
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Ego Motion from Video Data in
Autonomous Vehicles

João Basto do Rosário

Mestrado em Engenharia Informática

Supervisor: Andry Maykol Pinto

July 18, 2023

© João Basto do Rosário, 2023

Ego Motion from Video Data in Autonomous Vehicles

João Basto do Rosário

Mestrado em Engenharia Informática

July 18, 2023

Resumo

Os veículos autónomos têm o potencial para melhorar significativamente a segurança rodoviária
e reduzir o congestionamento de tráfego. Para que isto possa acontecer, é crucial uma percepção
precisa do ambiente que o rodeia. Esta perceção permite aos veículos tomar ações adequadas
com base na situação em que se encontram. Uma parte essencial desta perceção é a estimativa
da pose do veículo, tarefa que pode ser realizada através do uso de técnicas de odometria visual,
que consistem na estimativa da pose 6D usando entradas visuais. Esta dissertação centra-se na
melhoria destas técnicas, especificamente através da aplicação de modelos de transformers para
processar dados de câmeras e optical flow.

No ambito desta dissertação foram desenvolvidos três modelos: PoseFormer2D, PoseFormer3D
e Spatio-Temporal PoseFormer. Tanto o PoseFormer2D como o PoseFormer3D podem utilizar
codificações de posição aprendíveis ou fixas e utilizam um único bloco de transformador para
calcular a atenção nas dimensões espaciais e temporais. Em contraste, o Spatio-Temporal Pose-
Former calcula valores de atenção independentes para o espaço e o tempo, possibilitando um foco
mais granular. Todos os modelos também podem incorporar optical flow além de imagens para
integrar informações de movimento na estimativa da pose. Os modelos foram treinados com ima-
gens RGB vindas do dataset público KITTI, e com o optical flow calculado com o modelo RAFT.

Os resultados dos modelos de transformers propostos, em condições normais de tráfego, ultra-
passam o DeepVO em cerca de 85%, e são capazes de ultrapassar o ORB-SLAM3 na sequência
01 do conjunto de dados KITTI. Os modelos são capazes de fornecer estimativas precisas de pose
6D em situações simples e complexas onde existem objetos dinâmicos na cena.

i

Abstract

Autonomous vehicles hold the potential to significantly enhance road safety and reduce traffic
congestion. To realize these benefits, an accurate perception of the surrounding environment is
crucial. This perception allows vehicles to take appropriate actions based on the current situation.
A key part of this perception is the estimation of the vehicle’s pose relative to its environment, a
task that can be achieved using visual odometry techniques, which allow for the estimation of 6D
pose by using visual inputs. This dissertation focuses on improving these techniques, specifically
through the application of transformer models to process camera and optical flow data.

Three models were developed: PoseFormer2D, PoseFormer3D, and Spatio-Temporal Pose-
Former. Both PoseFormer2D and PoseFormer3D can take advantage of either learnable or fixed
position encodings and utilize a single transformer block to compute attention across spatial and
temporal dimensions. Conversely, Spatio-Temporal PoseFormer calculates attention values inde-
pendently for space and time, enabling a more granular focus. This means that Spatio-Temporal
PoseFormer has two independent transformer blocks which calculate the attention separately. All
models can also incorporate optical flow in addition to images to integrate motion information
into the pose estimation. The models were trained using stereo RGB images sourced from the
public KITTI visual odometry dataset and with the optical flow calculated from the images using
the RAFT model.

The results of the proposed transformer models, in normal traffic conditions, surpass DeepVO
by around 85%, and are capable of surpassing ORB-SLAM3, a state-of-the-art geometric ap-
proach, in sequence 01 of the KITTI dataset. The models are capable of giving accurate estimates
of 6D pose in simple and complex situations where there are dynamic objects in the scene.

ii

Agradecimentos

Ao meu orientador, Andry Maykol Pinto, quero agradecer por me ter aceite para ser seu aluno e
ter oportunidade de realizar o projeto a que esta tese estava ligada. Quero também agradecer por
estar sempre disponível e conseguir tirar o melhor de mim.

Ao Pedro Nuno e à Maria Inês gostava de agradecer pelas reuniões de segunda feira, que emb-
ora me deixavam com mais dúvidas quando saía delas do que quando entrava, foram fundamentais
para conseguir concluir a tese.

A todos as pessoas que tive o prazer de conhecer durante a faculdade, sejam professores ou
colegas, quero agradecer por terem feito da faculdade uma ótima experiência.

Às pessoas que tive o prazer de conhecer na Bosch quero agradecer a paciência e a flexibilidade
que sempre tiveram comigo. Gostava particularmente de agradecer ao Lucas, Diogo e Bernardo
que me ajudaram imenso com todas as dúvidas que foram surgindo durante a tese.

Aos meus amigos mais próximos, quero agradecer por todos os momentos, conversas aleatórias
e parvoíces que tive a felicidade de partilhar ao longo dos últimos 10 anos.

À minha namorada, Beatriz, quero agradecer, não só pelos momentos, conversas aleatórias e
parvoíces, mas também por todo o carinho e apoio que me deu durante estes últimos 5 anos.

Por fim gostava de agradecer à minha família pelos valores que me incutiram, desde pequeno,
que me ajudou a ser quem sou hoje. Aos meus pais quero também agradecer por me darem todo o
apoio do mundo, as oportunidades que me deram, sem elas não conseguia estar aqui.

João Basto do Rosário

iii

Official Acknowledgements

This work was developed with the support of the host institution: BOSCH Portugal, and
supervised at the institution by Bernardo Amaral.

This dissertation was supported by the European Structural and Investment Funds in the FEDER
component, through the Operational Competitiveness and Internalization Programme
(COMPETE 2020) [Project nº 047264; Funding Reference: POCI-01-0247-FEDER-047264]

João Basto do Rosário

iv

“I’m a great believer in luck, and I find the harder I work, the more I have of it.”

Thomas Jefferson

v

Contents

1 Introduction 1
1.1 Context . 1
1.2 Motivation . 2
1.3 Objectives . 2
1.4 Document Structure . 3

2 State of the Art 4
2.1 Visual Odometry . 5

2.1.1 Geometric Methods . 6
2.1.2 Learning Based Methods . 15
2.1.3 Vision Transformers . 26

2.2 Critical Review . 31

3 Visual PoseFormer 33
3.1 Introduction . 33
3.2 Data Processing . 34
3.3 Model architecture . 35
3.4 Loss Function . 38
3.5 Optimizer . 40

4 Experiments 41
4.1 Training and code details . 41
4.2 Results . 42

4.2.1 Training . 42
4.2.2 Ego Motion Trajectories . 45
4.2.3 Inference Time . 54

5 Conclusions and future work 55

vi

List of Figures

2.1 Types of Self Location, particularly, the different types of odometry. 5
2.2 Visual Odometry methodologies. 6
2.3 Main pipelines of geometric – feature-based VO [68]. Inside the dotted lines is

the representation of the motion estimation algorithms that can be applied to the
selected features. 7

2.4 Example of feature point extraction and matching using SIFT.1 7
2.5 Sequential pictures being taken from a moving camera. By tracking the motion of

the chosen feature points (points in red), it is possible to solve the PnP problem
and calculate how the camera, and in consequence, the agent, is moving. 9

2.6 Two images being captured by cameras OL and OR. Points PL and PR both corre-
spond to point P viewed from different perspectives. 11

2.7 Main pipelines of geometric – appearance-based VO [68]. Inside the dotted lines
is the representation of the motion estimation algorithms that can be applied to the
selected features. 12

2.8 Architecture of DeepVO [52]. 19
2.9 StackNet processing an image.2 . 19
2.10 General overview of DVSO.3 . 20
2.11 Overview of the D3VO architecture [74]. 21
2.12 Self-Attention module [108]. 22
2.13 A simple transformer architecture with encoder-decoder [108]. 24
2.14 Patch and Positional Embedding [108]. 25
2.15 Visual representation of segment and position embeddings [57]. 26
2.16 Taxonomy of Vision Transformers [108]. 28

3.1 An image from the KITTI dataset [32], where there aren’t a lot of good static
reference points, and there is a moving vehicle on the scene. 34

3.2 Optical flow for a pair of images. The color represents the direction of the move-
ment; the saturation represents the value. 35

3.3 Architecture of the PoseFormer2D. The input stereo images are processed and
transformed into a 1D vector representation where positional encodings are added.
The tensor then goes through a transformer block composed of N transformer
layers. The resulting tensor with the added attention values is used by the MLP
heads to regress the 6D pose. 37

3.4 Architecture of the PoseFormer3D. The input stereo images are processed and
transformed into a 1D vector representation where 3D positional encodings are
added. The tensor then goes through a transformer block composed of N trans-
former layers. The resulting tensor with the added attention values is used by the
MLP heads to regress the 6D pose. 38

vii

LIST OF FIGURES viii

3.5 Architecture of the Spatial-Temporal Transformer. The input stereo images are
processed and transformed into a 1D vector representation where spatial posi-
tion encodings are added. The tensor then goes through a spatial transformer
block composed of N transformer layers. Before the output goes through another
transformer block focused on finding temporal relationships, temporal tokens are
added. The output of this block is fed to the MLP heads to regress the 6D pose. . 38

3.6 A single MLP Head, tasked with regressing a single value of the output 6D pose. 39

4.1 Training loss of PF2D, PF3D, and STPF models when trained with and without
flow information. The 2D and 3D models were tested with and without learnable
encodings. All the models were trained for 30 epochs with the Reduce On Plateau
(ROP) optimizer scheduler. 42

4.2 Validation loss of PF2D, PF3D, and STPF with ROP scheduler. 43
4.3 Training loss of PF2D, PF3D, and STPF models when trained with the cosine

annealing with warm restarts optimizer scheduler. The 2D and 3D models were
also tested with and without learnable encodings. 44

4.4 Validation loss of the transformers when using the cosine annealing with warm
restarts optimizer scheduler. 44

4.5 Plotted trajectory for the training sequences 00 (Urban), 01 (Highway), and 02
(Urban). 47

4.6 Plotted trajectory for the training sequences 05 (Urban), 08 (Urban), and 09 (Urban). 47
4.7 Plotted trajectory for the testing sequences 03 (Urban), 04 (Urban), and 06 (Urban). 48
4.8 Plotted trajectory for the testing sequences 07 (Urban) and 10 (Urban). 48
4.9 Translation error for sequences 00, 01, and 02. 49
4.10 Translation error for sequences 03, 04, and 05. 49
4.11 Translation error for sequences 06, 07, and 08. 49
4.12 Translation error for sequences 09 and 10. 50
4.13 Rotation error in degrees/100m for sequences 00, 01, and 02. 50
4.14 Rotation error in degrees/100m for sequences 03, 04, and 05. 50
4.15 Rotation error in degrees/100m for sequences 06, 07, and 08. 51
4.16 Rotation error in degrees/100m for sequences 09 and 10. 51
4.17 The STPoseFormer is better than DeepVO in all scenarios and manages to outper-

form the sota ORB-SLAM3 slightly in sequence 01. On sequence 02, the STPose-
Former suffers from drift problems, which are less pronounced on the ORB-SLAM3. 52

4.18 The STPoseFormer significantly outperforms the DeepVO on sequences 04 and
05. Sequence 06 shows a somewhat similar performance between the STPose-
Former and DeepVO. 52

4.19 Sequences 07 and 08. The STPoseFormer does not do very well on these se-
quences due to the accumulated errors. ORB-SLAM3 stands as the indisputable
best method. 52

4.20 The STPoseFormer is better than DeepVO on all three sequences. 53
4.21 The STPoseFormer significantly outperforms the DeepVO. 53
4.22 The plotted unaligned sequences. 53

List of Tables

2.1 Table of five relevant methods. All the implementations are vision based. Each
metric is taken from the respective paper where they were first described. 31

4.1 Quantitive comparison between the three developed architectures, ORB-SLAM3
without loop closure and DeepVO. Results are scaled using 6DoF. The PF2D uses
flow information without learnable encodings and ROP optimizer scheduler. PF3D
uses flow information without learnable encodings and ROP optimizer scheduler.
STPoseFormer uses flow information and the ROP optimizer scheduler. 46

4.2 Average and standard deviation time for the proposed models 54

ix

Abbreviations and Symbols

2D Two dimensional
3D Three dimensional
4D Four dimensional
BRIEF Binary Robust Independent Elementary Features
BRISK Binary Robust Invariant Scalable
CNN Convolutional Neural Network
DSO Direct Sparse Odometry
FAST Features from Accelerated Segment Test
FNN Feed Forward Network
GPS Global Positioning System
ICBM Inter Continental Ballistic Missile
IMU Inertial Measurements Units
ML Machine Learning
MLESAC Maximum Likelihood Estimator Sample Consensus
NLP Natural Language Processing
ORB Oriented FAST and Rotated BRIEF
PAAS Position-Aware Attention Scaling
PF2D PoseFormer2D
PF3D PoseFormer3D
PnP Perspective-n-Point
PROSAC Progressive Sample Consensus
RANSAC Random Sample Consensus
RGB-D Red Green, Blue and Depth
RL Reinforcement Learning
RNN Recursive Neural Network
SIFT Scale-invariant feature transform
SLAM Simultaneous Location And Mapping
SPTF Spatio-Temporal PoseFormer
SURF Speeded Up Robust Features
ViT Vision Transformer
VO Visual Odometry
WHO World Health Organization

x

Chapter 1

Introduction

1.1 Context

Vehicles have not only revolutionized the way we move, but they have also greatly expanded our

access to the world, making distances less of a constraint and enabling unparalleled freedom and

flexibility. In the past years, systems like adaptive cruise control, automatic lights, and others,

were all developed with the experience of the user in mind. Autonomous driving technologies

carry the potential to significantly reduce the number of traffic accidents [60] which claim more

than 1.31 million lives annually. The majority of these incidents, around 90%, are due to human

error. Autonomous vehicles are expected to substantially improve traffic flow2, as the technology

would enable vehicles to interact and coordinate with each other, distributing traffic evenly across

available routes. Autonomous vehicles also have the potential to significantly alleviate the trans-

portation challenges experienced by people with disabilities, promoting equality of rights across

the world.

Governmental laws, economic challenges, and even philosophical reasons are all obstacles

that companies have to deal with before a fully autonomous vehicle is available for public use.

Until then, the work developed in controlled environments, simulations, and on limited scales

forms the foundation of the knowledge in this rapidly progressing field. A crucial component of

autonomous driving is ego-motion estimation [41]. Ego motion pertains to the process of deter-

mining a vehicle’s relative positioning over time, and it plays a critical role in the understanding

and anticipation of a vehicle’s motion, laying the groundwork for decision-making and action ex-

ecution in autonomous vehicles. Without accurate ego-motion estimation, an autonomous vehicle

would struggle to accurately predict its movement, resulting in reduced operational efficiency and

potentially compromising the entire system.

1https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries.
2https://cinea.ec.europa.eu/publications/eu-road-safety-towards-vision-zero_en.

1

https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries
https://cinea.ec.europa.eu/publications/eu-road-safety-towards-vision-zero_en

Introduction 2

1.2 Motivation

Visual odometry is at a point where geometric techniques can accurately give pose estimations for

most of the environments the vehicle may come across. The problem starts in environments where

the conditions are not the best, and the mathematical principles behind traditional approaches

start producing wrong or less accurate results. With no clear way to circumvent this issue, a

clear necessity for implementing a more universal strategy starts emerging. This is why learning-

based approaches present themselves as a prime solution for this issue. Machine learning has

been exponentially growing, over the last couple of years, with improved, or even, entirely new

architectures being developed at an unprecedented rate. With machine learning, a more general

solution can be achieved since the trained models can learn how to more effectively use all the

information on the images. Currently, the available learning-based techniques are not as good as

the best geometric approaches, and this poses some questions, such as: Are the currently employed

learning approaches appropriate for odometry?, Is it necessary to create a new architecture from

scratch?. Considering these questions, the potential of Transformer architectures comes into view.

Originally developed for Natural Language Processing (NLP) tasks, transformers have since been

adapted to a variety of other domains, including the visual domain. Successful implementations

of transformers have been observed in fields like image classification [71] [93], video classifica-

tion [77], object detection [70] [85], semantic segmentation [98] [99] and pose estimation [104].

Driven by these considerations, this dissertation outlines a set of goals to be achieved, which will

be elaborated in the subsequent section.

1.3 Objectives

This dissertation intends to explore the application of vision transformer models in visual odom-

etry, with the ultimate objective of assessing their effectiveness and performance in this specific

task. The proposed methodology relies on the KITTI visual odometry dataset [32] to train, test

and evaluate the presented solution.

The following objectives are expected to be met during the dissertation:

• To improve the current scientific reviews on visual odometry and vision transformers.

• To develop learning-based architectures from scratch for visual odometry tasks, capable of

doing reasoned ego-motion estimates.

• To base the architectures on vision transformer structures capable of producing the best

possible estimates.

• To train and evaluate the models developed by comparing them with the performance of

other visual odometry alternatives.

The work produced in this thesis uses cameras as a primary source of data. Thus visual odom-

etry is the only type of odometry explored in more detail.

1.4 Document Structure 3

1.4 Document Structure

Chapter 2 provides a comprehensive overview of visual odometry techniques and introduces the

concepts of transformers and visual transformers. Chapter 3 discusses the implementation of the

developed transformers, including details on the loss function, optimization methods, and data

processing techniques. Chapter 4 presents and interprets the experimental results from training

the models on the KITTI odometry dataset. Chapter 5 concludes the thesis, summarizing key

insights and discussing potential directions for future research in this field.

Chapter 2

State of the Art

In autonomous navigation, it is essential for a vehicle to understand how it is moving [40]. This

understanding of its own motion relative to the surrounding environment is referred to as ego-

motion. The GPS (Global Positioning System) is a commonly-used technology for self-location,

as it can, with some degree of accuracy, determine a vehicle’s position and speed using radio

signals. The GPS was developed by the military in 1973 to locate Inter Continental Ballistic

Missiles (ICBMs) [49]. However, only later, in 1980, was the technology made available for public

use at a different carrier frequency [51]. GPS alone is not good enough to solve ego-motion, as

its ability to, reliably and accurately, self-locate is subpar. Moreover, it has many other flaws, e.g.,

it does not provide information about angular velocity, only linear [67]; the strength and signal

quality vary depending on the agent environment conditions [21], and with the atmosphere adding

delay and noise, these problems are amplified even further [33]; even with newer satellites capable

of handling the newer GPS III communication architecture, the error margin is still around 1.5 to

2 meters [11], which is still far from the desired fidelity. To conclude, GPS alone is not accurate

enough to be used as the only way of self-location, and even if the GPS was capable of locating

an agent with maximum accuracy and precision, an autonomous driving system that relies on GPS

technology is not self-contained. What this ends up meaning is that there could be situations where

the data required for estimating ego-motion is not available to the vehicle (e.g. in an underground

park or in some other GPS-denied areas). These problems made researchers turn their attention

elsewhere, and studies on GPS-denied odometry began to emerge.

Odometry is a set of techniques that allow the agent to estimate its position and orientation

based on the distance traveled by its wheels or other means of locomotion [67]. Self-contained

odometry allows the agent to solve odometry problems with access only to its onboard sensors, i.e.,

without relying on external signals, which, as seen above, can be unreliable. Odometry and ego-

motion are intrinsically linked, with the main difference being their scope. Ego-motion usually

refers to the more general concept of a vehicle movement related to its own frame of reference,

while odometry is a set of techniques used to estimate that motion based on data. Different types

of odometry techniques use various sensors, including wheel encoders, inertial sensors, radar,

cameras (visual), and lasers. The combination of different odometry methods builds up the hybrid

4

2.1 Visual Odometry 5

techniques known as radar-inertial, visual-inertial, visual-laser, and visual-radar. Visual-inertial

odometry approaches can also be further studied from two specific aspects, i.e., whether they are

filter/optimization based or tightly/loosely coupled [67], as seen in Fig 2.1.

Self Localization

Relative
Localization

Absolute
Localization

GPS Odometry

Inertial Visual LaserRadarWheel

Radar Inertial Visual Radar Visual Inertial Visual Laser

Figure 2.1: Types of Self Location, particularly, the different types of odometry.

2.1 Visual Odometry

Visual odometry (VO) is the name given to odometry techniques that use data from one or more

cameras attached to the agent. VO techniques estimate the agent’s pose incrementally by analyzing

the motion changes captured in a series of images taken by the onboard camera(s) [29].

Visual odometry’s first implementation is usually associated with the work done in 1980 by

Moravec [1], where he developed a system that would let the lunar rover, built by Stanford Uni-

versity, dodge obstacles without requiring human instructions. However, only later, in 2004, did

VO gain mainstream attention with Nister’s paper [12]. Nister et al. improved the earlier im-

plementations in several areas, and unlike previous works, this approach does not track features

between frames but instead detects features independently in all frames and only allows matches

between relevant features. Thenceforth, VO has significantly evolved alongside the increase in

quality of image-capturing equipment and the seemingly endless progress of Machine Learning

(ML) techniques.

Visual odometry approaches are divided into two groups [76] [105], figure 2.2:

• Conventional, also known as geometric.

State of the Art 6

• Non-Conventional, better known as learning-based approaches.

Geometric approaches can be further subdivided into three groups:

• Feature-based, or indirect approaches.

• Appearance-based, or direct approaches.

• Hybrid techniques, which use elements of the previous two approaches

Learning-based approaches are based on machine learning tools (i.e., a regression model) trained

by VO parameters to estimate the motion [12][35][26]. Geometric and learning-based methods

estimate motion based on the subsequent changes in the position of the cameras. Geometric ap-

proaches take advantage of specific feature points, like corners, while machine learning models

can be tuned to either make use of feature points or be entirely self-taught, meaning that they can

learn which components of the input are more important. Not needing to detect explicit features

in the input ends up being one advantage of learning-based techniques. Initializing camera pa-

rameters is also not required, as the models can learn to extract that information on their own.

Furthermore, correcting the scale of the estimated trajectories is not always needed [26], as the

models can learn to capture that information on their own.

Visual Odometry

Geometric
Approaches

Learning Based
Approaches

Appearance
Based Feature Based Hybrid Methods

Figure 2.2: Visual Odometry methodologies.

2.1.1 Geometric Methods

Feature-based methods, figure 2.3, were the first to appear. The system developed by Moravec [1]

matches distinct features (corners) between stereo images and triangulates them to the 3D world

frame. Once the robot moves, these feature points are matched in the next frame to obtain the

corresponding 3D points and generate motion parameters. This approach detects interest points,

and as such, it is considered a feature-based method. Even if Moravec’s implementation uses

corners as feature points, there are other interesting collections of points that can be considered

when trying to establish relations between successive images, like lines, curves, edges, and blobs

2.1 Visual Odometry 7

(constant areas different from their surroundings). Interest points, however, are not limited to these

shapes as any point or collection of points that stand out from its surroundings can be categorized

as a feature. Interest points are usually distinguishable due to their intensity, color, and texture.

Camera Images

Feature
Detection and

Matching

Feature
Selection and

Matching

Epipolar
Constraints

Motion
Constraints

Triangulation
Outlier

Rejection / Inlier
Selection

Motion
Estimation

Pose Estimation

3D to 3D / 3D to 2D

2D to 2D

Local
Optimization /

Bundle
Adjustment

Figure 2.3: Main pipelines of geometric – feature-based VO [68]. Inside the dotted lines is the
representation of the motion estimation algorithms that can be applied to the selected features.

Feature-based VO methods are generally considered robust to geometric distortions and poorly

illuminated environments [9]. However, they may disregard some of the valuable information in

the image by only extracting certain key features. Detecting and matching features between frames

also requires a significant amount of computational resources, which is proportional to the number

of features extracted. The most well-known algorithms for feature detection and description are

the gradient-based SIFT [10] figure 2.4 and SURF [16]; the binary ORB [56] [28] (ORB is a

combination of Orientated FAST [20] and Rotated BRIEF [25]), and BRISK [27] algorithms.

Other algorithms only do detection, e.g., Harris [3], ShiTomasi [5], FAST [20], and others only

do description, e.g., BRIEF [25]. The algorithm or combination of algorithms one should choose

depends on their needs, with some algorithms being faster while others are more accurate but more

computationally expensive.

Figure 2.4: Example of feature point extraction and matching using SIFT.1

Nevertheless, using the extracted feature points with no outlier-removing process tends to lead

to poor results. Many techniques remove these outliers, the most well-known being RANdom

1https://kind-of-works.com/CODE_matching.html.

https://kind-of-works.com/CODE_matching.html

State of the Art 8

SAmple Consensus (RANSAC) [2]. RANSAC is an iterative method based on a random voting

scheme that tries to find optimal fitting for the data. Since RANSAC’s creation, there have been

other implementations of an outlier detection algorithm, e.g., PROSAC (PROgressive SAmple

Consensus) [14], and MLESAC (Maximum Likelihood Estimator SAmple Consensus) [7].

After extracting the relevant key-point information from the image and removing outliers,

there are three standard feature-based motion estimation methods: 2D to 2D (feature-to-feature

matching), 3D to 2D (structure-to-feature matching), and 3D to 3D (structure-to-structure match-

ing) [67] [76]. Whichever motion estimation method is used, 3D to 3D, 3D to 2D, or 2D to 2D,

they all estimate the change in motion for every new image, allowing them to determine the com-

plete trajectory of the camera and the associated agent. The 3D to 3D algorithm computes relative

motion by specifying the features fk−1 and fk from successive images Ik−1 and Ik in 3D. To achieve

this, it is necessary to triangulate 3D points at each time instant, i.e., by using a stereo camera [29].

A stereo camera is a camera with two or more lenses, which allows it to simulate human binocular

vision and, therefore, capture three-dimensional images.

In the case of the 3D to 2D method, the features fk−1 are specified in 3D and their corre-

sponding reprojections, fk, in 2D. Capturing the images in 3D requires a stereo camera like in the

previous 3D to 3D method or the use of two monocular (2D) cameras. To capture 3D features

with monocular cameras, each feature fk needs to be triangulated with the help of two adjacent

camera views (e.g., Ik−2 and Ik−1). This can be done by two other cameras or by a sequence of

images that capture the same feature fk. In other words, to capture a 3D feature fk and project it

on a 2D image representation Ik, an additional two other views are necessary. This adds up to a

total of three different views (i.e. Ik−2, Ik−1, Ik). With the 3D points and their respective 2D image

reprojection given, it is possible to estimate the pose of the calibrated camera(s). Finding the 6

DoF, or the pose, of a calibrated camera is the well-known Perspective-n-Point problem (PnP) [2].

The most common solution to this problem, P3P, exists when three different points are available

between consecutive views like it is seen in Ik−2, Ik−1, and Ik, figure 2.5.

The 2D to 2D motion estimations have the features fk−1 and fk specified in 2D image coordi-

nates. The geometric relationship between these features is described by the epipolar constraint.

The Epipolar constraints belong to a specific type of geometry known as Epipolar geometry. One

fundamental concept of Epipolar geometry is the Epipolar line. The ray cast from the optical cen-

ter of the view OL, which intercepts the feature point PL, can be seen from another view as the

Line ER. This line is called Epipolar Line. The interaction mentioned is shown in figure 2.6. To

find the geometric relationships between two calibrated cameras or between two views of a sin-

gle moving camera (rotations, translations), the correspondences between the feature points found

have to be described. This can be done by calculating the essential matrix. The essential matrix E

is described as follows:

E = [tx]R. (2.1)

Where R is a 3× 3 rotation matrix and tx is the skew-symmetric matrix obtained from the

3-dimensional translation vector t. The 3×3 tx matrix has a very special property: for any vector

2.1 Visual Odometry 9

Line
 of

 Si
gh

t

3D Object

Image Frame k

Image Frame k - 1

Image Frame k - 2

Figure 2.5: Sequential pictures being taken from a moving camera. By tracking the motion of the
chosen feature points (points in red), it is possible to solve the PnP problem and calculate how the
camera, and in consequence, the agent, is moving.

v = (v1,v2,v3), the cross product of t and v (written t ×v) can be computed using matrix multipli-

cation, as follows: t × v = [tx]v. The resulting essential matrix encodes the epipolar constraints:

PR
T EPL = 0. (2.2)

However, when one uses the essential matrix, there is no consideration for the camera’s in-

trinsic parameters; but they need to be considered in order to correctly estimate the geometric

relationships between different cameras or between different camera views. When considering the

camera’s intrinsic parameters matrix (K), another matrix, the Fundamental Matrix (F), describes

the correspondences between feature points. The definition of the fundamental matrix is denoted

as F in the equation below.

F = (K′−1)T [tx]RK−1. (2.3)

Here, K′ and K are the intrinsic camera matrices for two different cameras; or the intrinsic

camera matrices for the same camera at two different times.

State of the Art 10

The fundamental matrix also contains the epipolar constraints

PR
T FPL = 0. (2.4)

The relationship between the fundamental matrix F , and the essential matrix E

F = (K′−1)T EK−1. (2.5)

Once the matrix F is calculated, E can be obtained by the previous equations. Furthermore,

by doing a singular value decomposition of matrix E, the rotations and translations of the camera

views can be obtained. The real combination of R and t from the resulting four is found by doing

what is often called a cheirality check. This process involves selecting the correct combination

by using a physical constraint: a point in space, when viewed from both cameras, should appear

in front of both cameras. By projecting a known corresponding point from both views into 3D

space using each of the four possible combinations, it is possible to determine which combination

produces a point that fulfills this condition. The correct combination is what gives accurate rotation

and translation between the camera views. Afterward, the epipolar line, lR, can be calculated by

having access to a point PL in a view and the fundamental matrix F .

lR = FPL. (2.6)

Replacing FPL on equation 2.4, gives the equation

PR
T lR = 0, (2.7)

which describes the epipolar constraint.

Given a set of matched points {xi,x′i}, and the relationship between F and x, where x̃ and x̃′

are the reprojection of those points in a 2D view; and knowing the following relation is true,

x̃′T Fx̃ = 0, (2.8)

it is possible to compute the fundamental matrix by an 8-point algorithm. Hugh Christopher

Longuet-Higgins, in 1981, was the one who created this algorithm. More recently, David Nister

provided, in 2003, the first efficient solution [13], which requires only five points.

Feature-based VO has some drawbacks, which makes it lackluster in some situations. Com-

puting feature descriptors is very time-consuming, especially gradient-based ones like SIFT [10].

It also is impossible to do a 3D reconstruction of the environment (dense reconstruction) using

only feature points.

Appearance-based VO techniques, figure 2.7, use other methods that estimate the camera’s

movement by minimizing photometric error and by comparing the intensity of the pixels in cap-

tured images. In contrast to feature-based VO, this method utilizes all of the geometric information

from the captured camera images, which helps to reduce problems with aliasing that can occur in

2.1 Visual Odometry 11

P

OROL

EREL

PL PR

Epipolar
Plane

Epipolar
Lane

Right
Camera

Left
Camera

Figure 2.6: Two images being captured by cameras OL and OR. Points PL and PR both correspond
to point P viewed from different perspectives.

scenes with similar patterns and improves the accuracy and reliability of the pose estimate, par-

ticularly in environments with low texture or low visibility, e.g., deserts [17]. The process of

appearance-based VO can be divided into two main categories: region/template matching-based

and optical flow-based methods [76].

Optical flow methods analyze the patterns of pixel intensity in an image sequence and use that

information to compute the displacement of the pixels between frames. This allows for estimating

the velocity and direction of movement of objects in the scene [36].

Regional-based VO methods divide the image into smaller regions and estimate the motion of

each region independently. This can be more robust than optical flow in cases with large motions

or deformations in the scene because it allows for more localized estimates of motion. However,

it can also be more computationally expensive, requiring analyzing multiple regions rather than a

single image. The work of Vatani et al. [24] shows a simple localized approach that relies on a

constrained motion of a large vehicle, where downward-facing cameras are used to measure the

pixel displacement and translate it into vehicle motion. An extension of this work was proposed

by Yu et al. by utilizing a rotating template instead of a static template to find the translation

and rotation between two consecutive images [30]. Since the development of this work, other

implementations have used adaptive template matching [42], where the template is smaller, and

its location varies concerning the vehicle acceleration.

To fully understand appearance-based VO methods, knowledge of 3D point projections, image

warping, and photometric loss, ends up being crucial. The following mathematical expressions

demonstrate how by using the three concepts mentioned, an appearance method can be imple-

mented.

For a point,

XW = [X ,Y,Z]T , (2.9)

represented in the 3D world coordinate system, its projection on a reference image frame can be

State of the Art 12

described by,

x̃im_re f =
1

Ẑ
KXW , (2.10)

where first the homogenized coordinates of the point XW are multiplied by the camera’s intrinsic

parameters matrix K, to obtain a 3D point camera coordinate in the system. The Z coordinate of

this point is then divided by the homogenized Z coordinate of the point in the world coordinate

system, Ẑ. It is now possible to project the 3D point to another frame with estimated R (Rotation),

t (translation) and Z (depth) with

x̃im_warp = K[R̂|̂t]ẐK−1x̃im_re f . (2.11)

This builds an image if multiple 3D points and their respective projections are available. This

process of finding each point projection is called warping. Whence the warping is obtained, so is

the photometric loss. Because according to the brightness constancy assumption [4], if a perfect

estimation of R, t, and Z exist, the warped image and the target image should be the same. In

real-world scenarios, this is not possible, so there is always some loss, called photometric loss, L,

described by the following equation

L =
1

HW

HW

∑
i=1

Itarget(i)− Iwarp(i)|, (2.12)

where I is the pixel intensities of the two images. By minimizing the photometric loss, the

parameters R, t, and Z are optimized and provide better estimates of the change of motion. To

do so one can use any non-linear optimization algorithms like the Levenberg-Marquardt [31] and

Gauss-Newton methods. The latter was originally developed in the context of the method of least

squares by Carl Friedrich Gauss around 1809.

Photometric loss can also potentially be used, as a loss function, for training a machine learn-

ing model to estimate the pose (position and orientation) and depth (distance from the camera) of

objects in an image. These concepts will be explored further in chapter 3.

Global Image
Descriptor
Extraction

Descriptor
Matching

Region /
Template

Extraciton

Template /
Image Alignment

Triangulation /
Reconstruction

Plane Fitting

Candidate Point
Tracking

Relative Scale
Estimation

Candidate Point
Detection

Optical Flow
Computation

Outlier Removal
& Plane Fitting

Motion
Estimation

Pose Estimation

Camera Images

Motion Computation

Figure 2.7: Main pipelines of geometric – appearance-based VO [68]. Inside the dotted lines is
the representation of the motion estimation algorithms that can be applied to the selected features.

2.1 Visual Odometry 13

As both direct and indirect approaches have their strengths and weaknesses, there are hybrid

techniques that try to obtain the best of both domains. As already mentioned, pure feature-based

VO schemes are not considered to be robust since only a few features are detected and tracked.

On the other hand, appearance-based VO does yield better results but has increased computational

cost. Scaramuzza and Siegwart [23] proposed a hybrid method that features two systems. The first

uses a featured-based approach with SIFT [10] and RANSAC [2] to estimate the translation of the

vehicle. The second uses an appearance-based approach to get the rotation of the agent.

Feature, Appearance, or even hybrid approaches all have to face some similar problems, like

drift. Drift happens due to the iterative nature of odometry, where errors accumulate over time and

lead to poor estimation accuracy of visual odometry. To reduce the amount of drift, strategies like

pose-graph optimization can be used. As seen previously, in VO, the camera poses are typically

calculated by combining transformations between two consecutive views at times Ik and Ik−1.

However, it is also possible to compute transformations between the current image Ik and the

previous n image steps (Ik,Ik−1,...,Ik−n) or any other image steps (Ii,I j). If these transformations are

known, they can be used to refine the camera poses by incorporating them as additional constraints

in a pose-graph optimization process.

In Pose-Graph representations, the camera poses are nodes, and the rigid-body transformations

between the camera poses are the edges, which connect the nodes [19]. Each new transformation

can be added as an edge, ei j, to the pose graph, where Tei j is the transformation between the poses

i and j [31]. Pose graphs have a cost associated with each added edge ei j defined by the following

function [31]:

∑
ei j

∥Ci −Tei jC j∥2. (2.13)

The end goal of pose graphs is to minimize the cost of this function by finding the optimal

camera pose parameters. It is important to note that the rotation part of the transformation makes

the cost function nonlinear, so a nonlinear optimization algorithm must be used (e.g., Levenberg-

Marquardt) [31]. Pose optimization graphs can be further improved by establishing connections

between edges which are usually far apart and have accumulated a large amount of drift. Main-

taining information about a previously observed location makes it possible to create a loop. This

type of calculation is called loop detection [15]. Loop detection is an extensive problem with many

possible implementations, but the ones that stand out the most are the ones that use local image

descriptors [18] [22]. By representing images with bags of visual words, it is possible to measure

the similarity between images by computing the distance between the images’ word histograms.

Another way to correct drift is by using Windowed Bundle Adjustment [8]; a technique similar

to pose-graph’s idea of refining the estimates of the camera parameters. However, it also includes

the optimization of 3D landmark parameters simultaneously. This method is suitable for situations

where image features are tracked throughout more than two frames. It involves considering a

window of n consecutive frames and optimizing the camera poses and 3D landmarks for this set

State of the Art 14

of frames. In bundle adjustment, the error function to minimize is the image reprojection error:

arg min
X i,Ck

∑
i,k
∥pi

k −g(X i,Ck)∥2, (2.14)

where pi
k is the ith image point of the 3D landmark X i measured in the kth image and g(X i,Ck)

is its image reprojection according to the current camera pose Ck [31]. As the error function

is nonlinear, like in pose-graphs, the optimization step needs to be done by nonlinear functions.

One thing to keep in mind when using this technique is that the computational complexity is

O((qM + lN)3) with M and N being the number of points and cameras poses and q and l the

number of parameters for points and camera poses [31]. Keeping large amounts of camera poses

can result in calculations that are not fast enough to achieve soft real-time (something is done in

soft real-time when the window of time it takes to complete an action is small enough that it does

not impact the intended behavior).

Before moving on to the learning-based methods, there are some interesting works worth

exploring more in-depth [58]. Starting with ORB-SLAM2 [47], which is a geometric implemen-

tation from the family of ORB-SLAM algorithms, currently made up of three versions (ORB-

SLAM, ORB-SLAM2, and ORB-SLAM3). ORB-SLAM2 is a complete Simultaneous Location

And Mapping (SLAM) approach for monocular, stereo, and RGB-D cameras. ORB-SLAM2 ex-

tends the features of its predecessor, ORB-SLAM, by incorporating a robust and efficient system

designed to work in real-time on standard hardware. The efficiency of ORB-SLAM2 arises from

the use of the ORB feature descriptor. Specifically, ORB-SLAM2 involves three crucial stages:

tracking, local mapping, and loop closing. The tracking phase estimates the camera trajectory in

real-time by detecting ORB features in the scene and matching these with the current map. In

parallel, the local mapping process refines the map, ensuring that it accurately reflects the cur-

rent understanding of the environment. The loop closing module detects and corrects drifts in

the trajectory and the map to ensure global consistency. Moreover, ORB-SLAM2 offers reliable

initialization techniques for both monocular and stereo cameras, improving upon the vulnerability

of monocular SLAM systems to initialization errors. The ability to run on monocular, stereo, and

RGB-D cameras makes it versatile, lending itself to a wide range of applications, from robotics to

augmented reality. The core strength of ORB-SLAM2 is its robustness and resilience in a variety

of environments, including small-scale indoor areas and larger-scale outdoor settings. It achieves

high-accuracy performance in mapping and localization tasks, even in low-texture or dynamic

scenes, making it an effective choice for real-world deployment. It is important to note, however,

that, like any SLAM system, ORB-SLAM2 faces challenges in handling extreme lighting con-

ditions, fast camera motions, and feature-poor environments. As such, these are areas for future

work and refinement.

ORB-SLAM3 [80] is the latest iteration in the family of ORB-SLAM algorithms, following

ORB-SLAM and ORB-SLAM2. Like its predecessor, ORB-SLAM3 is a complete SLAM ap-

proach for monocular, stereo, and RGB-D cameras. ORB-SLAM3 builds upon the robustness and

efficiency of ORB-SLAM2, which was designed to operate in real-time on standard hardware,

2.1 Visual Odometry 15

utilizing the ORB feature descriptor. The algorithm is equal to that of ORB-SLAM2, meaning it

has the same three key stages: tracking, local mapping, and loop closing. ORB-SLAM3 extends

the capability of its predecessors by incorporating advanced features, including support for iner-

tial measurements units (IMUs), more robust visual-inertial SLAM, and the ability to handle pure

inertial trajectory estimation. This latest version maintains the strength of reliable initialization

techniques present in ORB-SLAM2, for monocular and stereo cameras, thereby addressing the

vulnerability of monocular SLAM systems to initialization errors. Furthermore, the use of ORB-

SLAM3 with monocular, stereo, and RGB-D cameras, as well as with IMUs, broadens its potential

applications, from robotics to augmented reality and beyond. It shines in a variety of environments,

be they small-scale indoor spaces or larger-scale outdoor settings, delivering high-accuracy per-

formance even in low-texture or dynamic scenes. Nonetheless, it is important to mention that, like

its predecessors, ORB-SLAM3 still encounters challenges in dealing with extreme lighting con-

ditions, fast camera motions, and environments lacking features. These remain areas for further

research and refinement. Despite these challenges, ORB-SLAM3’s improvements make it a robust

and versatile tool for real-world deployment in SLAM-based applications.

In 2016, the method Direct Sparse Odometry (DSO) [43] appeared. DSO is based on con-

tinuous optimization of the photometric error over a window of recent frames. In contrast to the

traditional methods up until that point, DSO jointly optimizes for all involved parameters (camera

intrinsic, extrinsic, and inverse depth values), effectively performing the photometric equivalent

of windowed sparse bundle adjustment. DSO presented itself as a promising method since it com-

bines the benefits of direct methods (seamless ability to use and reconstruct all points instead of

only corners) with the flexibility of sparse approaches (efficient, joint optimization of all model

parameters).

2.1.2 Learning Based Methods

Geometric approaches rely on explicit hand-crafted models of the environment and the camera’s

intrinsic parameters and use techniques such as feature matching, triangulation, and optimization

to estimate the camera’s pose. These methods are accurate and efficient but can be brittle and prone

to failure in complex or dynamic environments. On the other hand, learning-based approaches

focus on learning how to represent the environment and the camera’s intrinsic parameters from

data rather than assuming a pre-defined model. These methods are more robust and adaptable

and can potentially handle complex and dynamic environments better than geometric approaches.

There are clear advantages that learning-based approaches possess. There is no need to fine-tune

camera parameters; learning-based approaches showcase robustness in tracking failure and scale

drift [53]; by using stereo image pairs in the training phase, they are capable of recovering metric

scale from a monocular image [46] [64]. However, they can be more computationally expensive

and may require large amounts of labeled data for training.

Estimating odometry using non-conventional techniques is usually done by training deep neu-

ral networks driven by many image sequences. These techniques hope to benefit from the data-

driven approach and the potential of deep neural networks, as seen in other areas where they are

State of the Art 16

being applied. Learning-based methods can be categorized as follows:

• Supervised Learning

• Unsupervised or Self-supervised Learning Approaches

• Reinforcement Learning Approaches

• Hybrid Methods

• End-to-End Learning Methods

it is essential to keep in mind that while these groups can help categorize different meth-

ods, there is significant overlap, and many methods could be considered as belonging to multiple

groups. For instance, a method could be both an end-to-end method and a supervised learning

approach.

Supervised learning approaches involve the training of a model with labeled data. In the con-

text of VO, the labels could be the relative pose or position of the camera. The model then tries

to learn a mapping from the input images to the correct pose, with the goal of minimizing the

difference (or error) between its predictions and the true labels. The mapping function is learned

during the training of the network, after which the model can be used to predict poses from new

images. The most common types of Deep Learning models used are based on Convolutional Neu-

ral Networks (CNNs) [90], due to their strong capacity to learn complex patterns. CNNs apply

a series of convolutions and nonlinear operations to the input image, effectively transforming the

raw pixel values into a high-level representation that can be used for pose prediction. One work

that pioneered the works in supervised deep learning-based VO is the PoseNet, introduced by

Kendall et al. [45]s. This architecture uses a CNN to regress the 6-DoF camera pose directly from

a single RGB image, effectively bypassing traditional steps of feature extraction and matching.

The novelty of PoseNet was capable of operating in real-time, attributes that have since become

common in deep learning-based VO methods, but at the time were considered a novelty. PoseNet’s

architecture is based on GoogLeNet [39], modified to output a 7-dimensional vector representing

the 3D translation and 4D quaternion orientation of the camera. Overall PoseNet is notable for

being one of the first, supervised learning, implementations to show that deep learning can be ap-

plied successfully to ego-motion. While supervised learning approaches for VO can achieve good

results, they also have their limitations. These can include difficulty in generalizing to different

environments from the training data, reliance on large amounts of labeled data, and challenges in

incorporating temporal information due to the primarily feed-forward nature of these methods.

Unlike supervised learning, unsupervised learning does not require labeled training data. In-

stead, these methods try to learn useful representations or structure from the input data directly.

In the context of VO, unsupervised methods often involve learning to predict depth or ego-motion

from images, guided by geometric constraints, such as photometric consistency, section 2.1.1.

Photometric consistency, sometimes referred to as photometric error or photometric loss, is a

fundamental concept in many unsupervised learning approaches for visual odometry and other

2.1 Visual Odometry 17

computer vision tasks. The central idea is rooted in the brightness constancy assumption, which

stipulates that the intensity (or color) of a specific point in the world should remain consistent

across different images, assuming the lighting conditions stay the same. Given two images, and

the depth and ego-motion estimated by the networks, one image can be warped to the viewpoint of

the other using these estimated values. The photometric consistency loss can then be computed as

the difference in pixel intensities between the warped image and the target image. The networks

are trained to minimize this loss. The basic form of the photometric consistency loss is given by:

Lphoto(Ia, Ib,D,T) = ||Ia − Iw
b (D,T)|| (2.15)

where Ia and Ib are the two images, D is the depth map estimated for Ia, T is the relative pose

(translation and rotation) between the two camera views, and Iw
b (D,T) is the image Ib warped

into the viewpoint of Ia using the estimated depth D and pose T . Different variations and enhance-

ments of this basic loss function can be found, for example, in the paper by Zhou et al. [54], where

they propose a multi-scale photometric loss and use an SSIM (structural similarity) term for better

performance. Still, while unsupervised methods alleviate the need for labeled training data, they

come with their own challenges. These include dealing with issues such as occlusions, illumina-

tion changes, and dynamic objects that violate the assumptions of photometric consistency.

Reinforcement Learning (RL) is another type of machine learning where an agent learns to

make decisions by taking actions in an environment to maximize some form of cumulative re-

ward. In the context of VO, RL approaches typically involve learning a policy that guides the

camera motion to maximize the accuracy of the estimated trajectory or other related objectives.

Deep Reinforcement Learning (DRL) is a subfield of RL which brings together the decision-

making capabilities of RL, and the high representation power associated with deep learning. In

the context of VO, DRL can be used to make sense of images and decide how best to estimate

the motion of the camera in an environment. DRL has some potential for advancing the state of

VO, but it is a much more challenging approach to the VO problem. For instance, the unstable

and divergent nature of learning in high-dimensional spaces makes it so that designing and tun-

ing a DRL algorithm requires a delicate balance between exploration, where the agent probes the

environment to discover profitable actions, and exploitation, where the agent uses the knowledge

it has gained to optimize reward. Moreover, DRL typically requires extensive amounts of data

and computation. The iterative process of trial and error through which RL operates means that

considerable time and resources are often needed to train models. This is exacerbated in the con-

text of VO, where obtaining labeled real-world data for complex environments can be a significant

hurdle.

Hybrid Learning approaches attempt to combine the benefits of different learning paradigms,

such as supervised and unsupervised learning, or geometric-based and learning-based methods.

The goal is to leverage the strengths of each method to overcome their individual limitations.

Hybrid approaches can potentially mitigate the weaknesses of individual learning paradigms. For

instance, they can help to reduce the reliance on large labeled datasets, improve generalization to

State of the Art 18

new environments, and enhance the accuracy and robustness of VO estimates. The UnDeepVO

model by Ruihao Li et al. [61], can be considered as an hybrid approach, as it learns to predict the

depth and pose in a supervised manner, while photometric loss is minimized in an unsupervised

way. Despite the potential of hybrid based approaches they also have their challenges. These

include the difficulty of integrating different learning paradigms, the increased complexity of the

resulting systems, and potential issues with scalability and efficiency.

Finally, End-to-End approaches aim to learn direct mapping from raw input data (e.g., images)

to the desired output (e.g., pose). They can use supervised, unsupervised, reinforced, or hybrid

learning paradigms. The significant alteration here is that the neural networks take full charge

of the task, providing a more seamless processing pipeline. Instead of manually designing and

linking together multiple processing stages, the network learns to execute the entire task from raw

data to final output in a single pass. This direct approach often involves the usage of both Convo-

lutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs). CNNs are generally

employed at the beginning of these pipelines, serving as automatic feature extractors that trans-

form raw image data into a more meaningful and compact representation. The sequential nature

of visual odometry problem makes it a good fit for RNNs, which are designed to process temporal

data by maintaining an internal state that can represent information from past inputs. End-to-End

learning approaches provide a unified learning process that has the potential to streamline the

pipeline, reduce error accumulation, and improve the overall performance. However, they require

vast amounts of data and computational resources for training. Additionally, they often act as

black boxes with their decision-making processes, making it challenging to diagnose and correct

failures.

Similar to geometric methods. There are some architectures worth delving more deeply into.

One of those is DeepVO [52]. DeepVO is one of the most well known learning-based approaches.

DeepVO utilizes Convolutional Neural Networks (CNNs), figure 2.8 to achieve visual odometry.

Unlike traditional approaches, which typically involve explicit feature extraction and matching,

DeepVO leverages the power of deep learning to directly infer the 6-DoF (6 Degrees of Free-

dom) camera pose from raw sequential images. One of the most significant aspects of DeepVO

is its ability to incorporate temporal information from sequential images, made possible by the

integration of Recurrent Neural Networks (RNNs) with CNNs. The RNN, particularly the Long

Short-Term Memory (LSTM) variant, allows the model to remember and utilize past frames to

improve its current pose estimation, effectively handling the temporal nature of video sequences.

DeepVO is sensor-agnostic and can work with monocular or stereo camera data, although it was

initially designed and primarily tested with monocular input. Its end-to-end deep learning ap-

proach means it does not require explicit feature extraction and matching, which can be a strength

when handling complex and less-textured environments where traditional feature-based methods

may struggle. Nevertheless, as a data-driven approach, DeepVO’s performance heavily relies on

the availability of large, diverse, and high-quality training data, which can be a limiting factor.

The system must be trained with a diverse range of environments, lighting conditions, and mo-

tion patterns to generalize well in real-world conditions. Furthermore, DeepVO, like most deep

2.1 Visual Odometry 19

learning-based approaches, requires significant computational resources, making real-time appli-

cation challenging on devices with limited processing power. It also struggles to provide a globally

consistent map, a common issue in VO-based systems that lack a loop-closure mechanism.

Figure 2.8: Architecture of DeepVO [52].

The mentioned DSO on the geometric methods section was used as a basis for the Deep Virtual

Stereo Odometry (DVSO) [65] architecture. DVSO builds on the windowed sparse direct bundle

adjustment formulation of monocular DSO by integrating it into a deep learning-based framework.

DVSO achieves state-of-the-art results comparable to those achieved by stereo VO methods while

only using monocular images. DVSO leverages the proposed StackNet, a semi-supervised monoc-

ular depth estimation network, to eliminate the scale drift due to scale unobservability. StackNet

takes a left monocular image as the input and predicts both the left and right disparities in a virtual

stereo setup, Fig 2.9.

Figure 2.9: StackNet processing an image.2

For every new keyframe, the depth of reconstructed points is initialized using the left dispar-

ity. The optimization is done with a given virtual stereo baseline. The estimated points are then

projected onto a virtual stereo right image. Then the projected right image is compared to the right

disparity, which helps project the points to the left image. The loss function is given by optimizing

the total photometric error, Fig 2.10.

2https://www.youtube.com/watch?v=sLZOeC9z_tw.
3https://www.youtube.com/watch?v=sLZOeC9z_tw.

https://www.youtube.com/watch?v=sLZOeC9z_tw
https://www.youtube.com/watch?v=sLZOeC9z_tw

State of the Art 20

Figure 2.10: General overview of DVSO.3

Another two years later, in 2020, Yang et al. [74], the same authors of DVSO, presented Deep

Depth, Deep Pose and Deep Uncertainty, also known as D3VO.

D3VO [74] is a robust self-supervised framework for monocular visual odometry that exploits

deep networks on three levels – deep depth (D), pose (T t−1
t) and uncertainty (∑) estimation. The

predicted properties of depth (D), pose (T t−1
t) and uncertainty (∑) are then used in the tracking

front-end, as well as in the photometric bundle adjustment backend, Fig 2.11. D3VO estimates

depth using a Convolutional Neural Network (CNN) [6] called DepthNet [59] [55]. DepthNet

is similar to StackNet in that it also predicts the uncertainty associated with the predicted depth

estimates. Camera pose is estimated using PoseNet [45]. In this approach, the camera pose is

represented as a combination of a translation, t, and a rotation q, in quaternion format, p = [t,q].

2.1 Visual Odometry 21

Figure 2.11: Overview of the D3VO architecture [74].

The learning based approaches explored until now show examples of how models use CNNs

and RNNs to extract 6D pose from images. However, since the development of the Transformer

architecture, they may not be the best suited to handle the task of VO. Transformers are a type of

neural network architecture that was introduced in 2017 by Vaswani et al. on the paper "Attention

Is All You Need" [50]. They are encoder-decoder models that process sequential data such as

natural language text or time series data. Transformers have found immense success in natural

language processing [57] [63] because they can capture complex relationships between different

parts of the input using a mechanism known as multi-head self-attention. Since their creation,

transformers have been used for various tasks like sentiment analysis, machine translation, word

prediction, and summarization.

To understand self-attention and why it makes transformer models so unique, it is core to un-

derstand the difference between traditional encoder-decoder architectures and common attention

mechanisms. As the name implies, in encoder-decoder architectures, there are two parts. The

first part is the encoder. The encoder is usually composed of a network which is trained on input

sequences to obtain a large summary vector c with a fixed dimension. This vector, called context,

is usually a simple function of the last hidden state. The second part of the model is a decoder,

another RNN, which generates predictions given the context c and all the previous outputs. In

traditional encoder-decoder architectures, only the last hidden state (context vector c) from the en-

coder is passed on to the decoder. With this approach, in particular, the information acquired has

to be compressed into a fixed-sized vector, which leads to information loss. Primarily the informa-

tion found early in the sequence. A quick fix for this is the addition of bi-directional layers, which

help solve the problem for shorter input sequences but do not do much in longer ones. Attention

fixes this by allowing the decoder to attend to the whole sequence and, thus, use its entire context.

When Bahdanau et al. [34] first introduced attention, they found that the model could learn

to focus on specific parts of the input sequence when generating the output sequence. Attention

State of the Art 22

allows a model to weigh the importance of different input parts when making a prediction, which

can improve performance in specific tasks. Regular decoders without attention predict yt given a

fixed length context vector c and all earlier predicted words {yt , ...,yt−1}. The fixed-length context

vector is computed with

c = q({h1, ...,hT}) (17)

where h1, ...,hT are the hidden states of the encoder for the input sequence x1, ...,xT and q is a

non-linear function. The attention model, on the other hand, changes the context vector c that a

decoder uses for translation from a fixed-length vector c of a sequence of hidden states h1, ...,hT

to a sequence of context vectors ci. Attention mechanisms compare input to external memories

or queries, which can be considered an additional piece of information that the model uses to

inform its predictions or output. For example, in Attention-based Neural Machine Translation, the

encoder encodes the input sequence and stores it in memory (this can be done in many ways, as

described previously). The decoder then uses this memory to help generate the output sequence.

Self-attention is fundamentally different from attention. Self-attention is focused solely on the

input sequence and its relations. In other words, it allows the model to learn the importance of

each input part. In practice, attention mechanisms can be used in conjunction with self-attention

in sequence-to-sequence models like encoder-decoder architectures. For example, an encoder that

uses self-attention to capture the relationships between different parts of the input sequence and

then an attention mechanism that is used to align the encoder output to the decoder input can help

the model generate the output sequence more accurately.

Figure 2.12: Self-Attention module [108].

Figure 2.12 shows the self-attention module processing the input X , which is a sequence of

vectors represented as (x1,x2, ...,xL), where X ∈ RL×d is true, and d is the embedding dimension

of each vector. The model learns the relations between each vector by using three matrices; the

Query (Q), Keys (K), and Values (V) matrices. These matrices are projected from X with linear

layers. For instance, the query matrix, Q is obtained by projecting X with a linear layer Wq, i.e.,

Q = XWq. Specifically, the attention weights, E, are calculated by the normalized product of Q

and KT with the softmax function [108],

E = so f tmax(
QKT
√

d
). (2.16)

The softmax function normalizes the attention weight of each query-key pair within (0,1).

2.1 Visual Odometry 23

However, other functions can do neuron activation; ReLU (Rectified Linear Unit), the most com-

monly used one, and the sigmoid function. The purpose of this step is to categorize how important

is each query-key pair. A pair with a value of 0 means useless information; on the other hand, a

pair with a value of 1 means it is the most important. After this step, the output features, O, are

enhanced by applying the attention weights E to V as follows [108]:

O = Attention(Q,K,V) = EV = so f tmax(
QKT
√

d
)V. (2.17)

What makes transformer models so powerful is the already mentioned multi-head self-attention.

This specific type of attention gives the transformer model the ability to attend to different parts

of the input sequence at the same time. To learn variant representations at different positions, the

model transforms the input X into nh different representations (heads), denoted by h1,h2, ...,hn.

The attention is first computed for each head hi with Qi, Ki, and V i with projection matrices W i
q ,

W i
k , and W i

v respectively.

hi = Attention(Qi,Ki,V i). (2.18)

Afterward, all the heads are concatenated to form the multi-head representations H as follows

[108]:

H =Concat(h1,h2, ...,hnh). (2.19)

The concatenation of the multiple heads can be done in several ways. One way requires that

the output of each attention head is converted into a 2D tensor with a specified number of rows and

columns. Then, the outputs of all the heads can be concatenated along a specified axis, typically

the last axis. Another way this can be done is by stacking the output of all attention heads one

below the other and creating a 3D tensor. Next, H needs to be converted back to the dimension

of d so that the projection matrix W O is obtained, i.e., O = HW O. As the number of relations

between inputs is usually unknown, multi-head attention is commonly used to capture different

connections between input elements in a data-driven manner [108].

The Transformer model proposed by Vaswani et al. [50] was made up of an encoder and

decoder block. Each block can be decomposed further into 1) self-attention, 2) Position-wise

Feed-Forward Networks, and 3) positional encoding.

Position-wise Feed-Forward Networks (FFNs) are mainly composed of Fully-Connected lay-

ers. Considering that the input X to the FFN is a 2D matrix of dimensions N ×d, where N is the

number or tokens in the input sequence and d is the dimensionality of the input, the FFN can be

written as:

FFN(X) = δ (XW1 +B1)W2 +B2, (2.20)

where W1 ∈ Rd×h and W2 ∈ Rh×d are the weight matrices, and B1 ∈ R1×h and B2 ∈ R1×d are the

bias vectors. δ is the ReLU activation function, and h is the hidden layer dimension, usually set to

4d [108].

State of the Art 24

Figure 2.13: A simple transformer architecture with encoder-decoder [108].

Self-attention does not take into consideration the inputs’ sequential order. To counteract this

effect, some techniques can be applied. Positional encoding, figure 2.15, maintains the ordinal

information by passing the input data through an embedding layer that converts the input tokens

(e.g., words or subwords) into a continuous vector representation, denoted as Xp. Positional en-

codings can be further divided into fixed and learnable position encodings. The key difference

is that learnable positional encodings have the ability to get updated with each pass through the

model, allowing them to capture intricate positional dependencies specific to the trained data.

This approach is present in the implementation proposed by Devlin et al.[57]. On their bidi-

rectional Encoder Representations from Transformers (BERT) approach, a learnable class token

xclass ∈R1×(P2C) is created and added to Xp. This information is then added to the output - [xcls;Xp]

and provides the model with positional information [71], figure 2.14.

On the other hand, fixed encodings, such as those used in the original Transformer model, uti-

lize sinusoidal positional encodings. These encodings add a unique positional signal to each input

token, helping the model to understand the position of each token within the sequence. The prin-

ciple behind sinusoidal positional encodings is to assign each position a vector that corresponds

to a point in a high-dimensional sinusoidal wave. The unique property of this type of encoding is

that it allows the model to infer the relative positions of the tokens in the sequence. Because the

frequency of the sinusoidal wave varies along the dimensions of the positional encoding vector,

2.1 Visual Odometry 25

Figure 2.14: Patch and Positional Embedding [108].

the model can capture the periodic nature of the sequence and make accurate predictions. Despite

their effectiveness, fixed encodings do have limitations. They do not allow for learning from the

data and updating the encodings during training, which can restrict the model’s ability to adapt

to the specificities of the input data. Moreover, they may not be ideal for sequences that signifi-

cantly exceed the length the model was originally trained on, as the positional encodings for those

positions would be extrapolated and may not represent the positional information accurately.

Another way to keep track of the order of the inputs is through segment embeddings, figure

2.15. This can be done by incorporating additional information about the input sequence into the

Transformer model. The basic idea is to add an extra embedding for each token in the input se-

quence, representing the segment that the token belongs to. The segment embedding can indicate

different types of information, such as the source of the input (e.g., a question or an answer in a

Q&A model) or the structure of the input (e.g., the beginning or end of a sentence in a language

model). A segment embedding is passed along with the input tokens during training. The Trans-

former model learns to consider the difference in embedding when processing the tokens in the

input sequences. In the particular case of transformers applied to visual odometry, segment em-

beddings can provide additional information about the structure and layout of the scene. One way

to use segment embeddings in a transformer for visual odometry is to extract features from the

images in the sequence, such as SIFT [10] or ORB [56] features, and then cluster these features

into segments. The transformer can then use these segment embeddings, along with the other in-

put data, to better understand the relationships between the images in the sequence and make more

accurate estimates of the camera’s ego motion.

State of the Art 26

Figure 2.15: Visual representation of segment and position embeddings [57].

2.1.3 Vision Transformers

Following the immense success verified in natural language processing, Transformers applied to

vision tasks started to appear. There are quite a few use cases for vision transformers, verified

by the works developed in the following areas: image classification [71] [93], video classification

[77], object detection [70] [85], semantic segmentation [98] [99] and pose estimation [104], but

before Dosovitskiy et al. [71], there were some complex challenges that were affecting vision

Transformers.

Image classification tasks require machine learning models to establish some connection be-

tween the different pixels of an image. If this task is approached naively, there would be connec-

tions to be made between every pixel of an image. And even if it is possible to achieve results

with this approach, it is by far not the most appropriate, as establishing connections between high-

resolution images with millions of pixels would be very time-consuming (O(n2)). The first tries

at implementing a "smart" algorithm were done by Parmar. Niki Parmar et al. [62], applied the

self-attention only in local neighborhoods for each query pixel instead of globally, which, as seen

in [66], [69], and [75], can completely replace the convolutions from Convolutional Neural Net-

works (CNNs). After Parmar et al. [62], Rewon Child et al. [34] implemented a Sparse Vision

Transformer, which tried to attain global self-attention with the help of scalable approximations.

However, these attempts failed to provide a simple enough transformer architecture that achieved

comparable results to state-of-the-art CNNs. Dosovitskiy et al. [71] fixed these problems by

proposing the following Transformer architecture made of three modules i) patch and positional

embedding, ii) a Transformer encoder, and iii) multi-layer perceptron (MLP) head.

The patch and positional embedding is the first step of the Visual transformer architecture

proposed by Dosovitskiy et al [71]. This step transforms an image, X ∈ RC×H×W , where C is the

number of channels (3 for RGB and 1 for grayscale), H is the height and W is the width, into a 1D

sequence of vectors, represented by Xp ∈RN×(P2C). In this equation, P×P is the resolution of each

patch, and the number of patches is N = HW/P2. After this, a linear layer projects the patches

into patch embeddings, and thus the first step is almost complete, lacking only information about

each patch position. To add this information, the Visual Transformer uses the same learnable

2.1 Visual Odometry 27

encodings which are applied to the BERT transformer mentioned above. The resulting patch

embeddings with the added positional information is passed on through the transformer layers.

The successive transformations that happen inside the transformer layers are described by the

following mathematical expressions:

z0 = [xcls; x1
pE; x2

pE; ...; xN
p E]+Epos, E ∈ R(P2C)×D,Epos ∈ R(N+1)×D (2.21)

z′ℓ = MSA(LN(zℓ−1))+ zℓ−1, ℓ= 1...L (2.22)

zℓ = FFN(LN(z′ℓ))+ z′ℓ, ℓ= 1...L (2.23)

y = LN(zL). (2.24)

Where z0 represents the initial input to the transformer layers, which consists of the class token

xcls and the patch embeddings x1
pE for i from 1 to N. [xcls; x1

pE; x2
pE; ...; xN

p E] denotes the concate-

nation of the class token and the patch embeddings. E is a learnable parameter and represents the

embedding matrix that is used to transform the patches into the required dimensionality D. Epos is

the positional encoding added to the input sequence, and helps ensure that the positional encoding

aligns with the size of the patch embeddings and class token. This entire first expression creates

the initial sequence with the positional information to be fed into the transformer layers.

The second equation describes the standard transformer operations of normalization, self-

attention, and addition of the residual connection. Here, z′ℓ represents the output of the ℓ− th layer

after applying the multi-headed self-attention (MSA) and layer normalization (LN), and adding

the original input (residual connection) from the (ℓ−1)− th layer. The segment, MSA(LN(zℓ−1))

applies the layer normalization first, followed by multi-headed self-attention, where zℓ−1 denotes

the input to the ℓ− th layer. In the third expression, zℓ represents the output of the ℓ− th layer after

applying a Feed Forward Network (FFN) after another round of Layer Normalization (LN) to z′ℓ,

while also adding the intermediate result z′ℓ (residual connection). The last expression is the final

normalized output of the transformer layers, which is ready to be fed into the next stage, either a

classifier or some other form of prediction layer. The final output of the ℓ− th transformer layer,

after applying LN to zL, is described by y.

The visual Transformer developed by Dosovitskiy et al. [71] does not have a decoder module,

as the model does not make an autoregressive prediction. Instead, the ViT (Visual Transformer)

only has an encoder step, intending to find a better representation of each image patch. This

representation is classified with the help of tokens. The other component of self-attention is the

MLP Heads, which are a type of fully connected network, meaning that each node is connected

to every other node in the subsequent layer, creating an architecture that consists of at least three

components; an input layer, a hidden layer, and an output layer. MLPs can also be entirely made

up of one or more linear layers. In the particular case of the standard ViT, two MLP layers with

GELU [44] non-linearity [71] is used.

The Visual Transformer (ViT) introduced a novel approach to image classification, though

State of the Art 28

Figure 2.16: Taxonomy of Vision Transformers [108].

it presented several limitations. Notably, its dependence on large datasets for effective training

and its restricted application beyond image classification, including tasks such as object detection

and image segmentation. Despite these issues, the ViT initiated the exploration of Visual Based

Transformers, leading to the development of various alternative architectures. These architectures

aim to address the shortcomings of the ViT model, resulting in four primary categories: locality-

based, feature-based, hierarchical-based, and self-supervised learning models. Additional models

that do not strictly adhere to these classifications have also made significant contributions to the

field.

A key limitation of the original Visual Transformer pertains to its limited use of locality, a

crucial characteristic of Convolutional Neural Networks (CNNs). In response to this, the locality-

based category emerged, creating the following example architectures, which include the Data-

Efficient Image Transformer (DeiT) [73], ConViT [107], LeViT [86], CeiT [100], LocalViT [92],

and CCT [87]. These models typically incorporate convolutional layers to extract local features,

imitating CNNs’ structure to some extent; this can decrease input size, expedite inference time, and

help the models handle large images more efficiently. Each architecture provides unique strate-

gies to bridge the gap between transformers and CNNs. For example, the DeiT model utilizes a

2.1 Visual Odometry 29

teacher CNN model and knowledge distillation for training a vision transformer, seeking to en-

hance its performance by reproducing the output of the teacher model during the student model’s

training phase, therefore integrating the inductive biases of the teacher model. The ConViT model,

similar to DeiT, integrates the inductive bias of CNNs into its structure. However, in contrast to

DeiT, ConViT employs Gated Positional Self-attention (GPSA) that can be initialized as a con-

volutional layer. LeViT and CeiT, on the other hand, derive their embeddings from convolutional

layers, enabling local feature extraction and input size reduction. LeViT further reduces the input

size in some attention blocks, thereby accelerating inference time. CeiT extends this concept by

using convolutional layers to create query, key, and value tensors prior to self-attention, hence

allowing the model to include local spatial information. LocalViT utilizes convolutional layers

in each Feed Forward Network (FFN) to extract local features for every transformer block. This

model applies varied activation functions and FFN layer architectures, facilitating the efficient

processing of large images. Lastly, the CCT model extracts embeddings via convolutional layers,

eliminating the need for positional embeddings. This approach highlights that transformers can

operate effectively without extensive computational resources, making them applicable even in

more constrained settings common in certain scientific domains with limited data availability.

Feature-based Visual Transformers emphasize feature diversification, such as token maps and

attention maps, in vision transformers. By generating distinct feature maps, the model is enabled

to extract a variety of features, enhancing its performance [108]. The advancement in CNN mod-

els can be largely attributed to the training of highly layered models, facilitated by innovative

architecture designs. The depth of a CNN enables the learning of richer and more intricate repre-

sentations of input images, improving performance on vision tasks. DeepViT [103] replicates this

behavior, utilizing different heads as a foundation and re-formulating the attention maps through

the transformation matrix. This approach promotes inter-head information communication, allow-

ing the re-formulated attention maps to encode more extensive information. The Tokens-to-Token

ViT (T2T-ViT) [101], in contrast, employs a unique form of tokenization. Rather than using the

standard tokenization approach employed in ViT, it utilizes a progressive tokenization module that

aggregates neighboring tokens into a singular token. This strategy aids in learning the local struc-

tural information of surrounding tokens and iteratively reduces the length of tokens. Another key

finding from this study is that the attention backbone of ViT is not optimally designed for vision

tasks in the same way CNNs are. It exhibits redundancy which leads to restricted feature richness

and increased difficulties during model training.

The ViT model is known for its computational intensity. To address this, a range of models

classified as Hierarchical Based have been proposed, each employing unique strategies to reduce

the computation load. The Pyramid Vision Transformer (PVT) [97] is a pioneering pure Trans-

former backbone model designed specifically for pixel-level dense prediction tasks such as object

detection and semantic segmentation. It utilizes a Spatial Reduction Layer to lower the dimension

of K and V . The PVT model offers three primary advantages over ViT [71]: it can generate differ-

ent channel feature maps at different stages; it can be easily integrated with most downstream task

models; and it is more computation and memory efficient, capable of handling higher resolution

State of the Art 30

feature maps or longer sequences. In terms of parameter count, the PVT model has demonstrated

superior performance compared to well-designed CNN backbones. The Pooling-based Vision

Transformer (PiT) [89] employs a depth-wise convolutional layer for dimension reduction in its

pooling layer. This design mirrors a principle widely used in CNNs, where spatial dimensional

transformation is performed by pooling or convolution with strides. The Swin-Transformer [93]

constructs hierarchical feature maps by merging image patches in deeper layers. The model’s lin-

ear computation complexity relative to input image size is due to the computation of self-attention

within each local window only. This structure allows the Swin-Transformer to achieve robust per-

formance across a range of tasks, including image classification, object detection, and semantic

segmentation. Its key component is the shifted window-based self-attention, which is both efficient

and effective for vision tasks. The Twins-SVT, a result of the study in [84], also computes atten-

tion within a shifted window. However, it performs the global attention computation following the

local window attention. The final architecture within the hierarchical-based category is the Nested

Hierarchical Transformer (NesT) [102]. NesT divides an image into n blocks, merging every four

blocks post a transformer layer. The model introduces Gradient-based Class-aware Tree-traversal

to visualize the most critical path from child to root, illustrating how the model makes decisions

based on a given input image. Interestingly, due to its tree structure, NesT can generate images by

reversing the tree direction [108].

Several transformer architectures do not adhere to a specific classification type but propose

interesting directions to enhance visual transformers.

The core innovation in CrossViT [82] lies in its encoder modules. Each encoder module in

CrossViT is dual-branch, containing a large (L) and a small (S) branch. This structure enables

the model to capture spatial information at varying scales, which are then fused through cross-

attention. CaiT [96] introduces a significant modification in the normalization step. The model

employs LayerScale, which multiplies the output vector of each residual block per channel, rather

than using a single scalar. This form of normalization expedites convergence and enhances the

training of deep models. CaiT also integrates a Class Attention Layer, calculating the attention

between the class embedding and the comprehensive features to facilitate a deeper understanding

of the inputs. Developed with a robustness emphasis, the Robust Vision Transformer (RVT) [94]

proposes three main ideas: i) excluding the class token, deemed unimportant to the vision Trans-

former; ii) incorporating a CNN into the embedding and FFN layers; iii) utilizing more attention

heads to extract more features. The model substitutes the conventional self-attention module with

Position-Aware Attention Scaling (PAAS), adding a learnable matrix to self-attention to highlight

the importance of each Q−K pair. The Cross-Covariance image transformer (XCiT) [95] pri-

marily targets reducing the self-attention time complexity. It accomplishes this by substituting

the self-attention module with Cross-Covariance Attention, which applies the transposed version

of self-attention. In this case, the self-attention is calculated on the feature channels, not on the

tokens.

Self-Supervised Learning (SSL) implementations have also emerged, allowing models to learn

from data without requiring annotations. Examples include SiT [78], MoCoV3 [83], DINO [81],

2.2 Critical Review 31

MoBY [99], EsViT [91], BEiT [79], MAE [88].

While each category of vision transformers presents promising characteristics for various

tasks, including visual odometry, the Locality-based and Hierarchical-based architectures stand

out due to their unique combination of features. The Locality-based models leverage convolu-

tional ideas for the effective extraction of local features, which is integral to understanding spatial

relations in visual odometry. Meanwhile, Hierarchical-based architectures employ hierarchical at-

tention mechanisms that allow varying levels of detail to be captured, a crucial factor for accurate

motion estimation.

2.2 Critical Review

In recent years, visual odometry (VO) has seen significant advancements with the advent of ma-

chine learning-based approaches. This progress comes after an era of geometric techniques, that,

while beneficial in specific contexts, still lack the ability to generalize across diverse environments.

In table 2.1, it is possible to see how some of the explored methods stack up against each other.

trel(%) rrel(◦) Category
ORB-SLAM3 0.87 0.27 Geometric
D3VO 0.88 0.21 Learning
DVSO 0.9 0.21 Learning
ORB-SLAM2 1.15 0.27 Geometric
DeepVO 5.96 6.12 Learning

Table 2.1: Table of five relevant methods. All the implementations are vision based. Each metric
is taken from the respective paper where they were first described.

As displayed in Table 2.1, the relative translational (trel) rel and rotational errors (rrel) serve

as performance indicators for various VO methods, namely ORB-SLAM3, D3VO, DVSO, ORB-

SLAM2, and DeepVO. it is important to note how the learning-based approaches compare to ge-

ometric ones. Looking at the relative translational errors (trel), D3VO and DVSO, both learning-

based techniques, do not significantly outperform ORB-SLAM2 and ORB-SLAM3, which are

more traditional, geometric-based methods. In fact, the ORB-SLAM3 implementation even marginally

surpasses D3VO. The same pattern is observed with the rotational errors (rrel), suggesting that the

advances in learning-based methodologies have yet to clearly surpass the traditional geometric

methods in this regard. The exception to this pattern is DeepVO, another learning-based approach

that exhibits significantly higher errors, both in translation and rotation, than any of the other meth-

ods in the table. This discrepancy further emphasizes that while learning-based VO techniques are

undoubtedly promising, they are currently not a definitive improvement over traditional methods.

This could be attributed to the relative novelty of learning-based VO, which has not been around

as long as geometric techniques, and therefore has not had as much time for refinement and im-

provement. Another reason why learning-based approaches are still lagging behind may have to

State of the Art 32

do with the fact that the architectures employed, like CNNs, are not good at representing sequen-

tial information, while RNNs are computationally heavy and are incapable of capturing the image

features. Even when the two are combined, the resulting architecture is not always optimal.

Given the limitations of the existing VO methods, it becomes evident that there is a significant

opportunity for improvement, particularly with the use of transformer models. Vision transformers

are particularly well-suited to extract features from images while efficiently handling sequential

data, a task that traditional methods struggle to accomplish. Furthermore, unlike recurrent neural

networks (RNNs), transformers stand to benefit from an increase in data size. Despite the substan-

tial progress in vision transformers, certain issues persist. Specifically, i) there is an absence of

universal pre-trained weights. The adaptation of self-attention in transformers, initially designed

for NLP problems, to vision, is still not thoroughly explored. ii) Feature collapsing, which con-

strains the model’s ability to produce diverse representations, can hinder training for deep vision

transformers. While models like T2T-ViT and DeepViT address this issue by adding extra modules

or utilizing learnable parameters, this can increase inference time — an undesirable outcome for

applications such as ego-motion. Potential solutions involve modifying the architecture or training

method or utilizing different data augmentations. iii) The model must be lightweight enough to

operate on in-car computing technologies. iv) The issue of fixed positional embeddings size exists.

Interpolation can be used to adjust embeddings size, but this might cause information loss when

the input size deviates significantly from the training size. Currently, the most viable approach

is to extract features directly from convolutional layers without adding positional embeddings,

although this method lacks global positional information. v) Lastly, the model’s robustness is

critical. In real-world scenarios, input images may be altered or corrupted due to factors such as

brightness, background, blur, noise, digital artifacts, or even malicious adversarial attacks.

Chapter 3

Visual PoseFormer

Traditionally, learning-based approaches estimate six-degree pose values - namely, x, y, z coor-

dinates along with roll(φ), pitch(θ), yaw(ψ) angles. There are many ways to do this, but the

problem can be simplified to two key components: i) extract features from the input images.

DeepVO and D3VO are two learning-based designs that try to extract valuable information from

the input images. DeepVO learns to extract random features by using CNNs, which may or may

not be relevant, while D3VO explicitly extracts Depth and Optical Flow information. ii) Use the

extracted information to regress continuous 6D pose values. This step is usually performed by a

fully connected network like an MLP head.

3.1 Introduction

Due to the nature of the task, that is, visual odometry, ViTs can be seen as prime candidates to be

the state-of-the-art deep learning approach since they have some very interesting features which

could help them during the feature extraction step. ViTs, unlike traditional Convolutional Neural

Networks (CNNs), which process data hierarchically, can utilize the power of the transformer

layers to handle spatial and temporal dependencies in a global context manner. In other words,

a patch of an image can be related to a completely different patch, something that can’t happen

in CNNs as they can only establish local relationships. Extracting the global context in ViTs is

only made possible due to how self-attention works (explained in Chapter 2). This behavior is

appreciated when dealing with visual odometry tasks, where understanding the interrelationship

of different parts of the image and their evolution over time is very important for accurate pose

estimation. An example of where this behavior can be beneficial is seen in figure 3.1, where

different moving parts of the image, like a moving vehicle, can affect the outputs of a CNN,

something which can be circumvented with the self-attention mechanisms, present in transformers.

This type of situation is not the exception as most of the time the vehicle will have to face scenes

with other moving objects. In these cases, the behavior of the transformer can prevent the model

from giving too much importance to those objects which move at a different speed from the rest

of the image and can negatively influence the quality of the predictions.

33

Visual PoseFormer 34

Figure 3.1: An image from the KITTI dataset [32], where there aren’t a lot of good static reference
points, and there is a moving vehicle on the scene.

After the transformer extracts some features, the next step is to regress 6D pose values, where,

usually, and in the context of this thesis, a Multi-Layered Perceptron (MLP) is used. Still, it should

be noted that a combination of linear layers and activation functions usually yields better results,

allowing the MLPs to model non-linear dependencies contained in the data.

Combining vision transformers and MLPs is a compelling approach to solving odometry prob-

lems. The vision transformer is a competent architecture for handling the feature extraction part.

Meanwhile, the MLPs act as a regressor, mapping the extracted features to specified continuous

outputs. With enough computational resources and sufficient training data, this combination of

networks has the potential to yield accurate odometry estimates.

3.2 Data Processing

All the work developed in this thesis was done on the colored KITTI odometry dataset [32]. KITTI

incorporates a range of outdoor sequences captured in varying environments, which span urban

and rural landscapes, as well as highway and residential regions. These sequences are organized

into 22 colored stereo sequences. Ground truth (GT) trajectory data is available for 11 of these

sequences (00-10), while the remaining sequences (11-21) are reserved for evaluation. Two cam-

eras take images at a frequency equal to 10Hz. Each camera represents the left or right component

of the stereo pair of RGB images, which facilitates the estimation of depth and 3D structure. The

images do not have a fixed resolution, with some sequences containing images with resolutions of

Height,Width = 376,1241 pixels, while others have a resolution of Height,Width = 370,1226.

Having different heights and widths for images means that all images have to be resized. In this

case, all images are resized to have Height,Width = 256,512. The dataset further offers ground

truth camera poses sourced from a highly precise GPS/IMU (Inertial Measurement Unit) system,

LiDAR point clouds (which isn’t important in this particular study), and calibration data for each

sequence. The provided calibration data holds critical information regarding the camera’s intrinsic

and extrinsic parameters, assisting in the projection of 3D points onto the 2D image plane.

Odometry has an iterative nature, something that ends up reflected in the process of feeding

images into the transformer model.

3.3 Model architecture 35

• At the most basic level, the model processes stereo images from consecutive instants. This

results in pairs of images: two from instant t1 and another two from instant t2, totaling four

images for each prediction.

• Given that the KITTI dataset size is relatively small for transformer models to learn effec-

tively, data augmentation methods were employed to enhance learning efficiency. Instead

of using just two consecutive instances, instants that are more than one frame away are also

used. Thus, the transformer models may receive moments t and t +1, or t and t +2, or t and

t +3, or t and t −1.

• In addition to the stereo images, the model can also utilize optical flow [37][38][48] in-

formation as an extra input. This additional information is pre-calculated using the RAFT

model [72], serving as another source of valuable data for the transformers. A visual repre-

sentation of what optical flow looks like can be seen in figure 3.2

Figure 3.2: Optical flow for a pair of images. The color represents the direction of the movement;
the saturation represents the value.

3.3 Model architecture

To thoroughly understand how transformer models perform at VO, three transformer models were

developed from scratch and then tested. Different architectures mean that each model has some-

thing unique, which may grant it some advantage over the others, allowing for a better understand-

ing of how each transformer component (different input shape, different attention mechanisms)

affects the ability of the transformer to learn odometry tasks. Expanding upon these unique as-

pects, the specific characteristics of each of the three developed transformer models are described

as follows:

• PoseFormer2D (PF2D): This is the most basic version implemented, and it features 2D

transformer layers followed by six MLPs tasked with regressing one of the 6D pose values.

Visual PoseFormer 36

The architecture can be used with fixed or learnable position encodings. Being a 2D archi-

tecture means that all the information is bundled into the channels’ dimension, and this goes

for images and optical flow.

• PoseFormer3D (PF3D): This version has an extra time dimension in the input tensor. This

means that information from instants t and t + 1 is stacked on the channels’ dimension, as

opposed to PF2D, where everything is bundled together.

• Spatio-Temporal PoseFormer (STPF): This version is similar to PF3D since it also sep-

arates the information in instants but has two different transformer blocks, which attend to

spatial and temporal dependencies differently.

Diving deeper into each architecture, the first to discuss is the PoseFormer2D (PF2D), de-

picted in figure 3.3. This architecture operates on two-dimensional data, encapsulating spatial

information like the height and width of images. However, it does not incorporate the temporal

dimension across different frames. As a consequence, time-varying information from multiple

frames, such as a pair of stereo images at distinct moments, is merged into the channel dimension

and represented as a 4-dimensional tensor [Batches,Channels,Height ,Width]. The PF2D architecture

is primarily composed of three steps. The initial step involves dividing the images into smaller

patches. For an image I with dimensions (H,W,C), a single patch of I is characterized by dimen-

sions PH,PW,C, which represent the height, width, and channels of the patch respectively. This

operation of creating patches can be symbolized as partition(I), further detailed in two steps:

1. Calculate H ′ = H/PH and W ′ = W/PW by dividing the height and width of the image by

the patch size.

2. For every i ∈ {0,1, . . . ,H ′− 1} and j ∈ {0,1, . . . ,W ′− 1}, a patch Ii j = I[i ·PH : (i+ 1) ·
PH, j ·PW : (j+1) ·PW, :] is created. In this context, Ii j refers to a patch at position (i, j),

and the colon symbol (:) at the end, indicates the incorporation of all channels in each patch.

Following the creation of patches, these segments are flattened into 1D arrays with dimensions

PH ×PW ×C. Subsequently, the patches undergo Layer Normalization, a Linear Layer transfor-

mation, and another Layer Normalization, before positional encodings are added. PoseFormer2D

has two types of mutually exclusive encodings which may either be tokens that are learned during

training or fixed values generated using sine and cosine functions.

The next step, and arguably the most important one, is the calculation of attention scores

and conversion of that to useful information. First, the model calculates three vectors from the

input, the Query (Q), Key (K), and Value (V). It obtains these vectors by applying a linear

transformation to the input described by the equations - Q =WqX ,K =WkX ,V =WvX , where Wq,

Wk, and Wv are the weight matrices learned during the training process, and X is the input tensor.

The attention score is given by the expression 2.17, explored earlier on chapter 2. The last step is

using the output of the transformer layers to regress the 6D pose through MLPs.

3.3 Model architecture 37

Rearrange

Layer Normalization

Linear Layer

Layer Normalization

Transform
er L

ayer

N
Transformer

Layers
6D Pose

Transformer Block MLP HeadsImages to Patches

Positional
Encoding

Self Attention

Layer Norm

Linear Layer

Layer Norm

Linear Layer

Transformer Layer

Feed Forward Net

Figure 3.3: Architecture of the PoseFormer2D. The input stereo images are processed and trans-
formed into a 1D vector representation where positional encodings are added. The tensor then
goes through a transformer block composed of N transformer layers. The resulting tensor with the
added attention values is used by the MLP heads to regress the 6D pose.

The second model, PoseFormer3D (PF3D), figure 3.4, expands on the PF2D, allowing the

model to handle temporal data. This happens because the input now takes the form of [Batches,

Channels, Frames, Height , Width], where Frames corresponds to the number of different pairs of stereo

images fed to the model. The partition(I) operation is slightly different in this case. Here each

3D patch Vi jk is equal to V [i ·PF : (i+1) ·PF, j ·PH : (j+1) ·PH,k ·PW : (k+1) ·PW, :], where

PF is the frame patch size.

Besides that difference, both PF2D and PF3D have the same three main steps and follow the

same principles as they are both based on the original transformer model proposed by Vaswani et

al.[50] and also follow some important principles, like having global average pooling instead of

class tokens, having no dropout, that are present in Beyer et al.[106]. The 3D model ends up being

an extension of the 2D model. Besides using fixed positional encodings, both models can use

learnable position encodings. Learnable position encodings can prove advantageous over fixed-

value position encodings, since they are updated during training, and can potentially learn position

information that is more useful for visual odometry. Learnable encodings are not necessarily better

than fixed positional encodings, as each type has its advantages and disadvantages, e.g., learning

encodings can lead to overfitting and can also make the model take longer to converge.

Lastly, the Spatial-Temporal Pose Former (STPF), figure 3.5, is heavily inspired by Arnab

et. al. [77], and differs from the previous two models by having different transformer blocks

attend different parts of the input tensor [Batches,Channels,Frames,Height ,Width]. In the previous two

implementations, a single transformer block calculates the attention values for the spatial and

temporal dimensions. STPF is different since it has two blocks of transformer layers, where each

block calculates attention values for its designated dimension - space or time. Furthermore, STPF’s

way of adding positional information is through learnable positional encodings. Since this model

has transformer blocks that calculate attention values for space, the patches here are also different.

For STPF, each image is converted to a patch where the time dimension is more important. This

creates a patch Ti jk equal to T [i ·PF : (i+1) ·PF,(j ·PH : (j+1) ·PH,k ·PW : (k+1) ·PW), :]

All three implementations - PF2D, PF3D, and STPF - have six MLP heads, figure 3.6 as their

Visual PoseFormer 38

Rearrange

Layer Normalization

Linear Layer

Layer Normalization

Transform
er L

ayer

Transform
er L

ayer

N
Transformer

Layers
6D Pose

Transformer Block MLP HeadsImages to Patches

Positional
Encoding

Figure 3.4: Architecture of the PoseFormer3D. The input stereo images are processed and trans-
formed into a 1D vector representation where 3D positional encodings are added. The tensor then
goes through a transformer block composed of N transformer layers. The resulting tensor with the
added attention values is used by the MLP heads to regress the 6D pose.

Rearrange

Layer Normalization

Linear Layer

Layer Normalization

Transform
er L

ayer

Transform
er L

ayer

N Spatial
Transformer

Layers

Transform
er L

ayer

Transform
er L

ayer

N Temporal
Transformer

Layers
6D Pose

Transformer Block Transformer Block MLP HeadsImages to Patches

Spatial
Positional
Encoding

Temporal
Positional
Encoding

Figure 3.5: Architecture of the Spatial-Temporal Transformer. The input stereo images are pro-
cessed and transformed into a 1D vector representation where spatial position encodings are added.
The tensor then goes through a spatial transformer block composed of N transformer layers. Be-
fore the output goes through another transformer block focused on finding temporal relationships,
temporal tokens are added. The output of this block is fed to the MLP heads to regress the 6D
pose.

regressors where each head makes use of a combination of linear layers, layer normalization, and

activation functions to regress one value of 6D pose, figure 3.6. In each MLP the input tensor has

the dimension of size, dim, decreasing by half for each linear Layer. The final linear Layer has
dim

4 input size and 1 output size. Each dropout layer has 0.5 chance to convert a value to zero.

This amount of dropout helps to prevent overfitting during training, by forcing the model to learn

redundant information.

3.4 Loss Function

In autonomous driving scenarios, the magnitude of longitudinal movements (moving forward and

backward) is more prevalent than lateral (side-to-side) or height changes. However, the direction

of each movement is also crucial for navigational purposes. A slight error in the direction over

3.4 Loss Function 39

Layer Norm GELU GELU Dropout
(p = 0.5)

1Dropout
(p = 0.5)

2048 1024 1024 512 512
Linear Layer Linear Layer

Dim DimDimDim
Linear Layer

MLP Head

Dim Prediction

Figure 3.6: A single MLP Head, tasked with regressing a single value of the output 6D pose.

a long distance can result in significant positional discrepancy, potentially leading to a dangerous

situation. With these constraints in mind, the following loss function was used to train the models

proposed:

L = wt

(∥∥∥∥ Pt

∥Pt∥
− Tt

∥Tt∥

∥∥∥∥+λ1 |Pt −Tt |
)
+wr (∥Pr −Tr∥+λ2 |Pr −Tr|) (3.1)

In machine learning, the loss function tells the model how far off the predictions are from the

target values. In this case, where the model predicts 6D poses, including translations (3D) and

rotations (3D), it makes sense to separate the loss into two parts: one for translations (T) and one

for rotations (R). This allows the loss function to handle two parts independently and possibly

assign different importance to them via the weights wt and wr.

For translations, it is essential to penalize differences not only in magnitude but also in direc-

tion. To accomplish this, the Euclidean distance (L2 norm) is computed between the normalized

predicted and target translation vectors, effectively measuring the angular difference. Furthermore,

the magnitude of the error, an absolute difference (L1 norm) scaled by a factor λ1, is also added,

giving the total translation loss.

Similarly, for rotations, the aim is to penalize disparities between the predicted and target

rotations. The first term of the rotational loss function is the L2 norm (Euclidean distance) between

the predicted rotation and the target rotation, reflecting the disparity in the degree of rotation.

For rotations there is no need to normalize the L2 norm since direction does not matter. This is

followed by the absolute difference (L1 norm) scaled by a factor λ2 to account for the error in the

magnitude of the rotation.

Finally, the two losses for translation and rotation are combined into a total loss, considering

the weights wt and wr for translations and rotations, respectively. This gives a meaningful single

scalar value that can be used for optimization.

After testing, it was determined that superior results were achieved for certain ranges of the

parameters wt , wr, λ1, and λ2. Specifically, wt performed optimally within the range [0.5,1.5],

wr within the range [1,2], λ1 within [0.05,0.5], and λ2 within the range [0.01,0.1]. These ranges

provided a balance that minimized the loss and increased the model’s predictive ability.

Visual PoseFormer 40

3.5 Optimizer

Optimization algorithms play an essential role in training machine learning models. These algo-

rithms adjust the model’s parameters iteratively to minimize the loss function’s error, effectively

learning from the data to improve the model’s performance. Among the various optimizer algo-

rithms tested, the AdamW optimizer was ultimately chosen for this dissertation due to how easy it

is to use. It does not require much tuning to get good performance, a behavior that is appreciated

in more complex problems like Learning-based VO.

AdamW is an extension of the Adam optimizer, a popular choice due to its adaptive learning

rate, which can lead to faster convergence and improved generalization. The distinction of AdamW

lies in its superior handling of weight decay, which aids in regularizing the model and preventing

overfitting. Furthermore, AdamW also works better with learning rate schedulers because it de-

couples weight decay from the optimization steps. This means that as the learning rate decreases

with a schedule, the weight decay effect does not diminish. Besides selecting an optimizer, man-

aging the learning rate during training is crucial. This concept, known as learning rate scheduling,

adjusts the learning rate over the training period, which can improve the model’s final performance.

The results to be presented employ two particular learning rate schedulers: ReduceLROnPlateau

and CosineAnnealingWarmRestarts. The ReduceLROnPlateau scheduler reduces the learning rate

whenever the model’s performance plateaus; that is when it stops improving. This scheduler al-

lows the optimizer to make finer adjustments to the parameters, avoiding the potential pitfall of

overshooting the optimum. Consequently, it can contribute to faster convergence and prevent stag-

nation of the model’s learning process. The CosineAnnealingWarmRestarts scheduler varies the

learning rate according to a cosine function with periodic warm restarts. This strategy initiates

with larger learning rates to encourage broad exploration of the parameter space, then progres-

sively decreases the rate for precise fine-tuning of the model parameters. Periodic warm restarts

reset the learning rate to its initial value, fostering exploration in potentially different regions of

the parameter space.

Together, the AdamW optimizer and the use of these learning rate schedulers support an ef-

fective training process, balancing the need for broad exploration of the parameter space and

fine-tuning, resulting in a well-optimized model.

Chapter 4

Experiments

This chapter evaluates the performance of the three proposed architectures, namely PoseFormer2D,

PoseFormer3D, and Spatial-Temporal PoseFormer, under a consistent set of conditions. It also ex-

plores the impacts of different configurations within these models, including the effects of fixed

positional encodings versus learnable encodings on the 2D and 3D PoseFormers and the addition

or exclusion of optical flow information.

4.1 Training and code details

The KITTI dataset [32] provides eleven training sequences. Out of those eleven sequences, the

models were trained on the sequences 00, 01, 02, 05, 08, and 09, as these contain over 70% of the

images present on the dataset, thus representing it better. Sequence 07 was used as validation, and

sequences 03, 04, 06, and 10 were excluded from training. All the images were resized to have a

height equal to 256, and a width equal to 512. The patch size chosen, P = 16, is a divisor of both

the height and width proposed.

Each time a model makes a prediction, it receives two consecutive frames and the respective

optical flow (if so desired). The individual inputs are shuffled to create diverse batches of 16. This

shuffling is performed on the level of the entire inputs, not within the paired images or optical

flow themselves. This approach ensures that the sequences within the same batch are not directly

sequential, providing the model with a broader range of data in each batch for better generalization.

The batch size greatly impacts the memory used to train the model. Hence, it has to be chosen

according to the GPU used to train the models. All the training, validation, and testing are done

using the PyTorch and the PyTorch Lightning framework, which allows for the creation of modular

training, validation, and testing loops and easy setup of an optimizer scheduler.

The computer used to train the models has a Ryzen 5800x3D CPU (8 cores, 16 threads) with

up to 4.5GHz clock speed; the GPU used was an RTX4090 with 24GB of VRAM.

41

Experiments 42

4.2 Results

This section will demonstrate each transformer model’s qualitative and quantitative performance.

Additionally, it will provide an overall comparison against other state-of-the-art models.

To set a standard point of comparison between the different variations of the proposed models,

they were trained for 30 Epochs with the same hyperparameters. The starting learning, 5e−5,

stayed consistent for all the training tests.

4.2.1 Training

During training, as shown in Figure 4.1, the model computes the loss for every step. These individ-

ual losses are accumulated throughout an epoch, representing the total error the model experiences

during that time. Once the epoch ends, an average loss is determined by dividing the total accu-

mulated loss by the number of steps. However, this gives the average loss per batch, with each

batch comprising 16 inputs. To get the loss per single input within a batch, this average is further

divided by the batch size. For the validation phase, demonstrated in Figure 4.2, the calculation

process is similar to training. However, the batch size during validation is set to 1. This means

that the average loss computed at the end of an epoch is already indicative of the loss per single

input, and no further division by batch size is necessary. These plots show the result of training

with AdamW optimizer with the Reduce on Plateau scheduler. Both training and validation loss

are important metrics to understand how the models are learning over time, but validation loss is

a better metric to represent how the model would perform in real-world scenarios. Thus the lower

the validation loss, the better.

0 5000 10000 15000 20000 25000 30000 35000
Step

0.06

0.08

0.10

0.12

0.14

0.16

0.18

Tr
ai

ni
ng

 L
os

s

PoseFormer2D_Learn_ROP_AGD
PoseFormer2D_Learn_ROP_FLOW
PoseFormer2D_SINCOS_ROP_AGD
PoseFormer2D_SINCOS_ROP_FLOW
PoseFormer3D_Learn_ROP_AGD
PoseFormer3D_Learn_ROP_FLOW
PoseFormer3D_SINCOS_ROP_AGD
PoseFormer3D_SINCOS_ROP_FLOW
STPoseFormer_ROP_AGD
STPoseFormer_ROP_FLOW

Figure 4.1: Training loss of PF2D, PF3D, and STPF models when trained with and without flow
information. The 2D and 3D models were tested with and without learnable encodings. All the
models were trained for 30 epochs with the Reduce On Plateau (ROP) optimizer scheduler.

4.2 Results 43

0 5000 10000 15000 20000 25000 30000 35000
Step

0.055

0.060

0.065

0.070

0.075
Va

lid
at

io
n

Lo
ss

PoseFormer2D_LEARN_COSANN_FLOW
PoseFormer2D_SINCOS_COSANN_FLOW
PoseFormer3D_LEARN_COSANN_FLOW
PoseFormer3D_SINCOS_COSANN_FLOW
STPoseFormer_COSANN_FLOW

Figure 4.2: Validation loss of PF2D, PF3D, and STPF with ROP scheduler.

The graphs show that the worst-performing models, during validation, are the ones that do

not have optical flow information. This is especially pronounced for the more complex models

PF3D and STPF. Being more complex means a longer convergence time, and within a 30-epoch

timeframe, they end up not reaching a satisfactory solution when using only images. It is also

worth noting that in the graphs, the training loss can sometimes be lower than the validation loss

for the same model. While this is not the typical behavior, it can happen in some of these models

for two main reasons.

• The MLP heads, on the last layer of the transformer, have a high dropout value. High

dropout prevents overfitting by making some values in the input tensors zero. This stimu-

lates other neurons learning and prevents overfitting. More importantly, this zeroing of val-

ues does not happen during validation, which means that the model can use all the learned

information when predicting on the validation dataset.

• As the validation data comes from a single sequence, that sequence can be overall simpler

than some others present in the training, which can result in a lower validation loss.

All the variations were also trained with the cosine annealing with warm restarts optimizer

scheduler. In this case, the optical flow datasets were the only ones used. This is due to their

faster convergence, thus being easier to evaluate the models’ performance. The scheduler has a

cyclic learning rate that gradually decreases within each cycle (annealing phase) and then restarts

at the beginning of each new cycle. Essentially, it warms up the learning rate at the start of each

cycle and cools it down towards the end. Having this dynamic adjustment, allows the model to

potentially escape local minima and converge toward a more optimal solution during training. For

these tests, each annealing phase has a duration of T0 ×T n−1
m , where T0 = 500, Tm = 2, and n is

the nth annealing phase. Furthermore, the lowest learning rate that the optimizer reaches each

annealing phase is 5e−7. For this experiment, the training and validation loss can be observed in

the graphs 4.3 and 4.4.

Experiments 44

0 5000 10000 15000 20000 25000 30000 35000
Step

0.08

0.10

0.12

0.14

0.16

0.18

0.20
Tr

ai
ni

ng
 L

os
s

PoseFormer2D_LEARN_COSANN_FLOW
PoseFormer2D_SINCOS_COSANN_FLOW
PoseFormer3D_LEARN_COSANN_FLOW
PoseFormer3D_SINCOS_COSANN_FLOW
STPoseFormer_COSANN_FLOW

Figure 4.3: Training loss of PF2D, PF3D, and STPF models when trained with the cosine anneal-
ing with warm restarts optimizer scheduler. The 2D and 3D models were also tested with and
without learnable encodings.

0 5000 10000 15000 20000 25000 30000 35000
Step

0.055

0.060

0.065

0.070

0.075

Va
lid

at
io

n
Lo

ss

PoseFormer2D_LEARN_COSANN_FLOW
PoseFormer2D_SINCOS_COSANN_FLOW
PoseFormer3D_LEARN_COSANN_FLOW
PoseFormer3D_SINCOS_COSANN_FLOW
STPoseFormer_COSANN_FLOW

Figure 4.4: Validation loss of the transformers when using the cosine annealing with warm restarts
optimizer scheduler.

The training results from the task of 6D pose estimation for visual odometry indicate that

the Reduce On Plateau (ROP) scheduler outperforms the Cosine Annealing with Warm Restarts

approach. Moreover, it is also interesting that the models using fixed positional encodings exhib-

ited equivalent performance to those employing learnable positional encodings. This observation

suggests that in the context of 6D pose estimation for visual odometry tasks, the choice between

fixed and learnable positional encodings does not significantly affect the models’ effectiveness,

or that not enough training data was used to see any real difference. Despite the inherent adapt-

ability of learnable encodings, and the theoretically advantageous property of fixed encodings to

capture long-term dependencies, neither approach showed a distinctive advantage over the other.

However, it is crucial to emphasize that this conclusion might be specific to this particular task

and dataset, and the choice between fixed and learnable positional encodings could produce dif-

ferent outcomes in other scenarios. Analyzing the graphical data, all the transformer models evi-

dently exhibit a learning tendency from the input data. Specifically focusing on the models trained

with ROP, as they resulted in comparatively lower loss values, a majority of the PoseFormer2D

variations display minimal validation loss in contrast to the remaining models. PoseFormer3D

4.2 Results 45

generally shows the weakest performance, whereas STPoseFormer exhibits mixed results - being

superior in some tests and inferior in others. This analysis suggests that PoseFormer2D, due to its

less complex structure, converges more quickly than its counterparts. Conversely, PoseFormer3D,

despite its more intricate information representation, takes longer to converge, and the benefits

derived from this complexity appear negligible. The STPoseFormer model, despite its longer

convergence time, appears to encapsulate the data patterns best. This suggests that with further

optimization in training, such as providing more data to enhance model generalization, the per-

formance of STPoseFormer could potentially improve significantly. Overall it seems that the low

amount of training data seemed to favor the less complex PoseFormer2D. PoseFormer3D changes

in architecture do not seem to improve the capabilities of the model, and the STPoseFormer seems

to have some advantages over the other two architectures, but that did not make it stand out in any

way.

4.2.2 Ego Motion Trajectories

The previous section compared the training and validation loss achieved by the variants of the

proposed models. Analyzing the performance of the models based on how good the predictions

are is a good starting point. However, KITTI has a set of standard evaluation metrics that better

capture how good a technique is at doing VO. These metrics are:

• terr: average translational error, which is measured in percentage (%) and calculated over

100 meters;

• rerr: average rotational error, measured in degrees per 100 meters (◦/100m);

• ATE: absolute trajectory error, expressed in meters. It corresponds to the root mean squared

error (RMSE) between the estimated camera pose and the ground truth;

• RPE: relative pose error for rotations and translations. It represents the error between frames

in meters for translations and in degrees for rotations.

Table 4.1, shows the quantitative performance of the trained models when compared with

stereo ORB-SLAM3 (without loop closure) and DeepVO (the most well known end-to-end ap-

proach, similar to the transformers). From this point forward, only the best-performing version

of each model is used. This means that for the PoseFormer2D and PoseFormer3D, no learnable

encodings were used. All three models use optical flow information. Being the best means that

the values present in the table are the lowest possible for each model.

The results are obtained using a 6 degrees of freedom (6DoF) alignment. The usage of 6DoF

alignment is common in the field of visual odometry as it provides standard and consistent means

to measure and compare the performance of different techniques by removing much of the drift

and other errors which accumulate over time. The trained DeepVO model used for comparison

is from an unofficial implementation1, and was trained on the same sequences as the transformer

1https://github.com/ChiWeiHsiao/DeepVO-pytorch

https://github.com/ChiWeiHsiao/DeepVO-pytorch

Experiments 46

models (00, 01, 02, 05, 08, and 09); and the code used for ORB-SLAM3 comes from its official

C++ implementation2.

Method Sequence
00 01 02 03 04 05 06 07 08 09 10

terr

(%)

ORB-SLAM3 0.852 1.748 0.763 0.978 0.442 0.643 0.843 0.844 1.022 0.849 0.659
DeepVO 62.121 101.589 82.313 96.307 20.517 56.219 56.842 69.850 78.979 74.336 126.950
PoseFormer2D 8.688 3.682 6.568 13.895 13.927 7.819 13.445 14.187 8.854 8.841 9.574
PoseFormer3D 10.529 5.140 8.151 13.005 14.682 8.946 24.559 13.101 14.015 8.039 11.623
STPoseFormer 10.424 3.609 7.722 10.020 15.615 6.118 20.769 13.222 10.747 8.466 12.724

rerr

(%)

ORB-SLAM3 0.299 0.272 0.262 0.167 0.129 0.259 0.253 0.481 0.297 0.250 0.335
DeepVO 34.051 12.939 31.198 24.626 7.152 35.269 33.577 59.872 33.381 31.960 26.607
PoseFormer2D 3.188 1.190 2.368 3.959 1.573 3.804 3.986 10.945 3.307 3.340 3.514
PoseFormer3D 3.888 1.226 2.835 5.468 2.375 3.912 8.966 8.136 5.465 2.854 4.262
STPoseFormer 4.154 1.118 2.610 4.030 2.333 1.917 7.399 6.229 3.628 3.005 4.196

ATE
(m)

ORB-SLAM3 5.163 14.563 7.434 1.386 0.217 2.148 2.165 1.401 3.418 3.245 1.360
DeepVO 105.444 71.061 168.569 39.100 12.424 66.294 93.828 21.185 64.311 29.212 49.480
PoseFormer2D 81.465 22.217 56.647 18.548 15.491 39.764 58.018 40.466 62.398 68.644 15.836
PoseFormer3D 80.819 27.572 91.313 11.355 16.494 47.579 109.952 31.374 118.107 29.759 24.634
STPoseFormer 73.584 13.356 56.574 12.800 17.572 35.829 89.842 21.035 64.908 66.103 24.624

RPE
(m)

ORB-SLAM3 0.020 0.058 0.023 0.016 0.018 0.014 0.015 0.013 0.025 0.020 0.016
DeepVO 0.687 2.340 1.281 0.742 0.355 0.698 0.907 0.593 0.839 0.842 1.120
PoseFormer2D 0.058 0.064 0.059 0.107 0.211 0.063 0.169 0.073 0.069 0.070 0.088
PoseFormer3D 0.068 0.099 0.074 0.091 0.223 0.067 0.146 0.071 0.078 0.086 0.091
STPoseFormer 0.059 0.066 0.068 0.118 0.238 0.068 0.184 0.093 0.078 0.083 0.124

RPE
(◦)

ORB-SLAM3 0.059 0.037 0.050 0.042 0.032 0.041 0.033 0.038 0.045 0.046 0.053
DeepVO 1.038 0.623 0.921 0.567 0.171 0.716 0.609 0.940 0.871 0.969 0.746
PoseFormer2D 0.181 0.103 0.158 0.153 0.103 0.136 0.124 0.187 0.160 0.152 0.177
PoseFormer3D 0.258 0.123 0.221 0.209 0.124 0.181 0.165 0.213 0.210 0.194 0.241
STPoseFormer 0.263 0.118 0.224 0.216 0.128 0.189 0.162 0.235 0.217 0.198 0.249

Table 4.1: Quantitive comparison between the three developed architectures, ORB-SLAM3 with-
out loop closure and DeepVO. Results are scaled using 6DoF. The PF2D uses flow information
without learnable encodings and ROP optimizer scheduler. PF3D uses flow information without
learnable encodings and ROP optimizer scheduler. STPoseFormer uses flow information and the
ROP optimizer scheduler.

Examining the information in the table, ORB-SLAM3 consistently outperforms across all se-

quences and evaluation metrics, implying its superior capability in predicting camera pose relative

to the ground truth. Being one of the state-of-the-art geometric approaches, ORB-SLAM3 will be

utilized as a benchmark to assess the extent of deviation in the predictions of the proposed models.

Among the machine learning-based models, including DeepVO, PoseFormer2D, PoseFormer3D,

and STPoseFormer, DeepVO tends to record the greatest errors across all sequences and metrics,

suggesting that it is overshadowed by the proposed PoseFormer architectures. PoseFormer2D per-

forms particularly well, displaying the best results among the machine learning models in terms of

the terr, while STPoseFormer is the best for the rerr. STPoseFormer, despite demonstrating slightly

higher short-term errors in terr, is also a very capable model, as evidenced by its relatively low ATE

for sequences 00 and 01. PoseFormer3D, while not surpassing other models in any specific met-

ric, still maintains steady and comparable results with the other PoseFormer variants. Overall the

PF2D presents an increase in performance, when compared to DeepVO, of 87% and 87% for terr

and rerr respectively; PF3D an increase of 84% and 85%; and STPF an increase of 85% and 88%.

2https://github.com/UZ-SLAMLab/ORB_SLAM3

https://github.com/UZ-SLAMLab/ORB_SLAM3

4.2 Results 47

Following the performance analysis of the chosen methods against the selected KITTI metrics,

visualizing their predicted trajectories is crucial. The subsequent figures, 4.5 and 4.6, illustrate the

performance of the three transformer models, under 6DoF alignment on the training sequences.

400 300 200 100 0 100 200 300
x (m)

0

100

200

300

400

500

z
(m

)

Ground Truth
Start
PoseFormer2D
PoseFormer3D
STPoseFormer

(a) Sequence 00

0 250 500 750 1000 1250 1500 1750
x (m)

1000

800

600

400

200

0

z
(m

)

Ground Truth
Start
PoseFormer2D
PoseFormer3D
STPoseFormer

(b) Sequence 01

100 0 100 200 300 400 500 600
x (m)

0

200

400

600

800

1000

z
(m

)

Ground Truth
Start
PoseFormer2D
PoseFormer3D
STPoseFormer

(c) Sequence 02

Figure 4.5: Plotted trajectory for the training sequences 00 (Urban), 01 (Highway), and 02 (Ur-
ban).

The initial three sequences demonstrate that all models possess some degree of accuracy in

predicting trajectories. Both PoseFormer2D and STPoseFormer exhibited similar performance,

while the PoseFormer3D fell short in comparison. Sequence 01, illustrated in figure 4.5b, rep-

resents a highway scenario that typically poses challenges for ego-motion estimation techniques

due to an increased number of traceable feature points exiting the field of view between frames.

Nevertheless, all three models managed to accurately predict the trajectory. On the other hand,

sequences 00 and 02, though relatively simple, are very long and start to accumulate drift, as

depicted in figures 4.5a and 4.5c.

400 300 200 100 0 100 200
x (m)

0

100

200

300

400

z
(m

)

Ground Truth
Start
PoseFormer2D
PoseFormer3D
STPoseFormer

(a) Sequence 05

400 200 0 200 400
x (m)

300

200

100

0

100

200

300

400

z
(m

)

Ground Truth
Start
PoseFormer2D
PoseFormer3D
STPoseFormer

(b) Sequence 08

200 100 0 100 200 300
x (m)

0

100

200

300

400

500

z
(m

)

Ground Truth
Start
PoseFormer2D
PoseFormer3D
STPoseFormer

(c) Sequence 09

Figure 4.6: Plotted trajectory for the training sequences 05 (Urban), 08 (Urban), and 09 (Urban).

The second set of training sequences, despite their simplicity, poses a challenge due to their

length and multiple loops, which tends to accumulate drift. In this context, STPoseFormer exhibits

superior performance, specifically on sequence 05, while delivering comparable results to the other

two models on sequences, 08 and 09. Sequence 09 (figure 4.6c) illustrates a significant error in the

Experiments 48

turns marked by the black circle. This error is the result of interference from an external vehicle,

which greatly affects the vehicle’s own ego-motion estimates.

The subsequent figures, namely figure 4.7 and 4.8, provide a detailed analysis of the models’

performance across the testing sequences.

0 100 200 300 400 500
x (m)

0

50

100

150

200

z
(m

)

Ground Truth
Start
PoseFormer2D
PoseFormer3D
STPoseFormer

(a) Sequence 03

0 1 2 3 4 5
x (m)

0

50

100

150

200

250

300

350

400

z
(m

)

Ground Truth
Start
PoseFormer2D
PoseFormer3D
STPoseFormer

(b) Sequence 04

200 100 0 100
x (m)

200

100

0

100

200

300

z
(m

)

Ground Truth
Start
PoseFormer2D
PoseFormer3D
STPoseFormer

(c) Sequence 06

Figure 4.7: Plotted trajectory for the testing sequences 03 (Urban), 04 (Urban), and 06 (Urban).

150 100 50 0 50
x (m)

100

50

0

50

100

150

z
(m

)

Ground Truth
Start
PoseFormer2D
PoseFormer3D
STPoseFormer

(a) Sequence 07

0 100 200 300 400 500 600 700
x (m)

50

0

50

100

150

z
(m

)

Ground Truth
Start
PoseFormer2D
PoseFormer3D
STPoseFormer

(b) Sequence 10

Figure 4.8: Plotted trajectory for the testing sequences 07 (Urban) and 10 (Urban).

From the plots, it can be inferred that the models have effectively acquired the ability to esti-

mate ego-motion, as demonstrated by their capacity to predict the trajectory for all test sequences,

albeit with varying degrees of precision. In the context of sequences 03 (figure 4.7a) and 10 (figure

4.8b), the models were successful in approximating the overall trajectory shape. However, they

exhibit certain discrepancies in terms of translation magnitude, while largely maintaining the rota-

tion component. Conversely, sequence 06 (figure 4.7c) manifests a considerable error during both

U-turns. This can be attributed to the absence of similar turns in the training sequences, hence

depriving the models of the necessary understanding to accurately predict the pose alteration.

To further explore how well the models are doing throughout the sequences, the plots in the

figures 4.9, 4.10, and 4.11 show the translation error in percentage over the first eight hundred

meters.

wThe translation error tends to increase as the path length increases. This is an expected

behavior since the predictions accumulate small errors over time, resulting in bigger errors over

4.2 Results 49

100 200 300 400 500 600 700 800
Path Length (m)

6

7

8

9

10

11

12

Tr
an

sl
at

io
n

Er
ro

r (
%

)

PoseFormer2D Translation Error
PoseFormer3D Translation Error
STPoseFormer Translation Error

(a) Sequence 00

100 200 300 400 500 600 700 800
Path Length (m)

2.5

3.0

3.5

4.0

4.5

5.0

5.5

Tr
an

sl
at

io
n

Er
ro

r (
%

)

PoseFormer2D Translation Error
PoseFormer3D Translation Error
STPoseFormer Translation Error

(b) Sequence 01

100 200 300 400 500 600 700 800
Path Length (m)

4

5

6

7

8

9

Tr
an

sl
at

io
n

Er
ro

r (
%

)

PoseFormer2D Translation Error
PoseFormer3D Translation Error
STPoseFormer Translation Error

(c) Sequence 02

Figure 4.9: Translation error for sequences 00, 01, and 02.

100 150 200 250 300 350 400 450 500
Path Length (m)

10.0

12.5

15.0

17.5

20.0

22.5

25.0

Tr
an

sl
at

io
n

Er
ro

r (
%

)

PoseFormer2D Translation Error
PoseFormer3D Translation Error
STPoseFormer Translation Error

(a) Sequence 03

100 125 150 175 200 225 250 275 300
Path Length (m)

14.0

14.5

15.0

15.5

16.0

Tr
an

sl
at

io
n

Er
ro

r (
%

)

PoseFormer2D Translation Error
PoseFormer3D Translation Error
STPoseFormer Translation Error

(b) Sequence 04

100 200 300 400 500 600 700 800
Path Length (m)

6

7

8

9

10

Tr
an

sl
at

io
n

Er
ro

r (
%

)

PoseFormer2D Translation Error
PoseFormer3D Translation Error
STPoseFormer Translation Error

(c) Sequence 05

Figure 4.10: Translation error for sequences 03, 04, and 05.

100 200 300 400 500 600 700 800
Path Length (m)

15

20

25

30

35

Tr
an

sl
at

io
n

Er
ro

r (
%

)

PoseFormer2D Translation Error
PoseFormer3D Translation Error
STPoseFormer Translation Error

(a) Sequence 06

100 200 300 400 500 600
Path Length (m)

11

12

13

14

15

16

17

18

Tr
an

sl
at

io
n

Er
ro

r (
%

)

PoseFormer2D Translation Error
PoseFormer3D Translation Error
STPoseFormer Translation Error

(b) Sequence 07

100 200 300 400 500 600 700 800
Path Length (m)

8

10

12

14

16

18

Tr
an

sl
at

io
n

Er
ro

r (
%

)

PoseFormer2D Translation Error
PoseFormer3D Translation Error
STPoseFormer Translation Error

(c) Sequence 08

Figure 4.11: Translation error for sequences 06, 07, and 08.

longer distances. Sequence 06 is an exception since, over the 500-meter mark, the accumulation

of translation errors leads to an overall better predicted global position, figure 4.9. This does not

occur as a result of the models’ accurate predictions. Instead, due to the accumulated drift, the

predicted global position happens to align more closely with the actual global position. it is also

possible to see that PoseFormer3D is the worst-performing model of the three. This goes along

with the conclusions taken from the table, 4.1.

Experiments 50

100 200 300 400 500 600 700 800
Path Length (m)

5

6

7

8

9

10

11

12

Tr
an

sl
at

io
n

Er
ro

r (
%

)

PoseFormer2D Translation Error
PoseFormer3D Translation Error
STPoseFormer Translation Error

(a) Sequence 09

100 200 300 400 500 600 700 800
Path Length (m)

8

10

12

14

16

Tr
an

sl
at

io
n

Er
ro

r (
%

)

PoseFormer2D Translation Error
PoseFormer3D Translation Error
STPoseFormer Translation Error

(b) Sequence 10

Figure 4.12: Translation error for sequences 09 and 10.

Evaluating the models’ rotation errors over time is also important, and they are depicted in the

following plots, figures

100 200 300 400 500 600 700 800
Path Length (m)

2

3

4

5

6

7

R
ot

at
io

n
Er

ro
r (

de
g/

10
0m

)

PoseFormer2D Rotation Error
PoseFormer3D Rotation Error
STPoseFormer Rotation Error

(a) Sequence 00

100 200 300 400 500 600 700 800
Path Length (m)

0.75

1.00

1.25

1.50

1.75

2.00

2.25

R
ot

at
io

n
Er

ro
r (

de
g/

10
0m

)

PoseFormer2D Rotation Error
PoseFormer3D Rotation Error
STPoseFormer Rotation Error

(b) Sequence 01

100 200 300 400 500 600 700 800
Path Length (m)

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

R
ot

at
io

n
Er

ro
r (

de
g/

10
0m

)

PoseFormer2D Rotation Error
PoseFormer3D Rotation Error
STPoseFormer Rotation Error

(c) Sequence 02

Figure 4.13: Rotation error in degrees/100m for sequences 00, 01, and 02.

100 150 200 250 300 350 400 450 500
Path Length (m)

2

3

4

5

6

R
ot

at
io

n
Er

ro
r (

de
g/

10
0m

)

PoseFormer2D Rotation Error
PoseFormer3D Rotation Error
STPoseFormer Rotation Error

(a) Sequence 03

100 125 150 175 200 225 250 275 300
Path Length (m)

1.4

1.6

1.8

2.0

2.2

2.4

R
ot

at
io

n
Er

ro
r (

de
g/

10
0m

)

PoseFormer2D Rotation Error
PoseFormer3D Rotation Error
STPoseFormer Rotation Error

(b) Sequence 04

100 200 300 400 500 600 700 800
Path Length (m)

1

2

3

4

5

R
ot

at
io

n
Er

ro
r (

de
g/

10
0m

)

PoseFormer2D Rotation Error
PoseFormer3D Rotation Error
STPoseFormer Rotation Error

(c) Sequence 05

Figure 4.14: Rotation error in degrees/100m for sequences 03, 04, and 05.

The plots for the rotations show an interesting behavior, where over time, the error seems to

decrease. This most likely is the result of the straights that the trajectory has. In other words,

as time goes on, more and more straight segments start contributing to a lower overall rotation

4.2 Results 51

100 200 300 400 500 600 700 800
Path Length (m)

3

4

5

6

7

8

9

R
ot

at
io

n
Er

ro
r (

de
g/

10
0m

)

PoseFormer2D Rotation Error
PoseFormer3D Rotation Error
STPoseFormer Rotation Error

(a) Sequence 06

100 200 300 400 500 600
Path Length (m)

4

6

8

10

12

R
ot

at
io

n
Er

ro
r (

de
g/

10
0m

)

PoseFormer2D Rotation Error
PoseFormer3D Rotation Error
STPoseFormer Rotation Error

(b) Sequence 07

100 200 300 400 500 600 700 800
Path Length (m)

3

4

5

6

R
ot

at
io

n
Er

ro
r (

de
g/

10
0m

)

PoseFormer2D Rotation Error
PoseFormer3D Rotation Error
STPoseFormer Rotation Error

(c) Sequence 08

Figure 4.15: Rotation error in degrees/100m for sequences 06, 07, and 08.

100 200 300 400 500 600 700 800
Path Length (m)

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

R
ot

at
io

n
Er

ro
r (

de
g/

10
0m

)

PoseFormer2D Rotation Error
PoseFormer3D Rotation Error
STPoseFormer Rotation Error

(a) Sequence 09

100 200 300 400 500 600 700 800
Path Length (m)

1

2

3

4

5

6

7

R
ot

at
io

n
Er

ro
r (

de
g/

10
0m

)

PoseFormer2D Rotation Error
PoseFormer3D Rotation Error
STPoseFormer Rotation Error

(b) Sequence 10

Figure 4.16: Rotation error in degrees/100m for sequences 09 and 10.

error. The results here are mostly similar to the translation plots, where STPoseFormer and Pose-

Former2D are the better choices. PoseFormer3D shows good results but not as good as the other

two.

To further cement the obtained results, it is important to see how the predicted trajectories mea-

sure up against DeepVO and ORB-SLAM3. The following plots, figures 4.17, 4.18, 4.19, demon-

strate that, a qualitative comparison between the STPoseFormer, DeepVO, and ORB-SLAM3. The

STPoseFormer, DeepVO, and ORB-SLAM3 are all under a 6DoF alignment.

The plots show that the STPoseFormer model consistently yields better trajectories than DeepVO.

Moreover, the performance of the transformers is expected to significantly improve as more and

more training data is available. Another thing worth noting is that ORB-SLAM3 is considerably

better than STPoseFormer on the simpler sequences, but on sequence 01, arguably, the hardest se-

quence due to the nature of highways, the model performs better than ORB-SLAM3. This can be

a very good indication that in harder sequences, where traditional mathematical approaches start

failing, the STPoseFormer will be able to maintain a somewhat consistent performance.

To further cement the taken conclusion, the translation and rotation errors over time for the

STPoseFormer, DeepVO, and ORB-SLAM3 have to be taken into account. They are present in

the following figures, 4.20 and 4.21.

Experiments 52

500 400 300 200 100 0 100 200 300
x (m)

100

0

100

200

300

400

500

z
(m

)

Ground Truth
Start
STPoseFormer
DeepVO
ORB-SLAM3

(a) Sequence 00

0 250 500 750 1000 1250 1500 1750
x (m)

1200

1000

800

600

400

200

0

z
(m

)

Ground Truth
Start
STPoseFormer
DeepVO
ORB-SLAM3

(b) Sequence 01

0 200 400 600
x (m)

0

200

400

600

800

1000

z
(m

)

Ground Truth
Start
STPoseFormer
DeepVO
ORB-SLAM3

(c) Sequence 03

Figure 4.17: The STPoseFormer is better than DeepVO in all scenarios and manages to outperform
the sota ORB-SLAM3 slightly in sequence 01. On sequence 02, the STPoseFormer suffers from
drift problems, which are less pronounced on the ORB-SLAM3.

2 0 2 4 6 8 10 12
x (m)

0

50

100

150

200

250

300

350

400

z
(m

)

Ground Truth
Start
STPoseFormer
DeepVO
ORB-SLAM3

(a) Sequence 04

400 300 200 100 0 100 200
x (m)

0

100

200

300

z
(m

)

Ground Truth
Start
STPoseFormer
DeepVO
ORB-SLAM3

(b) Sequence 05

250 200 150 100 50 0 50 100
x (m)

100

0

100

200

300

z
(m

)

Ground Truth
Start
STPoseFormer
DeepVO
ORB-SLAM3

(c) Sequence 06

Figure 4.18: The STPoseFormer significantly outperforms the DeepVO on sequences 04 and 05.
Sequence 06 shows a somewhat similar performance between the STPoseFormer and DeepVO.

200 150 100 50 0 50
x (m)

100

50

0

50

100

150

z
(m

)

Ground Truth
Start
STPoseFormer
DeepVO
ORB-SLAM3

(a) Sequence 07

400 200 0 200 400
x (m)

200

100

0

100

200

300

400

z
(m

)

Ground Truth
Start
STPoseFormer
DeepVO
ORB-SLAM3

(b) Sequence 08

Figure 4.19: Sequences 07 and 08. The STPoseFormer does not do very well on these sequences
due to the accumulated errors. ORB-SLAM3 stands as the indisputable best method.

The diagrams illustrate the superior performance of the suggested transformer model com-

pared to DeepVO. Both the translation and rotation errors of the transformer model are signif-

icantly reduced compared to those of DeepVO. Meanwhile, ORB-SLAM3 consistently exhibits

4.2 Results 53

100 200 300 400 500 600 700 800
Path Length (m)

0

10

20

30

40

50

60

70

R
ot

at
io

n
Er

ro
r (

de
g/

10
0m

)

STPoseFormer Rotation Error
DeepVO Rotation Error
ORB-SLAM3 Rotation Error

(a) Sequence 00

100 200 300 400 500 600 700 800
Path Length (m)

0

5

10

15

20

25

R
ot

at
io

n
Er

ro
r (

de
g/

10
0m

)

STPoseFormer Rotation Error
DeepVO Rotation Error
ORB-SLAM3 Rotation Error

(b) Sequence 01

100 150 200 250 300 350 400 450 500
Path Length (m)

0

5

10

15

20

25

30

35

40

R
ot

at
io

n
Er

ro
r (

de
g/

10
0m

)

STPoseFormer Rotation Error
DeepVO Rotation Error
ORB-SLAM3 Rotation Error

(c) Sequence 03

Figure 4.20: The STPoseFormer is better than DeepVO on all three sequences.

100 200 300 400 500 600 700 800
Path Length (m)

0

20

40

60

80

Tr
an

sl
at

io
n

Er
ro

r (
%

)

STPoseFormer Translation Error
DeepVO Translation Error
ORB-SLAM3 Translation Error

(a) Sequence 00

100 200 300 400 500 600 700 800
Path Length (m)

0

20

40

60

80

100

Tr
an

sl
at

io
n

Er
ro

r (
%

)

STPoseFormer Translation Error
DeepVO Translation Error
ORB-SLAM3 Translation Error

(b) Sequence 01

100 150 200 250 300 350 400 450 500
Path Length (m)

0

20

40

60

80

100

Tr
an

sl
at

io
n

Er
ro

r (
%

)

STPoseFormer Translation Error
DeepVO Translation Error
ORB-SLAM3 Translation Error

(c) Sequence 03

Figure 4.21: The STPoseFormer significantly outperforms the DeepVO.

almost zero error throughout the sequences presented.

The following figure, 4.22, shows a final comparison of the models’ trajectories, without any

alignment.

0 200 400 600 800
x (m)

0

200

400

600

800

1000

z
(m

)

Ground Truth
Start
STPoseFormer
DeepVO
ORB-SLAM3

(a) Sequence 02

0 100 200 300 400 500
x (m)

0

100

200

300

400

500

z
(m

)

Ground Truth
Start
STPoseFormer
DeepVO
ORB-SLAM3

(b) Sequence 03

300 200 100 0 100 200
x (m)

0

100

200

300

400

z
(m

)

Ground Truth
Start
STPoseFormer
DeepVO
ORB-SLAM3

(c) Sequence 05

Figure 4.22: The plotted unaligned sequences.

The suggested STPoseFormer approach once again outperforms the DeepVO, exhibiting an

enhanced ability to determine the scale of the scene. Like the transformer, ORB-SLAM3 also

demonstrates this capability, given its use of stereo images.

Experiments 54

In summary, the proposed transformer models demonstrate significant superiority over DeepVO

- the other learning-based method. Moreover, the results from these transformer models align more

closely with the state-of-the-art ORB-SLAM3 than they do with DeepVO.

4.2.3 Inference Time

Regardless of the accuracy of the Transformers, their utility would negligible if they were unable

to produce real-time predictions. As such, the computational efficiency, particularly the inference

time, of these models is of considerable importance. They need to swiftly process and analyze

incoming data to ensure their effective response to changing driving scenarios. Using KITTI as a

benchmark, where images are captured at a rate of 10Hz or every tenth of a second, the inference

time for each model should ideally not exceed this limit. The inference time for the proposed

models is outlined in the following table 4.2:

Model avg (ms) std (ms)
PoseFormer2D 7.65 0.45
PoseFormer3D 8.66 0.41
STPoseFormer 11.65 0.31

Table 4.2: Average and standard deviation time for the proposed models

As the table shows, the proposed models running on the training hardware are more than

capable of achieving real-time performance. It still is worth noting that the hardware used is

considered to be top-of-the-line, at the time of writing this thesis. However, the size and cost of

the hardware are not significant and can be easily used in modern vehicles. Furthermore, the used

programming language - Python - is not a compiled language like C++. Thus, it is expected that

implementations in C++ or other compiled language will have lower inference times.

Chapter 5

Conclusions and future work

The work done in this dissertation has demonstrated that transformer-based architectures pos-

sess a significant potential for predicting 6D poses. The alterations in attention mechanisms and

how image segmentation into patches is done led to the successful development and training of

three different transformer models: PoseFormer2D, PoseFormer3D, and Spatio-Temporal Pose-

Former. These models exhibited good performance in the KITTI dataset, with results that are

around 85% better than DeepVO. Moreover, the architectures demonstrated inherent flexibility,

permitting adept handling of mixed spatial and temporal information in the channels dimension.

This feature of the transformers is further supported by their capacity to effectively utilize extra

data, as adding flow information helped the models converge faster and also yield better results.

The models proposed in this research offer robust solutions, but the performance is still not

comparable to the more explored geometric methods. Still, they hold potential for further enhance-

ments. Increasing the size of the training datasets would be a good starting point, as transformers

benefit greatly from bigger datasets. Another key factor that can enhance the performance of

these models is the choice of attention mechanism. For instance, the STPoseFormer incorporates

modifications that facilitate separate attention to spatial and temporal elements. Despite this its

performance, like the PF2D and PF3D models, relies on dot product attention, which, although a

powerful tool, can potentially be improved by using other attention mechanisms.

In conclusion, the transformer architectures are capable of creating consistent, precise and

accurate 6D pose estimates, far surpassing the DeepVO. Moreover, most of the shortcomings the

transformer models are facing can potentially be solved by working on:

• Enhancing the dataset by increasing its size and refining its quality. A more extensive dataset

would enhance the model’s ability to manage a broader array of situations.

• Exploring alternate attention mechanisms. While dot-product attention provides a strong

foundation, other attention strategies might enable the model to concentrate on diverse seg-

ments of the images more effectively.

• Architecting a model that utilizes optical flow and images more optimally. At present, the

transformer merges the images and optical flow in the channels dimension, producing an

55

Conclusions and future work 56

attention score. There may, however, be more efficient methods to accomplish this, such as

computing distinct attention scores for optical flow and images.

Bibliography

[1] Hans P. Moravec. “Obstacle avoidance and navigation in the real world by a seeing robot

rover”. In: (Jan. 1980). DOI: 10.1184/R1/6557033.v1. URL: https://kilthub.

cmu.edu/articles/journal_contribution/Obstacle_avoidance_and_

navigation_in_the_real_world_by_a_seeing_robot_rover/6557033.

[2] Martin A. Fischler and Robert C. Bolles. “Random Sample Consensus: A Paradigm for

Model Fitting with Applications to Image Analysis and Automated Cartography”. In:

Commun. ACM 24.6 (June 1981), pp. 381–395. ISSN: 0001-0782. DOI: 10.1145/358669.

358692. URL: https://doi.org/10.1145/358669.358692.

[3] C.G. Harris and J.M. Pike. “3D positional integration from image sequences”. In: Image

and Vision Computing 6.2 (1988). 3rd Alvey Vision Meeting, pp. 87–90. ISSN: 0262-8856.

DOI: https://doi.org/10.1016/0262-8856(88)90003-0. URL: https:

//www.sciencedirect.com/science/article/pii/0262885688900030.

[4] Robert Woodham. “Photometric Method for Determining Surface Orientation from Mul-

tiple Images”. In: Optical Engineering 19 (Jan. 1992). DOI: 10.1117/12.7972479.

[5] Jianbo Shi and Tomasi. “Good features to track”. In: 1994 Proceedings of IEEE Confer-

ence on Computer Vision and Pattern Recognition. 1994, pp. 593–600. DOI: 10.1109/

CVPR.1994.323794.

[6] Y. Lecun et al. “Gradient-based learning applied to document recognition”. In: Proceed-

ings of the IEEE 86.11 (1998), pp. 2278–2324. DOI: 10.1109/5.726791.

[7] Philip Torr and A. Zisserman. “MLESAC: A New Robust Estimator with Application to

Estimating Image Geometry”. In: Computer Vision and Image Understanding 78 (Aug.

2000), pp. 138–156. DOI: 10.1006/cviu.1999.0832.

[8] Bill Triggs et al. “Bundle Adjustment — A Modern Synthesis”. In: Vision Algorithms:

Theory and Practice. Ed. by Bill Triggs, Andrew Zisserman, and Richard Szeliski. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2000, pp. 298–372. ISBN: 978-3-540-44480-0.

[9] L.-P. Morency and Rakesh Gupta. “Robust real-time egomotion from stereo images”. In:

Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

Vol. 2. 2003, pp. II–719. DOI: 10.1109/ICIP.2003.1246781.

57

https://doi.org/10.1184/R1/6557033.v1
https://kilthub.cmu.edu/articles/journal_contribution/Obstacle_avoidance_and_navigation_in_the_real_world_by_a_seeing_robot_rover/6557033
https://kilthub.cmu.edu/articles/journal_contribution/Obstacle_avoidance_and_navigation_in_the_real_world_by_a_seeing_robot_rover/6557033
https://kilthub.cmu.edu/articles/journal_contribution/Obstacle_avoidance_and_navigation_in_the_real_world_by_a_seeing_robot_rover/6557033
https://doi.org/10.1145/358669.358692
https://doi.org/10.1145/358669.358692
https://doi.org/10.1145/358669.358692
https://doi.org/https://doi.org/10.1016/0262-8856(88)90003-0
https://www.sciencedirect.com/science/article/pii/0262885688900030
https://www.sciencedirect.com/science/article/pii/0262885688900030
https://doi.org/10.1117/12.7972479
https://doi.org/10.1109/CVPR.1994.323794
https://doi.org/10.1109/CVPR.1994.323794
https://doi.org/10.1109/5.726791
https://doi.org/10.1006/cviu.1999.0832
https://doi.org/10.1109/ICIP.2003.1246781

BIBLIOGRAPHY 58

[10] David Lowe. “Distinctive Image Features from Scale-Invariant Keypoints”. In: Interna-

tional Journal of Computer Vision 60 (Nov. 2004), pp. 91–. DOI: 10.1023/B:VISI.

0000029664.99615.94.

[11] K. Maine, P. Anderson, and F. Bayuk. “Communication architecture for GPS III”. In: 2004

IEEE Aerospace Conference Proceedings (IEEE Cat. No.04TH8720). Vol. 3. 2004, 1539

Vol.3. DOI: 10.1109/AERO.2004.1367927.

[12] D. Nister, O. Naroditsky, and J. Bergen. “Visual odometry”. In: Proceedings of the 2004

IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004.

CVPR 2004. Vol. 1. 2004, pp. I–I. DOI: 10.1109/CVPR.2004.1315094.

[13] David Nistér. “Nistér, D.: An efficient solution to the five-point relative pose problem.

IEEE-TPAMI 26(6), 756-770”. In: IEEE transactions on pattern analysis and machine

intelligence 26 (July 2004), pp. 756–77. DOI: 10.1109/TPAMI.2004.17.

[14] O. Chum and J. Matas. “Matching with PROSAC - progressive sample consensus”. In:

2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition

(CVPR’05). Vol. 1. 2005, 220–226 vol. 1. DOI: 10.1109/CVPR.2005.221.

[15] T. Bailey and H. Durrant-Whyte. “Simultaneous localization and mapping (SLAM): part

II”. In: IEEE Robotics Automation Magazine 13.3 (2006), pp. 108–117. DOI: 10.1109/

MRA.2006.1678144.

[16] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. “SURF: Speeded up robust features”.

In: vol. 3951. July 2006, pp. 404–417. ISBN: 978-3-540-33832-1. DOI: 10.1007/11744023_

32.

[17] Frédéric Labrosse. “The visual compass: Performance and limitations of an appearance-

based method”. In: Journal of Field Robotics 23.10 (2006), pp. 913–941. DOI: https:

//doi.org/10.1002/rob.20159. eprint: https://onlinelibrary.wiley.

com/doi/pdf/10.1002/rob.20159. URL: https://onlinelibrary.wiley.

com/doi/abs/10.1002/rob.20159.

[18] P. Newman, D. Cole, and K. Ho. “Outdoor SLAM using visual appearance and laser rang-

ing”. In: Proceedings 2006 IEEE International Conference on Robotics and Automation,

2006. ICRA 2006. 2006, pp. 1180–1187. DOI: 10.1109/ROBOT.2006.1641869.

[19] Edwin Olson, John Leonard, and Seth Teller. “Fast iterative alignment of pose graphs with

poor initial estimates”. In: June 2006, pp. 2262–2269. DOI: 10.1109/ROBOT.2006.

1642040.

[20] Edward Rosten and Tom Drummond. “Machine Learning for High-Speed Corner Detec-

tion”. In: vol. 3951. July 2006. ISBN: 978-3-540-33832-1. DOI: 10.1007/11744023_

34.

[21] Daniele Borio, Laura Camoriano, and Letizia Lo Presti. “Impact of GPS acquisition strat-

egy on decision probabilities”. In: IEEE Transactions on Aerospace and Electronic Sys-

tems 44.3 (2008), pp. 996–1011. DOI: 10.1109/TAES.2008.4655359.

https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1109/AERO.2004.1367927
https://doi.org/10.1109/CVPR.2004.1315094
https://doi.org/10.1109/TPAMI.2004.17
https://doi.org/10.1109/CVPR.2005.221
https://doi.org/10.1109/MRA.2006.1678144
https://doi.org/10.1109/MRA.2006.1678144
https://doi.org/10.1007/11744023_32
https://doi.org/10.1007/11744023_32
https://doi.org/https://doi.org/10.1002/rob.20159
https://doi.org/https://doi.org/10.1002/rob.20159
https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20159
https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20159
https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.20159
https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.20159
https://doi.org/10.1109/ROBOT.2006.1641869
https://doi.org/10.1109/ROBOT.2006.1642040
https://doi.org/10.1109/ROBOT.2006.1642040
https://doi.org/10.1007/11744023_34
https://doi.org/10.1007/11744023_34
https://doi.org/10.1109/TAES.2008.4655359

BIBLIOGRAPHY 59

[22] Friedrich Fraundorfer et al. “Visual word based location recognition in 3d models using

distance augmented weighting”. In: (Jan. 2008).

[23] Davide Scaramuzza and Roland Siegwart. “Appearance-Guided Monocular Omnidirec-

tional Visual Odometry for Outdoor Ground Vehicles”. In: IEEE Transactions on Robotics

24.5 (2008), pp. 1015–1026. DOI: 10.1109/TRO.2008.2004490.

[24] Navid Nourani-Vatani, Jonathan Roberts, and Mandiam V. Srinivasan. “Practical visual

odometry for car-like vehicles”. In: 2009 IEEE International Conference on Robotics and

Automation. 2009, pp. 3551–3557. DOI: 10.1109/ROBOT.2009.5152403.

[25] Michael Calonder et al. “BRIEF: Binary Robust Independent Elementary Features”. In:

vol. 6314. Sept. 2010, pp. 778–792. ISBN: 978-3-642-15560-4. DOI: 10.1007/978-3-

642-15561-1_56.

[26] Vitor Guizilini and Fabio Ramos. “Visual odometry learning for unmanned aerial vehi-

cles”. In: 2011 IEEE International Conference on Robotics and Automation. 2011, pp. 6213–

6220. DOI: 10.1109/ICRA.2011.5979706.

[27] Stefan Leutenegger, Margarita Chli, and Roland Y. Siegwart. “BRISK: Binary Robust in-

variant scalable keypoints”. In: 2011 International Conference on Computer Vision. 2011,

pp. 2548–2555. DOI: 10.1109/ICCV.2011.6126542.

[28] Ethan Rublee et al. “ORB: An efficient alternative to SIFT or SURF”. In: 2011 Interna-

tional Conference on Computer Vision. 2011, pp. 2564–2571. DOI: 10.1109/ICCV.

2011.6126544.

[29] Davide Scaramuzza and Friedrich Fraundorfer. “Visual Odometry [Tutorial]”. In: IEEE

Robotics Automation Magazine 18.4 (2011), pp. 80–92. DOI: 10.1109/MRA.2011.

943233.

[30] Yang Yu, Cédric Pradalier, and Guanghua Zong. “Appearance-based monocular visual

odometry for ground vehicles”. In: 2011 IEEE/ASME International Conference on Ad-

vanced Intelligent Mechatronics (AIM). 2011, pp. 862–867. DOI: 10.1109/AIM.2011.

6027050.

[31] Friedrich Fraundorfer and Davide Scaramuzza. “Visual Odometry : Part II: Matching, Ro-

bustness, Optimization, and Applications”. In: IEEE Robotics Automation Magazine 19.2

(2012), pp. 78–90. DOI: 10.1109/MRA.2012.2182810.

[32] Andreas Geiger, Philip Lenz, and Raquel Urtasun. “Are we ready for Autonomous Driv-

ing? The KITTI Vision Benchmark Suite”. In: Conference on Computer Vision and Pattern

Recognition (CVPR). 2012.

[33] Li Bian. “Study on ionospheric delay correction in GPS signal”. In: 2013 IEEE 11th In-

ternational Conference on Electronic Measurement Instruments. Vol. 1. 2013, pp. 79–83.

DOI: 10.1109/ICEMI.2013.6743045.

https://doi.org/10.1109/TRO.2008.2004490
https://doi.org/10.1109/ROBOT.2009.5152403
https://doi.org/10.1007/978-3-642-15561-1_56
https://doi.org/10.1007/978-3-642-15561-1_56
https://doi.org/10.1109/ICRA.2011.5979706
https://doi.org/10.1109/ICCV.2011.6126542
https://doi.org/10.1109/ICCV.2011.6126544
https://doi.org/10.1109/ICCV.2011.6126544
https://doi.org/10.1109/MRA.2011.943233
https://doi.org/10.1109/MRA.2011.943233
https://doi.org/10.1109/AIM.2011.6027050
https://doi.org/10.1109/AIM.2011.6027050
https://doi.org/10.1109/MRA.2012.2182810
https://doi.org/10.1109/ICEMI.2013.6743045

BIBLIOGRAPHY 60

[34] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural Machine Translation by

Jointly Learning to Align and Translate. 2014. DOI: 10.48550/ARXIV.1409.0473.

URL: https://arxiv.org/abs/1409.0473.

[35] Thomas Ciarfuglia et al. “Evaluation of non-geometric methods for visual odometry”. In:

Robotics and Autonomous Systems 62 (Aug. 2014). DOI: 10.1016/j.robot.2014.

08.001.

[36] A. M. Pinto. “Visual motion analysis based on a robotic moving system”. PhD thesis.

Porto, Portugal: Univ. Porto, Dept. Eng., 2014. URL: https://hdl.handle.net/

10216/73552.

[37] Andry Maykol Pinto et al. “A Flow-based Motion Perception Technique for an Autonomous

Robot System”. In: Journal of Intelligent & Robotic Systems 75.3 (Sept. 2014), pp. 475–

492. ISSN: 1573-0409. DOI: 10.1007/s10846-013-9999-z. URL: https://doi.

org/10.1007/s10846-013-9999-z.

[38] Andry Maykol Pinto et al. “Unsupervised flow-based motion analysis for an autonomous

moving system”. In: Image and Vision Computing 32.6 (2014), pp. 391–404. ISSN: 0262-

8856. DOI: https://doi.org/10.1016/j.imavis.2014.04.003. URL: https:

//www.sciencedirect.com/science/article/pii/S0262885614000638.

[39] Christian Szegedy et al. Going Deeper with Convolutions. 2014. arXiv: 1409 . 4842

[cs.CV].

[40] Andry M. Pinto, António P. Moreira, and Paulo G. Costa. “A Localization Method Based

on Map-Matching and Particle Swarm Optimization”. In: Journal of Intelligent & Robotic

Systems 77.2 (Feb. 2015), pp. 313–326. ISSN: 1573-0409. DOI: 10.1007/s10846-

013-0009-2. URL: https://doi.org/10.1007/s10846-013-0009-2.

[41] Andry Maykol Pinto, Paulo Gomes Costa, and António Paulo Moreira. “Introduction to

Visual Motion Analysis for Mobile Robots”. In: CONTROLO’2014 – Proceedings of the

11th Portuguese Conference on Automatic Control. Ed. by António Paulo Moreira, Aníbal

Matos, and Germano Veiga. Cham: Springer International Publishing, 2015, pp. 545–554.

ISBN: 978-3-319-10380-8.

[42] Mohammad Aqel et al. “Adaptive-search template matching technique based on vehicle

acceleration for monocular visual odometry system: ADAPTIVE-SEARCH TEMPLATE

MATCHING FOR MONOCULAR VISUAL ODOMETRY”. In: IEEJ Transactions on

Electrical and Electronic Engineering 11 (Sept. 2016). DOI: 10.1002/tee.22299.

[43] Jakob Engel, Vladlen Koltun, and Daniel Cremers. Direct Sparse Odometry. 2016. DOI:

10.48550/ARXIV.1607.02565. URL: https://arxiv.org/abs/1607.02565.

[44] Dan Hendrycks and Kevin Gimpel. Gaussian Error Linear Units (GELUs). 2016. DOI:

10.48550/ARXIV.1606.08415. URL: https://arxiv.org/abs/1606.08415.

[45] Alex Kendall, Matthew Grimes, and Roberto Cipolla. PoseNet: A Convolutional Network

for Real-Time 6-DOF Camera Relocalization. 2016. arXiv: 1505.07427 [cs.CV].

https://doi.org/10.48550/ARXIV.1409.0473
https://arxiv.org/abs/1409.0473
https://doi.org/10.1016/j.robot.2014.08.001
https://doi.org/10.1016/j.robot.2014.08.001
https://hdl.handle.net/10216/73552
https://hdl.handle.net/10216/73552
https://doi.org/10.1007/s10846-013-9999-z
https://doi.org/10.1007/s10846-013-9999-z
https://doi.org/10.1007/s10846-013-9999-z
https://doi.org/https://doi.org/10.1016/j.imavis.2014.04.003
https://www.sciencedirect.com/science/article/pii/S0262885614000638
https://www.sciencedirect.com/science/article/pii/S0262885614000638
https://arxiv.org/abs/1409.4842
https://arxiv.org/abs/1409.4842
https://doi.org/10.1007/s10846-013-0009-2
https://doi.org/10.1007/s10846-013-0009-2
https://doi.org/10.1007/s10846-013-0009-2
https://doi.org/10.1002/tee.22299
https://doi.org/10.48550/ARXIV.1607.02565
https://arxiv.org/abs/1607.02565
https://doi.org/10.48550/ARXIV.1606.08415
https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/1505.07427

BIBLIOGRAPHY 61

[46] Ruihao Li et al. “UnDeepVO: Monocular Visual Odometry through Unsupervised Deep

Learning”. In: CoRR abs/1709.06841 (2017). arXiv: 1709 . 06841. URL: http : / /

arxiv.org/abs/1709.06841.

[47] Raul Mur-Artal and Juan D. Tardos. “ORB-SLAM2: An Open-Source SLAM System for

Monocular, Stereo, and RGB-D Cameras”. In: IEEE Transactions on Robotics 33.5 (Oct.

2017), pp. 1255–1262. DOI: 10.1109/tro.2017.2705103. URL: https://doi.

org/10.1109%2Ftro.2017.2705103.

[48] Andry Maykol Pinto et al. “Visual motion perception for mobile robots through dense op-

tical flow fields”. In: Robotics and Autonomous Systems 87 (2017), pp. 1–14. ISSN: 0921-

8890. DOI: https://doi.org/10.1016/j.robot.2016.08.014. URL: https:

//www.sciencedirect.com/science/article/pii/S0921889016305176.

[49] P Srinivas and Anil Kumar. “Overview of architecture for GPS-INS integration”. In: 2017

Recent Developments in Control, Automation Power Engineering (RDCAPE). 2017, pp. 433–

438. DOI: 10.1109/RDCAPE.2017.8358310.

[50] Ashish Vaswani et al. “Attention Is All You Need”. In: CoRR abs/1706.03762 (2017).

arXiv: 1706.03762. URL: http://arxiv.org/abs/1706.03762.

[51] Saffet Vatansever and Ismail Butun. “A broad overview of GPS fundamentals: Now and

future”. In: 2017 IEEE 7th Annual Computing and Communication Workshop and Con-

ference (CCWC). 2017, pp. 1–6. DOI: 10.1109/CCWC.2017.7868373.

[52] Sen Wang et al. “DeepVO: Towards end-to-end visual odometry with deep Recurrent Con-

volutional Neural Networks”. In: 2017 IEEE International Conference on Robotics and

Automation (ICRA). IEEE, May 2017. DOI: 10.1109/icra.2017.7989236. URL:

https://doi.org/10.1109%2Ficra.2017.7989236.

[53] Tinghui Zhou et al. “Unsupervised Learning of Depth and Ego-Motion from Video”. In:

CoRR abs/1704.07813 (2017). arXiv: 1704.07813. URL: http://arxiv.org/abs/

1704.07813.

[54] Tinghui Zhou et al. Unsupervised Learning of Depth and Ego-Motion from Video. 2017.

arXiv: 1704.07813 [cs.CV].

[55] Tinghui Zhou et al. Unsupervised Learning of Depth and Ego-Motion from Video. 2017.

DOI: 10.48550/ARXIV.1704.07813. URL: https://arxiv.org/abs/1704.

07813.

[56] Kai Cao et al. “Visual Odometry Based on 3D-3D and 3D-2D Motion Estimation Method”.

In: 2018 Chinese Automation Congress (CAC). 2018, pp. 3643–3648. DOI: 10.1109/

CAC.2018.8623237.

[57] Jacob Devlin et al. BERT: Pre-training of Deep Bidirectional Transformers for Language

Understanding. 2018. DOI: 10.48550/ARXIV.1810.04805. URL: https://arxiv.

org/abs/1810.04805.

https://arxiv.org/abs/1709.06841
http://arxiv.org/abs/1709.06841
http://arxiv.org/abs/1709.06841
https://doi.org/10.1109/tro.2017.2705103
https://doi.org/10.1109%2Ftro.2017.2705103
https://doi.org/10.1109%2Ftro.2017.2705103
https://doi.org/https://doi.org/10.1016/j.robot.2016.08.014
https://www.sciencedirect.com/science/article/pii/S0921889016305176
https://www.sciencedirect.com/science/article/pii/S0921889016305176
https://doi.org/10.1109/RDCAPE.2017.8358310
https://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://doi.org/10.1109/CCWC.2017.7868373
https://doi.org/10.1109/icra.2017.7989236
https://doi.org/10.1109%2Ficra.2017.7989236
https://arxiv.org/abs/1704.07813
http://arxiv.org/abs/1704.07813
http://arxiv.org/abs/1704.07813
https://arxiv.org/abs/1704.07813
https://doi.org/10.48550/ARXIV.1704.07813
https://arxiv.org/abs/1704.07813
https://arxiv.org/abs/1704.07813
https://doi.org/10.1109/CAC.2018.8623237
https://doi.org/10.1109/CAC.2018.8623237
https://doi.org/10.48550/ARXIV.1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805

BIBLIOGRAPHY 62

[58] Ana Rita Gaspar et al. “Urban@CRAS dataset: Benchmarking of visual odometry and

SLAM techniques”. In: Robotics and Autonomous Systems 109 (2018), pp. 59–67. ISSN:

0921-8890. DOI: https://doi.org/10.1016/j.robot.2018.08.004. URL:

https://www.sciencedirect.com/science/article/pii/S0921889018301386.

[59] Clément Godard et al. Digging Into Self-Supervised Monocular Depth Estimation. 2018.

DOI: 10.48550/ARXIV.1806.01260. URL: https://arxiv.org/abs/1806.

01260.

[60] André Leite, Andry Pinto, and Aníbal Matos. “A Safety Monitoring Model for a Faulty

Mobile Robot”. In: Robotics 7.3 (2018). ISSN: 2218-6581. DOI: 10.3390/robotics7030032.

URL: https://www.mdpi.com/2218-6581/7/3/32.

[61] Ruihao Li et al. UnDeepVO: Monocular Visual Odometry through Unsupervised Deep

Learning. 2018. arXiv: 1709.06841 [cs.CV].

[62] Niki Parmar et al. Image Transformer. 2018. DOI: 10.48550/ARXIV.1802.05751.

URL: https://arxiv.org/abs/1802.05751.

[63] Alec Radford and Karthik Narasimhan. “Improving Language Understanding by Genera-

tive Pre-Training”. In: 2018.

[64] Nan Yang et al. “Deep Virtual Stereo Odometry: Leveraging Deep Depth Prediction for

Monocular Direct Sparse Odometry”. In: CoRR abs/1807.02570 (2018). arXiv: 1807.

02570. URL: http://arxiv.org/abs/1807.02570.

[65] Nan Yang et al. Deep Virtual Stereo Odometry: Leveraging Deep Depth Prediction for

Monocular Direct Sparse Odometry. 2018. DOI: 10.48550/ARXIV.1807.02570.

URL: https://arxiv.org/abs/1807.02570.

[66] Han Hu et al. Local Relation Networks for Image Recognition. 2019. DOI: 10.48550/

ARXIV.1904.11491. URL: https://arxiv.org/abs/1904.11491.

[67] Sherif A. S. Mohamed et al. “A Survey on Odometry for Autonomous Navigation Sys-

tems”. In: IEEE Access 7 (2019), pp. 97466–97486. DOI: 10.1109/ACCESS.2019.

2929133.

[68] Shashi Poddar, Rahul Kottath, and Vinod Karar. “Motion Estimation Made Easy: Evolu-

tion and Trends in Visual Odometry: Theories and Applications”. In: Jan. 2019, pp. 305–

331. ISBN: 978-3-030-02999-9. DOI: 10.1007/978-3-030-03000-1_13.

[69] Prajit Ramachandran et al. Stand-Alone Self-Attention in Vision Models. 2019. DOI: 10.

48550/ARXIV.1906.05909. URL: https://arxiv.org/abs/1906.05909.

[70] Nicolas Carion et al. End-to-End Object Detection with Transformers. 2020. DOI: 10.

48550/ARXIV.2005.12872. URL: https://arxiv.org/abs/2005.12872.

[71] Alexey Dosovitskiy et al. An Image is Worth 16x16 Words: Transformers for Image Recog-

nition at Scale. 2020. DOI: 10.48550/ARXIV.2010.11929. URL: https://arxiv.

org/abs/2010.11929.

https://doi.org/https://doi.org/10.1016/j.robot.2018.08.004
https://www.sciencedirect.com/science/article/pii/S0921889018301386
https://doi.org/10.48550/ARXIV.1806.01260
https://arxiv.org/abs/1806.01260
https://arxiv.org/abs/1806.01260
https://doi.org/10.3390/robotics7030032
https://www.mdpi.com/2218-6581/7/3/32
https://arxiv.org/abs/1709.06841
https://doi.org/10.48550/ARXIV.1802.05751
https://arxiv.org/abs/1802.05751
https://arxiv.org/abs/1807.02570
https://arxiv.org/abs/1807.02570
http://arxiv.org/abs/1807.02570
https://doi.org/10.48550/ARXIV.1807.02570
https://arxiv.org/abs/1807.02570
https://doi.org/10.48550/ARXIV.1904.11491
https://doi.org/10.48550/ARXIV.1904.11491
https://arxiv.org/abs/1904.11491
https://doi.org/10.1109/ACCESS.2019.2929133
https://doi.org/10.1109/ACCESS.2019.2929133
https://doi.org/10.1007/978-3-030-03000-1_13
https://doi.org/10.48550/ARXIV.1906.05909
https://doi.org/10.48550/ARXIV.1906.05909
https://arxiv.org/abs/1906.05909
https://doi.org/10.48550/ARXIV.2005.12872
https://doi.org/10.48550/ARXIV.2005.12872
https://arxiv.org/abs/2005.12872
https://doi.org/10.48550/ARXIV.2010.11929
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2010.11929

BIBLIOGRAPHY 63

[72] Zachary Teed and Jia Deng. RAFT: Recurrent All-Pairs Field Transforms for Optical Flow.

2020. arXiv: 2003.12039 [cs.CV].

[73] Hugo Touvron et al. Training data-efficient image transformers amp; distillation through

attention. 2020. DOI: 10.48550/ARXIV.2012.12877. URL: https://arxiv.org/

abs/2012.12877.

[74] Nan Yang et al. D3VO: Deep Depth, Deep Pose and Deep Uncertainty for Monocular

Visual Odometry. 2020. DOI: 10.48550/ARXIV.2003.01060. URL: https://

arxiv.org/abs/2003.01060.

[75] Hengshuang Zhao, Jiaya Jia, and Vladlen Koltun. Exploring Self-attention for Image Recog-

nition. 2020. DOI: 10.48550/ARXIV.2004.13621. URL: https://arxiv.org/

abs/2004.13621.

[76] Yusra Alkendi, Lakmal Seneviratne, and Yahya Zweiri. “State of the Art in Vision-Based

Localization Techniques for Autonomous Navigation Systems”. In: IEEE Access 9 (2021),

pp. 76847–76874. DOI: 10.1109/ACCESS.2021.3082778.

[77] Anurag Arnab et al. ViViT: A Video Vision Transformer. 2021. DOI: 10.48550/ARXIV.

2103.15691. URL: https://arxiv.org/abs/2103.15691.

[78] Sara Atito, Muhammad Awais, and Josef Kittler. SiT: Self-supervised vIsion Transformer.

2021. DOI: 10.48550/ARXIV.2104.03602. URL: https://arxiv.org/abs/

2104.03602.

[79] Hangbo Bao et al. BEiT: BERT Pre-Training of Image Transformers. 2021. DOI: 10.

48550/ARXIV.2106.08254. URL: https://arxiv.org/abs/2106.08254.

[80] Carlos Campos et al. “ORB-SLAM3: An Accurate Open-Source Library for Visual, Vi-

sual–Inertial, and Multimap SLAM”. In: IEEE Transactions on Robotics 37.6 (Dec. 2021),

pp. 1874–1890. DOI: 10.1109/tro.2021.3075644. URL: https://doi.org/10.

1109%2Ftro.2021.3075644.

[81] Mathilde Caron et al. Emerging Properties in Self-Supervised Vision Transformers. 2021.

DOI: 10.48550/ARXIV.2104.14294. URL: https://arxiv.org/abs/2104.

14294.

[82] Chun-Fu Chen, Quanfu Fan, and Rameswar Panda. CrossViT: Cross-Attention Multi-Scale

Vision Transformer for Image Classification. 2021. DOI: 10.48550/ARXIV.2103.

14899. URL: https://arxiv.org/abs/2103.14899.

[83] Xinlei Chen, Saining Xie, and Kaiming He. An Empirical Study of Training Self-Supervised

Vision Transformers. 2021. DOI: 10.48550/ARXIV.2104.02057. URL: https:

//arxiv.org/abs/2104.02057.

[84] Xiangxiang Chu et al. Twins: Revisiting the Design of Spatial Attention in Vision Trans-

formers. 2021. DOI: 10.48550/ARXIV.2104.13840. URL: https://arxiv.org/

abs/2104.13840.

https://arxiv.org/abs/2003.12039
https://doi.org/10.48550/ARXIV.2012.12877
https://arxiv.org/abs/2012.12877
https://arxiv.org/abs/2012.12877
https://doi.org/10.48550/ARXIV.2003.01060
https://arxiv.org/abs/2003.01060
https://arxiv.org/abs/2003.01060
https://doi.org/10.48550/ARXIV.2004.13621
https://arxiv.org/abs/2004.13621
https://arxiv.org/abs/2004.13621
https://doi.org/10.1109/ACCESS.2021.3082778
https://doi.org/10.48550/ARXIV.2103.15691
https://doi.org/10.48550/ARXIV.2103.15691
https://arxiv.org/abs/2103.15691
https://doi.org/10.48550/ARXIV.2104.03602
https://arxiv.org/abs/2104.03602
https://arxiv.org/abs/2104.03602
https://doi.org/10.48550/ARXIV.2106.08254
https://doi.org/10.48550/ARXIV.2106.08254
https://arxiv.org/abs/2106.08254
https://doi.org/10.1109/tro.2021.3075644
https://doi.org/10.1109%2Ftro.2021.3075644
https://doi.org/10.1109%2Ftro.2021.3075644
https://doi.org/10.48550/ARXIV.2104.14294
https://arxiv.org/abs/2104.14294
https://arxiv.org/abs/2104.14294
https://doi.org/10.48550/ARXIV.2103.14899
https://doi.org/10.48550/ARXIV.2103.14899
https://arxiv.org/abs/2103.14899
https://doi.org/10.48550/ARXIV.2104.02057
https://arxiv.org/abs/2104.02057
https://arxiv.org/abs/2104.02057
https://doi.org/10.48550/ARXIV.2104.13840
https://arxiv.org/abs/2104.13840
https://arxiv.org/abs/2104.13840

BIBLIOGRAPHY 64

[85] Yuxin Fang et al. You Only Look at One Sequence: Rethinking Transformer in Vision

through Object Detection. 2021. DOI: 10.48550/ARXIV.2106.00666. URL: https:

//arxiv.org/abs/2106.00666.

[86] Ben Graham et al. LeViT: a Vision Transformer in ConvNet’s Clothing for Faster Inference.

2021. DOI: 10.48550/ARXIV.2104.01136. URL: https://arxiv.org/abs/

2104.01136.

[87] Ali Hassani et al. Escaping the Big Data Paradigm with Compact Transformers. 2021.

DOI: 10.48550/ARXIV.2104.05704. URL: https://arxiv.org/abs/2104.

05704.

[88] Kaiming He et al. Masked Autoencoders Are Scalable Vision Learners. 2021. DOI: 10.

48550/ARXIV.2111.06377. URL: https://arxiv.org/abs/2111.06377.

[89] Byeongho Heo et al. Rethinking Spatial Dimensions of Vision Transformers. 2021. DOI:

10.48550/ARXIV.2103.16302. URL: https://arxiv.org/abs/2103.16302.

[90] Pedro Nuno Leite and Andry Maykol Pinto. “Exploiting Motion Perception in Depth Esti-

mation Through a Lightweight Convolutional Neural Network”. In: IEEE Access 9 (2021),

pp. 76056–76068. DOI: 10.1109/ACCESS.2021.3082697.

[91] Chunyuan Li et al. Efficient Self-supervised Vision Transformers for Representation Learn-

ing. 2021. DOI: 10.48550/ARXIV.2106.09785. URL: https://arxiv.org/abs/

2106.09785.

[92] Yawei Li et al. LocalViT: Bringing Locality to Vision Transformers. 2021. DOI: 10 .

48550/ARXIV.2104.05707. URL: https://arxiv.org/abs/2104.05707.

[93] Ze Liu et al. Swin Transformer: Hierarchical Vision Transformer using Shifted Windows.

2021. DOI: 10.48550/ARXIV.2103.14030. URL: https://arxiv.org/abs/

2103.14030.

[94] Xiaofeng Mao et al. Towards Robust Vision Transformer. 2021. DOI: 10.48550/ARXIV.

2105.07926. URL: https://arxiv.org/abs/2105.07926.

[95] Alaaeldin El-Nouby et al. XCiT: Cross-Covariance Image Transformers. 2021. DOI: 10.

48550/ARXIV.2106.09681. URL: https://arxiv.org/abs/2106.09681.

[96] Hugo Touvron et al. Going deeper with Image Transformers. 2021. DOI: 10.48550/

ARXIV.2103.17239. URL: https://arxiv.org/abs/2103.17239.

[97] Wenhai Wang et al. Pyramid Vision Transformer: A Versatile Backbone for Dense Predic-

tion without Convolutions. 2021. DOI: 10.48550/ARXIV.2102.12122. URL: https:

//arxiv.org/abs/2102.12122.

[98] Enze Xie et al. Segmenting Transparent Object in the Wild with Transformer. 2021. DOI:

10.48550/ARXIV.2101.08461. URL: https://arxiv.org/abs/2101.08461.

[99] Zhenda Xie et al. Self-Supervised Learning with Swin Transformers. 2021. DOI: 10 .

48550/ARXIV.2105.04553. URL: https://arxiv.org/abs/2105.04553.

https://doi.org/10.48550/ARXIV.2106.00666
https://arxiv.org/abs/2106.00666
https://arxiv.org/abs/2106.00666
https://doi.org/10.48550/ARXIV.2104.01136
https://arxiv.org/abs/2104.01136
https://arxiv.org/abs/2104.01136
https://doi.org/10.48550/ARXIV.2104.05704
https://arxiv.org/abs/2104.05704
https://arxiv.org/abs/2104.05704
https://doi.org/10.48550/ARXIV.2111.06377
https://doi.org/10.48550/ARXIV.2111.06377
https://arxiv.org/abs/2111.06377
https://doi.org/10.48550/ARXIV.2103.16302
https://arxiv.org/abs/2103.16302
https://doi.org/10.1109/ACCESS.2021.3082697
https://doi.org/10.48550/ARXIV.2106.09785
https://arxiv.org/abs/2106.09785
https://arxiv.org/abs/2106.09785
https://doi.org/10.48550/ARXIV.2104.05707
https://doi.org/10.48550/ARXIV.2104.05707
https://arxiv.org/abs/2104.05707
https://doi.org/10.48550/ARXIV.2103.14030
https://arxiv.org/abs/2103.14030
https://arxiv.org/abs/2103.14030
https://doi.org/10.48550/ARXIV.2105.07926
https://doi.org/10.48550/ARXIV.2105.07926
https://arxiv.org/abs/2105.07926
https://doi.org/10.48550/ARXIV.2106.09681
https://doi.org/10.48550/ARXIV.2106.09681
https://arxiv.org/abs/2106.09681
https://doi.org/10.48550/ARXIV.2103.17239
https://doi.org/10.48550/ARXIV.2103.17239
https://arxiv.org/abs/2103.17239
https://doi.org/10.48550/ARXIV.2102.12122
https://arxiv.org/abs/2102.12122
https://arxiv.org/abs/2102.12122
https://doi.org/10.48550/ARXIV.2101.08461
https://arxiv.org/abs/2101.08461
https://doi.org/10.48550/ARXIV.2105.04553
https://doi.org/10.48550/ARXIV.2105.04553
https://arxiv.org/abs/2105.04553

BIBLIOGRAPHY 65

[100] Kun Yuan et al. Incorporating Convolution Designs into Visual Transformers. 2021. DOI:

10.48550/ARXIV.2103.11816. URL: https://arxiv.org/abs/2103.11816.

[101] Li Yuan et al. Tokens-to-Token ViT: Training Vision Transformers from Scratch on Ima-

geNet. 2021. DOI: 10.48550/ARXIV.2101.11986. URL: https://arxiv.org/

abs/2101.11986.

[102] Zizhao Zhang et al. Nested Hierarchical Transformer: Towards Accurate, Data-Efficient

and Interpretable Visual Understanding. 2021. DOI: 10.48550/ARXIV.2105.12723.

URL: https://arxiv.org/abs/2105.12723.

[103] Daquan Zhou et al. DeepViT: Towards Deeper Vision Transformer. 2021. DOI: 10.48550/

ARXIV.2103.11886. URL: https://arxiv.org/abs/2103.11886.

[104] Yiran Zhu et al. “PoseGTAC: Graph Transformer Encoder-Decoder with Atrous Convolu-

tion for 3D Human Pose Estimation”. In: Proceedings of the Thirtieth International Joint

Conference on Artificial Intelligence, IJCAI-21. Ed. by Zhi-Hua Zhou. Main Track. Inter-

national Joint Conferences on Artificial Intelligence Organization, Aug. 2021, pp. 1359–

1365. DOI: 10.24963/ijcai.2021/188. URL: https://doi.org/10.24963/

ijcai.2021/188.

[105] Lucas R. Agostinho et al. “A Practical Survey on Visual Odometry for Autonomous Driv-

ing in Challenging Scenarios and Conditions”. In: IEEE Access 10 (2022), pp. 72182–

72205. DOI: 10.1109/ACCESS.2022.3188990.

[106] Lucas Beyer, Xiaohua Zhai, and Alexander Kolesnikov. Better plain ViT baselines for

ImageNet-1k. 2022. arXiv: 2205.01580 [cs.CV].

[107] Sté phane d’Ascoli et al. “ConViT: improving vision transformers with soft convolutional

inductive biases∗”. In: Journal of Statistical Mechanics: Theory and Experiment 2022.11

(Nov. 2022), p. 114005. DOI: 10.1088/1742-5468/ac9830. URL: https://doi.

org/10.1088%5C%2F1742-5468%5C%2Fac9830.

[108] Bo-Kai Ruan, Hong-Han Shuai, and Wen-Huang Cheng. Vision Transformers: State of

the Art and Research Challenges. 2022. DOI: 10.48550/ARXIV.2207.03041. URL:

https://arxiv.org/abs/2207.03041.

https://doi.org/10.48550/ARXIV.2103.11816
https://arxiv.org/abs/2103.11816
https://doi.org/10.48550/ARXIV.2101.11986
https://arxiv.org/abs/2101.11986
https://arxiv.org/abs/2101.11986
https://doi.org/10.48550/ARXIV.2105.12723
https://arxiv.org/abs/2105.12723
https://doi.org/10.48550/ARXIV.2103.11886
https://doi.org/10.48550/ARXIV.2103.11886
https://arxiv.org/abs/2103.11886
https://doi.org/10.24963/ijcai.2021/188
https://doi.org/10.24963/ijcai.2021/188
https://doi.org/10.24963/ijcai.2021/188
https://doi.org/10.1109/ACCESS.2022.3188990
https://arxiv.org/abs/2205.01580
https://doi.org/10.1088/1742-5468/ac9830
https://doi.org/10.1088%5C%2F1742-5468%5C%2Fac9830
https://doi.org/10.1088%5C%2F1742-5468%5C%2Fac9830
https://doi.org/10.48550/ARXIV.2207.03041
https://arxiv.org/abs/2207.03041

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Motivation
	1.3 Objectives
	1.4 Document Structure

	2 State of the Art
	2.1 Visual Odometry
	2.1.1 Geometric Methods
	2.1.2 Learning Based Methods
	2.1.3 Vision Transformers

	2.2 Critical Review

	3 Visual PoseFormer
	3.1 Introduction
	3.2 Data Processing
	3.3 Model architecture
	3.4 Loss Function
	3.5 Optimizer

	4 Experiments
	4.1 Training and code details
	4.2 Results
	4.2.1 Training
	4.2.2 Ego Motion Trajectories
	4.2.3 Inference Time

	5 Conclusions and future work

