitors. These are devices which consist

of two components: a camera which is placed at the site of the newborn’s crib and other which the

parents carry to be able to watch their children regardless of their position. This is where video

magnification comes in handy. When sleeping, infants are static most of the time, which may

worry the parents when looking at the baby-monitor. For that reason, by magnifying either the

infant’s skin color variation due to the beating of the heart or chest movements due to breathing,

the process of monitoring would also be made easier for the parents.

6.1 Methodology

In a renowned paper published in 2012, Wu et. al. [67] described a methodology they named Eu-

lerian Video Magnification (EVM), which intends to reveal and display color or motion variations

in videos over time, which are invisible to the naked eye. This technique has grown in popularity

since its publishing date, as it can be integrated in a vast range of applications. EVM has been

showcased as capable of amplifying crane movements caused by the wind, or to highlight the

mechanical movements in a DSLR camera when auto-focusing, but most importantly to amplify

color changes in skin caused by differences in blood volume on the most superficial capillaries, or

magnifying chest movements due to breathing in videos of babies.

Figure 6.1 illustrates the general process through which magnification is achieved. Firstly the

video sequence is decomposed into different spatial frequency bands. In order to do this, a full

Laplacian pyramid is computed [94].

Temporal processing can then be applied. For this purpose, each pixel of each spatial fre-

quency band is considered and its value extracted over time to create a 1D signal. A bandpass
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Figure 6.1: Overview of the Eulerian Video Magnification framework, extracted from [67].

filter is then applied to each pixel’s signal in order to retain the frequency band of interest exclu-

sively. The cut-off frequencies of this filter are set by the user according to the signal which they

desire to magnify. It is important to disclose that the bandpass filter is the same for all spatial

frequency bands and all of its pixels. All resulting signals are then multiplied by a magnifying

factor α , which is given by the user. The magnified signal is then combined with the original and

all spacial frequency bands (i.e. Pyramid levels) are collapsed resulting in the magnified video

sequence. According to Wu et. al. [67], both increasing magnification factors and motion (δ (t))

may introduce noise in the resulting video sequence. Therefore, it is beneficial to define different

amplification factors for each spatial frequency band. For this purpose, the amplification factor

is fixed to α for spatial bands that are within a derived bound, derived from the band’s spatial

frequency.

(1+α)×δ (t)<
λ

8
(6.1)

where λ is defined as 2π/w. For higher spatial frequencies α is linearly decreased, or forced

to zero, hence reducing any distortions.

When it comes to magnification of color induced by heart rate, it is intended to emphasize

color changes in low spatial frequency bands, once the human skin is considerably homogeneous

and therefore represented with more intensity in the low frequency bands. By applying a constant

magnification factor, one would retain motion artifacts derived from pixel intensity changes caused

by subtle movements of the subject’s head. Although the participants of our dataset had their head

supported by a rest, which should prevent rigid head motions. Nevertheless, nonrigid motions are

still possible. To overcome this problem, for this type of applications, the magnifying factor α

may be forced to 0 for spatial frequencies above a threshold (as explained in Equation 6.1). For

motion magnification videos on the other hand, it would be advantageous to use a linear ramp

transition for α .
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6.2 Results and Discussion

Figure A.40 exhibits the effect of applying EVM to a patch of the P1LC5 video of the dataset

in order to amplify color changes derived from pulse. The parameters were chosen heuristically

and settled at α = 300 and number of Laplacian Pyramid’s levels equal to 6. As described by

Wu et. al. [67], optimal results are achieved with more complete Pyramids, as the deepest levels

enhance the change in regions with low spatial frequency, such as the skin. The temporal filter

cutoff frequencies were purposely set to 0.7 and 3Hz, identically to what had been established

for the rPPG tool. Although one would get better results with a narrower bandpass filter, such

filter would be impossible to create without previous knowledge of the subject’s heart rate. In

Figure A.40 (a), four frames from the original video are displayed in the top row and the same

four frames appear in the bottom row after magnification. The chosen frames are equally spaced

and the temporal distance in between them was set so that consecutive images alternate between

local maxima (second and fourth images) and and local minima (first and third) of the rPPG signal

derived from the green channel alone. This was done to emphasize the difference made evident by

EVM. Although all four images seem identical in the top row, after magnification, the difference

in hue of light reflected by the skin is obvious. In Figure A.40 (b) one can see a vertical scan line

extracted from the videos, which helps to better visualize the difference in color over time. Once

again, the top image is relative to the original video and the bottom to its amplified version.

(a)

(b)

Figure 6.2: Example of the results of applying Eulerian Video Magnification to one of the dataset’s
videos. (a) In the top row, four frames from a patch extracted from the original video sequence
and in the bottom row the same four frames after amplification. (b) A vertical scan line from the
input video (top)and resulting video (bottom).

Although the use of EVM seems the most interesting for monitoring purposes, when it comes

to contactless vital signs it would also be interesting to use as a pre-processing step to the heart and

respiratory rate extraction algorithms previously developed. In order to test if this tool enhances

rPPG signal quality, or even improves the final results at all, a comparison was performed between

running the developed HR and RR extraction algorithm on the original and color magnified version

of a few select videos.
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For this analysis, only one video for each of the 3 participants was used (videos P1LC5,

P2LC5, P3LC5). The chosen light condition was LC5. According to the results presented in

Chapter 5, this Light Condition was the least challenging for all three skin-tones, in the sense

that it was the Light Condition for which the rPPG signal quality was on average higher. The

HR extraction configuration selected to test the effectiveness of EVM as a pre-processing step was

configuration C11, which proved to be the one which better performs for the entirety of the dataset,

as discussed in Chapter 5. This method uses the cheek area as the ROI, not taking advantage of its

further segmentation. The rPPG signal used is chrominance-based and does not benefit from post

processing of any kind. The filter used to obtain the signal is, nevertheless an adaptive filter.

At a first glance, one can notice that the rPPG signal extracted from the magnified video does

not possess a higher SNR in comparison to is non-magnified equivalent. Figure A.40 shows one

of the 155 one second samples used to extract the HR from the original P1LC5 video (on the

left) and its magnified version (on the right). In this sample, which was chosen randomly, the

SNR difference between the two methods is XXX dB. In fact, it is possible to conclude that in

general EVM severely damaged the rPPG’s signal quality, since the signal extracted from the

original P1LC5 video had an average SNR of 5.54 dB and the signal from the magnified version

revealed a SNR of -1.52 dB. One would expect that for the darker complexions, where the BVP

phenomenon is less evident, EVM would come in handy. However, for both P2LC5 and P3LC5

the SNR dropped severely once again when extracting the rPPG signal from the magnified video.

This decrease in signal quality may result from the influence of the first levels of the Laplacian

Pyramid, i.e. the high spatial frequency regions. This regions which simultaneously fall inside

the ROI, such as nose contours or even skin imperfections or shadow limits, might flicker in

intensity or color due to unwanted factors rather than the beat of the heart, most likely due to non-

rigid movements, which despite being small are not insignificant in the context of this problem.

The signal caused by this variation possesses a dominant frequency which, probably does not

correspond to the frequency of the heart beat, hence decreasing SNR. By definition, the SNR is

the ratio of the energy of the desired frequency (in this case corresponds to its peak) over the sum

of the energies of all other frequencies. As the more predominant the frequency of interest is, the

higher the signal’s SNR is going to be, the presence other frequencies different from the interest

one, will decrease the SNR.

Although the influence of the lower levels of the Laplacian Pyramid could be reduced by pre-

viously smoothing the image or lowering the threshold λ , this would most certainly not translate

to a sufficient increase in the SNR of the magnified signal that would make it preferable over the

signal of the original video. Besides the influence of the lower levels of the Pyramid, there are

also artifacts induced by low spatial frequency regions which degrade the signal extracted. These

artifacts come in the form of irregular color patterns across the face , which may result from the

fact that the blood travels gradually up the face and away from the heart, increasing the blood vol-

ume with different intensities for distinct facial regions at a time. These artifacts have particular

influence when the ROI is evaluated as a whole, instead of being divided into smaller and less

heterogeneous independent sensors. Not surprisingly, the poor signal quality in magnified videos
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results in a flawed HR extraction, most certainly potentiated by a defective peak detection, as can

bee seen in Figure 6.3. As explained in the previous chapter, RR extraction is a much more fragile

problem which is completely dependent on signal quality. For this reason, the decrease in the

algorithm’s performance is even more significant for this vital sign.

Figure 6.3: Comparison of the continuous HR curve extracted from a magnified video and its
original (P1LC5). The solid curve represents the HR curve obtained from the magnified video,
while the dashed curve represnts the HR curve from the original video. The ground truth can be
seen as the dotted line.

6.3 Summary

To sum up, EVM is undoubtedly a fascinating technique, whose interest relies mostly on moni-

toring processes and not on accurate vital sign extraction itself, since its use does not improve the

results for both HR and RR. Furthermore, the high computation time associated to this technique

makes it difficult for it to ever integrate a real-time application, until general hardware capabilities

improve enough to accommodate more computationally expensive processes.
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Chapter 7

Respiratory Rate

One other goal established for this master’s thesis was the extraction of RR from videos. From

the method described in Chapter 5, one can extract not only the final HR measures but also the

complete rPPG signal as a intermediate product. This signal contains useful information, which

will be the basis for the RR extraction.

In order to comprehend the process of extracting the RR from the rPPG signal, one must

grasp the concepts of Heart Rate Variability (HRV) and respiratory sinus arrhythmia (RSA). It

is well known that any healthy individual’s HR is non-stationary and its variability may contain

indicators of disease, general well-being or impending cardiac diseases. Heart rate variability

(HRV) is defined as the variation over time of the period between consecutive heartbeats, being

a reflection of the many physiological factors which modulate the normal rhythm of the heart

such as the interplay between the sympathetic and parasympathetic nervous systems [95]. One

of the most important causes of HRV is the breathing cycle. RSA is the component of heart

rate variability derived from respiration, characterized by shortening of R-R intervals on an ECG

during inspiration and prolongation during expiration. Although RSA has been used as an index

of cardiac vagal function, it is also a physiologic phenomenon reflecting respiratory-circulatory

interactions universally observed among vertebrates [96].

7.1 Methodolgy

Chen et al. [97] developed a method, which exploits the phenomenon of SRA in favor of con-

tactless extraction of the RR. This rPPG-based method was chosen instead of methods which

rely on chest movements (described in Chapter 3), since the latter are more influenced by subject

movement. Furthermore, it was beneficial to use a rPPG-based method since the rPPG signal had

already been extracted for the HR component of this thesis and with reasonable success. The

framework of the method which was used is outlined in Figure 7.1.
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Figure 7.1: Framework used for contactless RR measurement from face videos.

7.1.1 Filtering and Peak Refinement

That being said, the previously extracted rPPG signal, described in detail in Chapter 5, was used as

an input for the RR extraction portion of the framework developed. This rPPG signal had already

been filtered with a bandpass filter to exclude frequencies outside the possible HR frequency band.

However, this signal does not have enough quality for HRV obtainment, as this is a much more

challenging task than that of HR’s. Identically to what had been described by Chen et al. [97], the

solution to this problem was the design of a second filter. This is a infinite impulse response (IIR)

filter with a much narrower band, whose cut-off frequencies are calculated from the dynamic range

of the HR curve previously extracted for the time interval in analysis. The frequency interval (in

bpm) of the bandpass was defined as [HRmin−30,HRmax+30]. The offset value was set to 30, as

this was the optimal value considered to preserve HRV and exclude as much noise as possible, once

larger offsets would have increased the noise presence and smaller offsets could degrade HRV.

Since peak location is key for the success of this task, the previous filter was applied in a zero-

phase filtering process. This process consists of filtering the signal forward and then backwards,

resulting in no phase distortion, which facilitates HRV extraction. Figure 7.2 displays how the

bandwidth of the narrow filter is defined.

Figure 7.2: Definition of the second bandpass filter’s bandwidth, extracted from [97]. The solid
curve indicates the continuous heart rate curve. The selected bandwidth of the second filter is
wider than the dynamic range of HR curve in the video segment.
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7.1.2 HRV Extraction

Peak analysis is then performed on the filtered signal, in order to detect the signals values which

correspond to heart beats. Due to the relatively low sampling frequency of the rPPG signal (30Hz),

a peak refinement step is added, in a repeated effort to maximize the accuracy of the beat’s location.

This consists of interpolating the filtered rPPG signal quadratically around the peaks’ location.

Figure 7.3 stresses the improvement in beat location induced by the peak refinement step.

Figure 7.3: Influence of peak refinement in improving the position of the heart beats. The solid
curve represents the portion of the rPPG signal and its peak is represented by a cross. The dashed
line is the same portion after peak refinement. The new peak location can be identified by the
triangle.

Once the refined peaks are determined and their timestamps known, the time (in seconds) in-

between consecutive peaks, also known as Inter-beat Interval (IBI), is calculated. The time for each

IBI sample is set to the middle time of the interval, resulting in an unevenly sampled signal. The

HRV signal (in bpm) is calculated by dividing 60 by each sample, since this measure is simply the

reciprocal of the IBI. The HRV signal is then detrended by subtraction of the previously calculated

HR curve. This is done to map the variability in relation to the HR, meaning that the closest to

zero a sample is, the nearer that sample is to the measured HR. Figure 7.4 shows an example of

the filtered rPPG signal with its peaks outlined, as well as the corresponding HRV and detrended

HRV.

7.1.3 Outlier Removal and Respiratory Rate Extraction

The detrended HRV will be used in the final step to extract the RR. However, it is important to

remember that its samples were derived from an rPPG signal instead of a PPG signal or even an

ECG. That being said, the detrended HRV may contain samples which represent outliers as a con-

sequence of sudden subject movement or lighting complications at the time of video acquisition.

To overcome this, an outlier removal step is enforced. This process relies on the assumption that
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Figure 7.4: HRV and detrended HRV calculated from the filtered rPPG signal, extracted from [97].

the detrended HRV samples follow a Gaussian distribution N(µ,σ2). The distribution’s parame-

ters (µ and σ ) are then estimated by maximum likelihood estimation (MLE), and any samples that

fall outside the range [µ−ασ ,µ +ασ ] are considered outliers and discarded. Identically to what

was done in Chen et al.’s [97] paper, α was set to 3 according to the three-sigma rule [98].

Since the detrended HRV signal is an unevenly sampled signal, it is impossible to perform

spectral analysis, by using the standard FFT. For that reason, the Lomb-Scargle periodogram, a

method based on a least squares fit of sinusoids to the data samples [99], was used. From the

spectrum, the RR is extracted as the frequency with the maximal energy response inside the range

of 5 to 30 breaths per minute, the normal breathing rate range for human adults. Since the aim

of this application is to work for preterm infants rather than adult subjects, once adaptations are

made, the selection range has to be shifted to approximately 30 t0 60 breaths per minute. This

choice is justified by the fact that the normal breathing rate of children in their first months of life

is much higher as that of an adult, as explained in Chapter 1.

7.2 Results and Discussion

As the dataset did not provide any physiological data that directly reflects the respiratory rate, the

ground truth had to be extracted from the only valid physiological measure provided: the ECG.

ECG-Derived Respiration (EDR) is a technique based on the fact that, as the lungs fill and empty

and the chest rises and falls, the positions of ECG electrodes on the chest surface move relative

to the heart, thus varying trans-thoracic impedance. This results in variations of the mean cardiac

electrical axis, that are correlated with respiration [100]. However, given the quality of the ECG

included in the dataset’s files, in particular the fact that only one lead was provided, the use of this

technique to determine the ground truth was impossible. As an alternative, we calculated the RR

from the ECG by taking advantage of the SRA phenomenon, similarly to what had been done to

extract RR from the rPPG signal. To do so, every R peak (from the ECG’s QRS complexes) were

detected and the intervals between R peaks (R-R intervals) were calculated. The R-R intervals
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were then used to calculate the HRV signal from which the RR was extracted based on the principal

of SRA. In contrast to what was necessary for the rPPG signal, both peak refinement and outlier

removal steps were not included, since the sampling frequency is extremely high (1024Hz) and

the R peaks detected do not include outliers. This ground truth method will be referred to as

GT1. As a complement, respiratory rate was also derived from the video by visually counting

chest movements. To do so, a sequence of one inhalation and one exhalation was considered as

one breath.This ground truth method will be referred to as GT2. It is important to recall that

neither method used as ground truth compares to standard and clinically accepted methods, which

provide a calibrated respiration signal, such as spirometry, measurements from nasal thermistors,

and plethysmography.

As a first and more immediate analysis, for each video the detrended HRV signal was analysed

and the Pearson’s correlation coefficient was calculated between the said signal and the detrended

HRV extracted from the R-R intervals of the ECG. The most evident finding for this analysis is

the discrepancy which can bee seen between videos of corresponding lighting conditions for the

patients with lighter and darker skin complexion, as demonstrated in Figure 7.5.

It can be concluded that, when considering videos recorded under the same lighting conditions

(LC5 in the case represented in Figure 7.5), the detrended HRV signal extracted for participant P1

is evidently more precise than for participant P2 and presents a much stronger correlation with

the detrended HRV from the ECG (Pearson product-moment correlations of 0.85 and 0.0650.,

respectively). Through this analysis is possible to predict the probable failure of the described

algorithm for darker skin complexions, which is once again substantiated by the limited rPPG

signal quality associated with higher concentrations of melanin in subjects’ skins.

Furthermore, as described by Chen et al [97], the inadequate use of narrow bandpass filters

can degrade the rPPG signal and unintentionally eliminate the traces of HRV. The pipeline config-

uration for HR extraction which was chosen as the best (configuration C11, described in table 5.1),

makes use of an adaptive filter whose frequency band is centered around the frequency of the pre-

vious estimation, allowing for a much narrower filter. Although this step may improve results for

HR extraction, it can impair the process of RR extraction. In order to evaluate the influence of of

narrower bandpass filters, the RMSE of the final RR results and Pearson’s correlation was calcu-

lated for all videos using the rPPG signal extracted with configurations C8 (wide bandpass filter)

and C11 (narrow bandpass filter). So as to remove the disregard the accuracy of HR extraction

portion of the framework, the HRV signal was also detrended by subtracting the HR curve from

the ECG, instead of the obtained HR curve. This will provide information about the exclusive

influence of the quality of the signal and the RR extraction methodology alone, without being bi-

ased by the performance of the portion of the framework described in Chapter 5. The three videos

inherent to Challenge 2 of the dataset (P1M1, P1M2 and P1M3) were not addressed as the rPPG

signal and consequent extracted HR curve were found to not have sufficient quality to enable RR

extraction.

Table 7.1 shows the differences in RMSE for the final RR extracted from rPPG signals filtered

with both types of filters. This metric was calculated for every video between the extracted RR



72 Respiratory Rate

(a)

(b)

Figure 7.5: Overlapped detrended HRV from rPGG and ECG signals of participants with distinct
skin complexions: (a) From video P1LC5; (b)From video P1LC5.

and the ground truth obtained from both methods. Since it is impossible to obtain the detrended

HRV from the ground truth method of visually counting the breaths, Table 7.2 only exhibits the

Pearson’s correlation coefficient calculated betwen the detrended HRV calculated from the rPPG

and ECG signals.

By analysing the presented results it can be confirmed that the algorithm developed did not re-

liably extract the RR for participants with darker skin tones. Furthermore, a increase in RMSE and

decrease in Pearson’s correlation with progressively worse lighting conditions suggests that the ac-

curacy of the developed tool is strongly influenced by the quality of the rPPG signal extracted as

worse lighting conditions, such as LC1 and LC2 consistently induced both low SNR and correla-

tion between the calculated and true detrended HRV signals. Both metrics were found acceptable

for video P1H1, in which tests high and fluctuating HR, proving the framework’s potential for a

newborn specific application.

Careful analysis of the peak refinement step supported what had been described in Chen’s
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Table 7.1: RMSE calculated between extracted and both ground truth HRV signals, using both
fixed and adaptive filtering. Detrending was performed with both the extracted HR curve and the
HR curve calculated from the ECG.

Adaptive + ECG Fixed + ECG Adaptive + rPPG Fixed + rPPG
GT1 GT2 GT1 GT2 GT1 GT2 GT1 GT2

P1LC1 5.34 8.78 4.86 5.67 5.38 9.23 4.93 6.08
P1LC2 3.78 7.56 3.02 4.24 3.82 4.56 4.24 4.42
P1LC3 3.36 7.58 3.40 4.50 4.20 7.63 3.67 7.16
P1LC4 3.02 6.25 2.87 3.99 3.21 6.35 3.56 5.34
P1LC5 2.46 5.98 2.23 3.54 2.03 6.22 1.98 6.67
P1LC6 3.56 8.69 5.34 7.01 3.79 7.33 5.82 4.02
P1LC7 3.37 6.28 2.78 3.87 3.40 3.91 3.97 4.34
P2LC1 30.49 35.56 28.11 29.15 30.63 29.22 32.62 29.66
P2LC2 29.23 35.04 27.32 28.97 29.87 28.45 30.25 28.87
P2LC3 28.28 34.74 25.78 26.37 28.73 26.40 28.54 26.90
P2LC4 29.43 39.45 33.54 34.75 29.65 35.62 32.32 35.86
P2LC5 28.11 34.28 25.26 26.86 28.56 25.38 28.73 26.65
P3LC1 30.16 39.87 32.15 32.97 30.35 32.73 31.78 34.83
P3LC2 33.07 34.56 32.19 32.80 33.44 32.67 33.58 33.51
P3LC3 30.92 34.03 30.78 31.55 31.35 31.32 31.05 32.47
P3LC4 30.26 33.79 29.98 30.22 30.78 30.50 30.46 30.60
P3LC5 29.96 33.59 29.21 30.32 30.23 30.79 30.08 30.24
P1H1 3.56 7.34 3.22 3.87 3.77 3.93 3.91 4.02

et al. [97] paper. This step is essential, once it artificially recreates resolution which will be

valuable for the HRV signal and would not have been possible to recover otherwise. The method

in question, changed, on average, the peaks location by 0.018 seconds, reaching 0.03 seconds in

the most extreme cases. This resulted in an increase in the average Pearson’s correlation coefficient

between the IBIs extracted from the rPPG signal and the R-R intervals extracted from the ECG for

videos of participant P1. The same metric was not calculated for the other two patients once the

signal was so degraded that the position of the peaks did not reflect HRV in any way.

7.3 Summary

In conclusion, despite the results seeming promising for patients with lighter complexions, fur-

ther tests should be performed, given the fact that the two ground truth measures used are not as

reliable as required in a clinical context. More extensive testing should include, participation of

neonatal subjects, on whom this technique has never been applied. After analysing the results, it

can be concluded that there are two main factors which define the success of the RR extraction,

those being the quality of the extracted rPPG signal and the robustness of the peak detection tool.

For that reason, the evolution of accurate RR determination based on RSA would benefit from the

development of a tool to robustly detect peaks specifically for rPPG problems. Methods for im-

provement of the signal quality would not only exponentially improve the results of RR extraction,
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Table 7.2: Pearson’s product-moment correlation calculated between ground truth and extracted
HRV signals using both fixed and adaptive filtering. Detrending was performed with both the
extracted HR curve and the HR curve calculated from the ECG.

Adaptive + ECG Fixed + ECG Adaptive + rPPG Fixed + rPPG
P1H1 0.85 0.82 0.79 0.80
P1LC1 0.34 0.77 0.75 0.60
P1LC2 0.52 0.63 0.34 0.60
P1LC3 0.75 0.80 0.65 0.78
P1LC4 0.82 0.98 0.92 0.95
P1LC5 0.85 0.89 2,03 1,98
P1LC6 0.65 0.78 0.83 0.85
P1LC7 0.72 0.68 0.58 0.67
P2LC1 -0.17 0.10 0.05 -0.18
P2LC2 -0.36 0.35 0.28 0.30
P2LC3 0.15 0.12 0.10 0.20
P2LC4 0.2 0.18 0.16 0.22
P2LC5 0.065 0.089 -0.034 0.040
P3LC1 0.012 0.008 0.010 0.012
P3LC2 0.089 0.0093 0.082 0.09
P3LC3 0.14 0.10 -0.10 0.012
P3LC4 0.37 -0.22 0.032 0.32
P3LC5 -0.12 0.10 0.08 -0.12

but would also be beneficial for HR extraction as demonstrated in Chapter 5.



Chapter 8

Validation in Neonatal Subjects

As mentioned in Chapter 4, the late acquisition performed at CMIN allowed the validation of

the developed method in neonatal subjects. The built dataset resulted in a challenging dataset,

which incorporates not only the challenges integrated in the development database but also some

unexpected challenges. These include variations of lighting conditions over time, face obstructions

resulting from movement from the neonates and artifacts caused by the glass of the incubator or

crib, which can come in the form of distortions, reflections or scratches, which may occlude the

region of interest. Furthermore the videos for this dataset integrate more than one challenge as

the acquisition conditions were impossible to control and therefore it was impossible to isolate

individual challenges.

The developed tool was tested as had been developed with few alterations other than the adap-

tation of the cut-off frequencies of the passband filter to include the normal ranges for the Heart

Rate of newborn subjects. Immediate analysis of the results, unveiled the fact that the framework

was unable to detect the face and its landmarks, which compromises the success of the whole tool.

This may have been due to the distinct facial proportions of the newborn subjects when compared

to adult individuals. As the classifiers for both face and landmark detection were trained on adult

subjects, this may justify the algorithms inability to detect such structures. For that reason, these

modules had to be overlooked and the ROI defined manually. This will evidently introduce a lot

of error for those videos in which there are broad head movements, and thus the framework was

unable to extract valid measures of Heart Rate for those videos (two out of the seven recorded).

Two other videos included significant damage in the crib’s glass, which covered the ROI. For these

reasons, these four videos were excluded from analysis. For the remaining videos, the algorithm

proved to perform with significant success, specially when having in mind that it was employed as

had been assembled, never having been trained on data of neonatal subjects. It was also concluded

that the reduced signal quality (addressed in the form of low or even negative values of SNR) made

it impossible for Peak Analysis to be used to determine the final value of HR and thus, the second

best technique tested for this module was employed - Spectral Analysis in the form of the FFT.

Table 8.1 shows the average RMSE and the Pearson’s correlation coefficient for the HR curves of

the three remaining videos, those used to draw conclusions.
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Table 8.1: Results for the HR extraction in the videos acquired at CMIN.

RMSE
(bpm)

Pearson’s Correlation

Participant 2 7.65 0.66
Participant 4 9.26 0.63
Participant 5 3.89 0.72

Figure 8.1 shows the HR curve for the video relative to Participant 5, for which the HR ex-

traction was particularly accurate. This video presented considerable lighting variations over time,

as its the main illumination source was natural sunlight through a window. As can be seen in the

Figure, this effect did not influence the extraction of the said vital sign. It can however be con-

cluded that despite the success in following the overall trend of evolution of the HR, the algorithm

lacked ability to detect rapid change in this vital sign, as becomes evident when analysing Fig-

ure 8.1. Such inability may be overcome by reducing the window’s size at the cost of resolution

in frequency, in case the FFT is being used to determine the final value of the HR.

Figure 8.1: Example of continuous Heart Rate curve extracted from one of the videos in the
neonatal database and corresponding Ground Truth

8.1 Summary

The method developed displayed extreme potential for a newborn specific application as it was

able to continuously extract the HR with relative accuracy for the videos which did not convey

the more complex level of challenges. Regardless, a few improvements in specific modules of

the framework would most probably translate in successfully extracting the HR even for those

challenges, which were considered extremely difficult. In that line of thought, the modules which

would require the most effort for improvement would be the modules of Face Detection and Track-

ing and ROI definition. This framework would benefit from a more robust landmark detection

which would be invariant to face obstructions as the infants often move their arms in a way that
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partially cover the face. It would also be beneficial to develop an adaptive method for ROI selec-

tion which would combine different body structures for an optimal rPPG signal. Nevertheless, this

results were considerably satisfactory and should be backed up with more extensive testing.
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Chapter 9

Conclusion and Future Work

More than 11% of all births worldwide occur after an incomplete gestational period, which results

in 15 million babies being born preterm each year. In fact, preterm birth and its complications are

the second leading cause of death among children under 5 years of age, responsible for approxi-

mately 1 million deaths. Since preterm birth is a synonym of underdevelopment of the organs and

body functions, an infant who does not spend sufficient time in the womb is born as a fragile being

who is highly susceptible to the conditions of the environment around him. That being said, it is of

extreme importance that preterm infants are carefully monitored to assure their health status does

not deviate from the desired, while they are being assisted in NICUs for their first weeks of life.

Conventionally, monitoring vital signs in preterm infant’s, such as HR and RR, is performed via

probes affixed to their skin. However, such instruments may cause damage to the epidermis and

increase the risk of infection. Therefore, contactless monitoring solutions appeared as a potential

replacement for the current methods used in NICUs. These approaches rely on recent advances in

image capturing methods as well as Computer Vision techniques.

When it comes to HR and RR extraction, segmentation can be made into two distinct pathways:

(1) color-based methods, which rely on the temporal fluctuations in light reflected by the skin due

to variation in blood volume caused by cardiac pumping, phenomenon known as BVP, to extract

the so called rPPG signal and (2) motion-based methods, which are able to track individual pixels

and extrapolate the HR and RR from the periodic motion of that individual pixels caused by the

flux of blood which enters the neonate’s head. Once color-based methods tend to be more robust

to subject motion and typically neonate’s have few restrictions to head movement when lying in

an incubator, the former group of techniques was studied in more depth. Although this type of

methods is well established and abundantly reported for adult subjects in controlled environments,

the same does not apply for neonatal infants, particularly in a real-world scenario. The aim of the

work developed was hence to develop and validate an rPPG tool for HR and RR extraction capable

of performing for neonatal subjects in a NICU environment.

However, the global pandemic which arose concurrently with the development of this study,

did not permit the acquisition of a dataset specific for neonatal subjects in uncontrolled conditions,

which was to be built in partnership with CMIN. As an alternative, the Public Benchmark Dataset
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for Testing rPPG Algorithm Performance created at the Eindhoven University of Technology [25]

was used. This dataset, thought for testing and benchmark purposes as the name suggests, con-

sists solely of adult subjects and therefore only allowed for the development of the mentioned

technique. Although the developed method serves as proof of concept, its analysis should be com-

plemented with tests on a more extensive dataset, which mimics the NICU’s environment and with

neonatal subjects: the target conditions and population.

The framework developed is capable of simultaneously preform continuous HR, HRV and RR

extraction and has proved its worth in challenging conditions. Despite its weaknesses, namely

the inability to cope with severe motion and the discrepancy in results when leading with dif-

ferent complexions, it has managed to outcome the challenges of high and fluctuating HR and

challenging lighting conditions, proposed in the used dataset. These two challenges had particular

significance and were those whose conquest mattered the most, as they are the ones which better

reflect the challenges more likely to be faced in a NICU environment. Since homogeneous light-

ing conditions cannot be assured in a real-word NICU environment and even light temperature and

intensity can vary from unit to unit, the framework should be robust enough to withstand a wide

range of lighting conditions.

The modularity of the framework developed for contactless extraction of the HR allowed for

each of its components to be evaluated individually, while having in mind the overall performance

of the algorithm. It became clear that detection of facial landmarks for tracking allows for a much

more precise ROI definition than the use of a tracker method such as Median Flow. When testing

for newborns, it must be considered that these infants frown and cry with intensity, which accounts

for non-rigid motions, not tested in this dataset. It will thus be beneficial to use a landmark

detection method which can accurately identify more keypoints in order to get a more specific

ROI (more complex shapes rather than the hexagon used), contributing for robustness against non-

rigid motions. Furthermore, it was concluded that by focusing on the cheeks region rather than the

forehead, not only was the discrepancy between performance for different skin tones attenuated

but also it is presumably easier to consistently find patches of uncovered skin in the newborns.

Although the perks associated with the use of either BSS and Chrominance signals should be

evident, both methods under-performed for all lighting conditions tested when in comparison with

the use of the Green Channel signal, specially for non-white illumination (represented in video

P1LC6) where these methods should be far superior. For that reason, no signal was discarded

and all should be tested in a dataset which uncovers more lighting conditions and counts with the

participation of more subjects.

The variety of pipeline configurations tested led to believe that perks of rPPG signal peak

analysis are evident and not only make RR extraction possible, but also can significantly improve

HR measures. Advantages of using Peak Analysis over the FFT reside on the surprising increase in

resolution associated with the frequency resolution limit imposed by the number of samples when

using the FFT. However, the frequency extraction method which is not power spectral analysis

is not as robust, since this method is much more sensitive to outliers and low SNR. It would be

therefore valuable to develop a more robust peak detection algorithm which is capable of dealing
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with outliers as well as preform peak refinement in order to artificially recreate a higher sampling

frequency.

Regarding the tests performed and their validity, it is important to understand the limitations

imposed. Although the dataset is very useful in the sense that it can help to get a notion of the

algorithm’s performance beyond the more simple and controlled conditions, this dataset lacks

depth, which makes it difficult to assess repeatability. The fact that each video addresses one

specific condition, whether it is the combination of a particular lighting condition with a specific

skin tone, the presence of movement or high heart rates, makes it impractical to split the dataset

into training and test videos, since each condition would only be covered in one of the subsets. Due

to the relatively short length of the video, as well as the buffer period associated with extracting

the first rPGG sample, it is also impossible to use a few samples from all videos for training and

the other samples for testing. Reducing the buffer period, and consequently the sample size was

prejudicial approach as well since it severely affected the frequency resolution of the FFT and

hence the results. Besides, by doing so, any temporal relationship between samples would be lost

and thus, techniques such as adaptive filtering and post-processing would be impossible to apply.

In the particular case of video P1H1 (which contains high heart rates at the beginning) its division

would generate an unbalanced dataset which would lack high HR samples in one of the subsets.

This is particularly concerning as P1H1 is arguably the most important video because it reflects

the high heart rates which are to be found in neonatal participants.

One other downside to the used dataset is that the three videos assigned to Challenge 3 contain

exaggerated and rhythmic head movement which in no way reflects the natural head motion which

one would expect from a neonate resting inside an incubator. Although the algorithm under per-

formed for these videos, it is believed that the tool would better handle the slight head movements

of the infants.

In addition to continuous vital sign extraction framework, an algorithm for amplification of

subtle color changes in video was also employed in order to emphasise the BVP phenomenon.

Despite being a fascinating method, which has a vast range of applicabilities even outside the

biomedical field, EVM applied to contactless vital sign extraction serves mostly a monitoring and

visualization purpose rather than improving the extraction of the vital sign itself.

With regard to future work, the most urgent task to be carried out is to test the described

framework for neonatal subjects, in order to validate the work developed. Such tests will most

certainly unveil minor tweaks or even possible structural changes required for optimizing the tool

for its target subjects, such as parameter optimization, namely the number of independent sensors

used, the length and displacement of each samples, among others. Other interesting extensions

to this study, which would complement the work developed so far would be the adaptation of the

described framework for Near Infrared (NIR) imagery. NIR light is often captured with the use of

active cameras. This type of cameras differ from passive cameras by possessing an emitter, which

casts light with specific wavelengths to illuminate an area of interest, and having a sensor sensitive

to that same wavelengths, which captures the radiation reflected back to the camera and interprets

it to generate an image. The use of NIR passive cameras would allow for the developed method
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to be used inside the NICU even in the absence of natural and artificial light, as happens during

the night, without disturbing the infants and the normal routine of the practitioners. Furthermore,

rPPG methods for both HR and RR extraction would benefit from improvements that address the

quality of the rPPG signal, once high and consistent signal quality will open new doors for the

capabilities of such technologies. Regarding this topic, it would be of great interest to exploit

the recent advances in Artificial Intelligence and Signal Processing to facilitate the reconstruction

of the ECG from the rPPG signal extracted. Such would be extremely beneficial once the ECG,

regardless of how many leads are extracted, contains much more valuable information beyond the

HR and RR. FC
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(a)

(b)

Figure A.1: Differences in pixel Value Variance imposed by using distinct skin regions as ROI: (a)
P2; (b) P3.
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(a)

(b)

Figure A.2: Average pixel value variance for increasingly smaller sensors within the ROI: (a) P2;
(b) P3.

Figure A.3: Continuous HR curve extracted from video P1LC1 using configuration C11.
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Figure A.4: Continuous HR curve extracted from video P1LC2 using configuration C11.

Figure A.5: Continuous HR curve extracted from video P1LC3 using configuration C11.
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Figure A.6: Continuous HR curve extracted from video P1LC4 using configuration C11.

Figure A.7: Continuous HR curve extracted from video P1LC5 using configuration C11.
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Figure A.8: Continuous HR curve extracted from video P1LC6 using configuration C11.

Figure A.9: Continuous HR curve extracted from video P2LC1 using configuration C11.



Additional Plots for Heart Rate Extraction 89

Figure A.10: Continuous HR curve extracted from video P2LC2 using configuration C11.

Figure A.11: Continuous HR curve extracted from video P2LC3 using configuration C11.
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Figure A.12: Continuous HR curve extracted from video P2LC4 using configuration C11.

Figure A.13: Continuous HR curve extracted from video P2LC5 using configuration C11.
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Figure A.14: Continuous HR curve extracted from video P3LC1 using configuration C11.

Figure A.15: Continuous HR curve extracted from video P3LC2 using configuration C11.
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Figure A.16: Continuous HR curve extracted from video P3LC3 using configuration C11.

Figure A.17: Continuous HR curve extracted from video P3LC4 using configuration C11.
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Figure A.18: Continuous HR curve extracted from video P3LC5 using configuration C11.

Figure A.19: Continuous HR curve extracted from video P1M1 using configuration C11.
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Figure A.20: Continuous HR curve extracted from video P1M2 using configuration C11.

Figure A.21: Continuous HR curve extracted from video P1M3 using configuration C11.
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Figure A.22: Bland-Altman plot for the HR samples extracted from video P1LC1 using configu-
ration C11.

Figure A.23: Bland-Altman plot for the HR samples extracted from video P1LC2 using configu-
ration C11.
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Figure A.24: Bland-Altman plot for the HR samples extracted from video P1LC3 using configu-
ration C11.

Figure A.25: Bland-Altman plot for the HR samples extracted from video P1LC4 using configu-
ration C11.
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Figure A.26: Bland-Altman plot for the HR samples extracted from video P1LC5 using configu-
ration C11.

Figure A.27: Bland-Altman plot for the HR samples extracted from video P1LC6 using configu-
ration C11.
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Figure A.28: Bland-Altman plot for the HR samples extracted from video P2LC1 using configu-
ration C11.

Figure A.29: Bland-Altman plot for the HR samples extracted from video P2LC2 using configu-
ration C11.
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Figure A.30: Bland-Altman plot for the HR samples extracted from video P2LC3 using configu-
ration C11.

Figure A.31: Bland-Altman plot for the HR samples extracted from video P2LC4 using configu-
ration C11.
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Figure A.32: Bland-Altman plot for the HR samples extracted from video P2LC5 using configu-
ration C11.

Figure A.33: Bland-Altman plot for the HR samples extracted from video P3LC1 using configu-
ration C11.
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Figure A.34: Bland-Altman plot for the HR samples extracted from video P3LC2 using configu-
ration C11.

Figure A.35: Bland-Altman plot for the HR samples extracted from video P3LC3 using configu-
ration C11.



102 Additional Plots for Heart Rate Extraction

Figure A.36: Bland-Altman plot for the HR samples extracted from video P3LC4 using configu-
ration C11.

Figure A.37: Bland-Altman plot for the HR samples extracted from video P3LC5 using configu-
ration C11.
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Figure A.38: Bland-Altman plot for the HR samples extracted from video P1M1 using configura-
tion C11.

Figure A.39: Bland-Altman plot for the HR samples extracted from video P1M2 using configura-
tion C11.
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Figure A.40: Bland-Altman plot for the HR samples extracted from video P1M3 using configura-
tion C11.
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MONITORIZAÇÃO SEM 
CONTACTO DE BEBÉS PRÉ-
TERMO 

 

Photo by Sharon McCutcheon on Unsplash 

 Este estudo visa desenvolver e validar um 

método capaz de monitorizar o batimento 

cardíaco e ritmo respiratório em recém-

nascidos pré-termo, recorrendo a captura de 

vídeo, em vez dos usuais sensores colocados na 

pele da criança.   Para além disso, também visa a 

criação de um método para quantificar dor 

sentida pelo recém-nascido, baseado na imagem 

e nos sinais vitais previamente extraídos. Para 

esse propósito, para cada participante serão 

gravados vídeos com duração não superior a 5 

minutos e serão armazenados os sinais vitais 

que são normalmente extraídos. A participação 

neste estudo, não prejudicará o bem-estar do 

recém-nascido, uma vez que a recolha dos 

vídeos e dos sinais vitais não implica um acesso 

extraordinário ao interior da incubadora. Todos 

os dados relativos à identificação dos 

Participantes neste estudo são confidenciais e 

será mantido o anonimato. Os dados 

recolhidos serão mantidos pelo período de um 

ano após a data de recolha. Muito obrigado pela 

sua contribuição. 

 

INVESTIGADOR PRINCIPAL 
Hélder Oliveira Filipe Pinto de Oliveira, PhD  |  helder.f.oliveira@inesctec.pt 
 
EQUIPA INTEGRANTE 
Sara Campos Monteiro Sabino Domingues, MD| saradomingues@hotmail.com 
Diogo Terleira Malafaya Baptista | diogo.t.baptista@inesctec.pt 
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NON-CONTACT MONITORING OF 

PRETERM INFANTS 
 

1. Introduction 
 

Monitoring of new-borns is a challenging task, which is carried daily at every Neonatal Intensive 

Care Unit (NICU). Due to the delicate state of equilibrium in neonates’ health, vital sign monitoring is 

important, as it allows for early detection of medical issues and therefore actively contributes for the 

infant’s well-being and health. Conventionally, new-borns are monitored via probes affixed to their 

skin. However, such instruments may cause damage to the epidermis and increase the risk of 

infection. 

Non-contact imaging methods represent an alternative to record physiological signals such as heart 

rate, respiratory rate and body temperature. Advantages of contactless monitoring methods include 

lack of contact with skin (reduces skin breakdown) and minimizing the number of probes and monitors 

used (leaves more body surface-area for other care). 

In order to assure that the maximum amount of relevant medical information can be extracted with 

the minimum amount of time and resources, variability due to extraneous factors must be reduced or 

eliminated. In order to do so, it is essential that the images conform to a standard, which also ensures 

that the acquisition meets with the research goals of the project.  

The primary goal of this project is to develop an accurate visual based method to monitor the heart 

rate, respiratory rate and body temperature of preterm infants in Neonatal Intensive Care Units. 

Secondary goals include monitoring other vital signs as well as building an easy to use digital 

interface. Validating the method developed dictates that not only we acquire different types of images 

(described as “modalities” in this document) but also that we record the desired vital signs through 

the current methods used clinically, for ground truth purposes.  

2. Goals 
The primary goals of this project are:  

• Developing an accurate visual based method to monitor the heart rate and respiratory rate of 

preterm infants in NICUs. 

• Another entry in the list 

Secondary goals include: 

• Monitoring other relevant vital signs. 

• Building an easy to use digital interface, which... 

  



3. Methods 
Two optical image modalities from one device will be investigated as described below. 

Simultaneously, vital signs should be extracted for validation purposes. 

3.1. Microsoft Kinect 
Conceived firstly for computer gaming and home entertainment applications, RGB-D cameras, such 

as the Microsoft Kinect are sensing systems that capture RGB images along with per-pixel depth 

information. This device has one RGB camera and one Infra-Red camera which functions with an 

Infra-Red emitter. 

3.1.1. RGB Video 
Microsoft Kinect V1 is capable of recording RGB video at a medium-resolution (640x480 

pixels) and 30 frames per second. 

3.1.2. IR video 
The IR camera on this device records video with a resolution of 320x240 pixels at 30fps. It 

captures the light which is emitted by the Infra-red emitter and partially reflected by the 

subject. Therefore, the wavelength of the light captured is restricted to approximately 830 nm 

(i.e. the wavelength of the light emitted).  

4. Acquisition Factors 

4.1. Imaging Time 

Videos of approximately 5 minutes will be recorded for each subject/incubator with one still devices.  

4.2. Camera Mount 
Both cameras will be mounted on a tripod or rig at an appropriate distance from the incubator 

(~20cm) and at the same height as the new-born, so that the system is perpendicular to the 

incubator glass and hence reducing glares and distortions. 

4.3. Camera Positioning 
The camera should be positioned facing one of the lateral walls of the incubator and the field of view 

of the image should be such that the infant fills the frame but is not cropped by it. It is essential that 

the neonate’s face isn’t obstructed and can clearly be seen in its entirety.  

4.4. Image Integrity 
All images will be assigned a unique patient identifier to preserve confidentiality, in accordance with 

data protection rules. 

  



5. Appendix 
 

5.1.  Specifications of Microsoft Kinect V1 

 

Resolution RGB: 640 x 480 pixels 

Resolution Near IR: 320 x 240 pixels 

Depth Type Sensor: Structured light 

Framerate: 30fps 

Field of view (FOV) RGB: 62º x 48.6º 

Field of view (FOV) IR: 57º x 43º 

Depth-Range: 40cm (Near Mode)- 4m 

Data connection: USB 2.0 

 

5.2. Specifications of Microsoft Kinect V2 

Resolution RGB: 

Resolution Near IR: 

Depth Type Sensor: Time of Flight 

Framerate: 30 fps 

Field of view (FOV) RGB:  84.1º x 53.8º 

Field of view (FOV) IR: 70º x 60º 

Depth Range: 50cm- 4.5m 

Connection: USB 3.0 
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