
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Enhancing ML Models for Solar
Weather Forecasting using Clustering
and Adversarial Anomaly Detection

Ivo Saavedra

Mestrado em Engenharia Informática e Computação

Supervisor: André Restivo

Co-Supervisor: Filipa Barros

July 28, 2023

© Ivo Saavedra, 2023

Enhancing ML Models for Solar Weather Forecasting
using Clustering and Adversarial Anomaly Detection

Ivo Saavedra

Mestrado em Engenharia Informática e Computação

Approved by:

President: Carlos Soares
Referee: André Restivo
Referee: Filipa Barros

Referee: Jarle Brinchmann

July 28, 2023

Resumo

A Ciência do Clima Espacial é um campo de pesquisa vital que visa compreender as condições
na superfície do Sol, que podem afetar negativamente a vida na Terra. Apesar de ser um campo
bem desenvolvido, as condições que levam a essas fenómenos nefastos ainda não são totalmente
compreendidas. Esta limitação é principalmente atribuída à dificuldade em obter dados de alta
qualidade da superfície do Sol.

De forma a contornar este problema, alguns modelos de simulação tentam extrapolar as condições
no Sol analisando dados de outras medições. Um exemplo disso é o MULTI-VP que usa magne-
togramas de várias fontes (por exemplo, Wilcox Solar Observatory) e determina a estrutura do
campo magnético de fundo do vento solar. No entanto, essas simulações demoram muito tempo
a convergir e requerem estimativas iniciais de especialistas, feitas manualmente. Recentemente,
uma abordagem baseada em Machine Learning foi projetada para atenuar esses problemas. Esta
removeu a necessidade de estimativas iniciais, prevendo automaticamente as condições iniciais da
simulação. Além disso, provou que pode haver uma redução significativa no tempo de execução
do simulador. Apesar disso, os modelos de previsão ainda não são robustos o suficiente para serem
usados em aplicações do mundo real. Como em muitos outros problemas de Machine Learning,
acreditamos que a presença de anomalias no conjunto de dados de treino tenha prejudicado a sua
performance.

Uma possível teoria é que as condições iniciais estão diretamente correlacionadas com o tempo
de computação da simulação, e que melhores estimativas inicias levam a tempos de execução do
MULTI-VP mais rápidas. Posto isto, nesta dissertação, aplicamos vários métodos de clustering e
de deteção de anomalias de forma a melhorar a qualidade das condições iniciais e verificar se isso
resultava em simulações mais rápidas do MULTI-VP.

Vários métodos de clustering foram testados nos dados de magnetogramas usados no treino do
modelo de previsão, para determinar qual seria o mais apropriado. Adicionalmente, um conjunto
de métodos de treino baseados nas técnicas de clustering foram testados, dos quais pelo menos
um gerou estimativas mais próximas às previsões da simulação. Apesar disto, não houve qualquer
redução no tempo de execução da simulação.

Para melhorar os resultados dos experimentos anteriores, vários métodos de detecção de anoma-
lia adversária foram testados. Os modelos foram retreinados sem as anomalias detectadas o que
resultou em piores condições de fluxo inicial quando comparado ao resultado final do MULTI-VP;
no entanto, o tempo de computação foi ligeiramente menor do que na implementação anterior.

Concluindo, os resultados das experiências com os métodos de clustering e de deteção de
anomalias adversariais parecem indicar que o desempenho do simulador não está correlacionado
com a proximidade das condições iniciais às soluções da simulação.

Palavras-chave: Meteorologia Espacial, Vento Solar, Aprendizagem Computacional, Clus-
tering, Deteção Adversarial de Anomalias

i

Abstract

Space Weather Science is a vital field of research that aims to understand the conditions on the
Sun’s surface, which can negatively impact life on Earth. Despite being a well-researched field,
the conditions that lead to these phenomena are still not fully understood. This limitation is mainly
attributed to the difficulty in acquiring high-quality data from the Sun’s surface.

To circumvent this issue, some simulation models try to extrapolate the conditions on the
Sun by analyzing data from other measurements. An example of this is MULTI-VP which uses
magnetograms from various sources (e.g., Wilcox Solar Observatory) and determines the structure
of the solar wind’s background magnetic field. However, these simulations take a long time to
converge and require initial expert estimations, which are handmade. Recently, a machine learning
approach has been designed to attenuate these issues. It removed the need for initial estimates by
automatically predicting the starting conditions of the simulation. In addition, it has shown that
there can be a significant reduction in the execution time of the simulator. Despite this, given
their lack of physical cohesion, the prediction models are still not robust enough for real-world
applications.

We posit that initial conditions directly influence the computation time of the simulation and
that better initial estimates will lead to faster executions. Thus, in this dissertation, we applied
clustering and anomaly detection techniques to improve the quality of the initial conditions and
determine if this would lead to faster MULTI-VP executions.

Several clustering experiments were conducted on the available magnetogram dataset to de-
termine the best-suited clustering method. In addition, various clustering-based approaches for
enhancing the prediction model were tested, with the selected method producing initial flow con-
ditions closer to the simulation outputs. Despite this, there was no reduction in the computation
time of the simulation.

To improve the previous experiments’ results, various adversarial anomaly detection meth-
ods were designed and tested. The prediction models of the clustering-based experiments were
retrained without the detected anomalies and resulted in worse initial flow conditions when com-
pared to the final output of MULTI-VP; however, this time, the computation time was slightly
lower than on the previous implementation.

In conclusion, the experiments conducted in this dissertation seem to indicate that the perfor-
mance of the MULTI-VP simulator is not directly linked to the initial flow condition’s approxima-
tion to the final solutions.

Keywords: Space Weather, Solar Wind, Machine Learning, Clustering, Adversarial Anomaly
Detection

ii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Definition . 2
1.3 Goals . 3
1.4 Document Structure . 4

2 Background 5
2.1 Space Weather . 5

2.1.1 Solar Phenomena . 5
2.1.2 Magnetohydrodynamic Simulation Models 6

2.2 Neural Networks . 7
2.2.1 Deep Neural Networks . 7
2.2.2 Recurrent Neural Networks . 7
2.2.3 Autoencoders . 8

2.3 Anomaly Definitions . 8
2.3.1 Anomaly Detection Approaches . 9

3 State of The Art 10
3.1 Clustering . 10

3.1.1 Survey Research Questions . 10
3.1.2 Search Queries . 11
3.1.3 Inclusion/Exclusion Criteria . 11
3.1.4 Results . 13
3.1.5 Analysis . 24
3.1.6 Threats to SLR Validity . 26

3.2 Adversarial Anomaly Detection . 28
3.2.1 Survey Research Questions . 28
3.2.2 Search Query . 28
3.2.3 Inclusion and exclusion criteria . 29
3.2.4 Results . 30
3.2.5 Analysis . 43
3.2.6 Threats to SLR Validity . 46

3.3 Summary . 46

4 Research Statement 48
4.1 MULTI-VP . 48
4.2 ML for Initial Flow Estimation . 49
4.3 Exploratory Data Analysis . 50

iii

CONTENTS iv

4.4 Hypothesis . 55
4.5 Methodology . 56

5 Clustering 57
5.1 Clustering Methods . 57

5.1.1 K-Means . 58
5.1.2 SOM . 58
5.1.3 Agglomerative Clustering . 59
5.1.4 DBSCAN . 59

5.2 Validity Measures . 60
5.3 Dimensionality Reduction . 61
5.4 Experiments . 61

5.4.1 Time Series KMeans . 62
5.4.2 SOM . 63
5.4.3 PCA Clustering Approach . 64
5.4.4 t-SNE Clustering Approach . 69
5.4.5 DBSCAN Experiments . 71

5.5 ML Experiments . 73
5.5.1 Clustering ML Results . 73
5.5.2 MULTI-VP Results . 76

5.6 Summary . 78

6 Adversarial Anomaly Detection 79
6.1 Generative Adversarial Networks . 79

6.1.1 Common Challenges in the Training Phase 80
6.1.2 Anomaly Detection with GANs . 80

6.2 Experiments . 81
6.2.1 Anomaly Scores . 81
6.2.2 Linear GAN . 84
6.2.3 Preliminary RNN-based GAN Experiments 88
6.2.4 MAD-GAN . 89
6.2.5 Adversarial AE . 93
6.2.6 Experiments Summary . 94

6.3 ML Experiments . 96
6.4 Summary . 98

7 Final Remarks 100
7.1 Hypothesis Evaluation . 100
7.2 Conclusions . 102
7.3 Future Work . 103

References 104

A Clustering - KMeans Results 110
A.1 PCA Results . 111

B MAD-GAN Results 114
B.1 Input Model . 114
B.2 Output Model . 117

List of Figures

3.1 Clustering SLR Pipeline. * Different sort order for each platform. 12
3.2 Methodology employing AKSC. Taken from [1] 22
3.3 Number of papers per year for the clustering SLR 27
3.4 GAN Systematic Literature Review Pipeline . 29
3.5 ALAD Architecture . 30
3.6 MO-GAAL Architecture . 32
3.7 IGAN-IDS Architecture . 33
3.8 Roll bearing anomaly methodology . 38
3.9 Number of reviewed papers per year. 45
3.10 Number of reviewed papers after citation filter step (Figure 3.4) 45

4.1 MULTI-VP methodology dataflow . 48
4.2 ML methodology dataflow . 49
4.3 ML training phase . 49
4.4 Joint plot of the inputs of MULTI-VP . 51
4.5 Joint plot of the outputs of MULTI-VP . 52
4.6 Correlation plot of all variables used in this work. 53
4.7 Value distribution of the dataset variables . 54

5.1 TimeSeriesKMeans Elbow Tests . 62
5.2 PCA applied to the different variables . 65
5.3 KMeans Elbow test for the PCA of the magnetic field variable. 65
5.4 KMeans Elbow test for the PCA of the flux-tube inclination variable. 67
5.5 KMeans Elbow test for the PCA of the joint inputs. 68
5.6 t-SNE applied to the different variables . 69
5.7 DBSCAN results on PCA of the magnetic field 72
5.8 Top clustering results for the KMeans applied to the PCA of the joint inputs. . . . 75
5.9 Clustering MULTI-VP error comparison for N 76
5.10 Clustering MULTI-VP error comparison for V 77
5.11 Clustering MULTI-VP error comparison for T 77

6.1 Anomaly detection workflow . 84
6.2 Linear GAN Architecture . 85
6.3 Linear GAN filtered datasets . 87
6.4 MAD-GAN Architecture . 89
6.5 MAD-GAN filtered datasets . 92
6.6 Adversarial Autoencoder Architecture . 93
6.7 AAE filtered datasets . 95
6.8 Clustering and GAN MULTI-VP error comparison for N 97

v

LIST OF FIGURES vi

6.9 Clustering MULTI-VP error comparison for V 97
6.10 Clustering MULTI-VP error comparison for T 98

A.1 Visualization of the clusters obtained with the TSNE of the joint inputs. 110
A.2 Cumulative Explained Variance for the PCA of the input variables 111
A.3 KMeans clustering of the PCA of the input variables 112
A.4 Number of profiles per cluster . 112
A.5 Data division based on the clustering results . 113

B.1 MAD-GAN input model training history. 114
B.2 Input Anomaly Scores . 115
B.3 Anomalies detected with the MAD-GAN input model. 116
B.4 MAD-GAN output model training history. 117
B.5 Output Anomaly Scores . 118
B.6 Anomalies detected with the MAD-GAN output model. 119

List of Tables

3.1 Clustering Inclusion and Exclusion Criteria . 12
3.2 List of reviewed papers for the clustering SLR. 26
3.3 Inclusion and Exclusion criteria. 29
3.4 List of reviewed papers for Adversarial Anomaly Detection. 44

4.1 Data columns of magnetogram used by MULTI-VP. 50
4.2 Statistical Analysis of the dataset. 53

5.1 Validity Scores for TimeSeriesKmeans . 63
5.2 Validity Scores for SOM . 64
5.3 Validity metrics for PCA of the Magnetic Field 66
5.4 Validity metrics for PCA of the Flux-tube Inclination 67
5.5 Validity metrics for PCA of the Joint Inputs . 68
5.6 Validity metrics for t-SNE of the Magnetic Field 70
5.7 Validity metrics for t-SNE of the Flux-tube Inclination 71
5.8 Validity metrics for t-SNE of the Joint Inputs 72
5.9 Results of the Clustering ML Experiments . 74

6.1 Summary of the results obtained with the different GAN architectures. 95

vii

viii

Abbreviations ix

Abbreviations

AE Autoencoder
ANN Artificial Neural Network
AU Astronomical Unit
AUC Area Under the Curve
BMU Best Matching Unit
BPTT Backpropagation Through Time
CH Calinski-Harabasz Index
CME Coronal Mass Ejection
CNN Convolutional Neural Network
D Discriminator
DB Davies-Bouldin Index
DBSCAN Density-Based Spatial Clustering of Applications with Noise
DNN Deep Neural Network
DPC Density Peaks Clustering
DTW Dynamic Time Warping
E Encoder
ESA European Space Agency
FB Feature Bagging
FP False Positive
FN False Negative
G Generator
GAN Generative Adversarial Network
GRU Gated Recurrent Unit
HCA Hierarchical Clustering Algorithm
LPP Locally Preserving Projections
LSTM Long Short-Term Memory
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
MCDM Multiple Criteria Decision-making Problem
MHD Magnetohydrodynamic
ML Machine Learning
MLP Multilayer Perceptron
MSE Mean Squared Error
NASA National Aeronautics and Space Administration
NN Neural Network
PCA Principal Component Analysis
RBM Restricted Boltzmann Machine
RMSE Root Mean Squared Error
RNN Recurrent Neural Network
ROC Receiver Operator Characteristic
RUS Random Undersampling

Abbreviations x

S Silhouette Score
SLR Systematic Literature Review
SMOTE Synthetic Minority Oversampling
SSE Sum of Squared Errors
SVM Support Vector Machine
TP True Positive
TN True Negative
UB Underbagging
VAE Variational Autoencoder
KL Kullback-Leibler
KNN K-Nearest Neighbors

Chapter 1

Introduction

The Sun continuously releases a stream of particles known as solar wind. This stream con-

sisting of high-velocity charged particles (e.g. protons and electrons) can reach planetary surfaces

unless thwarted by an atmosphere, magnetic field, or both. In Earth’s case, the magnetosphere

and the atmosphere, to a smaller extent, block out most of the radiation emitted by the Sun. How-

ever, other more extreme events like solar flares and CMEs (Coronal Mass Ejections) can provoke

negative effects on the Earth’s surface and upper atmosphere.

These events can impact the Earth in three primary ways. Firstly, they can cause radio black-

outs that predominantly affect satellites and, consequently, geolocation and communication sys-

tems. Secondly, solar radiation storms can endanger astronauts and spacecraft orbiting the Earth.

Lastly, the most severe of these events are geomagnetic storms, which have historically caused

significant disturbances. Examples of such disturbances include the Carrington Event in 1859 and

a geomagnetic storm that affected Quebec’s power grid in 19891.

Space Weather Science is a field that aims to prevent the consequences of such events; how-

ever, the factors that result in their formation are still not fully understood. Some simulation

models have been designed to try and fill this gap [2, 3], but they require initial expert guesses.

Recently, an ML (Machine Learning) model has been developed [4] to improve these initial pre-

dictions based on known data. Like other ML problems, the quality of the predictions is very

dependent on the quality of the training data.

1.1 Motivation

In 1859, Carrington recorded the first and largest known solar flare in history, which is now

commonly referred to as the Carrington event. This phenomenon was so extreme that it caused

geomagnetic storms in unexpected latitudes and provoked fires on telegraph wires. Carrington

was also able to correlate the event with a geomagnetic storm that occurred several hours later.

His pioneering work is widely recognized as the inception of the scientific discipline known as

Space Weather [5].

1List of solar storms: https://en.wikipedia.org/wiki/List_of_solar_storms

1

https://en.wikipedia.org/wiki/List_of_solar_storms

Introduction 2

The field of Space Weather Science emerged with the aim of understanding the formation of

phenomena that could affect Earth to evaluate their effects and to create early warning systems.

Despite significant advancements in this scientific field, the correlations between the Sun’s struc-

tures and these phenomena are not yet fully formulated and are mostly speculative. For instance, it

is still unknown why the atmosphere of the Sun is considerately hotter than its surface. The main

leading theory is that the magnetic field transports energy deep from the convection zone through

the surface and up to the atmosphere. It is also posited that the magnetic fields on the surface

sometimes collide, provoking large explosions and therefore causing the atmosphere to heat even

further. Another enigma is the acceleration of the solar wind (up to millions of miles) out of the

corona. Some correlation between the magnetic field and solar wind acceleration has been found;

however, the effect remains a mystery.

The answer to questions like these can contribute to a greater understanding of the underlying

processes of the Sun that influence solar weather. Consequently, predicting future events that

could impact the Earth, satellites, and space stations orbiting it would become easier. Thus far,

these answers have been delayed by the technological limitations on measuring solar events. In

2018, NASA’s Parker Solar 2 probe was launched on a mission to orbit the Sun’s, to understand

the acceleration of solar wind at the corona. More recently, ESA launched the Solar Orbiter to

measure the solar wind and record images of the uncharted polar regions, closer than every other

solar probe3. The PUNCH4 mission was launched to try and shed some light on the formation of

the solar wind on the Sun’s surface.

MHD (magnetohydrodynamic) simulators like MULTI-VP [2] and ENLIL [3], were developed

in order to try and extrapolate coronal conditions from limited observations of solar events from

probes and observatories. The execution of these simulations relies on initial estimations, usually

performed by hand after an analysis of the data (a very time-consuming task). Additionally, it has

been posited that good initial estimations have the potential to reduce the simulation’s execution

time significantly. The process of making the initial predictions as well as the extensive execution

time of the simulations make it difficult to create early warning systems that can prevent the effects

of solar events on Earth.

1.2 Problem Definition

The exponential growth of data acquisition has presented a significant challenge in promptly

analyzing the vast amount of available information. The sheer amount of data is becoming in-

creasingly hard for researchers to process, especially on data linked to near-real-time utilization.

2Parker Solar Probe: Humanity’s First Visit to a Star https://www.nasa.gov/content/goddard/
parker-solar-probe-humanity-s-first-visit-to-a-star

3ESA: Solar Orbiter https://www.esa.int/Science_Exploration/Space_Science/Solar_
Orbiter

4NASA Selects Missions to Study Our Sun, Its Effects on Space Weather https://www.nasa.gov/
press-release/nasa-selects-missions-to-study-our-sun-its-effects-on-space-weather

https://www.nasa.gov/content/goddard/parker-solar-probe-humanity-s-first-visit-to-a-star
https://www.nasa.gov/content/goddard/parker-solar-probe-humanity-s-first-visit-to-a-star
https://www.esa.int/Science_Exploration/Space_Science/Solar_Orbiter
https://www.esa.int/Science_Exploration/Space_Science/Solar_Orbiter
https://www.nasa.gov/press-release/nasa-selects-missions-to-study-our-sun-its-effects-on-space-weather
https://www.nasa.gov/press-release/nasa-selects-missions-to-study-our-sun-its-effects-on-space-weather

1.3 Goals 3

Machine learning has become one of the main methods of evaluating the data efficiently for prob-

lems associated with space weather prediction. However, most deep learning models are very

susceptible to large variations in the data that can severely decrease the performance of these

models. The anomalies can originate from the instrument and detector noise, statistical noise from

the small flux of photons, and external noise may include instrumentation jitter, stray starlight, and

cosmic ray background [6].

Recently, a NN [4] was developed to perform initial estimations for solar wind profiles that

would later be fed to MULTI-VP [2]. This reduced the time needed to generate the initial esti-

mations required by the simulation, which were previously done by hand. Additionally, it was

observed that producing initial estimates closer to the final simulation reduced the computation

time of the simulation, with a mean speedup of 1.06. Despite this, it was concluded that the pre-

diction model was not producing the best possible estimates. On one hand, this might have been

because the model managed to learn the most concentrated observations and failed to learn the

ones in the peripheries. Another possibility is that the existence of anomalies in the dataset was

hindering the performance of the model resulting in worse estimates.

The problem addressed in this thesis is to enhance the quality of the training data, which is

then to be used for predicting initial conditions associated with solar wind behaviour.

1.3 Goals

This thesis aims to enhance the prediction ability of the neural network [4] responsible for

generating initial predictions for solar wind formations. With this, we aim to produce closer initial

condition estimations to MULTI-VP’s [2] final estimates. We intend to achieve this by:

(1) applying clustering techniques in the training of the models for initial condition prediction

so these can better capture the features of the data;

(2) applying adversarial anomaly detection techniques to detect and filter faulty measurements

in the data used to train the prediction models.

As a consequence of better initial condition estimations, we intend to reduce the computation

time that the simulation takes to reach a viable solution.

Introduction 4

1.4 Document Structure

This first chapter has provided the context for the problem addressed in this dissertation. The

remaining sections of the document are organized as follows:

• Chapter 2, explains the background needed to understand the current problems in the area

of space weather science. Some concepts related to neural networks and anomalies are also

introduced to provide a basis for methods discussed in the remainder of the document.

• Chapter 3, provides an analysis o fthe current state-of-the-art methods for clustering and

adversarial anomaly detection.

• Chapter 4, goes into more depth on the problem this thesis aims to solve and the approach

that will be taken.

• Chapter 5 explains the clustering methods used on the dataset, followed by the experiments

and discussion of the results.

• Chapter 6 starts by explaining the origins of adversarial learning and the experiments un-

dertaken with this type of approach, followed by a brief discussion of the results.

• Chapter 7 evaluates this thesis’s hypothesis and provides a brief conclusion for the work

carried out.

Chapter 2

Background

In this chapter, a basic introduction to solar weather and the main events associated with it

will be presented. Additionally, a brief explanation of the Machine Learning (ML) terms that are

needed in the context of this dissertation will be provided.

2.1 Space Weather

"Space weather refers to the dynamic, highly variable conditions in the geospace environment,

including those on the Sun, in the interplanetary medium, and in the magnetosphere-ionosphere-

thermosphere system. Adverse changes in the near-Earth space environment can diminish the

performance and reliability of both spacecraft and ground-based systems." ([7])

2.1.1 Solar Phenomena

The increasing dependence on technologies vulnerable to solar weather conditions has made

it increasingly important to detect incidents, like the Carrington event [5], that would significantly

damage assets on Earth, beforehand. In this section, a brief introduction to these phenomena will

be provided.

Sunspots. These structures consist of dark central regions (umbra), which are colder than the rest

of the Sun’s surface, and more luminous external regions (penumbra). Sunspots are known to be

regions with strong magnetic fields (1000 times stronger than in the surrounding normal surface).

It is theorized that these magnetic fields interfere with the convection of the Sun, effectively cool-

ing the regions where they appear. Sunspots often originate as groups concentrated in specific

areas of the Sun, and their frequency and size vary with the 11-year solar cycle [8].

Coronal Mass Ejections (CME). These events are best described as mass ejections of plasma

into space after solar eruptions. It is posited that their formation occurs mainly from magnetic

reconnection, which occurs when magnetic field lines collide and realign into a new configuration

(releasing large amounts of energy). After their formation, CMEs can expand through space to

5

Background 6

great distances and collide with planetary atmospheres. The effects on Earth include geomagnetic

storms, damage to electronics on orbiting satellites, endangerment of astronauts in extraterrestrial

settings or planes’ guidance systems, damage to electrical grids and disruption of radio commu-

nication. Due to their length (at least 0.25AU), CMEs can take over a day to pass Earth. While

slower CMEs can take days before reaching Earth, the fastest ones arrive in approximately 15-18

hours. [9, 8].

Solar Flares. These events are often characterized as intense and temporary releases of energy

that blast large amounts of charged particles into space. Flares are known to last only a few min-

utes and reach temperatures of 100 million K, much higher than the ones at the core of the Sun (of

about 15 million K). Like CMEs, flare formations are associated with energy releases from mag-

netic reconnection and are primarily concentrated in the Sun’s active regions. Flares are almost

always associated with CMEs, but can also occur separately from them. Flares can be classified

as A, B, C, M or X based on the X-ray flux measurements on Earth [8, 9].

Solar Wind. This phenomenon results from plasma’s constant expulsion and expansion into in-

terplanetary space. Specifically, the solar wind consists of mostly protons, helium nuclei and

electrons that move away from the Sun at supersonic speeds and carry the Sun’s magnetic field

with it. It streams away from the Sun at different velocities, which allows for it to be classified

as fast (700 to 750 kms−1) or slow (300 to 400 kms−1). The latter usually occurs on the Sun’s

equatorial line, and the former is concentrated in open magnetic field regions of the Sun. The

exact originating factors for the slow solar wind are still unknown; however, for fast solar wind, it

is known that it originates in coronal holes. The solar wind has as standard properties (at 1 AU) a

velocity of 400 kms−1, a temperature of 1 million K, and a density of 5 particles cm−3 [8, 9].

2.1.2 Magnetohydrodynamic Simulation Models

The reasons for the acceleration of solar wind are mainly attributed to thermal heating; how-

ever, this does not explain the high speeds it reaches. The additional acceleration is often attributed

to the magnetic field, but no physical model can currently explain the correlation. Similarly, the

origins of the solar wind are mostly unknown, especially for slow solar wind compared to fast

solar wind [9].

These difficulties are mostly attributed to the absence of sensitive, high-resolution coronal

magnetic field measurements that do not allow for a full explanation of coronal physics. The

limitations in this field make it more challenging to comprehend solar events like CMEs and the

acceleration of the solar wind [10].

To try and fill these gaps in Space Weather Science, several magnetohydrodynamic (MHD)

models have been developed to try to give an answer to these questions. These models compute

numerically intensive problems based on MHD equations. For this, they require the definition of

appropriate boundaries and initial state definitions. Due to their complexity, MHD models often

2.2 Neural Networks 7

focus on single events and introduce assumptions and simplifications for the surrounding phe-

nomena. For this reason, the research community has developed relatively simple MHD models

to describe complex processes in the past decades.

2.2 Neural Networks

Neural Networks (NN) or Artificial Neural Networks (ANNs) are one of the main used ML

models. The design of NNs takes inspiration from the biological neural networks found in animal

brain structures. NNs consist of a set of node layers, the input layer, one or more hidden layers,

and the output layer. Each node is loosely connected to other nodes, each with its associated

weights and threshold values. The connections between the nodes are called edges, allowing for

communication between nodes and also having their associated weights. Signals travel from the

input layer through the hidden layers to the output layer. If a given node’s output is higher than its

associated threshold value, it is activated and sends data to the next layer.

2.2.1 Deep Neural Networks

Deep Neural Networks (DNNs) derive from the deep learning subfield of ML and are based

on NNs. Their distinguishing factor from previous methods is representation learning (also known

as feature learning) with multiple levels of abstraction. This technique allows models to discover

the underlying data structures needed for feature detection and classification. These methods have

been successfully applied in speech recognition, visual object recognition and detection, among

others ([11]). The term "deep" comes from a large number of stacked layers that the model has

compared to normal NNs. The most basic features are learned in the starting layers and the most

complex at the bottom layers. DNNs usually have a feed-forward architecture where the data

flows from the top layers to the output layer. In the end, the errors are back-propagated through

the network to adjust the weights of the nodes in each layer.

2.2.2 Recurrent Neural Networks

RNNs are a type of neural network that is suitable for sequential data. The main goal of

this architecture is to detect patterns in the input sequences, which makes it suitable for the tasks

like natural language processing and time-series prediction. Unlike conventional feed-forward

networks, RNNs have cycles that transmit data onto themselves which allows them to consider

previous inputs and not only the current one. This is why some authors refer to RNNs as neural

networks with "memory".

Recurrent networks take advantage of the backpropagation through time (BPTT) algorithm,

which is a derivation of the backpropagation algorithm for sequence data. Like the backpropaga-

tion algorithm, BPTT is used to train the weights of the network. The main difference is that BPTT

unfolds the network in time, which allows for the application of the backpropagation algorithm.

This is done by unrolling the network in time and then applying the backpropagation algorithm to

Background 8

the unrolled network. The unrolling process is done by creating a copy of the network for each

time step and then connecting them. The result is a feed-forward network that can be trained with

the backpropagation algorithm. The main disadvantage of this method is that it is computation-

ally expensive and can be unstable due to the vanishing gradient problem (more details in 6.1), as

previous states may lose relevance when the sequence grows.

Some alternatives have been proposed to solve the vanishing gradient problem, such as the

Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) architectures. These archi-

tectures are a type of RNN that have internal mechanisms called gates that can regulate the flow

of information. These gates can learn which data in the sequence is relevant to keep or discard.

This allows for the learning of long-term dependencies in the data, which is not possible with

traditional RNNs. The main difference between LSTM and GRU is that the former has three gates

(input, output and forget) and the latter only two (update and reset). GRU is often attributed to

being a lightweight version of LSTM, as it has fewer parameters and is easier to train. However,

LSTM is still the most popular architecture for sequence data.[12]

2.2.3 Autoencoders

Autoencoders (AE) are a subtype of neural networks, and their main purpose is to compress

existing data into meaningful representations, which are then decompressed back to the original

input. Examples of applications include classification, clustering, anomaly detection (oftentimes

adversarially trained), dimensionality reduction, and others. Its objective is to minimize the dis-

tance between the reconstructed and original samples. Therefore, the training goal is to minimize

the loss function

L(θ ,φ) = Ex∼µre f [d(x,Dθ (Eφ (x))] (2.1)

where θ , φ are the parameters of the encoder, Eθ and the decoder Dφ , respectively; x is the original

sample, µre f is the reference probability distribution and d is the distance function that measures

the reconstruction quality by comparing x with its reconstructed examples, Dθ (Eφ (x).

Regularizations are often applied to objective functions in line with the application of the

autoencoder or to avoid overfitting. Some methods purposely reduce the reconstruction ability of

the autoencoder to produce more meaningful compressions and vice versa. Possible variations

of AEs include Sparse AEs, which aims to reduce the dimensionality of the input data, Denoising

AEs, mainly used to reduce noise in images and Contracting AEs, which aims to reduce the number

of features that need to be learned by removing the unnecessary ones.

2.3 Anomaly Definitions

Anomalies can be classified as data points, events or observations that vary significantly from

the rest of the data. The most common data faults come in the form of outliers. These can

be classified as data points significantly different from the rest of the data [13]. They are often

referred to as anomalies, out-of-distribution data, novelties, and deviations [13, 14].

2.3 Anomaly Definitions 9

Inliers are data points that lie within or very close to the normal distribution of the majority of

the data, but they still exhibit some distinct differences from the remaining points. From a clus-

tering perspective (refer to 5), inliers appear between typical clusters without attaching to any but

still being close enough to one to be considered a part of it [15]. Because of these characteristics,

inliers are significantly harder to detect than outliers.

Datasets often contain unusual characteristics that, in some cases, can be informative in de-

termining the origins of anomalies. They can be intentional when they result from nefarious ac-

tions(e.g., credit card fraud); and unintentional when they occur naturally (e.g., sensor anomalies,

input errors). Following are some examples of anomaly detection:

• Credit-card fraud: theft of credit card credentials can be detected by analysing the trans-

action history of the target.

• Medical diagnosis: anomalies in scans can indicate possible diseases.

• Fault diagnosis: detection of faults in critical components (e.g., space shuttles).

• Intrusion detection: detecting unauthorized access to computer networks.

Throughout this dissertation, anomalies will be used to describe faulty measurements in the

data used to train machine learning models. More concretely, this term will refer to both outlier

and inlier values in the data.

2.3.1 Anomaly Detection Approaches

There are three main approaches for anomaly detection: unsupervised, supervised and semi-

supervised methods. The objective of the first is to detect anomalies in the dataset with no prior

knowledge of the data. This approach follows the same logic as clustering: it defines one or

clusters and then identifies every point outside the clusters as an anomaly. The assumption is

that normal data points occur more often than anomalous ones. Data points that occur more

infrequently are considered anomalies.

Supervised anomaly detection aims to model the normality and abnormality of the data, and

as any supervised learning problem, requires labelled data. Like any supervised learning problem,

it requires labelled data. Classification algorithms work better with balanced distributions of nor-

mal and anomalous data to improve generalization. However, achieving balanced distributions is

often challenging in these problems since anomalies are typically the minority class. Supervised

detection is also an efficient way of detecting inliers as they are labelled as such.

Semi-supervised detection is a compromise between the previous two approaches. The objec-

tive is to model only the normal distribution of the dataset and then use the model on the whole

dataset. The model will detect the novel samples not observed during the training phase and clas-

sify them as anomalies. This approach requires a preprocessing of the dataset to create a dataset

with only normal samples that can later be used in the training phase [16].

Chapter 3

State of The Art

A Systematic Literature Review (SLR) was performed to understand the current trends of

clustering methods (Section 3.1) and the use of adversarial learning for anomaly detection (Sec-

tion 3.2). This chapter is divided into two parts. The first part will focus on the relevant clustering

methods for this work. The second part will focus on the most relevant adversarial learning archi-

tectures for anomaly detection. Each part will start with the definition of the search questions (Sec-

tion 3.1.1 and 3.2.2) and the search queries (Section 3.1.2 and 3.2.2). Next, the inclusion/exclusion

criteria (Section 3.1.3 and 3.2.3) for the obtained results are identified. Finally, the results are pre-

sented and discussed (Section 3.1.4 and 3.2.4).

3.1 Clustering

Several approaches have been proposed for the clustering task, including partition-based, hier-

archical, density-based, grid-based and model-based methods. This section will discuss the most

relevant methods for this thesis. The search for relevant clustering methods was performed on

the Scopus1 and Google Scholar2 databases. As clustering is already a well-developed field of

study, the search was limited to the last ten years. The search queries are presented in Section

3.1.2, while the inclusion/exclusion criteria are presented in Section 3.1.3. The results and their

subsequent discussion are presented in Section 3.1.4.

3.1.1 Survey Research Questions

Two search questions were defined to guide the search for relevant clustering methods. These

are:

C_SQ1 What are the state-of-the-art clustering algorithms? Throughout the years, several clus-

tering algorithms have been proposed. This question aims to identify the most relevant and widely

used ones that can be used for this study.

1Scopus https://www.scopus.com/
2Google Scholar https://scholar.google.com/

10

https://www.scopus.com/
https://scholar.google.com/

3.1 Clustering 11

C_SQ2 Are there any metrics that can be used to evaluate the clustering algorithms? This question

aims to identify the most relevant metrics for evaluating clustering algorithms. These metrics

will be used to evaluate the quality of the developed clustering algorithm and to choose the most

appropriate one for the task at hand.

C_SQ3 Are there any clustering approaches applied to enhance the performance of neural net-

works? As this study aims to improve the predictive ability of solar wind prediction models, this

question aims to identify the methodologies of other studies with similar goals.

3.1.2 Search Queries

The search questions of the previous section guide the construction of the search queries. As

previously said, the search was performed on two search engines. The first query was performed

on Scopus, and the second on Google Scholar. The first search question is the following:

cluster* AND data* AND (method* OR analy* OR algo*) AND NOT imag*

In addition to the search query, several filters were applied to the results to limit them to the

last ten years and to exclude other articles that mentioned undesired keywords, such as "gene

clusters". The first part of the query, cluster* AND data*, is used to identify articles that mention

the keywords cluster and its variations and data. The second part, (method* OR analy* OR algo*),

is used to identify articles related to clustering algorithms and analysis methodologies. The last

part, NOT imag*, excludes articles that mention the keyword image.

A second search was done on Google Scholar with the following query:

cluster* AND (improve OR enhance)
AND (neural network OR deep OR learn*)

AND (performance OR accuracy OR classif* OR predict*) -image

The goal of this query, the goal is to retrieve every publication related to the application of

clustering methods in order to enhance the performance of neural networks. The first part of

the query, cluster* AND (improve* OR enhance*), is used to identify articles that mention the

keywords cluster and its variations and its use to improve something in general. The second part,

(neural network OR deep OR learn*), is used to narrow the search to the clustering approaches to

enhance machine learning approaches. The last part, (performance OR accuracy OR classif* OR

predict*) narrows the search even more to articles that specifically mention performance, accuracy

and other terms related to how well a system behaves. Similar to the first query, the last part, -

image, is used to exclude articles that mention the keyword image. In addition, the results were

filtered only to include articles from the last ten years.

3.1.3 Inclusion/Exclusion Criteria

Both queries yielded many results. A set of inclusion and exclusion criteria is presented in

table 3.1 which serves as a way of filtering the most relevant papers for this thesis.

State of The Art 12

Criteria ID Description

Inclusion

I1 The document focuses on clustering algorithms, evaluation methods.

I2 The results are clear, and the proposed goals are achieved.

I3 The authors provide code or an extensive explanation of the approach.

I4 Provides a comparison between the method and other clustering approaches
or analyses multiple clustering approaches for a given application.

I5 The article focuses on the application of clustering methods to improve the
performance of machine learning approaches.

Exclusion

E1 The article doesn’t cover clustering. This can occur due to the ambiguity of
the term "cluster", as it can also be used in unrelated contexts.

E2 The paper does not clearly evaluate the results of the approach.

E3 The number of recorded citations is less than 50. As clustering is a well-
developed study, the criteria for the relevancy of the paper can be more re-
strictive than on other fields.

E4 The paper covers clustering algorithms for unsuited data types. Articles that
pertain to the use of clustering techniques on multi-view data are excluded.

E5 Was published before 2014.

Table 3.1: Clustering Inclusion and Exclusion Criteria

Figure 3.1: Clustering SLR Pipeline.
* Different sort order for each platform.

3.1 Clustering 13

The result processing pipeline can be seen in Figure 3.1. The search queries were performed

on both Scopus and Google Scholar. For each platform, a relevance filter (E1, E4) was applied

to limit the results to the last ten years and exclude articles with low recorded citations. Next,

the titles of the top 200 results of each search engine were analyzed. For this step, the results

were ordered by the number of citations for Scopus Search and relevancy (best match) for Google

Scholar. In addition, all inclusion criteria (I1-I5) were used to determine the relevance of the

articles; however, greater importance was given to I5 in the second search to ensure more results

that referenced the improvement of machine learning with clustering approaches.

After this, the abstracts and the conclusions of the selected papers were read with the same

criteria as in the title analysis step. From this, 20 papers were picked for an extensive analysis,

presented in Section 3.1.4. Note that one paper violates the exclusion rule E5 (published in 2010);

however, it was included in the analysis as it was the only one that provided an extensive explana-

tion of the types of clustering algorithms as well as possible metrics to evaluate them. This paper

serves as a baseline by providing an overview of the most popular clustering algorithms and their

applications.

3.1.4 Results

Jain [17] performs an extensive review of the K-Means algorithm. The author defines clusters as

representations of n objects separated into k groups based on a similarity measure. The use

cases for the application of clustering are also defined. These include the discovery of the

underlying data structures, natural classification (degree of similarity between forms) and

compression (a method for the organization and summarization of data).

A brief analysis of the history of clustering is provided, where the author shows the use

of clustering methods in a wide range of fields and a brief explanation of hierarchical and

partition-based clustering algorithms. Next, an explanation of the base K-Means algorithm

is presented, along with a discussion of the parameters that need to be defined by the user.

In addition, an analysis of other clustering methods, such as DBSCAN and CLIQUE, is

performed.

In the next sections, the author explains the importance of the data representation and the

features chosen for the clustering task. A discussion on the decision of the correct number of

clusters is also performed, to which the author concludes that there is no definitive answer.

The next section explains the concept of cluster validity, which evaluates the results of clus-

ter analysis in a quantitive and objective manner. The validity criteria assess the internal

cluster structure, the degree of separation between structures and the degree of correspon-

dence between the clustering and the external information (class labels). Possible cluster

admissibility criteria are also presented. These are defined by rules that aim to ensure that

clusters do not intersect each other and that the chosen algorithm provides the same results

on data with different transformations, such as scaling.

State of The Art 14

Finally, the authors enumerate a set of guidelines that should be taken into account when

choosing a clustering algorithm based on the criteria discussed in the previous sections.

Rodriguez et al. [18] propose that cluster centres have a higher density than their neighbours and

are more distant from other cluster centres. In addition, the proposed algorithm is resilient

to outliers as it identifies them and excludes them from the analysis.

The proposed method can detect non-spherical clusters and identify the correct number of

clusters, like DBSCAN. Cluster centres are determined by selecting the points with the local

maxima density values. The algorithm works by calculating the density of each point in the

dataset and the distance from that point to other high-density points. After this step, the

other points that are not considered centres are assigned to the nearest high-density point.

This is done in a single step, making this algorithm more efficient than previous ones.

Tests were conducted on synthetic point distributions to evaluate the implementation and

compared with other clustering algorithms. The results show that the algorithm is capable

of reliantly detecting cluster structures in the different datasets. The authors also conclude

that the algorithm is robust to changes in the scale of the dataset (as long as it doesn’t affect

the distances of the points) and that the approach is more practical than other methods, as it

does not require the definition of parameters such as the probability distribution.

Fahad et al. [19] provide a detailed analysis of the application of different classes of clustering

methods on big data. The authors’ goal is to overcome the shortcomings of other surveys

by systematically categorizing clustering algorithms; presenting the advantages and disad-

vantages of each class of algorithms; providing several evaluation measures; and finally

analyzing the most representative algorithm of each category.

The authors identify five different clustering algorithm categories. These are partitioning,

hierarchical, density-based, grid-based and model-based. A set of clustering algorithms is

identified for each of the categories.

In the next section, the authors categorize the clustering methods in accordance with three

properties of big data. These are volume, velocity and variety. The first refers to the ability

of the algorithm to deal with large datasets with high dimensionality and also includes the

existence of outliers. Velocity refers to the time complexity of the algorithms. And finally,

variety refers to the ability of the algorithm to deal with different types of data and the

cluster shapes produced by it.

The algorithm for each category is chosen by picking the ones that satisfy most of the above-

defined criteria. An explanation of the algorithm is provided for each of the candidates.

Eight simulated datasets, ranging from denial of service (DOS) attacks to water treatment

operation logs, were used in the testing phase. Each of the candidates is evaluated based on

the validity of the generated clusters, the stability3 of the algorithms and the total execution

3Some clustering algorithms are based on a random component, which can lead to varying results in different
executions.

3.1 Clustering 15

time. The results show that no algorithm can satisfy all the criteria and that the choice of the

algorithm depends on the type of data and the desired results.

Kou et al. [20] intend to evaluate several clustering algorithms on financial risk datasets as a

multiple criteria decision-making problem (MCDM). The reason for this methodology is

the lack of objective measures to determine the quality of clustering algorithms. The au-

thors propose validating clusters regarding external and internal assessment and a relative

test. Internal criteria evaluate the similarity of observations inside a cluster, while external

measure the inter-cluster distances. Relative tests take advantage of previous knowledge of

the dataset, such as class labels.

The process of clustering algorithm evaluation is divided into four steps. The first step is

to select three financial risk datasets. Next, six popular clustering algorithms are picked

for each dataset. In the third step, the authors aggregate eleven performance metrics into

a single matrix for each dataset. Finally, the resulting matrices are passed through three

MCDM methods that rank the clustering methods for each dataset.

The results showed that the K-Means repeated bisection algorithm was the best choice for

the financial risk datasets, despite disagreements between the MCDM methods. The authors

conclude that more research should be undertaken to find compromised solutions when

MCDM methods disagree.

CAN [21] (Clustering with Adaptive Neighbors) is a clustering algorithm that simultaneously

learns the data similarity matrix and clustering structure. Its goal is to assign each point’s

adaptive and optimal neighbours in the dataset. For this, the authors assume that data points

with smaller distances should have larger probabilities of being neighbours. In addition, the

algorithm imposes a constraint on the Laplacian of the similarity matrix so that the number

of connected components in the data is the same as the number of clusters.

Projected Clustering with Adaptive Neighbors (PCAN) for high-dimensionality data is also

implemented and is used to attenuate the difficulties of clustering on datasets with many

features. The main goal was to reduce the dimension of the data without hindering the goals

of the developed adaptive neighbours’ algorithm.

In the experimentation phase, the authors start by testing the CAN algorithm in a toy dataset

consisting of two clusters, in which the algorithm can reliably detect both connected com-

ponents. Next, a comparison is performed with K-Means on a synthetic clustering dataset,

in which CAN outperform the other method in accuracy. PCAN is tested alongside two

dimensionality reduction methods, PCA and Locality Preserving Projections (LPP). The

projection, as well as the clustering abilities, are evaluated for each of the reduction meth-

ods. PCAN can find the correct subspaces for the projection task compared to the other

methods. In addition, the clustering results after the projection are also more reliable than

the other methods.

State of The Art 16

Finally, CAN and PCAN, alongside other clustering methods, are tested with real-world

datasets. The results showed that both methods outperformed the other baselines in every

dataset (but one) regarding accuracy. CAN and PCAN alternated in the different datasets,

with one outperforming the other in each of them.

Granato et al. [22] provide a critical analysis on the use of principal Component Analysis (PCA)

and Hierarchical Clustering Algorithms (HCA) in the field of bioactive compounds. In this

field, the discipline of chemometrics4 is often used to assess the differences/similarities

between observations or to project them into lower dimensions.

First, the authors provide a brief explanation of PCA is presented followed by an example of

its application on fruit juices’ chemical composition and antioxidant activity. The number of

components that explain the most variance is decided by analyzing the cumulative explained

variance of the dataset of PCAs with different numbers of components. The results showed

that 81% of the data variation was explained by two components, with the first explaining

50% and the other 31%. After this example, an state-of-the-art analysis is provided on using

PCA in food science studies.

In the next section, a brief explanation of HCA and the approaches to resolving the grouping

problem is provided. The agglomerative approach considers every data point as a cluster at

the beginning of the algorithm and then merges the cluster in pairs. The second method

(divisive) starts with a single cluster and then divides it into smaller ones. In addition,

the most used metrics of sample distance and linkage methods are enumerated. As in the

previous section, an analysis of the state-of-the-art of application of HCA in food science is

done.

In the end, the authors provide an example to explain the most common problem faced with

the use of PCA and HCA in this field. They start by applying PCA to project the data

samples into two dimensions. An analysis of the results showed that in one of the classes,

the existence of outliers made it so some of the samples were significantly further away than

the others. Then by applying HCA, it was demonstrated that different linkage distances

produced varying numbers of clusters and would ultimately need to be decided by the user.

With this simple example, they conclude that HCA and PCA should be avoided in this field

and that calculating correlation coefficients would, in most cases, provide a better analysis

of the data at hand.

Lin et al. [23] propose a clustering-based undersampling method for class-imbalanced datasets.

The authors propose overcoming the shortcomings of undersampling methods, which come

with the risk of excluding important features from the majority class. To achieve this, they

intend to replace the random undersampling strategy with clustering methods. By using

undersampling to cluster, the majority class will yield clusters with a similar size to the

minority class.

4Science of extracting information from chemical processes using mathematics and statistics information.

3.1 Clustering 17

An analysis of the traditional methods for resampling and classifier ensembles is first intro-

duced. These include methods such as synthetic minority oversampling (SMOTE), random

undersampling (RUS) and Underbagging (UB). Next, the main hypothesis of the work is

presented in the form of clustering-based undersampling. The process consists of first di-

viding an imbalanced dataset into training and test sets. In the second step, the training data

is divided into majority and minority class sets. In the following phase, the clustering-based

undersampling method is used to reduce the number of samples in the majority class. Fi-

nally, the balanced training set is used to train a classifier, which is then used to classify the

test set.

The authors present two strategies for clustering-based undersampling. In the first, the num-

ber of clusters equals the number of observations in the minority class. Then KMeans is

applied to the majority class producing k cluster centres (centroids), which are then used to

replace the entire majority class data. Ultimately, the number of observations will be the

same for the majority and minority classes. The second strategy uses the same method to

cluster the majority class. However, instead of using cluster centroids to reduce a single

cluster into one observation, the authors fetch the sample in the cluster which is closest to

the centroid (in terms of Euclidean distance). Both samples produce the same number of

clusters, but the results from the latter are slightly different from the former.

Two studies were conducted to evaluate the methods discussed in the previous section. The

first evaluates the performance of the methods in several small datasets and the other in two

large datasets. Five classifiers and five state-of-the-art resampling methods were used to

examine the classification performance. For the first study, results showed that the proposed

methods significantly outperformed the baseline in terms of the receiver operator charac-

teristic (ROC) curve. In addition, the nearest neighbour clustering-based undersampling

method scored higher than the centroid-based one. The best classifier, in terms of accuracy

(from the initial five), was the multilayer perceptron (MLP). In the second study, the results

were mostly the same, with the best classifier (C4.5) being better than the MLP from the

previous test.

The authors conclude that the design ensembles are well suited as a substitute for the tra-

ditional resampling methods and discuss the possibility of employing feature and instance

selection to filter out unrepresentative features and data samples. In addition, other state-of-

the-art classification algorithms could be combined with the clustering-based undersampling

method to try and yield better results.

Douzas et al. [24] developed a novel heuristic oversampling method based on KMeans and SMOTE.

The main goal is to overcome the common issues of SMOTE, such as the overfitting of the

training data and the generation of noisy samples. Clustering allows for oversampling to

target areas of input where artificial data generation is safer by ignoring noisy regions.

The algorithm is divided into three parts: clustering, filtering and oversampling. In the first

step, the input is clustered into k clusters. Then, the clusters with higher proportions of

State of The Art 18

minority-class samples are retained during the filtering phase. In the final step, SMOTE is

applied to each selected cluster to achieve the desired target ratio of minority and majority

instances.

The algorithm’s effectiveness is compared with three classifiers trained on several imbal-

anced datasets for binary classification problems. Each dataset was subjected to five other

oversampling techniques and then used to train the classification models. A model with un-

altered data was also trained for each of the datasets. The results showed that models trained

with the K-Means SMOTE method outperformed the ones trained on the original data and

the models trained with data after applying the baseline oversampling methods.

K-Shape [25] is a highly accurate and efficient clustering algorithm for time-series data. In this

paper, the authors propose a scale/translate/shift-invariant distance measure derived from a

cross-correlation measure, present a new way of calculating cluster centroids with the new

distance measure, and develop a new algorithm for time-series data based on the previous

two.

An enumeration and explanation of five possible time-series invariances are provided. These

include scaling and translation invariances, shift, uniform scaling, occlusion and complex-

ity invariances. The authors conclude that some problems, like scale and translation invari-

ances, can be attenuated by normalizing the input data beforehand. However, choosing a

proper distance metric can resolve the less straightforward ones. Following this, the Eu-

clidean Distance and Dynamic Time Warping (DTW) metrics are the most prevalent dis-

tance measures for time-series data. Further details are provided for the state-of-the-art

clustering algorithms and time-series averaging techniques, after which the hypothesis is

formulated. The authors set out to solve the scaling and shifting invariance problems in it.

The method is based on calculating time-series centroids with the cross-correlation metric.

This measure captures the shape of similar signals by ignoring the shifts in phase and am-

plitude, making it possible to determine the similarity of two sequences even if they are not

aligned. In addition, it is concluded that normalising the input data is necessary to achieve

the best possible comparisons. After this, a new shape-based distance measure (SBD) is

formulated around the cross-correlation statistic and data normalization techniques.

In the following sections, a detailed explanation of the algorithm is provided based on the

application of the newly defined distance measure and possible optimizations. The algo-

rithm starts by randomly assigning time-series sequences to clusters and then computes the

centroids of each cluster with the ShapeExtraction algorithm based on the SBD distance

measure. Finally, the algorithm refines the memberships of the clusters with the help of the

same distance algorithm. This process is repeated 100 times or until the centroids do not

change (convergence).

In the testing phase, the authors compare the SBD measure with the Euclidean Distance

and two variations of the DTW measure. Six clustering baselines are selected to compare

3.1 Clustering 19

with the developed algorithm. At the end of the experiments, it was concluded that cross-

correlation measures are as competitive as other distance metrics, such as DTW, but are

significantly faster. The authors note that the choice of clustering method is as important as

the distance measure and that the K-Means with Euclidean distance is the clustering method

for time-series data. However, K-Shape outperformed every other state-of-the-art and was

significantly faster than K-Means with Euclidean distance.

DPC-KNN [26] is a density peak-based clustering algorithm developed to overcome the short-

comings of the original density peaks clustering (DPC) algorithm [18], which is not capable

of detecting clusters with different densities. The authors propose a new method for deter-

mining the density of each point based on the KNN algorithm.

In addition to the main problem regarding the density of the clusters, the authors also iden-

tify other issues with the original algorithm. These include the difficulty in handling high

dimensional data, which tends to confuse DPC by hiding clusters in noisy data, and the

algorithm’s inability to consider the local geometries of clusters.

To solve this last issue, the authors propose changing the way the density of each point is

calculated. In the original algorithm, the density of a point is calculated as the distance

between that point and every other point in the data. In the new method, the density of a

point is calculated as the mean distance between that point and its k nearest neighbours.

This change allows the algorithm to consider the local geometry of the clusters. The dimen-

sionality problem is solved by applying PCA on the previous DPC-KNN, resulting in the

DPC-KNN-PCA method.

In the testing phase, the authors perform experiments on several 2D synthetic datasets, in

which DPC-KNN achieved perfect scores. In the next experiments, real-life datasets with

high dimensionality test the effectiveness of both DPC-KNN methods with DPC and the

other baselines. In the end, the authors conclude that DPC-KNN outperforms every other

method in terms of accuracy in low-dimensionality data, with data with more than seven

features resulting in better results for DPC-KNN-PCA.

Malav et al. [27] employ a K-Means clustering on UCI Heart Disease Data to train an ANN for

classifying cardiovascular diseases. The goal was to overcome the limitations of previous

implementations in this area and provide a more accurate disease prediction. The main

issues in the literature for this application are the low accuracy scores obtained by the clas-

sifiers and the use of resource and time-intensive algorithms.

The authors propose a pipeline where they first identify the main attributes commonly as-

sociated with heart disease in the data, followed by a preprocessing step, where categorical

values are encoded into numeric ones. Attributes used to diagnose the disease are con-

verted to binary values. Measurements with a value higher than the reference are encoded

to one, while normal values are encoded to zero. In the next step, the data is clustered with

K-Means and the centroids are used to train an ANN. Finally, the trained ANN is used to

State of The Art 20

predict the presence of heart disease in the test set. The results show an increased accuracy

when compared to other state-of-the-art approaches.

ClusterNet [28] is a novel point cloud representation which provides 3D rotation invariance. In

addition, a deep hierarchical clustering network is developed to better adapt to the new

representation.

A novel Rigorous Rotation Invariant (RRI) representation is proposed, which maintains all

the necessary information of point clouds, except volatile information associated with the

rotation of objects. This representation is achieved by projecting the points onto a 2D plane

and then applying a series of rotation-invariant transformations. The architecture consists

of three modules; the RRI module generates the desired representation; the cluster abstrac-

tion module extracts the features from the RRI representation with the help of the aggregate

subcluster features from the agglomerative clustering algorithm applied to the same repre-

sentation; and finally, the classification module that generates classification scores for each

object in a cluster.

Testing was done on several 3D object classification datasets. The authors test the archi-

tecture along with other state-of-the-art methods to evaluate the performance of ClusterNet.

They also demonstrate the effectiveness of the rotation-invariant representation by compar-

ing the results with and without it. The results showed that ClusterNet, coupled with the

RRI representation, performed better in accuracy than the other methods.

DEC [29] (Deep Embedded Clustering) is a method that aims to simultaneously learn feature

representations and cluster assignments with the help of autoencoders.

The algorithm is divided into the parameter initialization and the clustering phases. In the

first, the data is passed through and DNN encoder to obtain a preliminary latent represen-

tation. This is then passed through the K-Means algorithm to determine the initial cluster

centroids. In the clustering phase, the centroids are used to calculate the soft assignments of

the data points to the clusters. The centroids are then updated with the new assignments and

the process is repeated until convergence. In the end, the authors produce a clear separation

of the clusters in the latent space.

To evaluate the implemented method, the authors experiment on several image and one text

datasets with other clustering methods. The performance of each algorithm is evaluated

based on the accuracy calculated through the ground truth labels of each category in the

dataset. DEC proved to be a better choice than the other methods for the clustering task.

Fahiman et al. [30] employ the K-Shape clustering technique to improve load forecasting ac-

curacy in electrical infrastructures. The clustering algorithm groups clients with similar

consumption patterns, improving the models’ accuracy.

The authors intend to work only on a single, smart meter dataset with household consump-

tion records. A preprocessing step is done to scale large numbers and to fill in missing values

3.1 Clustering 21

with interpolations from previous records. They also identify three approaches for load fore-

casting methods. In the literature. These include a completely aggregated method where the

data is used to train a single forecasting model F ; a completely disaggregated method which

predicts consumption patterns of single consumers by assigning a model for each consumer;

and finally, a clustering-based forecasting approaches where clients are grouped into clus-

ters and a model is trained for each cluster. The authors propose a new approach based on

the last one that normalizes the weights of the clusters based on the number of clients in

each cluster. This then allows for the weighted summation of the predictions of each client,

making it possible to group consumption periods in different clusters for each client.

After delineating the method, the authors define the mean absolute percentage error (MAPE)

to evaluate the results based on the sum of predictions and the total consumption of each

cluster. Next, a feature selection step is done to identify the most meaningful attributes for

the task.

In their implementation, the authors employ the time-series clustering K-Shape algorithm

with a Multilayer Perceptron (MLP) and a Restricted Boltzmann Machine (RBM). A K-

Means clustering algorithm is also used for comparative reasons. After comparing the

results, it was concluded that the K-Shape algorithm paired with MLP produced the best

results in terms of MAPE. The authors propose developing dynamic clustering algorithms

for real-time clustering and forecasting in future work.

Behera et al. [31] devise a new approach for detecting credit card fraud by combining fuzzy

clustering with a neural network.

The fraud detection pipeline is divided into three main steps. First, an initial authentication

and verification of the credit card attributes are performed. The expiry date, credit card pin

and the amount of credit before each transaction are verified.

The Behaviour and Analysis phase evaluates the consumption patterns of the cardholder

and checks if the new transaction is in line with the client’s history. This is done with

the help of the Fuzzy c-means (FCM) clustering method. Each client has its cluster based

on previous consumption patterns. When a new transaction occurs, the distance between

the new transaction point and the cluster’s head is calculated. The transaction is flagged

as suspicious if this distance is above a precalculated upper threshold or below a lower

threshold for the current client.

After the previous steps, the suspicious transactions are passed through a feed-forward neu-

ral network in the Learning Phase to determine whether they are fraudulent.

The method is evaluated on a widely used synthetic transactions dataset. The approach

yielded results similar to other implementations for fraud detection in terms of true positive

rate but resulted in fewer false positives.

Tang et al. [32] develop an evolved fuzzy neural network (EFNN) that is used for predicting

traffic speeds by periodically evaluating traffic flow conditions. The authors’ main goal is

State of The Art 22

Figure 3.2: Methodology employing AKSC. Taken from [1]

to improve the accuracy of the predictions by employing a fuzzy neural network with a K-

Means clustering algorithm and a Gaussian fuzzy membership function. The data for this

study consists of historical data collected on a busy Beijing road section.

EFNNs are an improvement over the previous fuzzy neural networks, as they can continu-

ously evolve structure and functionality, making them more suited for real-life continuous

problems. EFFNs have a distinct learning process divided into unsupervised and supervised

phases. First, the K-Means clustering method is applied to the input samples to determine

the cluster centroids. In the supervised step, a set of k fuzzy rules (one for each cluster) is

generated to define the membership criteria of each cluster. In this study, the authors choose

Gaussian-type fuzzy functions to determine memberships.

In the proposed method, the speed data collected in the last 21 days is passed through a

regression function to determine a daily periodic pattern for traffic speed. This is based on

the assumption that traffic speed periodicity is cyclical. After this step, a speed function

based on the current time t is defined with the help of the periodic component from the

previous step. The residual part of the regression is used as a training dataset to optimize the

EFNN parameters and predict residual errors in the next step. The method can accurately

predict values for real-speed data with the combination of the regression component and the

residual error.

The resulting system is evaluated on three performance metrics and multiple traditional

prediction statistical models. The authors conclude that EFNN+CP (EFNN with cyclical

periodicity) is better than the other methods, especially when forecasting multiple steps.

AKSC [1] (Adaptive Kernal Spectral Clustering) is a novel algorithm to identify machine anomaly

behaviours in machine health monitoring. The developers aim to apply the new algorithm

and an LSMT-RNN network to improve its accuracy and efficiency in data with high dimen-

sionality.

3.1 Clustering 23

The authors describe the method in three steps (Figure 3.2). The first consists of feature

extraction and selection to identify the features that indicate degradation phenomena from

measured signals. In the anomaly detection step, the AKSC method is applied to the selected

features to adaptively identify anomalies in real time. The final step is to run a failure

prognostic to continuously update and predict the failure time of the machine with the help

of an LSTM-RNN network. The failure prognostics and anomaly detection results are used

in conjunction to refine the predictions of the LSTM-RNN network and to produce more

accurate failure times.

The proposed clustering algorithm uses an iterative and adaptive spectral clustering method.

It maps original features into a new feature space to find complex non-linear cluster bound-

aries and identify slight changes in the data. AKSC is divided into three stages. These are

initialization, where kernel spectral clustering is applied to the data; the calibration stage,

where the clustering parameters are updated to improve future identification accuracy; and

the detection stage, where an outlier indicator is defined to identify anomalies in the ma-

chine.

The authors create a real-life bearing test to evaluate the method, simultaneously measuring

the vibration and temperature of four bearings with different conditions. At the end of the

tests, it was concluded that the developed approach accurately predicted the mean time to

failure of the rolling bearings. In addition, the authors also point out that the method could

be applied to various other industrial contexts due to its generalizability.

Jahangir et al. [33] employ a micro-clustering technique based on K-Means and Gaussian SVM

along with a Bi-LSMT to develop a reliable forecasting system for electrical grid parame-

ters.

Micro-clustering is applied to data sequences collected in the last hour, t, and creates clus-

ters that will then be used to train Bi-LSMT networks for forecasting three network profiles

(variables). In the unsupervised clustering phase, the authors execute several K-Means algo-

rithm computations over the data they are trying to cluster by varying the number of clusters.

The most appropriate K-Means model is based on the Davies-Bouldin (DB) index score. In

the final stage, a Bi-LSTM network is trained for each cluster produced for the given hour.

This process is repeated until all 24 hours of the day are covered.

After having models for each of the variables for each hour, t of the day, the pre-trained

models from the previous stage are used to forecast the network profiles for the next days.

For each hour t new measures are assigned to the cluster centres from the previous stage

with the help of a Gaussian-SVM. Then the Bi-LSMT for that cluster at the time t is fetched

to forecast the desired parameter.

The resulting method is evaluated on data sequences collected in Ontario due to the preva-

lence of wind power in the network, which tends to cause fluctuations in the grid. The

State of The Art 24

robustness of the approach is compared with other statistical and machine learning tech-

niques, each of which is evaluated based on mean absolute error (MAE), mean absolute

percentage error (MAPE) and root mean squared error (RMSE). After an extensive eval-

uation of the results, the authors conclude that the devised method was more robust than

the other baselines and could be used in real-life situations to forecast conditions in power

systems.

Zhang et al. [34] propose a novel patient-specific electrocardiogram (ECG) classification algo-

rithm based on RNNs and density-based clustering techniques.

The algorithm framework consists of fetching normal ECG data based on density clustering

results that assign types of heartbeats to different classes and then training a common RNN

model to classify these classes. A model is created for each patient based on his history by

clustering to previous ECGs and then training an RNN classification model with feedback

from the common model. In the end, new patient records can be fed to the patient-specific

model to classify the heartbeat type.

The authors evaluate the method by comparing it with the results of previous state-of-the-art

ECG classification methods. The approach consistently outperformed the others regarding

accuracy, specificity, sensitivity and positive predictivity.

Yan et al. [35] develop a cluster-based pooling method to reduce the overfitting and increase data

diversity in a Bayesian deep learning-based probabilistic load forecasting (PLF) model.

The framework is divided into the initialization, multitask Bayesian deep learning and prob-

abilistic forecasting stages. In the first step, household smart meter data is clustered into k

clusters based on their load consumption patterns. In the next stage, a multitask Bayesian

neural network (MT-BNN) is trained using load profile pools from the previous step until

model performance stabilizes. If equilibrium is not reached, then the algorithm goes back

to the first step with an increased number of clusters as long as a maximum number of it-

erations is not reached. In the forecasting phase, probabilistic forecasting on the selected

customers is performed to assess the predictive performance.

The resulting system is evaluated in terms of MAE and RMSE on a large household smart-

grid dataset. The MAE and RMSE scores were identified as the main evaluation criteria.

MT-BNN is compared with Global and Separate BNN models according to the data pooling

strategy. The results showed that the MT-BNN model outperformed the other two in terms of

the defined error measures. Similarly, a benchmark is performed on several other statistical

models with the proposed method outperforming every other on the same metrics.

3.1.5 Analysis

A brief analysis of the clustering SLR results is presented in Table 3.2. The following cate-

gories were created for a summarization of the papers that were analysed:

3.1 Clustering 25

• Type: This category indicates the type of article. This can be either a survey, a review or a

primary study.

• Application: This class indicates the application area of the article. This can be either a

general application, as is the case for most clustering algorithms, or a specific one.

• Objective: This category indicates the main objective of the article. This can be either the

development of a clustering algorithm, a cluster decision method, or the improvement of a

machine learning task via clustering.

• Dimensionality Reduction (DR): This category indicates if the article uses DR techniques

(can be either "yes" or "no"). Dimensionality reduction techniques may be important for

this study, as the data being used is high-dimensional.

The results show that most papers are primary studies (17 out of 20). The remaining three are

two surveys and a review. The surveys include the introductoImprovery article for the clustering

theme ([17]) and another one that focuses on clustering algorithms for high-dimensional datasets

([19]). The review article ([22]) focuses on the use of principal component analysis (PCA) for the

identification of bioactive compounds.

As was expected, most articles that present new clustering methods/algorithms are mostly ap-

plied to general cases. The only exceptions are the two surveys, which were to be expected as they

tend to have a broader scope by discussing several possible approaches to multiple applications.

The remaining articles are mostly prediction tasks, with two applied to the banking sector [20, 31]

and several others for forecasting system/network conditions [30, 32, 33, 35].

Only four novel clustering algorithms surfaced for C_SQ1 [25, 21, 18, 26]. Of these, three

are density-based, and one is suited for time-series data. From this, it can be concluded that most

papers use preexisting clustering algorithms for the tasks.

Jain [17] and Fahad et al. [19] provide an overview of the types of evaluation methods that

we were trying to obtain from C_SQ2. In most approaches, external criteria are used to evaluate

the clustering; however, in cases where there are no labelled datasets, these cannot be used. For

this problem, Kou et al. [20] devise an MCDM method to choose the most appropriate based on

several validity measures (which might include external metrics).

Regarding C_SQ3, about half of the papers (11/20) aim to develop a new methodology for

improving machine-learning approaches, either by creating cluster-based sampling methods or

training separate models for each cluster.

Only six papers directly apply dimensionality techniques to the data. This is mostly seen

in approaches where the data is high-dimensional, and the authors want to reduce the number

of features to improve the performance of the clustering algorithm. The remaining papers do not

apply dimensionality reduction to the data; however, most mention the possibility of such methods

in improving the results.

Figure 3.3 shows the distribution of the results through the years. Note that the introductory

paper [17] is not included in the plot as it was added to the results after the SLR. The plot shows

State of The Art 26

Paper Year Type Application Objective DR

Jain [17] 2010 Survey N/A Cluster Algo. + Analysis No

Rodriguez et al. [18] 2014 Primary General Cluster Algo. No

Fahad et al. [19] 2014 Survey High Dimension Datasets Cluster Algo. + Large Data Yes

Kou et al. [20] 2014 Primary Financial Risk Assessment Cluster Decision Method No

CAN [21] 2014 Primary General Cluster Algo + Large Data Yes

Granato et al. [22] 2018 Review Bioactive Compound Identification Method Assessment Yes

Lin et al. [23] 2017 Primary General Improve ML (Sampling) No

Douzas et al. [24] 2018 Primary General Improve ML (Sampling) Yes

K-Shape [25] 2015 Primary Time Series Clustering Cluster Algo. No

DPC-KNN [26] 2016 Primary General Cluster Algo. (Improve) Yes

Malav et al. [27] 2017 Primary Heart Disease Monitoring Improve ML No

ClusterNet [28] 2019 Primary Object Classification (3D point cloud) Improve ML No

DEC [29] 2016 Primary General Cluster Algo. Yes

Fahiman et al. [30] 2017 Primary Electrical Grid Load Forecasting Improve ML No

Behera et al. [31] 2015 Primary Bank Fraud Detection Improve ML No

Tang et al. [32] 2017 Primary Road Network Load Forecasting Improve ML No

AKSC [1] 2019 Primary Machine Health Monitoring Improve ML No

Jahangir et al. [33] 2021 Primary Electrical Grid Forecasting Improve ML No

Zhang et al. [34] 2017 Primary Eletrocardiogram Monitoring Improve ML No

Yan et al. [35] 2020 Primary Electrical Grid Load Forecasting Improve ML (Sampling) No

Table 3.2: List of reviewed papers for the clustering SLR.

that most selected papers are from 2014 or 2017, with only two papers from 2020 and upwards

and no early publications. A possible explanation for this will be provided in the next section.

3.1.6 Threats to SLR Validity

The lacklustre results from the first query (see Section 3.1.2) were unexpected. The search

query was designed to retrieve the most relevant articles for the topic. However, the results were

not satisfactory. Most relevant articles were older than the rest as the sorting criteria were set to

3.1 Clustering 27

Figure 3.3: Number of papers per year for the clustering SLR. Does not include the above-
mentioned introductory paper from 2010.

citation count, which inherently gave more relevance to these papers. Consequently, most papers

retrieved from Scopus are older than the ones from Google Scholar. In addition, most of the papers

didn’t relate to applying clustering techniques to machine learning tasks, as these terms were not

directly specified in the query. To rectify this, another search similar to the one in Google Scholar

was done in Scopus; however, the results were still very similar to the ones from the first query.

The second search yielded slightly better results than the previous one, with more recent arti-

cles focusing on applying clustering techniques to machine learning tasks. The results were sorted

based on their "relevancy," which, according to the chosen platform, indicates the best match be-

tween each document and the search terms. Consequently, the first results weren’t as skewed to

older documents as in the first query.

State of The Art 28

3.2 Adversarial Anomaly Detection

This section explains the SLR for adversarial anomaly detection and is organized in the fol-

lowing manner. The survey research questions used to guide the search process are in Section

3.2.1, followed by the search query in Section 3.2.2. Section 3.2.3 explains the criteria used to

filter the results, which are presented in Section 3.2.4. Finally, a brief analysis of the results is

done in Section 3.2.5, followed by the threats to the whole research process (Section 3.2.6).

3.2.1 Survey Research Questions

Two search questions were defined to identify the most relevant articles that closely align with

the requirements of this work:

G_SQ1 What are the current adversarial learning architectures for anomaly detection in tabular

data? Most adversarial learning approaches (like GANs) are designed for problems with image

datasets. However, the dataset used in this study consists only of tabular data. The intention is to

include only architectures designed or adapted for anomaly detection in tabular datasets.

G_SQ2 What components of the architectures can be used for the anomaly detection phase? We

know that in GANs, the objective is for both the generator and discriminator to learn the normal

distribution of the data. In most applications, the generator is picked to create new samples from

random latent representations and the discriminator is often discarded. With this question, we

are trying to understand what state-of-the-art application use only the discriminator as a detection

mechanism.

3.2.2 Search Query

The search questions defined in the previous sections were aggregated into a single search

query. The query construction was done incrementally to refine the search results to address the

specific questions of interest. In the end, the search query was the following:

(gan* OR adversarial learning OR generative adversarial net*)
AND ((anomal* OR outlier? OR abnormal OR novel*) AND detect*)

AND NOT (imag* OR video* OR segment* OR photo*)

The first part consists of a mixture of terms associated with GANs and intendeds to only

retrieve articles with one of those terms in the title, abstract and keywords. The second restricts

the results to adversarial architectures for anomaly detection in the same three fields as the previous

one. Several synonyms for anomaly were used to increase the number of relevant papers. The final

term was only applied to the documents’ keywords and was intended to exclude GANs and other

architectures applied to image datasets. All articles were retrieved from Scopus 5.

5Scopus: https://www.scopus.com/

https://www.scopus.com/

3.2 Adversarial Anomaly Detection 29

Criteria ID Description

Inclusion

I1 The document focuses on GANs for anomaly detection.

I2 The results are clear, and the proposed goals are achieved.

I3 The authors provide code or an extensive explanation of the architecture.

I4 Provides a comparison of the developed GAN with other baseline models (not
necessarily GANs).

Exclusion

E1 The article was cited less than 6 times. For earlier publications, the number of
citations was reduced to half.

E2 Surveys and reports on works carried out by other authors.

E3 Does not use tabular data. Either it has one or more unwanted terms in the title
(e.g. image "photo") or only performs tests on image datasets.

E4 Was published before 2014.

Table 3.3: Inclusion and Exclusion criteria.

3.2.3 Inclusion and exclusion criteria

The query defined in the previous section yielded 1489 results, making it impractical to analyze

each one manually. A set of criteria was determined to reduce the number of documents that

needed to be studied (see Table 3.3). Note that E3 only exists because both search queries failed

when the documents did not indicate the use of images in the keywords. These were later used with

several steps to exclude non-relevant papers and narrow the state-of-the-art analysis iteratively.

Figure 3.4 illustrates the processing pipeline. 1489 results were retrieved from Scopus with the

defined query. The first processing setup applies exclusion criteria E1 to remove papers with little

to no citations, which resulted in 168 documents. 61 were left after a preliminary title analysis

with the criteria (I1; E2-E3). In the final step, a preliminary analysis of the remaining documents’

abstracts and conclusions was undertaken to only select the most relevant to the defined search

questions. The inclusion criteria for this step were I1 to I4. In addition, the documents that were

surveys or reviews of multiple implementations and articles that did not deal with tabular data

were excluded. In the next section, the resulting papers from this last step will be explained.

Figure 3.4: GAN Systematic Literature Review Pipeline

State of The Art 30

Figure 3.5: ALAD Architecture. Dxx, Dxz and Dxx are the discriminators (white), Z (purple) and X
(green) represent the latent and data spaces, respectively; G and E (orange) are the generator and
the encoder, respectively. Reprinted from [38].

3.2.4 Results

MAD-GAN [36] is an architecture for anomaly detection in multivariate data with spatiotemporal

correlations. The generator and the discriminator are composed of Long-Short-Term Recur-

rent Neural Networks (LSTM-RNN). As is usual in other GANs, the generator creates fake

samples from a vector of latent points. It feeds them to the generator, which aims to distin-

guish generated from the original samples. However, instead of just using the discriminator

to detect abnormal samples in the testing phase, the authors propose employing the genera-

tor for the same task. The theory for this is that by generating correct samples, the generator

can learn the normal distribution of the dataset.

During the test phase, the discriminator receives a sample from the test dataset and performs

the same classification as in the previous stage. However, the generator will receive a version

of the sample mapped to the latent space and be tasked with reconstructing the sample.

Next, the reconstruction error is calculated by comparing the reconstructed sample with the

original one. This error and the discriminator outputs are used to compute the Discriminator

and Reconstruction Anomaly Score (DR-Score). A sample is considered abnormal if it has

a DR-Score higher than a predefined value τ .

The developed architecture was compared with five baselines. These include PCA, K-

Nearest Neighbours (KNN), Feature Bagging (FB), an Autoeconder (AE), and the Efficient

GAN (EGAN) [37]. The tests were performed on three intrusion detection datasets. MAD-

GAN was able to outperform the other baselines on almost all datasets consistently.

ALAD [38] is a reconstruction-based anomaly detection architecture that employs multiple bi-

directional GANs. The proposed method, Adversarily Learned Anomaly Detection (ALAD),

3.2 Adversarial Anomaly Detection 31

intends to use both the discriminator and the generator for the task. The ALAD architecture

is shown in Figure 3.5.

An encoder network E maps data samples x into the latent space z during training. Several

additional discriminators are used to achieve cycle consistency (to ensure that the recon-

structed samples resemble the original ones) and to stabilise the model. Dxz is an improve-

ment from other similar solutions that solve the saddle-point problem by ensuring cycle

consistency, which is not always the case when using encoders. Further, entropy regularisa-

tion is imposed on both G and E by the discriminators Dxx and Dzz. The latter receives two

pairs of latent points and must distinguish the real (z, z) from the synthesized one (z, E(x));

the former follows a similar logic but with examples extracted from the dataset.

The authors propose a new score function for anomaly detection that captures the confidence

of Dxx when distinguishing real from synthesized pairs. This is because a poor-quality re-

construction would indicate that the generator did not learn how to reconstruct that sample

and, consequently, should be considered an anomaly. Finally, the designed model was com-

pared with five standard anomaly detection methods and another GAN for anomaly detec-

tion on two anomaly detection datasets. The developed model outperformed the baselines

on one of the datasets but could not do so on the other. This was because this dataset had a

small number of samples, and ALAD, like other GANs, requires large amounts of training

data.

USAD [39] is an architecture based on adversarially trained autoencoders for anomaly detection

in multivariate time series data, more concretely, logs from IT systems. The authors pro-

posed solving the convergence and mode collapse problems experienced in other GANs.

USAD is composed of one encoder E and two decoders D1 and D2, which in conjunction

with the encoder, result in two autoencoders (AE1 and AE2). E takes data samples as win-

dows W and encodes them to latent space vectors z. The function of the decoders is to

reconstruct the samples in those windows.

The autoencoders are trained with normal samples to learn the data distribution during this

phase. In the detection stage, both autoencoders are trained adversarially. AE1 reconstructs

samples from the real dataset and AE2 must distinguish examples reconstructed by AE1

from the real data. The anomaly score is calculated based on the reconstruction errors ob-

tained on both autoencoders. The proposed model was evaluated along with other unsuper-

vised methods for anomaly detection on intrusion detection datasets. USAD outperformed

the other baselines in terms of F1-Score.

MO-GAAL [40] as the goal of generating informative outliers to overcome the significant class

imbalance and lack of correct labels in outlier detection datasets. The authors developed

two proximity-based outlier detection methods that do not rely on previous knowledge of

the dataset. The first was named Single-objective Generative Adversarial Active Learning

State of The Art 32

Figure 3.6: MO-GAAL Architecture. Each generator Gi to Gk (left) generates outliers for the re-
spective cluster; The discriminator D (right) aims to draw increasingly smaller boundaries around
the real data distribution. Taken from [40].

(SO-GAAL). Like other GANs, it plays the same mini-max game between the generator

G and the discriminator D. However, the objective for G is to produce outliers that occur

inside or close to the real data. Similarly, the goal of D is to create a division boundary that

separates the real data from potential outliers. G gradually learns the generating mechanism

and synthesizes an increasing number of potential outliers, and D gets better at creating the

divisions that enclose the real data. The point of generating outliers is to create a reasonable

reference distribution for the real data.

Despite providing good results, the first model proved to be very unstable due to the prob-

lem of mode collapse. At some point, after a good amount of iterations, the precision of

the model would greatly diminish. Another technique called Multiple-objective Generative

Active Learning (MO-GAAL) was designed to solve this issue. A general workflow of the

architecture can be seen in Figure 3.6. The authors proposed generating outliers for specific

real data subsets using a generator for each cluster in the dataset (which requires cluster

identification). This solved the mode collapse problem on the first model and stabilized the

performance.

Both architectures were tested on fourteen datasets and ten other baseline outlier detection

methods. Despite other methods performing better in specific datasets, MO-GAAL proved

more reliable even on non-cluster datasets.

IGAN-IDS [41] or Imbalanced Generative Network was designed to cope with class imbalance

problems that other outlier methods for intrusion detection suffer from. IGAN, which can

be seen in Figure 3.7 (middle module), comprises an imbalanced data filter, Generator G,

and a Discriminator D. Each sample, s = (x,y), is a vector containing the values and the

class labels. The imbalanced filter takes only samples from the minority classes, denoted as

s′ = (x′,y′). It calculates the generating factor k for each class (ratio of samples that should

be generated for each minority class). G receives a set of latent points z and the class label

y′ and outputs a vector with a generated value G(z,y′) from the class label that it received.

This vector is then passed to the discriminator, which aims to distinguish synthesized feature

3.2 Adversarial Anomaly Detection 33

Figure 3.7: Full IGAN-IDS architecture. Taken from [41].

vectors from the ones extracted from the dataset. In the training process, G and D are trained

alternatively. First, D is fed only real samples while G is fixed, and in the next iteration, G

is optimized, and D is fixed.

With the problem of class imbalance dealt with, the authors set out to perform intrusion

detection with IGAN-IDS (Figure 3.7). The feature extraction module (top) embeds discrete

data into one-hot encoded vectors and discretizes continuous variables, which are encoded.

All values are concatenated and fed to IGAN, which generates samples for the imbalanced

classes. Finally, a DNN (bottom module) is used for outlier detection. In the training

stage, it receives both synthesized and real data and, during the testing phase, calculates the

distributed probabilities for each inclusion class of each sample. The proposed solution was

tested with several other class-balancing techniques on three standard intrusion detection

datasets. It outperformed every method in precision, accuracy, recall and AUC score.

Jiang et al. (2019) [42] propose a conditional GAN architecture to detect anomalies in univariate

Industrial Time Series Data. The model is trained with only normal samples. The dimen-

sionality of the original data was reduced by employing a feature extractor. The generator

consists of two encoders Ge and Ge′ and an intermediate decoder Gd . The first encoder maps

real samples into the latent space z while the decoder Gd is tasked with reconstructing the

encoded sample back to the real data space.

State of The Art 34

During training, the GAN is only tasked with reconstructing normal data samples so that

both components learn the normal distribution of the dataset. Two loss functions are defined

for the generator, the Apparent loss and the Latent loss. The first measures the distance

between the original and synthesized samples, and the other measures the distance between

the latent vectors z and z encoded by Ge and Ge′ , respectively. The loss function of the

discriminator compares the feature vector from the actual sample f (x) with the synthesized

one f (G(x)). The anomaly score is defined as the sum of the two losses.

In the testing phase, two rolling bearing datasets were used. The authors fine-tunned the

models by adjusting the hyper-parameters of the network. A significant difference in anomaly

score A(x) was observed for faulty parts in the dataset, which proved the efficacy of the de-

signed model. A comparison was also performed with the state-of-the-art BiGAN [43],

which showed that the developed GAN was more reliable on datasets with differing sizes.

TadGAN [44] aims to solve the problem of scalability and portability in state-of-the-art unsuper-

vised methods for anomaly detection. Its goal is to detect anomalies in time series datasets.

The authors used LSMT Recurrent Neural networks for both the generator and the critic.

Two types of anomalies are identified single point (abnormal data point) and collective (se-

quence of abnormal data points) anomalies.

The proposed architecture is a reconstruction-based anomaly detector with a generator G

which receives encoded samples in the form of latent points z and reconstructs them back to

the original sample distribution; an encoder that takes samples in the normal distribution and

encodes them into latent point vectors; and two critics, one to distinguish real data points

from synthesized ones (Cx) and the other (Cz) to evaluate between the distribution of real

z and the ones that were encoded by E (E(x)). To cope with the mode collapse problem,

common in most GANs, the authors adopt the Wasserstein loss function (for critics) and

a cycle consistency loss function (for the generator and encoder). For the reconstruction

errors, the point-wise difference (distance between the real and synthesized point) and area

difference (distance between "windows" of the same area in the real and synthesized data)

were defined. Furthermore, the authors also chose a Dynamic Time Warp (DTW) measure,

which, similarly to area difference, can identify minor differences over long periods but can

also handle time shift issues.

Two methods of combining the critic outputs with the reconstruction errors were devised.

For the first, a weighted sum of the reconstruction error and the critic output is done; in the

other method, both values are directly multiplied. Several baselines are chosen to compare

with the developed model in the testing phase. TadGAN and the baselines were tested on

eleven datasets for anomaly detection (two of which were from NASA). The developed

network outperformed every other baseline on six of the eleven datasets (based on the F1-

score). Despite this, the mean, standard deviation and average of the F1-score in all datasets

showed that TadGAN was more reliable than the other methods. Finally, the authors defined

ten iterations of TadGAN, each with a different anomaly score with either one reconstruction

3.2 Adversarial Anomaly Detection 35

function, one critic output or a combination of the two. The worst result was with the

anomaly function consisting only of the critic output, and the best was the one in which the

critic score and DTW were multiplied.

adVAE [45] employs a Variational Autoencoder (VAE) for anomaly detection. The authors pro-

pose an encoder E that encodes real samples into random point vectors z, fed to a generator

G that is then tasked with synthesizing examples close to the real distribution of the dataset.

Competition is introduced in the form of a Gaussian transformer T that receives the encoded

vectors from E and is tasked to generate latent vectors zT with a similar distribution to z (out-

liers). G is tasked with generating as different as possible examples from both similar latent

vectors. Finally, the examples from G are encoded again by E, and the resulting distribu-

tions are compared with the original ones. To make the equilibrium of these three models

feasible, the authors freeze the gradients of E in the first training phase to only train the G

and T . This way, T will generate abnormal latent variables close to the real distribution, and

G will be able to distinguish them using reconstruction errors.

In the second phase, both G and T have their gradients frozen, and the encoder is trained

to encode the inputs as close as possible to the prior distribution (only if the inputs are

from the dataset and do not result from Gaussian variables generated by T). In the testing

phase, the trained encoder and generator are used to detect anomalies by calculating the

reconstruction error of the input samples. The solution was evaluated on tabular anomaly

detection datasets and several other state-of-the-art outlier detection methods. Furthermore,

several ablation models from adVAE were derived by removing the discriminative factors

of either the generator or the encoder. The results showed that adVAE and its variations

outperformed most baselines on the chosen datasets regarding precision and AUC score.

Blance et al. (2019) [46] propose using adversarially trained autoencoders as a way of improving

the separation between background from the signal in synthesized high-energy collision

events. The authors train an NN that can distinguish signal events from the background and

intentionally smear the background data in distinct directions. With this, they prove that the

classifier’s performance is highly dependent on the smearing of the background samples.

An adversary is used to try and remove the dependence of the classifier on the smearing of

samples. Both are forced into a zero-sum game in which the classifier must learn how to

make predictions without using any information from smearing and tries to make it as hard

as possible for the adversary to discriminate the background samples. The classifier receives

samples from the dataset and sends its outputs to the adversary, which tries to determine the

background class based on the outputs. The results showed that this method significantly

reduced the dependence of the classifier on the smearing of background samples.

In addition, the authors propose another method in which they use an autoencoder alongside

an adversary. The function of the autoencoder is to reconstruct only background samples,

and the adversary is tasked with identifying them. As the autoencoder only learns the dis-

tribution of background events, it will not be able to reconstruct signal events as well (i.e.

State of The Art 36

signal events will be considered outliers). The adversary takes as input the loss of the AE

and tries to determine the background smear class. The results show that the method could

remove the dependence between the autoencoder classification and the smear direction of

the background samples. Despite this, this architecture proved less effective than the previ-

ous one.

FGPAA [47] is an adversarially trained autoencoder that aims to monitor the conditions of roll-

bearings by analyzing the vibration signals. The model consists of four components, a

discriminator D, a generative discriminator GD, an encoder E and a Low-dimension dis-

criminator LD. E takes one signal at a time and encodes it into the low-dimension manifold

(latent space) z. LD discriminates if the output of the encoder follows the same distribution

as the latent space z. The latent points vector z is passed to the encoder that works as a

generator by synthesizing high-dimension signals from the low manifold distribution. The

generative discriminator, GD, tries to distinguish reconstructed signals from those originat-

ing from the dataset.

The anomaly score is calculated for each sample by comparing the distributions of the gen-

erated low-dimension manifold and the reconstructed sample with the distributions from

the actual dataset. This score is then used during detection to identify signal data faults.

The proposed solution was tested on three roll-bearing datasets alongside well-known ML

anomaly detection methods. FGPAA outperformed all in terms of F1-score, but they dis-

played a higher execution time than the rest.

FGAN [48] is an architecture close to original GANs but with a modified loss function more

suited for anomaly detection. The authors propose adapting the model’s objective so that

the generated samples lie close to the boundaries of the real data distribution instead of

overlapping it. The objective is to generate data around low data density regions δX around

the real dataset.

The authors use the discriminator score to identify the domain of δX and then estimate it

with the generator. At the end of the training phase, the synthesized points must enclose

the entirety of the data. This goal is achieved by replacing the typical loss of the generator

with the Generator Encirclement Loss, which penalizes points generated inside or far away

from the real distribution. Generator Dispersion Loss is also introduced to guarantee that

the generated points enclose the whole distribution and not just a single area (similar to

mode collapse in other methods). It maximizes the distance between points by penalizing

the generator if the synthesized points are too close to each other. The resulting loss function

is a weighted sum of the two proposed ones. Similar to the generator, the loss function of

the discriminator is also modified to prioritize classifying real data correctly by reducing the

second term of the original discriminator function (refer to equation 6.1).

To evaluate the developed mode, the authors tested its performance on a synthesized 2D

dataset. Next, the proposed solution was tested on image and tabular datasets and other

3.2 Adversarial Anomaly Detection 37

state-of-the-art models. FGAN outperformed all baselines for anomaly detection on both

types of datasets.

MENSA [49] is an autoencoder-based GAN architecture used to detect intrusions on next-generation

Electrical Grids (also known as Smart Grids). Furthermore, the proposed model can also

detect and classify different classes of cyberattacks that often occur on the TCP (Transport

Communication Protocol) and the DNP3 (Distributed Network Protocol 3) protocols.

The architecture consists of a Generator-Encoder and a Discriminator-Encoder. The first

receives input noise samples and inflates them to produce samples that resemble the desired

data to learn the normal distribution. The Discriminator-Encoder then compresses the syn-

thesized samples into a single point that indicates if the sample is from the real dataset or

is a fake. For the detection phase, the Latent Model is derived from the initial layers of

the discriminator. The generator, having learned the normal distribution of the data, tries to

reconstruct samples from the real dataset. These are then passed to the Latent Model that

calculates the Adversarial Loss score by comparing the real sample with the reconstructed

one. Note that the generator will fail to reconstruct abnormal samples, as they were not a

part of the training process.

The classification model is derived from the previous architecture, in which the Discriminator-

Encoder also learns to classify the attack class of a given sample. The generator learns to

generate samples based on the class labels conditionally. Similar to the previous implemen-

tation, the discriminator receives the synthesized samples and identifies them as real or fake,

but this time, it also tries to determine the class label.

The proposed solution was tested on real Smart Grid datasets and several other intrusion

detection methods. The Accuracy, True-Positive and False-Positive rates and F1-Score were

calculated for each solution. MENSA outperformed other methods on all datasets except for

one.

Liu et al. (2022) [50] propose a deep feature enhanced generative adversarial network to improve

fault detection performance in roll bearing imbalanced datasets. New and preexisting meth-

ods are introduced to solve mode-collapse during training and enhance the feature learning

of the network, which aim to increase the overall detection performance of the architecture.

The adopted methodology is shown in Figure 3.8.

A new loss function is designed for the generator with a pull-away term. It measures the

distance between the generated samples inside a given batch and penalizes the generator

if the batch’s samples are too similar. As a consequence, this solves the mode-collapse

problem during the training phase. A self-attention model is introduced to the discriminator

and the generator so they can learn the features of the original vibration signals more deeply.

The self-attention feature maps capture local details and global information in every layer

of the network.

State of The Art 38

Figure 3.8: Methodology for anomaly detection in roll bearing datasets. Taken from [50].

During training, the generator synthesizes signals from random noise fed to the discrimina-

tor along with an actual signal. The discriminator must then distinguish which one is real

and which one is fake. With the proposed mechanisms, the generator must synthesize sam-

ples as far as possible to each other to confuse the discriminator. The training phase stops

when three criteria are met. These are defined by the automatic data filter, which evalu-

ates the accuracy and diversity of the generated samples based on discriminator probability,

Kullback-Leibler (KL) divergence and maximum mean discrepancy. When these criteria

surpass a predefined threshold, the training phase is concluded. The fault detection phase

uses a classifier trained on the generated data.

The quality of synthesised signals was compared with other standard generative models

using KL divergence and maximum mean discrepancy of the automatic data filter. The

proposed method surpassed the others in these metrics. Next, three experiments were set

up to evaluate the detection quality of the proposed method. In each experiment, three

classifier models were used. In the first, the classifiers learned to detect anomalies from the

original signals dataset. In the next, a WGAN-GP architecture was used to generate a more

balanced signals dataset. Finally, the three classifiers were trained on data synthesized by

the proposed method in the last experiment. This methodology was performed on laboratory

and locomotive roll-bearing datasets. Every model trained on the generated data (for both

datasets) from the designed solution outperformed the models from the other experiments.

DOPING [51] is an adversarial autoencoder that aims to improve the performance of unsuper-

vised anomaly detection by oversampling infrequent normal samples. With this, the authors

3.2 Adversarial Anomaly Detection 39

intend to reduce the number of false positives that usually occur on datasets with normal

samples close to the classification boundary (close to but not anomalies).

In the training phase, the autoencoder receives samples from the entire dataset distribution.

The latent vectors generated by the encoder, E, from the data samples, X , are saved for the

next stage, in which only the latent variables Z at the tail-end distribution of the normal data

are sampled into a pool of Zedge. From this pool, zedge variables are sampled randomly and

interpolated to generate new latent vectors znew. In the next stage, de decoder D synthesizes

minority samples from the znew latent vectors. Later the synthesized examples can be used

in conjunction with the original ones for anomaly detection.

An isolation forest anomaly detector was used to evaluate the effects of the oversampling

method on the detection performance. The authors used three synthesized cluster datasets

with outliers, the popular MNIST image dataset, and four real medical record datasets. The

results showed that the outlier detection method in conjunction with DOPING achieved

better results than the baseline (detection without DOPING).

Bot-GAN [52] aims to improve the detection performance of botnets in network-flow data. The

architecture is similar to the one from vanilla GAN. However, the authors chose a botnet de-

tection model as a discriminator. Like vanilla GAN, it receives examples from the training

dataset and synthesizes ones from the generator. The main difference is that the discrimina-

tor classifies each sample as normal (from the training dataset), an anomaly or fake (either

synthesized or from the dataset). The generator’s objective is to synthesize more samples

similar to the ones in the dataset to assist with the training of the detector.

To test the proposed approach, choose a botnet dataset and perform some preprocessing to

normalize the formats of the entries and map the features into vectors. The resulting feature

maps are then scaled so that each value falls between [-1,1]. The model was evaluated

on precision, accuracy, false positive rate, recall and F1-Score. The results show that it is

possible to improve the performance of the classification model by enhancing its training

with GANs.

Yuan et al. (2020) [53] propose employing GANs to learn the normal conditions of smart meter

operations to detect power outages in electrical grid zones. In addition, the authors propose

circumventing the problems of other models applied to this problem, which are the assump-

tion that every network node is directly observable. The distribution network is subdivided

into zones determined by two neighbouring observable nodes (nodes in which the voltage

and demand). Each zone has its designated GAN, which learns the time-series data col-

lected by the two nodes. Any deviation from each node’s normal measured data distribution

will be considered an anomaly.

The architecture is very similar to the one on vanilla GAN [54]. The generator’s objective is

to synthesize Time-Windows (frames with recorded sequential events) with events similar

to the ones from the assigned zone. Similarly, the discriminator must distinguish between

State of The Art 40

real and fake Time-Windows. At the end of the training phase, both components captured

the normality of the data for the given zone.

In the detection phase, both generator and the discriminator are used. Time-Windows with

actual recorded events are fed to the latter, which calculates the Discrimination Loss. Ad-

ditionally, an inverted mapping of the Time-Window to the latent space is given to the gen-

erator, which is tasked with reconstructing it. The weighted sum of the reconstruction error

and discriminator loss is used to calculate the Anomaly Score.

The solution is evaluated on data collected over three years by smart meters on a complex

power distribution network. The results proved that the proposed approach could reliably

detect power outages in real distribution networks. Finally, numerical comparisons are per-

formed to compare the developed method with a preexisting SMV model to detect power

outages. The authors conclude that the developed GAN can achieve better results (in terms

of accuracy) with a significantly reduced amount of data.

AMBi-GAN [55] is bidirectional LSTM GAN for anomaly detection in industrial multidimen-

sional time-series data. Unlike univariate time series, multivariate time series consists of

multiple measurements in a given time step. The authors propose solving the difficulties

of other methods in extracting temporal information, feature extraction and lack of large

amounts of labelled data.

The architecture consists of a discriminator and a generator using the same bidirectional

LSTM network (AMBi-LSTM). An attention mechanism is also proposed to learn the im-

portance of each time-series element. It calculates a given sample’s weight to determine

how much it should affect the parameters in the network.

In the training phase, each sample is extracted using a sliding window that subdivides the

whole dataset into equal-length subsequences (each with multiple values for a given time).

The generator’s goal is to generate windows with the same distribution as the original ones.

The discriminator receives real and false samples and must distinguish between them.

When both components have reached an equilibrium, anomaly detection can be performed.

Random samples are extracted from the testing dataset and fed directly to the discriminator.

At the same time, the samples suffer from inverted mapping into the latent space, so they

can be given to the generator, whose goal is to reconstruct them as well as possible. Next,

the Discriminator Score is calculated by combining the loss from the discriminator and the

reconstruction error from the generator.

AMBi-GAN and the other two baselines were evaluated on precision, recall and F1-score

on three time-series datasets. The proposed solution outperformed the other baselines on

every metric. In addition, several variations of AMBi-GAN were developed, from changing

the number of hidden layers of AMBi-LSTM to assessing which one performed better on

the chosen datasets.

3.2 Adversarial Anomaly Detection 41

TAnoGAN [56] was designed to detect anomalies in industrial time-series data with a small num-

ber of samples. The model consists of a generator G and a discriminator D, with both ar-

chitectures based on LSTM networks. In the training phase, G learns to generate realistic

time-series sequences from a latent space distribution, and D distinguishes fake samples

from real ones. The samples consist of small time series sequences extracted from the

dataset with a sliding window method.

In the detection phase, real-time-series samples are mapped to the latent space and then

reconstructed by G. Anomaly detection is done by evaluating the reconstruction error of the

synthesized sample with the original one. Mapping from the original sample to the latent

space is done iteratively. First, a random sample zi from the latent space z is chosen and

fed to G, which generates a fake sample. The resulting fake data G(zi) is compared to the

original sample x with a point-wise dissimilarity measure LR. Next, the parameters of zi are

updated and thus, in the next iteration, the reconstructed sample will more closely resemble

the authentic one. This process is repeated Λ times (a predefined parameter). At the end of

the inverse mapping, the final zi is compared to the original sample, and the anomaly score

is obtained with the weighted sum of LR and the discriminator loss LD.

To deal with the small number of samples in the datasets, the authors varied the number of

hidden layers in each architecture. It was observed that discriminators with many hidden

layers easily overfitted the data. In contrast, generators with small numbers of hidden layers

failed to synthesize realist time series sequences.

The solution is evaluated on a large number of time-series datasets along with other unsuper-

vised state-of-the-art anomaly detection methods. The performance (measure in accuracy,

recall, F1-score, AUC, and Cohen Kappa Score) demonstrates that TAnoGAN is more suited

than other models to detect anomalies in small time-series datasets.

MinLGAN [57] aims to detect outliers by generating both normal and abnormal samples during

the training phase. The authors employ minimum likelihood regularisation to the generator,

G, to produce more abnormal samples and prevent them from converging to the normal

distribution of the data. This solution ensures that the performance of the discriminator, D,

does not deteriorate in the final phases of training as it receives samples from the generator

that are increasingly closer to the real distribution of data. The regularization is done by

adapting the loss function of the generator with a KL divergence measure. It penalizes the

generator when the produced samples are distributed close to the dataset and, thus, prevents

the convergence of G with the original data distribution.

To deal with the instability of the discriminator in the early phases of training resulting from

the data’s randomness, the authors propose Ensemble learning. Two ensemble methods are

presented, which are bagging and boosting. The latter consists of a set of models trained

from random subsamples of the training dataset. In contrast, the models are obtained in

the former by emphasizing training samples that other models misclassified. The authors

independently trained a set of D models in line with this. The outputs of each discriminator

State of The Art 42

(before sigmoid activation) are combined into a single value in two different score functions

for anomaly detection (one is scaled to account for the minimum and maximum ranges of

the outputs).

In the experimentation phase, three GANs were created. One baseline MinLGAN and two

other models with ensemble learning and the score functions that were defined. All of them

were trained along with five other unsupervised anomaly detection approaches on an image

and several tabular datasets. Despite providing good results in all datasets, the authors

pointed to the difficulty felt in the training phase due to the complexity of the proposed

approach.

ATTAIN [58] is an architecture that makes use of GANs to detect anomalies in cyber-physical

systems (CPS). Unlike other methods, ATTAIN can learn data distribution at runtime with-

out needing static data. This allows it to adapt to previously unseen novel attacks continu-

ously.

The solution consists of a Digital Twin Model, a digital replica of a real system, and a

Digital Twin Capability; the GAN used for anomaly detection. The first model is built

with historical and real-time measurements from sensors and actuators, while the detector

only learns from real-time data. The generator’s objective is to produce samples from the

latent distribution into the original data distribution. The function of the discriminator is

to distinguish between normal, and attack samples that come either from real-time or are

synthesized by the generator. Therefore, the output of the discriminator consists of four

categories.

The generator, G, is composed of an input layer which encodes discrete values into one-hot

vectors; a Graph Convolutional Layer (GCN) that is tasked with learning the independent

relationships between sensors and actuators; a pooling layer which collapses the outputs of

the previous layers; and an LSTM layer with the function of retaining the temporal features

of the data. The discriminator receives both real and generated samples, which are concate-

nated and suffer a linear transformation. Next, the resulting vector is passed through a tahn

activation function before being passed to the next layer. The following step calculates a

ground truth label for the received fake sample. It is first given to the Digital Twin Model

that predicts its state, and later, the hamming distance d between the predicted and real state

is obtained to help in the labelling process. The discriminator determines if the sample is

real or fake. In the case of the latter, the d measure from the previous step is compared to

determine if the example is a regular or attack adversarial sample. The loss between the

ground truth and the likelihood (obtained by softmax of the output of D) is calculated in the

final layer.

The designed model was tested with two other baselines on three intrusion detection datasets.

The performance metrics were outlier precision, recall and F1-score. A comparison of all

the results shows that using the digital twin model to guide the training of the GAN im-

proved the overall outlier detection capability of the model compared to the other solutions.

3.2 Adversarial Anomaly Detection 43

However, the authors recognize the possible threats to validity as they could not test the

solution on a real CPS system.

3.2.5 Analysis

In Table 3.4, a brief analysis of the SLR results will be carried out to study the effectiveness

of the chosen methodology. Aside from the paper name and year, four other categories were

identified to compare the evaluated solutions:

• Training Objective: This category aims to describe the training approach for a given model.

With this, the goal is to compare models that fit the normal data distribution during the

training phase and other alternatives. This allows for a straightforward summary of the

training approaches that can be adopted to solve the proposed problem.

• Anomaly Detection: In this group, the goal is to identify several of the approaches that can

be used to detect anomalies. These methods can be relative to calculating an anomaly score

or, in some cases, using classifiers to achieve this goal. The possible values for this category

include Reconstruction errors, Discriminator Loss (D loss), and Classifiers.

• Architecture: This class aims to analyze the different types of architectures defined in each

of the papers. These can be "Normal" in the case they use the vanilla architecture of GANs;

"Mixed" when other components like encoders, E, classifiers, C, feature extractors (FE) and

Self-attention devices (SA)6 are used; and autoencoders (AE).

• Application: This last category describes the specific problem that each of the designed

models tries to solve (i.e. the scenario to which they are applied). Some models have no

direct application and can be used in many types of problems, and because of this, they have

no assigned application (N/A)

Figure 3.9 shows the number of analysed papers per year, and Figure 3.10 shows the year

distribution of the papers analysed by hand after the application of the citation filter (Figure 3.4).

The majority of the papers that were chosen were from 2020. Even after the restrictions applied to

the search query, a significant portion of the results is still comprised of GANs for image synthesis.

Further analysis can be done with regard to the search questions defined in Section 3.2.1. For

G_SQ1, it was shown that several solutions apply GANs or variations in anomaly detection in

tabular datasets. Surprisingly, some models worked on image and tabular datasets with the proper

adjustments. Additionally, 40% use either an autoencoder or parts of it to help with anomaly

detection in complex data types and 9/20 use some variation of reconstruction errors to determine

if a sample is anomalous.

As for G_SQ2, it was shown that most methods (75%) learn the normal distribution during

the training phase and then detect anomalies. 20%, generate anomalies (usually outliers) that are

6Module used during the training phase to make the discriminator and generator learn the data features more thor-
oughly.

State of The Art 44

Paper Year Training Objective Anomaly Detection Architecture Application

MAD-GAN [36] 2019 Normal Reconstruction + D loss Normal Time Series

ALAD [38] 2018 Normal Reconstruction Mixed (E) N/A

USAD [39] 2020 Normal Reconstruction AE N/A

MO-GAAL [40] 2020
Outlier Generation

Division Boundary
Classifier Mixed (C) N/A

IGAN-IDS [41] 2020 Outlier Oversampling Classifier Mixed (FE + C) Intrusion Detection

Jiang et al. [42] 2019 Normal Reconstruction AE Time Series

TadGAN [44] 2020 Normal Reconstruction + D loss Mixed (E) Time Series

adVAE [45] 2020 Normal Reconstruction AE N/A

Blance et al. [46] 2019 Outlier Oversampling Classifier AE High Energy Physics

FGPAA [47] 2020 Normal Reconstruction Mixed (AE) Roll Bearing Fault

FGAN [48] 2019
Normal

Division Boundary
D loss (adapted) Normal N/A

MENSA [49] 2021 Normal D (initial layers) AE Intrusion Detection

Liu et al. [50] 2022 Normal Classifier Mixed (C + SA) Roll Bearing Fault

DOPING [51] 2018 Minority Oversampling Classifier/Model AE
Performance

Improvement

Bot-GAN [52] 2018 Normal Classifier (D) Normal Bot Detection

Yuan et al. [53] 2020 Normal Reconstruction Normal
Power Outage

Detection

AMBi-GAN [55] 2021 Normal Reconstruction + D loss Normal Industrial Time Series

TAnoGAN [56] 2020 Normal Reconstruction Normal Time Series

MinLGAN [57] 2018 All Data D loss Normal N/A

ATTAIN [58] 2021 Normal D Loss Normal Cyber-physical Systems

Table 3.4: List of reviewed papers for Adversarial Anomaly Detection.

3.2 Adversarial Anomaly Detection 45

Figure 3.9: Number of reviewed papers per year.

Figure 3.10: Number of reviewed papers after citation filter step (Figure 3.4)

State of The Art 46

used to train classifiers for detecting anomalies. Only [57] makes use of both abnormal and normal

data distribution in the training phase. This indicates that most adversarial solutions for anomaly

detection can generate realistic data with the same distribution as the original data. However, not

all use the discriminator to distinguish between normal and abnormal samples, as they employ

classifiers. In addition, some architectures (50%) use a reconstruction-based anomaly detection

mechanism that employs the generator (often with the discriminator, but sometimes alone).

3.2.6 Threats to SLR Validity

The chosen limit for the minimum citations might have been too restrictive, especially for the

papers recently published. To address this concern, an adaptation was made to the inclusion criteria

I4 (Table 3.3) to allow for fewer citations in earlier papers, aiming to mitigate this risk. Despite this

adaptation, the number of analyzed papers for 2022 was notably smaller than in previous years.

This raises the concern that some of the newer and relevant papers published during that period

might have been inadvertently overlooked.

Furthermore, as only one search engine was used for the SLR, there is also the risk that some

relevant papers from other platforms were not encountered during this process.

Another threat may arise due to the terms used to search for relevant papers. After analyzing

multiple articles, various synonyms for both GANs and anomalies were collected to reach the most

number of papers possible. Despite this, there exists the possibility that some authors didn’t use

any of these terms to characterize their approach in the title, abstract or keywords of the document.

This way, there is a small risk that some relevant papers might have eluded the search query.

Similarly, by prohibiting documents that referenced images, or anything other than tabular

data, some relevant papers might have been excluded. This can occur, for instance, in architectures

that were firstly designed for image anomaly detection but were also suited for tabular datasets.

3.3 Summary

This chapter explained the methodology used to aggregate the papers relevant to the problem in

question. For each part, a set of search questions were defined (Section 3.1.1 and 3.2.1) followed

by the respective queries (Sections 3.2.2 and 3.1.2). The selection criteria and the processing

pipeline were defined in Sections 3.1.3 and 3.2.3. Summaries of each of the selected papers for

both parts are provided in Sections 3.2.4 and 3.1.4. Next, a categorization and summary of the

processes are performed in Sections 3.1.5 and 3.2.5, followed by the threats to the SLR process

(Section 3.1.6 and 3.2.6).

In the clustering part, 20 papers were selected for final evaluation after the aggregation of

results from both Scopus and Google Scholar. Several novel clustering algorithms and methods

were identified. Furthermore, most articles talked about applying clustering methods to improve

machine-learning tasks in some way, which was the main goal of this part.

3.3 Summary 47

For the second part, the same number of papers were analyzed; however, these were retrieved

from only one platform. As the search was more restrictive, the number of papers was signifi-

cantly smaller than in the previous part. Despite this, several novel GAN-based architectures were

identified, and the majority of the papers were published in 2020. This is also due to the novelty

of this area, as many solutions were published in the last few years.

Chapter 4

Research Statement

This chapter will provide an overview of the problem this thesis is trying to solve. First, a brief

description of MULTI-VP’s workflow is provided (Section 4.1), followed by existing methods for

initial flow estimation (Section 4.2). An extensive analysis of the data used in the previous and

subsequent approaches is done in Section 4.3. This thesis’s hypothesis and research questions are

proposed in Section 4.4.

4.1 MULTI-VP

MULTI-VP [2] is a global MHD model that simulates the three-dimensional structures of the

solar wind. In addition, it also estimates the conditions at the Sun’s chromosphere, transition re-

gion, corona, and low heliosphere. The model computes many one-dimension solar wind solutions

from full flux-tube geometries and heating functions. Background magnetic field geometries are

extrapolated from publicly available magnetogram data. The method can estimate solar wind pro-

files across the Sun’s atmosphere up to 30 solar radii. The results directly link the geometry of

magnetic flux tubes in the lower corona with the distributions of fast and slow solar wind flows.

MULTI-VP proved faster than other MHD models and did not suffer from cross-field diffusion

effects. For a more in-depth data analysis, refer to the next chapter.

Figure 4.1: MULTI-VP methodology dataflow. The model takes the partial flow and its associated
expert initial guess as input and then derives a better solution.

48

4.2 ML for Initial Flow Estimation 49

A MULTI-VP simulation workflow overview can be seen in Figure 4.1. It takes as input

flux-tube partial flows and initial expert estimations for the solar wind conditions. After a long

simulation time, these last estimations are approximated to final estimates more congruent with

the actual conditions on the Sun’s surface.

4.2 ML for Initial Flow Estimation

Due to its complexity and many calculations, MULTI-VP, like other MHD simulations, still

takes a long time to reach viable solar wind predictions. Furthermore, the need for initial expert

guesses also significantly delays the process. These factors directly affect the prediction capability

and preparation for extreme solar events. Recently in "Initial Condition Estimation in Flux Tube

Simulations using Machine Learning" [4], it has been proved that machine learning techniques

can accurately produce good initial flow conditions that MULTI-VP can later use. The authors

also proved that the quality of the flow estimations is directly linked to the total execution time of

the simulation. These allow for faster convergence of the MHD simulation as the initial estimates

are closer to the final solution.

Figure 4.2: ML methodology dataflow. An ML model estimates the initial conditions of a given
partial flow. These are then passed to MULTI-VP, approximating them into a final solution.

The approach, illustrated in Figure 4.2, uses an ML model to predict the initial expert estimates

from the initial partial flow input. Analogous to the method presented in Section 4.1, MULTI-VP

takes as input the partial flows along with their initial conditions predicted by the ML model.

Figure 4.3: Model training method. Takes as input initial partial flows and tries to predict flow
estimates close to the ones from previous MULTI-VP simulations.

Research Statement 50

An illustration of the training method can be seen in Figure 4.3. In this phase, the model takes

as inputs initial partial flows and tries to predict the initial conditions. Next, the predictions for

a given flow are compared to those from previous MULTI-VP runs to calculate the prediction’s

loss and update the model’s parameters with backpropagation. The logic behind this was that the

model would learn to predict initial estimations closer to the final solution, and thus, the simulation

would converge faster.

Due to the high simulation time of MULTI-VP, a small number of files were randomly selected

from the whole dataset to be used as a validation set. These were excluded from the training and

testing phases. The performance of the ML method was evaluated by feeding MULTI-VP with the

predictions of the validation dataset and then assessing the error of the simulation estimates and

the overall computation time.

However, the reduction in execution time was minimal. The authors posit that the presence

of anomalies during the training phase might have hampered the overall prediction quality of the

model. Another potential issue arises from the nature of the data, which exhibits significant disper-

sion, with high concentrations in certain areas and low concentrations in others. This characteristic

can pose challenges as the neural network model tends to converge towards the densely populated

points, potentially failing to learn the patterns in the peripheral areas.

4.3 Exploratory Data Analysis

The data used by MULTI-VP and the prediction model consists of magnetogram data from

the Wilcox Solar Observatory. Each file contains 12 columns representing measurements of the

magnetic field in the solar atmosphere at different heights. Every variable comprises 640 points

(abscissas) measured at different radial distances from the Sun (up to 30 Solar radii). In addition,

the data is distributed evenly throughout five batches, each consisting of solar wind measurements

at different surface locations. For this work, only six columns will be used, as the others are

derivations of these and, thus, are redundant.

Input (Partial Flows)

R[Rsun] B[G] α[deg]

Output (Estimations)

n[cm−3] v[km/s] T [MK]

Table 4.1: Data columns of magnetogram used by MULTI-VP.

The data columns can be seen in Table 4.1. These are divided into two parts: the input and the

output (predictions). The former comprises the set of variables the simulation uses to approximate

solar wind conditions, and the latter the initial expert guesses needed to kickstart the multiple flux

simulation. Note that, like in Barros [4] (Figure 4.3), the output variables are the predictions of

previous MULTI-VP simulations and not actual expert predictions.

The input data includes the magnetic field amplitude, B, the flux tube inclination, α , and the

radial coordinate, R. The output data consists of the number of charged particles per unit volume,

n, the velocity, v, and the temperature, T .

4.3 Exploratory Data Analysis 51

Figure 4.4: Joint plot of the input variables of each file used in this work. The first row is the
plot of the radial coordinate radius, R, the second the magnetic field, B, and the last the flux tube
inclination α . All are plotted in function of position in the magnetogram file.

Figure 4.4 shows a joint plot of the input variables. Based on these plots, it can be inferred that

several input files contain anomalous data. This is evident from the graph of variable B, where

specific files exhibit significant deviations from the overall distribution. Furthermore, there are

instances of faulty lines within the normal distribution, which further complicates the detection of

these anomalies.

As previously explained (in Section 4.1), MULTI-VP requires initial expert guesses to kick-

start the simulation. These consist of the output variables presented in Table 4.1 and, during the

simulation, are approximated to better solutions. In line with the work carried out in Barros [4],

we will be using the outputs of previous simulations as initial guesses (refer to Figure 4.3) for

more details). Figure 4.5 shows the joint plot of the output variables. Similar to the input plots,

several faulty predictions can be seen in all variable plots, resulting from simulations carried out

on anomalous inputs.

A preliminary statistical analysis of the data can be seen in tables 4.2. The mean, standard

deviation, minimum, maximum, and quartiles of each variable are presented in it. Out of the three

input columns used, the magnetic field (B) has the highest standard deviation, which might indicate

that this physical quantity is more prone to anomalies than the others. The radial coordinate (R)

has the lowest standard deviation, which is expected, as it is almost a constant value for each file.

Research Statement 52

Figure 4.5: Joint plot of the output variables of each file used in this work. The first row plots
the number of charged particles per unit volume, n, the second the velocity, v, and the last the
temperature, T . All are plotted in function of position in the magnetogram file.

4.3 Exploratory Data Analysis 53

R [Rsun] B [G] α [deg] n[cm−3] v[km/s] T [MK]

mean 4.755 5.471 1.885 8.630e+13 2.553e+02 1.384

std 7.165 9.178e+01 1.472e+01 6.839e+14 2.148e+02 8.968e-01

min 1.000 5.122e-05 -8.763e+01 1.973e+01 -6.757e-03 5.765e-03

25% 1.021 4.051e-02 -1.079e-01 1.622e+04 4.926e+01 7.179e-01

50% 1.151 2.095 0.000 2.351e+06 2.110e+02 1.337

75% 4.250 5.582 9.997e-01 2.132e+07 4.508e+02 2.098

max 3.150e+01 2.470e+05 8.925e+01 1.010e+16 1.889e+03 1.990e+01

Table 4.2: Statistical Analysis of the dataset.

The output variables have a similar standard deviation, with the number of charged particles per

unit volume (n) having the highest and the temperature (T) the lowest. The velocity (v) has a

standard deviation similar to T .

Figure 4.6: Correlation plot of all variables used in this work.

In addition to these statistics, the correlation between the variables can be seen in Figure 4.6.

There is virtually no correlation between the input variables (R, B, and α), which is expected, as

they are independent observations.

The output variables (n, v, and T) are somewhat correlated. The temperature, T , is positively

Research Statement 54

Figure 4.7: Plot of the value distributions of the input (left) and output (right) variables.

correlated with the velocity of the solar wind, v, which is expected as with higher wind speeds, the

particles there is a tendency for higher temperatures. The opposite is true for the volume density

of the solar wind, n, which is negatively correlated with the temperature. This is expected as with

higher densities, the particles will have less kinetic energy and, therefore, a lower temperature.

The velocity of the solar wind is also slightly negatively correlated with the volume density.

A high correlation between the radial coordinate R and the velocity v can be observed, as v is

expected to increase with distance from the Sun. Additionally, the temperature of the solar wind

drops as the distance to the Sun increases, which is reflected in the negative correlation between R

and T .

A distribution plot of each input variable can be seen in the left column of Figure 4.7. As

expected, the values of R range from 1 to about 31.5. This is corroborated by Table 4.2, with most

values concentrated around 1. B[G] displays a skewed distribution. At the same time, α[deg] is

4.4 Hypothesis 55

more evenly distributed (almost symmetric in relation to x = 0).

Contrary to the findings in the input variables, the values of the output variables are much

less evenly distributed. The number of charged particles per unit volume, n, has a very skewed

distribution, with most values being concentrated in the 103 to 107 range. The velocity, v, has a

larger distribution of values, with most indicating slower velocities. The temperature, T , has a

strange distribution, with most values concentrated near 0 and the rest ranging from 0.5 to 5.

4.4 Hypothesis

In an attempt to solve the issues of the previous approaches, the following hypothesis can be

formulated:

By integrating clustering and adversarial anomaly detection techniques, the initial

conditions predicted by RNNs for the MULTI-VP simulator will be closer to the final

simulation results and contribute to faster executions.

The following questions offer a disambiguation of the proposed hypothesis:

Q1 What do estimates closer to the final simulation mean? As explained in Section 4.1, MULTI-

VP takes initial flow conditions provided by experts as input and slowly converges to a final

and viable solution. With these terms, we intend to verify if the estimates predicted by the

RNN models will be nearer to the simulation outputs than the original expert guesses.

Q2 What does "faster execution" mean in this context? These terms are mainly used to describe

the computation time that MULTI-VP takes to reach a viable solution. A faster simulation

would mean a decrease in the time the simulation is busy trying to reach a solution.

Taking these factors into consideration, the research questions of this thesis are:

RQ1 Are clustering methods capable of detecting characteristics in the dataset that were over-

looked by the original RNN and would help with the prediction task? This question aims to

assess the potential improvement in estimating solar wind by incorporating clustering tech-

niques during the training of the prediction model. Specifically, it investigates whether the

clustering methods can identify and capture dataset characteristics previously overlooked

by earlier iterations of the RNN model. The objective is to determine if the integration of

clustering techniques can ultimately result in better estimates of solar wind.

RQ2 Do the estimates obtained with clustering-based training significantly improve the simula-

tion’s performance? This question aims to validate whether using clustering in the method

significantly reduces the computation time of MULTI-VP for solar wind estimates. In addi-

tion, we are trying to assert if the final estimates from MULTI-VP are closer to the desired

outcome.

Research Statement 56

RQ3 Can adversarial learning methods detect anomalies in solar wind profiles? Considering

anomaly samples as the positive class, we mostly try to reduce the False Negative Rate

(FN) since it has the most detrimental impact on the training of the predictive model. As a

secondary priority, we will focus on reducing the amount of False Positives (FP) to ensure

that almost no relevant samples are excluded from the training process.

RQ4 Does the resulting dataset significantly improve the predictive ability of the RNN? If the

resulting dataset following the removal of anomalies leads to an improvement in the model

used to predict initial conditions from input flows. In other words, does the mean square

distance between the actual estimations and those predicted by the model decrease compared

to the previous method?

RQ5 Does the improved predictive ability of the RNN result in a further reduction of execution

time for MULTI-VP? This question aims to clarify if the developed model for initial flow

estimation can produce improved approximations of solar wind flows and thus reduce the

time it takes for MULTI-VP to reach a solution.

4.5 Methodology

To tackle the abovementioned questions, we will employ clustering techniques on the magne-

togram data from various sources (e.g., Wilcox Solar Observatory) to improve the performance of

the initial flow estimation model. With initial conditions closer to the final ones, we expect that

MULTI-VP will reach better solutions in a smaller time frame. The research approach for this

phase will be performed quantitatively, with the estimates from this new method being compared

to the ones obtained in Barros [4].

In addition to this, we will also employ adversarial learning techniques for anomaly detection

in solar wind profiles. This approach will be used to assert if extreme data values hinder the RNN

model’s overall performance and, consequently, the MULTI-VP simulation. The research for this

phase will take on a qualitative and quantitative approach. Due to the lack of labelled data and

consensus on normal and anomalous profiles, the results from anomaly detection will need to be

evaluated visually. In other words, the chosen anomaly detection approach will need to be picked

based on the visual inspection of the dataset after anomaly detection. Like in the clustering phase,

the comparison of this approach and the previous ones will be made in a quantitive way.

Chapter 5

Clustering

In this part of the thesis, we used clustering methods to improve the performance of the previ-

ous prediction models. The goal is to find groups of data points that are similar to each other but

different from the rest of the data. This is done by finding the distance between each data point

and the rest of the data. Most algorithms calculate the distance between two data points using a

distance metric.

In this chapter, the clustering methods that were used will be briefly explained in section 5.1.

Section 5.2 provides an overview of the clustering validity metrics used in this work. Section 5.4

presents the experiments undertaken to determine the most appropriate clustering method for the

dataset. Section 5.5 explains the experiments undertaken with the solar wind prediction model

with the most appropriate clustering from the previous task. Finally, Section 5.6 provides an

overview of the work in this chapter.

5.1 Clustering Methods

Clustering is defined as finding and then grouping the data values that are close to each other

in some way. Due to these reasons, clustering works as a valuable technique not only for data

analysis but also for enhancing machine learning performance. Additionally, clustering can be

used for anomaly detection, as abnormal samples tend to be far from the rest of the data. In this

section, the clustering methods that were used in this work will be presented.

There are several approaches to the clustering task; however, these can be divided into two

main categories: Hierarchical and Partitional. In the hierarchical approach, the data is iteratively

divided in accordance with its patterns in a bottom or top-down approach. This category is further

subdivided into agglomerative and divisive techniques. For the first, clusters start at a single point

and are iteratively merged with other points forming increasingly larger clusters. On the other

hand, the divisive approach starts with all the data points in a single cluster and then divides

them into smaller clusters. These methods tend to originate dendrograms representing the nested

grouping of patterns and similarity levels. [59, 60]

57

Clustering 58

The Partitional approach divides the data into a set of non-overlapping clusters. These methods

are usually based on optimising a criterion function, such as minimising the sum of squared errors.

The most common methods in this category are K-Means and K-Medoids. This category can also

be subdivided into distance, density and model-based approaches. The distance approach divides

the data into clusters based on the distance between the data points, such as in the KMeans method.

Density-based approaches are based on the idea that clusters are dense regions of data points that

are separated by regions of lower density. Model-based approaches often apply decision trees or

neural networks to learn the patterns in the data and then use these models to cluster the data. [60]

5.1.1 K-Means

K-Means aims to find a partition of the data into K clusters, where each data point belongs

to the cluster with the nearest mean. The K-means algorithm is an iterative algorithm randomly

assigning each data point to a cluster. Then, the mean of each cluster is calculated, and the data

points are reassigned to the cluster with the nearest mean. This process is repeated until the data

points stop changing clusters.

The number of divisions is defined by the k parameter, which can be determined with the help

of the Elbow Test, a heuristic method used to find the optimal number of clusters. This method

plots the sum of squared errors (SSE) for each value of k and then finds the value of k that has

the "elbow" in the plot. This value of k is considered to be the optimal number of clusters. This

method presents some disadvantages, as it is not always clear where the "elbow" is, making it a

subjective method. Also, the SSE is not a good measure of the clustering quality, as it is biased

towards clusters of similar sizes.

K-means is advantageous compared to other clustering methods because of its simplicity and

the fact that it doesn’t require any prior knowledge of the data. However, the disadvantages are

that it is biased towards spherical clusters with similar sizes, is sensitive to the initial position of

cluster centroids and requires the determination of the number of clusters beforehand.

5.1.2 SOM

This method is based on the idea of self-organizing maps, which are artificial neural networks

used to find a low-dimensional representation of a high-dimensional space. It is usually employed

to reduce the dimensions of the data to a map but can also be used as a clustering method, as it

groups similar data.

Unlike other neural network algorithms, SOM is trained with competitive learning. In this

method, neurons compete to be the most similar to the data point. This point can only cause the

activation of a single neuron in the network, called the Best Matching Unit (BMU). At the end of

the training process, each neuron is specialized in a specific region of the input space, presenting

a cluster.

The algorithm starts by randomly assigning each data point to a neuron in the map. Next,

a random input vector is chosen from the dataset, and the BMU is determined. This is done by

5.1 Clustering Methods 59

measuring the distance between each neuron’s input vector and weight vectors and then choosing

the neuron with the minimum distance to the input. The BMU and its neighbours are then updated

to be more similar to the input vector. This process is repeated until the map converges.

The advantage of this algorithm is that it can map high-dimensional input vectors to a low-

dimensional space while preserving the original topology of the data. Unlike other clustering

methods, which cannot provide good results for data with high dimensionality.1

5.1.3 Agglomerative Clustering

Agglomerative clustering is a hierarchical clustering method that assigns each data point to

its cluster. Then, the two closest to each other are merged into a single cluster. This process is

repeated until all the data points are in the same cluster. These are combined by comparing intra-

cluster and inter-cluster distances. Distance between the clusters is calculated using a linkage

function, and the distance between the data points in the clusters is calculated using a distance

metric (normally the Euclidean distance). These two parameters directly influence the size and

shape of the clusters.

The number of clusters can be determined with the help of a dendrogram plot. This plot shows

the distance between the clusters as they are merged. Each leaf in the dendrogram represents a data

point fused with a similar point into the same cluster as the height of the tree increases. The height

of the fusion (on the vertical axis) represents the dissimilarity score between the two clusters.

Higher fusions indicate that the clusters are more distinct. As a rule of thumb, the number of

clusters can be determined by looking at the height of the fusion(s) with the most distinct clusters

(higher dissimilarity scores).2

One of the problems with this method is that there is no clear way to determine the number of

clusters, as the dendrogram doesn’t always produce clear divisions, making choosing the number

of clusters subjective.

5.1.4 DBSCAN

This unsupervised clustering method was first introduced in Ester et al. [61]. It is a density-

based clustering algorithm used to find clusters of data points close to each other. The algorithm

assigns "core" labels to the points with at least minPts points within a distance eps from them.

Points that are reachable from a core point, but do not have at least minPts points within a distance

eps from them, are assigned "border" labels. These are considered part of the cluster formed by the

core point. Points not reachable from any core point are assigned "noise" labels and are considered

outliers. Because of this, the algorithm provides a basic method for outlier detection.

The algorithm is advantageous because it doesn’t require determining the number of clusters

beforehand, as it can find clusters of any size and is also robust to outliers. Despite this, it is

1Self-Organizing Maps https://sites.pitt.edu/~is2470pb/Spring05/FinalProjects/Group1a/
tutorial/som.html

2Agglomerative Clustering https://www.datanovia.com/en/lessons/
agglomerative-hierarchical-clustering/

https://sites.pitt.edu/~is2470pb/Spring05/FinalProjects/Group1a/tutorial/som.html
https://sites.pitt.edu/~is2470pb/Spring05/FinalProjects/Group1a/tutorial/som.html
https://www.datanovia.com/en/lessons/agglomerative-hierarchical-clustering/
https://www.datanovia.com/en/lessons/agglomerative-hierarchical-clustering/

Clustering 60

sensitive to the parameters minPts and eps, with slight changes in these parameters significantly

impacting the results.

5.2 Validity Measures

As previously stated, one of the main difficulties in clustering is deciding the right number of

clusters to ensure a clear data division. This is a subjective process in which the use of validity

measures can aid. These measures, often called indices, are used to evaluate the quality of the

clustering and can be used to determine the optimal number of clusters. In this section, the validity

measures that were used in this work will be presented.

Cluster validity indices can be divided into three categories: external, internal and relative.

External validity indices compare the clustering results with the ground truth (labels). On the

other hand, internal validity indices serve to evaluate the quality of the clustering without the use

of external information. Relative validity evaluates the clustering structure by varying different

parameters of the algorithm, such as the number of clusters.

External validity criteria will not be considered for this study as no ground truth information is

available. Instead, internal and relative validity approaches will be used to evaluate the clustering

quality. The internal validity indices that were used are the following:

Silhouette Score (S). This score is among the most widely used to evaluate clustering goodness.

It is also called the mean Silhouette Coefficient for all clusters and is calculated with the mean

intra-cluster distance and the mean nearest-cluster distance. Observations with a score close to 1

are well clustered, while observations close to -1 are likely to be assigned to the wrong cluster.

Scores around 0 indicate overlapping clusters.

Calinski-Harabasz Index (CH). This index is also known as the Variance Ratio Criterion. It is

calculated by dividing the between-cluster or inter-cluster dispersion by the within-cluster or intra-

cluster dispersion. The higher the value of the index, the better the clustering. Like the silhouette

score, it evaluates the goodness of the clustering structure, with higher values indicating better

clustering; contrary to the previous score, it has no reasonable bound and can take any value.

Because of this, it is difficult to use this metric to compare clusterings generated with different

methods.

Davies-Bouldin Index (DB). This index is calculated by taking the average similarity measure

of each cluster with its most similar cluster. This is done by calculating intra-cluster dispersion

for each cluster, i, followed by the separation measure of each cluster with every other cluster, j.

Then the similarity of a cluster is obtained by dividing the sum of the intra-cluster dispersions of

i and j by the distance between the centroids of the two. Next, the maximum similarity measure

is selected for each cluster, and the average of these values is calculated. Unlike the previous

5.3 Dimensionality Reduction 61

measures, the lower the value of the index, the better the clustering, as this indicates less similarity

between clusters.

5.3 Dimensionality Reduction

In Data Science and Machine Learning, dimensionality refers to the number of features of the

dataset. The dimensionality of a dataset can be reduced by removing features irrelevant to the

problem at hand. This can be done using feature selection methods, which select the most relevant

features for the task. However, this can also be done by using dimensionality reduction methods,

which transform the data into a lower-dimensional space while preserving the most important

information.

These processes are useful in these contexts because they can reduce the computational cost

of the algorithms, as well as the time needed to train the models. They can also improve the

performance of the algorithms, as they can remove noise and irrelevant features from the data.

From the data analysis in Section 4.3, it can be seen that each line, representing a distinct

variable, has 640 abscissas which translate to the same number of features. This extremely high

number of features can be problematic for some algorithms, as the features are not all equally

relevant to the problem at hand. Therefore, it is important to reduce the dimensionality of the

dataset so that the algorithms can be trained more efficiently and efficiently.

In this case, variables with the same repeating values will be considered less important and

discarded by the dimensionality reduction algorithm, emphasising other variables with more vari-

ation. This will be the case for the R variable, which is almost constant throughout every line

measurement and thus provides almost no meaningful information.

For this work, we will be using the following dimensionality reduction methods:

PCA Principal Component Analysis is a linear dimensionality reduction method that uses Singu-

lar Value Decomposition to project the data into a lower-dimensional space. It is advanta-

geous because it is fast and efficient but also sensitive to outliers.

t-SNE t-Distributed Stochastic Neighbor Embedding is a non-linear dimensionality reduction method

based on the idea that similar data points should be close to each other in the lower-

dimensional space. It is advantageous because it can preserve the topology of the data,

but it is also computationally expensive.

5.4 Experiments

After identifying the most common clustering and dimensionality reduction methods, the next

step is to apply them to the dataset and evaluate their performance. This section will describe the

experiments that were carried out to try to better understand the dataset.

Clustering 62

(a) Magnetic Field (B). (b) Flux-tube inclination (α).

Figure 5.1: TimeSeriesKMeans Elbow Tests

The data was scaled in every experiment with the QuantileTransformer module from the

sklearn [62] library. This module transforms the data to follow a uniform or a normal distri-

bution. This is done to avoid the influence of outliers in the results of the clustering algorithms.

This scaling method was also chosen out of consistency, as it will be later used to scale the data

for the machine learning algorithms. Additionally, every algorithm and method that depends on

random initialization was set to the same seed to ensure reproducibility.

5.4.1 Time Series KMeans

The first method to be tested was the TimeSeriesKmeans3 clustering algorithm from tslearn

[63]. As the name indicates, this algorithm is a variation of the K-means algorithm used for time

series data. It is advantageous as it can cluster time series data without transforming it into a

lower dimension, which can be problematic because it can lead to the loss of information. This

approach was tested due to these reasons, as the data used in this thesis has some similarities

with time series data, which are a large number of features and somewhat correlated consecutive

observations. Despite this, the method is still based on the K-Means algorithm presented in Section

5.1.1 and presents the same disadvantages as the original algorithm.

Clustering was conducted first on the magnetic field (B) and then on the flux tube inclination

(α) variable. For each one, an elbow test was conducted to try and determine the most appropriate

number of clusters.

Figure 5.1a shows the elbow test for the magnetic field variable. From this plot, it can be seen

that the elbow is at k = 4, which indicates that the optimal number of clusters is 4. However, this is

not a clear elbow, as the curve is not smooth, and the elbow is not very pronounced. This indicates

that the optimal number of clusters is unclear, and the results might not be very good.

3TimeSeriesKMeans https://tslearn.readthedocs.io/en/stable/gen_modules/clustering/
tslearn.clustering.TimeSeriesKMeans.html

https://tslearn.readthedocs.io/en/stable/gen_modules/clustering/tslearn.clustering.TimeSeriesKMeans.html
https://tslearn.readthedocs.io/en/stable/gen_modules/clustering/tslearn.clustering.TimeSeriesKMeans.html

5.4 Experiments 63

K S score DB CH

2 0.524 0.669 20376

3 0.511 0.628 25585

4 0.498 0.606 30677

5 0.458 0.648 31995

6 0.449 0.671 34394

7 0.431 0.695 35462

8 0.422 0.712 36070

9 0.403 0.738 36368

(a) Magnetic Field (B)

K S score DB CH

2 0.865 0.190 263222

3 0.499 1.078 160481

4 0.493 1.089 120114

5 0.463 1.123 93537

6 0.480 1.104 82431

7 0.259 1.312 82038

8 0.257 1.306 76633

9 0.252 1.374 70313

(b) Flux-tube inclination (α)

Table 5.1: Validity metrics for different TimeSeriesKMeans models obtained by varying the num-
ber of clusters.

The validity metrics discussed in Section 5.2 were calculated for different KMeans models

obtained by varying the number of clusters to get a more precise number of clusters. The results

of these tests can be seen in Table 5.1a. From the first three entries, it can be seen that the highest

silhouette score is obtained with K = 2, but the lowest Davies-Bouldin index is obtained with

k = 4, which also has the highest Calinski-Harabasz index of the three. This can indicate that the

most appropriate number of clusters for this variable is 4.

Following the same procedure as for the magnetic field, an elbow test was conducted on the

flux tube inclination variable, α . The results of this test can be seen in Figure 5.1b. In contrast

with the results of the previous test, this elbow is much clearer, with the elbow being at k = 2. This

indicates that the optimal number of clusters is 2.

The validity metrics (Table 5.1b) also provide a clear indication that the correct number of

clusters for this variable is 2, with the highest Silhouette and Calinski-Harabasz scores being

obtained with k = 2. The Davies-Bouldin index is also the lowest for this value.

5.4.2 SOM

Following the experiments with TimeSeriesKmeans, the SOM algorithm was tested, which

is also seen as a useful method for clustering high-dimension data. A Python implementation of

the algorithm [64] was tested on the same variables as the previous algorithm, B and α . Unlike

KMeans, this algorithm has no tests to determine the number of clusters visually. Because of this,

the number of clusters was determined by trial and error by varying the number of clusters and

evaluating the results of the validity metrics (Table 5.2). The first two columns of each subtable

indicate the x and y dimensions of the SOM map used for the clustering task. The number of

clusters is obtained by multiplying these two values.

Clustering 64

x y S score DB CH

2 2 0.500 0.602 30962

2 3 0.281 5.228 3429

3 2 0.454 0.660 35001

3 3 0.407 0.727 37133

(a) Magnetic Field (B)

x y S score DB CH

2 2 0.269 1.479 122195

2 3 0.004 1.325 5254

3 2 0.269 1.326 89759

3 3 0.231 1.426 66878

(b) Flux-tube inclination (α)

Table 5.2: Validity metrics for different SOM models obtained by varying sizes of the maps (x and
y variables).

From looking at the results of the validity metrics for the magnetic field variable (Table 5.2a),

it can be concluded that the highest Silhouette score and DB index are obtained with x = 2 and

y = 2, which translate to 4 clusters. The algorithm failed to generate a proper separation for a map

size of x = 2 and y = 3. The Calinski-Harabasz index is the highest for x = 3 and y = 3, which

translates to 9 clusters. However, this does not indicate the correct number of clusters, as the DB

index is higher than the first clustering.

The results of the validity metrics for the flux tube inclination variable (Table 5.2b) are even

less clear than the previous ones. The highest Silhouette score is obtained with the first and third

models. The best CH index was by far the first one. The DB index is very high for every generated

model, which indicates that clustering in this variable may not be a good idea.

Overall the results from this experiment indicate that the SOM algorithm is not a good choice

for clustering this dataset, as it cannot generate a clear separation between the clusters. This is

especially true for the flux tube inclination variable, where the algorithm failed to generate a proper

separation. The only variable where the algorithm could generate a somewhat clear separation was

the magnetic field with a map of 2x2 neurons.

5.4.3 PCA Clustering Approach

The next approach that was tested was to apply PCA to the dataset and then apply the clustering

algorithms to the reduced dataset. This approach was tested on the magnetic field variable, B[G],

the flux tube inclination, α[deg], and a combination of all the input variables.

Tests were conducted to try and find the optimal number of components that would explain

the dataset. This was done by analyzing the cumulative explained variance of PCA models with

different n_components. For B and α , about 99 % of the variance was explained by just two

components. As for the combined dataset, 98% was explained by also two components. With

this, it can be concluded that it is valid to reduce the dimensionality of this dataset to just two

components. This is useful because it provides a simplified data representation while preserving

most information.

5.4 Experiments 65

(a) Magnetic Field (B). (b) Flux-tube inclination (α). (c) Joint Inputs (R, B and α).

Figure 5.2: PCA applied to the different variables. (a) and (b) represent the PCAs of the magnetic
field variable (B[G]) and the flux-tube inclination variable (α[deg]), respectively; (c) is the PCA of
all input variables combined.

The representations for each approach can be seen in Figure 5.2a. Note that the representation

generated for the flux-tube indication and the joint inputs are very similar. This indicates that the

flux-tube inclination variable is the one that contributes the most to the PCA.

For the clustering part, the KMeans and the AgglomerativeClustering methods of the sklearn

library were applied to each representation to determine the correct number of clusters with the

same methodology as in the previous sections.

a) PCA of the Magnetic Field

The KMeans and the AgglomerativeClustering methods were applied to the PCA of the mag-

netic field variable. The results of the elbow tests for KMeans can be seen in Figure 5.3. This plot

shows that the elbow is at k = 4, indicating that the optimal number of clusters might be 4.

Figure 5.3: KMeans Elbow test for the PCA of the magnetic field variable.

The validity measures from the previous sections were calculated for each method to get a

more concrete outlook. The results of these tests can be seen in Table 5.3. For the KMeans

Clustering 66

KMeans Agglomerative

K S score DB CH S score DB CH

2 0.538 0.645 21224 0.507 0.669 17899

3 0.534 0.586 28086 0.496 0.622 23868

4 0.531 0.549 35942 0.502 0.550 30612

5 0.502 0.579 39762 0.484 0.593 37737

6 0.494 0.592 44986 0.477 0.585 40121

7 0.486 0.600 49233 0.460 0.598 44158

8 0.454 0.637 49757 0.436 0.638 45487

9 0.457 0.636 53265 0.427 0.630 47528

Table 5.3: Validity metrics obtained by different clustering methods on the PCA of the magnetic
field variable. Various models were created for each method by varying the number of clusters, K.

algorithm, the highest Silhouette score is obtained with K = 2. Still, the lowest Davies-Bouldin

index is obtained with K = 4, which also has the highest Calinski-Harabasz index of the first three

results. This further confirms the results of the elbow test.

The results of the Agglomerative method are not as clear as the previous ones. The highest

silhouette score is also K = 2, but as in KMeans, the lowest DB index was K = 4. In addition, the

CH score is much higher for the model with 4 clusters than for the K = 2 model.

With the consensus of both clustering methods, it can be concluded that the optimal number

of clusters for the PCA of the magnetic field variable is 4. Interestingly, this is the same number of

clusters that were obtained with the TimeSeriesKMeans algorithm in Section 5.4.1 and the SOM

algorithm in Section 5.4.2 for the magnetic field.

b) PCA of the Flux-tube Inclination

Following the same procedure as in the previous approach, an elbow test was conducted for

the KMeans model of the PCA of the flux-tube inclination variable. The results of this test can be

seen in Figure 5.4. The plot indicates that the most appropriate number of clusters is 2.

These results are further corroborated by the validity metrics in Table 5.4. The highest Silhou-

ette score and DB index are obtained with K = 2, with the highest Calinski-Harabasz index of all

the results. This indicates that the optimal number of clusters is 2 for both tested methods. This

division occurs because the α variable may take negative or positive values.

5.4 Experiments 67

Figure 5.4: KMeans Elbow test for the PCA of the flux-tube inclination variable.

KMeans Agglomerative

K S score DB CH S score DB CH

2 0.898 0.145 428761 0.898 0.145 428761

3 0.586 0.757 294424 0.574 0.782 287595

4 0.593 0.662 243422 0.378 1.022 239082

5 0.583 0.713 207238 0.354 0.955 219099

6 0.400 0.887 237197 0.359 0.924 215351

7 0.392 0.917 216689 0.360 0.900 211272

8 0.391 0.875 225758 0.338 0.906 199083

9 0.381 0.901 223637 0.336 0.890 189224

Table 5.4: Validity metrics obtained by different clustering methods on the PCA of the flux-tube
inclination variable. Various models were created for each method by varying the number of
clusters, K.

Clustering 68

c) PCA of the Joint Inputs

The PCA was applied to the joint inputs, R, B and α in this next approach to capture the most

relevant features of the input variables, as they would later be used in the prediction task. The

results of the elbow test for the KMeans algorithm can be seen in Figure 5.5. It is difficult to

determine the optimal number of clusters from this plot. Possible "elbows" include the ones at

K = 3 and K = 6.

Figure 5.5: KMeans Elbow test for the PCA of the joint inputs.

KMeans Agglomerative

K S score DB CH S score DB CH

2 0.777 0.326 74261 0.777 0.326 74261

3 0.647 0.494 75974 0.625 0.503 70716

4 0.605 0.567 62966 0.544 0.564 72768

5 0.553 0.698 50851 0.510 0.620 84236

6 0.471 0.714 78768 0.464 0.704 86339

7 0.465 0.747 73566 0.427 0.789 83135

8 0.438 0.777 91850 0.396 0.819 82333

9 0.435 0.786 87596 0.382 0.858 82094

Table 5.5: Validity metrics obtained by different clustering methods on the PCA of the joint inputs.
Various models were created for each method by varying the number of clusters, K.

To draw better conclusions, the validity metrics were calculated for each method. The results

of these tests can be seen in Table 5.5. For the KMeans algorithm, the highest Silhouette score and

5.4 Experiments 69

DB index are from K = 2. This conflicts with the results of the elbow test, which indicated that

the optimal number of clusters was 3 or 6. The highest CH index of the three is with K = 6, but

this model has the worst Silhouette and DB scores. At first glance, the optimal number of clusters

would be 2 for the KMeans algorithm.

Next, for the Agglomerative method, the best silhouette score is from K = 2 with the same

results as the previous method. This is because both algorithms generate the same clear division

of the dataset into two clusters that can easily be construed from Figure 5.2c. The remaining

validity metrics are also very similar to the ones obtained with the KMeans algorithm. However,

the clusters generated by the Agglomerative method for K = 3 had a smaller CH score than the

ones for K = 2. This might indicate that this method’s best number of clusters is 2.

5.4.4 t-SNE Clustering Approach

The last tested approach was to apply t-SNE to the dataset and then apply the clustering algo-

rithms to the reduced dataset. As with the previous approach, this one was tested on the magnetic

field variable, B[G], the flux tube inclination, α[deg], and lastly, on a combination of all the input

variables. The embedded 2D representations obtained from the t-SNE algorithm can be seen in

Figure 5.6. Looking at the first two, it can be concluded that the clustering task will be more

complicated than the PCA representations.

(a) Magnetic Field (B). (b) Flux-tube inclination (α). (c) Joint Inputs (R, B and α).

Figure 5.6: t-SNE applied to the different variables. (a) and (b) represent the t-SNE of the magnetic
field variable (B[G]) and the flux-tube inclination variable (α[deg]), respectively; (c) is the t-SNE
of all input variables combined.

As in the previous section, each representation was subjected to the KMeans and Agglomer-

ative clustering algorithms from the sklearn library. The same validity metrics were calculated to

determine what number of clusters would generate the best clustering.

a) t-SNE of the Magnetic Field

The elbow test for the magnetic field variable was inconclusive, as the elbow was unclear.

Possible values could be with 4 or 6 clusters. The highest Silhouette score is obtained with K = 2,

but the lowest Davies-Bouldin index is obtained with K = 4, with the highest Calinski-Harabasz

index of the first three results.

Clustering 70

KMeans Agglomerative

K S score DB CH S score DB CH

2 0.323 1.265 6275.825 0.361 1.141 7475.524

3 0.404 0.863 10259.411 0.349 0.883 7335.993

4 0.409 0.838 11029.298 0.386 0.848 9553.107

5 0.400 0.867 11319.886 0.387 0.853 10085.435

6 0.424 0.756 12010.235 0.390 0.777 10395.708

7 0.406 0.831 11557.172 0.358 0.842 10453.778

8 0.402 0.798 11639.116 0.346 0.823 10364.565

9 0.397 0.792 11998.942 0.357 0.827 10653.976

10 0.403 0.785 12363.613 0.373 0.820 11237.525

Table 5.6: Validity metrics obtained by different clustering methods on the t-SNE of the magnetic
field variable. Various models were created for each method by varying the number of clusters, K.

The validity metrics from Table 5.6 show a clear candidate for the KMeans method at K = 6,

which has the best scores of every other model. This disambiguates the results of the elbow test

conducted previously. For the Agglomerative clustering method, the results aren’t as pronounced.

The best silhouette and DB scores were obtained for 6 clusters. Despite the CH index not being

as higher as the rest, there is not much variation of this metric above 5 clusters. The results of this

test indicate that the optimal number of clusters is 6 for both clustering methods.

b) t-SNE of the Flux-tube Inclination

In line with the results from the experiments on the magnetic field, the elbow test for the

α variable is also difficult to interpret. The elbow is not clear enough to be able to reach an

estimation.

The validity metrics in Table 5.7 also fail to indicate the optimal number of clusters for the

KMeans algorithm. This can be because the algorithm is not suited to handle this representation,

as it is very complex. The same can be said of the Agglomerative method, with all entries having

very similar silhouette scores. A comparison of both DB and CH scores indicates that the number

of clusters for both methods can be 8 or 9, but there is no clear indication of which is best.

c) t-SNE of the Joint Inputs

Contrary to the other two variables, the elbow test for the joint inputs was very clear with

an elbow at K = 3, indicating that the optimal number of clusters is 3. This is also corroborated

by the validity metrics in Table 5.8. For the KMeans algorithm, the highest Silhouette score and

5.4 Experiments 71

KMeans Agglomerative

K S score DB CH S score DB CH

2 0.367 1.142 7613 0.343 1.112 6787

3 0.410 0.803 10814 0.385 0.864 9815

4 0.389 0.817 11185 0.350 0.887 8899

5 0.382 0.877 11611 0.336 0.945 9269

6 0.365 0.866 11396 0.366 0.867 9925

7 0.396 0.779 12086 0.351 0.861 10223

8 0.394 0.754 12678 0.338 0.799 10276

9 0.395 0.776 12365 0.325 0.785 10429

10 0.398 0.789 13223 0.341 0.853 10870

Table 5.7: Validity metrics obtained by different clustering methods on the t-SNE of the flux-
tube inclination variable. Various models were created for each method by varying the number of
clusters, K.

DB index are K = 2, which also has the highest Calinski-Harabasz index of the first three results.

Another possible division would be 7 clusters because of the similar silhouette and DB scores and

a higher CH score.

For the Agglomerative method, the most appropriate number of clusters is 3. Despite having

a worse DB index than K = 4, the silhouette and CH scores are better. This indicates that the

optimal number of clusters is 3 for both clustering methods.

5.4.5 DBSCAN Experiments

Additional experiments were carried out with the DBSCAN clustering method on both PCA

and t-SNE representations. This algorithm was chosen because it can perform the clustering task

and detect anomalies simultaneously.

The tests were carried out in each of the representations from Sections 5.4.3 and 5.4.4. The

only experiment that yielded somewhat good results was when DBSCAN was applied to the PCA

of the magnetic field variable.

Figure 5.7a shows the clustering obtained for this method, and Figure 5.7b the separation of

the magnetic field lines per cluster. From there, it can be concluded that this method can serve

as a basic anomaly detection approach. The method can detect some anomalies in the magnetic

field variable (cluster -1); however, many anomalous lines remain in the final dataset (presented in

cluster 0).

Clustering 72

KMeans Agglomerative

K S score DB CH S score DB CH

2 0.383 1.067 7701 0.328 1.068 5684

3 0.430 0.791 11317 0.400 0.851 10083

4 0.384 0.829 10493 0.370 0.790 9549

5 0.370 0.918 10792 0.341 0.902 9797

6 0.391 0.856 11249 0.330 0.972 9609

7 0.399 0.798 11645 0.319 1.015 9572

8 0.385 0.806 11612 0.328 0.941 9924

9 0.377 0.850 11576 0.341 0.894 10287

10 0.379 0.820 11369 0.337 0.888 10364

Table 5.8: Validity metrics obtained by different clustering methods on the t-SNE of the joint
inputs. Various models were created for each method by varying the number of clusters, K.

(a) DBSCAN clustering (b)

Figure 5.7: DBSCAN results on PCA of B[G]. (a) DBSCAN clustering of the PCA of the magnetic
field, B[G]; (b) magnetic field lines separated by clusters (-1 is the outliers).

5.5 ML Experiments 73

The results from these experiments might have been hindered by using the QuantileTrans-

former, which tends to mitigate the effects of outliers. More appropriate scalers for outlier detec-

tion tasks were tested to try and improve the test outcome. Due to several extreme values, these

failed to produce valid representations that DBSCAN could use.

5.5 ML Experiments

Following the mostly exploratory clustering experiments, the next step was to apply the clus-

tering algorithms to the dataset and then use the resulting clusters to train different machine learn-

ing models. This experiment aimed to determine if models trained on clusters generated by differ-

ent algorithms could produce better predictions than models trained on the entire dataset.

The reasoning is that by grouping similar data points, the models could learn more specific

patterns for each cluster. This is especially useful in this context as the data is very dispersed, and

the resulting models would converge to the mean of the dataset.

Due to the difficulty in selecting the most appropriate clustering, a grid-search-based approach

was followed for this task. Several clusterings, C, were generated for each method described

in the previous sections by varying the number of clusters, K. The same clustering parameters

from the previous experiments were used for consistency because they were chosen to be the most

appropriate for each method and the dataset at hand.

Then, an ML model, Mi, was trained for each of the generated clusterings, Ci, was trained for

each cluster, Ci j, where i is the ith clustering and j is the jth cluster of C. Each model, Mi, is

trained with the same methodology as in [4]. This time, instead of training a single model for the

entire dataset, a model was trained for each cluster, Ci j.

Following the methodology in Barros [4], the same validation files were extracted from the

training dataset for later use in the MULTI-VP tests. For each cluster, Ci j, a train test split of 85/15

% was done to obtain training and testing datasets. The training dataset was then used to train the

models Mi j, and the testing dataset was later used to evaluate the models in terms of performance.

In the next step, a hyper-tuning random search model from the keras [65] library was employed

to find the best hyper-parameters for Mi j, based on the best test MSE loss. Finally, the best model

was saved for later use in the MULTI-VP experiments.

The generated models were saved along with their statistics and the hyper-parameters used.

The results of the MULTI-VP experiments can be seen in Section 5.5.1.

5.5.1 Clustering ML Results

The results from the above-mentioned experiments are presented in Table 5.9. Only the top

10 results based on MSE loss measured on the testing dataset are shown. The models are sorted

based on the average MSE loss in each experiment. This is obtained by averaging the MSE loss of

each model, Mi j, for each cluster, Ci j, of each clustering, Ci. The models are sorted from lowest to

highest average loss. The first column shows the model ID, which briefly characterizes the model,

Clustering 74

Model ID Dim. Reduct. Variable Method K Avg. Loss std Loss

tsne_agg_2 TSNE Joint Agglom. 2 0.0108 0.0058

pca_kmeans_2 PCA Joint KMeans 2 0.0113 0.0016

pca_kmeans_3 PCA Joint KMeans 3 0.0119 0.0037

pca_agg_2 PCA Joint Agglom. 2 0.0125 0.0012

tsne_kmeans_mag_3 TSNE Mag. Field KMeans 3 0.0125 0.0085

tsne_agg_8 TSNE Joint Agglom. 8 0.0127 0.0077

tsne_agg_alpha_2 TSNE Alpha Agglom. 2 0.0129 0.0003

pca_kmeans_alpha_2 PCA Alpha KMeans 2 0.0130 0.0009

tsne_agg_3 TSNE Joint Agglom. 3 0.0132 0.0093

tsne_agg_mag_3 TSNE Joint Agglom. 3 0.0132 0.0090

Table 5.9: Results of the Clustering ML Experiments. The table shows the ten best models based
on the average MSE loss. The models are sorted by the average loss, from lowest to highest.
The columns show the model ID, the dimensionality reduction method, the variables used, the
clustering method, the number of clusters, K, the average loss of the models, the standard deviation
of the loss and the sum of the loss and the standard deviation.

the dimensionality reduction method, the variables used in the clustering, the clustering method,

the number of clusters, K, and the models’ average loss and standard deviation.

The experimental results (Table 5.9) show that the best models were obtained with the clus-

terings of the TSNE joint inputs. These divisions were obtained by running the Agglomerative

Clustering method with K = 2. A closer look at the standard deviation of this model shows that it

is the highest of the top 3 models, indicating a large disparity between the losses of both models.

A more in-depth analysis of this outcome with the validity methods from Table 5.8 contradicts

the results from this experiment. Despite it having the lowest loss of all the entries, the clustering

quality was subpar for this instance. The inappropriate clustering of the dataset might be the

reason for the high standard deviation of the models, as the data was not grouped correctly. A

visualization of the clustering from this method is presented in Appendix A.1.

The second-best results were obtained with the KMeans clustering of the PCA of the joint

inputs. The standard deviation of this model is the lowest of the top three models, which indicates

that the losses of the models are very similar. Despite the average loss not being as low as with the

first method, it is still not far off. An analysis of the clustering results from the previous section

(Table 5.5) shows that the clustering quality was also very good. This indicates that the models

could learn the patterns of the clusters and that the clustering was appropriate for the dataset. A

visualization of the clusters in Figure 5.8a also corroborates this by dividing the dataset into two

clusters.

5.5 ML Experiments 75

(a) 2 clusters (b) 3 clusters

Figure 5.8: Top clustering results for the KMeans applied to the PCA of the joint inputs. Clusters
were obtained with the KMeans algorithm on the PCA of the joint inputs with K = 2 on the left
and K = 3 on the right.

The next best method was delined by training a model for each cluster of the same represen-

tation as the previous one but with K = 3. Although the average loss is higher than the previous

two, the standard deviation is also very low, which indicates that the losses of the models are sim-

ilar, in contrast with the disparity of the models from the second experiment. The clusters for this

experiment can be seen in Figure 5.8b.

These two experiments serve as the principal contenders for the best models. The results from

the previous section were further analyzed to disambiguate the results. As was already concluded,

in section 5.4.3.c, the elbow test (Figure 5.5) produced a clear spike at K = 2; however, the elbow

might be at K = 3. The validity metrics (Table 5.5) for the KMeans clustering indicate that the

best separation is with two clusters just from the silhouette score and DH index. Despite this, the

CH index is slightly lower than with K = 3.

Taking all these factors into consideration, the models that were selected were the ones ob-

tained with the KMeans clustering with K = 3. In addition to the reasons mentioned above, this

clustering provides an equal division of the dataset, in contrast with the other clustering with

K = 2, which has a very large and small cluster.

An analysis of the remaining results shows that no model trained on other clustering algorithms

produced better results than the ones obtained with the PCA and TSNE. Most of the top results

(7 out of 10) were obtained with the clusterings of the joint input variables. In addition, every

clustering was obtained by dimensionality reductions of the original dataset. This might indicate

that the clustering methods trained on the original dataset could not find the best clusters for the

dataset.

Clustering 76

5.5.2 MULTI-VP Results

This section presents the results of the MULTI-VP simulation with the initial conditions of the

developed prediction models.

100 200 300 400 500 600
Abcissas

2.0

1.5

1.0

0.5

0.0

M
ea

n
er

ro
r

1e7
Error comparision for N (difference), abcissa>100)

original mean
predicted mean

(a) Baseline model

100 200 300 400 500 600
Abcissas

2.0

1.5

1.0

0.5

0.0

M
ea

n
er

ro
r

1e7
Error comparision for N (difference), abcissa>100)

original mean
predicted mean

(b) Clustering models

Figure 5.9: Abscissa wise estimate error comparison of n[cm3]. (a) comparison of the baseline
model and initial expert estimates; (b) comparison of the estimates with the clustering approach
and expert predictions.

Figure 5.9a shows the abscissa-wise mean error comparison on the n[cm3] variable. This

chart displays the difference between the estimates provided as input for the simulation and its

final estimates. The red line displays the error between the initial expert guesses and the final

prediction. Similarly, the blue shows the difference between the outputs of the prediction model

and the final estimates of the simulation. The results prove that the initial estimates generated

by the prediction model in [4] are closer to the expected result of the simulation than the expert

estimates.

The results obtained with the three cluster models (Figure 5.10b) show a significant decrease

in the mean error of the predictions (blue) when compared to the original estimates (red). In

addition, the mean error of the predictions from these new models is lower than that obtained

with the baseline model. This shows that the approach resulted in v[cm] values closer to the final

MULTI-VP simulation.

For the v[km/s], the baseline model (Figure 5.10a) shows similar mean error for its predictions

and the original expert estimates. In contrast, the cluster-based approach predicted values of v[k/m]

closer to the final MULTI-VP simulation, as can be seen by the significantly lower mean error for

these when compared to the expert estimates.

Figure 5.11a compares the baseline predictions for the T [MK] variable with the original expert

estimates. The baseline shows a slight decrease in the mean error in line with the original guesses.

The clustering models (Figure 5.11b) faired much better than the baseline model, with initial

estimates for the temperature being much closer to the simulation results.

Despite having provided initial flow estimates closer to the final simulation solution, the new

estimates failed to reduce the overall computation time of MULTI-VP. The baseline model had a

5.5 ML Experiments 77

100 200 300 400 500 600
Abcissas

140

120

100

80

60

40

20

M
ea

n
er

ro
r

Error comparision for V (difference), abcissa>100)
original mean
predicted mean

(a) Baseline model

100 200 300 400 500 600
Abcissas

140

120

100

80

60

40

20

0

20

M
ea

n
er

ro
r

Error comparision for V (difference), abcissa>100)

original mean
predicted mean

(b) Clustering models

Figure 5.10: Abscissa wise estimate error comparison of v[km/s]. (a) comparison of the baseline
model and initial expert estimates; (b) comparison of the estimates with the clustering approach
and expert predictions.

100 200 300 400 500 600
Abcissas

0.6

0.4

0.2

0.0

M
ea

n
er

ro
r

Error comparision for T (difference), abcissa>100)
original mean
predicted mean

(a) Baseline model

100 200 300 400 500 600
Abcissas

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

M
ea

n
er

ro
r

Error comparision for T (difference), abcissa>100)

original mean
predicted mean

(b) Clustering models

Figure 5.11: Abscissa wise estimate error comparison of T [MK]. (a) comparison of the baseline
model and initial expert estimates; (b) comparison of the estimates with the clustering approach
and expert predictions.

Clustering 78

mean speedup of 1.06 over the initial method of running MULTI-VP with the expert initial flow

guesses, while the new clustering approach yielded a speedup of 1.05.

5.6 Summary

This chapter explained the use of clustering methods on solar wind profiles for improving ini-

tial flow estimates that were later tested on MULTI-VP. Sections 5.1 and 5.2 provide an overview

of the clustering methods and validity measures that were used. The multiple clustering ap-

proaches tested for this data are detailed in Section 5.4. The choice of a single approach for

testing is explained in 5.5, followed by the training process of the prediction models.

Lastly, Section 5.5.2, shows the results of the MULTI-VP simulation when the predictions

from the new method are used as initial flow estimates. From there, it can be concluded that

clustering the dataset and then training a separate model for each cluster generated estimates closer

to the final solution of MULTI-VP. Unexpectedly, even with initial estimates closer to the final

ones, the new approach failed to obtain a higher mean speedup than the baseline.

Chapter 6

Adversarial Anomaly Detection

In recent years, the use of Generative Adversarial Networks (GANs) has been explored in the

context of anomaly detection. The main idea is to train a GAN to learn the normal distribution

and then use one or all modules to detect anomalies. This chapter presents the main concepts of

GANs and how they can be used for anomaly detection in solar wind profiles. Additionally, every

experiment that was undertaken with this purpose will be explained.

The chapter is organized as follows. Section 6.1 introduces the GANs training process, com-

mon problems and their application for anomaly detection. Section 6.2 presents the experiments

undertaken in this thesis to detect anomalies in solar wind profiles. Section 6.3 explains the ex-

periments undertaken with the ML prediction model after anomaly detection in the training data.

Finally, Section 6.4 provides an overview of the work done in this chapter.

6.1 Generative Adversarial Networks

GANs were first introduced by Goodfellow et al. in their paper "Generative Adversarial Nets"

[54]. Since then, many variations of GANs have surfaced and been applied to different areas like

human face generation, image-to-image and text-to-image translation, and semantic generation,

among others. The original GAN consisted of two models, a generator G and a discriminator D.

The task of the first model was to capture the distribution of the data and generate new examples

from that distribution. The function of the discriminator D is to distinguish actual samples from

the fake data generated by G. The two components play an adversarial game in which G tries to

fool D with increasingly realistic examples, and in turn, G tries to detect the fake samples from G.

The authors proposed an analogy that would help the problem’s dynamics:

The generative model can be thought of as analogous to a team of counterfeiters trying to produce

fake currency and use it without detection, while the discriminative model is analogous to the

police trying to detect the counterfeit currency. Competition in this game drives both teams to

improve their methods until the counterfeits are indistinguishable from the genuine articles. ([54])

79

Adversarial Anomaly Detection 80

The problem is formulated as follows:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)]+Ez∼pz(z)[log(1−D(G(z))] (6.1)

where x represents the data, z the latent space, pdata(x) is the distribution of the data and pz(z) is

the distribution of the latent points (usually Gaussian) that G uses to generate new samples. GANs

can then be defined as a minimax game where D tries to maximize V , as it tries to recognize

generated and real images better; and, on the other hand, G wants to minimize the function V

because its goal is to fool G as many times as possible.

6.1.1 Common Challenges in the Training Phase

Earlier GAN architectures were very unstable and hard to train. Despite some proposed solu-

tions to these issues ([66, 67]), GANs are still remarkably difficult to train. Following are some of

the main problems experienced during this phase.

Mode collapse. Occurs when the GAN is incapable of reaching Nash equilibrium 1 and is a con-

sequence of poor generalization. It can occur when the generator G only creates samples from a

subset of the data distribution or only learns part of the distribution. The leading causes for this

issue can be attributed to a poor choice of the objective function ([68]). In other words, G focuses

on a small subset of samples that consistently fool the discriminator D.

Vanishing gradients. The discriminator D does not provide enough information for G to update

its gradients [69]. D can distinguish real samples from fake ones with high confidence, which in

turn causes the loss function of G to decrease towards 0. As D gets better, the gradient of G pro-

gressively decreases until virtually none of the layers are updated, and G can’t generate samples

with new distributions. Some solutions for this problem include batch normalization and clipping.

Evaluation metrics. Due to their wide range of applications, no global evaluation function can be

applied to every GAN. The evaluation function varies greatly from the context of the problem in

which the GAN was used. In some instances, like image generation, the principal evaluation crite-

ria are still done qualitatively (the outputs are analyzed by humans, who determine their quality).

Evaluation functions are an essential part of machine learning and allow for the correct conclusions

to be made [68].

6.1.2 Anomaly Detection with GANs

Several approaches can be employed when using GANs for anomaly detection. The simplest

one is to train both G and D on the normal data distribution and then use the latter to classify

1Can be explained by the following analogy: Two players, Alice and Bob, chose strategies A and B; Alice has
no other strategy to maximize her goal better, and Bob has no different strategy other than B to maximize his goal in
response to Alice’s choice (https://en.wikipedia.org/wiki/Nash_equilibrium)

https://en.wikipedia.org/wiki/Nash_equilibrium

6.2 Experiments 81

new samples as normal or anomalous. This is not always possible as the discriminator only learns

to distinguish between samples from the generator and real ones. There is no guarantee that the

discriminator will be able to distinguish between normal and anomalous samples, as it might have

only learned specific characteristics of G that are not present in the anomalous samples.

To circumvent this issue, some studies [48, 40] proposed changing the focus of the vanilla

GAN to be more appropriate for anomaly detection tasks. Instead of learning the normal distribu-

tion G is forced to only generate anomalous samples. By forcing G to generate samples close, but

not equal to the normal distribution, the discriminator D will learn to distinguish between normal

and anomalous samples. To accommodate this, small changes to the loss functions of D and G

are made. The results are promising, but by altering the loss functions, the new implementations

might have new issues that were not experienced in other implementations.

Other studies [36, 38, 56] have proposed employing G as a way to detect anomalies. These

approaches are usually based on the reconstruction error of G to detect anomalies, which is cal-

culated by measuring the distance of the current sample to its closest reconstruction created by G.

Then, an anomaly detection score can be construed with this error, either alone or in combination

with the classification of the discriminator. Defective samples will, in theory, have higher recon-

struction errors and will be classified as anomalous by the discriminator, as both modules didn’t

learn to generate or classify them correctly.

More recently, the use of adversarial autoencoders (AAE) has been proposed [38, 45] to simul-

taneously encode/decode an input sample and constrain its latent space representation to a prior

distribution. The encoder and decoder are trained simultaneously with the discriminator, which

is trained to distinguish between the latent space distribution and the prior distribution. The en-

coder is then used to encode new samples to the learned latent space. The discriminator classifies

the latent representation of the sample as being real or fake. Similar to all other approaches, the

anomaly score can be calculated by using only the reconstruction error of the decoded sample, or

by combining it with the classification of the discriminator.

Some of these methods will be employed in the experiments of this thesis. The next section

explains the different approaches used to detect anomalies in solar wind profiles with the help of

adversarial learning.

6.2 Experiments

This section explains the experiments performed to detect anomalies in solar wind profiles. In

total, five different architectures were used for this task. One linear GAN, three RNN-based GANs

(two of which are preliminary experiments), and one adversarial autoencoder.

6.2.1 Anomaly Scores

Three anomaly detection methods are used in each experiment to detect anomalies in solar

wind profiles. At the end of each experiment, the most suitable anomaly detection method was

chosen based on a qualitative analysis of the results. Each approach generates a different normality

Adversarial Anomaly Detection 82

score for a given sample. The scores are then used to determine a threshold of normality based on

the percentage of anomalies in the dataset. This is a hyperparameter that must be determined by

the user.

The first and simplest score is the classification of the discriminator, D. The values of the

classification can range from 0 to 1, where values equal to 1 indicate a real sample and values

closer to 0 indicate a fake label. The classification score is calculated by feeding the sample to

the discriminator and obtaining the classification value. The abnormality classification score of a

sample, x, is calculated as follows:

Ds = 1−D(x) (6.2)

The second score is the reconstruction error of the generator, G, and is based on the reconstruc-

tion technique of MAD-GAN [36]. The reconstruction process, expressed in algorithm 1, occurs

iteratively for each ith sample, xi, in the testing dataset. Like in the original method, the optimal

latent representation for xi is obtained by first sampling a latent space variable, zk. Then, for a

predefined set of iterations, j, the generator G is used to generate a batch of reconstructions G(zk).

Contrary to [36], the distance between the original sample xi and the reconstructed one, G(zk) is

calculated using the MSE loss function. In the next step, the residuals of the MSE functions are

averaged and used to update the parameters of zk. After j iterations, the latent representation, zk,

that results in the best reconstruction of xi is returned.

Algorithm 1: MSE Reconstruction
Input

xi Input Batch

n Number of iterations

Output
zk Optimal latent representation

Rerr MSE Reconstruction error

Get a sample from the latent space;

zk = random_sample();

for j = 0 to n do
Reconstruct batch from zk and calculate loss;

Rerr = MSE(xi,G(zk));

Update latent representation based on Rerr;

zk = update(zk,Rerr);

end

The reconstruction error is calculated directly with the MSE loss between the real and recon-

structed batches from the optimal latent representation, zk. The reconstruction error is calculated

as follows:

6.2 Experiments 83

Rerr = MSE(xi,G(zk)) (6.3)

The next score is a combination of the previous two scores as a way of taking advantage of

both the discriminator and the generator in the detection process. The reconstruction process is

similar to the previous one, but instead of using only the MSE loss, the classification score, Ds of

the discriminator, is also used. The new altered loss function is defined as follows:

RDerr = MSE(xi,G(zk))×Ds (6.4)

The reconstruction process with the discriminator input is shown in Algorithm 1. It is very

similar to Algo. 1, but with the addition of the discriminator classification score to the loss func-

tion. In each reconstruction step, j, the discriminator classification, Ds, for the reconstructed batch

is obtained. Then, the error between the reconstructed batch and the original data is measured with

the MSE loss function. In this step, the results of the discriminator classification are multiplied by

the Ds score from the previous step. Finally, the parameters of zk are updated in accordance with

the error that was obtained.

Algorithm 2: MSE-Discriminator Reconstruction
Input

x Input Batch

n Number of iterations

Output
zk Optimal latent representation

RDerr MSE-Discr. Reconstruction error

Get a sample from the latent space;

zk = random_sample();

for j = 0 to n do
Obtain D classification for reconstructed batch;

Ds = 1−D(G(zk));

Reconstruct batch from Zk and calculate loss;

RDerr = MSE(xi,G(zk))×Ds;

Update latent representation based on RDerr;

zk = update(zk,RDerr);

end

A simplified representation of the workflow for obtaining the anomaly scores is shown in

Figure 6.1. This process is done by extracting the pre-trained G and D with their layers frozen.

Each batch, xi, is passed through D to obtain the classification score, Ds. The reconstruction

process from algorithms 2 and 1 is performed in the invert mapping step to obtain the optimal

latent representation, zk, for the given test sample. After this, Rerr is calculated by comparing the

Adversarial Anomaly Detection 84

(1) Only applied to the reconstruction method in algorithm 2.

Figure 6.1: Anomaly detection workflow with each defined reconstruction method. The invert
mapping obtains the optimal latent representation, zk, from the reconstruction error.

reconstructed sample with the original one. The final RDerr can be obtained by combining Rerr

with Ds.

6.2.2 Linear GAN

The first architecture was a linear GAN, which is a simple GAN with a linear generator and

discriminator. Several experiments were performed with different configurations of the architec-

ture. The use of BatchNorm in either module was tested to try and stabilize the training process.

This proved ineffective, making it difficult for G and D to converge. Because of this, it was not

included in the final implementation. In addition, the number of intermediate stacked linear layers

was varied during the tests to try and find a configuration that worked best for this problem.

Besides these changes, different activation functions were also tested. The activation functions

used were ReLU, LeakyReLU, and Tanh, with a combination of them in the intermediate and

output and input layers. Like other GAN architectures, the LeakyReLU activation function was

chosen to prevent the gradient from vanishing and improve the learning process’s overall stability.

Most configurations that included the Tanh activation function in the output layer of the generator

were discarded, as it proved ineffective during the anomaly detection phase.

The final architecture is shown in Figure 6.2. Both the generator and discriminator are built

with linear layers. The generator, G, consists of an input layer that takes as input a latent space

variable, z, with LP features and outputs a sample with the same dimension as the input. The

first layer linearly transforms the input noise vector and projects z into lower dimensional space

with 640 dimensions. The output of this layer is then passed through a LeakyReLU activation

function. Next, the resulting features from this step are passed through two stacked linear layers,

6.2 Experiments 85

Figure 6.2: Linear GAN Architecture

each with 640 dimensions. In the last layer, the features from the previous step undergo a linear

transformation to project them into the same dimension as the input sample. As was previously

said, no activation function is used in the output layer of the generator, as it was ineffective during

the detection phase.

The discriminator, D, consists of an input layer that takes as input a sample with LP features

and outputs a scalar value. The objective of D is to progressively learn the most important features

of the data to perform binary classification of the input sample as being real or fake. The first

and subsequent layers transform the input data into increasingly smaller dimensions. In the output

layer, the features from the previous step are projected into a single scalar value. This value is

then passed through a sigmoid activation function to obtain the final classification score of each

sample.

Training

Both modules were trained with the Adam optimizer with a learning rate 0.0001 for the gener-

ator and 0.0002 for the discriminator. This was done to prevent the discriminator from overpow-

ering the generator during training. The weights of each linear layer were initialized with the He

initialization function from [70].

Two models were trained, the first one, Mi, to detect anomalies in the inputs of the MULTI-VP

dataset and the other, Mo, for the outputs (refer to section 4.3). Both models were trained over

300 epochs with a batch size of 128. In both approaches, the training data was scaled with the

MinMaxScaler to preserve the variation of extreme values in the data. The training data consisted

Adversarial Anomaly Detection 86

of a matrix with N × LP dimension, where N is the number of training samples and LP is the

number of features per profile. Like in the clustering experiments, the selected validation data was

excluded from the training process for further use in the ML evaluation step.

From Section 4.3, we know that every variable in a profile has 640 features, so the total number

of features per sample can be defined as LP = k× 640, where k is the number of variables in a

profile that is used during training.

In Mi, the input data, x, consists of concatenating the B[G] and α[deg] variables of each profile.

The radial coordinate radius, R[Rsun], was excluded from the process to reduce the number of

features the networks needed to learn. In addition, extreme variations in the input data were

removed to prevent both modules from learning noisy features that would hinder the detection

process. Following the previous notation, the number of features for each sample is LPi = 2×
640 = 1280.

In the outputs model, Mo, every output variable of MULTI-VP is used in the training phase.

Each sample consists of the concatenation of the density, n[1010cm−3], the velocity, v[km/s], and

temperature, T [MK], with a combined number of features per sample, LPo , of 1920. Contrary to

the input model, no extreme variations were removed from the data, as it performed well without

this step.

Anomaly Detection

The detection step was carried out for each model with all three anomaly score functions

defined at the beginning of this section. Due to the lack of validation metrics, the choice of method

was based on the visual inspection of the results. The anomaly scores’ stability and the dataset’s

quality without anomalies were considered.

Considering these criteria, the best results were obtained with the reconstruction error, Rerr.

The other two functions, Ds and RDerr, were very unstable and were not able to detect the anoma-

lies as well as Rerr. The filtered input and output variables can be seen in Image 6.3a and 6.3b,

respectively.

The first image (Figure 6.3a) resulted from removing 10% of the files from the original dataset

based on anomaly scores. As was previously said, the anomaly scores were obtained by training

the GAN model, Mi, in the input variables and then using G to calculate the anomaly scores of each

sample in the testing dataset. The results show that the data is mostly clean, with some anomalies

remaining in the magnetic field, B[G], variable. For the output variables (Figure 6.3b), only 8% of

the files were excluded based on anomaly scores. The resulting output variables are mostly clean,

with some abnormalities in the density, n[cm3], variable.

Overall, the experiments with this architecture prove that it can detect anomalies in the input

and output variables of MULTI-VP. However, the percentage of files that need to be removed (i.e.

the False Positive rate) is still very high. This might indicate that the current architecture might

not be ideal for the task, as seemingly "normal" profiles might be excluded from the prediction

step.

6.2 Experiments 87

(a) Input Variables

(b) Output Variables

Figure 6.3: Resulting datasets after the anomaly detection step with the linear GAN architecture
on the inputs and outputs of the MULTI-VP dataset.

Adversarial Anomaly Detection 88

6.2.3 Preliminary RNN-based GAN Experiments

The next experiments were with RNN-based GANs. These experiments are based on the

assumption that consecutive profiles in the MULTI-VP dataset are somewhat similar and have

small variances. This can be closely associated with other studies for detecting anomalies in time-

series data (refer to Section 3.2).

Several architectures were designed and tested first with the RNN-based GANs. These failed

to produce meaningful results as the GANs were very unstable during training, and the anomaly

scores could not detect any anomalies in the data. This might be due to the issues associated with

traditional RNN-based architectures, such as the vanishing gradient problem [12].

Considering this, the next batch of tests was carried out with GRU-based GANs. GRU NNs,

like LSTM NNs, can learn long-term dependencies in the data sequences. However, they are less

resource intensive and faster to train than LSTM NNs as they require fewer parameters. The results

obtained with the GRU architectures were tested with LSTM ones to ensure that they would not

change as per the choice of architecture. The performance of both architectures was similar, with

the GRU-based GANs being slightly faster to train. Because of this, the results presented in this

section are from GRU GAN architectures, as they are more efficient than LSTM ones, and reach

similar outcomes.

Stacked GRU GAN

Before reaching a stable RNN architecture, several experiments were carried out with different

architectures. The first attempts employed multilayer GRUs for G and D. Several iterations were

tried with several recurrent layers and hidden sizes. Several tests were carried out with multiplayer

GRUs, due to the high number of features for the input data. However, the results were unsatis-

factory as the GANs were very unstable during training. D would always outperform G in this

phase, causing the latter to collapse and produce meaningless results. This occurred even when D

had significantly fewer layers than G. In addition, reducing the learning rate of the discriminator

didn’t seem to affect the instability of the GANs.

With this in mind, other network configurations were tested by reducing the number of features

given to the stacked GRU layers. This was done by applying a linear transformation on the input

data, significantly reducing its dimensionality. With this layer, in theory, only the most important

attributes of the inputs would be retained and passed to the subsequent layers. This approach

managed to improve the stability of the GANs during training, but the results of the detection

phase were still subpar with the ones from the linear GAN.

Pyramid GRU GAN

In the second batch of experiments, a pyramid GRU GAN was designed to circumvent the

dimensionality issues of the stacked GRU GAN. This architecture consisted of a simple generator

with three GRU layers and an output linear layer for activation. The first layers would narrow

the input size to smaller dimensions to ensure that only the most meaningful features would be

6.2 Experiments 89

retained. Then the last GRU layer would upscale the outputs from the previous layers into a higher

dimension. In the output layer, the resulting features would suffer from a linear transformation that

transformed the data into the desired output dimension of the generator. This would then be passed

through the Tanh activation function.

The discriminator consisted of only two GRU and a linear output layer. Following the same

logic as the generator, the first two layers progressively reduced the number of features of the input

data. The output layer would reduce the features from the last layer to just one and then pass it

through the sigmoid activation function for binary classification.

As in the previous experiments, the training process of the GAN became more stable; however,

the results of the anomaly detection still weren’t as good as the ones obtained by the linear GAN.

6.2.4 MAD-GAN

Figure 6.4: Architecture of the MAD-GAN model. The Generator consists of three stacked GRU
layers and a linear output layer. The discriminator consists of a single GRU layer and a linear
output layer followed by the Sigmoid activation function. Both take as input sequences of size NP.

The final architecture for this class of GANs was based on MAD-GAN [36]. It was chosen to

determine if one of the most famous state-of-the-art RNN GANs for time-series data could be used

to detect anomalies in the MULTI-VP dataset. The architecture of the generator and discriminator

is shown in Figure 6.4.

Similar to the original implementation [36], the generator, G, consists of three stacked GRU

layers and a linear output layer (without an activation function). The discriminator, D, consists of

a single GRU layer and a linear output layer followed by the Sigmoid activation function. G takes

as inputs windows with NP latent vectors with LP features and synthesizes samples with the same

dimensions. D takes as inputs windows with NP real or fake samples with LP features and outputs

Adversarial Anomaly Detection 90

a single value between 0 and 1, representing the probability of the input window coming from the

dataset or G.

In this implementation, GRU cells were employed instead of LSTM cells used in the original

version. It was observed that the choice between the two cell types did not significantly impact

the detection capability of the architecture. Considering this, GRU cells were preferred due to

their lighter and faster nature compared to LSTMs. Accordingly, each layer of the network was

composed of GRU cells, with each cell containing 200 hidden units.

Data Preparation

Unlike the previous architecture, the data is aggregated into windows, W , with consecutive

profiles. The size of each window, NP, is a hyperparameter that needs to be tuned and indicates

the number of consecutive profiles, P, fed into the GANs. With this formulation, the ith window,

Wi, is defined as the set of the NP consecutive profiles of the ith profile, Pi, in the dataset, such that

Wi = {Pi,Pi+1, ...,Pi+NP−1}.

Each window varies in length (LP) according to the number of variables used for anomaly

detection. Each variable in the dataset has an equal number of features (refer to Section 4.3);

therefore, the number of features for a single profile can be expressed as LP = k×640, where k is

the number of variables being used for the task. From this, the dimensions of the ith window, Wi,

can be defined as (NP,LP).

As in the previous experiments, two models were designed to detect anomalies in both the

input and output variables used by MULTI-VP. In the model trained on the inputs (Mi), only

the magnetic field, B[G] variable, was used for the task. This was due to the problems faced

in the previous RNN experiments (Section 6.2.3) due to the high dimensionality of the dataset.

Additionally, the magnetic field is the variable in the dataset that seems to be most affected by the

presence of anomalies. Following the notation adopted in the last paragraph, the dimensions of

the ith window, Wi, in the dataset is set to (NP,640), where 640 is the number of features LP of the

B[G] variable and NP is the window size.

In line with the previous experiments, the most extreme values from the input variables were

removed from the training process to ensure the best performance of the GAN models. These were

then used during the detection phase.

Additionally, the output model, Mo, was trained on the three output variables of the MULTI-

VP dataset without removing extreme values. With this, the dimension of each window in the

training dataset is set to (NP,1920), where 1920 is the number of features LP of the three output

variables and NP is the window size.

Training

Several configurations were tested for the number of hidden units for the GRU layers. The

best results were obtained with 200 hidden units in both modules. The learning rate was set to

0.0001 for G and 0.0002 for D using the Adam Optimizer. The batch size was set to 32, and the

6.2 Experiments 91

number of epochs to 100. The number of profiles per window, NP, was set to 10. In addition to

this, the same training method as in [36] was used. In this method, D is firstly trained for a set

number of iterations while G is kept fixed. This ensures that D learns the representation of the real

data before training G. After this, G is trained for a set number of iterations while D is frozen.

This process is repeated until the end of the training process. The number of iterations was 10 and

5 for D and G, respectively.

As in the previous RNN architectures, the training process was very unstable, and the modules

didn’t converge due to the high number of input features. Changing the number of hidden features,

the learning rate and the number of iterations didn’t seem to affect the stability of the training

process.

In an attempt to reduce the number of data features and in line with the additional experiments

in [36], PCA was applied to the training data. This transformation reduced the number of features,

LP, to a fixed 100 features per profile. For the model Mi, the initial 640 features from the magnetic

field variable were reduced to 100 features. For Mo, the 1920 features from all the output variables

were reduced to 100 features. With this, the dimension of both training windows was set to

(NP,100).

Anomaly Detection

The detection step for both models was carried out with the three anomaly functions defined

earlier. Every anomaly score function provided overall good results, showcasing the method’s

stability. Despite this, the best results were obtained with the Rerr function. The results of the

anomaly detection on the inputs as well as on the outputs are shown in Figure 6.5. These were

obtained by training the models with the PCA-transformed data and then applying the anomaly

detection step to the testing data with the model from the previous stage.

Figure 6.5a shows the anomaly detection results on the input variables. At first glance, the

results are very similar to those obtained with the linear GAN; however, MAD-GAN only required

a threshold of 3% top anomalous profiles. This means this model is more sensitive to anomalies

in the magnetic field variable than the linear GAN model. The same applies to the model trained

on the output variables (Figure 6.5b). These results indicate that MAD-GAN is more sensitive to

anomalies in both the input and output variables than the linear GAN model, which translates to a

lower False-Positive rate.

Note that these results were only possible because of the use of PCA. This might indicate that

the experiments in Section 6.2.3 might have worked if the same method had been employed. A

possible issue with this approach is that PCA might be removing important features from the data,

which could be used to improve the results of the anomaly detection step.

Adversarial Anomaly Detection 92

(a) Input Variables

(b) Output Variables

Figure 6.5: Resulting datasets after the anomaly detection step with the MAD-GAN architecture
on the inputs and outputs of the MULTI-VP dataset.

6.2 Experiments 93

6.2.5 Adversarial AE

In the final experiments, an adversarial autoencoder architecture was used. This architecture

was chosen to determine if using an autoencoder could improve the results obtained with the

previous GAN architectures. The architecture of the generator and discriminator is shown in

Figure 6.6.

Figure 6.6: Architecture of the adversarial autoencoder. The generator G, consists of an encoder,
Enc, and decoder, Dec. The job of the first is to generate a latent representation of the input data,
which is then used by the decoder to reconstruct the input. The discriminator, D, takes the latent
representation generated by Enc as inputs and outputs a single value between 0 and 1, representing
the probability of the input coming from the prior distribution or Enc.

The generator, G, is divided into an encoder, Enc, and decoder Dec. The objective of Enc is to

generate a latent representation of the input data. This latent representation is then used by Dec to

reconstruct the input data. In adversarial autoencoders, a discriminator model is also introduced

to constrain the latent representation to follow a prior distribution. In this case, the discriminator,

D, takes the latent representation generated by Enc as input and outputs a single value between 0

and 1, representing the probability of the input coming from the prior distribution or Enc.

Training

The loss function combines the reconstruction loss of the autoencoder (Equation 2.1) with the

adversarial loss of the discriminator. The reconstruction loss is the mean squared error between

the input to de encoder and the decoder output. The adversarial loss is the binary cross-entropy

loss between the output of the discriminator and the prior distribution. The loss function is defined

as follows:

Adversarial Anomaly Detection 94

LAAE = α ×LAE +(1−α)×LADV (6.5)

where α is a hyperparameter that controls the weight of the reconstruction and adversarial

losses.

The training process consists of first training the autoencoder and freezing the discriminator

parameters. In this step, the encoder, Enc, generates a latent space representation of the original

data, which is then reconstructed by the decoder, Dec. The parameters of the encoder and the

decoder are updated with the equation 6.5. After this, D is trained while the encoder and decoder

are kept frozen. In this step, the discriminator is trained to distinguish between the latent repre-

sentation generated by the encoder and the prior distribution. With this, D is conditioned to learn

the prior distribution and to classify the encoded samples more precisely. This process is repeated

until the end of the training phase.

The AAE was trained over 400 epochs with the help of the Adam Optimizer, with a learning

rate of 0.0002 for D and 0.0001 for G. The batch size was set to 128, and the hyperparameter α

was set to 0.999. The prior distribution was set to two distinct 2D Gaussian distributions.

Like in the previous experiments, a model (Mi) was trained for the input variables and another

(Mo) for the output variables. For the first, only the magnetic field variable (without extreme

values) was used as input, while all the output variables were used for the second.

Anomaly Detection

The anomaly detection step was carried out with the same anomaly functions as in the previous

experiments; however, the generator reconstruction step is done directly with the autoencoder

without the need for the invert mapping in algorithms 2, 1.

The autoencoder proved more than capable of detecting data anomalies without a discrimi-

nator. However, as previously stated, this approach aims to take advantage of the reconstruction

abilities of the autoencoder along with the discriminator to improve the results of the baseline

autoencoder. The results of the anomaly detection step are shown in Figure 6.7.

The results show similar outcomes as in the linear GAN implementation. Both images were

obtained by removing the top 10% anomalous profiles from the dataset. The results show that the

AAE is capable of detecting anomalies in the input and output variables. However, the results are

not as good as the ones obtained with the MAD-GAN.

6.2.6 Experiments Summary

A summary of the results obtained in the detection phase with the different GAN architectures

is shown in Table 6.1. From an analysis of the results, MAD-GAN cleaned the dataset with the

smallest anomaly threshold. The next best architecture was Linear GAN, with the same threshold

in the input variables as in AAE but a lower threshold in the outputs. Despite these architectures

having the same anomaly threshold for the input variables, some anomalies that resulted from

6.2 Experiments 95

(a) Input Variables

(b) Output Variables

Figure 6.7: Resulting datasets after the anomaly detection step with the AAE architecture on the
inputs and outputs of the MULTI-VP dataset.

Input Variables Output Variables

Function Threshold (%) Anomalies Function Threshold Anomalies

Linear GAN Rerr 10 1177 Rerr 8 941

MAD-GAN Rerr 3 352 Rerr 3 352

AAE RDerr1 10 1177 RDerr1 10 1177

1 Direct reconstruction error from the generator (Enc+Dec) without algorithm 2.

Table 6.1: Summary of the results obtained with the different GAN architectures.

Adversarial Anomaly Detection 96

the linear GAN remained in the dataset. This might indicate that the anomaly threshold for this

approach should have been higher than 10%.

In conclusion, MAD-GAN proved to be the best architecture in the anomaly detection step.

It managed to clean the dataset with the smallest anomaly threshold, preserving the most normal

profiles in the dataset. The resulting datasets from this step will be used in the prediction phase,

described in the next section.

Note that the MAD-GAN experiments were only made possible because of the use of PCA

on the data. This might indicate that the previous preliminary experiments might also have been

capable of performing well if this method had been used.

6.3 ML Experiments

After selecting an appropriate method for anomaly detection, the impact of the chosen ap-

proach was evaluated with the MULTI-VP simulation. As previously stated, the set of validation

profiles excluded from the training phase was used for this step. Due to time constraints, only the

clustering models from Section 5.5.2 were trained without the detected anomalous profiles.

The detection was done with the input and output MAD-GAN models from the previous sec-

tion. The results from detecting the input and output variables were aggregated into a single file

indicating the name of every anomalous profile.

First, a simple experiment was done to assert if excluding the anomalous profiles from the

baseline model results would translate to decreased mean errors. Surprisingly this only occurred in

the n[cm3] variable, while the others mainly stayed the same as the ones without anomaly removal.

The same approach was tried on the clustering models obtained from the previous experiments

(refer to Section 5.5.2). This showed a slight improvement in the mean error in each variable

compared to the previous results.

In the second batch of experiments, we intended to discover if anomalies in the training data

were hindering the prediction quality. The abovementioned anomalous profiles were excluded

from the training dataset and used to train new iterations of the clustering models obtained in the

previous experiments. Following the same methodology as before, the predictions of the validation

dataset of these new models were fed to the MULTI-VP simulation as initial flow estimates. The

anomalous files in the validation dataset were also excluded from the evaluation metrics, which

means that the predictions of the new models on anomalous are being ignored in the evaluation.

Figure 6.8a shows the results from the original clustering models on the n[cm3] variable with-

out the anomalous profiles detected by MAD-GAN. Surprisingly, the results of this experiment are

substantially worse than the ones obtained in the clustering experiments without removing anoma-

lous profiles. This can be because the detection method identified anomalies in other variables that

did not constitute anomalies in n[cm3], which might have skewed the mean of the errors.

On the other hand, the predictions obtained with the new clustering model trained on the clean

dataset generate better predictions than in both cases. This improvement is evident in Figure 6.8b

where the mean error of v is more concentrated around zero. A smaller mean error indicates that

6.3 ML Experiments 97

100 200 300 400 500 600
Abcissas

2.5

2.0

1.5

1.0

0.5

0.0

M
ea

n
er

ro
r

1e7
Error comparision for N (difference), abcissa>100)

original mean
predicted mean

(a) Clustering GAN selected

100 200 300 400 500 600
Abcissas

2.5

2.0

1.5

1.0

0.5

0.0

M
ea

n
er

ro
r

1e7
Error comparision for N (difference), abcissa>100)

original mean
predicted mean

(b) Clustering Clean Dataset

Figure 6.8: Error comparison of n[cm3]. (a) shows the mean error comparison of the results from
the previous clustering experiments (without anomalous profiles) and the expert estimates; (b) is
the mean error comparison of the clustering models trained on datasets without anomalies and the
original expert estimates.

the predicted values are closer to the actual values, indicating a higher level of accuracy in the

forecasting process.

100 200 300 400 500 600
Abcissas

140

120

100

80

60

40

20

0

20

M
ea

n
er

ro
r

Error comparision for V (difference), abcissa>100)

original mean
predicted mean

(a) Clustering GAN selected

100 200 300 400 500 600
Abcissas

125

100

75

50

25

0

25

50

M
ea

n
er

ro
r

Error comparision for V (difference), abcissa>100)
original mean
predicted mean

(b) Clustering Clean Dataset

Figure 6.9: Abscissa wise estimate error comparison of v[km/s]. (a) shows the mean error com-
parison of the results from the previous clustering experiments (without anomalous profiles) and
the expert estimates; (b) compares the results of the clustering models when trained on the clean
dataset with the expert estimates.

Figure 6.9a demonstrates a slight reduction in error when compared to the clustering model

that did not involve anomaly removal. However, the results obtained from the new clustering mod-

els trained on the clean dataset (depicted in Figure 6.9b) show worse performance than the previous

models. This discrepancy is particularly noticeable in the range between abscissa values 300 and

400, where the error in the new models is considerably higher than that of the previous approach.

Despite this observation, it is essential to note that the new clustering models outperformed the

baseline model and the original expert estimates regarding predictive accuracy.

Adversarial Anomaly Detection 98

The analysis of temperature data reveals significant differences compared to the results ob-

tained from the initial clustering models (Figure 6.10a). Figure 6.10b presents the outcomes of the

new model trained on the clean dataset, showcasing a higher mean error than the first clustering

model. This discrepancy is particularly pronounced from abscissa value 300 onwards. The higher

mean error in this range indicates that the new model failed to effectively learn the underlying

features and patterns of the temperature lines. As a result, its estimates for temperature values

in this specific range are even worse than the estimates provided by initial experts. This finding

suggests there may be specific characteristics or complexities in the temperature data that the new

model could not capture effectively. It is possible that the clean dataset used for training lacked

crucial information or representative samples in the range where the model performed poorly.

100 200 300 400 500 600
Abcissas

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

M
ea

n
er

ro
r

Error comparision for T (difference), abcissa>100)

original mean
predicted mean

(a) Cluster models (no anomaly training)

100 200 300 400 500 600
Abcissas

0.6

0.4

0.2

0.0

M
ea

n
er

ro
r

Error comparision for T (difference), abcissa>100)
original mean
predicted mean

(b) Baseline (no anomalies)

Figure 6.10: Abscissa wise error comparison of T [MK]. (a) shows the mean error comparison of
the results from the previous clustering experiments (without anomalous profiles) and the expert
estimates; (b) is the mean error comparison of the clustering models trained on datasets without
anomalies and the original expert estimates.

The findings suggest that training the clustering model on a clean dataset leads to worse pre-

dictions, as evidenced by the increased mean error in the velocity and temperature variables. This

approach only seemed to work for the n[cm3] variable, with it having estimates closer to the ones

the simulation outputs.

6.4 Summary

In this chapter, the use of adversarial learning was explored for the detection of anomalies

in solar wind profiles. Section 6.1 provides background knowledge on generative adversarial

networks. Section 6.2 details the various adversarial methods used to filter anomalies from the

dataset, with the most efficient one being MAD-GAN.

Finally, the last section shows the results of the MULTI-VP simulation when using the new

approach. In it, we show that removing anomalous profiles from the previous results would pro-

duce better mean errors for the estimates, which indicates that broken files harm the overall results.

6.4 Summary 99

Surprisingly, the clustering models trained without anomalous profiles failed to produce better es-

timates for the V and T variables, with the ones from the clustering experiments being closer to

the final simulation results.

Chapter 7

Final Remarks

This chapter provides an overview of the work carried out throughout this thesis and analyses

the obtained results. Section 7.1 evaluates the hypothesis and answers the research questions of

this thesis. Section 7.2 provides a broad analysis of the work and results of this thesis, while

Section 7.3 details some possible paths for further research.

7.1 Hypothesis Evaluation

Following the work carried out in this thesis, this section intends to evaluate the proposed

hypothesis from Section 4.4, which is the following:

By integrating clustering and adversarial anomaly detection techniques, the initial

conditions predicted by RNNs for the MULTI-VP simulator will be closer to the final

simulation results and contribute to faster executions.

An analysis of the results from the clustering shows that we have achieved the first part of

the hypothesis, as the estimates produced by the new approach were significantly closer to the

simulation outputs. However, both experiments seem to indicate that the computation time of the

simulation has no direct correlation to the quality of the initial conditions. This is evidenced by

the very similar mean speedup of all tested approaches.

The following answers to the research questions help explain these observations:

RQ1 Are clustering methods capable of detecting characteristics in the dataset that were over-

looked by the original RNN and would help with the prediction task? The clustering ex-

periments’ results show that we could generate estimates closer to the simulation outputs

using this approach. The models trained on the resulting KMeans clustering of the PCA of

the input variables managed to produce better estimates than the single model trained on

the whole dataset. This shows that by dividing the dataset into clusters of approximately

the same size and training an RNN for each cluster, we could capture previously ignored

features of the baseline prediction model.

100

7.1 Hypothesis Evaluation 101

RQ2 Do the estimates obtained with clustering-based training significantly improve the simu-

lation’s performance? Despite being able to generate better initial estimates than the ones

provided by the experts and the baseline model, this approach didn’t significantly reduce the

computation time of the MULTI-VP simulation. The impact on the computation time was

assessed by comparing the mean speedup of simulations obtained by feeding MULTI-VP

simulation with predictions from both the baseline and the devised clustering models. The

baseline model achieved a mean speedup of 1.06, which constituted a slight improvement

over the expert estimates. On the other hand, the new approach with the clustering models

resulted in a mean speedup of only 1.05, which means that there was a marginal increase in

the computation time of the simulation when compared to the baseline approach.

RQ3 Can adversarial learning methods detect anomalies in solar wind profiles? The results from

section 6.2 show that it is possible to use adversarial detection methods in this type of data.

Even though the linear GAN and the AAE managed to clean the dataset, the number of

detected normal profiles (FN) is still very high compared to MAD-GAN, which might indi-

cate that the previous architectures are not very suited for this task. In addition, we showed

that grouping consecutive profiles into windows and then using these on LSMT-based GAN

architectures (as MAD-GAN) proved very effective, surpassing the other approaches.

RQ4 Does the resulting dataset significantly improve the predictive ability of the RNN? Despite

removing most anomalous data from the training dataset, the estimates’ quality decreased

compared to the previous clustering models. The results of the adversarial experiments

showed that the predictions from the clustering models trained on the clean dataset were

significantly worse than the earlier approaches (in some cases, worse than the expert esti-

mates). This might indicate that the removed anomalous profiles provided critical features

for the RNN training, and excluding them from this phase hindered the predictions’ qual-

ity. However, it is still important to note that we are using a small portion of the dataset

randomly selected by hand, which might not represent the entire dataset.

RQ5 Does the improved predictive ability of the RNN result in a further reduction of execu-

tion time for MULTI-VP? Even with worse estimates than the previous clustering models,

the new approach obtained a better speedup (from 1.05 to 1.06). This disproves the cen-

tral hypothesis of this thesis that initial partial flow estimates closer to the final simulation

ones would reduce the computation time. During the experiments, it was noticed that the

model was still predicting extreme values when given anomalous inputs, even without see-

ing anomalies in the training phase. Further work is needed in this step to be able to reach

a better conclusion. A possible approach would be to exclude the anomalous profiles from

the simulation to ensure that these are the cause for the increased computation times.

Final Remarks 102

7.2 Conclusions

The need to consistently predict the Sun’s conditions that lead to extreme events has become

an increasingly important study. However, technological difficulties make obtaining real-time

data from the Sun’s surface challenging. Multiple numeric simulators have tried to fill this gap by

extrapolating these conditions based on limited observations from Earth. In this dissertation, we

have explained the problems (Section 1.2) associated with these solutions that severely affect the

ability to generate solar estimations promptly. These issues included the long execution time of the

simulation models as well as the need for initial expert estimations. Additionally, it was posited

that the use of machine learning techniques to predict the original conditions suffered greatly from

the data dispersion and anomalies in the training data.

Several experiments were carried out with the existing dataset to address the generalization

issues of the baseline RNN models, with widely used clustering algorithms and two data dimen-

sionality reduction methods. These were devised after an extensive analysis of the state-of-the-art

approaches for clustering with an emphasis on improving machine learning performance. In the

end, a new approach for generating initial flow conditions closer to the final simulation conditions

was developed. However, contrary to what was hypothesized, evidence shows that the improved

estimates failed to reduce the overall computation time of the simulation.

In the second part of this thesis, many experiments were carried out to determine if the ab-

normal profiles in the dataset were hampering the predictions’ quality. After an extensive analysis

of the state-of-the-art approaches for adversarial anomaly detection, three methods were imple-

mented (one of which was an adaptation) and tested on the training dataset, which proved that

these methods could detect faulty profiles in the given dataset. From the experiments, we con-

cluded that the state-of-the-art MAD-GAN was the most efficient method for the task. Due to this,

it was used to identify anomalies in the input and output variables of MULTI-VP. In this phase,

we also show that training the same clustering methods from the previous experiments without

anomalies failed to produce more approximate initial and final estimates, but that despite this, the

mean speedup obtained in the simulation was superior.

In a final experiment, the outputs of previous MULTI-VP execution were used directly as

initial conditions of the simulation. The preliminary findings suggest that there were no notable

improvements in the computation time of the simulation. These findings support the notion that

initial estimates’ proximity to the simulation outputs might not contribute to faster executions.

One hypothesis to explain this observation is that the simulation itself has inherent limitations or

overhead that prevent faster executions, regardless of the quality of the initial estimates. However,

it is important to note that further research is required to draw a more definitive conclusion on this

matter.

One issue with the methodology that might have contributed to these results was that the data

used in the MULTI-VP simulation only constituted 10% of the entire dataset. We used such a

small part of the dataset to evaluate the performance of the approaches with data that was never

seen in the training and detection phases. The slow computation time of MULTI-VP was also a

7.3 Future Work 103

key factor for this, as it takes up to two weeks to produce the estimates for this dataset, and we

needed to carry out multiple tests during this thesis. The main issue is that the randomly chosen

profiles for the validation dataset might not represent the whole dataset, bringing some uncertainty

to the results.

From these experiments, it was concluded that we achieved part of the goals defined in this

thesis, as we produced estimates significantly closer to the simulation outputs. Despite these im-

provements, we were unable to reduce the overall computation time, leading us to believe that

initial flow conditions closer to the final solutions might not necessarily be linked to the perfor-

mance of the simulation.

7.3 Future Work

Considering all the work in this dissertation, we concluded that despite having closer initial

conditions to the final solution, we could not significantly improve the simulation’s computation

time. More research on this area is needed in order to reach a possible explanation for these results.

This would require a more in-depth analysis of the inner workings of the MULTI-VP simulation

to determine why significantly closer initial and final conditions do not lead to computational

improvements.

Additional research needs to be conducted to assess the physical coherence of the initial con-

ditions generated by the new prediction models. This can involve examining the conservation of

mass, momentum, and energy across each individual solar wind profile. By evaluating the physical

feasibility of these predictions, it may be possible to develop a surrogate model that could serve as

an early-stage solar wind forecasting system.

In some applications where a higher level of scrutiny is not required, this surrogate model

could potentially replace the need for the more resource-intensive MULTI-VP simulation. How-

ever, it is important to emphasize that further investigation and analysis are necessary to validate

the accuracy and reliability of the surrogate model and its ability to provide physically coherent

predictions.

Other approaches, such as applying physics-informed machine learning, could be developed

to achieve physically sound initial flow conditions that would be able to replace the MULTI-VP

simulation. Furthermore, the developed methodologies could be tested on other MHD simulators

to determine if the proximity of initial and final conditions leads to significant computation times

that MULTI-VP did not achieve.

References

[1] Yiwei Cheng, Haiping Zhu, Jun Wu, and Xinyu Shao. Machine Health Monitoring Using
Adaptive Kernel Spectral Clustering and Deep Long Short-Term Memory Recurrent Neural
Networks. IEEE Transactions on Industrial Informatics, 15(2):987–997, 2019.

[2] Rui F. Pinto and Alexis P. Rouillard. A Multiple Flux-tube Solar Wind Model. The Astro-
physical Journal, 838(2):89, 2017.

[3] D. Odstrčil and V. J. Pizzo. Three-dimensional propagation of coronal mass ejections
(CMEs) in a structured solar wind flow: 1. CME launched within the streamer belt. Journal
of Geophysical Research: Space Physics, 104(A1):483–492, 1999.

[4] Ana Filipa Sousa Barros. Initial Condition Estimation in Flux Tube Simulations using Ma-
chine Learning, 2021.

[5] Rainer Schwenn. Space Weather: The Solar Perspective. Living Reviews in Solar Physics,
3(1):2, 2006.

[6] Rushil Anirudh, Rick Archibald, M. Salman Asif, Markus M. Becker, Sadruddin Benkadda,
Peer-Timo Bremer, Rick H. S. Budé, C. S. Chang, Lei Chen, R. M. Churchill, Jonathan Cit-
rin, Jim A. Gaffney, Ana Gainaru, Walter Gekelman, Tom Gibbs, Satoshi Hamaguchi, Chris-
tian Hill, Kelli Humbird, Sören Jalas, Satoru Kawaguchi, Gon-Ho Kim, Manuel Kirchen,
Scott Klasky, John L. Kline, Karl Krushelnick, Bogdan Kustowski, Giovanni Lapenta, Went-
ing Li, Tammy Ma, Nigel J. Mason, Ali Mesbah, Craig Michoski, Todd Munson, Izumi Mu-
rakami, Habib N. Najm, K. Erik J. Olofsson, Seolhye Park, J. Luc Peterson, Michael Probst,
Dave Pugmire, Brian Sammuli, Kapil Sawlani, Alexander Scheinker, David P. Schissel,
Rob J. Shalloo, Jun Shinagawa, Jaegu Seong, Brian K. Spears, Jonathan Tennyson, Jayara-
man Thiagarajan, Catalin M. Ticoş, Jan Trieschmann, Jan van Dijk, Brian Van Essen, Peter
Ventzek, Haimin Wang, Jason T. L. Wang, Zhehui Wang, Kristian Wende, Xueqiao Xu, Hi-
roshi Yamada, Tatsuya Yokoyama, and Xinhua Zhang. 2022 Review of Data-Driven Plasma
Science, May 2022.

[7] D.N. Baker. What is space weather? Advances in Space Research, 22(1):7–16, 1998.

[8] Mark Moldwin. An Introduction to Space Weather. Cambridge University Press, 2008.

[9] Eric Priest. The Solar Wind. Cambridge University Press, 2014.

[10] Sami K. Solanki, Bernd Inhester, and Manfred Schüssler. The solar magnetic field. Reports
on Progress in Physics, 69(3):563–668, March 2006. arXiv:1008.0771 [astro-ph].

[11] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436–
444, May 2015. Number: 7553 Publisher: Nature Publishing Group.

104

REFERENCES 105

[12] Robin M. Schmidt. Recurrent Neural Networks (RNNs): A gentle Introduction and
Overview, 2019.

[13] Charu C. Aggarwal. Outlier Analysis. Springer New York, 2013.

[14] Xuan Xia, Xizhou Pan, Nan Li, Xing He, Lin Ma, Xiaoguang Zhang, and Ning Ding. GAN-
based anomaly detection: A review. Neurocomputing, 493:497–535, July 2022.

[15] Priyanga Dilini Talagala, Rob J Hyndman, and Kate Smith-Miles. Anomaly Detection in
High Dimensional Data, 2019.

[16] Victoria Hodge and Jim Austin. A survey of outlier detection methodologies, oct 2004.

[17] Anil K. Jain. Data clustering: 50 years beyond K-means. Pattern Recognition Letters,
31(8):651–666, 2010.

[18] Alex Rodriguez and Alessandro Laio. Clustering by fast search and find of density peaks.
Science, 344(6191):1492–1496, 2014.

[19] Adil Fahad, Najlaa Alshatri, Zahir Tari, Abdullah Alamri, Ibrahim Khalil, Albert Y. Zomaya,
Sebti Foufou, and Abdelaziz Bouras. A Survey of Clustering Algorithms for Big Data:
Taxonomy and Empirical Analysis. IEEE Transactions on Emerging Topics in Computing,
2(3):267–279, 2014.

[20] Gang Kou, Yi Peng, and Guoxun Wang. Evaluation of clustering algorithms for financial
risk analysis using mcdm methods. Information Sciences, 275:1 – 12, 2014. Cited by: 630.

[21] Feiping Nie, Xiaoqian Wang, and Heng Huang. Clustering and projected clustering with
adaptive neighbors. In Proceedings of the 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 977–986. ACM, 2014.

[22] Daniel Granato, Jânio S. Santos, Graziela B. Escher, Bruno L. Ferreira, and Rubén M. Mag-
gio. Use of principal component analysis (PCA) and hierarchical cluster analysis (HCA) for
multivariate association between bioactive compounds and functional properties in foods: A
critical perspective. Trends in Food Science & Technology, 72:83–90, 2018.

[23] Wei-Chao Lin, Chih-Fong Tsai, Ya-Han Hu, and Jing-Shang Jhang. Clustering-based under-
sampling in class-imbalanced data. Information Sciences, 409–410:17–26, 2017.

[24] Georgios Douzas, Fernando Bacao, and Felix Last. Improving imbalanced learning through
a heuristic oversampling method based on k-means and SMOTE. Information Sciences,
465:1–20, 2018.

[25] John Paparrizos and Luis Gravano. K-Shape: Efficient and Accurate Clustering of Time
Series. In Proceedings of the 2015 ACM SIGMOD International Conference on Management
of Data, pages 1855–1870. ACM, 2015.

[26] Mingjing Du, Shifei Ding, and Hongjie Jia. Study on density peaks clustering based on
k-nearest neighbors and principal component analysis. Knowledge-Based Systems, 99:135–
145, 2016.

[27] Amita Malav, Kalyani Kadam, and Pooja Kamat. PREDICTION OF HEART DISEASE
USING K-MEANS and ARTIFICIAL NEURAL NETWORK as HYBRID APPROACH to
IMPROVE ACCURACY. International Journal of Engineering and Technology, 9(4):3081–
3085, 2017.

REFERENCES 106

[28] Chao Chen, Guanbin Li, Ruijia Xu, Tianshui Chen, Meng Wang, and Liang Lin. Cluster-
Net: Deep Hierarchical Cluster Network With Rigorously Rotation-Invariant Representation
for Point Cloud Analysis. In 2019 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 4989–4997. IEEE, 2019.

[29] Junyuan Xie, Ross Girshick, and Ali Farhadi. Unsupervised Deep Embedding for Clustering
Analysis, 2016.

[30] Fateme Fahiman, Sarah M. Erfani, Sutharshan Rajasegarar, Marimuthu Palaniswami, and
Christopher Leckie. Improving load forecasting based on deep learning and K-shape cluster-
ing. In 2017 International Joint Conference on Neural Networks (IJCNN), pages 4134–4141,
2017.

[31] Tanmay Kumar Behera and Suvasini Panigrahi. Credit Card Fraud Detection: A Hybrid Ap-
proach Using Fuzzy Clustering & Neural Network. In 2015 Second International Conference
on Advances in Computing and Communication Engineering, pages 494–499, 2015.

[32] Jinjun Tang, Fang Liu, Yajie Zou, Weibin Zhang, and Yinhai Wang. An Improved Fuzzy
Neural Network for Traffic Speed Prediction Considering Periodic Characteristic. IEEE
Transactions on Intelligent Transportation Systems, 18(9):2340–2350, 2017.

[33] Hamidreza Jahangir, Hanif Tayarani, Saleh Sadeghi Gougheri, Masoud Aliakbar Golkar, Ali
Ahmadian, and Ali Elkamel. Deep Learning-Based Forecasting Approach in Smart Grids
With Microclustering and Bidirectional LSTM Network. IEEE Transactions on Industrial
Electronics, 68(9):8298–8309, 2021.

[34] Chenshuang Zhang, Guijin Wang, Jingwei Zhao, Pengfei Gao, Jianping Lin, and Huazhong
Yang. Patient-specific ECG classification based on recurrent neural networks and cluster-
ing technique. In 2017 13th IASTED International Conference on Biomedical Engineering
(BioMed), pages 63–67, 2017.

[35] Yandong Yang, Wei Li, T. Aaron Gulliver, and Shufang Li. Bayesian Deep Learning-Based
Probabilistic Load Forecasting in Smart Grids. IEEE Transactions on Industrial Informatics,
16(7):4703–4713, 2020.

[36] D. Li, D. Chen, B. Jin, L. Shi, J. Goh, and S.-K. Ng. MAD-GAN: Multivariate Anomaly
Detection for Time Series Data with Generative Adversarial Networks. Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), 11730 LNCS:703–716, 2019.

[37] Houssam Zenati, Chuan Sheng Foo, Bruno Lecouat, Gaurav Manek, and Vijay Ramaseshan
Chandrasekhar. Efficient GAN-Based Anomaly Detection, 2018.

[38] Houssam Zenati, Manon Romain, Chuan-Sheng Foo, Bruno Lecouat, and Vijay Chan-
drasekhar. Adversarially Learned Anomaly Detection. In 2018 IEEE International Con-
ference on Data Mining (ICDM), pages 727–736, 2018.

[39] J. Audibert, P. Michiardi, F. Guyard, S. Marti, and M.A. Zuluaga. USAD: UnSupervised
Anomaly Detection on Multivariate Time Series. In Proceedings of the ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining, pages 3395–3404, 2020.

[40] Y. Liu, Z. Li, C. Zhou, Y. Jiang, J. Sun, M. Wang, and X. He. Generative Adversarial Active
Learning for Unsupervised Outlier Detection. IEEE Transactions on Knowledge and Data
Engineering, 32(8):1517–1528, 2020.

REFERENCES 107

[41] Shuokang Huang and Kai Lei. IGAN-IDS: An imbalanced generative adversarial network
towards intrusion detection system in ad-hoc networks. Ad Hoc Networks, 105:102177, 2020.

[42] W. Jiang, Y. Hong, B. Zhou, X. He, and C. Cheng. A GAN-Based Anomaly Detection
Approach for Imbalanced Industrial Time Series. IEEE Access, 7:143608–143619, 2019.

[43] Jeff Donahue, Philipp Krähenbühl, and Trevor Darrell. Adversarial Feature Learning, 2017.

[44] Alexander Geiger, Dongyu Liu, Sarah Alnegheimish, Alfredo Cuesta-Infante, and Kalyan
Veeramachaneni. TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks. In 2020 IEEE International Conference on Big Data (Big Data), pages 33–43,
2020.

[45] X. Wang, Y. Du, S. Lin, P. Cui, Y. Shen, and Y. Yang. adVAE: A self-adversarial variational
autoencoder with Gaussian anomaly prior knowledge for anomaly detection. Knowledge-
Based Systems, 190, 2020.

[46] Andrew Blance, Michael Spannowsky, and Philip Waite. Adversarially-trained autoencoders
for robust unsupervised new physics searches. Journal of High Energy Physics, 2019(10):47,
2019.

[47] J. Wu, Z. Zhao, C. Sun, R. Yan, and X. Chen. Fault-Attention Generative Probabilistic
Adversarial Autoencoder for Machine Anomaly Detection. IEEE Transactions on Industrial
Informatics, 16(12):7479–7488, 2020.

[48] Phuc Cuong Ngo, Amadeus Aristo Winarto, Connie Khor Li Kou, Sojeong Park, Farhan
Akram, and Hwee Kuan Lee. Fence GAN: Towards Better Anomaly Detection. In 2019
IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI), pages 141–
148, 2019.

[49] Ilias Siniosoglou, Panagiotis Radoglou-Grammatikis, Georgios Efstathopoulos, Panagiotis
Fouliras, and Panagiotis Sarigiannidis. A Unified Deep Learning Anomaly Detection and
Classification Approach for Smart Grid Environments. IEEE Transactions on Network and
Service Management, 18(2):1137–1151, 2021.

[50] Shaowei Liu, Hongkai Jiang, Zhenghong Wu, and Xingqiu Li. Data synthesis using deep
feature enhanced generative adversarial networks for rolling bearing imbalanced fault diag-
nosis. Mechanical Systems and Signal Processing, 163:108139, 2022.

[51] S.K. Lim, Y. Loo, N.-T. Tran, N.-M. Cheung, G. Roig, and Y. Elovici. DOPING: Generative
Data Augmentation for Unsupervised Anomaly Detection with GAN. In Proceedings - IEEE
International Conference on Data Mining, ICDM, volume 2018-November, pages 1122–
1127, 2018.

[52] Chuanlong Yin, Yuefei Zhu, Shengli Liu, Jinlong Fei, and Hetong Zhang. An enhancing
framework for botnet detection using generative adversarial networks. In 2018 International
Conference on Artificial Intelligence and Big Data (ICAIBD), pages 228–234, 2018.

[53] Yuxuan Yuan, Kaveh Dehghanpour, Fankun Bu, and Zhaoyu Wang. Outage Detection in
Partially Observable Distribution Systems Using Smart Meters and Generative Adversarial
Networks. IEEE Transactions on Smart Grid, 11(6):5418–5430, 2020.

[54] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative Adversarial Networks, 2014.

REFERENCES 108

[55] Fanhui Kong, Jianqiang Li, Bin Jiang, Huihui Wang, and Houbing Song. Integrated Genera-
tive Model for Industrial Anomaly Detection via Bidirectional LSTM and Attention Mecha-
nism. IEEE Transactions on Industrial Informatics, 19(1):541–550, 2023.

[56] Md Abul Bashar and Richi Nayak. TAnoGAN: Time Series Anomaly Detection with Gener-
ative Adversarial Networks. In 2020 IEEE Symposium Series on Computational Intelligence
(SSCI), pages 1778–1785, 2020.

[57] Chu Wang, Yan-Ming Zhang, and Cheng-Lin Liu. Anomaly Detection via Minimum Like-
lihood Generative Adversarial Networks. In 2018 24th International Conference on Pattern
Recognition (ICPR), pages 1121–1126, 2018.

[58] Qinghua Xu, Shaukat Ali, and Tao Yue. Digital Twin-based Anomaly Detection in Cyber-
physical Systems. In 2021 14th IEEE Conference on Software Testing, Verification and
Validation (ICST), pages 205–216, 2021.

[59] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: A review. ACM Computing
Surveys, 31(3):264–323, 1999.

[60] Amit Saxena, Mukesh Prasad, Akshansh Gupta, Neha Bharill, Om Prakash Patel, Aruna
Tiwari, Meng Joo Er, Weiping Ding, and Chin-Teng Lin. A review of clustering techniques
and developments. Neurocomputing, 267:664–681, 2017.

[61] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-based algorithm
for discovering clusters in large spatial databases with noise. In Proceedings of the Sec-
ond International Conference on Knowledge Discovery and Data Mining, KDD’96, page
226–231. AAAI Press, 1996.

[62] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

[63] Romain Tavenard, Johann Faouzi, Gilles Vandewiele, Felix Divo, Guillaume Androz,
Chester Holtz, Marie Payne, Roman Yurchak, Marc Rußwurm, Kushal Kolar, and Eli Woods.
Tslearn, a machine learning toolkit for time series data. Journal of Machine Learning Re-
search, 21(118):1–6, 2020.

[64] Giuseppe Vettigli. Minisom: minimalistic and numpy-based implementation of the self or-
ganizing map, 2018.

[65] François Chollet et al. Keras. https://keras.io, 2015.

[66] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised Representation Learning
with Deep Convolutional Generative Adversarial Networks, 2016.

[67] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial
networks. In Proceedings of the 34th International Conference on Machine Learning - Vol-
ume 70, ICML’17, page 214–223. JMLR.org, 2017.

[68] Divya Saxena and Jiannong Cao. Generative adversarial networks (gans): Challenges, solu-
tions, and future directions. ACM Comput. Surv., 54(3), may 2021.

https://keras.io

REFERENCES 109

[69] Claire Little, Mark Elliot, Richard Allmendinger, and Sahel Shariati Samani. Generative
Adversarial Networks for Synthetic Data Generation: A Comparative Study, 2021.

[70] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving Deep into Rectifiers:
Surpassing Human-Level Performance on ImageNet Classification, 2015.

Appendix A

Clustering - KMeans Results

Results of clustering method that was used to train the initial wind flow prediction RNN. PCA

and TSNE were applied to the R[Rsun], B[G] and α[deg] input variables of MULTI-VP. Next, a

KMeans clustering was performed on the resulting representations. Only the PCA solution was

used, as the KMeans applied to the TSNE of the joint inputs (Figure A.1) failed to produce a clear

data division.

Figure A.1: Visualization of the clusters obtained with the TSNE of the joint inputs. Unlike the
results from the PCA on the joint inputs (Figure A.3), this method didn’t produce a good division
of the data as points that would be more suited in cluster 1 were assigned to cluster 0.

110

A.1 PCA Results 111

A.1 PCA Results

Figure A.2: Cumulative Explained Variance for the PCA of the input variables

Clustering - KMeans Results 112

Figure A.3: KMeans clustering of the PCA of the input variables

Figure A.4: Number of profiles per cluster

A.1 PCA Results 113

Figure A.5: Data division based on the clustering results

Appendix B

MAD-GAN Results

Results of the MAD-GAN approach for anomaly detection in solar wind profiles. Two models

were created, one for detecting input variables and the other for the outputs. Each model produces

an anomaly score for every file in the dataset and a defined percentage is considered anomalous.

In these experiments the threshold is set at 3%.

B.1 Input Model

Figure B.1: MAD-GAN input model training history.

114

B.1 Input Model 115

Figure B.2: Input Anomaly Scores. MAD-GAN Anomaly Reconstruction Scores for each profile
in the input dataset. Profiles with scores above the orange line are considered anomalies.

MAD-GAN Results 116

Figure B.3: Anomalies detected with the MAD-GAN input model.

B.2 Output Model 117

B.2 Output Model

Figure B.4: MAD-GAN output model training history.

MAD-GAN Results 118

Figure B.5: Output Anomaly Scores. MAD-GAN Anomaly Reconstruction Scores for each profile
in the output dataset. Profiles with scores above the orange line are considered anomalies.

B.2 Output Model 119

Figure B.6: Anomalies detected with the MAD-GAN output model.

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Problem Definition
	1.3 Goals
	1.4 Document Structure

	2 Background
	2.1 Space Weather
	2.1.1 Solar Phenomena
	2.1.2 Magnetohydrodynamic Simulation Models

	2.2 Neural Networks
	2.2.1 Deep Neural Networks
	2.2.2 Recurrent Neural Networks
	2.2.3 Autoencoders

	2.3 Anomaly Definitions
	2.3.1 Anomaly Detection Approaches

	3 State of The Art
	3.1 Clustering
	3.1.1 Survey Research Questions
	3.1.2 Search Queries
	3.1.3 Inclusion/Exclusion Criteria
	3.1.4 Results
	3.1.5 Analysis
	3.1.6 Threats to SLR Validity

	3.2 Adversarial Anomaly Detection
	3.2.1 Survey Research Questions
	3.2.2 Search Query
	3.2.3 Inclusion and exclusion criteria
	3.2.4 Results
	3.2.5 Analysis
	3.2.6 Threats to SLR Validity

	3.3 Summary

	4 Research Statement
	4.1 MULTI-VP
	4.2 ML for Initial Flow Estimation
	4.3 Exploratory Data Analysis
	4.4 Hypothesis
	4.5 Methodology

	5 Clustering
	5.1 Clustering Methods
	5.1.1 K-Means
	5.1.2 SOM
	5.1.3 Agglomerative Clustering
	5.1.4 DBSCAN

	5.2 Validity Measures
	5.3 Dimensionality Reduction
	5.4 Experiments
	5.4.1 Time Series KMeans
	5.4.2 SOM
	5.4.3 PCA Clustering Approach
	5.4.4 t-SNE Clustering Approach
	5.4.5 DBSCAN Experiments

	5.5 ML Experiments
	5.5.1 Clustering ML Results
	5.5.2 MULTI-VP Results

	5.6 Summary

	6 Adversarial Anomaly Detection
	6.1 Generative Adversarial Networks
	6.1.1 Common Challenges in the Training Phase
	6.1.2 Anomaly Detection with GANs

	6.2 Experiments
	6.2.1 Anomaly Scores
	6.2.2 Linear GAN
	6.2.3 Preliminary RNN-based GAN Experiments
	6.2.4 MAD-GAN
	6.2.5 Adversarial AE
	6.2.6 Experiments Summary

	6.3 ML Experiments
	6.4 Summary

	7 Final Remarks
	7.1 Hypothesis Evaluation
	7.2 Conclusions
	7.3 Future Work

	References
	A Clustering - KMeans Results
	A.1 PCA Results

	B MAD-GAN Results
	B.1 Input Model
	B.2 Output Model

