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Abstract

Speech has shaped human history, facilitating social connections, societal organization, and trans-
formative change. It is the foundation of human socialization, allowing expression of thoughts,
ideas, and emotions. Whispered speech is used in contexts where silence or privacy is desired. In-
dividuals with vocal impairments depend on whispered speech for communication. However, rely-
ing on whispered speech presents challenges such as weakened projection, reduced intelligibility,
and the loss of vocal signature. These challenges affect interpersonal communication and interac-
tions with voice-oriented technologies. Non-invasive assistive technologies are necessary to im-
prove vocal communication for those relying on whispered speech. Whispered-to-normal speech
conversion systems show promise by reconstructing the periodic component missing in whispered
speech. This restoration enhances vocal projection, intelligibility, and the desired voiced sound
signature. Accurate voicing decisions are crucial for the success of whispered-to-normal speech
conversion systems. Preserving the inherent unvoiced nature of certain phones is essential for in-
telligibility and linguistic accuracy during speech reconstruction. Therefore, developing a voicing
decision subsystem that accurately distinguishes between candidate and not candidate to voicing
phones is of utmost importance. To address this challenge, the present study leverages state-of-the-
art deep learning models, including TCN, CNN, LSTM, GRU, and Transformer. A comparative
analysis was conducted using two feature subsets: a baseline subset consisting of 49 MFCCs fea-
tures, and a 49-features subset selected through feature engineering. The results of the analysis
demonstrate that the TCN model, when combined with the selected 49-features subset, exhibits
superior performance across various evaluation metrics. Specifically, the TCN model outperforms
other models in terms of Accuracy (98.72%), Precision (98.71%), Recall (98.74%), Specificity
(98.71%), F1 Score (98.72%), and AUC-ROC (99.91%). This best performing model was fur-
ther assessed, substantiating its effectiveness and online usability. The use of the selected features
subset instead of the baseline features subset enabled absolute gains of performance across all
models and metrics. For instance, the TCN model exhibits gains of 3.25% in Accuracy, 2.94% in
Precision, 3.60% in Recall, 2.90% in Specificity, 3.27% in F1 Score, and 0.72% in AUC-ROC.
Similar enhancements are verified in all other models. These findings underscore the potential of
deep learning approaches in enhancing the performance of whispered-to-normal speech conver-
sion systems, providing a promising avenue for improving the communication abilities and overall
quality of life for individuals with impaired phonation ability.

Keywords: Voicing decision, candidate to voicing, whispered speech, deep learning, whispered-
to-normal, speech conversion.
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Resumo

A fala tem desempenhado um papel crucial na história da humanidade, contribuindo para a for-
mação de laços sociais, a organização da sociedade e a instigação de mudanças transformati-
vas. Constitui a base da socialização humana, permitindo a expressão de pensamentos, ideias e
emoções. A fala sussurrada é empregue em contextos nos quais o silêncio ou a privacidade são de-
sejados. Contudo, existem indivíduos com problemas de saúde que afetam as cordas vocais, sendo
obrigados a recorrer à fala sussurrada como único modo de comunicação vocal. Esta dependência
origina vários problemas, como a atenuação da projeção vocal, a redução da inteligibilidade e a
perda da assinatura sonora individual. Estes entraves comprometem a comunicação interpessoal e
as interações com tecnologias orientadas para a voz. Neste sentido, a fim de melhorar a comuni-
cação vocal destes pacientes, tornou-se indispensável o desenvolvimento de tecnologias assistivas
não invasivas. Os sistemas de conversão de fala sussurrada em fala normal surgem como uma
solução promissora, possibilitando a reconstrução da componente periódica ausente na fala sus-
surrada, melhorando a projeção vocal, a inteligibilidade e a assinatura vocal desejada. O êxito dos
sistemas de conversão de fala sussurrada em fala normal está dependente do sucesso das decisões
de vozeamento, que são fulcrais para a preservação da natureza não-vozeada de certos fonemas.
Apenas deste modo é possível assegurar a inteligibilidade e a precisão linguística durante a recon-
strução da fala sussurrada. Portanto, é fundamental o desenvolvimento de um subsistema capaz
de efetuar decisões de vozeamento, que permita distinguir de forma precisa entre os fonemas que
são candidatos e os que não são candidatos ao vozeamento, em tempo real. Para superar este de-
safio, este estudo recorre a modelos de Deep Learning de última geração, incluindo TCN, CNN,
LSTM, GRU e Transformer. Foi realizada uma análise comparativa utilizando dois subconjun-
tos de características: um subconjunto base composto por 49 MFCCs e um subconjunto de 49
características selecionadas. Os resultados da análise indicam que o modelo TCN, quando combi-
nado com o subconjunto de 49 características selecionadas, apresenta um desempenho superior em
várias métricas de avaliação, nomeadmente em termos de Accuracy (98,72%), Precision (98,71%),
Recall (98,74%), Specificity (98,71%), F1 Score (98,72%) e AUC-ROC (99,91%). Este modelo
de alto desempenho foi objeto de uma avaliação mais detalhada, a fim de validar a sua eficácia
e capacidade de operação em tempo real. A utilização do subconjunto de características sele-
cionadas, em vez do subconjunto base de características, resultou em melhorias de desempenho
em todos os modelos e métricas. Por exemplo, o modelo TCN apresentou melhorias de Accuracy
(3.25%), Precision (2.94%), Recall (3.60%), Specificity (2.90%), F1 Score (3.27%) e AUC-ROC
(0.72%). Foram observadas melhorias semelhantes em todos os outros modelos. Estas descober-
tas realçam o potencial das abordagens de Deep Learning na obtenção de decisões de vozeamento,
permitindo melhorar o desempenho dos sistemas de conversão de fala sussurrada em fala normal.
Assim, a abordagem proposta fornece uma base promissora para a melhoria das capacidades de
comunicação e a qualidade de vida dos pacientes com a capacidade de fonação comprometida.

Palavras-chave: Decisão de vozeamento, candidatos a vozeamento, classificação de fones,
fala sussurrada, aprendizagem computacional, conversão de fala, sussurada para normal.
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Chapter 1

Introduction

This Chapter offers an introduction of the research topic, presenting its overview and motivation

(1.1), objectives (1.2), research question and hypotheses (1.3), and document structure (1.4).

1.1 Overview and motivation

Speech has played an invaluable role in shaping the course of human history. By serving as a

medium for communication, it has been instrumental in fostering social connections, facilitating

societal organization, and instigating transformative change. Undeniably, speech communication

stands as the backbone of human socialization [5, 6, 7].

Whispered Speech (WS) is an Unvoiced (UV) speech mode produced by a turbulent flow of

air that is expelled by the lungs and is forced through the supra-laryngeal structures, acting as an

excitation signal to the vocal tract. Since there is no vibration of the vocal folds in the larynx — a

mechanism also known as phonation — involved in its production, it lacks the periodic component

of voice excitation that is present in Normal Speech (NS) [8, 9].

This mode of speech is used intentionally in human vocal communication, particularly in cer-

tain environments where silence is recommended or privacy is desired [10, 11]. However, there is

a group of health conditions that temporarily or permanently affect the vocal folds, impairing or

disabling the phonation ability. Patients affected by this health condition rely solely on this UV

speech mode [12, 13, 14, 15, 16]. Being characterized by a weak vocal projection, reduced intelli-

gibility and a loss of the individual Voiced (V) sound signature, involuntary WS is detrimental to

their vocal communication ability.

Since human-to-human vocal communication is an essential mechanism of socialization, their

mental health and well-being may deteriorate [17, 18, 19, 20]. The limitations imposed by in-

voluntary WS affect human-machine interaction as well, compromising the effectiveness of the

increasingly adopted voice-oriented technologies based on Automatic Speech Recognition (ASR),

limiting user experience and reducing accessibility [21, 22, 23]. Therefore, there is a pressing need

to develop non-invasive assistive technologies that improve these patients’ vocal communication

ability [11, 24, 25].
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Whispered-to-normal conversion systems allow the conversion of WS into NS, enhancing its

vocal projection and intelligibility, while providing the V sound signature desired by its users [11,

24, 25, 26, 27, 28]. To synthetically voice an originally UV speech, the system reconstructs the

periodic component of V speech that is missing.

There are some phones in the European Portuguese (EP) language that are originally UV in

NS, being correctly produced by individuals with impaired or disabled phonation ability. There

is no need for the whispered-to-normal conversion systems to voice those phones. In fact, an

incorrect decision to voice a phone that should not be V may affect the intelligibility and the

linguistic content of the reconstructed speech. Thus, the success of the speech reconstruction is

highly dependent on the effectiveness of each Voicing Decision (VD). This fact highlights the

importance of the development of a VD subsystem to integrate the broader whispered-to-normal

speech conversion system. This subsystem segments the speech signal based on the classification

between two major classes of phones — Candidate to Voicing (CTV) and Not Candidate to Voicing

(NCTV) — so that the synthetic voicing mechanism is accurately triggered.

For that purpose, the utilization of state-of-the-art VD systems is crucial. The encouraging

results reported in recent literature regarding the effectiveness of VD systems based on Deep

Learning (DL) motivated their integration into this dissertation [29, 30, 31, 32, 33].

1.2 Objectives

The goal of this research work is the development of a VD subsystem able to perform effective

and efficient online frame-based classification of EP WS between CTV and NCTV. The specific

objectives of this research are detailed as follows:

1. Phonetically annotated WS/NS dataset description: Describe the acquisition and charac-

teristics of the available phonetically annotated dataset;

2. Dataset preprocessing: Prepare the dataset for feature engineering;

3. Feature engineering: Extract features from the preprocessed dataset; Process them to be

amenable for subsequent analysis; Define a Baseline Feature Subset (BFS) and a Selected

Feature Subset (SFS);

4. Selection and design of DL-based model architectures: Choose and design DL model

architectures, defining structures, layers, and parameters;

5. Evaluation metrics definition: Define performance and computational metrics to quantita-

tively evaluate the model/features subset pairs;

6. Assessment and comparison of all model/features subset pairs: Evaluate and compare

performance and computational efficiency of model/features subsets, by performing Train-

Test Split (TTS) evaluations; Compare the performances obtained across features subsets;

Identify the best performing pair;
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7. Assessment of the best performing model/features subset pair: Further assess the best

performing pair, by executing: K-Fold Cross Validation (K-FCV) evaluation; performance

analysis across articulation manner classes; VD segmentation exemplification; verification

of the compliance with a defined Maximum Allowable Processing Time (MAPT) that guar-

antees online operation.

1.3 Research question and hypotheses

The research question and hypotheses articulated in this Section serve as a systematic framework

for investigating the effectiveness and efficiency of a DL-based model in executing online frame-

based VD within the context of EP WS:

• Research question: "What is the effectiveness and efficiency of a carefully chosen Deep

Learning (DL)-based model which performs online frame-based VDs in European Por-

tuguese (EP) Whispered Speech (WS), utilizing a Selected Feature Subset (SFS) as input?"

– Hypothesis 1 (H1): A carefully chosen DL-based model effectively performs online

frame-based VDs in EP WS;

– Hypothesis 2 (H2): A carefully chosen DL-based model performs online frame-based

VDs in EP WS efficiently, taking less than the MAPT to process and decide on the

input features;

– Hypothesis 3 (H3): A carefully chosen SFS, when used as input, improves the effec-
tiveness and efficiency of a DL-based model performing online frame-based VDs in

EP WS, compared to a BFS.

1.4 Document structure

The dissertation document is structured as follows:

1 Introduction: This chapter introduces the dissertation, presenting its:

1.1 Overview and motivation;

1.2 Objectives;

1.3 Research question and hypotheses;

1.4 Document structure;

2 Background: This chapter provides background information on various topics related to

the research. It includes sections on:

2.1 Human Speech Production System (HSPS): Discusses the HSPS, including the

speech production mechanism (2.1.1), EP phonetics (2.1.2), and WS and NS modes

(2.1.3);
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2.2 Human Auditory System (HAS): Provides an overview of the HAS, covering the

peripheral region (2.2.1) and psychoacoustics (2.2.2);

2.3 Speech signal processing: Discusses speech signal processing techniques, includ-

ing the source-filter model (2.3.1) and Linear Predictive Coding (LPC) (2.3.2);

2.4 Deep Learning (DL): Introduces DL and its relevance to the research. Covers

topics such as DL-based models (2.4.1), learning frameworks (2.4.2), evaluation tech-

niques (2.4.3), performance metrics (2.4.4), and computational metrics (2.4.5);

2.5 Feature engineering: Provides an overview on feature engineering, covering fea-

ture extraction (2.5.1) and feature selection (2.5.2);

2.6 Voicing Decision (VD) in whispered-to-normal speech conversion systems: Fo-

cuses on the VD in whispered-to-normal speech conversion systems, which is the key

aspect of the research;

3 Voicing decision approaches — a review: This chapter presents a review of VD ap-

proaches. It includes sections on:

3.1 Paper selection: Discusses the criteria and process for selecting relevant papers

for the review;

3.2 Review of the selected papers: Provides a detailed review of the selected papers,

categorizing them into rule-based approaches (3.2.1), Machine Learning (ML)-based

approaches (3.2.2), and hybrid approaches (3.2.3);

4 Methodology: This chapter presents the methodology employed in the research. It in-

cludes sections on:

4.1 Hardware and software description: Provides a description of the hardware

(4.1.1) and software (4.1.2) used in the research;

4.2 Phonetically annotated WS/NS dataset acquisition: Explains the phonetically

annotated WS/NS dataset acquisition process, including participant selection, record-

ing, screening, and training (4.2.1), corpus (4.2.2), and phonetic annotation (4.2.3);

4.3 Dataset preprocessing: Describes the preprocessing steps applied to the dataset,

such as downsampling of audio files (4.3.1), phone annotation-based segmentation

(4.3.2), dataset selection and cleaning (4.3.3), CTV/NCTV segments labelling (4.3.4),

and audio segments normalization (4.3.5);

4.4 Feature engineering: Explains the feature engineering process, including feature

extraction (4.4.1), feature normalization (4.4.2), dataset explosion from segments to

frames (4.4.3), context size definition (4.4.5), context-sized sequences dataset genera-

tion (4.4.6), BFS definition (4.4.7), and SFS definition (4.4.8);

4.5 Selection and design of DL-based model architectures: Covers the selection

and design process of DL-based model architectures;
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4.6 Evaluation metrics definition: Describes the definition of metrics to quantita-

tively assess the models, namely performance metrics (4.6.1) and computational met-

rics (4.6.2);

4.7 Assessment and comparison of all model/features subset pairs: Presents the

methods used to assess and compare all model/features subset pairs, namely TTS eval-

uation (4.7.1), performance comparison across feature subsets (4.7.2), and selection of

the best performing model/features subset (4.7.3);

4.8 Assessment of the best performing model/features subset pair: Presents the

methods used to assess the best performing model/features subset pair, namely per-

formance assessment across articulation manner classes (4.8.1), K-FCV evaluation

(4.8.2), exemplification of VD segmentation (4.8.3), and verification of the compli-

ance with the MAPT (4.8.4);

5 Results and Discussion: This chapter includes the presentation and discussion of the

results. It includes sections on:

5.1 Phonetically annotated Whispered Speech (WS)/Normal Speech (NS) dataset
acquisition: Presents and discusses the results related to the acquisition of the pho-

netically annotated WS/NS dataset;

5.2 Dataset preprocessing: Presents and discusses the results of the dataset prepro-

cessing steps;

5.3 Feature engineering: Presents and discusses the results obtained from the feature

engineering process, more specifically from: feature extraction (5.3.1), feature nor-

malization (5.3.2), dataset explosion from segments to frames (5.3.3), class distribu-

tion balancing (5.3.4), context size definition (5.3.5), context-sized sequences dataset

generation (5.3.6), BFS definition (5.3.7), and SFS definition (5.3.8);

5.4 Selection and design of Deep Learning-based model architectures: Presents

and discusses the resulting architectures of the selection and design process: Convolutional

Neural Network (CNN) (5.4.1), Separable CNN (5.4.2), Residual Neural Network

(ResNet) (5.4.3), Long Short-Term Memory (LSTM) (5.4.4), Gated Recurrent Unit

(GRU) (5.4.5), Temporal Convolutional Network (TCN) (5.4.6), and Transformer (5.4.7);

5.5 Assessment and comparison of all model/feature subset pairs: Presents and

discusses the results of the assessment and comparison of all model/feature subset

pairs, focusing on TTS evaluation using the BFS (5.5.1) and the SFS (5.5.2), perfor-

mance comparison across features subsets (5.5.3), and selection of the best performing

model/features subset pair (5.5.4);

5.6 Assessment of the best performing model/features subset pair: Presents and

discusses the results of the assessment of the best performing model/feature subset

pair, focusing on performance assessment across articulation manner classes (5.6.1),
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K-FCV (5.6.2), exemplification of VD segmentation (5.6.3), and compliance with the

MAPT (5.6.4);

6 Conclusions: This chapter provides the conclusions drawn from the research, as follows:

6.1 Summary of key findings: Presents a summary of the key findings derived from

Chapters Methodology and Results;

6.2 Research question and hypotheses: Answers the research question, by address-

ing and validating the hypotheses H1 (6.2.1), H2 (6.2.2) and H3 (6.2.3);

6.3 Contributions, innovations and implications: States the main contributions (6.3.1),

innovations (6.3.2) and implications (6.3.3) of the research work;

6.4 Limitations and future work: Identifies the limitations of the research and pro-

poses future work to overcome them, focusing on time and computational resources

(6.4.1), data (6.4.2), feature engineering (6.4.3), selection and design of DL-based

model architecures (6.4.4) and assessment of model/features subset pairs (6.4.5).

1.5 Chapter summary

In the Chapter "Introduction" (1), an overview and motivation (1.1) for the research were pre-

sented. The objectives (1.2) of the study were outlined, followed by the research question and

hypotheses (1.3). The Chapter concludes with a brief description of the document structure (1.4).

The next Chapter "Background" (2), will provide the necessary background information for

the research. It will cover various topics, including the HSPS (2.1), the HAS (2.2), speech signal

processing techniques (2.3), DL (2.4), feature engineering (2.5), and VD in whispered-to-normal

speech conversion systems (2.6).



Chapter 2

Background

This Chapter "Background" provides foundational knowledge on various topics related to the re-

search. It covers the HSPS (2.1), the HAS (2.2), speech signal analysis and modelling techniques

(2.3), and an introduction to DL (2.4). Additionally, it focus on the VD in whispered-to-normal

speech conversion systems (2.6).

2.1 Human speech production system

The HSPS is responsible for translating thoughts into speech. This process encompasses the fol-

lowing phases: selection of words, organization of grammatical forms, and articulation of the

resulting sounds using the vocal apparatus. The last phase will be addressed in this Section, by

covering the speech production mechanism (2.1.1), EP phonetics (2.1.2) and the WS and NS

modes (2.1.3).

2.1.1 Speech production mechanism

The main human body organs that enable the human speech production mechanism are the lungs,

the larynx, the pharynx, the nose, and the mouth. The energy source of this mechanism is the

force responsible for the expulsion of air from the lungs. This flux of air is modulated in various

ways, originating an acoustic wave that is propagated through a set of several cavities — the vocal

tract — and radiated by the mouth and nostrils. The vocal tract is an acoustic tube limited by the

larynx and the lips. In the larynx, there are two tissue folds — the vocal folds. The transversal

section area of this tube is not uniform, varying with the movement of the articulators — lips,

jaws, tongue, and velum. The velum is responsible for the coupling of the vocal tract with the

nasal tract — another acoustic tube — that is limited by the velum and the nostrils.

The main modes of speech sound production are [34]:

• Phonation: Consists in the vibratory action of the vocal folds, causing periodic interruption

of the air flux from trachea to pharynx;

• Turbulence: Caused by vocal tract constriction, generating a turbulent air flux.

7
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2.1.2 European Portuguese phonetics

This Subsection provides an overview of EP phonetics, encompassing voicing (2.1.2.1), vowels

(2.1.2.2) and consonants (2.1.2.3).

2.1.2.1 Voicing

The produced speech sound is considered V if phonation occurs. Otherwise, it is considered UV.

2.1.2.2 Vowels

Vowels are produced when phonation occurs without turbulence. Thus, they are always V sounds.

There are two types of vowel sounds:

• Monophthongs: Vowel sounds pronounced with a single, unchanging articulation of the

vocal tract. In other words, the tongue and lips remain fixed in one position while the vowel

sound is being produced. Table 2.1 presents all the 14 EP vowel monophtongs (9 oral and 5

nasalized);

• Diphthongs: Vowel sounds which involve a gradual movement of the tongue and/or lips

from one position to another within the same syllable. Table 2.2 presents all the 14 EP

vowel monophtongs (10 oral and 4 nasalized).

Figure 2.1 presents the EP vowel space, describing vowel production in terms of two dimen-

sions:

• Vowel height: Represented in the vertical axis, refers to the position of the tongue in the

vertical plane of the mouth. It is determined by how much space there is between the tongue

and the roof of the mouth. Divides the vowel space into four main vowel height categories:

close, close-mid, open-mid, and open;

• Vowel backness: Represented in the horizontal axis, refers to the position of the tongue in

the horizontal plane of the mouth. It is determined by how close the tongue is to the back

of the mouth. Divides the vowel space into three main vowel backness categories: front,

central, and back.

2.1.2.3 Consonants

Phonation may occur concurrently with turbulence. Consonants are produced whenever turbu-

lence occurs. The consonant sounds of EP may be classified based on their articulation manner,

accordingly to the International Phonetic Association (IPA) alphabet [1]:

• Plosives: Plosives, also known as stops, are consonant sounds that are produced by com-

pletely blocking the flow of air through the vocal tract and then releasing it suddenly. Ex-

amples of plosive sounds in the IPA alphabet include [p], [t], and [k];
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Table 2.1: European Portuguese vowel monophtongs [1].

Oral vowel monophtongs Nasalized vowel monophtongs

i vi vi ‘saw’ (1 sg) ı̃ vı̃ vim ‘came’ (1 sg)

e ve vê ‘see’ (3 sg) ẽ "ẽtRu entro ‘enter’ (1 sg)

E sE sé ‘cathedral’ - - - -

a va vá ‘go’ (3 sg) - - - -

O sO só ‘alone’ - - - -

o so sou ‘I am’ õ sõ som ‘sound’

u "mudu mudo ‘mute’ (m) ũ "mũdu mundo ‘world’

5 p5"gaR pagar ‘to pay’ 5̃ "5̃tRu antro ‘den’

W pW"faR pegar ‘to grip’ - - - -

Table 2.2: European Portuguese vowel diphthongs [1].

Oral vowel diphtongs Nazalized vowel diphtongs

Ei 5"nEiS anéis ‘rings’ (n) - - - -

ai sai sai ‘go out’ (3 sg) 5̃i s5̃i cem ‘hundred’

5i s5i sei ‘know’ (1 sg) - - - -

Oi mOi mói ‘grind’ (3 sg) - - - -

oi "moit5 moita ‘thicket’ õi 5"nõiS anões ‘dwarves’ (m)

ui 5"nuiS anuis ‘agree’ (2 sg) ũi "mũit5 muita ‘much, many’ (f)

iu viu viu ‘saw’ (3 sg) - - - -

eu meu meu ‘mine’ (poss m) - - - -

Eu vEu véu ‘veil’ - - - -

au mau mau ‘bad’ (m sg) 5̃u m5̃u mão ‘hand’ (n)

• Nasals: Nasal consonant sounds are produced by allowing air to flow through the nasal

cavity while speaking. Examples of nasal sounds in the IPA alphabet include [m], [n], and

[N];

• Trills: Consonant sounds that are produced by rapid vibration of the tongue or other speech

organs. These sounds are characterized by a trilled or vibrating sound. Examples of trill

consonants in the IPA alphabet include [r] and [ö];

• Taps or Flaps: Consonant sounds that are produced by a brief, single-contact closure of the

vocal tract. These sounds are characterized by a brief, percussive sound. Examples of tap

or flap consonants in the IPA alphabet include [R];

• Fricatives: Consonant sounds that are produced by narrowing the vocal tract and forcing air

through a small opening, which creates a hissing or buzzing sound. Examples of fricative
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Figure 2.1: European Portuguese vowel space [1].

sounds in the IPA alphabet include [s], [f], and [S];

• Lateral Fricatives: Consonant sounds that are produced by narrowing the vocal tract and

forcing air through a small opening while allowing air to flow over the sides of the tongue.

These sounds are characterized by a lateral airflow and a fricative quality. Examples of

lateral fricative sounds in the IPA alphabet include [ì] and [Ð];

• Lateral Approximants: Lateral approximant consonant sounds are produced by allowing

air to flow over the sides of the tongue while speaking. These sounds are characterized by a

lateral airflow through the mouth. Examples in the IPA alphabet include [l].

Table 2.3 summarizes all the consonants of the EP according to the IPA, highlighting the pairs

of consonants that are articulated in the same way, differing only in voicing. An incorrect VD for

one of these consonants may affect the intelligibility and the linguistic content of the reconstructed

speech.

2.1.3 Whispered and normal speech modes

The NS mode is characterized by the presence of V phones in the signal. This voicing is caused

by the vibration of the vocals folds — a mechanism also known as phonation — that confers a

periodic component of voice excitation to speech. Thus, V speech segments can be detected by the

presence of a harmonic structure. In normal speech, the vowels are always V, and the consonants

may be partially or totally V. Figure 2.2 depicts the normalized waveform and spectrogram of the

EP word "pica" uttered in NS, where the aforementioned characteristics can be observed.

In contrast, WS does not involve phonation, being solely produced by a turbulent flow of air

that is expelled by the lungs and is forced through the supra-laryngeal structures, acting as an ex-

citation signal to the vocal tract. This lack of harmonicity confers it a noisy nature. The vocal tract

articulation is still able to produce formant frequencies necessary to distinguish vowels and the air
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Figure 2.2: Normalized waveform and spectrogram of the word "pica" uttered in Normal Speech.
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Speech.
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Table 2.3: European Portuguese consonants [1].

Articulation manner

Plosive Nasal Tap/Flap Fricative Lateral Approx.

Voiced b d g m n N R v z Z K l L

Unvoiced p t k - - - - f s S - - -

p "patu pato ‘duck’ (m) t "tatu tacto ‘tact’ k katu cacto ‘cactus’

b "batu bato ‘I strike’ d "datu dato ‘I date’ g "gatu gato ‘cat’ (m)

m "matu mato ‘I kill’ n "natu nato ‘innate’ (m) N "piN5 pinha ‘pine cone’

f "fatu fato ‘costume’ s "kasu caço ‘I hunt’ S "Satu chato ‘flat’ (m)

v "viN5 vinha ‘vine’ z "kazu caso ‘I marry’ Z "Zatu facto ‘jet’

R "piR5 pira ‘pyre’ K "Katu rato ‘mouse’ (m)

l "liN5 linha ’line’ L "piLa pilha ‘battery’

flux constrictions needed for producing consonants. Thus, WS is still able to generate the desired

linguistic content, but with weak vocal projection, reduced intelligibility and a loss of the individ-

ual V sound signature. Its Power Spectral Density (PSD) is flatter, with less pronounced formants,

which occur at slightly higher frequencies [35]. Figure 2.3 depicts the normalized waveform and

spectrogram of the EP word "pica" uttered in WS, where the aforementioned characteristics can

be observed.

2.2 Human auditory system

The HAS enables the perception of sound, by processing the acoustic information that reaches

the auricles. This processing comprises several phases, namely: capture, conditioning, mechano-

electrochemical transduction, neural/synaptic conduction, and interpretation [34].

In this Section, an analysis of the HAS was performed, underlining its peripheral region (2.2.1)

and psychoacoustics (2.2.2).

2.2.1 Peripheral Region

The peripheral region of the HAS allows the conversion from acoustic energy transported by the

oscillation of air particles to neural information. Then, this information is communicated to the

central regions of the HAS, located in the brain. This region of the HAS may be divided in three

main subregions: the outer ear (2.2.1.1), the middle ear (2.2.1.2), and the inner ear (2.2.1.3) [34].

2.2.1.1 Outer ear

The outer ear includes the auricle and the ear canal, responsible for the capture and conduction

of the acoustic waves until the tympanic membrane, that oscillates. The tympanic membrane
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separates the outer ear from the middle ear.

2.2.1.2 Middle ear

The tympanic membrane transmits the mechanical energy through three ossicles (malleus, incus,

and stapes), located in the middle ear, to another membrane — the oval window. The oval win-

dow is responsible for communicating the oscillations to an aqueous medium. The lever action

performed by the ossicles, and the area relation between the tympanic membrane and the oval

window allow the impedance matching between the external medium, composed by air, and the

internal aqueous medium. The middle ear is filled with air, in order to establish a point of equilib-

rium of the tympanum and the eustachian tube, which is connected to the exterior.

2.2.1.3 Inner ear

It is mainly composed by the cochlea and auditory nerves. The cochlea is a spiral-shaped bone

structure, with three parallel channels-vestibular duct, tympanic duct, and cochlear duct. Those

channels are filled with a liquid, and separated by elastic membranes. The vestibular duct starts

at the oval window, communicating with the tympanic duct at the other extremity of the spiral.

The tympanic duct ends in a flexible membrane oriented to the middle ear, the round window. The

inner ear is separated by the middle ear by the oval and round windows. Variations of pressure,

introduced inside the cochlea by the stapes, are compensated by an opposite displacement of the

round window.

The spectral analysis or decomposition of audio signals occurs in the cochlea, where the con-

version from mechanical energy to nervous impulses takes place. This conversion is performed by

thousands of hair cells, distributed along the basilar membrane. This flexible membrane separates

the tympanic duct from the cochlear duct. Its physical properties vary along its length: it is thinner

and more rigid in the extremity close to the oval window, and thicker and more flexible in the

opposite extremity. Therefore, it has mechanical resonance characteristics along its length, which

allows it to act as a spectrum analyzer.

In general terms, the first phase of the HAS’s sound analysis consists on the following princi-

ple: the pressure variations caused by an audio signal and communicated to the cochlea through

the oval window, escape to the round window, choosing the point of the basilar membrane with

lower impedance. Because of the variations of the basilar membrane’s mechanical characteristics,

the point of lower impedance depends on the frequency of the sound wave. This spatial arrange-

ment of sound reception is referred to as tonotopic tuning (or tonotopy).

2.2.2 Psychoacoustics

Psychoacoustics, a scientific discipline focused on the perceptual analysis of acoustic signals,

aims to establish quantitative models that bridge the gap between objective physical properties of

sounds and the human auditory experience [35]. The perception of sound by individuals can be

highly subjective and does not directly correspond to objectively measurable characteristics. This
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motivated the conception of perceptual characteristics of sound — loudness, pitch, and timbre —,

which correspond to their objective and measurable counterparts — sound pressure, frequency,

and spectral structure. Fletcher-Munson equal loudness curves (2.2.2.1) and perceptual scales

(2.2.2.2) are two key topics in the realm of psychoacoustics.

2.2.2.1 Fletcher-Munson equal loudness curves

The loudness is commonly characterized by the Fletcher-Munson equal loudness curves, which

represent the variations in perceptual loudness with sound pressure level and frequency.

Figure 2.4: Fletcher-Munson equal loudness curves [2].

2.2.2.2 Perceptual scales

The non-linearity observed on the perception of frequency led to the development of perceptual

pitch scales, which attempt to map objective frequency values to their perceptual counterpart. The

more commonly used perceptual scales of pitch are:

• Mel Scale: The mel scale is a perceptual scale of pitches judged by listeners to be equal in

distance. The reference point between this scale and the objective frequency scale is defined

by assigning a perceptual pitch of 1000 mel to a 1000 Hz tone, 40 dB above the listener’s

threshold. Above 500 Hz, increasingly large intervals of objective frequency are judged by

the listeners to produce equal pitch increments [36]. Expression 2.1 can be used to convert

objective frequency into Mel values:

Mel = 2595log10

(
1+

f
700

)
(2.1)

• Bark Scale: The Bark scale is based on the critical bands of the HAS, which correspond to

ranges of frequency that activate a single area of the basilar membrane. They are measured

perceptually by the smallest frequency difference for which two sine tones are heard as dis-

tinct or as a single sine tone. Expression 2.2 can be used to approximately convert objective
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frequency into Bark values [37]:

Bark = 6sinh−1
(

f
600

)
(2.2)

2.3 Speech signal analysis and modeling

This Section explores the analysis and modeling of speech signals, encompassing the source-filter

model (2.3.1) and LPC (2.3.2).

2.3.1 Source-filter model

The source-filter model is a widely-accepted model that describes the HSPS. It was proposed

by Gunnar Fant in his book "Acoustic Theory of Speech Production" [38]. It suggests that the

production of speech sounds can be modeled by two independent components: the source and the

filter.

According to the source-filter model, the human vocal tract acts as a filter that shapes the sound

produced by the vocal folds, or the source. The vocal folds generate a basic source signal during

phonation, the glottal pulse. The glottal pulse is modified by the resonance frequencies of the vocal

tract, which act as a filter that shapes the sound. Those resonance frequencies are determined by

the size and shape of the vocal tract, which can be modified by changing the position of the speech

articulators. In particular, the vocal tract changes the spectral envelope of the glottal pulses. Local

peaks in the spectral envelope correspond to formant frequencies, which are useful for phone

classification.

Overall, the source-filter model provides a valuable framework for understanding the complex

interactions between the vocal folds and the vocal tract in the production of speech. It clarifies

how different sounds can be produced using different combinations of energy sources and filters.

2.3.2 Linear Predictive Coding

LPC analysis is based on the idea that a speech sample can be approximated by a linear com-

bination of previous samples [39, 34]. The idea is illustrated by Equation (2.3), in which r(i)

represents the estimate of x(i), and n the order of the model, which determines the number of

previous samples used in the estimation. The prediction coefficients, y1 . . .yn, are appropriate for

estimating every sample if Equation (2.3) is true for all values of i.

x(i)≈ r(i) =
n

∑
j=1

y jx(i− j) (2.3)

It is possible to compute a set of prediction coefficients (linear combination weights), by min-

imizing the sum of the squared difference between the current samples and the predicted samples

(2.4), during a finite time interval.
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sumi[x(i)− r(i)]2 (2.4)

With the computed coefficients, it is possible to predict future samples of the signal. Therefore,

LPC can be used in several applications, such as signal interpolation, signal restoration and noise

reduction. By leveraging the relatively low number of coefficients that characterize the original

signal, LPC can be applied for signal compression. To achieve compression, only the coefficients

and the first n samples are stored or transmitted, and the remaining signal is approximated from

these values by the recursive application of Equation (2.3). Since LPC coefficients are compact

representations of the original signal, they can also be exploited to establish comparisons between

different signals [40].

2.4 Deep Learning

DL models have emerged as powerful tools for representation learning in speech processing, har-

nessing their potential to decipher intricate patterns hidden within large volumes of data. These

models are designed with an inherent ability to learn complex representations from data, diminish-

ing the reliance on human-crafted features. This key advantage has fueled a significant shift within

the speech processing community, who are increasingly adopting DL techniques for a variety of

applications.

In order to explore the domain of DL, several aspects were examined, namely DL-based mod-

els (2.4.1), learning frameworks (2.4.2), and evaluation techniques (2.4.3). Additionally, widely

adopted performance (2.4.4) and computational metrics (2.4.5) were described.

2.4.1 Deep Learning-based models

In the field of speech processing, various DL models have emerged as popular choices for repre-

sentation learning [3]. These models leverage the power of DL techniques to extract meaningful

representations from speech data. State-of-the-art DL models are briefly described next, namely

CNN (2.4.1.1), Recurrent Neural Network (RNN) (2.4.1.2), and TCN (2.4.1.3).

2.4.1.1 Convolutional Neural Network

CNNs are a class of DL models known for their proficiency in dealing with image data. This

proficiency is largely due to the unique architecture of CNNs, which includes specialized layers

like convolutional layers and pooling layers. Convolutional layers work by sliding learnable filters

over the input data to create feature maps, while pooling layers reduce the spatial dimensions

of the data, resulting in a model that is not only computationally efficient, but also resilient to

small shifts or distortions in the input. Stacking these layers results in a network capable of

abstracting increasingly complex features from input data, which is critical for tasks such as image

classification or object detection. Variants of CNNs include:
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• Separable CNN: Separable CNNs are a modification to standard CNNs that aim to de-

crease computational demand while preserving performance. The primary change is in the

convolutional layers, where the convolution operation is divided into depthwise and point-

wise steps. By separating the convolution into these two parts, Separable CNNs are able

to drastically reduce the number of mathematical operations required, making these models

faster and lighter. This makes them especially useful in resource-constrained environments

or for processing large-scale image or video data;

• ResNet: Residual Networks (ResNets) are a type of CNN that introduced the novel idea

of skip connections. In ResNets, input from early layers can skip over some intermediate

layers and then be added to the output of later layers. This forms a so-called residual block,

which can help mitigate the vanishing gradient problem that often occurs when training very

deep networks. By enabling the training of extremely deep networks, ResNets can achieve

remarkable performance in tasks like image classification and object detection.

2.4.1.2 Recurrent Neural Network

Recurrent Neural Networks (RNNs) are a type of neural network designed for processing sequen-

tial data. They possess an internal loop that allows information to be passed from one step in

the sequence to the next, providing the network with a form of memory. This unique feature al-

lows RNNs to process sequences of varying lengths and to capture temporal dependencies in data,

which is crucial for tasks like natural language processing or time-series prediction. Variants of

RNNs include:

• LSTM: LSTMs are a type of RNN designed to address the issue of long-term dependen-

cies in sequence data. They introduce a memory cell and a system of gates to control the

flow of information in and out of this cell. This mechanism enables LSTMs to remember or

forget information over long sequences, effectively dealing with the problem of vanishing

gradients that affect standard RNNs. LSTMs are therefore ideally suited for tasks involv-

ing sequential data with long-range dependencies, such as machine translation or speech

recognition;

• GRU: GRUs are another variation of RNNs. They also utilize gating mechanisms to control

the flow of information, but with a simpler structure that involves fewer parameters. Despite

this simplicity, GRUs often achieve performance on par with LSTMs, and are used in similar

domains involving sequence data.

2.4.1.3 Temporal Convolutional Network

TCNs are a type of neural network that extends the applicability of CNNs to sequential data.

They preserve the strengths of CNNs, like the ability to handle translation invariance, while also

ensuring that the temporal order of data is respected. This is achieved by using dilated causal con-

volutions, a technique that allows the network to have a wider receptive field without an increase
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in computational complexity. This makes TCNs particularly powerful for tasks that involve long

sequences and long-term dependencies.

2.4.1.4 Transformer

The Transformer model has been a game changer in the field of Natural Language Processing

(NLP). It introduces a self-attention mechanism that allows it to weigh the importance of different

parts of the input data relative to each other, enabling the model to better understand context and

nuances in language. Additionally, unlike RNNs and CNNs, Transformers process all parts of the

input data in parallel, which leads to significant improvements in computational efficiency. As a

result, Transformers have become the model of choice for many large-scale NLP tasks that require

the capture of complex patterns and long-range dependencies, such as machine translation or text

summarization.

2.4.2 Learning frameworks

This Subsection explores various learning frameworks that can be employed to train DL-based

models on speech data, namely supervised learning (2.4.2.1), unsupervised learning (2.4.2.2),

semi-supervised learning (2.4.2.3), transfer learning (2.4.2.4), and reinforcement learning (2.4.2.5).

Table 2.4 provides an overview of the key features and applications of the explored learning

frameworks.

2.4.2.1 Supervised learning

In supervised learning, feature representations are learned from datasets by considering label in-

formation [3].

2.4.2.2 Unsupervised learning

Unsupervised learning enables the analysis of unlabeled input data, aiming to learn the underlying

structure or distribution of data [3].

2.4.2.3 Semi-supervised learning

Semi-supervised learning resorts to large amounts of unlabeled data, together with labelled data.

Often, the goal of this technique is surpassing the lack of sufficient labelled training data [3].

2.4.2.4 Transfer learning

Transfer learning is the usage of any knowledge resources (i.e., data, models, and labels) to im-

prove model learning and generalization for the target task [3].
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Table 2.4: Comparison of different learning frameworks [3].

Learning framework Key features Applications

Supervised Learning Learn explicitly;
Data with labels;
Direct feedback is given;
Predict outcome/future;
No exploration.

Classification;
Regression.

Unsupervised Learning Learn patterns and structure;
Data without labels;
No direct feedback;
No prediction;
No exploration.

Clustering;
Association.

Semi-Supervised Learning Blend on both supervised and unsupervised;
Data with and without labels;
Direct feedback is given;
Predict outcome/future;
No exploration.

Classification;
Clustering.

Transfer Learning Transfer knowledge from one supervised
task to other;
Labelled data for different task;
Direct feedback is given;
Predict outcome/future;
No exploration.

Classification;
Regression.

Reinforcement Learning Reward-based learning;
Policy making with feedback;
Predict outcome/future;
Adaptable to changes through exploration.

Classification;
Control.
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2.4.2.5 Reinforcement learning

Reinforcement learning follows the principle of behavioral psychology: an agent learns to take ac-

tions in an environment and tries to maximize the accumulated reward over its lifetime. The agent

and its environment are often modelled as a state, that contains all related information about the

current situation. The agent can perform actions. The goal of reinforcement learning is obtaining

a mapping between states and actions, called policy. The policy chooses actions in given states

that maximize the cumulative expected reward [3].

2.4.3 Evaluation techniques

Evaluation techniques are fundamental for assessing the effectiveness and efficiency of ML mod-

els. They provide an empirical measure of how the model is likely to perform on unseen data,

highlighting its real-world applicability. These techniques involve partitioning the available data

into distinct sets for training, validation, and testing, employing different strategies to ensure a ro-

bust evaluation. Each technique offers a unique approach to data splitting and utilization, aiming

to provide a comprehensive view of model performance and computational efficiency. Prevalent

evaluation techniques in ML include TTS (2.4.3.1) and K-FCV (2.4.3.2).

2.4.3.1 Train-Test Split

The TTS is a fundamental technique in statistical learning to evaluate the performance of predictive

models. The detailed procedure is as follows:

1. Data splitting: Divide the entire dataset into two mutually exclusive sets. These are typi-

cally named the training set and the testing set. A common ratio is 70 : 30 or 80 : 20, where

the larger portion is used for training and the smaller portion for testing;

2. Model training: Using the training set, the predictive model learns the relationship between

the feature variables (also called predictors, independent variables, inputs) and the target

variable (also called outcome, dependent variable, output);

3. Model testing: Apply the trained model to the test set. The model uses the feature variables

in the test set to predict corresponding target variables;

4. Performance evaluation: Compare the predicted target variables to the actual target vari-

ables in the test set. The discrepancy between these values gives a measure of model per-

formance. Several performance metrics can be obtained during this step.

2.4.3.2 K-Fold Cross Validation

K-FCV is a robust and widely-used evaluation technique that provides more comprehensive per-

formance metrics, allowing to assess the model’s generalizability. Here are the steps involved in

this process:
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1. Data partitioning: Split the entire dataset into K equally sized subsets or folds. The choice

of K is usually 5 or 10, but it can be any integer value less than the total number of data

points;

2. Model training and validation: Perform K separate learning experiments. In each experi-

ment, choose one fold as the validation set, and the remaining K−1 folds together form the

training set. Train the model on the training set and validate the model on the validation set;

3. Performance evaluation: After K experiments, K different performance measures are ob-

tained. The final performance measure is the average of these measures. This gives a more

comprehensive view of the model’s performance across different subsets of the data, allow-

ing to better assess its generalizability.

2.4.4 Performance metrics

Performance metrics serve as fundamental instruments for assessing and comparing the effective-

ness of ML models. Each metric imparts crucial information about varied aspects of a model’s pre-

dictive capability. Key performance metrics in ML include Accuracy (2.4.4.1), Precision (2.4.4.2),

Recall (2.4.4.3), Specificity (2.4.4.4), F1 Score (2.4.4.5) and Area Under the Receiver Operating

Characteristic Curve (AUC-ROC) (2.4.4.6).

2.4.4.1 Accuracy

Accuracy, as given by Equation (2.5), is a measure of the overall correct predictions out of all

predictions made by the model.

Accuracy =
True Positives+True Negatives

True Positives+True Negatives+False Positives+False Negatives
(2.5)

2.4.4.2 Precision

Precision, shown in Equation (2.6), quantifies the proportion of true positive predictions out of all

positive predictions. It shows how precise the model is in predicting positive instances.

Precision =
True Positives

True Positives+False Positives
(2.6)

2.4.4.3 Recall

Recall, also known as sensitivity, defined in Equation (2.7), is the proportion of actual positive

instances that were correctly identified.

Recall =
True Positives

True Positives+False Negatives
(2.7)
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2.4.4.4 Specificity

Specificity, as described by Equation (2.8), is the proportion of actual negative instances that were

correctly identified.

Speci f icity =
True Negatives

True Negatives+False Positives
(2.8)

2.4.4.5 F1 Score

The F1 Score, shown in Equation (2.9), is the harmonic mean of Precision and Recall, providing

a balance between these two metrics.

F1 Score = 2 · Precision ·Recall
Precision+Recall

(2.9)

2.4.4.6 Area Under the Receiver Operating Characteristic Curve

AUC-ROC provides an aggregate measure of model performance across all possible classification

thresholds. This measure does not have a simple formula like the other metrics, but is calculated by

plotting the Recall (True Positive Rate) against the False Positive Rate (1 - Specificity) at various

threshold settings, then numerically integrating to find the area under the curve.

2.4.5 Computational metrics

Computational metrics provide valuable insights into the practical aspects of implementing and

operating an ML model. Understanding these metrics is crucial to ensure operational efficiency

and compatibility with the available computational resources and performance requirements. Sev-

eral computational metrics were explored, namely the Number of trainable parameters (2.4.5.1),

Number of training epochs (2.4.5.2), Training time (2.4.5.3), Average training time per epoch

(2.4.5.4), Best epoch (2.4.5.5), and Inference time (2.4.5.6).

2.4.5.1 Number of trainable parameters

The number of trainable parameters in a model represents the amount of learning capacity the

model has. Having more parameters makes the model more flexible in fitting a wide range of

functions, but can also lead to overfitting if not properly regulated.

2.4.5.2 Number of training epochs

The number of training epochs represents the number of times the learning algorithm will work

through the entire training dataset. One epoch means that each sample in the training dataset has

had an opportunity to update the internal model parameters.
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2.4.5.3 Training time

Training time is the total amount of time that the model spends in the training phase. This is

dependent on numerous factors including the size of the dataset, the complexity of the model, and

the hardware capabilities.

2.4.5.4 Average training time per epoch

Average training time per epoch can be calculated as the total training time divided by the number

of epochs, as shown in Equation (2.10):

Average Training Time Per E poch =
Total Training Time
Number o f E pochs

(2.10)

2.4.5.5 Best epoch

The best epoch is the epoch number at which the model performed the best on the validation set

during training. This is usually where the model achieves the best balance between learning the

training data and generalizing to unseen data.

2.4.5.6 Inference time

Inference time is the time that the model takes to make a decision after it has been trained. This is

a critical measure in many applications where decisions need to be made in real time.

2.5 Feature engineering

Feature engineering is a key process in ML that involves creating new input variables or modifying

existing ones to enhance the performance of the models. It encompasses the extraction, transfor-

mation, and selection of features, and is instrumental in improving a model’s effectiveness. In this

context, a feature refers to an individual, measurable property or characteristic of the phenomenon

being observed. Feature extraction (2.5.1) and feature selection (2.5.2) are two fundamentals as-

pects of the feature engineering process, which will be addressed in this Subsection.

2.5.1 Feature extraction

Feature extraction is a crucial step during the process of feature engineering. This technique

involves extracting significant characteristics from the raw audio signals, enabling a deeper under-

standing and analysis of the data. A comprehensive set of commonly utilized feature extraction

techniques implemented in Librosa was explored [41]. Each technique focuses on capturing spe-

cific aspects of the audio signals, providing a diverse range of information for further analysis.
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2.5.1.1 Zero Crossing Rate

Description: Zero Crossing Rate (ZCR) is a feature used in audio signal processing to quantify

the rate at which a signal changes its sign. It provides information about the temporal characteris-

tics and the amount of waveform fluctuations in the signal [42].

Calculation: The ZCR is calculated by counting the number of times the signal crosses the zero

axis within a given time frame or signal segment. Mathematically, it can be expressed as:

ZCR =
1
N

N

∑
n=1

|sgn(x[n])− sgn(x[n−1])| (2.11)

where:

• x[n]: input signal;

• N: total number of samples.

2.5.1.2 Root-Mean-Square Energy

Description: Root-Mean-Square (RMS) Energy is a feature used in audio signal processing to

quantify the overall energy or amplitude of a signal. It provides information about the signal’s

power distribution and is commonly used to measure loudness or intensity variations over time.

The RMS Energy is a useful feature for various speech and audio analysis tasks, such as speech

recognition, speaker identification, and audio classification [42].

Calculation: The RMS Energy is computed by taking the square root of the average of the

squared amplitudes of the signal samples over a given time frame or signal segment. Mathemati-

cally, it can be expressed as:

RMS =

√
1
N

N−1

∑
n=0

|x[n]|2 (2.12)

where:

• x[n]: input signal;

• N: total number of samples.

2.5.1.3 Short-time Fourier Transform

Description: The Short-Time Fourier Transform (STFT) is a mathematical technique used to

determine the sinusoidal frequency and phase content of local sections of a signal as it changes

over time. It is a fundamental tool in the field of signal processing [42, 41, 43].
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Calculation: The STFT is calculated by segmenting the signal into smaller, overlapping win-

dows and then applying the Fourier Transform to each of these windows. This process can be

formally represented as:

STFT{x[n]}(m,ω) =
∞

∑
n=−∞

x[n]w[n−m]e− jωn (2.13)

where:

• x[n]: input signal;

• w[n−m]: window function centered around m;

• ω: frequency variable.

2.5.1.4 Mel Spectrogram

Description: A Mel Spectrogram is a spectrogram where the frequencies are converted to the

Mel scale. It is a common way to represent a speech signal in the domain of speech process-

ing. The Mel scale approximates the human ear’s response to different frequencies, making Mel

spectrograms more perceptually meaningful [42, 41, 36, 44].

Calculation: The Mel spectrogram is computed in several steps. First, the STFT is computed to

obtain the spectrogram of the signal x. Then, the PSD of the spectrogram is calculated. Next, the

Mel filter bank, which is a set of triangular filters designed to mimic the HAS, is applied to the

PSD spectrogram. The logarithm of the energy in each Mel filter is then taken. This process can

be summarized as:

Mel Spectrogram = log(Mel Filter Bank(Power Spectrum(x))) (2.14)

2.5.1.5 Short-Time Fourier Transform Chromagram

Description: The STFT Chromagram is a representation that captures the evolving tonal char-

acteristics of an audio signal over time. It provides a concise summary of the harmonic content

by quantifying the energy distribution across pitch classes. By examining the relative presence of

each pitch class, the STFT Chromagram offers valuable insights into the tonal composition of the

signal. [42, 41, 43].

Calculation: The STFT Chromagram is computed by first obtaining the STFT of the signal x.

Then, the magnitudes of the Fourier coefficients are mapped to their respective pitch classes in the

chromatic scale (12 equally tempered pitches per octave in Western music), usually C, C#, D, D#,

E, F, F#, G, G#, A, A#, B. This mapping is achieved by considering the frequency of each Fourier

coefficient and attributing it to the nearest pitch class, as follows:
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STFT Chromagrami = ∑
j
|STFT(x) j| for all j such that f j maps to pitch class i (2.15)

where:

• STFT Chromagrami: energy of the i-th pitch class;

• STFT(x) j: j-th Fourier coefficient;

• f j: frequency of the j-th Fourier coefficient.

2.5.1.6 Constant-Q Transform Chromagram

Description: A Constant-Q Transform (CQT) Chromagram is a compact representation of an

audio signal that illustrates the evolution of energy for the 12 pitch classes of the chromatic scale

over time. Unlike the STFT Chromagram, it employs the CQT instead of the STFT. The CQT

utilizes a logarithmically spaced frequency axis, which aligns more closely with the human per-

ception of pitch. This representation provides valuable insights into the frequency content and

pitch characteristics of the audio signal [42, 41, 45].

Calculation: The CQT Chromagram is computed by first applying the CQT to the signal x.The

magnitudes of the CQT coefficients are then mapped to their respective pitch classes in the chro-

matic scale, much like the STFT Chromagram.

CQT Chromagrami = ∑
j
|CQT(x) j| for all j such that f j maps to pitch class i (2.16)

where:

• CQT Chromagrami: energy of the i-th pitch class;

• CQT(x) j: j-th CQT coefficient;

• f j: frequency of the j-th CQT coefficient.

2.5.1.7 Chroma Energy Normalized Statistics

Description: Chroma Energy Normalized Statistics (CENS) is a feature representation tech-

nique used in music information retrieval. Derived from the Chromagram, it provides a robust

summary of the 12 pitch classes’ energy over time. By applying normalization and statistical

measures, CENS minimizes the impact of dynamic variations. [42].
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Calculation: CENS features are computed through a series of transformations applied to a Chro-

magram of an audio signal. First, the Chromagram is computed (usually using either the STFT or

the CQT). Next, a temporal smoothing operation is performed, typically by computing a moving

average over the chroma vectors. Then, the chroma vectors are normalized to have an L1-norm of

1. Finally, the normalized chroma vectors are downsampled, and each bin of the resulting vectors

is quantized into a small number of levels. The following Equation (2.17) summarizes the process:

CENS = Quantization(Downsampling(L1 Normalization(Smoothing(Chromagram)))) (2.17)

2.5.1.8 Spectral Centroid

Description: The Spectral Centroid is a measure that characterizes the center of energy distri-

bution across the frequency range in a signal [42, 41, 46].

Calculation: The Spectral Centroid is calculated by weighting each frequency bin in the spec-

trum by its magnitude or power and computing the weighted average of these frequencies.

Spectral Centroid =
∑

N−1
k=0 fk · xk

∑
N−1
k=0 xk

(2.18)

where:

• N: total number of frequency bins in the spectrum;

• xk: spectrum value of the frequency bin at index k;

• fk: frequency value at index k, in Hz.

2.5.1.9 Spectral Bandwidth

Description: The Spectral Bandwidth is a measure used in signal processing to quantify the

spread or width of a spectrum. It provides information about the frequency range covered by the

signal’s power spectrum [42, 41, 46].

Calculation: The spectral bandwidth is typically computed as the second central moment of the

spectrum, weighted by the squared magnitude of the frequencies, as follows:

Spectral Bandwidth =

√
∑

N−1
k=0 ( fk −Spectral Centroid)2 · xk

∑
N−1
k=0 xk

(2.19)

where:

• N: total number of frequency bins in the spectrum;

• xk: spectrum value of the frequency bin at index k;
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• fk: frequency value at index k in Hz.

2.5.1.10 Spectral Contrast

Description: Spectral Contrast is a feature used in signal processing to measure the difference

in magnitudes between peaks and valleys in a frequency spectrum. [42, 41, 47].

Calculation: The calculation involves performing the Fast Fourier Transform (FFT) to obtain

spectral components, which are then divided into sub-bands based on octaves. Spectral Contrast is

calculated for each sub-band. The raw Spectral Contrast feature measures the intensity of spectral

peaks, valleys, and their differences in each sub-band. To ensure stability of the feature, the

strength of spectral peaks and valleys is estimated using the average value in a small neighborhood

around the maximum and minimum values, rather than the precise maximum and minimum values

themselves. This small neighborhood is described by a parameter called the neighborhood factor

α [47].

Peakk = log

(
1

αN

αN

∑
i=1

x′k,i

)
(2.20)

Valleyk = log

(
1

αN

αN

∑
i=1

x′k,N−i+1

)
(2.21)

SpectralContrastk = Peakk −Valleyk (2.22)

where:

• x′k,i: sorted FFT vector element at index i in the k-th sub-band;

• α: parameter controlling the fraction of sorted vector elements to consider for peak estima-

tion;

• N: total number of elements in the k-th sub-band;

• x′k,N−i+1: sorted FFT vector element at index N− i+1 (in reverse order) in the k-th sub-band;

• Peakk: peak strength in the k-th sub-band;

• Valleyk: valley strength in the k-th sub-band.

2.5.1.11 Spectral Flatness

Description: Spectral Flatness is a measure used in signal processing which indicates the bal-

ance between the energy in the harmonic and non-harmonic components of the spectrum [42].
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Calculation: The spectral flatness is calculated by comparing the geometric mean to the arith-

metic mean of the magnitudes of the frequency spectrum, as follows:

Spectral Flatness =
exp
( 1

N ∑
N−1
k=0 ln(xk)

)
1
N ∑

N−1
k=0 xk

(2.23)

where:

• N: total number of frequency bins in the magnitude spectrum;

• xk: magnitude value at frequency bin k.

2.5.1.12 Spectral Rolloff

Description: Spectral Rolloff is a feature used in signal processing to measure the frequency

below which a specified percentage of the total spectral energy is concentrated. It provides infor-

mation about the spectral shape of the signal [42, 41, 46].

Calculation: The Spectral Rolloff is typically defined as the frequency below which a certain

percentage of the total spectral energy lies, as follows:

Rolloff = fi such that
i

∑
k=0

|xk|= κ

N−1

∑
k=0

|xk| (2.24)

where:

• fi: frequency value at index i, in Hz;

• xk: spectral value at bin k;

• N: total number of frequency bins in the magnitude spectrum;

• κ: specified energy threshold, usually 95% or 85%.

2.5.1.13 Tonnetz Features

Description: Tonnetz features are a set of musical features used to analyze and represent har-

monic relationships between musical chords or notes. They are based on the concept of the Ton-

netz, a geometric representation of musical pitch classes [42, 41, 48].

Calculation: Tonnetz features are typically computed using the Tonnetz representation, which

arranges the pitch classes in a lattice-like structure. The relationships between pitch classes in the

Tonnetz can be quantified using various metrics, such as euclidean distances or angular distances.

Tonnetz features can be derived from these metrics, capturing different aspects of harmonic rela-

tionships. The Tonnetz features in Librosa are calculated as described in [48].



30 Background

2.5.1.14 Mel-frequency cepstral coefficients

Description: Mel-Frequency Cepstral Coefficients (MFCCs) are widely used features in speech

and audio signal processing. They are designed to capture the characteristics of the HAS by

modeling the perceptual properties of speech sounds. MFCCs provide a compact representation

of the spectral envelope of a signal, making them useful for various speech-related tasks [42, 41,

36, 44].

Calculation: The calculation of MFCCs involves several steps. First, the audio signal is divided

into short frames. Then, the power spectrum of each frame is computed using techniques like the

FFT. The resulting spectrum is then transformed using a Mel Filterbank, which groups frequencies

according to the Mel scale, mimicking the non-linear frequency resolution of human hearing.

Next, the logarithm of the filterbank energies is taken, and the Discrete Cosine Transform (DCT) is

applied to decorrelate the coefficients. Finally, a subset of the resulting DCT coefficients (MFCCs)

is retained, typically discarding the higher-frequency coefficients that contain less perceptually

relevant information. The calculation of MFCCs can be summarized by the Equation (2.25).

MFCCs = DCT(log(Mel Filter Bank(Power Spectrum(Frame)))) (2.25)

2.5.1.15 Mel-frequency Cepstral Coefficients Delta

Description: MFCCs Delta are a time-based derivative of MFCCs. They are commonly used

as supplementary features to capture the temporal dynamics or rate of change of the MFCCs.

MFCCs Delta features provide information about the speech signal’s spectral variations over time,

enhancing the discriminative power of MFCCs for speech-related tasks [42, 41, 36, 44].

Calculation: The calculation of MFCCs Delta involves estimating the rate of change of MFCCs

over time. This is typically done by applying a sliding window (e.g., 5 frames) to a sequence of

MFCCs frames. A weighted linear regression is then performed on the MFCCs frames within the

window to estimate the slope. The resulting slope values represent the MFCCs Delta coefficients.

2.5.1.16 Mel-frequency Cepstral Coefficients Delta Delta

Description: MFCCs Delta Delta are the second-order derivatives of MFCCs. They capture

the rate of change of temporal dynamics of the MFCCs over time, providing additional temporal

information beyond MFCCs and MFCCs Delta. MFCCs Delta Delta features are commonly used

in speech processing tasks where the dynamics of the spectral features play a significant role [42,

41, 36, 44].

Calculation: The calculation of MFCCs Delta Delta involves estimating the rate of change of

the MFCCs Delta coefficients over time. Similar to computing MFCCs Delta, a sliding window

is applied to the sequence of MFCCs Delta frames. A weighted linear regression is performed on
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the MFCCs Delta frames within the window to estimate the second-order slope, representing the

MFCCs Delta Delta coefficients.

2.5.1.17 Polynomial Features

Description: Polynomial Features are designed to capture non-linear interactions in the fre-

quency domain and can be useful for signal processing tasks [42, 41].

Calculation: The calculation of Polyfeatures involves computing the coefficients of fitting an

nth-order polynomial to the columns of a spectrogram, using the least-squares method. These

coefficients represent the non-linear relationships between frequencies and powers and can capture

complex spectral patterns.

2.5.2 Feature selection

Feature selection plays a vital role in data analysis and ML by identifying a subset of relevant

features from a larger set. The primary objective is to choose the most informative and discrim-

inative features that significantly contribute to improving model performance, reducing compu-

tational complexity, and enhancing interpretability. To achieve this goal, researchers employ a

variety of techniques and metrics in the field of feature selection, namely Pearson Correlation

Coefficient (PCC) (2.5.2.1), Spearman Correlation Coefficient (SCC) (2.5.2.2), Analysis of Vari-

ance (ANOVA) F-value (2.5.2.3), and Random Forest Importance (RFI) (2.5.2.4). These ap-

proaches enable the systematic evaluation of feature relevance and discriminatory power, facil-

itating the identification of a subset of features that exhibit superior predictive capabilities and

provide meaningful insights.

2.5.2.1 Pearson correlation coefficient

The PCC is a statistical measure used to quantify the strength and direction of the linear rela-

tionship between two variables. The PCC for 2 variables with raw scores X and Y is given by

Equation (2.26):

ρX ,Y =
cov(X ,Y )

σX σY
(2.26)

where:

• cov: covariance;

• σX : standard deviation of X ;

• σY : standard deviation of Y .

The resulting PCC rxy ranges from -1 to 1, where a value close to 1 indicates a strong positive

linear correlation, a value close to -1 indicates a strong negative linear correlation, and a value

close to 0 suggests no linear correlation between the feature and the target variable.
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2.5.2.2 Spearman correlation coefficient

The SCC measures the rank-based association between two variables, emphasizing their relative

positions in a dataset rather than their absolute values. This metric evaluates the strength and

direction of a monotonic relationship, where an increase in one variable’s values corresponds to

an increase (or decrease) in the other’s rankings consistently.

The SCC is essentially the PCC applied to rank variables. For 2 variables with raw scores

X ,Y , these scores are transformed into ranks, denoted as R(X) ,R(Y ). The SCC, represented as

rs, is then calculated as:

rs = ρR(X),R(Y ) =
cov(R(X),R(Y ))

σR(X)σR(Y )
(2.27)

where:

• ρR(X),R(Y ): PCC applied to the rank variables;

• cov(R(X),R(Y )): covariance of the rank variables;

• σR(X) and σR(Y ): standard deviations of the rank variables.

The SCC lies between -1 and 1, with 1 suggesting a perfect monotonic increasing relationship,

-1 indicating a perfect monotonic decreasing relationship, and values near 0 implying minimal

monotonic association.

2.5.2.3 ANOVA F-value

The ANOVA F-value is a statistical measure used to assess the significance of class differences

for a specific feature in the analysis of multiple classes. It quantifies the portion of variance

explained by different classes relative to the variance within those classes. The F-value serves as

a quantitative measure of the potential importance or relevance of a feature in differentiating the

classes.

For a given feature with values Xi j where i denotes the class and j denotes the individual

observation within the class, the ANOVA F-value, denoted as F , is computed as:

F =
Between-group variance
Within-group variance

=
1

k−1 ∑
k
i=1 ni(X̄i − X̄)2

1
N−k ∑

k
i=1 ∑

ni
j=1(Xi j − X̄i)2

(2.28)

where:

• X̄i: mean of class i;

• X̄ : overall mean;

• ni: number of observations in class i;

• N: total number of observations;
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• k: number of classes.

A higher F-value signifies a stronger relationship between the feature and the classes, indicat-

ing a greater potential for the feature to be informative in the context of the analysis.

2.5.2.4 Random Forest Importance

The impurity-based RFI technique is utilized to determine the importance of each feature in the

feature selection process.

To compute the feature importance scores:

• A Random Forest Classifier is trained on the available data to compute the feature impor-

tance scores;

• The Random Forest model constructs an ensemble of decision trees during training;

• Each decision tree is trained on a bootstrap sample of the data with a random subset of

features for each split;

• The decision trees evaluate the importance of each feature based on impurity measures, such

as Gini impurity or entropy, when making splits;

• The impurity-based importance scores reflect the impact of each feature on the overall im-

purity reduction in the decision trees;

• Importance scores for each feature are computed by averaging the impurity-based impor-

tance across all decision trees in the ensemble;

• Features that lead to a larger decrease in impurity are assigned higher importance scores.

By examining these feature importance scores, researchers can identify the features that have the

most significant impact on the overall predictive performance of the Random Forest model. This

information aids in the feature selection process by guiding the selection of the most informative

and influential features for subsequent analyses and modeling.

2.6 Voicing decision in whispered-to-normal speech conversion sys-
tems

The focus of this research is to develop a DL-based classifier subsystem that allows the segmen-

tation of WS based on two phone classes — CTV and NCTV. This process is commonly known

in the literature as VD. It ensures that the broader whispered-to-normal speech conversion system

only implants a replacement for the missing periodic signal component in regions of the WS that

would be V in NS. The UV regions of WS should remain untouched after the conversion. For the

purposes of this research:
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1. All the vowels fall in the phone class CTV, since they are always V in NS;

2. The consonants that are V and UV in NS fall in the phone classes CTV and NCTV, respec-

tively.

By enhancing VD in whispered-to-normal speech conversion systems, this research aims to

improve the overall quality and naturalness of the converted speech.

2.7 Chapter summary

This Chapter "Background" provided foundational knowledge on various topics related to the re-

search. It covered the HSPS (2.1), the HAS (2.2), speech signal analysis and modelling techniques

(2.3), an introduction to DL (2.4), and feature engineering (2.5). Additionally, it focused on the

VD in whispered-to-normal speech conversion systems (2.6).

In the next Chapter "Voicing decision approaches — a review" (3), a comprehensive review

of VD approaches will be presented, encompassing a discussion on the criteria and process for

paper selection (3.1) and a detailed review of the selected papers (3.2). The selected papers are

categorized into rule-based (3.2.1), ML-based (3.2.2), and hybrid (3.2.3) approaches.
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Voicing decision approaches — a review

This chapter presents the selection (3.1) and review (3.2) of state-of-the-art articles which propose

different approaches to VD.

3.1 Paper selection

A search on academic literature indexers was conducted, namely on Scopus and Google Scholar.

The key terms utilized during the search encompassed ”voice decision” or ”voicing decision”,

”candidate to voice” or ”candidate to voicing”, and ”unvoiced detection” or ”voiceless detec-

tion”. These terms were always combined with ”whispered speech” or ”whisper speech”. Sev-

eral papers that describe VD systems applied to whispered-to-normal speech conversion were

retrieved. The papers that present approaches for VD that are decoupled from the rest of the

whispered-to-normal conversion system were selected.

3.2 Review of the selected papers

The selected papers were categorized as rule-based (3.2.1), ML-based (3.2.2) or hybrid (3.2.3)

approaches. They are reviewed next. Table A.1 provides a concise summary of the retrieved

information, encompassing the title, reference, year, description, classifier, features, training data,

evaluation, advantages, and disadvantages of the scientific papers.

3.2.1 Rule-based approaches

Rule-based approaches for VD rely on predefined thresholds applied to speech signal features,

which can limit their ability to generalize. The effectiveness of these approaches heavily relies on

domain expertise and often leads to the development of low complexity systems. Papers which

describe rule-based approaches for the problem under study were reviewed.

35
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3.2.1.1 Rule-based classifier using spectral centroid thresholding

Summary: In the paper “Glottal flow synthesis for whisper-to-speech conversion” [49], it is

described a rule-based VD approach based on the spectrum center of gravity of the speech signal,

which corresponds to the spectral centroid of the power spectrum.

Broadband sounds and low energy regions are considered evidence for the presence of con-

sonants and vowels, respectively. The most prominent formants produced during V speech tend

to lie below 4 kHz. Therefore, whisper vocalic sounds are expected to exhibit a center of gravity

below this threshold. Conversely, UV consonants fill the high-frequency spectrum. Thus, it is

expected that they exhibit a center of gravity much higher than the mentioned threshold.

The authors defined the V/UV frequency as a threshold to distinguish between vowels and

consonants. The VD value is 0 when the center of gravity is below this threshold. An UV fre-

quency is also defined as the geometric mean of the values of spectrum center of gravity above the

V/UV frequency. The VD value is 1 when the spectrum center of gravity is above this threshold.

Variations of center of gravity from vocalic sound to consonants are sometimes slower, result-

ing in slow VD transitions. To surpass this problem, it is proposed that the mapping between the

threshold frequencies and the VD is done non-linearly, based on the sigmoid function.

Objective evaluation was performed, allowing to obtain the V, UV and total error values of

7.6%, 10.1% and 17.7%, respectively.

Critical analysis: The proposed approach exhibits low complexity, making it potentially suit-

able for real-time applications. However, its rule-based nature may compromise the overall ef-

fectiveness and generalization capability of the subsystem. In comparison to other methods for

VD, the error rates obtained with this approach are relatively high. Yet, this paper lacks a more

comprehensive quantitative evaluation of the VD subsystem, including performance and compu-

tational metrics such as Recall, Precision, and Inference Time, which are essential for a thorough

assessment of its effectiveness and efficiency.

3.2.1.2 Rule-based classifier using temporal and frequency-band energy variations thresh-
olding (1)

Summary: In the paper "Implantation of voicing on whispered speech using frequency-domain

parametric modelling of source and filter information" [50], a rule-based approach for obtaining

a VD is described.

The WS is segmented in silent, plosive, sibilant, fricative and V regions. Silence detection

is implemented by monitoring the dynamics of the absolute energy of the signal using short-time

analysis. Plosive detection is implemented by combining a criterion based on the phase provided

by short-time analysis and a criterion testing the gradient of the signal energy across time. Sibilants

are detected by evaluating the ratio of the signal energy above and below 2,800 Hz. Fricatives are

detected when the signal is not silence, is not classified as a sibilant, and when the ratio between
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the energy concentration in the range 2,000 Hz− 4,500 Hz, and the energy concentration above

4,500 Hz, does not exceed a predefined threshold.

Critical analysis: The proposed approach is distinguished by its commendable focus on achiev-

ing low computational complexity, resulting in efficient computational performance. In the exper-

imental evaluation, the approach is effectively demonstrated using a single word as an example.

However, to provide a more comprehensive understanding, it would be valuable to include a com-

parative analysis with other state-of-the-art approaches. Incorporating such a comparison would

enhance the study by shedding light on the relative strengths and weaknesses of the proposed

method within the broader landscape of related research. It would contribute to a more compre-

hensive evaluation of the approach and facilitate a deeper understanding of its potential impact.

3.2.1.3 Rule-based classifier using temporal and frequency-band energy variations thresh-
olding (2)

Summary: In the paper "Reconstruction of normal sounding speech for laryngectomy patients

through a modified Code-Excited Linear Prediction (CELP) codec" [51], an approach is described

for frame-level VD.

Fricatives are detected by comparing the power of whispered frames in bandwidths above and

below 3 kHz. Then, a set of band pass filters compares signal energy ratios in small bands of high

and low frequency to identify plosives and vowels. Energy concentration in 1− 3 kHz range, in

comparison with 6− 7.5 kHz, is considered a possible indicator of a vowel sound. Furthermore,

other information, such as detecting the energy burst after a small silence, is considered as evidence

of a plosive. Plosives are confirmed by comparing signal energy ratios in small bands of low

and high frequency, as well as considering the small silence (low energy) in previous segment to

confirm the decision.

Critical analysis: Despite the authors stating that the VD approach proposed in their study led to

an improvement in the speech reconstruction system in terms of Mean Opinion Score (MOS), they

have not presented any performance or computational metrics to enable a thorough evaluation of

the effectiveness and efficiency of the VD subsystem. Additionally, they have not compared their

approach with other state-of-the-art methods. It is worth noting that the proposed approach has

low complexity. However, because it is rule-based, there may be concerns about the robustness

and generalization capability of the classifier.

3.2.2 Machine learning-based approaches

ML approaches leverage ML models to perform the VD task. Their success often depends on

the quantity and quality of data available for training purposes. Usually, they result in higher

complexity systems, with higher generalization capabilities, relatively to rule-based approaches.

Papers which describe ML approaches for VD were reviewed.
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3.2.2.1 BLSTM classifier trained with MFCCs, velocity and acceleration features

Summary: In the paper "Whispered speech to neutral speech conversion using bidirectional

LSTMs” [29], a bidirectional LSTM model is employed to predict the VD.

The model is trained using the following features: MFCCs, delta and delta delta computed

from the smooth spectrum of WS. The excitation parameter is obtained from Speech Transforma-

tion and Representation using Adaptive Interpolation of Weighted Spectrum (STRAIGHT) analy-

sis of neutral speech. The training database consists in parallel data of WS and NS: 60 sentences

taken from the Multilingual, Open-source Corpus of Heterogeneous Acoustic data (MOCHA)

database (an extension of Texas Instruments/Massachusetts Institute of Technology Acoustic-

Phonetic Continuous Speech Corpus (TIMIT)) were spoken by 3 male and 3 female speakers

in both normal and whispered modes.

From an objective evaluation, it is concluded that the bidirectional LSTM based VD error

value is inferior to the obtained using the baseline Deep Neural Network (DNN) based scheme,

with a value of about 8%.

Critical analysis: This approach showcases a promisingly low error rate in objective evaluation,

indicating its potential effectiveness. However, the lack of other quantitative evaluation metrics

hinders a comprehensive assessment of the performance and computational efficiency of the VDs.

The utilization of a DNN model in this approach is advantageous due to its inherent generalization

capabilities. Nevertheless, it is crucial to recognize the inherent complexity associated with a

LSTM-based system and the necessity for abundant training data to achieve satisfactory results.

Furthermore, it is worth noting that the bidirectional nature of the network assumes access

to future audio data, which renders it unsuitable for online usage scenarios where such data is

unavailable. This limitation should be taken into consideration when considering the practical

applicability of the proposed approach.

3.2.2.2 DNN classifier, trained with MFCCs features computed from data driven colored
noises dictionary

Summary: In the paper “A robust voiced/unvoiced phoneme classification from whispered speech

using the "color" of whispered phonemes and deep neural network” [30], a method to perform

frame level VD on WS was described.

It was hypothesized that a WS spectrum could be represented as a linear combination of a set

of colored noise spectra. Then, a five-dimensional feature is computed by employing non-negative

matrix factorization with a fixed basis dictionary, constructed using spectra of five colored noises.

A DNN is used as a classifier, resorting to the proposed feature. For training purposes, an in-house

annotated WS database was used, consisting of about 450 phonetically balanced sentences red

from the MOCHA-TIMIT database.

Objective evaluation was performed. The proposed 5D feature is compared to two baseline

features: MFCCs and features computed from a data driven dictionary. The following values were
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obtained for V, UV and average accuracies: 73.63%, 78.51% and 76.06% using the MFCCs-DNN

scheme; 73.81%, 74.78% and 74.29% employing the Combined-DNN (5D and MFCCs) scheme.

The scheme using only the MFCCs allowed to obtain the best average VD accuracy.

Critical analysis: Upon integrating the proposed 5D feature with the MFCCs, the accuracy of

frame-level V/UV classification achieved a reasonable balance between the two classes, albeit rel-

atively lower compared to alternative methods. The absence of additional quantitative evaluation

metrics impedes a thorough evaluation of the performance and computational efficiency of the

VDs. It is crucial to recognize the inherent complexity associated with a DNN-based system and

the necessity for abundant training data to achieve satisfactory results.

3.2.2.3 SVM and GMM classifiers, trained with mel-cepstra static and dynamic features

Summary: In the paper “Whisper-to-speech conversion using restricted boltzmann machine ar-

rays” [31], two ML models are used to obtain a VD: a Gaussian Mixture Model (GMM) and a

Support Vector Machine (SVM).

Each model is trained using the mel-cepstra static and dynamic features of WS with V/UV

data from Dynamic Time Warping (DTW) aligned NS. Approximately 180,000 frames of parallel

WS and NS recordings from Whispered Texas Instruments/Massachusetts Institute of Technology

Acoustic-Phonetic Continuous Speech Corpus (wTIMIT) database were used for training pur-

poses.

The models were evaluated, using 10,000 frames of testing data from the same dataset. The

VD errors were obtained for different lengths of concatenated GMM and SVM input vectors. This

evaluation revealed that the optimal context size for the GMM model is ±3 frames, enabling to

achieve a V error of 5.09%, an UV error of 3.77% and a total VD error of 8.86%. This evaluation

was repeated for the SVM model. With an optimal context size of ±5 frames, it was possible to

obtain a V error of 4.39%, an UV error of 5.08% and a total VD error of 9.47%. The VD error

rate obtained using the GMM was slightly lower.

Critical analysis: The approach employed in this study demonstrates a commendable achieve-

ment with a low error rate. By leveraging machine learning (ML), this methodology exhibits

potential for generalization. However, the absence of supplementary quantitative evaluation met-

rics hinders a comprehensive assessment of the VDs’ performance and computational efficiency.

It is imperative to acknowledge the inherent complexity of a (DNN)-based system and the indis-

pensability of ample training data to attain satisfactory results.

3.2.2.4 FNN classifier, trained using spectral features of whispered and normal speech

Summary: In the paper “Improvement to a nam-captured whisper-to-speech system” [32], a

Feed Forward Neural Network (FNN) is used to predict the segments from the WS. The continu-

ous output is then converted to a binary VD.
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MFCCs are used as spectral feature at each frame. The spectral segment features of WS

are constructed by concatenating feature vectors at each current whispered frame ±8 frames, in

order to capture context. Then, the vector dimension is reduced using a Principal Component

Analysis (PCA) technique. The authors considered an excitation feature, characterized by the log-

scaled fundamental frequency, extracted with fixed-point analysis, and by 5 average dB values of

aperiodic components on five frequency bands. The FNN is trained using features obtained from

200 utterance pairs of WS and NS, verbalized by a French native male speaker.

The VD errors were evaluated. The V error was 2.4%, the UV error equaled 4.4% and the

total VD error was 6.8%. With the integration of this dedicated VD subsystem, the VD error of

the whispered-to-normal speech converter diminished by 2.4%, relatively to the original approach

(9.2%).

Critical analysis: The study’s approach attained a low error rate in VDs. However, the absence

of supplementary evaluation metrics limits a comprehensive assessment of the VD subsystem’s

performance and computational efficiency. The complexity of the FNN used and the reliance on

a large training dataset are noteworthy limitations. Despite these drawbacks, the approach shows

potential for generalization and practical application.

3.2.3 Hybrid approaches

Hybrid approaches attempt to estimate a VD, leveraging techniques from both ML and rule-based

approaches. Papers which describe hybrid approaches for VD were reviewed.

3.2.3.1 KNN phoneme classification followed by rule-based voicing decision using spectral
centroid thresholding

Summary: In the paper "Voicing decision based on phonemes classification and spectral mo-

ments for whisper-to-speech conversion" [33], a low-resource VD system is proposed, suitable

for real-time applications. The proposed system, starts with the classification of WS frames

into phoneme classes based on their spectral centroid and spread, using the K-Nearest Neigh-

bors (KNN) algorithm. Then, discriminates V phonemes from their UV counterpart based on

class-dependent spectral centroid thresholds. The KNN algorithm is trained using an in-house

database of annotated WS.

The proposed approach is compared to a simpler approach using a single centroid threshold.

Objective evaluation is performed. Both approaches reach a VD accuracy higher than 91%, but

the proposed approach allows avoiding some systematic VD errors. This may allow users to learn

to adapt their speech in real-time, to compensate the remaining VD errors.

Critical analysis: By utilizing this approach, the need for individual system calibration was

eliminated when the algorithm was trained with a multi-speaker database containing annotated

read text. This resulted in a decrease in systematic VD errors for certain phonemes, thereby
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creating a more appropriate control space for VD. However, the rule-based nature of the second

step in this approach raises concerns about its potential impact on the robustness and ability to

generalize of the VD classifier. Moreover, the lack of supplementary evaluation metrics limits a

comprehensive evaluation of the performance and computational efficiency of the VD subsystem.

3.3 Chapter summary

This Chapter provided a comprehensive review of different approaches to VD. It included two

sections: "Paper selection" (3.1) and "Review of the selected papers" (3.2).

In the next Chapter "Methodology", the methodology of this research will be presented, fo-

cusing on following topics: hardware and software used (4.1), acquisition of a phonetically an-

notated whispered/normal speech dataset (4.2), dataset preprocessing (4.3), feature engineering

(4.4), selection and design of DL-based model architectures (4.5), evaluation metrics definition

(4.6), assessment and comparison of model/features subset pairs (4.7), and assessment of the best

performing model/features subset pair (4.8).
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Chapter 4

Methodology

This Chapter presents the methodology employed in the study. It outlines the steps and procedures

followed to address the research objectives and answer the research question, namely hardware

and software description (4.1), phonetically annotated WS/NS dataset acquisition (4.2), dataset

preprocessing (4.3), feature engineering (4.4), selection and design of DL-based model architec-

tures (4.5), definition of evaluation metrics (4.6), assessment and comparison of all model/features

subset pairs (4.7), and assessment of the best performing model/feature subset pair (4.8).

4.1 Hardware and software description

The hardware (4.1.1) and software (4.1.2) used for dataset preprocessing, feature engineering,

selection and design of DL-based model architectures, and assessment are described next.

4.1.1 Hardware

• Central Processing Unit (CPU): Intel Core i5-8300H;

• Graphics Processing Unit (GPU): NVIDIA GeForce GTX 1050;

• Solid State Drive (SSD): WD Blue SN570 1 T B NVMe SSD;

• Random Access Memory (RAM): VENGEANCE Series 32 GB (2x16 GB) DDR4 SODIMM

2666 MHz CL18 Memory Kit.

4.1.2 Software

• Operating System (OS): Pop!_OS 22.04 LTS;

• Programming languages: Python 3.10.10 [52]; Matrix Laboratory (MATLAB) R2022b [53];

• Python packages: Tensorflow 2.11.0 [54]; Plotly 5.14.1 [55]; SciPy 1.10.1 [56]; Scikit-

learn 1.2.2 [57]; Keras 2.11.0 [58]; Keras TCN 3.5.0 [59]; Librosa 0.10.0.post2 [42]; Pan-

das 2.0.1 [60];

43



44 Methodology

• GPU drivers and libraries: NVIDIA driver 525.89.02; Compute Unified Device Architec-

ture Deep Neural Network library (cuDNN) 8.6.0.163; Compute Unified Device Architec-

ture (CUDA) toolkit 11.8.0.

4.2 Phonetically annotated whispered/normal speech dataset acqui-
sition

The process of acquiring the phonetically annotated WS/NS speech dataset involved the selection,

recording, screening and training of participants (4.2.1), the corpus’ design, recording protocol

and dataset structure (4.2.2) and the phonetic annotation of the recorded speech (4.2.3).

4.2.1 Participants selection, recording, screening and training

This Subsection outlines the processes involved in selecting participants (4.2.1.1), setting up the

recording environment and equipment (4.2.1.2), and conducting screening and training (4.2.1.3).

These procedures were crucial to ensure the quality and reliability of the collected data.

4.2.1.1 Participant selection

Convenience sampling was used to recruit 17 participants (9 male and 8 female speakers) aged

between 22 and 33 years from the Aveiro and Coimbra districts of Portugal. The mean age of the

participants was 26 years with a standard deviation of 3 years [4]. All participants were from the

North-western Dialects region of Portugal (Dialetos Setentrionais) and had not resided in other

regions for extended periods of time [61].

The following inclusion criteria were employed [4]:

• No history of voice disorders;

• No vocal pathology at the time of the recordings as assessed by a voice specialist using a

standardized case history form [62];

• No upper respiratory tract infection on recording day;

• EP as first language and from the center of Portugal, where the North-western Dialects

(Dialetos Setentrionais) are spoken [63].

The exclusion criteria comprised [4]:

• Impairments in oro-motor structure and function;

• Use of orthodontic (correction) devices;

• Respiratory pathology;

• Laryngopharyngeal reflux;
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• Fluency disorders;

• Having been submitted to vocal laryngeal surgery;

• Not being able to produce all the vocal tasks (particularly whispering).

4.2.1.2 Recording environment and equipment

The participants were situated in a quiet environment with a background noise level measur-

ing 15.1 dBLAeq (A-weighted time-averaged/equivalent sound pressure level). They were then

recorded using a Sennheiser Ear Set 1 condenser microphone, which was worn on the head. The

acoustic information was sampled at a rate of 48,000 Hz with 16 bit resolution per sample [4].

4.2.1.3 Screening and training

A screening and training process similar to the one used in [64] was followed, to ensure that

participants could distinguish and produce NS and WS accurately. As no visual representations

of the glottal configurations were accessible during data collection, a voice specialist was present

to perceptually observe and recognize any deviations from the intended neutral whispering, which

was defined as normal adduction and medium loudness of WS [64].

4.2.2 Corpus

This Subsection outlines the design (4.2.2.1), recording (4.2.2.2) and structure (4.2.2.3) of the

corpus.

4.2.2.1 Corpus design

The corpus utilized in this study was composed of a range of materials, including 4 sustained

sibilants, 4 sustained oral vowels, 12 disyllabic words, 6 Consensus Auditory-Perceptual Evalua-

tion of Voice (CAPE-V) sentences, commonly utilized by clinicians to evaluate voice quality as

described in [65], and a phonetically balanced text sourced in [66].

The 4 sibilant fricatives (/s, z, S, Z/) and the 4 oral vowels (/i, a, O, u/) define the corners of

the EP vowel space [67]. The 12 Consonant-Vowel-Consonant-Vowel (CVCV) disyllabic real

words contained the fricatives in initial, mid and final word positions. To maintain a stable vowel

height environment (ranging from open-mid to open) across the syllables, the four sibilants were

combined with /a/ and /@/, given that the most frequent syllable type in EP is Consonant-Vowel

(CV) [68]. Six sentences and a phonetically balanced text commonly used in Portugal to evaluate

voice quality [69] were also part of the corpus. These materials utilized the same set of vowels

and fricatives (/i, a, O, u, s, z, S, Z/) [4].
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4.2.2.2 Corpus recording protocol

Each task was performed 3 times using both NS and WS, except for the text task, which was

performed once in each mode. WS can be more traumatic to the larynx than NS [70]. To ensure

the safety of the speakers’ larynx, the tasks were selected carefully to balance the information

gathered on NS and WS mechanisms while avoiding vocal fatigue. A voice specialist was present

during all recordings. Due to the potential difficulty and confusion caused by frequently changing

speech modes, the tasks were recorded one at a time, starting with NS and then switching to

WS [4]. This approach aimed to minimize any potential negative effects of frequent speech mode

changes, as noted in [71].

4.2.2.3 Corpus dataset structure

The dataset comprises 54 audio files per participant, with 27 files being dedicated to NS and the

remaining 27 to WS. These files incorporate:

• 4 sustained sibilants: /s, z, S, Z/;

• 4 sustained EP oral vowels: /i, a, O, u/;

• 12 CVCV disyllabic real words with sibilant fricatives in initial, medial, and final word

positions, as depicted in Table 4.1;

• 6 CAPE-V phrases [65]:

– "A Marta e o avô vivem naquele casarão rosa velho" [a "maRta i u a"vo "vivEm na"kEl@

kaza"Raw "rOz@ "vEju] - Production of every EP oral vowel;

– "Sofia saiu cedo da sala" [su"fi@ s@-"iw "sEDu d@ "sa"la] - Easy onset with /s/ (words with

/s/ at syllable onset);

– "A asa do avião andava avariada" [a "aza du avi"@w O "dav@ avaRi"ad@] - All V;

– "Agora é hora de acabar" [a"GOr@ e "OR@ dE a"kabar] - Elicits hard glottal attack;

– "Minha mãe mandou-me embora" ["miñ@ "mam@ du "EmboR@] - Nasal sounds;

– "O Tiago comeu quatro peras" [u "tiagu ku"mew "kuatRu "peRas] - Weighted with voice-

less stops.

• EP phonetically balanced text, "The North Wind and the Sun", containing 98 words and 196

syllables [66].

4.2.3 Phonetic annotation

The phonetic annotation process encompassed the annotation of sustained and word materials

(4.2.3.1), sentences and phonetically balanced text (4.2.3.2), and its reliability verification (4.2.3.3).
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Table 4.1: European Portuguese disyllabic words with fricatives [4].

Fricative Word Initial Word Medial Word Final

[s] <sala> ["sal5] <assa> ["as5] <face> "fas

[z] <zaro> ["zaRu] <asa> ["az5] <vaze> "vaz

[S] <chama> ["Sam5] <acha> ["aS5] <ache> ["aS]

[Z] <jarra> ["ZaRR5] <haja> ["aZ5] <laje> ["laZ]

4.2.3.1 Sustained and word materials annotation

The boundaries of all the phones from sustained and word materials (8 sustained fricatives and

oral vowels; all phones in the 12 disyllabic words) were manually annotated using previously

established criteria in [72, 61], based on perceptual and acoustic analysis.

4.2.3.2 Sentence and phonetically balanced text materials annotation

Every occurrence of /i, a, O, u/ and /s, z, S, Z/ in sentences and in the phonetically balanced text

were annotated.

To annotate V vowel boundaries, a combination of waveform and spectrogram analysis was

used in Praat’s 6.0.47 Sound Editor. The wideband spectrogram with default settings (view range

of 0 to 5,000 Hz) was utilized to examine the periodicity of the acoustic signal, second formant

(F2) amplitude, and the f0 track. Spectrograms with a wider view range (0 to 16,000 Hz) were

used to annotate fricatives produced in NS mode. Additionally, constant auditory monitoring was

conducted over headphones for all recordings [4].

The process of segmenting WS differs from that of NS [73], and it requires manual and labori-

ous procedures [74, 51]. Segmentation involves visual analysis of waveforms, formant structures

in spectrograms (such as F2 and F3 onset and offset), and changes in intensity [75]. Praat’s default

spectrogram settings were adjusted only for the view range, which was set to 0 to 16,000 Hz for

both vowels and fricatives. The primary acoustic cues used to annotate WS were the waveforms

and spectrograms of frication noise. Phones that were produced with a hard or abrupt glottal attack

were not annotated [4].

4.2.3.3 Reliability verification

The speech productions of two participants were randomly selected, annotated and transcribed by

a trained phonetician who was not involved in the study and was unaware of its objectives. The

point-to-point reliability was determined to be 92.34% [4], which was deemed satisfactory for the

purpose of this investigation. The two participants constituted 12% of the speech samples, which

is in line with the reported percentage of reliability checks in other studies of WS [76, 73].
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4.3 Dataset preprocessing

Dataset preprocessing was an essential step in preparing the phonetically annotated WS/NS speech

dataset for further analysis and modeling. It encompassed downsampling of audio files (4.3.1),

phone annotation-based segmentation (4.3.2), dataset selection and cleaning (4.3.3), CTV seg-

ments labelling (4.3.4), and audio segments normalization (4.3.5). After performing these prepro-

cessing steps, the dataset was ready for feature engineering.

4.3.1 Downsampling of audio files

The audio files in the speech dataset, obtained as explained in the previous Section (4.2), under-

went resampling from a Sampling Frequency (SF) of 48000 Hz to 22050 Hz. This resampling

enhances the efficiency of the subsequent analysis while preserving a sufficiently detailed spectral

content (Nyquist Frequency = 11,025 Hz).

4.3.2 Phone annotation-based segmentation

The downsampled speech dataset obtained as explained in last Subsection 4.3.1 underwent seg-

mentation into phones utilizing the phonetic annotations. Subsequently, these segments were sys-

tematically arranged into a tabular structure, wherein each entry corresponds to a distinct phone

segment. The table encompasses the following 8 attributes for each entry:

• Sex: Indicates the sex of the speaker;

• Speaker Identification (ID): Identifies the speaker;

• Task: Describes the associated task;

• Speech Mode (SM): Specifies whether the segment is normal or whispered speech;

• Sequence Index: Represents the position of the phone within the task;

• Segment’s Waveform Audio File Format File (SWAV): Contains a Waveform Audio File

Format (WAV) file with the samples of the audio segment;

• Sampling Frequency (SF): Indicates the frequency at which the audio segment is sampled;

• Phonetic Annotation Label (PAL): Provides the phonetic annotation label for the segment.

By employing phone annotation-based segmentation, the dataset was effectively partitioned

into distinct phone segments, facilitating further analysis and processing.
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4.3.3 Dataset selection and cleaning

The dataset obtained as described in last Subsection 4.3.2 was selected and cleaned to ensure

reliable PALs. For that purpose, the following steps were executed:

1. The table entries were selected based on the following criteria:

(PAL = "silence")∨ (length(PAL) = 3∧PAL[−1] ∈ {"w","W"}) (4.1)

SM = "02" (4.2)

The first condition (4.1) states that the entry’s PAL attribute must be either "silence" or a

three-character string ending in either "w" or "W". The second condition (4.2) mandates that

the entry’s SM attribute must have a value of "02", indicating a WS utterance. The resulting

table will solely contain entries that fulfill all of the aforementioned conditions, avoiding

most erroneous PALs;

2. Following the selection process, some errors were still detected in the PALs. In response,

corrections were applied to each entry in the table: "-" was replaced with "_" and "w" was

replaced with "W".

4.3.4 Candidate to voicing segments labelling

A new boolean attribute CTV was added to the dataset obtained as described in last Subsection

4.3.3, enabling the classification of the phone segments between CTV and NCTV.

• Segments with the following Speech Assessment Methods Phonetic Alphabet (SAMPA)

phonetic annotation labels were identified as CTV: 1_W, 4_W, 6_W, A_W, E_W, L_W,

N_W, O_W, R_W, Z_W, a_W, b_W, d_W, e_W, g_W, i_W, l_W, m_W, n_W, o_W, u_W,

v_W, z_W. For each of these segments, the corresponding CTV attribute value was set to 1;

• Conversely, segments with the following SAMPA phonetic annotation labels were identified

as NCTV: S_W, f_W, k_W, p_W, s_W, t_W, silence. For each of these segments, the

corresponding CTV attribute value was set to 0.

Table 4.2 presents the phonetic annotation labels, their corresponding SAMPA and IPA alpha-

bet symbols, and whether they are considered CTV or NCTV.

4.3.5 Audio segments normalization

The SWAV column in the dataset obtained as described in Subsection 4.3.4 was subjected to

normalization, employing a standardization technique.

Each entry’s SWAV value was standardized as follows:
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Table 4.2: SAMPA phonetic annotation labels of segments, correspondent IPA symbols and can-
didate to voicing label.

Phonetic annotation label SAMPA Symbol IPA Symbol Candidate to voicing

1_W 1 1 1

4_W 4 R 1

6_W 6 6 1

A_W A A 1

E_W E E 1

L_W L L 1

N_W N N 1

O_W O O 1

R_W R ö 1

Z_W Z Z 1

a_W a a 1

b_W b b 1

d_W d d 1

e_W e e 1

g_W g g 1

i_W i i 1

l_W l l 1

m_W m m 1

n_W n n 1

o_W o o 1

u_W u u 1

v_W v v 1

z_W z z 1

S_W S S 0

f_W f f 0

k_W k k 0

p_W p p 0

s_W s s 0

t_W t t 0

silence sil || 0

1. The mean value of all original SWAVs was calculated and then subtracted from each SWAV;

2. The resulting values were divided by the standard deviation of all original SWAVs.

This process can be mathematically represented as:
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SWAVNormalized =
SWAVOriginal −µ

σ
(4.3)

In this Equation:

• SWAVNormalized : standardized SWAV;

• SWAVOriginal: original, pre-standardization SWAV;

• µ: mean of all original SWAVs;

• σ : standard deviation of all original SWAVs.

Through the application of this normalization technique, the bias originating from the original

scales of the SWAVs was eliminated. This facilitated meaningful comparisons and subsequent

analyses on the standardized SWAVs.

4.4 Feature engineering

Feature engineering is a crucial step in the analysis of the phonetically annotated WS/NS speech

dataset. It involves transforming the speech data into a set of meaningful and representative fea-

tures that can be used as inputs for the subsequent modeling procedures. It encompassed fea-

ture extraction (4.4.1), feature normalization (4.4.2), dataset explosion from segments to frames

(4.4.3), class distribution balancing through selective silence frame reduction (4.4.4), context size

definition (4.4.5), context-sized sequences dataset generation (4.4.6), BFS definition (4.4.7), and

SFS definition (4.4.8).

4.4.1 Feature extraction

The Librosa Python’s package was used to perform feature extraction on the preprocessed dataset

obtained as described in Section 4.3 [52, 42].

For each table entry, the phone’s normalized WAV files and SFs were utilized to compute

several spectral features. All feature extraction computations were performed with a Frame Size

(FS) of 1,024 samples and a Hop Size (HS) of 512 samples. Unless explicitly specified, the default

values were utilized for all remaining parameters.

The following features were extracted:

1. ZCR (1 feature): Rate at which the signal changes sign. Results in a scalar value for each

frame of audio, leading to 1 feature per frame;

2. RMS (1 feature): RMS Energy of each frame. Results in a scalar value, leading to 1 feature

per frame;

3. STFT (512 features): STFT is applied to each frame of the audio, using an Hann window.

The result is a spectrum of 512 frequency bins;
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4. Mel Spectrogram (128 features): The Mel-scaled power spectrogram of the audio is com-

puted, using an Hann window, FFT. For each frame, it produces a 128-bin Mel-frequency

spectrum;

5. STFT Chromagram (12 features): Computes chroma features using STFT. Representa-

tions of the audio based on the 12 different pitch classes are obtained. Hence, it produces a

12-dimensional feature vector for each frame;

6. CQT Chromagram (12 features): Computes chroma features using CQT. Representations

of the audio based on the 12 different pitch classes are obtained. Hence, it produces a 12-

dimensional feature vector for each frame;

7. CENS (12 features): Computes chroma features using CENS. Representations of the audio

based on the 12 different pitch classes are obtained. Hence, it produces a 12-dimensional

feature vector for each frame;

8. Spectral Centroid (1 feature): Characterizes the center of energy distribution of the spec-

trum across the frequency range. Results in single value for each audio frame;

9. Spectral Bandwidth (1 feature): Measures the width of the spectrum around its centroid.

Results in single value for each audio frame;

10. Spectral Contrast (7 features): Measures the difference in amplitude between peaks and

valleys in a spectrum. For each audio frame, 7 features are obtained (one for each octave);

11. Spectral Flatness (1 feature): Indicates the balance between the energy in the harmonic

and non-harmonic components of the spectrum. Results in a single value for each audio

frame;

12. Spectral Rolloff (1 feature): Measures the frequency below which a specified percentage

of the total spectral energy lies. It is computed using the STFT with a rolloff percentage of

85% (default), resulting in a single value for each audio frame;

13. Tonnetz (6 features): This method computes the Tonnetz features using chroma computed

from the MFCCs. It produces a 6D feature vector for each frame;

14. MFCCs (49 features): Computes 49 MFCCs. It provides a 49-dimensional feature vector

for each frame;

15. MFCCs Delta (49 features): Computes the first-order difference (Delta) of the MFCCs,

using a width of 3 and interpolation mode set to "nearest". Provides a 49-dimensional

feature vector for each frame;

16. MFCCs Delta Delta (49 features): Computes the second-order difference (Delta Delta)

of the MFCCs, using a width of 3 and interpolation mode set to "nearest". Provides a 49-

dimensional feature vector for each frame;
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17. Polyfeatures (2 features): Computes coefficients of fitting an order-degree polynomial to

the columns of a spectrogram, using the STFT with default parameters. It produces a 2D

feature vector per frame.

For more detailed information regarding feature extraction, please refer to the Subsection

"Feature extraction" of the Section "Background" (2.5.1).

4.4.2 Feature normalization

In Section 4.4.1, the extraction of features from the dataset was described. The following step

involved normalizing these features to enable unbiased comparisons and more efficient analysis,

using a standardization technique.

Each feature column in the dataset consists of various feature values. These were standardized

as follows:

1. The mean value of all original feature values in a column was calculated, and subtracted

from each individual feature value in that column;

2. The resulting values were divided by the standard deviation of all the original feature values

from the same column.

This process can be depicted mathematically as:

FeatureNormalized =
FeatureOriginal −µ

σ
(4.4)

In this Equation:

• FeatureNormalized : resultant standardized feature value;

• FeatureOriginal: pre-standardization, original feature value;

• µ: mean of all original feature values in the column;

• σ : standard deviation of all original feature values in the column.

Standardizing the features was a crucial part of the data analysis. It eliminated any bias due to

the differing scales of the original features. This allowed for an effective comparison of features

and enhanced subsequent data analysis.

4.4.3 Dataset explosion from segments to frames

Following the feature extraction and normalization processes described in Subsections 4.4.1 and

4.4.2, a dataframe was obtained where each entry corresponded to a phone, with mapping to an

array of feature values, ascertained for each frame with a FS of 1,024 samples, centered at every

HS of 512 samples.
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The dataframe was reformatted into a more analytically conducive structure, where each entry

corresponds to the feature values extracted from a single frame. This transformation was accom-

plished through a technique known as explosion, which was applied to the dataframe based on the

respective feature arrays. Each resulting entry retains the corresponding attribute values from the

original entry, ensuring the preservation of their relationship.

This operation greatly enhances the interpretability of the data, making it more amenable for

subsequent ML algorithms and analyses.

4.4.4 Class distribution balancing through selective silence frame reduction

After the dataset explosion process described in Subsection 4.4.3, the CTV/NCTV class distribu-

tion of the dataset was analyzed, with the goal of detecting a possible class imbalance. Such an

imbalance could potentially interfere with the classifier’s learning process, affecting its effective-

ness.

A class imbalance was detected: the NCTV class had an overrepresentation, primarily due to

the abundance of silence frames. In response, a method for selectively reducing silence frames

followed. The method consisted of several steps:

1. Identify continuous silence frames in the dataset;

2. Remove a percentage of silence frames from the middle of these segments.

To determine the proportion of silence frames to remove that optimizes the dataset’s class

balance, the second step should be performed iteratively.

This selective silence frame reduction strategy served dual purposes:

• It facilitated a balanced class distribution in the dataset;

• Preserved silence frames located near the segment boundaries, considering their potential

role in holding critical contextual information.

4.4.5 Context size definition

The binary classification model was conceived to leverage past data to perform present classifica-

tions, by accepting sequences of feature vectors as input. Each vector corresponds to a frame of

audio data, containing the values of the features extracted using a FS of 1,024 samples and an HS

of 512 samples, resulting in an overlap of HS/FS = 50%.

The size of the input sequence of feature vectors, or the Overlapping Context Size (OCS), was

defined to a value that ensures that the model captures the entirety of an average-sized word from

the dataset. For that purpose, the following quantities were determined:

1. Average Word Length in Phones (AWLP): Obtained empirically from the dataset;

2. Average Phone Length in Samples (APLS): Also obtained empirically from the dataset;
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3. Average Word Length in Frames (AWLF): Determined as depicted in Equation (4.5):

AWLF =
AWLP×APLS

FS
(4.5)

4. Overlapping Context Size (OCS): The objective consisted in utilizing information from

past contiguous frames that correspond to an average word with length AWLF on each

classification. For this purpose, the Contiguous Context Size (CCS) should be equal to the

AWLF. The model’s input consists of feature vectors extracted with overlap. Hence, it is

essential to calculate the OCS that is equivalent to the CCS. Equation (4.6) establishes a

relation between OCS considering an overlap of HS/FS and the equivalent CCS. Therefore,

an input sequence with a number of feature vectors equal to OCS correspond exactly to the

feature values extracted from a number of contiguous frames equal to CCS.

OCS =CCS× (1+
HS
FS

)×2 (4.6)

OCS = AWLF × (1+
HS
FS

)×2

The obtained OCS matches the AWLF calculated in Equation (4.5), ensuring that the model’s

context captures the entirety of an average word from the dataset.

4.4.6 Context-sized sequences dataset generation

In the exploded dataset obtained as described in Subsection 4.4.3, each data point corresponds to

a frame, being characterized by a multidimensional feature vector and the corresponding classifi-

cation label. The process of generating context-sized sequences from this data represents a critical

operation, providing the subsequent ML steps with the temporal context of speech. The following

topics explain the process:

1. Stride: During the sequence generation process, a stride or step size of 1 was used. The

stride refers to the distance moved through the data to form each sequence. With a stride of

1, each successive sequence starts one frame later than the previous sequence, resulting in

substantial overlap between the sequences;

2. Sequence size: The sequence size was set to the OCS, defined in the previous Subsection

4.4.5;

3. Sequence labels assignment: The classification label corresponding to the last frame of

each sequence was assigned as the label for that particular sequence. The assigned label

was either CTV or NCTV, depending on the label of the last feature vector.

By following these steps, a 3 dimensional array of OCS-sized sequences of multidimensional

feature vectors (sequences by frames by features) was obtained.
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4.4.7 Baseline feature subset definition

A total of 49 features were chosen to form the BFS, based on the demonstrated empirical success

in recent literature.

4.4.8 Selected features subset definition

A comprehensive feature selection process was conducted, encompassing feature dimension anal-

ysis (4.4.8.1), feature extraction time analysis (4.4.8.2), and feature selection based on PCC, SCC,

ANOVA F-value and RFI (4.4.8.3).

This approach resulted in the selection of 49 features that formed the SFS.

4.4.8.1 Feature dimension analysis

High-dimensional features, such as STFT and Mel Spectrogram, have been used traditionally as

high-dimensional representations of audio signals. While these representations are comprehen-

sive, they often contain excessive complexity with redundant or highly correlated data. Conse-

quently, classifiers may suffer from impaired effectiveness.

Fortunately, there are features that offer lower-dimensional representations while still captur-

ing the essential information obtained from high-dimensional features, such as MFCCs. By uti-

lizing these features, redundancy is reduced, and the risk of overwhelming classifiers with highly

correlated data is mitigated. This simplification of the feature space enables more efficient analysis

and interpretation of audio data.

To optimize the representation of the data, a dimension analysis was conducted on the extracted

features. The results guided the feature selection process, allowing for the retention of crucial

information while eliminating unnecessary complexity.

4.4.8.2 Feature extraction time analysis

Ensuring compliance with the MAPT constraint is crucial for enabling the online operation of the

system. For that purpose, the following expressions were defined:

1. MAPT: The MAPT was conservatively defined to be the duration of a single HS at a SF of

22050 Hz, resulting in approximately 23220 µs, as expressed in Equation (4.7):

MAPT = HS×
(

1
SF

)
MAPT = 512×

(
1

22,050 Hz

)
MAPT = 23,220 µs

(4.7)

2. Total Feature Extraction Time (TFET): The single hop TFET for any subset of features

can be obtained by summing the desired single hop Individual Feature Extraction Time

(IFET)s, as stated in Equation (4.8).
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T FET = ∑ IFET (4.8)

3. Total Estimated Processing Time (TEPT): The TEPT was defined as the combined time

required for a single hop TFET and a single hop Classifier’s Inference Time (CIT).

T EPT = T FET +CIT (4.9)

4. MAPT compliance condition: To ensure compliance, the TEPT cannot surpass the MAPT.

This is expressed by the Equation (4.9):

T EPT < MAPT

T FET +CIT < MAPT

∑ IFET +CIT < HS×
(

1
SF

)
∑ IFET +CIT < 23,220 µs

(4.10)

With the necessary expressions defined, the following steps were taken to conduct the feature

extraction time analysis and the consequent feature selection:

1. Average IFET estimation: The average IFET for each feature was estimated from the first

1,000 phone segments of the database. This estimation adopted a conservative approach,

as some feature extraction methods share common steps that have been factored into each

IFET;

2. TFET estimation: The single hop TFET was obtained for all features by summing the

IFETs estimated in the previous step, as depicted in Equation (4.8);

3. Exclusion of features with the highest IFET: The features with the highest IFETs were

excluded, ensuring that:

• The MAPT compliance condition was not compromised by the TFET alone;

• There is a temporal slack for the CIT.

4.4.8.3 Feature selection based on Pearson correlation, Spearman correlation, Analysis of
Variance F-Value and Random Forest Importance

This feature selection analysis operated on the 3 dimensional array of context-sized sequences

of multidimensional feature vectors (sequences by frames by features) obtained as described in

Subsection 4.4.6. The procedure followed these steps:

1. Data reshaping: The 3 dimensional array of sequences was transformed into a 2 dimen-

sional array (frames by features). This reshaping ensured that each row corresponded to a

frame and each column aligned with a specific feature across all frames;
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2. Classification label replication: The classification labels, originally associated with each

sequence, were repeated for each frame within that sequence. This repetition matched the

reshaped structure of the feature vectors and maintained the link between the feature frames

and their associated classification labels;

3. Feature importance metrics: With the reshaped array and replicated classification labels,

various metrics were computed for each feature across all frames, in order to quantify the

relationship between each feature and the associated classification labels:

(a) PCC: The PCC quantifies the linear relationship between each feature and the target

variable across the entire reshaped data;

(b) SCC: The SCC measures the rank correlation between each feature and the target

variable across the entire reshaped data;

(c) ANOVA F-value: For each feature, an ANOVA F-value is calculated as the ratio of the

variance of the means of the two classes (between-group variance) to the mean of the

variances within each class (within-group variance). A higher F-value score indicates

that the feature is more discriminative for the binary classification task;

(d) RFI: In order to obtain an estimation of the importance of each feature, a Random

Forest Classifier was trained on the reshaped data. This model generates an importance

score for each feature, which is indicative of its contribution to the decision-making

process within the model.

4. Metrics normalization: To assess the overall importance of the features, a normalization

process was applied to the metrics obtained from the four methods, resulting in values rang-

ing from 0 to 100. This normalization enabled easier comparison and interpretation of the

scores;

5. Metrics averaging: Next, the normalized scores were averaged, with equal weight assigned

to each metric, as shown in Equation (4.11):

Average Score = 0.25×PCC+0.25×SCC+0.25×FTest +0.25×RFI (4.11)

The resulting average score provided a comprehensive measure of the feature’s importance

across all the metrics;

6. Selected feature subset: Based on the average scores, a set of 49 features was selected as

the top performers, originating the SFS.

For a comprehensive understanding of the feature selection metrics used, please consult the

Subsection "Feature selection" in the Chapter "Background" (2.5.2).



4.5 Selection and design of DL-based model architectures 59

4.5 Selection and design of DL-based model architectures

The strategy for choosing and designing the DL model architectures was guided by the following

principles:

1. Empirical success: The chosen architecture should have a proven track record of success

in classification tasks involving sequential and temporal data. This requirement ensures the

selection of architectures with demonstrated efficiency and robustness;

2. Trainable parameters balance: The architecture should feature around 200,000 trainable

parameters. This parameter count has been found optimal in preliminary tests, providing a

good balance between training time and model performance. This count not only allows for

the flexibility required for this study but also establishes a baseline complexity level, making

all architectures roughly comparable in terms of complexity.

The models were uniformly compiled, using the binary cross-entropy loss function and the

Adaptive Moment Estimation (Adam) learning rate optimization algorithm, with Accuracy serving

as the primary performance metric.

4.6 Evaluation metrics definition

To evaluate the different model/feature subset pairs, the evaluation metrics were defined, namely

performance (4.6.1) and computational (4.6.2) metrics.

4.6.1 Performance metrics

The performance metrics used to assess the models are outlined below. These metrics provide

insight into the effectiveness of the models in various aspects:

• Accuracy: A measure of the overall correct predictions made by the model;

• Precision: The proportion of true positive predictions out of all positive predictions;

• Recall: The proportion of actual positive instances that were correctly identified;

• Specificity: The proportion of actual negative instances that were correctly identified;

• F1 Score: The harmonic mean of Precision and Recall, providing a balance between these

two metrics;

• AUC-ROC: Aggregate measure of model performance across all possible classification

thresholds.

For a more detailed explanation of these metrics, please refer to the Subsection "Performance

metrics" in Chapter "Background" (2.4.4).
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4.6.2 Computational metrics

The computational metrics employed are briefly described below. These metrics shed light on

the practical aspects of model training and inference, including computational effort, temporal

efficiency, and model complexity.

• Number of epochs: The number of times the learning algorithm has worked through the

entire training dataset;

• Training time: The total amount of time that the model spends in the training phase;

• Average training time per epoch: The average amount of time taken to complete each

epoch during training;

• Best epoch: The epoch at which the model achieved the best performance on the validation

set during training;

• Number of trainable parameters: The quantity of parameters in the model that can learn

and change as the model trains;

• Inference time: The time taken by the model to make predictions after it has been trained.

For a more detailed explanation of these metrics, please refer to the Subsection "Computa-

tional metrics" in Chapter "Background" (2.4.5).

4.7 Assessment and comparison of all model/features subset pairs

To identify the best performing model/features subset pair on the phonetically annotated WS/NS

speech dataset, an assessment and comparison of all the model/features subset pairs were con-

ducted. It encompassed TTS evaluation (4.7.1), performance comparison across features subsets

(4.7.2), and selection of the best performing model/features subset pair (4.7.3).

4.7.1 Train-Test Split evaluation

For every model and for both features subsets, the TTS process was executed 5 times using the

GPU, each following these steps:

1. First, the dataset was filtered to contain only the features corresponding to the subset un-

der analysis. This process ensured that each features subset (BFS or SFS) was evaluated

individually;

2. Each features subset corresponded to sequences of OCS feature vectors using a stride of

1, with the CTV/NCTV label corresponding to the last feature vector assigned to each se-

quence;
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3. Following this, the sequences of feature vectors and their corresponding labels were ran-

domly shuffled to ensure model robustness and prevent overfitting. The random state for

this shuffle operation was set as 41 plus the current iteration number, introducing an ele-

ment of controlled randomness at each iteration;

4. Next, the sequences of feature vectors and their associated labels were distributed into three

segments — a training set, a validation set, and a testing set. This division was made in a

70%, 15%, and 15% ratio respectively. The purpose of this distribution is to allow the model

to learn from the training data, fine-tune parameters with validation data, and then evaluate

performance using the test data;

5. Each model was trained on the training set and validated on the validation set. To avoid

overfitting, an early stop callback was utilized, which halted the training process if the vali-

dation loss did not improve for 6 consecutive epochs. When the training process was halted

early, the model weights corresponding to the lowest validation loss were restored. Metrics

collected during training included: Number of Epochs, Training Time, Average Training

Time per Epoch, and Best Epoch;

6. Finally, the model was evaluated on the test set, to assess the models’ performance and gen-

eralizability. The following metrics were obtained during evaluation: Accuracy, Precision,

Recall, Specificity, F1 Score, AUC-ROC, and Inference Time.

By employing this approach, every model was independently trained, validated and evaluated

using the two features subsets, enabling a comprehensive comparison of the performances and

generalizability of each model/features subset pair.

4.7.2 Performance comparison across features subsets

In order to assess the impact of the SFS on the overall performance of the models, an analysis was

conducted to measure the performance metric gains achieved by employing the SFS in comparison

to the BFS.

4.7.3 Selection of the best performing model/features subset pair

The best performing model/features subset pair was chosen through the results of TTS evaluation,

namely performance and computational metrics.

4.8 Assessment of the best performing model/features subset pair

The best performing model/features subset pair selected in 4.7.3 was subject to a more detailed

assessment, in order to validate its effectiveness and efficiency. This process encompassed perfor-

mance assessment across articulation manner classes (4.8.1), K-FCV evaluation (4.8.2), exempli-

fication of VD segmentation (4.8.3), and verification of the compliance with the MAPT (4.8.4).
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4.8.1 Performance assessment across articulation manner classes

The Accuracy of the best performing model/feature subset pair was analysed across different ar-

ticulation manner classes. For that purpose, the following process was followed:

1. The speech frames were categorized based on articulation manner and voicing attributes.

To get more detailed information on voicing and articulation manners, refer to Subsection

"European Portuguese Phonetics" of the Section "Background" (2.1.2);

2. The 5 iterations of TTS evaluation were repeated for the best performing model/features

subset pair, with the same random states as mentioned in Subsection 4.7.1. VDs were ob-

tained;

3. The VDs success is evaluated by comparing the obtained values to the ground truth;

4. The Accuracy of this prediction is calculated individually for each articulation manner class,

providing a detailed overview of model performance across these classes.

The results of this evaluation provide a clear understanding of the Accuracy with which the

system can make VDs across different articulation manner and voicing classes. This critical in-

formation can help in refining the model, ensuring its robust performance. Consequently, targeted

improvements can be made by focusing on classes where Accuracy might be lower.

4.8.2 K-Fold Cross Validation evaluation

To rigorously substantiate the best performing model/features subset pair’s performance and gen-

eralizability, K-FCV was executed using the GPU, as follows:

1. Initially, the dataset was filtered to include only the features corresponding to the best per-

forming subset;

2. Each features subset corresponded to sequences of OCS feature vectors using a stride of

1, with the CTV/NCTV label corresponding to the last feature vector assigned to each se-

quence;

3. The sequences of feature vectors and their corresponding labels were randomly shuffled

with a fixed random state of 42, ensuring a controlled level of randomness;

4. K-FCV with K set to 5 was implemented with stratified sampling, ensuring that each fold

has the same proportion of CTV and NCTV labels as the entire dataset. In each iteration of

the cross-validation, the sequence data was split into a training set, consisting of four out of

five folds (80% of the data), and a validation set, consisting of the remaining fold (20% of

the data);

5. In each iteration, a new instance of the model was created and compiled. The model was

then trained on the training set and validated on the validation set. An early stop callback
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was utilized, which halted the training process if the validation loss did not improve for 6

consecutive epochs. The model weights corresponding to the lowest validation loss were

restored upon early stopping;

6. For each fold, after training on the training set and validation on the validation set, the

model was evaluated on the same validation set, providing an unbiased measure of model

effectiveness and generalizability for that fold. Metrics collected during evaluation included:

Accuracy, Precision, Recall, Specificity, F1 Score, AUC-ROC, and Inference Time;

7. The entire process was repeated for each of the five folds, changing the composition of the

training and validation sets in each iteration so that all data is used for both training and

validation at some point. The metrics from each fold were recorded.

The implementation of K-FCV offers a detailed and unbiased evaluation of the model’s ability

to perform well on new, unseen data. By leveraging all available data for both training and valida-

tion, this approach helps to uncover the model’s true performance potential. It further strengthens

the confidence in the model’s predictive capacity and its relevance to real-world scenarios, enhanc-

ing the overall reliability of the findings.

4.8.3 Exemplification of voicing decision segmentation

The best performing model/features subset pair selected in 4.7.3 was tested on several tasks from

the phonetically annotated WS/NS dataset to exemplify and visualize its operation. The tasks were

carefully selected to encompass phones from all articulation manner classes.

4.8.4 Compliance with the Maximum Allowable Processing Time

To validate the system’s capability of online operation, the MAPT compliance condition defined

in 4.4.8.2 was evaluated. The following steps were taken:

1. The best performing model/features subset pair’s TFET and CIT were estimated. The CIT

was obtained from the results of TTS evaluation;

2. The MAPT compliance condition was evaluated: the TEPT cannot surpass the MAPT, as

expressed in Equation (4.12):

T EPT < MAPT

T FET +CIT < MAPT

∑ IFET +CIT < HS×
(

1
SF

)
∑ IFET +CIT < 512×

(
1

22,050 Hz

)
∑ IFET +CIT < 23,220 µs

(4.12)
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4.9 Chapter summary

In the Chapter "Methodology", various aspects of the research process were discussed in detail.

These aspects include the description of the hardware and software utilized (4.1), the acquisi-

tion of the phonetically annotated WS/NS dataset (4.2), the preprocessing steps applied to the

dataset (4.3), the process of feature engineering (4.4), the selection and design of DL-based model

architectures (4.5), the definition of evaluation metrics (4.6), the methods employed to assess

and compare pairs of models/features subsets (4.7), and the evaluation of the best performing

model/features subset pair (4.8).

In the upcoming Chapter "Results and discussion", a comprehensive overview of the research

findings in each of the aforementioned aspects will be presented. This includes the outcomes

of the phonetically annotated WS/NS dataset acquisition (5.1), dataset preprocessing (5.2), fea-

ture engineering (5.3), selection and design of DL-based model architectures (5.4), assessment

and comparison of all model/features subset pairs (5.5), and evaluation of the best performing

model/features subset pair (5.6).



Chapter 5

Results and discussion

In this Chapter, a comprehensive overview of the research findings is presented. It covers the

results of phonetically annotated WS/NS dataset acquisition (5.1), dataset preprocessing (5.2),

feature engineering (5.3), selection and design of DL-based model architectures (5.4), assessment

and comparison of all model/features subset pairs (5.5), and assessment of the best performing

model/features subset pair (5.6).

5.1 Phonetically annotated whispered/normal speech dataset acqui-
sition

The application of the method described in the Section "Phonetically annotated WS/NS dataset ac-

quisition" of the Chapter "Methodology" (4.2) originated a phonetically annotated WS/NS speech

dataset.

The dataset comprises 54 audio files per each of the 17 participants:

• 27 files are dedicated to NS;

• 27 files are dedicated to WS.

5.2 Dataset preprocessing

The methods described in the Section "Dataset preprocessing" of the Chapter "Methodology" (4.3)

transformed the original phonetically annotated WS/NS dataset into a tabular WS dataset, with the

following characteristics:

• The table has 12,718 entries;

• Each table entry corresponds to a phone segment, with the following attributes:

– Sex: Indicates the sex of the speaker;

– Speaker ID: Identifies the speaker;
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– Task: Describes the associated task;

– Speech Mode (SM): Specifies whether the segment is NS or WS;

– Sequence Index: Represents the position of the phone within the task;

– Segment’s Waveform Audio File Format File (SWAV): Contains a WAV file with

the samples of the audio segment;

– Normalized SWAV: Contains a normalized WAV file with the samples of the audio

segment;

– Sampling Frequency (SF): Indicates the SF of the audio segment, which is now

22,050 Hz for all entries;

– Phonetic Annotation Label (PAL): Provides the phonetic annotation label for the

segment;

– CTV/NCTV Label: Binary target label that indicates which phone segments are CTV.

5.3 Feature engineering

In this Section, the findings from the application of the procedures described in Section "Feature

engineering" of the Chapter "Methodology" (4.4) are presented. It encompasses the results of

feature extraction (5.3.1), feature normalization (5.3.2), dataset explosion from segments to frames

(5.3.3), class distribution balancing through selective silence frames reduction (5.3.4), context size

definition (5.3.5), context-sized sequence dataset generation (5.3.6), BFS definition (5.3.7), and

SFS definition (5.3.8).

5.3.1 Feature extraction

The method described in Subsection "Feature extraction" of the Chapter "Methodology" (4.4.1)

resulted in the tabular WS dataset described in the previous Section "Data processing" (5.2), with

additional attributes for each extracted feature. Each additional attribute contains an array of

feature values extracted from the phone segment.

5.3.2 Feature normalization

The method described in Subsection "Feature normalization" of the Chapter "Methodology" (4.4.2)

resulted in the tabular WS dataset with extracted feature described in the previous Subsection

"Feature extraction" (5.3.1) with the features normalized.

5.3.3 Dataset explosion from segments to frames

The method described in Subsection "Dataset explosion from segments to frames" of the Chapter

"Methodology" (4.4.3) resulted in an exploded version of the tabular WS dataset with normalized

extracted feature obtained in the previous Subsection "Feature normalization" (5.3.2).

The resulting exploded dataset has the following characteristics:
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• 2,417,774 entries;

• Each table entry corresponds to an audio frame obtained using a FS of 1,024 samples and a

HS of 512 samples;

• Each exploded entry retains the corresponding attribute values from the original entry, en-

suring the preservation of their relationship.

5.3.4 Class distribution balancing through selective silence frame reduction

A class distribution imbalance was detected in the the exploded dataset obtained in last Subsection

"Dataset explosion from segments to frames" 5.3.3. In the exploded dataset with 241,777 entries:

• The NCTV group had an overrepresentation with 163,262 instances, primarily due to the

abundance of silence frames;

• The CTV group had 78,515 instances.

In response, the method described in Subsection "Class distribution balancing through se-

lective silence frame reduction" of the Chapter "Methodology" (4.4.4) was applied. The precise

proportion of silence frames to remove in order to attain an optimal class balance in the dataset

was determined iteratively, resulting in a percentage of about 58%.

This action resulted in a balanced dataset, with a total of 157,028 entries:

• The CTV category had 78,515 instances;

• The NCTV category had 78,513 instances.

5.3.5 Context size definition

In this Subsection, the results of the application of the method described in the Subsection "Context

size definition" of the Chapter "Methodology" (4.4.5) are disclosed:

1. The AWLP was calculated empirically from the dataset, resulting in a value of 3.65 phones;

2. The APLS was calculated empirically from the dataset, resulting in a value of 4,002.88

samples;

3. The AWLF was obtained as depicted in Equation (5.1):

AWLF =
AWLP×APLS

FS
≈ 3.65×4,002.88

1,024
≈ 16frames (5.1)

For computational purposes, the AWLF value was approximated to a base-2 number.
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4. The OCS equivalent to an average word with length AWLF, was determined as depicted in

Equation (5.2), ensuring that the context captures the entirety of an average word.

OCS =CCS× (1+
HS
FS

)×2 (5.2)

OCS = AWLF × (1+
HS
FS

)×2

OCS = 16× (1+
512

1,024
)×2

OCS = 31 f rames

5.3.6 Context-sized sequences dataset generation

The method described in Subsection "Context-sized sequence generation" of the Chapter "Method-

ology" (4.4.6) was applied to the dataset obtained in Subsection "Class distribution balancing

through selective silence frame reduction" of the Chapter "Results" (5.3.4).

The result was a context-sized sequences WS dataset with the following characteristics:

• The dataset is composed of 156,998 OCS-sized sequences of multidimensional feature vec-

tors;

• Each sequence has a target label assigned. The label can be either CTV or NCTV, according

to the original label of its last feature vector.

5.3.7 Baseline features subset definition

The method outlined in Subsection "Baseline feature subset definition" of Chapter "Methodology"

(4.4.7) was performed on the extracted features. The 49 MFCCs were selected as the BFS due

to their widespread usage in state-of-the-art VD approaches, as confirmed in Chapter "Voicing

decision approaches — a review" (3) [29, 30, 31, 32].

5.3.8 Selected features subset definition

The analytical processes described in Subsection "Selected features subset definition" of the Chap-

ter "Methodology" (4.4.8) were conducted on the OCS-sized sequences dataset obtained in 5.3.6.

The feature selection results obtained from feature dimension analysis (5.3.8.1), feature ex-

traction time analysis (5.3.8.2), and feature selection based on PCC, SCC, ANOVA F-value, and

RFI (5.3.8.3), contributed to the definition of the SFS.

5.3.8.1 Feature dimension analysis

The analysis described in the Subsubsection "Feature dimension analysis" of the Chapter "Method-

ology" (4.4.8.1) was conducted on the extracted features.
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It was observed that the STFT and the Mel spectrogram, with their respective dimensions of

512 and 128, were excessively complex representations of the data. Furthermore, it was recog-

nized that certain features offer lower-dimensional representations while still capturing the essen-

tial information obtained from those high-dimensional features. Consequently, the STFT and the

Mel spectrogram were excluded from the SFS.

5.3.8.2 Feature extraction time analysis

The analysis described in the Subsubsection "Feature extraction time analysis" of the Chapter

"Methodology" (4.4.8.2) was conducted on the feature subset obtained in 5.3.8.1. The following

results were obtained:

1. Average IFET estimation: Table 5.1 presents the average single hop IFET for each feature

estimated from the first 1,000 phone segments of the database;

Table 5.1: Single hop Individual Feature Extraction Times.

Feature group IFET (µs)

Zero Crossing Rate 79.24 ± 0.08

Root Mean Square 112.01 ± 0.11

Short-time Fourier Transform 182.14 ± 0.08

Spectral Rolloff 212.50 ± 0.15

Spectral Centroid 214.68 ± 0.13

Spectral Flatness 218.31 ± 0.16

Spectral Bandwidth 244.29 ± 0.16

Spectral Contrast 347.92 ± 0.22

Polynomial Features 367.24 ± 0.58

Mel Spectrogram 435.85 ± 0.57

Chroma STFT 548.00 ± 0.42

Mel-frequency Cepstral Coefficients 681.47 ± 0.44

Mel-frequency Cepstral Coefficients (Delta2) 705.78 ± 0.44

Mel-frequency Cepstral Coefficients (Delta) 716.52 ± 0.44

Tonnetz 737.37 ± 0.45

Chroma CENS 10573.66 ± 1.75

Chroma CQT 14938.69 ± 1.80

2. TFET estimation: The single hop TFET was obtained for all features by summing the

estimated IFETs. As shown in Equation (5.3), the TFET for a single hop when extracting

all features (TFETAll f eatures) compromises the MAPT compliance condition;
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T EPTAll features < MAPT

T FETAll features +CIT < MAPT

62,631 µs+CIT ≮ 23,220 µs

(5.3)

3. Exclusion of feature with the highest IFET: The features with the highest IFETs (CENS

Chromagram and CQT Chromagram) were excluded. As outlined in Equation (5.4), under

these conditions:

(a) The MAPT compliance condition is not compromised by the TFET alone;

(b) There is an available slack for the CIT, of 17,417 µs.

T EPTW/o CENS and CQT Chromagrams < MAPT

T FETW/o CENS and CQT Chromagrams +CIT < MAPT

5,803 µs+CIT < 23,220 µs

CIT < 17,417 µs

(5.4)

5.3.8.3 Feature selection based on Pearson correlation, Spearman correlation, Analysis of
Variance F-value and Random Forest Importance

The feature selection process described in the Subsubsection "Feature selection based on Pearson

correlation, Spearman correlation, ANOVA F-value and Random Forest Importance" of the Chap-

ter "Methodology" (4.4.8.3) was conducted on the feature subset obtained in last Subsubsection

5.3.8.1. The objective was the selection of featues based on 4 metrics: PCC, SCC, ANOVA F-

value, and RFI. The analysed features, along with their scores for each of the 4 metrics evaluated,

as well as their corresponding average scores, are presented in Table A.2.

The top performing 49 features were selected as the SFS, based on their average scores.

Then, the SFS features were analysed and classified into 12 distinct groups of features. The

feature groups and their corresponding contributions within the SFS were listed, as follows:

1. MFCCs: This category dominates the feature subset, comprising 16 features that account

for 32.65% of the subset;

2. STFT Chromagram: The features in this category contribute the second-largest portion of

the subset, with 12 features amounting to 24.49%;

3. Tonnetz: This category consists of 6 features, contributing to 12.24% of the subset;

4. Spectral contrast: This category contributes with 5 features or 10.20% of the subset;

5. Poly features: This category includes 2 features, representing 4.08% of the subset;

6. MFCCs Delta: This category also contributes with 2 features, amounting to 4.08% of the

subset;
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7. Additional single features: The following categories have only one feature, contributing

each to 2.04% of the subset:

(a) RMS;

(b) Spectral Bandwidth;

(c) Spectral Rolloff;

(d) Spectral Flatness;

(e) Spectral Centroid;

(f) ZCR.

A visualization of the SFS composition is presented in Figure 5.1.
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Figure 5.1: Selected Features Subset composition.

5.4 Selection and design of DL-based model architectures

This Section presents the selected and designed architectures, by conducting the method described

in the Section "Selection and design of DL-based model architectures" of the "Methodology"

Chapter (4.5). The architectures selection and design was based in two principles: demonstrated

empirical success, and trainable parameters balancing (to about 200,000 parameters). It resulted in

several architectures, namely CNN (5.4.1), Separable CNN (5.4.2), ResNet (5.4.3), LSTM (5.4.4),

GRU (5.4.5), TCN (5.4.6), and Transformer (5.4.7). For more detailed information on these archi-

tectures, refer to Subsection "Deep Learning-based models" of the Chapter "Background" (2.4.1).

5.4.1 Convolutional Neural Network

The first layer of the CNN architecture is a spatial dropout with a rate of 0.2 applied to the input

tensor. The next 6 layers are 1D convolutional layers with a kernel size of 5, Rectified Linear
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Unit (ReLU) activation, padding "same", each one followed by batch normalization. The numbers

of filters for each layer are 34, 34, 68, 68, 136, and 136, and the dilation rates are 0, 2, 4, 6, 8,

10. Next, a global average pooling layer reduces the dimensions, followed by a dense layer with

ReLU activation and 136 units. Then, a dropout layer with a rate of 0.5 is used for regularization

purposes. Finally, a dense layer with sigmoid activation produces the binary classification output.

5.4.2 Separable Convolutional Neural Network

The first layer of the Separable-CNN architecture consists of one spatial dropout of 0.2 applied

to the input tensor. The next 6 layers are 1D separable convolutional layers with a kernel size

of 5, ReLU activation function, padding "same", each one followed by batch normalization. The

numbers of filters for each layer are 64, 64, 128, 128, 256, and 256, and the dilation rates are 0, 2,

4, 6, 8, and 10. A global average pooling is applied to reduce the dimensions, followed by a dense

layer with ReLU activation and 256 units, and a dropout layer with a rate of 0.5. Finally, a dense

layer with 1 unit and sigmoid activation produces the binary classification output.

5.4.3 Residual Network

The first layer of the ResNet architecture is a spatial dropout layer with a rate of 0.2 applied to

the input tensor. The next, is a 1D convolutional layer with 16 filters and a kernel size of 3. The

next 5 layers are residual blocks, each one followed by batch normalization. The number of filters

of each block are 32, 32, 64, 64, 128. The dilation rates are 2, 2, 4, 4, 8. Next, a global average

pooling layer is used to reduce dimensions, followed by a dense layer with 128 units and ReLU

activation. After, batch normalization is applied, followed by a dropout layer with a rate of 0.5.

Finally, a dense layer with 1 unit and sigmoid activation produces the binary classification output.

5.4.4 Long Short-Term Memory

The first layer of the LSTM architecture is a Spatial dropout of 0.2 applied to the input tensor.

Then, 6 LSTM layers take place, each one returning sequences and followed by batch normaliza-

tion: 2 with 25 units, 2 with 50 units and 2 with 100 units. Next, global average pooling is applied

to reduce the dimensions, followed by a dense layer with ReLU activation and 100 units. Then,

a dropout layer with a rate of 0.5 is used for regularization purposes. Finally, a dense layer with

sigmoid activation produces the binary classification output.

5.4.5 Gated Recurrent Unit

The first layer of the GRU architecture is a spatial dropout of 0.2 applied to the input tensor. Next,

there are 6 GRU layers returning sequences, each followed by batch normalization: 2 with 29

units, 2 with 58 and the last 2 with 116. Then, global average pooling is applied to reduce the

dimensions, followed by a dense layer with ReLU activation and 116 units, and dropout layer
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with a rate of 0.5. Finally, a dense layer with sigmoid activation produces the binary classification

output.

5.4.6 Temporal Convolutional Network

The first layer of the TCN architecture is a TCN layer with:

• 64 filters in each stage;

• Kernel size of 3;

• 2 stacks;

• Dilation rates of 1, 2, 4, and 8;

• Skip connections enabled;

• Dropout rate of 0.2 applied to the TCN output;

• ReLU activation;

• Batch normalization enabled.

Then, a dense layer with 64 units and ReLU activation is applied to the TCN output, followed by a

dropout layer, with a rate of 0.5. Finally, a dense layer with 1 unit and sigmoid activation produces

the binary classification output.

5.4.7 Transformer

The first layer of the Transformer architecture is a spatial dropout of 0.2 applied to the input tensor.

Next, a dense layer with 64 units takes place, followed by batch normalization. 4 transformer

blocks follow, with: a multi-head attention layer with 4 attention heads and a size of each attention

head for query and key of 16; a dropout layer with a rate of 0.2; layer normalization after each

self-attention; a FNN with two dense layers, ReLU activation, and 256 hidden units; a dropout

layer with a rate of 0.1 after the FNN; layer normalization after each FNN; batch normalization

after each transformer block. Global average pooling is applied to the transformer blocks’ output,

followed by a dense layer with ReLU activation and 64 units. Then, a dropout layer with a rate of

0.5 takes place. Finally, a dense layer with sigmoid activation produces the binary classification

output.

5.5 Assessment and comparison of all model/features subset pairs

The results of the procedures described in Section "Assessment and comparison of all model/features

subset pairs" of the Chapter "Methodology" are presented next, encompassing TTS using the BFS

(5.5.1), TTS using the SFS (5.5.2), performance comparison across features subsets (5.5.3), and

selection of the best performing model/features subset pair (5.5.4).
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5.5.1 Train-Test Split using the baseline features subset

5 iterations of TTS evaluation using the 49 MFCCs BFS were conducted on the following models:

TCN, GRU, LSTM, ResNet, CNN, Separable CNN, and Transformer. Evaluation metrics were

retrieved, namely performance (5.5.1.1) and computational (5.5.1.2) metrics.

5.5.1.1 Performance metrics

The performance metrics obtained from the 5 iterations of TTS evaluation using the 49 MFCCs

BFS are presented in Table 5.2 and Figure 5.2, including:

• Accuracy:

– The LSTM model tops the list with an Accuracy of 96.51% ± 0.18%;

– It is followed by the Separable CNN model (96.10% ± 0;20%), the GRU model

(96.02% ± 0.44%), the CNN model (96.00% ± 0.12%), and the ResNet model (95.88%

± 0.24%);

– The TCN model has an Accuracy of 95.47% ± 0.23%;

– The Transformer model performs the lowest with an Accuracy of 92.39% ± 0.62%.

• Precision:

– Again, the LSTM model is at the top with a Precision of 96.75% ± 0.38%;

– The Separable CNN model follows closely with 96.37% ± 0.55%;

– Next, we have the GRU model (96.35% ± 0.62%), the ResNet model (96.23% ±
0.81%), and the TCN model (95.77% ± 0.62%);

– The CNN model has a Precision of 95.99% ± 0.27%;

– The Transformer model performs the lowest in this category with 92.63% ± 0.95%.

• Recall:

– Once more, the LSTM model leads with a Recall of 96.25% ± 0.63%;

– It is followed by the GRU model (95.66% ± 0.65%), the Separable CNN model

(95.80% ± 0.31%), the CNN model (96.01% ± 0.35%), and the ResNet model (95.49%

± 0.69%);

– The TCN model has a Recall of 95.14% ± 0.55%;

– The Transformer model ranks last with a Recall of 92.10% ± 1.55%.

• Specificity:

– The LSTM model continues to lead with a Specificity of 96.77% ± 0.39%;

– The GRU, Separable CNN, and ResNet models follow with Specificity scores of

96.38% ± 0.61%, 96.39% ± 0.59%, and 96.27% ± 0.83%, respectively;
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– The TCN model’s Specificity is 95.81% ± 0.61%, while the CNN model’s is 95.99%

± 0.33%;

– The Transformer model performs the lowest with a Specificity of 92.68% ± 1.06%.

• F1 Score:

– The LSTM model has the highest F1 Score with 96.50% ± 0.19%;

– The Separable CNN model has an F1 Score of 96.08% ± 0.17%, followed by the GRU

model with 96.00% ± 0.44%, the CNN model with 96.00% ± 0.12%, and the ResNet

model with 95.86% ± 0.23%;

– The TCN model has an F1 Score of 95.45% ± 0.25%;

– The Transformer model has the lowest F1 Score of 92.35% ± 0.65%.

• AUC-ROC:

– The LSTM model again takes the top spot with an AUC-ROC of 99.53% ± 0.06%;

– It is followed by the GRU and Separable CNN models, both with an AUC-ROC of

99.40% ± 0.11% and 99.40% ± 0.06%, respectively;

– The CNN and ResNet models have AUC-ROC values of 99.36% ± 0.03% and 99.33%

± 0.08%, respectively;

– The TCN model has an AUC-ROC of 99.19% ± 0.06%;

– The Transformer model performs the lowest with an AUC-ROC of 97.96% ± 0.26%.

In this TTS evaluation of various classifiers using the baseline 49 MFCCs BFS, the LSTM

model consistently demonstrated superior performance across multiple metrics. The Separable

CNN model also performed well, closely following the LSTM model in most metrics. The GRU,

CNN, and ResNet models showed competitive results but slightly lower than the top performers.

The TCN model achieved relatively lower scores in comparison. The Transformer model consis-

tently had the lowest performance across all metrics, indicating its limitations in this particular

task.

Based on these results, it can be concluded that the LSTM model is the most effective classifier

when using the 49 MFCCs BFS as input, showcasing strong performance and robustness.

5.5.1.2 Computational metrics

The computational metrics obtained from the 5 iterations of TTS evaluation using the 49 MFCCs

BFS are presented in Table 5.3 and Figure 5.3 including:

• Number of parameters:

– The CNN model has the highest number of parameters with 208,659, closely followed

by the Transformer model with 208,641 parameters;
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Table 5.2: Classifiers’ performance metrics obtained from 5 iterations of Train-Test Split evalua-
tion using the 49 MFCCs Baseline Features Subset.

Model Accuracy Precision Recall Specificity F1 Score AUC

TCN 95.47 ±
0.23

95.77 ±
0.62

95.14 ±
0.55

95.81 ±
0.61

95.45 ±
0.25

99.19 ±
0.06

GRU 96.02 ±
0.44

96.35 ±
0.62

95.66 ±
0.65

96.38 ±
0.61

96.00 ±
0.44

99.40 ±
0.11

LSTM 96.51 ±
0.18

96.75 ±
0.38

96.25 ±
0.63

96.77 ±
0.39

96.50 ±
0.19

99.53 ±
0.06

ResNet 95.88 ±
0.24

96.23 ±
0.81

95.49 ±
0.69

96.27 ±
0.83

95.86 ±
0.23

99.33 ±
0.08

CNN 96.00 ±
0.12

95.99 ±
0.27

96.01 ±
0.35

95.99 ±
0.33

96.00 ±
0.12

99.36 ±
0.03

Separable CNN 96.10 ±
0.20

96.37 ±
0.55

95.80 ±
0.31

96.39 ±
0.59

96.08 ±
0.17

99.40 ±
0.06

Transformer 92.39 ±
0.62

92.63 ±
0.95

92.10 ±
1.55

92.68 ±
1.06

92.35 ±
0.65

97.96 ±
0.26
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Figure 5.2: Classifiers’ performance metrics obtained from 5 iterations of Train-Test Split evalua-
tion using the 49 MFCCs Baseline Features Subset.
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– The TCN and GRU models have 206,273 and 206,191 parameters, respectively;

– The Separable CNN model has slightly fewer parameters at 204,086;

– The LSTM model has 200,401 parameters, and finally, the ResNet model has the

fewest parameters with 198,913.

• Training time:

– The Separable CNN model requires the most time for training, with a mean of 43.75±
12.95 minutes;

– The Transformer model follows with 18.71±4.31 minutes;

– Both the LSTM and ResNet models require 16.28± 2.14 and 16.28± 2.81 minutes,

respectively. The TCN model has a slightly lower training time with 16.40± 2.85

minutes;

– The GRU model requires 15.25± 6.81 minutes, and the CNN model has the shortest

training time of 11.89±2.78 minutes;

• Number of epochs:

– The LSTM model takes the most epochs to complete training, with a mean of 55.40±
10.81;

– It is followed by the GRU model with 49.20±21.14 epochs;

– The ResNet model completes training in 44.20± 11.17 epochs, while the Separable

CNN model takes 41.00±14.49 epochs;

– The TCN model needs 33.80±3.49 epochs, and the CNN model requires 36.60±8.73

epochs;

– The Transformer model takes the fewest epochs, with a mean of 35.00±6.63 epochs.

• Best epoch:

– The LSTM model has the highest best epoch value of 49.40±10.81, followed by the

GRU model at 43.20±21.14;

– The ResNet model’s best epoch is at 38.20±11.17, while the Separable CNN model

is at 35.00±14.49;

– The TCN model’s best epoch is at 27.80± 3.49, and the CNN model’s best epoch is

30.60±8.73;

– The Transformer model has the earliest best epoch at 29.00±6.63.

• Average epoch training time:

– The Separable CNN model takes the most time per epoch, with 1.09±0.15 minutes;
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– It is followed by the Transformer and TCN models, with 0.53±0.06 and 0.48±0.05

minutes, respectively;

– The ResNet model requires 0.38± 0.04 minutes per epoch, while the CNN model

takes 0.33±0.07 minutes;

– The LSTM and GRU models require the least time per epoch, with 0.30± 0.03 and

0.31±0.03 minutes, respectively.

• Inference time:

– The LSTM and Transformer models have the highest inference times, with 0.26±0.08

ms and 0.27±0.06 ms, respectively;

– The GRU model follows with 0.24±0.08 ms;

– The TCN model has an inference time of 0.20± 0.07 ms, while the ResNet model

requires 0.18±0.07 ms;

– Both the CNN and Separable CNN models have the shortest inference times, with

0.12±0.04 ms and 0.12±0.03 ms, respectively.

These findings highlight the trade-offs between number of parameters, training time, epoch

count, and inference time for each model, enabling informed decision-making based on specific

computational requirements.

5.5.2 Train-Test Split using the selected features subset

5 iterations of TTS evaluation using the SFS were conducted on the following models: TCN,

GRU, LSTM, ResNet, CNN, Separable CNN, and Transformer. Evaluation metrics were retrieved,

namely performance (5.5.2.1) and computational (5.5.2.2).

5.5.2.1 Performance metrics

The performance metrics obtained from the 5 iterations of TTS evaluation using the SFS are

presented in Table 5.4 and Figure 5.4, including:

• Accuracy:

– The TCN model leads with an Accuracy of 98.72% ± 0.16%;

– It is followed by the GRU model (98.26% ± 0.20%), the LSTM model (98.22% ±
0.34%), the ResNet model (97.45% ± 0.37%), the CNN model (97.32% ± 0.22%),

and the Separable CNN model (97.15% ± 0.29%);

– The Transformer model performs the lowest with an Accuracy of 94.77% ± 0.51%.

• Precision:

– The TCN model is at the top with a Precision of 98.71% ± 0.22%;
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Table 5.3: Classifiers’ computational metrics obtained from 5 iterations of Train-Test Split evalu-
ation using the 49 MFCCs Baseline Features Subset.
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TCN 206273 16.40 ±
2.85

33.80 ±
3.49

27.80 ±
3.49

0.48 ±
0.05

0.20 ±
0.07

GRU 206191 15.25 ±
6.81

49.20 ±
21.14

43.20 ±
21.14

0.31 ±
0.03

0.24 ±
0.08

LSTM 200401 16.28 ±
2.14

55.40 ±
10.81

49.40 ±
10.81

0.30 ±
0.03

0.26 ±
0.08

ResNet 198913 16.28 ±
2.81

44.20 ±
11.17

38.20 ±
11.17

0.38 ±
0.04

0.18 ±
0.07

CNN 208659 11.89 ±
2.78

36.60 ±
8.73

30.60 ±
8.73

0.33 ±
0.07

0.12 ±
0.04

Separable CNN 204086 43.75 ±
12.95

41.00 ±
14.49

35.00 ±
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1.09 ±
0.15
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Transformer 208641 18.71 ±
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Figure 5.3: Classifiers’ inference time obtained from 5 iterations of Train-Test Split evaluation
using the 49 MFCCS Baseline Features Subset.
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– The LSTM model follows closely with 98.37% ± 0.31%.

– Next, appears the GRU model (98.12% ± 0.17%), the ResNet model (97.61% ±
0.49%), and the Separable CNN model (97.35% ± 0.50%);

– The CNN model has a Precision of 97.21% ± 0.41%;

– The Transformer model performs the lowest in this category with 95.39% ± 0.42%.

• Recall:

– The TCN model leads with a Recall of 98.74% ± 0.22%;

– It is followed by the GRU model (98.41% ± 0.29%), the LSTM model (98.07%

± 0.48%), the CNN model (97.44% ± 0.55%), and the ResNet model (97.29% ±
0.57%);

– The Separable CNN model has a Recall of 96.94% ± 0.34%;

– The Transformer model ranks last with a Recall of 94.08% ± 1.17%.

• Specificity:

– The TCN model leads with a Specificity of 98.71% ± 0.23%;

– The LSTM model, GRU model, and Separable CNN model follow with Specificity

scores of 98.37% ± 0.33%, 98.12% ± 0.18%, and 97.37% ± 0.53%, respectively;

– The ResNet model’s Specificity is 97.61% ± 0.51%, while the CNN model’s is 97.20%

± 0.45%;

– The Transformer model performs the lowest with a Specificity of 95.46% ± 0.48%.

• F1 Score:

– The TCN model has the highest F1 Score with 98.72% ± 0.15%;

– The GRU model has an F1 Score of 98.26% ± 0.20%, followed by the LSTM model

(98.22% ± 0.34%), the ResNet model (97.45% ± 0.37%), the CNN model (97.32%

± 0.22%), and the Separable CNN model (97.14% ± 0.27%);

– The Transformer model has the lowest F1 Score of 94.72% ± 0.56%.

• AUC-ROC:

– The TCN model again takes the top spot with an AUC-ROC of 99.91% ± 0.01%;

– It is followed by the GRU model (99.84% ± 0.03%), the LSTM model (99.82% ±
0.04%), the ResNet model (99.70% ± 0.09%), the CNN model (99.68% ± 0.05%),

and the Separable CNN model (99.66% ± 0.06%);

– The Transformer model performs the lowest with an AUC-ROC of 99.03% ± 0.16%.
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In this TTS evaluation of various classifiers using the SFS as input, the TCN model consis-

tently outperformed the others in terms of Accuracy, Precision, Recall, Specificity, F1 score, and

AUC-ROC. The GRU and LSTM models also performed well, closely trailing the TCN model

in most metrics. However, the Transformer model consistently had the lowest scores across all

performance metrics. Based on these results, it can be concluded that the TCN model is the most

effective classifier for the given task when using the SFS as input, demonstrating superior perfor-

mance and robustness.

5.5.2.2 Computational metrics

The computational metrics obtained from the 5 iterations of TTS evaluation using the SFS are

presented in Table 5.5 and Figure 5.5, including:

• Number of parameters:

– The CNN model has the highest number of parameters with 208,659, closely followed

by the Transformer model with 208,641 parameters;

– The TCN and GRU models have 206,273 and 206,191 parameters, respectively;

– The Separable CNN model has slightly fewer parameters at 204,086;

– The LSTM model has 200,401 parameters, and finally, the ResNet model has the

fewest parameters with 198,913.

• Training time:

– The Separable CNN model requires the most time for training, with a mean of 31.15±
8.02 minutes;

– The TCN model follows with 25.13±5.03 minutes;

– The LSTM model requires 17.16±4.24 minutes, and the GRU and Transformer mod-

els require 16.73±3.14 and 16.60±2.86 minutes, respectively;

– The ResNet model has a slightly lower training time with 15.49± 5.46 minutes, and

the CNN model has the shortest training time of 10.04±1.61 minutes.

• Number of epochs:

– The LSTM model takes the most epochs to complete training, with a mean of 60.00±
17.18;

– It is followed by the GRU model with 56.80±11.30 epochs and the TCN model with

54.80±12.05 epochs;

– The ResNet model completes training in 43.00±15.56 epochs, while the Transformer

model takes 33.00±5.66 epochs;

– The CNN model requires 34.40± 6.23 epochs, and the Separable CNN model takes

the fewest epochs, with a mean of 30.80±8.07 epochs.
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Table 5.4: Classifiers’ performance metrics obtained from 5 iterations of Train-Test Split evalua-
tion using the 49 Selected Features Subset.

Model Accuracy Precision Recall Specificity F1 Score AUC

TCN 98.72 ±
0.16

98.71 ±
0.22

98.74 ±
0.22

98.71 ±
0.23

98.72 ±
0.15

99.91 ±
0.01

GRU 98.26 ±
0.20

98.12 ±
0.17

98.41 ±
0.29

98.12 ±
0.18

98.26 ±
0.20

99.84 ±
0.03

LSTM 98.22 ±
0.34

98.37 ±
0.31

98.07 ±
0.48

98.37 ±
0.33

98.22 ±
0.34

99.82 ±
0.04

ResNet 97.45 ±
0.37

97.61 ±
0.49

97.29 ±
0.57

97.61 ±
0.51

97.45 ±
0.37

99.70 ±
0.09

CNN 97.32 ±
0.22

97.21 ±
0.41

97.44 ±
0.55

97.20 ±
0.45

97.32 ±
0.22

99.68 ±
0.05

Separable CNN 97.15 ±
0.29

97.35 ±
0.50

96.94 ±
0.34

97.37 ±
0.53

97.14 ±
0.27

99.66 ±
0.06

Transformer 94.77 ±
0.51

95.39 ±
0.42

94.08 ±
1.17

95.46 ±
0.48

94.72 ±
0.56

99.03 ±
0.16
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Figure 5.4: Classifiers’ performance metrics obtained from 5 iterations of Train-Test Split evalua-
tion using the 49 Selected Features Subset
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• Best epoch:

– The LSTM model has the highest best epoch value of 54.00±17.18, followed by the

GRU model at 50.80±11.30 and the TCN model at 48.80±12.05;

– The ResNet model’s best epoch is at 37.00±15.56, while the Transformer and CNN

models’ best epochs are at 27.00±5.66 and 28.40±6.23, respectively;

– The Separable CNN model has the earliest best epoch at 24.80±8.07.

• Average epoch training time:

– The Separable CNN model takes the most time per epoch, with 1.01±0.01 minutes;

– It is followed by the Transformer and TCN models, with 0.50±0.01 and 0.46±0.01

minutes, respectively;

– The ResNet model requires 0.36± 0.01 minutes per epoch, while the LSTM, GRU,

and CNN models require the least time per epoch, each with 0.29±0.01 or 0.29±0.02

minutes.

• Inference time:

– The LSTM model has the highest inference time, with 0.28±0.09 ms;

– The Transformer model has a slightly lower inference time of 0.27±0.06 ms, followed

by the GRU model with 0.25±0.08;

– The TCN and ResNet models require 0.22±0.08 and 0.20±0.07 ms, respectively;

– The Separable CNN and CNN models have the shortest inference times, with 0.13±
0.03 ms and 0.12±0.04 ms, respectively.

These findings highlight the trade-offs between number of parameters, training time, epoch

count, and inference time for each model, enabling informed decision-making based on specific

computational requirements.

5.5.3 Performance comparison across features subsets

The SFS displays superior performance over the BFS. This is confirmed by the improved perfor-

mance metrics observed across all models, as depicted in Figures 5.6 and 5.7.

Table 5.6 presents the verified performance absolute gains obtained by using the SFS instead

of the BFS. For instance, the TCN model exhibits absolute gains of 3.25% in Accuracy, 2.94%

in Precision, 3.60% in Recall, 2.90% in Specificity, 3.27% in F1 Score, and 0.72% in AUC-ROC.

Similar enhancements are verified in all other models.

This evidence supports the preference for the SFS. Its consistent higher performance suggests

it better captures relevant information for this classification task.
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Table 5.5: Classifiers’ computational metrics obtained from 5 iterations of Train-Test Split evalu-
ation using the 49 Selected Features Subset.

Model N
um

.p
ar

am
et

er
s

Tr
ai

ni
ng

tim
e

(m
in

)

N
um

.e
po

ch
s

B
es

te
po

ch

Av
g.

ep
oc

h
tr

ai
ni

ng
tim

e
(m

in
)

In
fe

re
nc

e
tim

e
(m

s)

TCN 206273 25.13 ±
5.03

54.80 ±
12.05

48.80 ±
12.05

0.46 ±
0.01

0.22 ±
0.08

GRU 206191 16.73 ±
3.14

56.80 ±
11.30

50.80 ±
11.30

0.29 ±
0.01

0.25 ±
0.08

LSTM 200401 17.16 ±
4.24

60.00 ±
17.18

54.00 ±
17.18

0.29 ±
0.02

0.28 ±
0.09

ResNet 198913 15.49 ±
5.46

43.00 ±
15.56

37.00 ±
15.56

0.36 ±
0.01

0.20 ±
0.07

CNN 208659 10.04 ±
1.61

34.40 ±
6.23

28.40 ±
6.23

0.29 ±
0.01

0.12 ±
0.04

Separable CNN 204086 31.15 ±
8.02

30.80 ±
8.07

24.80 ±
8.07

1.01 ±
0.01

0.13 ±
0.03

Transformer 208641 16.60 ±
2.86

33.00 ±
5.66

27.00 ±
5.66

0.50 ±
0.01

0.27 ±
0.06

0

50μ

100μ

150μ

200μ

250μ

TCN
GRU
LSTM
ResNet
CNN
Separable CNN
Transformer

Model

In
fe

re
nc

e 
Ti

m
e 

(s
)

Figure 5.5: Classifiers’ inference time obtained from 5 iterations of Train-Test Split evaluation
using the 49 Selected Features Subset.
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Figure 5.6: Classifiers’ performance metrics obtained from 5 iterations of Train-Test Split evalua-
tion using the 49 MFCCs Baseline Features Subset (web plot).
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Figure 5.7: Classifiers’ performance metrics obtained from 5 iterations of Train-Test Split evalua-
tion using the 49 Selected Features Subset (web plot).
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Table 5.6: Classifers’ performance metrics absolute gains obtained by using the 49 Selected Fea-
tures Subset instead of the 49 MFCCs Baseline Features Subset.

Model Accuracy Precision Recall Specificity F1 Score AUC

TCN 3.25 2.94 3.60 2.90 3.27 0.72

GRU 2.24 1.77 2.75 1.73 2.26 0.44

LSTM 1.71 1.62 1.82 1.60 1.72 0.30

ResNet 1.58 1.37 1.80 1.35 1.59 0.37

CNN 1.32 1.22 1.43 1.21 1.32 0.32

Separable CNN 1.06 0.99 1.14 0.97 1.06 0.26

Transformer 2.38 2.76 1.97 2.78 2.37 1.06

5.5.4 Selection of the best performing model/features subset pair

Based on the TTS evaluation of performance and computational metrics, the TCN model with

the SFS as input emerges as the most favorable model/features subset pairing. This choice is

influenced by the following reasons:

• Performance metrics: The TCN model outperformed all other considered models across all

performance metrics. This model achieved the highest Accuracy, Precision, Recall, Speci-

ficity, F1 Score, and AUC-ROC. Such results demonstrate the model’s ability to deliver

accurate and consistent classifications;

• Computational efficiency: While the TCN model did not have the best computational

metrics, they were well within acceptable limits given its superior predictive performance;

• Feature importance: The SFS has been determined to contain the most valuable infor-

mation for the task at hand. Using this subset, the TCN model effectively leveraged the

information contained in these features, yielding the best results;

• Stability: The standard deviations of the performance metrics for the TCN model are rela-

tively low, indicating that the model performance is stable and not highly sensitive to varia-

tions in the data.

Therefore, considering the balance between performance, computational efficiency, and sta-

bility, the TCN model trained with the SFS has been chosen as the best performing model/features

subset pair for the given task.
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5.6 Assessment of the best performing model/features subset pair

The results of the procedures described in Section "Assessment of the best performing model/features

subset pair" of the Chapter "Methodology" are presented next, encompassing performance assess-

ment across articulation manner classes (5.6.1), K-FCV (5.6.2), exemplification of VD segmenta-

tion (5.6.3), and compliance with the MAPT (5.6.4).

5.6.1 Performance assessment across articulation manner classes

Based on the TTS evaluation results, the Accuracy of the best performing model/feature subset

pair (TCN/SFS) was analysed across different articulation manner classes. Table 5.7 presents the

results of this analysis.

The results reveal a high level of proficiency in VD decision across all articulation manners,

substantiating the robustness of the model. The voiced plosives class obtained a relatively lower

Accuracy, potentially due to underrepresentation.

Table 5.7: Temporal Convolutional Network model’s classification Accuracy for each articulation
manner class, obtained from the 5 iterations of the Train-Test Split evaluation using the 49 Selected
Features Subset.

Phonetic class Accuracy Correct classifications Total samples

voiced approximant 99.23 ± 0.20 3124 ± 29 3148 ± 30

vowel 99.07 ± 0.12 6141 ± 65 6198 ± 69

silence 98.87 ± 0.16 9101 ± 52 9205 ± 42

unvoiced fricative 98.36 ± 0.34 2051 ± 48 2085 ± 46

voiced nasal 97.90 ± 1.01 234 ± 20 239 ± 19

voiced fricative 97.87 ± 0.71 1685 ± 23 1722 ± 25

unvoiced plosive 97.22 ± 1.12 486 ± 15 500 ± 18

voiced plosive 94.46 ± 0.79 427 ± 20 452 ± 20

5.6.2 K-Fold Cross Validation

Performance and computational metrics were obtained from K-FCV evaluation of the TCN/SFS

pair, using the GPU.

5.6.2.1 Performance metrics

As presented in Table 5.8, the TCN model achieved high performance in all performance metrics,

with an Accuracy of 98.97% ± 0.19%, Precision of 99.00% ± 0.26%, Recall of 98.94% ± 0.17%,

Specificity of 99.00% ± 0.26%, F1 Score of 98.97% ± 0.18%, and AUC-ROC of 99.94% ±
0.02%.
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Table 5.8: Temporal Convolutional Network model’s classification performance metrics obtained
from K-Fold Cross Validation evaluation with a K of 5, using the 49 Selected Features Subset.

Model Accuracy Precision Recall Specificity F1 Score AUC

TCN 98.97 ±
0.19

99.00 ±
0.26

98.94 ±
0.17

99.00 ±
0.26

98.97 ±
0.18

99.94 ±
0.02

5.6.2.2 Computational metrics

Table 5.9 presents the computational metrics obtained from K-FCV evaluation of the TCN/SFS

model/features subset pair. With 206,273 parameters, the TCN model required a training time of

26.59 minutes ± 5.35, with an average of 49.40 epochs ± 10.06. The best epoch achieved during

training was at epoch 43.40 ± 10.06. Each epoch took an average of 0.54 minutes to train, with

no observed variation. During inference, the TCN model exhibited an inference time of 0.28 ms

± 0.02.

Table 5.9: Temporal Convolutional Network model’s computational metrics obtained from K-Fold
Cross Validation evaluation with a K of 5, using the 49 Selected Features Subset.
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TCN 206273 26.59 ±
5.35

49.40 ±
10.06

43.40 ±
10.06

0.54 ±
0.00

0.28 ±
0.02

5.6.3 Exemplification of voicing decision segmentation

The procedure described in Section "Exemplification of VD segmentation" of the Chapter "Method-

ology" was applied: the best performing model/features subset pair selected in 5.5.4 was tested on

several tasks from the phonetically annotated WS/NS dataset to exemplify and visualize its opera-

tion. The tasks were carefully selected to encompass phones from all articulation manner classes,

as follows: "fisga" (Figure 5.8); "luta" (Figure 5.9); "nuca" (Figure 5.10); "zaro" (Figure 5.11);

"viga" (Figure 5.12).

This process allowed to verify visually the correct operation of the VD subsystem:

• A VD is obtained at each frame with FS of 512 samples;
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• The VDs obtained correspond to the ground truth.
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Figure 5.8: Voicing Decision segmentation example of the word "fisga".

5.6.4 Compliance with the Maximum Allowable Processing Time

To validate the system’s capability of online operation, the method described in Section "Compli-

ance with the Maximum Allowable Processing Time" of the Chapter "Methodology" (4.8.4) was

followed for the TCN/SFS model/features subset pair.

The MAPT compliance condition was evaluated. For that purpose, the following steps were

taken:

1. The pair’s TFET was estimated from Table 5.1, as in Equation (5.5):

T FET =∑ IFET

= IFETMFCC + IFETST FTChroma + IFETTonnetz

+ IFETSpectralContrast + IFETPolyFeatures + IFETMFCCDelta

+ IFETRMS + IFETSpectralBandwidth + IFETSpectralCentroid

+ IFETSpectralFlatness + IFETSpectralRollo f f + IFETZCR

= 4,479.55 µs

≊ 4.48 ms

(5.5)
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Figure 5.9: Voicing Decision segmentation example of the word "luta".
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Figure 5.10: Voicing Decision segmentation example of the word "nuca".
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Figure 5.11: Voicing Decision segmentation example of the word "zaro".
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Figure 5.12: Voicing Decision segmentation example of the word "viga".
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2. The pair’s CIT was estimated as the average of the 5 iterations of TTS evaluation (refer to

Table 5.5):

CIT = 0.22 ms (5.6)

3. The MAPT compliance condition was verified: the TEPT does not surpass the MAPT as

expressed in Equation (5.7):

T EPT < MAPT

T FET +CIT < MAPT

∑ IFET +CIT < HS×
(

1
SF

)
∑ IFET +CIT < 512×

(
1

22,050 Hz

)
∑ IFET +CIT < 23.22 ms

4.48 ms+0.22 ms < 23.22 ms

4.70 ms < 23.22 ms

(5.7)

Even though conservative estimates were used for both the MAPT and the IFETs, the con-

dition was verified with a comfortable margin of 18.52 ms. This provides strong evidence that

the online operation of the VD subsystem is viable. Additionally, it allows for a generous slack

of 18.51 ms for the operation of the other subsystems within the broader whispered-to-normal

conversion system.

5.7 Chapter summary

This Chapter "Results and Discussion" presented the findings of the research and includes discus-

sions. It covered several sections, including the acquisition of the phonetically annotated WS/NS

dataset (5.1), dataset preprocessing (5.2), feature engineering (5.3), selection and design of DL-

based model architectures (5.4), assessment and comparison of all model/features subset pairs

(5.5), and the assessment of the best performing model/features subset pair (5.6).

In the next Chapter "Conclusions", the overall conclusions drawn from the research will be

presented, including a summary of the key findings (6.1), the answer to the research questions

through validation of the hypotheses (6.2), the contributions, innovations, and implications of the

research work (6.3), as well as the limitations encountered and proposed avenues for future work

to address them (6.4).



Chapter 6

Conclusions

In this Chapter, the conclusions from the research work are presented, encompassing a summary

of the key findings (6.1), the revisiting of the research question and hypotheses (6.2), the statement

of the contributions, innovations, implications (6.3), limitations and proposed future work (6.4) of

the research work.

6.1 Summary of key findings

The key findings obtained with the application of the proposed methodologies are summarized

and presented next, encompassing the dataset preprocessing (6.1.1), feature engineering (6.1.2),

selection and design of DL-based model architectures (6.1.3), assessment and comparison of all

model/features subset pairs (6.1.4), and assessment of the best performing model/features subset

pair (6.1.5).

6.1.1 Dataset preprocessing

The dataset underwent preprocessing, including downsampling audio files, segmenting them based

on phone annotations, and organizing them into a table. A subset of the dataset was then selected

and cleaned according to specific criteria. Segments were labeled as CTV or NCTV based on

phonetic annotations. Lastly, the audio segments were standardized.

6.1.2 Feature engineering

Feature engineering involved extracting various acoustic features such as ZCR, RMS, STFT, Mel

Spectrogram, STFT Chromagram, CQT Chromagram, CENS, Spectral Centroid, Spectral Band-

width, Spectral Contrast, Spectral Flatness, Spectral Rolloff, Tonnetz, MFCCs, MFCCs Delta,

MFCCs Delta Delta, and Polynomial features. The dataset’s features were standardized. Frames

of 1024 samples with a HS of 512 samples were created for each feature. To balance the class

distribution, silence frames were selectively eliminated. An average-sized word was defined as

the CCS. Sequences of OCS-sized feature vectors were generated, with each sequence assigned

93
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the label of the last frame. Feature dimension and extraction time analysis were conducted. Fea-

ture selection was performed based on PCC, SCC, ANOVA F-Value, and RFI. Ultimately, a SFS

composed of the 49 top-performing features was selected based on average scores from the 4

metrics.

6.1.3 Selection and design of DL-based model architectures

DL-based model architectures were selected based on their empirical success and a balanced num-

ber of trainable parameters (around 200,000). The choice of architectures aimed to ensure proven

success in classification tasks involving sequential and temporal data, while maintaining a baseline

complexity level.

6.1.4 Assessment and comparison of all model/features subset pairs

Models were trained and evaluated using a TTS approach. Performance and computational metrics

were obtained for model evaluation. A comparison was conducted to assess the effects of different

feature subsets on model performance. The SFS yielded the best results across all models. Based

on the performance metrics obtained from TTS evaluation, the TCN model using the SFS was

selected as the best performing model/feature subset pair, with an Accuracy of 98.72%± 0.16,

Precision of 98.71%±0.22, Recall of 98.74%±0.22, Specificity of 98.71%±0.23, F1 Score of

98.72%±0.15 and AUC-ROC of 99.91%±0.01.

6.1.5 Assessment of the best performing model/features subset

The best performing model/feature subset was evaluated using K-FCV to substantiate its effective-

ness and generalizability. Performance and computational efficiency were assessed and validated.

The model’s VD Accuracy for different articulation manner classes was further evaluated. Next,

the model was tested on tasks from the phonetically annotated WS dataset to graphically exem-

plify its operation. Finally, the model’s compliance with the MAPT was verified and validated,

ensuring online operation capability.

6.2 Research question and hypotheses

The Chapter "Introduction" detailed the research question and hypotheses in Section "Research

question and hypotheses" (1.3). The research question posed was:

• Research question: "What is the effectiveness and efficiency of a carefully chosen Deep

Learning (DL)-based model which performs online frame-based VDs in European Por-

tuguese (EP) Whispered Speech (WS), utilizing a Selected Feature Subset (SFS) as input?"

The hypotheses formulated included H1, H2, and H3, positing on effectiveness, efficiency, and

improvements due to SFS, respectively:
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• H1: A carefully chosen DL-based model effectively performs online frame-based VDs in

EP WS;

• H2: A carefully chosen DL-based model performs online frame-based VDs in EP WS effi-
ciently, taking less than the MAPT to process and decide on the input features;

• H3: A carefully chosen SFS, when used as input, improves the effectiveness and efficiency
of a DL-based model performing online frame-based VDs in EP WS, compared to a BFS.

Each hypothesis was subsequently addressed and validated in the following sections (6.2.1,

6.2.2, and 6.2.3), thereby contributing to answering the research question.

6.2.1 Validation of Hypothesis 1

The research findings supported this hypothesis, demonstrating effective VDs by a DL-based

model in EP WS contexts.

The validation of H1 is derived from the results of the TTS and K-FCV evaluations (5.5.2,

5.6.2) which substantiated the effectiveness and generalizability of the chosen model.

6.2.2 Validation of Hypothesis 2

The validation of H2 is confirmed by the compliance with MAPT (5.6.4), demonstrating the fea-

sibility of online operation of the TCN/SFS pair.

6.2.3 Validation of Hypothesis 3

H3 was validated through the comparison of the performances obtained using SFS and BFS:

• The comparative assessment across feature subsets (5.5.3) shows that an optimized SFS

outperforms a traditional BFS consisting exclusively of MFCCs;

• Despite having similar feature space dimensions (5.3.8, 5.3.7), thus offering comparable

complexity and efficiency, the SFS surpasses the BFS in effectiveness by concentrating the

most relevant features for the VD task.

6.3 Contributions, innovations and implications

This research work has made significant contributions and innovations in the field of online frame-

based VD for EP WS. The implications of these findings are substantial, particularly in improving

communication abilities of voice patients. The contributions (6.3.1), innovations (6.3.2), and im-

plications (6.3.3) of the research work are further detailed next.
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6.3.1 Contributions

A comparative assessment of multiple models and feature subset pairs was conducted to determine

the feasibility of various DL architectures for online frame-based EP WS VD, using objective

performance and computational efficiency metrics. Based on the results, general guidelines were

established regarding the suitability of DL architectures for VD.

Feature selection techniques were employed to define a SFS and compare it with a commonly

used BFS. The SFS consistently outperformed the BFS in all models examined, providing valuable

insights into the importance of specific audio features in distinguishing between CTV and NCTV

phones.

The best performing model/feature subset pairing (TCN/SFS) was identified and subjected

to rigorous evaluation to validate its effectiveness, generalizability, efficiency, and feasibility of

online operation. This evaluation process led to the development of the final online frame-based

EP WS VD subsystem, confirming all the aforementioned aspects.

When compared to current state-of-the-art methodologies, the proposed VD subsystem demon-

strated superior performance metrics.

All the methods utilized during the research were thoroughly explained, ensuring reproducibil-

ity.

6.3.2 Innovations

Unlike other solutions that operate in different languages, the proposed VD subsystem was specif-

ically designed for EP.

The VD subsystem classifies the current frame based on the preceding 16 frames of speech.

This number of frames corresponds to the AWLF, so that the model’s context captures the entirety

of an average word from the dataset.

Feature selection was used to define a SFS from all the extracted features, providing insights

on the relevance of each feature for VD. The resulting subset was compared to a BFS widely used

in state-of-the-art approaches, achieving increased effectiveness.

In contrast to many surveyed state-of-the-art studies lacking objective metrics for assessing the

effectiveness and efficiency of their VD approaches, this study employed two distinct evaluation

techniques (TTS and K-FCV), providing a comprehensive set of performance and computational

metrics.

6.3.3 Implications

The contributions and innovations of this study resulted in an efficient and effective DL-based on-

line frame-based VD subsystem tailored for EP WS. Integration of this subsystem into a broader

whispered-to-normal conversion system has the potential to significantly enhance WS reconstruc-

tion. By adopting this technology, individuals with vocal communication disabilities or impair-

ments can improve their communication ability and overcome the limitations imposed by their
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health conditions. The inclusion of this subsystem potentially empowers these individuals to sur-

pass their communicative restrictions, enhancing both human-human and human-machine inter-

action and ultimately improving their quality of life.

6.4 Limitations and future work

In this Chapter, the limitations of the research work were identified, and future work was proposed

to overcome them. The Chapter focused on several aspects, namely time and computational re-

sources (6.4.1), data (6.4.2), feature engineering (6.4.3), selection and design of DL-based model

architectures (6.4.4), and assessment of model/features subset pairs (6.4.5).

6.4.1 Time and computational resources

This section presents the limitations (6.4.1.1) and proposed future work (6.4.1.2) concerning time

and computational resources.

6.4.1.1 Limitations

The limitations related to time and computational resources have a significant impact on the re-

search process. Inadequate access to computational resources, specifically limited RAM and lack

of a powerful GPU, poses challenges in the field of ML. The following limitations are associated

with these challenges:

• Increased time consumption: Insufficient computational resources can lead to increased

time consumption during the experimental process. The lack of computational power limits

the flexibility to apply various methodologies and techniques, which can hinder the over-

all study efficiency. Longer execution times impede the ability to explore alternative ap-

proaches, experiment with different parameters, and conduct comprehensive analyses, ulti-

mately affecting the breadth and depth of the research;

• Restrictions on utilizing computationally expensive methodologies: Limited computa-

tional resources restrict the ability to employ computationally expensive methodologies.

Some advanced techniques, such as complex DL architectures and feature selection algo-

rithms, often require substantial computational power during execution. The lack of suf-

ficient resources limits the adoption of these methodologies, which may offer valuable in-

sights and improved performance in addressing research objectives.

6.4.1.2 Future work

To address the limitations related to time and computational resources, future work should focus

on the following aspects:
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• Acquiring improved computational resources: Efforts should be made to secure access to

more powerful computational resources, such as high-performance CPUs, GPUs, and larger

RAM. This would enable the application of more complex methodologies and techniques,

facilitating comprehensive analyses and reducing time consumption;

• Exploring cloud-based solutions: The utilization of cloud-based computational resources

should be considered. Cloud platforms offer scalable and on-demand resources, which can

be particularly beneficial when local computational resources are limited.

By addressing these limitations, future research can overcome the constraints imposed by time

and computational resources, enabling more efficient, extensive and impactful investigations.

6.4.2 Data

This section presents the limitations (6.4.2.1) and proposed future work (6.4.2.2) concerning the

data utilized in this research.

6.4.2.1 Limitations

In a DL problem, the availability and quality of the data are fundamental premises for the success

of the subsequent analysis. The limitations identified in this research work regarding the utilization

of data were stated as follows:

• Size and phonetic class balance of the dataset: The limitations related to the size and

phonetic class balance of the dataset used in this research work have significant implications

for the success of DL models:

– Limited representation of the real-world problem: A small dataset may fail to

capture the full diversity and complexity of the real-world problem it aims to solve.

Additionally, class imbalance, where certain phonetic classes are underrepresented

compared to others, can impact the model’s ability to learn and generalize across all

classes. Inadequate representation in the dataset may lead to biased or incomplete

learning, limiting the model’s performance;

– Increased risk of overfitting: With a small dataset, DL models are more prone to

overfitting. Overfitting occurs when the model memorizes the training examples in-

stead of learning generalizable patterns. This phenomenon can severely impact the

model’s ability to generalize to unseen data, rendering it ineffective for practical use.

The risk of overfitting is amplified in small datasets where the model’s capacity to

learn diverse patterns and variations is limited;

• Diversity of datasets: This research work relied on a proprietary in-house dataset of pho-

netically annotated WS in EP, which introduced several limitations:
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– Limited reproducibility: By using a proprietary dataset, the reproducibility and uni-

versal acceptance of the findings may be compromised. Reproducing the results and

validating the proposed methods on independent datasets becomes challenging without

access to the same dataset used in the study. The lack of diverse datasets from different

sources limits the ability to generalize the findings and evaluate the robustness of the

proposed approaches;

– Limited comparability: The limited availability of diverse datasets hampers the rigor-

ous comparison of the effectiveness and performance of the proposed methods against

other state-of-the-art approaches. Without benchmark datasets that are commonly used

in the research community, it becomes difficult to establish a fair and comprehensive

comparison. The absence of such comparisons may limit the insights gained from the

study and hinder the understanding of the proposed methods’ relative strengths and

weaknesses.

6.4.2.2 Future work

To mitigate the limitations related to the dataset, future work can focus on increasing the size and

reducing/eliminating the phonetic class imbalance of the dataset:

• Dataset expansion: Efforts should be made to expand the dataset by collecting more data

or applying data augmentation techniques. Increasing the dataset size would provide a more

comprehensive representation of the underlying phonetic classes and improve the general-

ization capability of the models;

• Addressing class imbalance: Techniques such as oversampling, undersampling and class-

weighting can be applied to balance the representation of different phonetic classes in the

dataset. This would alleviate the bias introduced by class imbalance and improve the mod-

els’ ability to learn and generalize across all classes;

• Enhancing reproducibility and comparability: To enhance the reproducibility, universal-

ity, and comparability of the research findings, future work should consider the application

of the proposed methods to speech datasets in other languages, particularly those that share a

significant number of phonemes with EP. By evaluating the methods on diverse datasets, re-

searchers can gain insights into the models’ performance across different linguistic contexts

and broaden the applicability of the research outcomes.

By addressing the reduced size and phonetic class imbalance, and exploring diverse datasets,

future research can improve the reliability and performance of the models trained on the dataset.

6.4.3 Feature engineering

This section presents the limitations (6.4.3.1) and the proposed future work (6.4.3.2) concerning

the feature engineering process conducted in this research.
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6.4.3.1 Limitations

Despite the considerable accomplishments in this work, certain limitations related to the feature

engineering process should be acknowledged, primarily due to time and computational resource

constraints. These limitations include:

• Exploratory Data Analysis (EDA) limitations: Due to time and resource constraints, con-

ducting a comprehensive EDA was challenging. EDA is an essential step in understanding

data distribution, identifying patterns, and gaining insights that can inform the feature en-

gineering process. Although the available EDA provided valuable insights within the given

constraints, additional time and resources would have allowed for a more thorough explo-

ration of the data;

• Limited feature selection: The feature selection process was performed to a certain ex-

tent, considering the available resources and time limitations. Feature selection techniques

are essential for identifying relevant and discriminative features for the task at hand. Al-

though the selected features hold value within the available resources and time limitations,

it is important to acknowledge that incorporating more extensive feature selection methods

could potentially yield further improvements in the model’s performance and generalization

ability;

• Optimization of Overlapping Context Size (OCS): Given the time and resource con-

straints, a comprehensive exploration of OCS optimization was challenging. The OCS de-

termines the size of the overlapping context window used for feature extraction, and differ-

ent values can affect the model’s ability to capture temporal dependencies and contextual

information. Although the chosen OCS enabled high effectiveness and efficiency, a more

exhaustive investigation would have provided additional insights into the optimal configu-

ration.

6.4.3.2 Future work

To enhance the feature engineering process and improve the effectiveness of DL-based VD sub-

systems, future work should consider the following:

• Thorough EDA: Conducting a more comprehensive EDA, including univariate and mul-

tivariate analyses, can provide deeper insights into the data distribution, identify patterns,

and uncover potential relationships among variables. This would facilitate better feature

extraction and selection, leading to improved system performance;

• Advanced feature selection techniques: Employing a wider range of feature selection

techniques, including filter, wrapper, and embedded methods, can help identify the most

relevant and discriminative features for the task at hand. Comprehensive feature selection

would ensure that the models focus on the most informative aspects of the input data and

improve the models’ performance and generalization capability;
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• Optimization of context size: Conducting systematic investigations to optimize the con-

text size can enhance the models’ ability to capture temporal dependencies and contextual

information. Exploring different context sizes and evaluating their impact on the model’s

performance can lead to more accurate and robust VD systems.

By addressing these aspects of feature engineering, future research can enhance the quality of

feature representation and improve the overall performance of DL-based VD systems.

6.4.4 Selection and design of DL-based model architectures

This section presents the limitations (6.4.4.1) and the proposed future work (6.4.4.2) concerning

the process of selection and design of DL-based model architectures conducted in this research.

6.4.4.1 Limitations

Despite the substantial progress achieved in this study, it is important to consider the following

limitations imposed by time and computational constraints during the selection and design of DL-

based model architectures:

• Limited model architectures analyzed: The study involved analyzing a focused set of

model architectures. While these choices allowed for in-depth exploration, it is possible that

alternative architectures not included in this analysis could have provided additional valu-

able insights and potentially effectiveness/efficiency for the given task. A broader analysis

encompassing a larger pool of model architectures could have further enriched the evalua-

tion;

• Relatively low number of parameters: In order to ensure experimental efficiency and flex-

ibility within the given constraints, a decision was made to keep the number of parameters

in the DL models relatively low. This approach allowed for efficient utilization of avail-

able resources. However, it is worth considering that a higher number of parameters might

have unlocked the potential for capturing more intricate data representations and potentially

achieving even better performance;

• Limited hyperparameter optimization: Due to the limitations in time and computational

resources, the optimization of hyperparameters, including learning rate, batch size, and reg-

ularization techniques, was carried out to a lesser extent. While the selected hyperparame-

ters were able to provide meaningful results, a more extensive exploration and fine-tuning of

these parameters could have further enhanced the models’ performance and generalization

capabilities.

6.4.4.2 Future work

To further enhance the selection and design of DL-based model architectures, future work should

consider the following:
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• Complex DL models: Implementing more complex DL models with increased model ca-

pacity, such as deeper or wider architectures, can enhance the models’ ability to capture

complex data representations. These architectures can learn more intricate patterns and im-

prove the performance of voice decision systems;

• Automatic ML techniques: Utilizing Auto ML techniques can streamline the model selec-

tion and design process, as well as hyperparameter optimization. Automated approaches,

such as genetic algorithms or Bayesian optimization, can efficiently explore the model space

and identify optimal architectures and hyperparameters. This would potentially lead to more

effective and efficient VDs.

By incorporating these strategies into the selection and design process of DL-based model

architectures, future research can leverage the potential of advanced architectures and optimize

their performance.

6.4.5 Assessment of model/features subset pairs

This section presents the limitations (6.4.5.1) and the proposed future work (6.4.5.2) concerning

the process of assessing model/features subset pairs conducted in this research.

6.4.5.1 Limitations

The assessment of the efficiency and complexity of different model/features subset pairs in this

study was extensive, demonstrating significant progress. However, certain limitations should be

acknowledged:

• Absence of the Floating-point Operations per Second (FLOPS) metric: Although the

analysis of models’ efficiency and complexity was thorough, it lacked an evaluation using

the number of FLOPS. Incorporating this metric would provide valuable insights into the

computational requirements of the models and enable a detailed comparison of inference

times across different deployment hardware;

• No integration with a whispered-to-normal speech conversion system: Although the

assessment of VD subsystem was comprehensive, integration with the broader whispered-

to-normal voice conversion system was not implemented, since it was not a goal of this

study. This integration could further substantiate the effectiveness and efficiency of the VD

subsystem. Furthermore, it would allow conducting subjective evaluations using the MOS

to assess the perceptual quality of the broader system.

6.4.5.2 Future work

To address these limitations and provide a more comprehensive understanding of the efficiency,

complexity, and overall performance of the proposed model/features subset pairs, the following

future work is proposed:
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• Evaluation using FLOPS: Conducting an evaluation that incorporates the FLOPS metric

will provide valuable insights into the computational requirements of the models and enable

meaningful comparisons of inference times across different deployment hardware;

• Integration with a whispered-to-normal speech conversion system: Integrating the VD

subsystem with the whispered-to-normal voice conversion system will allow for objective

and subjective evaluations of the entire system. This integration will provide further valida-

tion of the effectiveness and efficiency of the VD subsystem and enable perceptual quality

assessments using the MOS.

By addressing these areas of assessment, future research can gain a deeper understanding of

the computational efficiency, performance, and perceptual quality of the DL-based VD subsystem

within the broader whispered-to-normal speech conversion system.

6.5 Chapter summary

This Chapter "Conclusions" presents the final outcomes of the research conducted in the context

of this dissertation. This Chapter encompasses several important aspects, including a summary of

the key findings (6.1), the answer to the research questions through validation of the hypotheses

(6.2), the contributions, innovations, and implications of the research work (6.3), as well as the

limitations encountered and proposed avenues for future work to address them (6.4).

In summary, this concluding chapter provides a comprehensive overview of the research, tying

together the main elements of the study and offering insights into its significance and potential

future directions.
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Table A.1: Summary of the literature review on voicing decision approaches.

Voicing decision
based on
phonemes
classification and
spectral moments
for
whisper-to-speech
conversion

[33] 2022 First, classification of whispered signal
frames into phoneme classes based on
their spectral centroid and spread is
conducted. Then, discrimination
between voiced phonemes and their
unvoiced counterpart based on
class-dependent spectral centroid
thresholds is performed to estimate the
voicing decision.

ML based
(KNN) +
Rule based

KNN: Spectral centroid,
spectral spread.
Rule based: Spectral
centroid.

In-house database of annotated
whispered speech. 10 different
speakers (5 female and 5 male).
For each one: 114 sequences of 3
phonemes, 19 steady phonemes,
and 63 words.

Objective evaluation.
KNN +Rulebased :
Accuracy ≈ 91%
Baseline (single global
threshold on the raw spectral
centroid of a signal frame):
Accuracy ≈ 91%

Individual system
calibration is avoided
by training the
algorithm on a
pre-annotated
multispeaker
database of read text.
Reduces systematic
voicing errors for
some phonemes,
opening the path to a
more suitable control
space for voicing
decision.
Low-resource
approach, suitable
for real-time
applications.

Second step of the
approach is rule
based. It may
compromise
robustness and
generalization
capability of
classifier.

Glottal flow
synthesis for
whisper-to-speech
conversion

[49] 2020 Spectral centroid thresholds are used to
estimate voicing decision.

Rule-based Spectral centroid. - Objective evaluation.
Voiced error = 7.6%
Unvoiced error
= 10.1%Totalerror = 17.7%.

Low complexity
approach, suitable
for real-time
applications.

Approach is rule
based. It may
compromise
robustness and
generalization
capability of
classifier.
High error rate.

Whispered speech
to neutral speech
conversion using
bidirectional
LSTMs

[29] 2018 A BLSTM model is employed to
predict the voicing decision.

ML based
(BLSTM)

MFCCs, velocity and
acceleration computed
from the smooth spectrum
of whispered speech.
Excitation parameter
obtained from
STRAIGHT analysis of
neutral speech.

Parallel training data of whispered
and neutral speech. 60 sentences
taken from the MOCHA-TIMIT
database from six subjects, three
males and three females. The
subjects were asked to speak each
sentence in neutral and whispered
modes separately.

Quantitative evaluation.
Total error ≈ 8%

Low error rate.
Generalization
capability,

High complexity.
Requires large
training databases.

Title Reference Year Description Classifier Features Training data Evaluation Advantages Disadvantages

Continued on next page
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Table A.1: Summary of the literature review on voicing decision approaches. (Continued)

A robust
voiced/unvoiced
phoneme
classification from
whispered speech
using the "color"
of whispered
phonemes and
deep neural
network

[30] 2017 A DNN is used to estimate the voicing
decision. A 5D engineered feature is
considered, based on the
decomposition of the whispered speech
spectrum in a linear combination of a
set of colored noise spectra.

ML based
(DNN)

MFCC features computed
from a dictionary,
constructed using spectra
of five colored noises.

In-house annotated whispered
speech database. 4 female and 3
male speakers. Each of the seven
speakers whispered about 450
phonetically balanced sentences
from the MOCHA-TIMIT.

Objective evaluation.
MFCC-DNN
Voiced accuracy = 73.63%
Unvoiced accuracy = 78.51%
Average accuracy = 76.06%
Combined-DNN (5D+MFCC)
Voiced accuracy = 73.81%
Unvoiced accuracy = 74.78%
Average accuracy = 74.29%

Balanced frame-level
V/UV classification
accuracy using the
Combined-DNN
scheme.

High complexity.
Low accuracy.

Implantation of
voicing on
whispered speech
using
frequency-domain
parametric
modelling of
source and filter
information

[50] 2016 Temporal and frequency band energy
thresholds are used to estimate the
voicing decision.

Rule based Temporal and
frequency-band energy
variations.

- - Low complexity
approach, suitable
for real-time
applications.

Approach is rule
based. It may
compromise
robustness and
generalization
capability of
classifier.

Whisperto-speech
conversion using
restricted
boltzmann
machine arrays

[31] 2014 GMM and SVM models are used to
obtain a voicing decision, trained using
the mel-cepstra static and dynamic
features of whispered speech.

ML based
(GMM,
SVM)

Mel-cespstra static and
dynamic features.

Aproximately 180000 frames of
parallel
whisper and speech recordings
from wTIMIT database. Male and
female.

Objective evaluation.
GMM +− 5 frames
Voiced error = 5.09%
Unvoiced error = 3.77%
Total error = 8.86%
SVM +−5 f rames
Voiced error = 4.39%
Unvoiced error = 5.08%
Total error = 9.47%

Low error rate.
Generalization
capability,

High complexity.
Requires large
training databases.

Improvement to a
nam-captured
whisper-to-speech
system

[32] 2010 FNN trained with MFFCs feature is
used to predict the segments from
whispered speech. A threshold is used
to convert the continuous output to a
voicing decision.

ML based
(FNN)

MFCCs 200 utterance pairs of whisper and
normal speech, verbalized by a
French
native male speaker.

Objective evaluation.
GMM
Voiced error = 3.3%
Unvoiced error = 5.9%
Total error 9.2%
FNN
Voiced error 2.4%
Unvoiced error = 4.4%
Total error = 6.8%

Low error rate.
Generalization
capability,

High complexity.
Requires large
training databases.

Title Reference Year Description Classifier Features Training data Evaluation Advantages Disadvantages

Continued on next page
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Table A.1: Summary of the literature review on voicing decision approaches. (Continued)

Reconstruction of
normal sounding
speech for
laryngectomy
patients through a
modified celp
codec

[51] 2010 Temporal and frequency band energy
thresholds are used to estimate the
voicing decision.

Rule based Temporal and
frequency-band energy
variations.

- - Low complexity
approach, suitable
for real-time
applications.

Approach is rule
based. It may
compromise
robustness and
generalization
capability of
classifier.

Title Reference Year Description Classifier Features Training data Evaluation Advantages Disadvantages
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Table A.2: Feature selection scores.
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poly_features_1 92.67 100 85.31 100 94.49

poly_features_2 100 99.26 100 74.07 93.33

tonnetz_2 95.31 93.03 90.48 85.9 91.18

tonnetz_6 91.57 90.12 83.25 72.62 84.39

mfcc_1 92.52 88.82 85.06 69.87 84.07

rms_1 79.97 88.4 62.9 83.31 78.65

tonnetz_4 81.75 78.73 65.82 78.02 76.08

spectral_bandwidth_1 60.07 56.98 35.03 55.4 51.87

spectral_rolloff_1 63.82 59.43 39.65 41.49 51.1

spectral_contrast_7 69.08 64.46 46.58 13.33 48.36

mfcc_6 67.27 57.09 44.14 17.25 46.43

spectral_flatness_1 50.61 61.95 24.76 31.08 42.1

mfcc_2 47.02 45.77 21.36 43.34 39.37

spectral_centroid_1 47.69 51.62 21.97 32.01 38.32

spectral_contrast_5 51.99 52.61 26.13 12.77 35.88

spectral_contrast_6 50.58 51.86 24.74 16.21 35.85

mfcc_3 42.78 40.03 17.63 32.99 33.36

mfcc_5 51.5 43.91 25.64 11.05 33.02

spectral_contrast_4 51.7 46.66 25.84 1.57 31.44

mfcc_13 47.13 44 21.46 7.51 30.03

chroma_stft_4 38.47 37.36 14.24 12.65 25.68

chroma_stft_3 39.12 37.67 14.72 7.32 24.71

mfcc_delta_1 28.33 37.21 7.69 19.9 23.28

chroma_stft_2 35.08 33.54 11.84 10.18 22.66

Continued on next page
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Table A.2: Feature selection scores. (Continued)

tonnetz_3 38.32 29.94 14.14 7.94 22.58

chroma_stft_10 35.89 34.08 12.38 6.27 22.15

chroma_stft_1 33.98 32.69 11.13 9.82 21.91

chroma_stft_5 32.37 31.44 10.06 7.18 20.26

chroma_stft_12 31.68 28.84 9.69 8.13 19.58

mfcc_10 33.95 28.42 11.07 4.23 19.42

zero_crossing_rate_1 24.28 25.25 5.68 21.84 19.26

chroma_stft_11 32.23 28.62 10 4.38 18.81

chroma_stft_9 28.91 27.69 8.02 3.54 17.04

mfcc_17 27.32 25.84 7.16 1.67 15.5

mfcc_4 19.19 21.52 3.56 16.59 15.21

mfcc_12 23.85 24.01 5.46 4.36 14.42

spectral_contrast_3 24.69 24.38 5.84 0.56 13.87

chroma_stft_6 23.1 22.71 5.11 3.06 13.5

tonnetz_5 21.56 19.58 4.46 6.8 13.1

tonnetz_1 22.65 20.67 4.93 3.57 12.96

chroma_stft_8 22.61 21.86 4.9 2.27 12.91

mfcc_7 19.95 17.3 3.84 7.48 12.14

mfcc_9 18.85 19.08 3.45 6.6 12

mfcc_27 22.33 19.66 4.79 0.95 11.93

mfcc_8 20.78 18.79 4.14 3.45 11.79

mfcc_23 20.6 19.37 4.07 1.03 11.27

chroma_stft_7 19.17 18.59 3.52 2.65 10.98

mfcc_delta_3 14.54 14.32 2.02 7.11 9.5

mfcc_25 15.61 14.52 2.34 0.63 8.28
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[71] Marzena Żygis, Daniel Pape, Laura L. Koenig, Marek Jaskuła, and Luis M. T. Jesus. Seg-
mental cues to intonation of statements and polar questions in whispered, semi-whispered
and normal speech modes. Journal of Phonetics, 63:53–74, July 2017. doi:10.1016/j.
wocn.2017.04.001.

[72] Marisa Lousada, Luis M. T. Jesus, and Andreia Hall. Temporal acoustic correlates of the
voicing contrast in European Portuguese stops. Journal of the International Phonetic Asso-
ciation, 40(3):261–275, December 2010. doi:10.1017/S0025100310000186.
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