
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Using Deep Reinforcement Learning
Techniques to Optimize the Throughput

of Wi-Fi Links

Héber Miguel Severino Ribeiro

Mestrado em Engenharia Eletrotécnica e de Computadores

Supervisor: Rui Lopes Campos

July 1, 2022

© Héber Ribeiro, 2022

Abstract

Ever since the introduction of the first IEEE 802.11 standard in 1997 (commercially known as
Wi-Fi), there have been considerable advances in the development of this technology. Every new
standard released has brought a myriad of improvements and new configurable parameters. These
parameters make it possible to get an increasingly better link quality in Wi-Fi connections. How-
ever, the optimal configuration of these parameters becomes a complex task and the existing link
adaptation algorithms are no longer suitable, opening up the opportunity to use Machine Learning
techniques to address this challenge.

Over the last two decades, the Machine Learning field has seen considerable advances, mainly
due to the increase in computational power. This has made it possible for new advanced techniques
to be developed and used in a set of scientific and engineering areas. One powerful technique that
has been on the rise in recent years is Reinforcement Learning (RL), which consists in training an
agent that learns how to perform the best actions by observing and interacting with the environment
it is designed for.

This dissertation had the goal of developing a link adaptation algorithm that dynamically
adapts the Modulation and Coding Scheme (MCS), Channel Bandwidth (CB) and Guard Inter-
val (GI) parameters, according to the current radio channel conditions, and is resilient to sudden
changes in the link quality, in order to maximize the throughput. The algorithm was developed us-
ing Deep Reinforcement Learning (DRL), a fusion of Deep Learning (DL) and RL that allows for
the use of RL with Deep Neural Networks (DNNs). It was then trained, tested and validated using
the ns-3 software. The obtained simulation results show the proposed algorithm has significant
gains when compared with its state of the art counterparts.

i

ii

Resumo

Desde a introdução da primeira norma IEEE 802.11 em 1997 (comercialmente conhecida como
Wi-Fi), foram feitos avanços significativos no desenvolvimento desta tecnologia. Todas as normas
publicadas desde então trouxeram uma grande variedade de melhoramentos e novos parâmetros
configuráveis. Estes parâmetros permitem obter uma qualidade de ligação cada vez melhor em
ligações Wi-Fi. No entanto, a configuração ótima destes parâmetros torna-se uma tarefa com-
plexa e os algoritmos de débito adaptativo existentes não são apropriados, abrindo caminho para a
utilização de técnicas de Machine Learning para endereçar este desafio.

Ao longo das duas última décadas, a área de Machine Learning tem visto avanços consid-
eráveis, principalmente devido ao aumento do poder computacional. Isto possibilitou que novas
técnicas avançadas fossem desenvolvidas e utilizadas numa grande variedade de áreas científicas e
de engenharia. Uma técnica poderosa que tem sido popularizada nos últimos anos é Reinforcement
Learning (RL), que consiste em treinar um agente que aprende como executar as melhores ações
através da observação e interação com o ambiente para o qual foi desenhado.

Esta dissertação tem como objetivo desenvolver um algoritmo de adaptação de ligação ca-
paz de adaptar dinamicamente os parâmetros Modulation and Coding Scheme (MCS), Channel
Bandwidth (CB) e Guard Interval (GI), de acordo com as condições atuais do canal rádio, e ser re-
siliente a mudanças bruscas na qualidade da conexão, de forma a maximizar o throughput obtido.
O algoritmo foi desenvolvido utilizando Deep Reinforcement Learning (DRL), uma fusão de Deep
Learning (DL) e RL que permite que RL seja utilizado juntamente com Deep Neural Networks
(DNNs). O algoritmo foi posteriormente treinado, testado e validado utilizando o simulador de
redes ns-3. Os resultados de simulação obtidos mostram que o algoritmo proposto tem ganhos
significativos comparado a outros algoritmos do estado da arte.

iii

iv

Acknowledgements

First of all, I would like to thank my supervisors, Rui Lopes Campos, Rúben Miguel Rei Queirós
and Helder Martins Fontes for all the support they have given me during the development of this
dissertation. This work would not be possible without them.

I would like to thank my friends for always being there for me, both during the good and the
less pleasant times. The laughs and moments we shared daily were precious and helped me to
keep going.

Last but not least, I would like to thank my family for always supporting me and allowing me
to become the person I am today. They mean the world to me and I owe them my life.

Héber Ribeiro

v

vi

Contents

1 Introduction 1
1.1 Context . 1
1.2 Motivation . 1
1.3 Problem Definition . 2
1.4 Objectives . 2
1.5 Contributions . 3
1.6 Document Structure . 3

2 State of the Art 5
2.1 IEEE 802.11 . 5
2.2 Link Adaptation Algorithms . 7

2.2.1 Iwl-mvm-rs . 8
2.2.2 Minstrel-HT . 8
2.2.3 STRALE . 9
2.2.4 Damysus . 10

2.3 Machine Learning . 10
2.3.1 Supervised Learning . 10
2.3.2 Unsupervised Learning . 11
2.3.3 Reinforcement Learning . 11
2.3.4 Deep Learning . 12
2.3.5 Deep Reinforcement Learning . 13
2.3.6 Key Concepts . 13

2.4 Deep Reinforcement Learning Algorithms . 15
2.5 Related Work . 17

2.5.1 SmartLA . 17
2.5.2 EDRA . 18

2.6 Summary . 19

3 DRL-LA Algorithm 21
3.1 Proposed Solution . 21

3.1.1 Action Space . 23
3.1.2 Backup Mechanism . 24

3.2 Software Tools and Setup . 27

4 Implementation 31
4.1 Ns-3 Simulations . 32
4.2 Ns3-gym . 35
4.3 DRL Agent . 36

vii

viii CONTENTS

4.3.1 Environment Creation . 37
4.3.2 DRL Algorithm . 38
4.3.3 Neural network and hyperparameter tuning 39

4.4 Reward Function Tuning . 46

5 Performance Evaluation 49
5.1 Waypoint Scenario . 49
5.2 Teleporting Node Scenario . 52
5.3 Waypoint With Teleports Scenario . 55
5.4 Conclusions . 57

6 Conclusion and Future Work 59

References 61

List of Figures

2.1 Comparison between the ad-hoc and infrastructure modes. 7
2.2 The Supervised Learning process. 11
2.3 The Unsupervised Learning process. 11
2.4 The Reinforcement Learning process. 12
2.5 The Deep Learning process. 12
2.6 Illustration of underfitting, overfitting and optimum fitting. 14
2.7 Types of reinforcement learning algorithms. 16
2.8 Q-learning vs. Deep-Q learning. 16

3.1 Theoretical throughputs table for IEEE 802.11ac. 23
3.2 Cropped theoretical throughput table to only show the combinations available to

the agent. 24
3.3 Example of a sudden SNR deterioration. 26
3.4 Flowchart representation of a cycle. 27
3.5 Architecture of the ns3-gym framework. 28
3.6 Concurrent training sessions on the two machines. 29

4.1 RL loop represented with ns3-gym and the ns-3 simulation. 31
4.2 Waypoint scenario when the STA node is moving away from the AP node, with

the STA currently at the halfway point. 33
4.3 Waypoint scenario when the STA node is moving back towards the AP node, with

the STA currently at the halfway point. 34
4.4 Teleporting node scenario. 34
4.5 Waypoint teleport scenario. 35
4.6 Example of how to run the DRL agent Python program on the terminal with the

DRL-LA algorithm. 37
4.7 Example of how to run the DRL agent Python program on the terminal, but with

the Minstrel-HT algorithm. 37
4.8 Example of a neural network creation with Keras. 41
4.9 Cumulative reward plots for a learning rate of 1×10−2. 42
4.10 Cumulative reward plots for a learning rate of 1×10−3. 43
4.11 Cumulative reward plots for a learning rate of 5.5×10−3. 44
4.12 Code snippet of the reward function. 46
4.13 Cumulative reward plots for the different parameter weights. 47

5.1 Throughputs for the first waypoint simulation, in which the AP goes from 1 to
1300 meters and back. 50

5.2 CDF for the DRL-LA and Minstrel-HT algorithms for the original waypoint sce-
nario. 50

ix

x LIST OF FIGURES

5.3 Throughputs for the second waypoint simulation, in which the AP goes from 1 to
650 meters and back. 51

5.4 CDF for the DRL-LA, Ideal and Minstrel-HT algorithms for the alternative way-
point scenario. 52

5.5 Throughputs for the teleporting node scenario. 53
5.6 CDF for the DRL-LA, Ideal and Minstrel-HT algorithms for the teleporting node

scenario. 54
5.7 Comparison of the throughput plots obtained using DRL-LA with the backup

mechanism enabled and disabled. 54
5.8 Throughputs for the waypoint with teleports scenario. 55
5.9 CDF for the DRL-LA and Minstrel-HT algorithms for the waypoint with teleports

scenario. 56
5.10 Comparison of the throughputs obtained using DRL-LA with the backup mecha-

nism enabled and disabled in the waypoint with teleports scenario. 57

List of Tables

4.1 Evaluation mean cumulative reward values for the different neural network and
learning rate combinations. 45

4.2 Evaluation mean cumulative reward values for the different weight combinations. 47

xi

xii LIST OF TABLES

Abbreviations

ACK Acknowledgement
AI Artificial Intelligence
A-MPDU Aggregate Medium Access Control Protocol Data Unit
AP Access Point
BER Bit Error Ratio
BSS Basic Set Service
CB Channel Bandwidth
CDF Cumulative Distribution Function
DL Deep Learning
DNN Deep Neural Network
DQN Deep Q-Network
DRL Deep Reinforcement Learning
DRL-LA Deep Reinforcement Learning Link Adaptation
DSSS Direct Sequence Spread Spectrum
EDRA Experience Driven Rate Adaptation
EWMA Exponential Weighted Moving Average
FER Frame Error Ratio
FHSS Frequency Hopping Spread Spectrum
FLR Frame Loss Ratio
FSR Frame Success Ratio
GI Guard Interval
HR-DSSS High-Rate Direct Sequence Spread Spectrum
LFA Level of Frame Aggregation
MAC Medium Access Control
MCS Modulation and Coding Schemes
MIMO Multiple Input Multiple Output
ML Machine Learning
NIC Network Interface Controller
NSS Number of Spatial Streams
OFDMA Orthogonal Frequency-Division Multiple Access
OFDM Orthogonal Frequency-Division Multiplexing
PB Preamble Puncturing
PHY Physical
PLR Packet Loss Ratio
ReLU Rectified Linear Unit
RL Reinforcement Learning
RSSI Received Signal Strength Indicator
SISO Single Input Single Output

xiii

xiv ABBREVIATIONS

SL Supervised Learning
SNR Signal-to-Noise Ratio
SR Spatial Reuse
STA Station
STR Service Time Ratio
UL Unsupervised Learning
WLAN Wireless Local Area Networks

Chapter 1

Introduction

1.1 Context

The usage of Wireless Local Area Networks (WLANs) is one of the most common practices to-

day. These networks have been popularized in domestic, educational, commercial and corporative

environments, allowing for multiple devices to communicate with each other and also access the

Internet. They are implemented using the IEEE 802.11 set of technical standards, commercially

known by the brand name Wi-Fi. The first IEEE 802.11 standard was released back in 1997 and

since then, multiple standards have been introduced. By the time of writing, the latest standards

released are the IEEE 802.11n (2009), IEEE 802.11ac (2013) and IEEE 802.11ax (2020). These

standards were developed to meet the demand for high throughputs and network capacity. With

each subsequent standard, new configurable parameters were introduced, both in the Phyiscal

(PHY) and in the Medium Access Control (MAC) layers, aimed at improving the performance of

connections inside a WLAN. These parameters need to be optimally configured depending on the

current radio channel conditions, making it paramount to have a link adaptation algorithm capable

of accomplishing this.

Over the years, various link adaptation algorithms have been developed to address the chal-

lenge presented above [1]. However, with the introduction of the latest IEEE 802.11 standards and

their enhancements, these algorithms have shown to be outdated and unable to optimally adapt

the link, as they do not fully utilize the capabilities of the most recent standards. This creates a

demand for better solutions when it comes to link adaptation algorithms.

1.2 Motivation

Machine Learning (ML) is currently a very prominent field, as it is being actively researched and

developed. This field spans a variety of techniques that are being increasingly applied to many

scientific areas, including Wireless Communications.

Due to the constant advances in the ML field, the efficiency and versatility that ML techniques

provide, and the promising results obtained in recent related works, it seems that the way forward

1

2 Introduction

when it comes to developing advanced link adaptation algorithms, capable of fully utilizing the

features of the most recent IEEE 802.11 standards, should be based on the use of ML techniques.

Recent works have shown that ML techniques can be successfully used in the creation of link

adaptation algorithms. More specifically, the Reinforcement Learning (RL) technique has been

utilized to developed dynamic link adaptation algorithms for the IEEE 802.11 standards in [2] and

[3], which attempt to optimally configure various parameters based on the current radio channel

conditions. These works present very promising results and have laid the foundation when it comes

to applying RL for dynamic link adaptation. However, to the best of our knowledge, there are still

few studies in this subject and there is much room for improvement, pointing to the potential of

this dissertation.

1.3 Problem Definition

Recent IEEE 802.11 standards, like the IEEE 802.11n, IEEE 802.11ac and IEEE 802.11ax, allow

for the creation of high throughput WLANs due to their many enhancements. However, the most

popular rate and link adaptation algorithms are no longer suitable, as they do not explore the

full potential of these standards. These algorithms can also present a myriad of problems like

excessive overhead, increased delay and heavy processing. Furthermore, they fail to quickly adapt

to unpredictable channel quality changes.

To reach the theoretical high throughputs that these standards offer, while also ensuring a

quick adaptation when sudden radio channel quality changes occur, there is a need of novel link

adaptation algorithms that optimally configure various parameters depending on the radio channel

conditions. This dissertation addresses this problem by utilizing Deep Reinforcement Learning

(DRL) as a basis for a new algorithm.

1.4 Objectives

This dissertation had the goal of developing and validating a new DRL-based Link Adaptation

(DRL-LA) algorithm for Wi-Fi networks. This algorithm should be able to configure three param-

eters to adapt the link: Modulation and Coding Schemes (MCS), Guard Interval (GI) and Channel

Bandwidth (CB). Though its development is focused on the IEEE 802.11ac standard, it can be eas-

ily adjusted to be compatible with previous standards. Furthermore, the algorithm should have a

backup mechanism that is activated whenever the configurations chosen by the DRL-LA algorithm

fail. To achieve this, the following specific objectives were defined:

• Solution design - Design and modelling of the DRL-based link adaptation algorithm;

• Solution implementation - Development of the various programs necessary to implement

the DRL-LA algorithm. This includes the program that constructs the simulations, the pro-

gram that implements the DRL agent and the program that interconnects those two compo-

nents;

1.5 Contributions 3

• Performance Evaluation - A wireless link adaptation algorithm must function correctly in

different scenarios by adequately configuring the different parameters per the current radio

channel conditions. The developed algorithm shall be tested in various scenarios in order to

validate its performance and compare it to other competing algorithms.

1.5 Contributions

The main contribution of this dissertation is a novel link adaptation algorithm – the DRL-LA al-

gorithm – focused on, but not limited to, the IEEE 802.11ac standard. The DRL-LA algorithm

is capable of optimally configuring a set of parameters according to the radio channel conditions

observed in real-time, and it is resilient to sudden radio channel condition variations. With the suc-

cessful development of this algorithm, we show that ML-based, and more specifically, DRL-based

approaches have a lot of potential for further research concerning the link adaptation problem in

Wi-Fi networks.

1.6 Document Structure

The rest of this document is structured in five chapters. Chapter 2 focuses on the state of the art

and the related work. Chapter 3 details the proposed solution to address the problem, explain-

ing the plan designed for the implementation and the tools and technologies used to achieve the

goal. Chapter 4 describes the actual implementation of the solution. Chapter 5 describes the net-

work simulations designed for validation and the obtained results. Chapter 6 presents the main

conclusions drawn from this dissertation and points out the future work on this subject.

4 Introduction

Chapter 2

State of the Art

This chapter covers the study and analysis on the state of the art. It exposes the technologies and

solutions related to the main topics of this dissertation, such as the IEEE 802.11 set of standards,

ML and existing link adaptation algorithms. It is divided into four sections:

• IEEE 802.11 - A brief introduction to the IEEE 802.11 set of technical standards and the

enhancements brought with each release;

• Link Adaptation Algorithms - An overview of existing link adaptation algorithms for the

IEEE 802.11 standards;

• Machine Learning - A definition of Machine Learning, its three main paradigms, Deep

Learning, Deep Reinforcement Learning and key concepts;

• Deep Reinforcement Learning Algorithms - A short survey on existing Deep Reinforcement

Learning algorithms;

• Related Work - An overview of existing solutions for wireless link adaptation algorithms

using RL.

2.1 IEEE 802.11

The IEEE 802.11 set of technical standards [4], commercially known by the brand name Wi-Fi,

are used for implementing WLANs. Nowadays, the usage of WLANs based on these standards is

widespread in domestic, educational, commercial, and corporative environments and has become

a fundamental part of how people form local networks and access the Internet. The first IEEE

802.11 standard, known as legacy, was released in 1997. Since then, multiple consequent standards

have been introduced, each bringing new configurable parameters, both in the PHY and MAC

layers, aimed at improving the performance of connections inside a WLAN. Although dozens of

802.11 standards have been released over the years, the most relevant and groundbreaking are the

following:

5

6 State of the Art

• IEEE 802.11 (Legacy) - The original IEEE 802.11 standard was released in 1997 and pro-

vided two raw data rates of 1 and 2 Mbps using three non-overlapping channels in the 2.4

GHz frequency band. It either used Frequency Hopping Spread Spectrum (FHSS) or Direct

Sequence Spread Spectrum (DSSS);

• IEEE 802.11a - Released in 1999, two years after the original IEEE 802.11, it introduced

new data rates with varying modulation types using the 5 GHz frequency band, going up

to 54 Mbps. It also used Orthogonal Frequency-Division Multiplexing (OFDM) with 52

subcarrier channels;

• IEEE 802.11b - Also released in 1999, it introduced data rates with varying modulation

types using the 2.4 GHz frequency band, managing to go as high as 11 Mbps. It used

High-Rate Direct Sequence Spread Spectrum (HR-DSSS);

• IEEE 802.11g - This standard, released in 2003, introduced even more data rates with vary-

ing modulation types using the 2.4 GHz frequency band. The highest data rate is 54 Mbps,

a considerable increase over the 11 Mbps provided by the 802.11b. Like IEEE 802.11a, it

used OFDM;

• IEEE 802.11n - With this standard, connections became even faster and more reliable.

Released in 2009, it added Multiple Input Multiple Output (MIMO), 40 MHz channels, and

modulation types up to 64-QAM. This standard also allows up to 4 spatial streams with a

maximum theoretical throughput of 600 Mbps;

• IEEE 802.11ac - Initially released in 2013, this standard managed to provide gigabit speeds

by extending the IEEE 802.11n concepts. It included a wider bandwidth, going all the way

to 160 MHz, up to 8 spatial streams, downlink multi-user MIMO, and a high-density mod-

ulation (256-QAM). However, this standard works exclusively in the 5 GHz band, which

means dual-band access points and clients continue to use 802.11n at 2.4 GHz;

• IEEE 802.11ax - The sixth generation of Wi-Fi, released in 2020, supports both the 2.4 and

5 GHz bands and allows modulations up to 1024-QAM, has reduced subcarrier spacing, and

used scheduled based resource allocation. It uses Orthogonal Frequency Division Multiple

Access (OFDMA) and is capable of coexisting efficiently with 802.11a/g/n/ac clients, as it

was designed for maximum compatibility.

A typical WLAN based on the IEEE 802.11 standards can function in two modes: infrastructure

and ad-hoc. A WLAN operating in infrastructure mode has one or more Access Points (APs), and

all the devices present in the network – smartphones, computers, etc – communicate with each

other through an AP. These devices are also known as Stations (STAs). This means that even if

STAs are physically next to each other, they do not communicate directly between them. Instead,

they send their packets to the AP, which redirects them to their destination. An example of a

WLAN operating in infrastructure mode is a domestic network, in which a router interconnects

2.2 Link Adaptation Algorithms 7

the STAs inside the house and also provides access to the Internet. When considering an ad-hoc

mode WLAN, the STAs communicate directly with each other without the need for an AP. One

example of this is setting up two computers in ad-hoc mode.

Figure 2.1: Comparison between the ad-hoc and infrastructure modes.

2.2 Link Adaptation Algorithms

A wireless network is a complex system with many variables. As such, the link quality can suffer

abrupt or prolonged variations, affirming the necessity for link adaptation algorithms. An algo-

rithm of this kind may only focus on optimally configuring the MCS parameter per the current

radio channel conditions, also known as a rate adaptation algorithm. Other more complex al-

gorithms may attempt to configure more parameters than just the MCS, such as the Number of

Spatial Streams (NSS), GIs, and CB.

In general, a traditional link adaptation algorithm works in the following way: when the radio

channel presents good conditions, and the signal is strong, the algorithm selects a high MCS

value, which allows for a higher throughput. When the channel presents poor conditions, and the

signal is weak, the algorithm selects a small MCS value, which lowers throughput, but ensures that

packets are delivered. The aforementioned radio channel conditions depend on various factors like

signal interference, node mobility and channel fading. Currently, there are many link adaptation

algorithms available that use unique approaches to try to achieve the high throughputs supported

by the latest IEEE 802.11 standards. The authors in [1] made a survey and evaluation on multiple

adaptation algorithms. Iwl-mvm-rs [5] and Minstrel-HT [6] are probably the current most widely

used adaptation algorithms, but there are other interesting and recent options like STRALE [7]

and Damysus [8]. These four algorithms are further analyzed in the following subsections, as

8 State of the Art

Iwl-mvm-rs and Minstrel-HT are among the most popular options, while STRALE and Damysus

are representative of two unique and recent approaches to the problem.

2.2.1 Iwl-mvm-rs

Iwlwifi is the default driver for Intel’s wireless Network Interface Controllers (NICs) [5] and comes

with the Iwl-mvm-rs link adaptation algorithm. This algorithm is compatible with standards up to

IEEE 802.11ac and the most recent Intel NICs have versions that already support IEEE 802.11ax.

The Iwl-mvm-rs algorithm decides whether to transmit in legacy mode (IEEE 802.11a or IEEE

802.11g) or non-legacy mode (IEEE 802.11n or IEEE 802.11ac). It also decides whether the

transmission is made in Single Input Single Output (SISO) or MIMO mode and configures mul-

tiple parameters, such as the MCS, GI, and frame aggregation. It achieves this by having cycles

that alternate between two phases: the MCS scaling phase and the Column scaling phase.

A cycle starts with the MCS scaling phase. During this phase, only the MCS value is changed

in an attempt to maximize the throughput. It measures the throughput obtained by the current MCS

value by multiplying the success ratio of up to the last 62 frame transmissions with the theoretical

throughput that this MCS value can obtain and makes the following decision:

• If the success ratio is small or the measured throughput is zero, it decreases the MCS value;

• If the measured throughput with the higher adjacent MCS value is better, or unknown, in-

crease the MCS value;

• If the measured throughput with the current MCS is higher than the throughput obtained

with both adjacent MCS values (lower and higher), maintain the MCS value.

If the MCS value does not change, the MCS scaling phase ends, and the Column scaling phase

begins. This phase tries to find a better column, which is a combination of the mode (SISO

or MIMO), GI, and antenna configuration parameters. The algorithm has a table with all the

different columns and theoretical throughputs associated with each of them and will try to use the

columns that present a theoretical throughput higher than the currently measured throughput. If an

attempted column achieves a higher throughput than the one previously measured, the algorithm

keeps using that column; otherwise, it is avoided in future cycles, and the algorithm reverts to the

column it was using before.

By doing multiple cycles composed of the two phases described, the algorithm converges

towards the best combinations of the parameters mentioned above. However, this algorithm has

some limitations, like not having a joint rate and bandwidth adaptation, lack of scalability, and no

online learning capability [3].

2.2.2 Minstrel-HT

Minstrel-HT is the default link adaptation algorithm in the Linux kernel for IEEE 802.11n and

IEEE 802.11ac devices. It is the evolution of the popular Minstrel algorithm and is currently

2.2 Link Adaptation Algorithms 9

one of the most used algorithms, being adopted by millions of devices. It first creates groups of

rates based on the CB, GI and NSS parameters. Each of these groups has a set of eight different

data rates that are represented by a MCS value. The groups that are created depend on what the

transmitter device supports. For example, if the transmitter only supports 1 stream, regular GI and

a CB of 20 MHz, it will only have available one single group that contains values for the MCS that

range from 0 to 7. But if the transmitter supports 2 spatial streams, short GI and a CB of 20 MHz,

it will have two groups available: the first group will have MCS values that range from 0 to 7 and

the second group will have values that range from 8 to 15. In total, there can be up to 16 groups if

the transmitter allows for it.

Like iwl-mvm.rs, this algorithm also functions in cycles of two phases: the sampling phase

and the non-sampling phase. A cycle starts with the sampling phase, where a random data rate

is picked from the available groups created. If this data rate achieves a higher throughput than

the previously selected data rate, then it will be used for subsequent transmissions. If not, then

the previous data rate is kept. The throughput measured is calculated using the Frame Loss Ratio

(FLR), while also considering the Exponential Weighted Moving Average (EWMA). The sampling

phase is an iterative process in which the algorithm tries multipe data rates, and by the end of this

phase, it selects three: the one that obtained the best throughput, the one that obtained the second

best throughput and the one that has the best probability of providing an acceptable throughput in

case the first two fail.

The second phase, called the non-sampling phase, consists in making transmissions using

the best data rate picked previously. If packets begin to be lost and the maximum number of

retransmissions is reached, the algorithm switches to the second best data rate. Likewise, if this

data rate leads to considerable packet loss, the best probability rate is finally used.

Even though this is currently one of the most used link adaptation algorithms, it presents vari-

ous problems and limitations. It consistently fails to achieve optimal throughput values, especially

in situations when the radio channel conditions suddenly change [9]. It also does not come close to

utilizing the capabilities of recent IEEE 802.11 standards, like IEEE 802.11n and IEEE 802.11ac,

as it only focuses on configuring the MCS value.

2.2.3 STRALE

STRALE is an algorithm that configures both a PHY parameter and a MAC parameter, the former

being the MCS value and the latter being the Aggregate Medium Access Control Protocol Data

Unit (A-MPDU) length. It tries to avoid decreasing the MCS value, preferring to reconfigure the

A-MPDU length instead. At first, a transmission is made with some MCS value and A-MPDU

length, and after receiving a block Acknowledgement (ACK), the algorithm then calculates the

optimal A-MPDU length that would have obtained the highest throughput in the previous trans-

mission. After that, it also calculates the A-MPDU length for the next transmissions using EWMA.

The two values calculated are then subtracted and the result is compared to a threshold. If it is

greater than the threshold, the algorithm has to decide if decreasing the MCS value while using

the newly calculated A-MPDU length would be beneficial or not, avoiding unnecessary decreases.

10 State of the Art

Even though this algorithm presents promising results, its main drawback is that it does not

consider the effects of interference.

2.2.4 Damysus

Damysus is a recent link adaptation algorithm focused on the IEEE 802.11ax standard. It attempts

to optimally configure the MCS value, while also being resilient to the deterioration of the radio

channel conditions and improving the network performance in the presence of Basic Set Service

(BSS) Color and Preamble Puncturing (PB). It manages to select a new MCS value without intro-

ducing overhead and exploits the Spatial Reuse (SR) mechanism of IEEE 802.11ax to improve the

throughput in dense networks. Damysus makes a statistical study during intervals of 100 milisec-

onds and during cycles of 1 second where it records the success and failure of packet transmissions

to calculate the Packet Loss Ratio (PLR) and compares it against a packet loss threshold. It then

decides how to make the parameter configurations based on that comparison.

The main drawback of this algorithm is that it depends on PLR thresholds, as they are hard to

define and there is no single threshold that guarantees the achievement of the maximum throughput

possible. Also, it is only compatible wth the IEEE 802.11ax standard.

2.3 Machine Learning

Machine Learning [10] is a branch of Artificial Intelligence (AI) that allows computer systems to

learn and improve from experience without being explicitly programmed. It has seen a very rapid

evolution in recent years due to the significant improvements in hardware technology. As such, it

is currently a very researched topic, and it is being applied to a great variety of scientific fields.

Due to its elevated complexity, it was divided into three main paradigms: supervised learning,

unsupervised learning and reinforcement learning. These three paradigms will be further detailed

in the subsections below, along with a brief exposition to Deep Learning and Deep Reinforcement

Learning.

2.3.1 Supervised Learning

Supervised Learning (SL) [11] consists in having an algorithm that learns by using data sets where

all the data is labeled. Labeled data basically means that we know what that data represents, like,

for example, having a picture of an animal and knowing what kind of animal it is. In other words,

with labeled data, we know what the outputs are for sets of inputs. The data is labeled by humans,

hence why this paradigm is called "supervised".

With this paradigm, an algorithm is trained with a labeled dataset, called a training set. This

training is done until the algorithm is able to detect the underlying patterns and relationships

between the input data and the output labels. After completing the training phase, the algorithm

should then be able to receive unlabeled data as an input and correctly label it.

2.3 Machine Learning 11

Figure 2.2: The Supervised Learning process.

2.3.2 Unsupervised Learning

Unlike SL, the Unsupervised Learning (UL) [12] paradigm consists in using an algorithm that

analyzes and clusters unlabeled data sets. It works by discovering patterns in the data without

human intervention, hence why it is called "unsupervised".

Figure 2.3: The Unsupervised Learning process.

2.3.3 Reinforcement Learning

Inspired by animal psychology, RL [13] consists in using an agent that is capable of learning, in

an interactive environment, by trial and error. It accomplishes this by having a reward system that

rewards the agent for taking suitable actions. Some rewards are higher than others, depending on

the outcome of actions. Over time, the agent associates which actions give it a higher reward and

which actions punish it, opting to choose the former.

12 State of the Art

Figure 2.4: The Reinforcement Learning process.

Figure 2.4 represents the RL process, in which we have an agent and an environment. The agent

interacts with the environment through actions. The environment returns to the agent a state and a

reward associated with the previous action the agent took.

RL is similar to UL because it does not require labeled data to learn. However, their end goals

are ultimately different, as UL strives to find similarities and patterns in data. In contrast, RL tries

to find a suitable action model that maximizes the agent’s cumulative reward.

2.3.4 Deep Learning

Deep Learning (DL) [14] is a branch of ML that uses multi-layered artificial neural networks

to learn representations from complex and abstract data such as text, images, sound, or video.

These multi-layered artificial neural networks are also known as Deep Neural Networks (DNNs)

and they are characterized by having multiple layers between the input and output layers, called

hidden layers.

Figure 2.5: The Deep Learning process [15].

One of the major problems of DNNs is their explainability. Although they provide great value

to the performance of a model, it is hard or even impossible to explain exactly how the model gets

2.3 Machine Learning 13

the answer. The hidden layers are essentially a black box. Nonetheless, DL has revolutionized

the field of ML, as it can be used to solve problems that would otherwise be unsolvable with just

traditional ML techniques.

2.3.5 Deep Reinforcement Learning

DRL [16] is essentially the combination of DL with RL. DRL algorithms incorporate the process

behind RL with DNNs and allow us to solve problems that are too complex for traditional RL

algorithms. It is a relatively recent technique that is having a rise in popularity and is being

actively researched and developed. It is currently being used in various areas, like for example:

• Automotive - The development of autonomous and self-driving vehicles is becoming very

common;

• Manufacturing - The use of intelligent robots for various tasks, like sorting out products

and helping in assembly lines;

• Healthcare - The use of algorithms that are capable of making a diagnosis and determining

treatment plans;

• Finances - The use of algorithms that evaluate trading strategies and manage investments.

Recently, DRL algorithms have even been applied to the Wireless Communications field to tackle

a wide variety of problems, like developing link adaptation algorithms for Wi-Fi networks.

2.3.6 Key Concepts

When it comes to ML, there are some important concepts that are transversal to all the paradigms

previously mentioned: overfitting, underfitting, activation functions and hyperparameters. Overfit-

ting happens when a ML model perfectly fits its training data set, or in the case of RL, its training

environment. This means that, even though the model performs very well with the training data,

it fails to generalize its learning to new, unseen data, negatively impacting its performance. Com-

mon solutions to overfitting are training with more data or stopping the training session when it

is detected that the model is no longer learning, but is instead overfitting the training data and

weakening its ability to generalize. Underfitting is exactly the opposite, as an underfitted model

is unable to capture the relationship between the input and output variables. This means that an

underfitted model will perform poorly on both the training data and on unseen data. A common

solution to underfitting is to simply increase the duration of the training session, as short training

sessions may not be enough for the agent to learn.

14 State of the Art

Figure 2.6: Illustration of underfitting, overfitting and ideal fitting. [17]

Activation functions are crucial components of neural networks that control which neurons are

activated in the various layers. To achieve this, they use the weighted sum of inputs and biases

from the network. They are useful because they add non-linearity into neural networks, allowing

them to learn powerful operations. If there were no activation functions, the entire network would

essentially be a linear operation and would no longer be capable of learning and performing com-

plex tasks. Commonly used activation functions [18] are the Rectified Linear Unit (ReLU), tanh,

sigmoid and Leaky ReLU.

Hyperparameters are variables whose values control the learning process and they are defined

by the person creating the ML model. However, there are no exact best values for each hyper-

parameter, as that largely depends on the problem at hand. Determining the best value for a

hyperparameter is usually done by trial and error, or in other words, by trying various values and

observing which performs more efficiently. When it comes to reinforcement learning, the most

commonly configured hyperparameters are:

• Learning rate - This hyperparameter, commonly denoted by the letter α , controls how

quickly the model adapts to the problem. A smaller learning rate requires more training

steps, as it makes smaller changes to the weights in the neural network, at each update. On

the other hand, a larger learning rate results in more rapid changes, and therefore, requires

less training steps. Picking a good learning rate is a precise task, as a value that is too large

can cause the model to converge too quickly to a sub-optimal solution, whereas a value that

is too small can cause the process to get stuck;

• Replay buffer size - The replay buffer, also known as memory, is a data structure where a

RL agent stores its experiences. It enables the agent to memorize and reuse past experiences,

similar to how humans do. When new experiences are added to this buffer and it becomes

full, older experiences are forgotten. The size of the buffer is a hyperparameter, as small

buffers are not capable of storing many experiences, whereas large buffers may occupy too

much physical memory or introduce noise;

2.4 Deep Reinforcement Learning Algorithms 15

• Batch size - The batch size is the number of samples from the replay buffer that the agent

uses at each time step. Since the replay buffer is quite large, it is not viable to use all the

sample available in it. Therefore, the solution consists in only using some of the samples;

• Discount factor - This hyperparameter, commonly denoted by the letter γ , determines the

agent’s preference to obtain rewards sooner rather than later. It takes values between zero

and one. If it is equal to zero, then the agent will only learn about actions that produce an

immediate reward. If, on the other hand, it is equal to one, then the agent will evaluate each

of the available actions based on the sum of all of its potential future rewards. This is a

hyperparameter that is adjusted by taking into account if future rewards are more important

than immediate rewards;

• ε-greedy - This hyperparameter controls how often the agent explores and exploits, or in

other words, how often it takes random actions versus taking actions that it already learned.

It takes a value between 0 and 1, and the higher it is, the more exploratory the agent be-

haves. In general, at the beginning of a training session, the agent starts off with a high

ε-greedy value, which decays over time in order to make the agent exploit more and use the

knowledge obtained.

2.4 Deep Reinforcement Learning Algorithms

Considering the solution proposed in this thesis consists in using DRL, it is important to present a

brief survey on the most prominent DRL algorithms. These algorithms define computational pro-

cedures that are essentially strategies on how the agent interacts with an environment and obtains

experience. They can be classified as model-based or model-free.

In a model-based algorithm, the agent has access to a model of the environment and can

predict the reward for an action before actually performing it. In other words, the agent already

has some knowledge of the environment and will always try to perform an action that obtains

the maximum reward, no matter what consequence the action may cause. Good examples of

model-based algorithms are the famous AlphaGo [19] and AlphaZero [20]. On the other hand,

in a model-free algorithm, the agent does not have knowledge of the environment and needs to

first perform the actions, learning from then and adjusting its policy to achieve optimal rewards.

Furthermore, model-free algorithms can belong to two classes: value-based and policy-based.

Value-based methods rely on a RL agent choosing the best action for each state, which means

the agent must explore random actions and learn which ones return a better reward. Policy-based

methods have the agent rely directly on a stochastic policy function to map states to actions.

16 State of the Art

Figure 2.7: Types of reinforcement learning algorithms [21].

The authors in [22] proposed a value-based algorithm, named Deep Q-learning, that builds

upon the ideas introduced by the classic Q-learning algorithm [23]. While Q-learning uses a Q-

table to map state and action pairs to a Q-value, Deep Q-learning replaces that table with a deep

neural network and maps input states to action and Q-value pairs.

Figure 2.8: Q-learning vs. Deep-Q learning [24]

Through Deep Q-learning, a deep neural network gets a state as an input, and produces different

Q-values for each action, choosing the action with the highest Q-value. Subsequently, the weights

in the neural network are updated, achieving more efficient outputs. Unlike classic Q-learning,

which can only be applied to simple problems with few states and actions, Deep Q-learning can

be used in complex scenarios with dozen of possible states and actions, being very efficient for

discrete action spaces.

The authors in [25] proposed an algorithm that combines both a value-based and a policy-

based approach, named Soft Actor-Critic. It is based on the maximum entropy reinforcement

learning framework, in which the actor attempts to maximize the reward while also maximizing

the entropy. With this framework, increased entropy results in more exploration, accelerating the

learning and preventing the policy from prematurely converging to a bad local optimum. Overall,

2.5 Related Work 17

the expected cumulative long term reward is maximized and the entropy balances the exploitation

and exploration of the environment. This algorithm uses continuous action spaces and has been

efficiently applied in robotics.

C51 [26] is an algorithm based on Deep Q-learning, designed for discrete action spaces. The

main difference between C51 and Deep Q-learning is that C51 predicts a histogram model for the

probability distribution of the Q-value. The advantage of doing this is that, by learning the distri-

bution rather than simply the expected value, the algorithm becomes more stable during training,

leading to improved results. Although the algorithm has shown to be more efficient than Deep

Q-learning when used appropriately, it needs to perform complex distributional computations and

is more difficult to set up.

TRPO [27] is a policy-based algorithm that alternates between sampling data through envi-

ronmental interaction and updating the policy parameters by solving a constrained optimization

problem. By doing this, it prevents significant performance drops by keeping the updated policy

within a trust region close to the current policy. It has shown to be more efficient than other popular

policy-based algorithms and it works with both discrete and continuous action spaces. However,

it is computationally expensive and loses efficiency if the observation space is large.

Though there are various other algorithms besides the ones detailed above, as seen in Figure

2.7, they possess a complexity that is beyond what is required for this dissertation. However, it is

important to retain the idea that there are multiple choices available, each with their strengths and

weaknesses.

2.5 Related Work

There are many existing link adaptation algorithms. In this chapter, we analyze four of them, with

two of them being among the most widely used. This chapter also exposes what kind of problems

and limitations are inherent to those algorithms, one of the most common being only adjusting the

MCS parameter and not utilizing more capabilities offered by the latest IEEE 802.11 standards,

such as IEEE 802.11n and IEEE 802.11ac. With the rise of ML, new approaches are being taken

when it comes to developing new link adaptation algorithms. This section is dedicated to the

analysis of two particular and very relevant works that managed to create new algorithms using

RL: SmartLA [2] and EDRA [3].

2.5.1 SmartLA

SmartLA is a link adaptation algorithm that uses RL. It attempts to optimally configure PHY

and MAC parameters to adapt the link, the parameters being MCS, GI, CB, and Level of Frame

Aggregation (LFA). It actively searches for the best combination of these parameters and uses the

Frame Error Ratio (FER) and Bit Error Ratio (BER) as observation metrics.

In this work, the authors made the following associations to the state, action and reward:

18 State of the Art

• State: A state is represented by a tuple that contains the previous values configured for the

MCS, CB, GI and LFA. The tuple is therefore a unique combination of these values;

• Action: An action is performed by the agent to change the state. Its purpose is to configure

new values for the MCS, CB, GI and LFA, but it does not mean that it always changes these

four values. For example, an action may consist of only changing the MCS and the CB

values, or even just the MCS value. To better illustrate this, suppose that the tuple for the

current state, S1, contain the values MCS1, CB1, GI1 and LFA1. If the agent performs an

action that changes the MCS and GI values to MCS2 and GI2, respectively, then the system

will move to state S2, represented by a tuple that now contains the values MCS2, CB1, GI2

and LFA1;

• Reward: After an action is taken by the agent and the system moves on to a new state, data

transmissions are made using the values in the state tuple for the PHY and MAC parameters.

The system then measures the BER and uses it to calculate a reward for the agent. Therefore,

the lower the measured BER, the higher the reward the agent gets, positively reinforcing the

combination of values that the agent chose.

The BER and FER measurements are also used to obtain the Q-value. This value represents how

useful a given action is in gaining some future reward. A high Q-value indicates either a high

BER, high FER, or even both, and the goal is to decrease the Q-value as much as possible.

The authors of this work tested their solution against other existing algorithms like SampleLite,

Minstrel, and Minstrel-HT. They have shown that SmartLA significantly outperforms the afore-

mentioned algorithms, proving the potential of ML-based (and more specifically, RL-based) link

adaptation algorithms.

2.5.2 EDRA

The authors of this work identified the main limitations of current adaptation algorithms, which

are no joint rate and bandwidth adaptation, lack of scalability and no online learning capability.

To address these limitations, they designed an algorithm named EDRA (Experience Driven Rate

Adaptation) using DRL, which attempts to optimally configure the MCS, CB and NSS parame-

ters. To accomplish this, the sub-frame loss, Received Signal Strength Indicator (RSSI), and the

bandwidth’s Service Time Ratio (STR) are used as observation metrics. In this work, the state,

action, and reward were defined as follows:

• State: A state contains observations of the current radio channel conditions and the values

used to configure the parameters. It therefore includes the MCS, CB and NSS values, as well

as the measured sub-frame loss, RSSI and STR. The sub-frame loss and RSSI represent the

current link quality, while the STR indicates the congestion level of the bandwidth being

used by the current MCS value;

2.6 Summary 19

• Action: An action in this model is in fact a set of six actions, A1 to A6, where each action

represents upward and downward moving directions of CB, MIMO mode and MCS value

in sequence;

• Reward: The reward in this model is calculated based on the obtained goodput. In short,

the goodput values measured are scaled so that they are relative to the highest goodput in

the same environment.

This solution was tested against the Iwlwifi driver, that contains the Iwl-mvm-rs adaptation

algorithm, and Minstrel. Through this comparison, they have shown that EDRA is able to outper-

form Iwl-mvm-rs and Minstrel by up to 821.4% and 242.8%, respectively, proving the effective-

ness of using DRL techniques for wireless link adaptation.

2.6 Summary

This chapter gave an introduction to the IEEE 802.11 set of technical standards, an overview of

four different link adaptation algorithms, a description of ML, its paradigms and DL, a short survey

on popular DRL algorithms and, finally, an analysis of two related works, SmartLA and EDRA.

Through the study of the evolution of the IEEE 802.11 standards and state of the art link adap-

tation algorithms, it was possible to conclude about the limitations of the existing algorithms and

that the capabilities of the latest standards are not being fully exploited. With the recent fast devel-

opment of ML, ML techniques are being increasingly applied to many areas, including Wireless

Communications. The works analyzed in Section 2.5 have shown the effectiveness of applying

RL and DRL models to the problem of wireless link adaptation, as the algorithms developed in

those works greatly outperform state of the art algorithms such as Minstrel-HT and Iwl-mvm-rs.

However, and in spite of these promising results, there is still little research done in this area and

much room for improvement. One particular problem that, to the best of our knowledge, has not

been approached, is the resiliency of an algorithm when it comes to sudden changes in the ra-

dio channel conditions. Even if an algorithm manages to optimally configure various parameters

and maximize the obtained throughput, its efficiency will suffer if it is unable to handle a sudden

deterioration in the radio link quality. This is the subject of this dissertation.

20 State of the Art

Chapter 3

DRL-LA Algorithm

The main goal of this dissertation was to develop a link adaptation algorithm, focused on, but

not limited to, the IEEE 802.11ac standard, which is capable of optimally configuring a set of

parameters according to the radio channel conditions observed in real-time. The algorithm must

also be resilient to sudden radio channel condition changes, a factor that has been overlooked in

the state of the art.

This chapter details the DRL-LA algorithm, the required setup and software tools used, and

the work structure followed to develop the algorithm.

3.1 Proposed Solution

Having analysed the existing paradigms and techniques of ML, it seems that RL makes the most

sense for this challenge, as the agent in a RL model adapts to a dynamic environment, and unlike

other forms of ML, there is no need for a data set. Considering that the goal of the link adaptation

algorithm is to adapt a set of parameters to maximize the throughput in a wireless connection with

varying radio channel conditions, the process behind RL is very in tune with this.

To further take advantage of the capabilities of modern computing systems, DL can be used

along with RL, obtaining DRL, that was already briefly introduced in Chapter 2. Using DRL

instead of RL implies using DNNs that allow the algorithm to learn faster and provide higher

quality results, although it introduces trade offs like a much higher complexity and the need for

powerful hardware.

The algorithm developed uses the Signal-to-Noise Ratio (SNR) for determining the radio chan-

nel quality and configures three parameters accordingly: MCS, CB and GI. We’ve seen before that

the RL loop consists in cycles that have states, actions and rewards, which for this solution, are

defined as follows:

• State - A state consists of the observation made on the SNR value, and the previous values

used to configure the three aforementioned parameters. It can be represented as a list, like

for example, Sn = {MCSn−1, CBn−1, GIn−1, SNRn}, where n is the current cycle;

21

22 DRL-LA Algorithm

• Action - Actions taken by the DRL agent are what actually configure the three parameters

at every cycle. Therefore, an action consists of a MCS value, a GI value and a CB value.

They can also be represented as a list, like for example, An = {MCSn, CBn, GIn}. Only

discrete values can be chosen, which means that the action space (the space that includes

every possible action) is discrete;

• Reward - The reward returned to the agent after it takes an action is computed using the

following function:

Reward = FSR×
(x×avgMCS+ y×avgCB+ 1

z×avgGI)

Number of frames sent by AP

where:

– FSR is the Frame Success Ratio and is equal to the number of frames sent by the AP

divided by the number of frames received by a STA, in a cycle:

FSR =
Number of frames sent by AP

Number of frames received by STA

– avgMCS is the normalized MCS rate chosen by the agent to transmit frames, during a

cycle:

avgMCS =
Chosen MCS rate

Maximum MCS rate available

– avgCB is the normalized CB value chosen by the agent to transmit frames, during a

cycle:

avgCB =
Chosen CB value

Maximum CB value available

– avgGI is the normalized GI value chosen by the agent to transmit frames, during a

cycle, divided by the minimum GI available, as smaller GIs are preferred, if the radio

channel conditions allow for it:

avgGI =
Chosen GI value

Minimum GI value available

– x, y and z are variables that define how much weight each parameter has over the

reward value. These variables had to be optimally tuned in order to achieve an efficient

reward function.

The reason for normalizing the MCS, CB and GI values is to guarantee that the value outputted

by the reward function is between 0 and 1. This ensures that the agent is able to distinguish good

and bad actions more effectively and converges more quickly, as the range of rewards is smaller.

Furthermore, normalizing these values also ensures that they all have an impact on the reward. For

example, without normalization, the MCS and CB values would be much larger than the GI value,

as the former are in the order of mega (106) while the latter is in the order of nano (10−9).

3.1 Proposed Solution 23

Each cycle is set to have a duration of 100 milliseconds, as this is a long enough period for

the agent to decide on an action, while also guaranteeing that not too much time passes until the

agent takes another action, ensuring a constant good configuration of the link. The agent picks

an action at the beginning of the cycle and the three parameters are configured according to that

action. Then, during that time period, every frame is sent by the AP using the configurations made.

For each frame received by the STA, the SNR value is observed and the STA sends to the AP an

acknowledgment frame. If the AP does not receive the acknowledgement, then it considers that

the frame was lost. Finally, at the end of each cycle, the reward is calculated as described above.

3.1.1 Action Space

We mentioned before that an action taken by the agent configures the three parameters simul-

taneously. An alternative approach would be the agent taking three actions at once, one for each

parameter. However, creating an agent that can produce multi-action outputs is a lot more complex

than a simple single-action agent, and it was for this reason that the latter approach was chosen.

To understand how a single action can configure three parameters, we first need to define what

values each parameter can take.

Figure 3.1: Theoretical throughputs table for IEEE 802.11ac [28].

Figure 3.1 represents every theoretical maximum throughput for each combination of the MCS,

GI, CB and NSS parameters in the IEEE 802.11ac standard. Due to the limited time available to

24 DRL-LA Algorithm

develop this dissertation, only SISO mode was explored, which means the NSS is always 1. This

being said, the following decisions were made for each parameter:

• MCS - This parameter can take all the available values, which range from 0 to 9. If the CB

is equal to 20 MHz, then the available values range from 0 to 8;

• GI - The GI parameter can also take all available values, which are only two: 800 and 400

nanoseconds;

• CB - Unlike the previous parameters, the CB was limited, as it can only be configured to

20, 40 and 80 MHz, with 160 MHz being excluded.

Taking these decisions into account, we can crop Figure 3.1 to only show the combinations avail-

able to the agent.

Figure 3.2: Cropped theoretical throughput table to only show the combinations available to the
agent.

By observing Figure 3.2, we can see that there are 58 combinations in total. Although this is not

a large action space by any means, it is big enough so that the agent needs several hours, or even

days, to properly train and learn, depending on how powerful the computer being used is. This

was the main reason why the 160 MHz value for the CB parameter was cut, as that would bring

the action space size to a total of 78 actions, which already makes a huge difference when it comes

to the time and resources required for training. This is also why the NSS was not considered as

a parameter for the agent to configure, as that would increase the action space even more. For

example, if the agent could configure the NSS to be 2, that would bring the action space size to

a total of 156 actions. Furthermore, this would also require the use of sophisticated and more

complex DRL algorithms and neural networks, as the agent might not be able to converge if the

algorithm being used is incapable of handling such a large number of actions.

3.1.2 Backup Mechanism

Like previously mentioned, DRL-LA has a backup mechanism that is activated whenever the

parameter configurations chosen by the agent fail to achieve acceptable results. This may happen

3.1 Proposed Solution 25

when, for example, the radio channel quality suddenly deteriorates due to an obstacle, causing

the SNR value to drop considerably. This is a problem because the DRL agent will only take

this SNR variation into account in the next cycle, which means that the parameter configurations

remain inadequate for the rest of the current cycle, causing frames to be lost and the throughput to

greatly drop. In cases like this, the backup mechanism ensures that a quick reconfiguration of the

parameters is made to avoid this situation. The backup mechanism works as follows:

1. Starting from the beginning of the cycle, after the agent configures the parameters, a counter

is initialized that counts how many frames are lost. A frame is considered to be lost when

the AP does not receive an acknowledgement packet from the STA, which means that there

is no confirmation that the frame was received;

2. If a certain number of frames n is lost, then the first phase of the backup mechanism is

activated. In this phase, the CB value is reduced to a lower, adjacent value. For example,

if the current CB value is 80 MHz, then it will be reduced to 40 MHz. However, if the

current CB value is already the lowest possible – 20 MHz – then the backup mechanism

immediately activates the second phase. This first phase is an attempt to solve the situation

without making an aggressive reconfiguration right away, aiming at maintaining the highest

throughput possible;

3. If, after activating the first phase, frames are still being lost, then the second phase is acti-

vated. In this phase, the tolerance for the frames that can be lost is reduced in order to make

the mechanism react faster. For as long as a small number of frames keep being consecu-

tively lost, the mechanism keeps reducing the MCS, until it eventually reaches the optimal

value for this parameter that assures that the frames will not be lost. If the backup mecha-

nism is forced to decrease the MCS value all the way down to 0, then the CB value will also

be set to 20 MHz, if it was not already set with that value.

26 DRL-LA Algorithm

The following figure helps visualize the type of situation that this mechanism aims to prevent:

Figure 3.3: Example of a sudden SNR deterioration.

In the figure presented, it is possible to observe that the wireless link was initially stable, obtaining

a constant throughput of 60 Mbits/s. However, after 3 seconds, the SNR value suddenly dropped,

causing the throughput to reach 0 Mbits/s. The link was properly readjusted only after 100 mil-

liseconds, because the agent needed a new cycle to make an observation on the SNR value and

reconfigure the parameters appropriately. With the described backup mechanism, this situation

would not occur. The mechanism probably will not reconfigure the parameters to optimal values,

but will definitely prevent the throughput from reaching 0 Mbits/s until the agent has a chance to

take another action. To, once again, facilitate the understanding of this whole process, Figure 3.4

is a flowchart that represents a cycle.

3.2 Software Tools and Setup 27

Figure 3.4: Flowchart representation of a cycle.

3.2 Software Tools and Setup

In order to implement the solution described, a number of software tools had to be used. The selec-

tion of these tools was made with different aspects in mind, like the compatibility between them,

the easiness to set them up and their efficiency. When it comes to developing the DRL model,

it would be a lengthy and difficult process to do it from scratch. To this end, there are several

ML frameworks that assist with the implementation of models, the most popular being Tensorflow

[29], PyTorch [30] and Shogun [31]. For the development of this algorithm, Tensorflow was cho-

sen, as it is currently the most used framework, having a lot of material available, active support

and is fairly easy to set up. Furthermore, it is compatible with TF-Agents [32] and Keras-rl2 [33],

two well-known libraries that implement various RL and DRL algorithms. Although TF-Agents is

more recent, has more support and implements more algorithms than Keras-rl2, the latter is easier

to configure and use, being sufficient for the task at hand. Therefore, Keras-rl2 was chosen as the

library to implement the DRL algorithm.

The DRL model built using the aforementioned tools needs an environment for the agent to

learn and operate in. Considering that the purpose of the algorithm is to dynamically adapt wire-

less link connections, the environment is therefore a WLAN with atleast one AP and one STA. The

agent configures the MCS, GI and CB parameters used for connections between AP and STAs, and

observes the SNR values. Although the ultimate goal is to have an algorithm capable of operating

28 DRL-LA Algorithm

in real life scenarios, with real NICs, a simulation environment was chosen instead for the elabo-

ration of this dissertation. The reason for this is that implementing a DRL algorithm in a NIC and

making it learn and operate in a real environment is far too complex for the time that was avail-

able to work on this dissertation. To construct the simulation environment, ns-3 [34] was chosen

due to being a fairly intuitive network simulator to work with, having plenty of documentation

available and being the most used network simulator in the scientific community. Furthermore,

it has the ns3-gym toolkit [35] available, which integrates both OpenAI Gym [36] and ns-3. Es-

sentially, ns3-gym provides an API for communication between ns-3 and the DRL algorithm built

with Tensorflow and Keras-rl2, allowing the agent to take actions and make observations in the

simulation.

Figure 3.5: Architecture of the ns3-gym framework [37].

As we can see in Figure 4.2, the usage of two different languages was required, Python and

C++. The former was used to build the DRL agent, while the latter was used to make the ns-3

simulations program and the ns3-gym interface program. To actually run simulations and train the

DRL agent, two machines were used. One was a home desktop with a capable NVIDIA GPU,

allowing for the use of the CUDA Toolkit [38], which greatly accelerates the training sessions.

The other was a virtual machine provided by INESC TEC, that did not have a GPU available,

but did have a decent CPU and RAM size, although the training sessions were slower due to not

being GPU accelerated. With these two powerful machines at our disposal, it was possible to run

multiple concurrent training sessions on each machine. This was particularly useful to test dif-

ferent hyperparameter configurations at the same time. For example, the most used configuration

was four simultaneous training sessions on each machine, giving eight in total. This was possible

because the ns-3 software only uses one CPU core per simulation. Considering that both machines

have eight core CPUs, we can use each core for a different simulation, although we never went

above four simulations per machine, as not to overload them.

3.2 Software Tools and Setup 29

INESC TEC Virtual
Machine

Training
Session

1

Home Desktop

Training
Session

2

Training
Session

3

Training
Session

4

Training
Session

5

Training
Session

6

Training
Session

7

Training
Session

8

8 Concurrent
Training Sessions

Figure 3.6: Concurrent training sessions on the two machines.

30 DRL-LA Algorithm

Chapter 4

Implementation

The implementation of the solution consisted in programming three different components: the

DRL agent, the ns3-gym interface and the ns-3 simulations. As mentioned previously, the DRL

agent was coded in Python, using Tensorflow and Keras-rl2, while the other two were coded in

C++.

Agent

ns3-gym

ns-3 Simulation
(Environment)

Action

"Translated"
Action

ObservationReward

"Translated"
Observation

"Translated"
Reward

Figure 4.1: RL loop represented with ns3-gym and the ns-3 simulation.

To properly detail the whole process, this chapter is divided into four sections:

• Ns-3 Simulations - The ns-3 software allows us to create highly customizable network sim-

ulations to train and validate the algorithm. The simulations are programmed in C++ using

the libraries provided by ns-3;

• Ns-3 Gym Implementation - The ns-3 gym toolkit was used to create a custom OpenAI Gym

environment and allow the communications between the DRL agent and the ns-3 simula-

tions. To this end, a program was developed in C++ that uses the functionalities provided by

this toolkit to implement the Gym environment. It is in this program that we defined things

31

32 Implementation

such as the reward function, the observations that are returned to the agent, the actions that

the agent takes, etc;

• DRL Agent - This section explains how the DRL agent was implemented: which DRL

algorithm was used, the neural networks built and the tuning of hyperparameters;

• Reward Function Tuning - The tuning of the reward function consisted in determining how

much each of the configurable parameters should weigh on the reward calculation.

4.1 Ns-3 Simulations

Before developing the DRL Agent or programming the ns-3 gym interface, a C++ program was

written using ns-3 libraries in order to create the various simulations in which the agent would train

and be evaluated. This is a general purpose program, as it contains all the simulation scenarios

planned in the context of this dissertation. By using appropriate arguments when invoking the

program, we can control which of the available simulation scenarios to use, for how long the

simulation should run and if it is going to be used to train the DRL agent or to test its performance.

The arguments that can be used to invoke the program are:

• Port - Used to open a connection between the DRL agent, the ns-3 gym interface and the

ns-3 simulation. If the user does not define it, it takes a default value of 5555. It is because

of this argument that multiple simulations can run simultaneously, as it allows the user to

open various connections by using different ports for each one;

• Algorithm - Defines which algorithm will be used for the simulation. There are three algo-

rithms available: our DRL-LA algorithm, the Minstrel-HT algorithm detailed in Chapter 2

and the Ideal algorithm, an algorithm provided by ns-3 that is able to adapt the link ideally

by prioritizing the BER [39];

• Simulation Type - Defines if the simulation will be used for training the DRL agent or for

evaluating the performance of the algorithm chosen with the previous argument;

• Mobility Model - Chooses the mobility model. Each simulation scenario has a different

mobility model. Thus, each model defines the way the network nodes move throughout the

simulation;

• Duration - Defines the duration of the simulation, in seconds.

This program is invoked by the DRL agent program and the user can define the arguments there.

Every simulation scenario had one thing in common: there were only two network nodes, an

AP and a STA. A large part of this program consists in setting up these two nodes, which requires

creating the network they are in, setting the protocol that they use to communicate between each

other, and finally, defining the transport layer payload size of the packets that they send. These

configurations were also common to every simulation scenario, and it was defined that the nodes

4.1 Ns-3 Simulations 33

communicate using the UDP protocol and the payload size is equal to 1472 bytes. Besides setting

up the network nodes, the program also defines some crucial parameters, such as:

• Signal Transmission Power - This parameter was set to 20 dBm, which is the default value

for many home routers. It indicates how powerful the wireless signal transmission is;

• Antenna Gain - This parameter, for simplicity, was set to 0 dBi. It determines the direction

in which the antenna radiates the signal. An omni-directional antenna is an antenna that has

no directivity, or in other words, an antenna that radiates energy equally in all directions.

Antennas of this kind have a gain of 0 dBi;

• Center Frequency - This parameter was set to 5210 MHz. It defines the center frequency of

the frequency band being used. Considering that the simulations were run using the IEEE

802.11ac standard, which only supports the 5 GHz frequency band, the center frequency

needed to be included in this band, while also supporting channel bandwidths up to 80

MHz. For these reasons, the aforementioned value was chosen;

• Propagation Loss Model - The model used was always the Friis Free Space Propagation

Model, which models a line-of-sight path loss in a free space environment without any inter-

fering objects. The Propagation Loss Model characterizes how the radio waves propagate;

• Error Rate Model - The model chosen for this parameter was the Nist Error Model [40], as

it models an error rate for different modulation and coding schemes. Ns-3 implements error

models for Wi-Fi networks to simulate errors in frames.

When it comes to the simulation scenarios, each of them had an individual function that con-

tained the code for creating the scenario. When the program is invoked, the arguments passed

by the user are parsed, and the argument that controls which simulation scenario will run – the

Mobiliy Model argument – is used to call the corresponding function. There were three scenar-

ios considered: waypoint; teleporting node; and waypoint with teleports. The waypoint scenario

consists in having the STA starting positioned right next to the AP and then moving away from

the AP at a constant speed until it completely loses signal, which is around the 1300 meter mark.

After losing signal, it returns to the AP at the same constant speed. The STA node takes the same

amount of time in both components of the movement – moving away and returning to the initial

position – as they last half the total simulation time each. For example, if the simulation lasts 100

seconds in total, each component will last 50 seconds.

AP
STA

Destination

0 650 1300

Figure 4.2: Waypoint scenario when the STA node is moving away from the AP node, with the
STA currently at the halfway point.

34 Implementation

AP
STA

Destination

0 650 1300

Figure 4.3: Waypoint scenario when the STA node is moving back towards the AP node, with the
STA currently at the halfway point.

Figure 4.2 and Figure 4.3 represent the described scenario. This scenario is relevant because

the SNR value will slowly decrease the further away the STA node gets from the AP, without any

sudden changes, and then slowly increase again as the STA comes back to the AP. For this reason,

this was the only scenario used to train the DRL agent, as it gives the agent an opportunity to

observe a complete range of different SNR values and learn the best actions for each of them. A

proper training session with a well built model will result in an agent that can optimally adapt the

MCS, GI and CB values for pratically any SNR value. This means that, after training, the DRL

agent should also perform very well in any other scenario, even though it only trained with the

waypoint simulation, assuming that overfitting did not occur.

In the teleporting node scenario, the AP continuously teleports between 30 meters and 400

meters away from the AP. Additionally, the STA stays still for two seconds at each of these posi-

tions. Although this is not a realistic scenario, its purpose is to test how the DRL agent performs in

a scenario where the SNR value changes abruptly. Forcing sudden extreme changes in the distance

between the STA and the AP is a simple way to cause the intended SNR variations.

AP
STA

0 30 400After
2 Seconds

AP STA

0 30 400

After
2 Seconds

Figure 4.4: Teleporting node scenario.

Figure 4.4 illustrates the teleporting node scenario. Initially, the STA node was standing still at

the 30 meter mark. After two seconds, it suddenly teleported to the 400 meter mark, causing the

SNR value to suddenly decrease considerably. Two seconds after that, the STA node returned to

the 30 meter mark, causing the SNR to suddenly increase to its previous value.

The waypoint with teleports scenario is very similar to the regular waypoint described before.

The major difference is that, while the STA moves, it also teleports to random positions for brief

periods of time, always returning to its last position before the teleport. Furthermore, the STA

only reaches a maximum distance of 400 meters before returning back to the AP. The reason for

this is so that the STA can teleport to distances longer than 400 meters in order to generate the

4.2 Ns3-gym 35

drastic SNR variations. The purpose of this scenario is to combine sudden SNR variations with the

otherwise stable environment we had using waypoint. This mimics real life situations, where, for

example, a person using a smartphone connected to the local Wi-Fi starts moving and encounters

obstacles along the way that deteriorate the signal reception. Furthermore, when compared to the

teleporting node scenario, the waypoint with teleports is a way more complex environment, as the

STA only teleported between the same two positions in the former.

AP STA

0 30 1300

AP STA

0 130030 600

STA is moving away from
the AP at a constant
speed. Suddenly, it
randomly teleports

After a brief period of
time, the STA returns to

its previous position

Figure 4.5: Waypoint teleport scenario.

Figure 4.5 illustrates an example of this scenario, in which the STA was moving away from the AP

at a constant speed. When it reached the 30 meter mark, it suddenly teleported to the 600 meter

mark, and as a consequence, the SNR drastically dropped. After two seconds, the STA returned

to the 30 meter mark. In a real life scenario, these two seconds where the SNR hit low values

could be equivalent to a situation where the person using a smartphone passed very quickly by an

obstacle that caused the signal reception to deteriorate for a brief period.

Finally, one other important thing that this general purpose program does is connecting to the

ns-3 gym interface. This is achieved by instantiating a class created in the ns3-gym program and

then using functions provided by ns3-gym libraries with either the port defined by the user or the

default port of 5555.

4.2 Ns3-gym

Creating a ns3-gym interface required once again to write a program in C++. In this program, we

have a class named MyGymEnv. This class has a constructor that accepts as arguments a flag, that

indicates if we’re using DRL-LA or another algorithm, and an integer that defines the total time

that the simulation should last.

MyGymEnv(bool mode, int simDuration);

Listing 4.1: MyGymEnv constructor.

This is the class instantiated in the ns-3 simulations program mentioned previously. The instruc-

tions provided by the ns3-gym developers state that the following functions must be implemented:

36 Implementation

1 Ptr<OpenGymSpace> GetObservationSpace();

2 Ptr<OpenGymSpace> GetActionSpace();

3 Ptr<OpenGymDataContainer> GetObservation();

4 float GetReward();

5 bool GetGameOver();

6 std::string GetExtraInfo();

7 bool ExecuteActions(Ptr<OpenGymDataContainer> action);

Listing 4.2: Functions that must be defined for using ns3-gym.

Function 1 in Listing 4.2 controls how the observation space looks like. In this case, the DRL

agent is supposed to only observe the non-discrete SNR value at each cycle. Function 2 has the

same purpose of the previous function, but for the action space. As mentioned before, the action

space contains 58 discrete value actions. Function 3 is used to obtain an observation from the

simulation – the SNR value – and return it to the DRL agent. Function 4 is used to calculate a

reward value and return it to the agent. This is where the reward function, detailed in Chapter 3, is

implemented. Function 5 checks a predefined condition that ends the training episode if it is true,

like if the total number of steps has been reached. Function 6 is meant to return extra information

back to the agent, however, it was not properly defined and only returns a template string, as it had

no relevant use for this case. Finally, function 7 is responsible for actually executing the action

chosen by the DRL agent.

Besides the functions mentioned, other custom functions were implemented to monitor events

in the network, such as the reception of ACKS, block ACKs or timeouts for the frames sent, in

order to calculate the FSR value used in the reward function. It is also through a custom function

in this program that the backup mechanism, detailed in Section 3.1.2, is implemented. The backup

mechanism function takes advantage of the network monitoring done in the other custom functions

to know when to become active and reconfigure the parameters. The optimal number of frames that

must be lost for the mechanism to activate was determined empirically, through the observation of

the results of simulations after the whole system was implemented and the DRL agent was trained.

In the end, it was defined that 40 consecutive frames must be lost in order to activate the first phase

of the backup mechanism, and from there, the tolerance reduces to 20 consecutive frames lost for

activating the second phase and to keep reducing the MCS value while in the second phase.

4.3 DRL Agent

The DRL agent was implemented with a program coded in Python. The implementation of the

DRL agent was relatively straightforward because of Tensorflow and Keras-rl2. These Python

frameworks allowed for an easy and quick creation of a neural network, the size and activation

functions of each layer, the DRL algorithm to be used and the configuration of hyperparame-

ters. While the DRL algorithm used remained the same for every iteration of the implementation

4.3 DRL Agent 37

process, the structure of the neural network and the values used for the configuration of the hyper-

parameters changed.

4.3.1 Environment Creation

The first thing that the program does is connect to ns3-gym and ns-3 to instantiate an environment.

It is with this instance that the agent interacts with. To do this, a Python function provided by the

ns3-gym module is used.

ns3env.Ns3Env(port, algorithm, simType, mobilityModel, duration);

Listing 4.3: Environment instantiating.

The arguments used to invoke this function are the ones already listed in Section 4.1. When the

environment is instantiated with these arguments, they are then passed to the ns-3 simulations

program to be parsed and used. The user defines these arguments when invoking the Python

program. This means that the Python program itself requires these arguments in other to run.

Furthermore, by properly running the Python program, this function automatically starts the ns3-

gym and ns-3 programs in order to instantiate the environment and initiate the simulation, so there

is no need to run those programs manually. To run all these components together, the user needs to

access a terminal window, change the directory to the folder that contains the DRL agent’s Python

program, the ns3-gym program and the ns-3 simulations program. This folder is itself situated

inside the ns-3 installation directory. Finally, the user executes the Python program through the

terminal, with appropriate arguments.

Figure 4.6: Example of how to run the DRL agent Python program on the terminal with the DRL-
LA algorithm.

Figure 4.6 gives an example on how to run the DRL agent’s Python program, which is called

agent.py. In this example, the program was invoked with arguments that define that the algorithm

to use is DR-LA, the simulation type is a training session, the simulation scenario – or mobility

model – is the waypoint scenario, the duration per simulation is 300 seconds and the port to use is

5554. All these arguments will be passed to the ns-3 program, as mentioned earlier. Furthermore,

even if the algorithm to use was not DRL-LA, we would still use the DRL agent’s Python program

to launch everything, even though the agent would become passive and not configure anything.

The reason for doing this is that we still want to to be able to use the custom functions imple-

mented in ns3-gym, in order to monitor events in the network and gather metrics to evaluate the

performance of other algorithms.

Figure 4.7: Example of how to run the DRL agent Python program on the terminal, but with the
Minstrel-HT algorithm.

38 Implementation

Figure 4.7 is an example of how run a simulation with the Minstrel-HT algorithm. In this example,

a simulation of 300 seconds would be initiated to evaluate the performance of the Minstrel-HT

algorithm.

4.3.2 DRL Algorithm

When it comes to the DRL algorithm, there were plenty of options to choose from, such as the

ones mentioned in Chapter 2. To address the challenge at hand, the Deep-Q Learning algorithm

was chosen, as it is one of the most prominent DRL algorithms, being very easy to build and

train, as well as being highly effective for applications with relatively small discrete action spaces,

suiting this challenge very well. This algorithm is already implemented by the Keras-rl2 library,

which means using it is as simple as invoking the function provided.

dqn_agent = DQNAgent(model, nb_actions, memory,

target_model_update, policy, batch_size, gamma);

Listing 4.4: Function provided by Keras-rl2 to create a Deep-Q Learning agent.

Listing 4.4 shows the function used to instantiate what is referred to as a Deep-Q Network

(DQN) agent, an agent that uses the Deep-Q Learning algorithm. The function is invoked using

the following arguments:

• model - A Keras model, that defines the structure of the neural network. This model is

created beforehand using another function provided by Keras, and defines parameters such

as the number of hidden layers, the number of neurons per hidden layer and how the neurons

are connected to each other, as well as the activation functions used;

• nb_actions - The number of possible actions that the agent can take, which is 58;

• memory - The memory argument refers to the replay buffer. It is also defined beforehand

using a function provided by Keras-rl2;

• target_model_update - The Q function is recursive and when the agent updates its network

for a given state and action, that update also impacts the prediction it will make for other

states and actions. This can make for a very unstable network. This limitation is addressed

by using a target network, which is a copy of the DQN that is not trained, but rather replaced

with a fresh copy every so often. Therefore, this parameter controls how frequently this

happens;

• policy - The policy is essentially the strategy that an agent uses to take actions. It defines

how the agent behaves when given a state. For this reason, the policy is related to the ε-

greedy parameter. The way the ε-greedy decays is determined by the policy and the policy

itself evolves during the training. Similarly to some of the previous parameters, it is defined

using a function provided by Keras-rl2;

4.3 DRL Agent 39

• batch_size - This argument defines the batch size hyperparameter;

• gamma - This argument defines the discount factor hyperparameter.

After invoking this function, the DQN agent is created and all that is left to do is compile it

and begin the training session. This is done by invoking the following functions:

dqn_agent.compile(optimizer);

dqn_agent.fit(environment, nb_steps, nb_max_episode_steps);

Listing 4.5: Functions provided by Keras-rl2 to compile the created agent and begin the training

session.

The first function shown in Listing 4.5 is responsible for compiling the DQN agent. It takes as an

argument an optimizer. Keras-rl2 has a small list of optimizers available. The Adam optimizer [41]

was chosen, as it is one of the most popular and efficient gradient descent optimizers available. The

second function is responsible for actually initiating the training session, and it takes the following

arguments:

• environment - The environment that the agent interacts with. We use the environment

instantiated with the function presented in Section 4.3.1;

• nb_steps - The total number of steps that will occur during a training session. A step is

equivalent to one cycle of the RL loop, or in other words, 100 milliseconds of the ns-3

simulation, like previously explained in Chapter 3. The higher the number of steps, the

longer the training session will be. The number of steps does not depend on the duration

of the simulation. For example, if we define a small number of steps, but a very long

simulation duration, the simulation will end when the number of steps ends and not the

other way around. Therefore, it is important to pick values for the number of steps and for

the simulation duration that make sense together;

• nb_max_episode_steps - Defines the maximum number of steps per episode. For example,

if nb_max_episode_steps is set to 100 and nb_steps is set to 500, then the training session

will last for five episodes. This parameter is useful to define how long an episode should

be. As another example, if we want an episode to be a whole simulation, from beginning to

end, and the simulation requires 3000 steps to run, then nb_max_episode_steps should be

set to 3000. If we set this parameter to a value that is inferior to the number of steps that the

simulation requires to finish, then the episode will end before the simulation has a chance to

conclude, and a new episode and simulation will begin.

4.3.3 Neural network and hyperparameter tuning

The configuration of the neural network structure and the tuning of hyperparameters was one of

the most time consuming tasks in this dissertation. The reason for this is that, in order to pinpoint

40 Implementation

which neural network and hyperparameter combinations were the most efficient for this work, all

of the planned options had to be trained and compared against each other. Considering that each

training session lasts for several hours, the whole process ended up taking hundreds of hours to

finish.

The amount of time required to test the different combinations was taken into account from

the very beginning. Since there is an infinite number of possible combinations of neural network

structures and hyperparameter configurations, and the time available to develop this thesis was

quite limited, it was not feasible to attempt to optimally tune every hyperparameter available and

to try many different neural network structures. Therefore, it was decided that the only hyperpa-

rameter to tune was the learning rate, with the others remaining fixed. The following list details

every hyperparameter configured and their respective values:

• Learning rate - This hyperparameter was configured with three values: 1×10−2; 1×10−3

and 5.5×10−3;

• Discount factor - This hyperparameter had a fixed value of 0.6. This value was picked as it

is important that the agent has a slight preference for future rewards, but not in excess;

• Replay buffer size - The size of the replay buffer had a fixed value of 100000. This value

could probably be smaller as to use less memory, but since it was supposed to remain fixed,

a safer, larger value was instead chosen;

• Batch size - The batch size value was fixed at 64 samples, a commonly used value for this

hyperparameter;

• ε-greedy - In the training sessions performed, this hyperparameter always started out with

the value of 1 and linearly decayed all the way down to 0.1 by the end of the training session.

Having gone over the five hyperparameters considered, the next step was to define a series

of neural network configurations and train each one of them. Considering that the learning rate

hyperparameter took three different values, every neural network configuration was trained three

times, one training session per learning rate value. A total of 11 neural networks were trained,

which translates into 33 training sessions. The input and output layers were the same for every

neural network, as they depend on the number of observations and the number of possible actions,

respectively. For this reason, the input layer had one neuron, as the agent only makes one obser-

vation per cycle – the SNR – while the output layer had 58 neurons, as the action space has a total

of 58 possible actions. It were the hidden layers that varied between the different neural networks.

For simplicity, each neural network combination is identified as n1;n2; ...;ni, where nX is the num-

ber of neurons at layer X. For example, 64;32;32 represents a neural network with three hidden

layers. The first layer has 64 neurons, while the second and the third layers have 32 neurons each.

This being said, the neural network configurations considered were the following: 32, 8;8, 16;16,

8;8;8, 16;16;16, 32;32, 64, 64;32, 64;64, 64;64;32 and 64;64;64. Implementing all these different

networks was done by using functions provided by Keras.

4.3 DRL Agent 41

Creates a sequential
model

Adds the input layer to
the sequential model

Adds a hidden layer of 64 neurons that
uses the ReLU activation function

Adds a hidden layer of 64 neurons that
uses the ReLU activation function

Adds a hidden layer of 32 neurons that
uses the ReLU activation function

Adds the output layer, that has 58 neurons, and
uses a linear activation function

Figure 4.8: Example of a neural network creation with Keras.

Figure 4.8 is an example of a neural network creation with Keras. First, a Sequential model was

instantiated. This is the most simple type of model that Keras provides, and allows us to create

a straightforward network, layer by layer. Then, a network was built on top of this model. The

network created has three hidden layers, two with 64 neurons and one with 32 neurons. Other

than that, it has the input layer and the output layer. By using the Dense() function, we indicate

that the layers are densely connected. This means that each neuron from a layer is connected to

every neuron from the next layer. The hidden layers use the ReLU activation function. The reason

for picking this function is because it is widely used in the DRL community, being highly recom-

mended for most situations. Moreover, due to time limitations, we could not test the performance

of other activation functions. The output layer uses the Linear activation function, as it is the most

used output activation function for non-classification problems, such as this one. All the neural

network combinations considered used the Sequential model, the ReLU activation function for the

hidden layers and the Linear activation function for the output layer. The only thing that changed

between combinations is the number of neurons and number of layers.

In order to evaluate how the different combinations of neural network configurations and learn-

ing rate values perform, two approaches were taken. The first approach consisted in saving the

cumulative rewards that the agent obtained for each training episode and plotting graphs with these

rewards, allowing us to get a visual representation on how effectively the agent was at learning

with each configuration. The second approach consisted in testing the trained agents with the

ε-greedy configured to zero. This means that the agent only take actions that it has learned, and

no exploratory, random actions are taken. Both approaches used the waypoint scenario for the

simulations. This means that all 33 training and testing sessions used this scenario.

4.3.3.1 First Approach - Cumulative Rewards Plots

For this first approach, three different graphs were plotted, one per learning rate value. There-

fore, each graph has 11 cumulative reward plots, one for each neural network configuration. The

rationale is to allow us to compare the learning performance of each neural network for a single

learning rate, instead of trying to compare them all at once, which would be very confusing as

42 Implementation

the graph would have 33 plots. It is also worth noting that each episode lasted for 300 simulation

seconds.

Figure 4.9: Cumulative reward plots for a learning rate of 1×10−2.

Figure 4.9 contains the cumulative reward plots for each considered neural network after they

were trained for 30 episodes with a learning rate of 1× 10−2. The reason for training for 30

episodes is that we empirically determined this to be a very good option, as less episodes were

not enough for the agent to converge and more episodes did not prompt the agent to learn more

than it did with just 30. By analyzing the different plots, we can see that they all start with low

cumulative episode rewards. Overtime, the cumulative rewards keeps increasing. This is to be

expected, because the agent keeps learning and the ε-greedy keeps decaying. In other words, the

agent becomes more capable of adapting the link due to the knowledge gained and also takes less

random actions because of the ε-greedy decay, choosing to use the actions it already learned. This

leads to better rewards throughout later episodes and higher cumulative reward values. We can also

tell that most neural network configurations performed very closely to each other and converged

to similar values at the end of the training session, with some configurations being visibly slightly

worse than others. Two very clear exceptions are the 8;8 and the 64;32 configurations. The former

performed very poorly and converged very early to a cumulative reward of around 600 after the

fifteenth episode, which means it became incapable of learning more after that episode. The latter

performed much better than every other network, as it clearly learned more quickly than others

throughout the whole process, as evidenced by the higher cumulative rewards for each episode.

On top of that, it also converged on a higher value than the other networks. We can, therefore,

conclude that the 64;32 network was the most efficient at training, for this particular learning rate.

4.3 DRL Agent 43

Figure 4.10: Cumulative reward plots for a learning rate of 1×10−3.

Figure 4.10 contains the cumulative reward plots for each considered neural network after they

were trained for 30 episodes with a learning rate of 1×10−3. Right away, we can see that, with this

learning rate, the different neural network combinations had more varied results. Unlike the previ-

ous case where a learning rate of 1×10−2 was used and most of the neural network combinations

had similar performances, in this case, the various combinations had a more diverging learning

experience, as the plot lines are more separated in general. Another noticeable difference is that

most of the combinations end up converging at different end values, whereas they converged at

very similar values for the learning rate of 1×10−2. We can also see that the network of 8;8 is still

the combination that performs the worse, as it converged to a value much smaller than the other

networks. The main difference in relation to the previous graph, however, is that this network did

not converge until the very end of the training session. Furthermore, the 64;32 combination is still

the neural network that performed the best, converging to an end cumulative reward value of 1200

and having the overall best training performance.

44 Implementation

Figure 4.11: Cumulative reward plots for a learning rate of 5.5×10−3.

Figure 4.11 contains the cumulative reward plots for each considered neural network after

they were trained for 30 episodes with a learning rate of 5.5×10−3. It seems that this learning rate

caused the worst results so far, as most neural network combinations had a very unstable learning

process, evidenced by the various downward peaks present in the plots. Furthermore, while for

the other learning rates most neural networks converged to end values well above 1000, for this

learning rate many of them converged to values just slightly above 1000. Not one combination

came close to converging to an end value of 1200, something that was achieved for the learning rate

of 1×10−3 and nearly achieved for the learning rate of 1×10−2. The one thing that this learning

rate had in common with the others is that the 8,8 neural network is still the worst performing one,

although it performed better than in the other two cases, converging to an end value of 800, while

the others converged at 600 and around 700.

4.3.3.2 Second Approach - Testing The Trained Agents

With all the 11 neural network combinations fully trained 3 times, one per learning rate value, we

can technically say that we have 33 different DRL trained agents at our disposal. By analyzing the

cumulative reward plots in the previous approach, we managed to get a good idea on which net-

works performed best at training. However, this is not enough, and the most conclusive evidence

we can get of which neural network combination is best is to actually evaluate the trained agents to

see how they perform with the knowledge they’ve gained. To this end, the waypoint scenario was

used once again, instead this time, the ε-greedy parameter is set to zero from the very beginning,

which means the agent will fully exploit, never taking random actions. Due to time constraints,

these performance evaluations only ran for 5 episodes, or in other words, 5 simulations, with each

simulation lasting for 300 seconds, just as before. This means that each neural network has 5

4.3 DRL Agent 45

cumulative reward values per learning rate in the end. Instead of plotting lines with just 5 values,

it was instead decided to calculate the mean value.

1×10−2 1×10−3 5.5×10−3

8;8 558 689 769
16;16 1049 1020 1076
8;8;8 1115 1120 998

16;16;16 1139 1092 1067
32 1110 1021 1158

32;32 1171 1095 1074
64 1083 1016 1132

64;32 1179 1204 1103
64;64 1101 1112 1100

64;64;32 1097 1098 1115
64;64;64 1101 1098 1109

Table 4.1: Evaluation mean cumulative reward values for the different neural network and learning
rate combinations.

Table 4.1 contains the mean cumulative reward values for each combination of neural network

and learning rate, after evaluation. This table allows us to observe the combinations that performed

the best by pinpointing the ones that achieved a higher mean cumulative reward value. We can see

that the absolute best combination is the 64;32 neural network with a learning rate of 1× 10−3,

which obtained a mean cumulative reward of 1204.

4.3.3.3 Conclusions

After analyzing the results obtained in both approaches, we can draw some conclusions. First of

all, having many hidden layers did not prove to be an important factor, as it was possible to obtain

good results with networks that had just one or two hidden layers. This is further supported by the

fact that the best performing neural network only has two hidden layers, even though there were

networks with three hidden layers. However, if we are using only one or two hidden layers, then

the number of neurons needs to be high, otherwise the agent will not be able to learn much. As an

example of this, we have the 8;8 network, which was consistently the worst performing network

for every learning rate. A small number of neurons can still work if there are at least three hidden

layers, as evidenced by the 8;8;8 network. Furthermore, a high number of neurons combined with

two or more hidden layers seems to be counterproductive, as evidenced by the 64;64, 64;64;32

and 64;64;64 networks, which only obtained average results. This leads us to conclude that, in the

context of the work developed for this dissertation, neural networks with a higher complexity do

not perform better, possibly due to overfitting, and there is no advantage in using them. This also

works well in our favour, as denser networks are more computationally expensive. When it comes

to the learning rate value, the difference in results was not as diverse as we initially expected.

In fact, the results obtained with each learning rate were very similar for most neural networks,

leading us to the conclusion that this hyperparameter could be further varied with a wider range of

46 Implementation

values. To conclude, the 64;32 network with a learning rate of 1×10−3 got the best results, both

during training and during evaluation. For this reason, this combination was selected.

4.4 Reward Function Tuning

The final step of the implementation process consisted in determining the ideal weight that each

parameter should have on the reward function. As previously mentioned in Section 4.2, the reward

function is defined in the C++ program that implements the ns3-gym interface.

Figure 4.12: Code snippet of the reward function.

Figure 4.12 contains a code snippet of the reward function implemented in the ns3-gym interface.

This code implements the logic detailed in Section 3.1. The line of code inside the yellow box

is where the weight of each parameter on the reward value is set. In this particular example, the

chosen MCS has a weight of 55% on the calculated reward, while the CB and GI have weights of

35% and 10%, respectively. These percentages are important, as they control how much priority

the agent gives to each parameter. A 55% weight for the MCS parameter means that the MCS is the

parameter with the highest priority, as the agent will get larger rewards for choosing a good MCS

value, even if the CB and GI values are not optimal. Likewise, a 35% weight for the CB means

that it is the parameter with the second highest priority, and finally, the GI is the lowest priority

parameter. Furthermore, these were the percentages used for every training session detailed in

Section 4.3.3.

In order to determine the optimal percentages for each parameter, the exact same approaches

detailed in Section 4.3.3 were used. This time, however, the neural network structure and learning

rate remained fixed at 64;32 and 1× 10−3, as mentioned in Section 4.3.3.3. Only the weights

were varied, with the exception of the GI weight, which remained fixed at 10%, as using a short

guard interval has an impact of about that percentage on the throughput [42]. For simplicity,

and considering that the GI weight is fixed, the weight combinations trained and evaluated are

represented as MCSpercentage;CBpercentage. For example, 55;35 means that the weights are 55% for

the MCS, 35% for the CB and, of course, 10% for the GI. The combinations defined were 50;40,

51;39, 52;38, 53;37, 54;36, 55;35, 56;34, 57;33, 58;32, 59;31 and 60:30.

4.4 Reward Function Tuning 47

Figure 4.13: Cumulative reward plots for the different parameter weights.

Figure 4.13 contains the cumulative reward plots for each combination of MCS and CB

weights. By observing the plots, we can see that the best combinations, in terms of learning

performance, were 55;35, 54;36, 53;37 and 52;38, with the others performing considerably worse.

The overall best was the 52;38 combination, or in other words, 52% for the MCS, 38% for the CB

and 10% for the GI.

Having finished the training sessions, we then proceeded to evaluate the trained agents – again,

just like in Section 4.3.3 – and register the mean cumulative reward values for each weight com-

bination:

Mean Cumulative Reward Value
50;40 1115
51;39 1179
52;38 1203
53;37 1198
54;36 1201
55;35 1199
56;34 1105
57;33 1092
58;32 1086
59;31 1006
60;30 1004

Table 4.2: Evaluation mean cumulative reward values for the different weight combinations.

By analyzing Table 4.2, we can see that the weight combinations that performed the best in eval-

uation were 52;38, 53;37, 54;36 and 55;35. These results are in tune with the plots observed

in Figure 4.13, as these were the only combinations that managed to converge towards the 1200

cumulative reward value.

48 Implementation

After finishing this final part of the implementation process and observing the results, we can

conclude that tuning the weights of the parameters in the reward function did not provide a superior

overall performance, as the agent seems to converge towards a maximum cumulative reward value

of 1200, being unable to learn any more than that. The advantage that tuning the parameter weights

brought was accelerating the learning process, or in other words, making the agent converge more

quickly. This is evidenced by the 52;38 combination, which managed to converge considerably

faster than the other combinations that also converged on the 1200 value. Taking this into account,

we can also conclude that the agent learns more rapidly if the CB parameter has a bigger impact on

the reward calculation, to a certain limit. It seems that the limit is 38%, as the 51;39 combination

proved to already be considerably worse.

Chapter 5

Performance Evaluation

This chapter presents the simulation results obtained when evaluating the final version of the DRL-

LA algorithm. DRL-LA was evaluated using the three scenarios described in Section 4.1, and for

each simulation scenario, four main results were obtained: a graph that plotted the throughputs

achieved throughout the simulation, the registered FSR values, a graph plotting the Cumulative

Distribution Function (CDF), and finally, the average throughput values. Along with DRL-LA,

these scenarios were also used to evaluate two other algorithms, Minstrel-HT and Ideal, as a way

to compare the performances obtained by each. The chapter is divided into four sections, one

section per simulation scenario and a section for conclusions.

5.1 Waypoint Scenario

For the waypoint scenario, two different simulations were executed. The first simulation is exactly

like the one described in Section 4.1. Both the DRL-LA and the Minstrel-HT algorithms were

evaluated using this simulation. However, due to an unidentified bug in ns-3, the Ideal algorithm

crashes when running this simulation, as it cannot handle distances larger than 650 meters between

the AP and the STA. For this reason, a second simulation was executed, which consists in the AP

only moving until it reaches the 650 meter mark, instead of the original 1300 meters like in the

first simulation. Therefore, the first simulation was used to compare the performance of DRL-

LA algorithm against the performance of Minstrel-HT, while the second simulation was used to

compare the performance of all three algorithms.

49

50 Performance Evaluation

Figure 5.1: Throughputs for the first waypoint simulation, in which the AP goes from 1 to 1300
meters and back.

Figure 5.1 contains plots of the throughputs obtained by the DRL-LA and Minstrel-HT algo-

rithms throughout the original waypoint scenario simulation. It is clear to observe that DRL-LA

performed better than Minstrel-HT, as it was able to generate higher throughputs and adapt more

efficiently to the SNR variations due to the increase and decrease in the distance between the AP

and the STA.

When it comes to the FSR that each algorithm obtained for this simulation, DRL-LA registered

a value of 99.7%, while Minstrel-HT registered a value of 93.14%. This essentially means that

less frames were lost when using DRL-LA than when using Minstrel-HT.

Figure 5.2: CDF for the DRL-LA and Minstrel-HT algorithms for the original waypoint scenario.

5.1 Waypoint Scenario 51

Figure 5.2 represents the CDF plots for both the DRL-LA and Minstrel-HT algorithms for

the original waypoint simulation. By observing the figure, we can clearly say that DRL-LA out-

performed Minstrel-HT. We can especially see that, at the 90th percentile, there is a significant

difference of around 115 Mbit/s between both algorithms. Furthermore, the average throughput

obtained by each algorithm throughout the whole simulation was 67.8 Mbit/s for DRL-LA and

44.4 Mbit/s for Minstrel-HT, a gain of more than 50%.

Figure 5.3: Throughputs for the second waypoint simulation, in which the AP goes from 1 to 650
meters and back.

Figure 5.3 contains plots of the throughputs obtained by the DRL-LA, Minstrel-HT and Ideal

algorithms throughout the alternative waypoint scenario simulation, in which the AP only reaches

a maximum distance of 650 meters. With this graph, we can compare the performances of the

DRL-LA and Ideal algorithms. Furthermore, the Minstrel-HT algorithm was also included in

order to be able to compare all three algorithms at the same time. We can conclude that DRL-LA

was still the overall best performing algorithm, reaching the highest throughputs and being able to

adapt efficiently.

When it comes to the FSR that each algorithm obtained for this simulation, DRL-LA registered

a value of 99.8%, while Minstrel-HT and Ideal registered values of 94.4% and 99.9%, respectively.

This means that, even though DRL-LA managed to get the highest throughputs, the Ideal algorithm

was still slightly better when it comes to avoiding frame losses, being able to quickly adapt almost

perfectly to SNR variations.

52 Performance Evaluation

Figure 5.4: CDF for the DRL-LA, Ideal and Minstrel-HT algorithms for the alternative waypoint
scenario.

Figure 5.4 represents the CDF plots for the DRL-LA, Ideal and Minstrel-HT algorithms for

the alternative waypoint simulation. Once again, we can observe that, in general, DRL-LA out-

performed the other two. At the 90th percentile, DRL-LA had a massive difference of 250 Mbit/s

in relation to Minstrel-HT, and a difference of 35 Mbit/s in relation to Ideal. Furthermore, the

average throughput obtained by each algorithm throughout the whole simulation was 113 Mbit/s

for DRL-LA, 103.2 Mbit/s for Ideal and 73.46 Mbit/s for Minstrel-HT.

5.2 Teleporting Node Scenario

For the teleporting node, only the original scenario described in Section 4.1 was necessary, as

the Ideal algorithm does not crash with this scenario, unlike the previous case with the waypoint

scenario. However, two simulations were still executed. The reason for this is that, while the first

simulation aims to compare the DRL-LA, Ideal and Minstrel-HT algorithms, the purpose of the

second simulation is to compare DRL-LA with the backup mechanism enabled versus DRL-LA

with the backup mechanism disabled. This allows us to observe the effectiveness of the backup

mechanism and the gains it introduced to the overall solution.

5.2 Teleporting Node Scenario 53

Figure 5.5: Throughputs for the teleporting node scenario.

Figure 5.5 contains plots of the throughputs obtained by the DRL-LA, Ideal and Minstrel-HT

algorithms throughout the teleporting node scenario simulation. We can observe that, as expected,

DRL-LA managed to achieve the highest throughputs. However, the most interesting aspect to ob-

serve with this scenario is the capability that the algorithm has to adapt to sudden SNR variations.

We can observe that Minstrel-HT performed the worst, never being able to quickly and fully adapt

to these sudden variations, even reaching a momentary throughput of 0 Mbit/s at some points.

DRL-LA, on the other hand, performed very efficiently, adapting quickly to the SNR variations

and avoiding low, or even null, throughput values thanks to the backup mechanism implemented.

At last, the Ideal algorithm had a basically flawless performance when it comes to adapting to

the variations. However, it is interesting to note that, excluding the slight downward peaks in the

throughput that occur when the SNR value suddenly changes, DRL-LA was extremely similar to

the Ideal algorithm, in terms of performance, when adapting to the new SNR value.

For this simulation, DRL-LA registered a FSR of 99.8%, while the Ideal and Minstrel-HT

registered FSR values of 99.9% and 89%, respectively. Once again, DRL-LA managed to have an

FSR considerably higher than Minstrel-HT, with Ideal still coming out on top by 0.01%.

54 Performance Evaluation

Figure 5.6: CDF for the DRL-LA, Ideal and Minstrel-HT algorithms for the teleporting node
scenario.

Figure 5.6 represents the CDF plots for the DRL-LA, Ideal and Minstrel-HT algorithms for the

teleporting node scenario. We can observe that Minstrel-HT performed very poorly in comparison

to DRL-LA and Ideal, which performed very similarly for the most part, with DRL-LA being able

to reach higher throughputs. At the 90th percentile, DRL-LA had a difference of 150 Mbit/s in

relation to Minstrel-HT, and a difference of 35 Mbit/s in relation to Ideal. The average throughput

obtained by each algorithm throughout the whole simulation was 157.4 Mbit/s for DRL-LA, 149.4

Mbit/s for Ideal, and 77.8 Mbit/s for Minstrel-HT.

Figure 5.7: Comparison of the throughput plots obtained using DRL-LA with the backup mecha-
nism enabled and disabled.

5.3 Waypoint With Teleports Scenario 55

Figure 5.7 contains plots of the throughputs obtained by DRL-LA throughout the teleporting

node scenario simulation, with and without the backup mechanism enabled. As expected, the

overall performance was basically the same and the plots overlap. The main differences between

the two versions of DRL-LA can be observed at the instants where the SNR changes drastically,

as this is the type of situation where the backup mechanism is used. We can clearly observe that

the version without the backup mechanism reaches a throughput of 0 Mbit/s during the transitions,

before the agent has a chance to get another observation and reconfigure the parameters accord-

ingly. The version with the backup mechanism manages to avoid this situation and the throughput

never reaches zero, even though it still drops quite a bit in the transitions. To further compare the

two, we can look at the FSR values that each version of DRL-LA registered. The version with the

backup mechanism registered a value of 99.8%, while the version without the backup mechanism

registered a value of 96.6%.

5.3 Waypoint With Teleports Scenario

The final scenario simulated is the waypoint with teleports scenario, also described in Chapter 4.1.

This scenario had the same problem as the waypoint scenario when it comes to simulating it with

Ideal, as this algorithm crashes. However, no additional alternative simulation was elaborated, as

this time, the problem could not be solved by simply not allowing the AP node to move farther

away than 650 meters, for unknown reasons. Considering that coming up with a solution for this

problem was taking too long, it was decided that DRL-LA would only be compared to Minstrel-

HT for this scenario. Furthermore, and just like in the teleporting node scenario, the two versions

of DRL-LA – backup mechanism enabled and backup mechanism disabled – were once again

compared against each other.

Figure 5.8: Throughputs for the waypoint with teleports scenario.

56 Performance Evaluation

Figure 5.8 contains the plots of the throughputs obtained by the DRL-LA and Minstrel-HT

algorithms throughout the waypoint with teleports scenario simulation. Once again, DRL-LA

managed to reach higher throughputs. Furthermore, due to the backup mechanism, it managed

to avoid null throughputs during the sudden transitions and adapt quickly, unlike Minstrel-HT.

For this simulation, DRL-LA registered a FSR of 99.6%, while Minstrel-HT registered a FSR of

92.1%.

Figure 5.9: CDF for the DRL-LA and Minstrel-HT algorithms for the waypoint with teleports
scenario.

Figure 5.9 represents the CDF plots for the DRL-LA and Minstrel-HT algorithms for the

waypoint with teleports scenario. It is clear to see that DRL-LA largely outperforms Minstrel-HT.

At the 90th percentile, there is a difference of 235 Mbit/s. Furthermore, the average throughput

obtained by each algorithm throughout the whole simulation was 103.1 Mbit/s for DRL-LA and

45.9 Mbit/s for Minstrel-HT, a gain of more than double.

5.4 Conclusions 57

Figure 5.10: Comparison of the throughputs obtained using DRL-LA with the backup mechanism
enabled and disabled in the waypoint with teleports scenario.

Figure 5.10 contains the plots of the throughputs obtained by DRL-LA throughout the way-

point with teleports simulation, with and without the backup mechanism enabled. Just like in the

teleporting node scenario, both versions of DRL-LA performed basically the same, with the ex-

ception of the instants when the SNR value changed suddenly and drastically. We can see that the

version with the backup mechanism disabled obtains null throughputs in these instants, whereas

the version with the backup mechanism enabled manages to avoid reaching null values. Further-

more, the version with the backup mechanism enabled registered a FSR value of 99,6%, while the

version with the backup mechanism disabled registered a FSR value of 97.9%.

5.4 Conclusions

After running every planned simulation and observing the results, we can conclude that DRL-

LA greatly outperforms the Minstrel-HT algorithm, both in terms of the throughputs that are

obtained and in terms of how fast it can adapt to SNR variations. Furthermore, it even manages to

outperform the Ideal algorithm in terms of the throughput obtained, even though Ideal is slightly

better at adapting to SNR variations, being able to do it instantly. However, the fact that the

Ideal algorithm performed a bit better in this aspect is not a significant result, as this algorithm,

like the name suggests, attempts to ideally adapt the link by using mechanisms that could never

be implemented in real life. Nonetheless, it is an interesting comparison to make. Finally, the

simulations made with the backup mechanism enabled and disabled allowed us to more clearly

visualize its impact when it comes to adapting the link. Even though using the mechanism did not

translate into considerable gains on the registered FSR values, it is still a useful feature to prevent

the throughput from plunging to null values during sudden transitions.

58 Performance Evaluation

Chapter 6

Conclusion and Future Work

The usage of WLANs is one of the most common practices today. These networks have been popu-

larized in domestic, educational, commercial and corporative environments, allowing for multiple

devices to communicate with each other and also access the Internet. They are implemented using

the IEEE 802.11 set of technical standards, commercially known by the brand name Wi-Fi. Over

the years, various link adaptation algorithms have been developed with the objective of optimally

adapting Wi-Fi connections, in order to provide users with high throughputs. However, with the

introduction of the latest IEEE 802.11 standards and their enhancements, these algorithms have

shown to be outdated and unable to properly adapt the wireless links, as they do not fully utilize

the capabilities of the most recent standards. This creates a demand for better solutions when it

comes to link adaptation algorithms.

This thesis had the goal of developing a novel link adaptation algorithm using DRL. The

objectives defined for this work were successfully accomplished, as we were able to create a

capable algorithm that met the validation criteria. The simulations executed have shown that the

DRL-LA algorithm is able to properly adapt the link by optimally configuring the MCS, GI and

CB parameters. Not only is the algorithm able to reach very high throughputs when the radio

channel conditions allow for it, but it is also very effective in adapting to a poor signal quality.

Furthermore, the backup mechanism implemented provides DRL-LA with an additional resilience

to sudden variations in the radio channel conditions, guaranteeing that the the throughput never

drops to a null value.

Even though the objectives defined for this dissertation were accomplished, there are still a

myriad of opportunities that can be explored. First of all, the DRL-LA algorithm was tested with

very simple scenarios, in which the STA node only moved in one dimension. Furthermore, only

two network nodes were present for every scenario, the AP and the STA. This means that we

did not test how the algorithm performs when there are factors like interference between nodes.

Also, the Friis Free Space Propagation Model used for the simulations is a very simplistic, line-

of-sight path loss model, meaning that other, more complex models should be used for testing;

nevertheless, we do not envision a significant impact on the algorithm performance as it showed

good performance in unstable scenarios.

59

60 Conclusion and Future Work

Future work would first involve creating scenarios that are a lot more complex and close to

real life situations. These scenarios would require a much deeper comprehension of the ns-3

software in order to utilize all of its capabilities to produce these simulations. By testing the

DRL-LA algorithm with realistic scenarios, we could then pinpoint its major weaknesses and

investigate ways to overcome them, obtaining an even more robust algorithm. The ultimate goal

after extensively validating the algorithm in simulation would be to port it to real nodes and test it

in real world scenarios, making the necessary adjustments.

References

[1] Ibrahim Sammour and Gerard Chalhoub. Evaluation of Rate Adaptation Algorithms
in IEEE 802.11 Networks. Electronics, 9(9):1436, September 2020. doi:10.3390/
electronics9091436.

[2] Raja Karmakar, Samiran Chattopadhyay, and Sandip Chakraborty. SmartLA: Reinforce-
ment learning-based link adaptation for high throughput wireless access networks. Com-
puter Communications, 110:1–25, September 2017. doi:10.1016/j.comcom.2017.
05.017.

[3] Syuan-Cheng Chen, Chi-Yu Li, and Chui-Hao Chiu. An Experience Driven Design for IEEE
802.11ac Rate Adaptation based on Reinforcement Learning. In IEEE INFOCOM 2021 -
IEEE Conference on Computer Communications, pages 1–10, Vancouver, BC, Canada, May
2021. IEEE. doi:10.1109/INFOCOM42981.2021.9488876.

[4] IEEE 802.11, The Working Group Setting the Standards for Wireless LANs. [Online; ac-
cessed 15. Nov. 2021]. Available from: https://www.ieee802.org/11/.

[5] Intel. (2020) iwlwifi linux wireless. [Online; accessed 13. Mar. 2022]. Available from:
https://wireless.wiki.kernel.org/en/users/drivers/iwlwifi.

[6] Minstrel-ht: New rate control module for 802.11n. [Online; accessed 28. Oct. 2021]. Avail-
able from: https://lwn.net/Articles/376765/.

[7] Seongho Byeon, Kangjin Yoon, Changmok Yang, and Sunghyun Choi. STRALE: Mobility-
aware PHY rate and frame aggregation length adaptation in WLANs. In IEEE INFOCOM
2017 - IEEE Conference on Computer Communications, pages 1–9, Atlanta, GA, USA, May
2017. IEEE. doi:10.1109/INFOCOM.2017.8056965.

[8] Ioannis Selinis, KoFnstantinos Katsaros, Seiamak Vahid, and Rahim Tafazolli. Damy-
sus: A Practical IEEE 802.11ax BSS Color Aware Rate Control Algorithm. Interna-
tional Journal of Wireless Information Networks, 26(4):285–307, December 2019. doi:
10.1007/s10776-019-00439-6.

[9] Teuku Yuliar Arif. Evaluation of the Minstrel-HT Rate Adaptation Algorithm in IEEE
802.11n WLANs. International journal of simulation: systems, science & technology, March
2017. doi:10.5013/IJSSST.a.18.01.11.

[10] Issam El Naqa and Martin J. Murphy. What Is Machine Learning? In Issam
El Naqa, Ruijiang Li, and Martin J. Murphy, editors, Machine Learning in Radiation
Oncology, pages 3–11. Springer International Publishing, Cham, 2015. doi:10.1007/
978-3-319-18305-3_1.

61

http://dx.doi.org/10.3390/electronics9091436
http://dx.doi.org/10.3390/electronics9091436
http://dx.doi.org/10.1016/j.comcom.2017.05.017
http://dx.doi.org/10.1016/j.comcom.2017.05.017
http://dx.doi.org/10.1109/INFOCOM42981.2021.9488876
https://www.ieee802.org/11/
https://wireless.wiki.kernel.org/en/users/drivers/iwlwifi
https://lwn.net/Articles/376765/
http://dx.doi.org/10.1109/INFOCOM.2017.8056965
http://dx.doi.org/10.1007/s10776-019-00439-6
http://dx.doi.org/10.1007/s10776-019-00439-6
http://dx.doi.org/10.5013/IJSSST.a.18.01.11
http://dx.doi.org/10.1007/978-3-319-18305-3_1
http://dx.doi.org/10.1007/978-3-319-18305-3_1

62 REFERENCES

[11] Pádraig Cunningham, Matthieu Cord, and Sarah Jane Delany. Supervised learning. In
Matthieu Cord and Pádraig Cunningham, editors, Machine Learning Techniques for Mul-
timedia: Case Studies on Organization and Retrieval, pages 21–49. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2008. doi:10.1007/978-3-540-75171-7âĆĆ.

[12] Zoubin Ghahramani. Unsupervised learning. In Olivier Bousquet, Ulrike von Luxburg, and
Gunnar Rätsch, editors, Advanced Lectures on Machine Learning: ML Summer Schools
2003, Canberra, Australia, February 2 - 14, 2003, Tübingen, Germany, August 4 - 16,
2003, Revised Lectures, pages 72–112. Springer Berlin Heidelberg, Berlin, Heidelberg, 2004.
doi:10.1007/978-3-540-28650-9âĆĚ.

[13] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. Adap-
tive Computation and Machine Learning Series. The MIT Press, Cambridge, Massachusetts,
second edition edition, 2018.

[14] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436–
444, May 2015. doi:10.1038/nature14539.

[15] Massimo Merenda, Carlo Porcaro, and Demetrio Iero. Edge Machine Learning for AI-
Enabled IoT Devices: A Review. Sensors, 20(9):2533, April 2020. doi:10.3390/
s20092533.

[16] Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony Bharath. Deep
Reinforcement Learning: A Brief Survey. IEEE Signal Processing Magazine, 34(6):26–38,
November 2017. doi:10.1109/MSP.2017.2743240.

[17] Arun Addagatla. Investigating Underfitting and Overfitting. [Online. accessed
13. Dec. 2021]. Available from https://medium.com/geekculture/
investigating-underfitting-and-overfitting-70382835e45c, April
2021.

[18] Siddharth Sharma, Simone Sharma, and Anidhya Athaiya. ACTIVATION FUNC-
TIONS IN NEURAL NETWORKS. [Online. accessed 14. Mar. 2022]. Interna-
tional Journal of Engineering Applied Sciences and Technology, 04(12):310–316, May
2020. URL: https://www.ijeast.com/papers/310-316,Tesma412,IJEAST.
pdf, doi:10.33564/IJEAST.2020.v04i12.054.

[19] AlphaGo. [Online. accessed 18. Dec. 2021]. Available from: https://www.deepmind.
com/research/highlighted-research/alphago.

[20] AlphaZero: Shedding new light on chess, shogi, and Go. [Online. accessed
18. Dec. 2021]. Available from: https://www.deepmind.com/blog/
alphazero-shedding-new-light-on-chess-shogi-and-go.

[21] Part 2: Kinds of RL Algorithms — Spinning Up documentation. [Online. accessed
22. Mar. 2022]. Available from: https://spinningup.openai.com/en/latest/
spinningup/rl_intro2.html.

[22] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G.
Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig
Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Ku-
maran, Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level control through

http://dx.doi.org/10.1007/978-3-540-75171-7\protect \begingroup \immediate \write \@unused \def \MessageBreak
 \let \protect \edef You may provide a definition with\MessageBreak \protect \begingroup \immediate \write \@unused \def \MessageBreak
 \let \protect \edef Your command was ignored.\MessageBreak Type I <command> <return> to replace it with another command,\MessageBreak or <return> to continue without it. \errhelp \let \def \MessageBreak
 \def \errmessage LaTeX Error: Can be used only in preamble.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help \endgroup \errhelp \let \def \MessageBreak
(inputenc) \def \errmessage Package inputenc Error: Unicode character ₂ (U+2082)\MessageBreak not set up for use with LaTeX.

See the inputenc package documentation for explanation.
Type H <return> for immediate help \endgroup
http://dx.doi.org/10.1007/978-3-540-28650-9\protect \begingroup \immediate \write \@unused \def \MessageBreak
 \let \protect \edef You may provide a definition with\MessageBreak \protect \begingroup \immediate \write \@unused \def \MessageBreak
 \let \protect \edef Your command was ignored.\MessageBreak Type I <command> <return> to replace it with another command,\MessageBreak or <return> to continue without it. \errhelp \let \def \MessageBreak
 \def \errmessage LaTeX Error: Can be used only in preamble.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help \endgroup \errhelp \let \def \MessageBreak
(inputenc) \def \errmessage Package inputenc Error: Unicode character ₅ (U+2085)\MessageBreak not set up for use with LaTeX.

See the inputenc package documentation for explanation.
Type H <return> for immediate help \endgroup
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.3390/s20092533
http://dx.doi.org/10.3390/s20092533
http://dx.doi.org/10.1109/MSP.2017.2743240
https://medium.com/geekculture/investigating-underfitting-and-overfitting-70382835e45c
https://medium.com/geekculture/investigating-underfitting-and-overfitting-70382835e45c
https://www.ijeast.com/papers/310-316,Tesma412,IJEAST.pdf
https://www.ijeast.com/papers/310-316,Tesma412,IJEAST.pdf
http://dx.doi.org/10.33564/IJEAST.2020.v04i12.054
https://www.deepmind.com/research/highlighted-research/alphago
https://www.deepmind.com/research/highlighted-research/alphago
https://www.deepmind.com/blog/alphazero-shedding-new-light-on-chess-shogi-and-go
https://www.deepmind.com/blog/alphazero-shedding-new-light-on-chess-shogi-and-go
https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html
https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html

REFERENCES 63

deep reinforcement learning. Nature, 518(7540):529–533, February 2015. doi:10.1038/
nature14236.

[23] Christopher J. C. H. Watkins and Peter Dayan. Q-learning. Machine Learning, 8(3-4):279–
292, May 1992. doi:10.1007/BF00992698.

[24] Reinforcement Learning With (Deep) Q-Learning Explained. [Online. ac-
cessed 19. Mar. 2022]. URL: https://www.assemblyai.com/blog/
reinforcement-learning-with-deep-q-learning-explained/.

[25] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic:
Off-policy maximum entropy deep reinforcement learning with a stochastic actor. [On-
line. accessed 10. Dec. 2021]. In Jennifer Dy and Andreas Krause, editors, Proceed-
ings of the 35th International Conference on Machine Learning, volume 80 of Proceed-
ings of Machine Learning Research, pages 1861–1870. PMLR, 10–15 Jul 2018. URL:
https://proceedings.mlr.press/v80/haarnoja18b.html.

[26] Marc G. Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on rein-
forcement learning. [Online. accessed 16. Mar 2022]. In Doina Precup and Yee Whye Teh,
editors, Proceedings of the 34th International Conference on Machine Learning, volume 70
of Proceedings of Machine Learning Research, pages 449–458. PMLR, 06–11 Aug 2017.
URL: https://proceedings.mlr.press/v70/bellemare17a.html.

[27] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust re-
gion policy optimization. [Online. accessed 16. Mar. 2022]. In Francis Bach and David Blei,
editors, Proceedings of the 32nd International Conference on Machine Learning, volume 37
of Proceedings of Machine Learning Research, pages 1889–1897, Lille, France, 07–09 Jul
2015. PMLR. URL: https://proceedings.mlr.press/v37/schulman15.html.

[28] MCS Table and How To Use it. [Online. accessed 17. Mar. 2022]. Available from https:
//wlanprofessionals.com/mcs-table-and-how-to-use-it/.

[29] TensorFlow. [Online. accessed 18. Dec. 2021]. Available from: https://www.
tensorflow.org/.

[30] Keras: The Python deep learning API. [Online. accessed 18. Dec. 2021]. Available from:
https://keras.io/.

[31] Shogun Machine Learning - Home. [Online. accessed 17. Nov. 2021]. Available from:
https://www.shogun-toolbox.org/.

[32] TensorFlow Agents. [Online. accessed 17. Nov. 2021]. Available from: https://www.
tensorflow.org/agents.

[33] Taylor McNally. taylormcnally/keras-rl2. [Online. accessed 17. Nov. 2021]. Available
from: https://github.com/taylormcnally/keras-rl2, May 2022. original-
date: 2019-05-21T06:23:09Z.

[34] nsnam. Ns-3. [Online. accessed 18. Dec. 2021]. Available from: https://www.nsnam.
org/.

[35] Ns-3 App Store - ns3-gym: OpenAI Gym integration. [Online. accessed 18. Dec. 2021].
Available from: https://apps.nsnam.org/app/ns3-gym/.

http://dx.doi.org/10.1038/nature14236
http://dx.doi.org/10.1038/nature14236
http://dx.doi.org/10.1007/BF00992698
https://www.assemblyai.com/blog/reinforcement-learning-with-deep-q-learning-explained/
https://www.assemblyai.com/blog/reinforcement-learning-with-deep-q-learning-explained/
https://proceedings.mlr.press/v80/haarnoja18b.html
https://proceedings.mlr.press/v70/bellemare17a.html
https://proceedings.mlr.press/v37/schulman15.html
https://wlanprofessionals.com/mcs-table-and-how-to-use-it/
https://wlanprofessionals.com/mcs-table-and-how-to-use-it/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://keras.io/
https://www.shogun-toolbox.org/
https://www.tensorflow.org/agents
https://www.tensorflow.org/agents
https://github.com/taylormcnally/keras-rl2
https://www.nsnam.org/
https://www.nsnam.org/
https://apps.nsnam.org/app/ns3-gym/

64 REFERENCES

[36] Gym Documentation. [Online. accessed 17. Nov. 2021]. Available from: https://www.
gymlibrary.ml/.

[37] Piotr Gawłowicz and Anatolij Zubow. ns-3 meets OpenAI Gym: The Playground for Ma-
chine Learning in Networking Research. In Proceedings of the 22nd International ACM Con-
ference on Modeling, Analysis and Simulation of Wireless and Mobile Systems - MSWIM ’19,
pages 113–120, Miami Beach, FL, USA, 2019. ACM Press. URL: http://dl.acm.org/
citation.cfm?doid=3345768.3355908, doi:10.1145/3345768.3355908.

[38] CUDA Toolkit - Free Tools and Training. [Online. accessed 17. Nov. 2021]. Available from:
https://developer.nvidia.com/cuda-toolkit, July 2013.

[39] ns-3: ns3::IdealWifiManager Class Reference. [Online. accessed 13. Apr. 2022]. Avail-
able from https://www.nsnam.org/doxygen/classns3_1_1_ideal_wifi_
manager.html#details.

[40] Guangyu Pei and Thomas R Henderson. Validation of OFDM model in ns-3. page 5.

[41] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization, January
2017. Number: arXiv:1412.6980 arXiv:1412.6980 [cs]. URL: http://arxiv.org/abs/
1412.6980.

[42] Wireless basic configuration: Short Guard Interval and multipath effect FAQ. [On-
line. accessed 23. Oct. 2021]. Available from https://www.sonicwall.com/
support/knowledge-base/wireless-basic-configuration-\protect\
@normalcr\relax-short-guard-interval-and-multipath-effect-faq/
170504672960493.

https://www.gymlibrary.ml/
https://www.gymlibrary.ml/
http://dl.acm.org/citation.cfm?doid=3345768.3355908
http://dl.acm.org/citation.cfm?doid=3345768.3355908
http://dx.doi.org/10.1145/3345768.3355908
https://developer.nvidia.com/cuda-toolkit
https://www.nsnam.org/doxygen/classns3_1_1_ideal_wifi_manager.html#details
https://www.nsnam.org/doxygen/classns3_1_1_ideal_wifi_manager.html#details
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://www.sonicwall.com/support/knowledge-base/wireless-basic-configuration-\protect \@normalcr \relax -short-guard-interval-and-multipath-effect-faq/170504672960493
https://www.sonicwall.com/support/knowledge-base/wireless-basic-configuration-\protect \@normalcr \relax -short-guard-interval-and-multipath-effect-faq/170504672960493
https://www.sonicwall.com/support/knowledge-base/wireless-basic-configuration-\protect \@normalcr \relax -short-guard-interval-and-multipath-effect-faq/170504672960493
https://www.sonicwall.com/support/knowledge-base/wireless-basic-configuration-\protect \@normalcr \relax -short-guard-interval-and-multipath-effect-faq/170504672960493

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Motivation
	1.3 Problem Definition
	1.4 Objectives
	1.5 Contributions
	1.6 Document Structure

	2 State of the Art
	2.1 IEEE 802.11
	2.2 Link Adaptation Algorithms
	2.2.1 Iwl-mvm-rs
	2.2.2 Minstrel-HT
	2.2.3 STRALE
	2.2.4 Damysus

	2.3 Machine Learning
	2.3.1 Supervised Learning
	2.3.2 Unsupervised Learning
	2.3.3 Reinforcement Learning
	2.3.4 Deep Learning
	2.3.5 Deep Reinforcement Learning
	2.3.6 Key Concepts

	2.4 Deep Reinforcement Learning Algorithms
	2.5 Related Work
	2.5.1 SmartLA
	2.5.2 EDRA

	2.6 Summary

	3 DRL-LA Algorithm
	3.1 Proposed Solution
	3.1.1 Action Space
	3.1.2 Backup Mechanism

	3.2 Software Tools and Setup

	4 Implementation
	4.1 Ns-3 Simulations
	4.2 Ns3-gym
	4.3 DRL Agent
	4.3.1 Environment Creation
	4.3.2 DRL Algorithm
	4.3.3 Neural network and hyperparameter tuning

	4.4 Reward Function Tuning

	5 Performance Evaluation
	5.1 Waypoint Scenario
	5.2 Teleporting Node Scenario
	5.3 Waypoint With Teleports Scenario
	5.4 Conclusions

	6 Conclusion and Future Work
	References

