
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Distributed Dendritic Cell Algorithm
architecture: A Blockchain perspective

Allan Borges de Sousa

Mestrado em Engenharia Informática e Computação

Supervisor: Rui Pinto

Second Supervisor: Gil Gonçalves

August 7, 2023

© Allan Borges de Sousa, 2023

Distributed Dendritic Cell Algorithm architecture: A
Blockchain perspective

Allan Borges de Sousa

Mestrado em Engenharia Informática e Computação

Approved in oral examination by the committee:

President: José Manuel de Magalhães Cruz

Referee: Rui Pedro Ferreira Pinto
Referee: João Paulo da Conceição Soares

August 7, 2023

Resumo

O campo de Sistemas Imunológicos Articiais (AIS) não é novo. Ao longo dos anos, vimos
estudos em vários domínios tentando aproveitar essas tecnologias para melhorar seus respectivos
estados da arte. Uma das aplicações populares para tais sistemas é em Sistemas de Detecção de
Intrusão (IDS) e detecção de anomalias.

Nos últimos anos, um algoritmo especíco tem ganhado aderência entre os IDS baseados em
AIS, o Algoritmo da Célula Dendrítica (DCA). O DCA é baseado na Teoria do Perigo (DT) e
usa o conceito de sinais de perigo e sinais seguros para decidir se um tipo de antígeno representa
uma ameaça ou não. O DCA funciona primeiro amostrando antígenos do ambiente, representando
os dados a serem classicados; depois de amostrar os antígenos, extrai sinais e calcula a saída.
Dependendo da exposição a sinais especícos e antígenos, a Célula Dendrítica (DC) é classicada
como madura ou semi-maduras; as DCs maduras estimulam uma resposta imune devido à prob-
abilidade de antígenos anômalos, enquanto as DCs semi-maduras fornecem tolerância devido à
probabilidade de antígenos normais.

A 4ª Revolução Industrial usa e depende de diversas novas tecnologias, como Inteligência
Articial (IA), Internet das Coisas (IoT), Sistemas Ciber-Físicos (CPS) e sistemas Blockchain.
Isso, juntamente com os novos paradigmas altamente distribuídos dessas tecnologias, traz à tona
o fato de que sistemas IDS tradicionais não foram pensados com foco em sistemas distribuídos.

O DCA pode ser um candidato em potencial para a integração de IDS com sistemas blockchain.
Existe um mapeamento natural de um sistema que protege o corpo (sistema) por completo, em vez
de proteger partes individuais. No entanto, versões tradicionais do DCA foram desenvolvidas em
contextos centralizados.

Além disso, uma arquitetura distribuída para um IDS baseado em DCA foi desenvolvida.
A arquitetura funciona comunicando os dados e classicações locais de cada nó para os outros
nós da rede blockchain. Essa arquitetura remove a necessidade de uma entidade central para a
classicação e se demonstra um primeiro passo na integração de DCA com ambientes blockchain.

i

Abstract

The eld of Articial Immune Systems (AIS) is not a new one. Over the years, we have seen
studies across multiple domains trying to leverage these technologies to improve their respective
states of the art. One of the popular applications for such systems is in Intrusion Detection Systems
(IDS) and anomaly detection.

In recent years, one particular algorithm has been gaining traction among AIS-based IDS,
the Dendritic Cell Algorithm (DCA). The DCA is based on the Danger Theory (DT) and uses
the concept of danger signals and safe signals to decide if an antigen type represents a threat or
not. The DCA works by rst sampling antigens from the environment, representing data to be
classied; after sampling the antigens, it extracts signals and computes the output. Depending
on the exposition to specic signals and antigens, the Dendritic Cell (DC) is classied as mature
or semi-mature; Mature DCs stimulate an immune response due to the probability of anomalous
antigens, while semi-mature DCs provide tolerance due to the probability of normal antigens.

The 4th Industrial Revolution relies on a range of new technologies, such as Articial Intel-
ligence (AI), Internet of Things (IoT), Cyber-Physical Systems (CPS), and Blockchain systems.
This, coupled with the new highly distributed architecture of these technologies, bring to light the
fact that traditional IDS systems are not developed with distributed systems in mind.

The DCA could be a potential candidate for integrating IDS with the blockchain. We have a
natural mapping of a system that protects the whole body (system) instead of focusing on protect-
ing individual parts of the whole. However, traditional versions of the DCA were developed with
a single-machine context in mind and not with a highly distributed context, such as a blockchain
system.

Furthermore, a distributed DCA-based IDS architecture was developed. The architecture
works by communicating the data points and local classications of every node to the other nodes
in the blockchain network. This architecture removes the reliance on a central entity for the clas-
sication process and provides a rst step in integrating the DCA with a blockchain environment.

ii

Acknowledgements

I would like to express my gratitude and appreciation to all those who have supported and con-
tributed to the completion of this work. This work would not have been possible without their
assistance, guidance, and encouragement. Specically, I wanted to extend my thanks to the fol-
lowing individuals:

• Rui Pinto My supervisor, whose guidance was paramount to the planning and execution of
this work in the best possible way.

• Family, Who offered me support and encouragement throughout the whole process.

• Friends and Colleagues Particularly my friends Breno Accioly and Carolina Rosemback,
whose assistance and support were invaluable.

• FEUP I am grateful to FEUP for providing the necessary resources, facilities, and academic
environment. The opportunities and resources made available to me by the university have
contributed signicantly to the successful completion of this dissertation.

iii

“You should be glad that bridge fell down.
I was planning to build thirteen more to that same design”

Isambard Kingdom Brunel

iv

Contents

Agradecimentos iii

1 Introduction 1
1.1 Context . 1
1.2 Motivation . 2
1.3 Problem specication . 2
1.4 Objectives . 3

1.4.1 Research Questions . 3
1.4.2 Solution . 3

1.5 Methodology . 4
1.6 Structure of the Thesis . 4

2 Background 6
2.1 Blockchain . 6

2.1.1 Articial Immune Systems . 9
2.2 Intrusion Detection Systems . 11

2.2.1 Dendritic Cell Algorithm . 13

3 Related Work 19
3.1 Distributed Dendritic Cell Algorithm . 19
3.2 Agent Based Articial Immune System . 20
3.3 DeliveryCoin: Blockchain and IDS . 22
3.4 Distributed Consensus Mechanism with Novelty Classication Using Proof of Im-

mune Algorithm . 24
3.5 Comparison . 25

4 Proposed solution 27
4.1 Requirements . 27
4.2 High-level description of the solution . 28
4.3 Implementation . 28

4.3.1 The blockchain layer . 28
4.3.2 Our chaincodes . 30

4.4 The application layer . 32
4.4.1 The classication process . 32
4.4.2 Voting process . 34
4.4.3 The result format . 35
4.4.4 The DCA . 36

4.5 Architecture Review . 36

v

CONTENTS vi

5 Testing & Validation 38
5.1 Test setup . 38
5.2 Methodology . 38
5.3 Dummy dataset . 39

5.3.1 Test I . 39
5.4 OPC UA dataset . 40

5.4.1 Test I - Replicated Dataset . 40
5.4.2 Test II - Partitioned Dataset . 44
5.4.3 Local DCA and other works . 46

5.5 SKAB dataset . 47
5.5.1 Test I - Replicated Dataset . 48
5.5.2 Comparison with other IDS . 48

5.6 Result analysis . 49

6 Conclusions & Future Work 51
6.1 Conclusions . 51
6.2 Future Work . 52

A Relevant code 54
A.1 DCA reference implementation . 54
A.2 Blockchain interface code . 57

References 60

List of Figures

1.1 Document structure. 5

2.1 Hierarchical architecture of a typical DLT [54]. 6
2.2 Diagram of a Merkle Tree, taken from [32]. 8
2.3 Danger Theory Model [4]. 11
2.4 Taxonomy of IDS [14]. 12
2.5 Dendritic cell (in vivo) maturation stages [18]. 16
2.6 CDCA components overview [41]. 17

3.1 MapReduce framework [10]. 19
3.2 sp-DCA owchart [10]. 20
3.3 ABAIS Architecture diagram [40]. 21
3.4 Threat model [16]. 22
3.5 IDS model training scheme [16]. 23
3.6 Performance of PoI with standard consensus approaches [2]. 25

4.1 High-level architecture of the solution. 28
4.2 First step: a node sending its local classications to the network. 32
4.3 Second step: a node executing the voting process after it has received all classi-

cations from all peers. 33
4.4 Example result format. 36

5.1 Overall f1-score of dummy dataset. 39
5.2 Overall accuracy (replicated dataset) using b_pktTotalCount - unique run. 40
5.3 Overall F1-score (replicated dataset) using b_pktTotalCount - unique run. 41
5.4 Average f1-score (replicated dataset) using b_pktTotalCount feature. 42
5.5 Overall accuracy (replicated dataset) using octetTotalCount feature. 42
5.6 Overall F1-score (replicated dataset) using octetTotalCount feature. 43
5.7 Overall accuracy (partitioned dataset) using b_pktTotalCount. 44
5.8 Overall F1-score (partitioned dataset) using b_pktTotalCount. 44
5.9 Overall accuracy (partitioned dataset) using octetTotalCount feature. 45
5.10 Overall F1-score (partitioned dataset) using octetTotalCount feature. 45
5.11 Local metrics - octetTotalCount. 46
5.12 Proposed architecture metrics - octetTotalCount. 47
5.13 Overall F1 - SKAB. 48

vii

List of Tables

3.1 Related Work comparison. 25

5.1 Comparison with SKBA results obtained by [41] and other anomaly detection
algorithms. 48

viii

List of Algorithms

1 High-level DCA. 15
2 Basic voting. 34

ix

Listings

4.1 Put Antigen. 30
4.2 Get Antigens. 31
4.3 Classify antigens. 31
A.1 Original DCA Reference implementation [8]. 54
A.2 Blockchain interface. 57

x

xi

ABREVIATURAS E SÍMBOLOS xii

Abreviaturas e Símbolos

AI Articial Intelligence
AIS Articial Immune System
AM Advanced Manufacturing
API Application Programming Interface
BIS Biological Immune System
CDCA Cursory DCA
CPS Cyber-Physical Systems
DCA Dendritic Cell Algorithm
DC Dendritic Cell
DFS Distributed File System
DDoS Distributed Denial of Service
DQ Danger Quotient
DT Danger Theory
DS Danger Signal
E2E End-to-End
FAR False Alarm Rate
FTP File Transfer Protocol
FPR False Positive Rate
IIoT Industrial Internet of Things
IDS Intrusion Detection System
IoT Internet of Things
MCAV Mature Context Antigen Value
MAR Missed Alarm Rate
MAS Multi-Agent Systems
NDS Neighbourhood-Danger Score
PAMP Pathogenic Associated Molecular Pattern
pBFT Practical Byzantine Fault Tolerance
POI Proof of Immune
POW Proof of Work
ROC-AUC Receiver Operator Characteristic - Area Under Curve
SDK Source Development Kit
SDS Self-Danger Score
SOM Self-Organizing Feature Map
SOC Security Operations Center
SSH Secure Shell
SS Safe Signal
TC T-Cell
TPR True Positive Rate
UVA Unmanned Aerial Vehicle
VANET Vehicular Ad Hoc Network

Chapter 1

Introduction

1.1 Context

In recent years, there have been a number of industrial paradigms fundamentally different from

those that appeared before them. Two examples of such industrial paradigms are Advanced Man-

ufacturing (AM) and Industry 4.0 as a whole. For these industrial paradigms, more than automa-

tion is needed. There is a need for adaptability, customization, and autonomy. To attend to this

need, these industrial paradigms leverage technologies like Articial Intelligence (AI), Internet of

Things (IoT), and Cyber-Physical Systems (CPS) [43].

This brings substantial changes to networking; whereas before, industries were mainly domi-

nated by a few centralized servers, we now have highly distributed services spanning thousands of

servers. We also have thousands of devices connected in decentralized networks, and enterprises

have solutions that rely on the security of their private networks.

In addition to that, more and more advanced industries utilize blockchain technologies. Blockchain

technologies offer end-to-end (E2E) secure protocols, and decentralized transactions, making it a

natural t for CPS and the Industrial Internet of Things (IIoT) [6]. One of the most invaluable ad-

vantages is the extinction of single points of failure, which can be achieved with the natural fault

tolerance of these networks. Blockchain and CPS are also somewhat of a natural t since their fea-

tures are relatively compatible [52]. Consensus mechanisms, along with immutable storage, come

as a possible solution to yet another problem: these new industries have trouble with conden-

tiality, integrity, and availability as the used systems become more distributed and decentralized

[6].

These new congurations create new security risks, such as Shadow IoT, which is character-

ized by the introduction of unauthorized devices in IoT networks. These devices can then be used

as an attack surface to attack the network or get access to privileged data, thus compromising the

security guarantees of otherwise secure networks. Naturally, new methods and techniques have

to be developed to cope with the security needs of such systems. A popular group of techniques

that have seen rising in popularity is Articial Immune Systems (AIS), which are systems that are

inspired by the biological immune system. In the context of Industry 4.0 and highly connected

1

Introduction 2

devices, AIS comes into play by leveraging the similarities between the Human Immune System

(HIS)’s job of detecting unhealthy changes in the environment and the task of detecting anomalous

behavior in a network of devices, for example. One such AIS is Dendritic Cell Algorithm (DCA),

and Intrusion Detection System (IDS), which have been used in simulated industrial settings with

promising results [41]. In the remainder of this Chapter, we are going to describe the motivations

that led to the research of a distributed DCA.

1.2 Motivation

The highly-connected nature of these new industries is a double-edged sword: while allowing new

possibilities, such as a trusted history of supply chain activities [25], it creates security challenges

by increasing the attack surface, both because the number of devices, but also because the number

of interfaces between different devices also increase. In contrast with old industrial paradigms,

where attack surfaces were limited to a few centralized servers, this new environment also has

another adversity: before, fewer servers meant that the security effort could also be focused be-

tween a few servers, but now, with thousands of connected devices, the security effort needs to

be distributed. All in all, in these dynamic networks, entirely securing a system is impossible.

Since offering security, privacy, and reliability is becoming part of the value industries deliver,

researching novel ways to secure these systems is necessary [12].

A notable example of these vulnerabilities came to light during the infamous Stuxnet attack,

which targeted Iranian nuclear facilities in 2010 [31]. The attack underscored the potential catas-

trophic consequences of IIoT cyberattacks, disrupting not just digital infrastructure but also phys-

ical systems and services. Despite the steps taken to improve security measures, IIoT systems

remain susceptible to sophisticated attacks due to their complex, interconnected nature and the

rapid pace of technological advancement [51].

Blockchain systems are also vulnerable to Sybil attacks, but that is one type of attack. Blockchain

systems are also susceptible to phishing and routing attacks, for example [26]. Also, applications

running on top of blockchains also get targeted. This, coupled with the increase in the usage of

blockchain in advanced manufacturing industries, more research on security systems tailored for

a blockchain environment needs to be conducted. In that regard, AIS-IDS might be a group of

technologies to increase the security of these systems.

With AIS-IDS in mind, more research on distributed variations of the DCA needs to be con-

ducted. Current iterations do not use a distributed architecture in order to monitor the entirety of

the network. Rather, the DCA is usually utilized locally, with only the local view of the machine

taken into consideration.

1.3 Problem specication

As pointed out in the previous sections and as it will be demonstrated with the state-of-the-art

analysis, the fact that current systems could be beneted from a distributed IDS to better cope with

1.4 Objectives 3

modern network scale and requirements, coupled with the current gaps in research, particularly

investigating the potential of the DCA in a blockchain environment, we propose contributing to this

area by developing an architecture for the DCA to be used as an IDS in a blockchain. Particularly,

the architecture would be able to analyze data in a distributed manner while communicating with

other nodes to achieve a blockchain-wide IDS. The architecture should ideally not be limited to

a single DCA implementation: since there are a number of DCA implementations, each with its

own benets and limitations, binding the architecture to a single version could limit its overall

potential. With this property, we also ensure that a version of the DCA more suited to a particular

use case and data type scenario could be used, for example.

1.4 Objectives

The goals for this work are: to review the background concepts around our dened problem (AIS,

IDS, DCA ...) and compile a literature review regarding distributed IDS, focusing on distributed

AIS-based IDS. Following that, this work aims to propose a new DCA-based IDS: an IDS that

is particularly suited for distributed environments, using blockchain principles (e.g., consensus

algorithms) in order to achieve a distributed IDS. The algorithm should be able to receive signals

from multiple sources/nodes in the network and detect intrusions while leveraging the "global"

view of the network.

1.4.1 Research Questions

With this work, we aim to answer the following question:

• How does the proposed solution perform when compared to other DCA-based IDS and
a local DCA?

• Does the voting schema utilized in the implementation of the proposed architecture im-
pact the performance when compared to the lowest and highest performing individual
nodes?

• Can the DCA be used in the proposed architecture as an IDS to a blockchain environ-
ment? What are the benets and limitations?

1.4.2 Solution

To answer those questions, we propose a distributed architecture that uses the DCA for classi-

cation in a blockchain network. Ideally, this architecture should be able to be used as an IDS

in a blockchain without locking the blockchain to depend on a central entity for the IDS while

maintaining the characteristics of the classic DCA algorithm. Some desired characteristics would

be:

Introduction 4

• Distributed The nodes should coordinate with one another to classify threats without rely-

ing on reaching the nal classications and processing data on a single machine. This is an

obligatory requirement of the architecture.

• Minimum redundancy Ideally, data points should not be transmitted to the whole network

to avoid excessive copies of each data point across all the nodes in the network. This is

an optional requirement of the architecture, and its feasibility and adoption are going to be

discussed later in the development chapter.

1.5 Methodology

The methodology of this work will be as follows:

• Dene concrete use case Firstly, a concrete use case will be dened. This use case will

be used as the substrate for the DCA architecture. The use case should dene technologies

and architectures regarding the concrete blockchain to be used, along with what denes a

transaction in the selected blockchain. The inputs to the DCA should also be dened (e.g.,

network packets, transaction data, etc.). Once the use case is dened, the architecture and

subsequent work will be tuned toward this use case.

• Design the architecture With a dened use case, the next step will be to start the design

of the architecture. This design should be thoroughly explained and dened. Ideally, the

architecture should provide the characteristics stated in section 1.4.2.

• Implementation of the architecture Once the design of the architecture is nished, the

implementation will begin. The implementation will be done in NodeJS. A blockchain

framework, such as Hyperledger Fabric, will be used for the blockchain since our focus is

on the DCA architecture.

• Tests and Conclusion After the architecture review, we will proceed to test the architecture

by comparing it to local versions of the DCA running on each node and with related works if

mapping the problem to its architectures are possible. For the comparison, relevant metrics

to IDS, such as F1-score, accuracy, and False Alarm Rate (FAR), will be used to verify the

suitability of the proposed solution. After the test, the result will be analyzed to determine

if the research questions were answered. Finally, a conclusion of the work will be done,

presenting the insights of the work, limitations, and ideas for future work.

1.6 Structure of the Thesis

This document is structured as follows:

In this Chapter, the problem, along with the research questions, devised methodology, and the

overview of the proposed solution, was presented.

1.6 Structure of the Thesis 5

Next, Chapter 2 and Chapter 3, will comprise the state-of-the-art, covering the necessary back-

ground review and related research, respectively.

In Chapter 4, the proposed solution will be explained in detail, along with implementation

details that might be considered relevant.

In Chapter 5, we are going to test and validate the proposed solution, performing an analysis

of the obtained results in order to answer our research questions.

Finally, in Chapter 6, we are going to present the conclusions of the work completed so far,

along with insights and limitations, and approaches for future work.

Figure 1.1 visually represents the structure of this document.

Figure 1.1: Document structure.

Chapter 2

Background

2.1 Blockchain

The term "Blockchain" originally refers to a system that uses a range of techniques to timestamp

digital documents, while guaranteeing the integrity of the timestamps [20]. It generally refers

to a paradigm used for maintaining information in distributed systems that have some common

properties. A denition that could partially capture this generalization is Distributed Ledger Tech-

nologies (DLT), a system that records changes to the system state in a distributed ledger. The usual

property of these ledgers is high tamper resistance due to the need for consensus between nodes

for changes in the state. Figure 2.1 presents the architecture of a typical DLT.

Figure 2.1: Hierarchical architecture of a typical DLT [54].

6

2.1 Blockchain 7

There is the Data Layer, which is responsible for the storage of the DLT. It can be based on

a diversity of models, like block-chaining, or appending nodes to an acyclic graph. The next

layer in the architecture is the Network Layer, which governs how nodes will connect to each

other, the Consensus Layer implements the protocol responsible for maintaining the integrity of

the DLT by validating transactions in a decentralized manner. After that, there are the Contract

Layer specifying the business logic of the network and the Application Layer, representing the

high-level use case of the DLT.

One of the most popular applications of blockchain technologies was described in [38] (Bit-

coin). The white paper presents a crypto coin-based decentralized payment system that does not

depend on a centralized trusted entity. It is also an example of what is called a "public blockchain."

Public blockchains are fully decentralized and have no access restrictions. On the other hand,

"permissioned blockchains" have access restrictions and previously agreed upon parties, heavily

reducing the number of nodes but still maintaining the decentralized structure of the network.

There are other key differences as well: permissioned blockchains offer more privacy since not

every transaction is visible to all nodes and more efciency since there is a smaller amount of

nodes. On the other hand, public blockchains offer more security due to the higher number of

nodes and more transparency.[33]

To demonstrate how a blockchain generally works, we are going to use the Bitcoin example.

The network is comprised of chained blocks, in which each block is linked to the previous one by

having a reference to its hash value. The rst block of the network is usually called the Genesis

block. In Bitcoin’s specic implementation, it utilizes the Merkle tree data structure. In this

representation, the transactions are represented as leaves, while the parent of a specic leaf is its

hash. 2.2 visually demonstrate how the Merkle tree represents the network state.

Background 8

Figure 2.2: Diagram of a Merkle Tree, taken from [32].

In the above diagram, the structure of the Merkle Tree is presented: the leaves (data blocks)

have their respective hashes as parents, and the parents of two adjacent nodes have their combined

hash (hash of the concatenation of the two hashes) as parents. From this diagram, it is easy to see

that changing a data block would eventually change the Top Hash (root) as well, providing the

ability to guarantee that the ledger hasn’t been mutated in an unexpected way.

When modifying the network state (executing a transaction), all the nodes in the network must

agree on which node is going to add the transaction to the network. The process in which the

nodes end up agreeing on a specic node is called consensus. In the blockchain space, there is a

myriad of consensus algorithms, each one of those with its advantages and disadvantages. In the

case of Bitcoin, the consensus algorithm used is called Proof of Work (POW). POW is a group

of techniques that provide a mechanism for an entity to prove that it has spent a required amount

of computational effort [28]. In Bitcoin’s case, for example, the computation required amounts to

discovering a sequence of bytes that, when hashed, return a digest with a predetermined amount

of consecutive 0s at the beginning of the digest.

However, the proof of work is only one consensus protocol. The challenge involved requires

signicant computational power, POWs also increase latency and energy consumption. These

factors make it a poor choice for IoT and IIoT environments. For such scenarios, other consensus

protocols may be used, such as the Raft protocol, a leader election-based protocol used by the

IBM Blockchain Platform, for example.

2.1 Blockchain 9

Another change in the blockchain world that facilitated its adoption by IIoT environments is

the introduction of smart contracts. Smart contracts are programs that run on the blockchain.

It encapsulates the required business logic and allows blockchains to be deployed in various en-

vironments, including IIoT. The transaction and state modications executed by smart contracts

are trusted by the network due to their immutability and because transactions generated by smart

contracts are validated by consensus protocols as well. [47]

Another property of such systems is decentralization. However, even the level of decentraliza-

tion can vastly vary between "blockchain systems" [46]. The consensus protocol can also impact

the scalability of the network. Overall, there is always a trade-off between scalability, security,

and decentralization in blockchain networks: a harder, challenge-based POW might increase the

security of the network at the expense of scalability, while permissioned blockchains might be

able to scale better and retain the security aspects, but impacting the level of decentralization of

the system.

Blockchain technologies have seen usage in industrial congurations, such as usage in supply

chain systems in the IIoT [48]. These systems leverage blockchain properties such as tamper-proof

history and self-management properties to mitigate classical security problems, such as reliance

on centralized cloud infrastructures and single points of failure. In the context of AIS applied

to blockchain networks, current research is limited and leaves room for further exploration. One

of the reasons could be that traditional AIS systems need some sort of central authority or data

processing component, and that would break the decentralized nature of the blockchain.

2.1.1 Articial Immune Systems

AIS is a popular branch of AI. It takes heavy inspiration from the Biological Immune System

(BIS). The BIS is a remarkable system that is capable of adaptation and precise discrimination

between self/non-self. Even though the notion of self vs. non-self is challenged by the Danger

Theory (DT), Articial Immune Systems gained traction as a successful branch of AI [43].

These characteristics make AIS nd its use in problems where the task at hand involves dis-

cerning between normal and abnormal behavior in a dynamic environment (new emerging threats,

for example) as opposed to nding implicit patterns in data, which is usually the task in AI sys-

tems.

Traditionally, there are four main strategies used within AIS: negative selection, clonal selec-

tion, immune networks, and danger theory. Negative selection is based on exposing randomly-

created detectors to self/normal/positive antigens, and detectors that match those are eliminated,

leaving mature detectors that are going to keep monitoring the environment and alert a human to

verify if the matched antigen is indeed a threat [3]. This approach has its limitations. As shown by

[30], this approach is severely affected by scaling problems when dealing with real-world network

data, particularly because of the time it takes to generate a sufcient number of detectors. Clonal

selection, on the other hand, is an approach that relies on the cloning of members of a population

of detectors, which have a high afnity to specic input patterns (antigens) [53]. It possesses some

Background 10

characteristics that are not present in Genetic Algorithms, such as creating a memory-cell popula-

tion that is capable of recognizing similar patterns in an efcient manner. Immune networks are

based on the principles of clonal selection and afnity between antigens and antibodies in the hu-

man immune system. It works by generating a population of clones. Clones with a higher afnity

to the problem are selected and improved upon, while clones with low afnity are discarded. These

processes allow INs to be able to solve non-linear problems such as classication, optimization,

and anomaly detection. [13]

The last strategy, and the one that is more relevant to this work, is the danger theory. Tradi-

tionally, AIS systems use the idea of self / non-self to discriminate between harmless and harmful

entities. This is an idea that came from classical immunology [3]. [1] reviews this system and

points out some problems with this classication. The main idea of Danger Theory (DT) is that

rather than discriminating between self /non-self [4], the immune system relies on danger signals

(these can come from "self" as much as from "foreign entities"). The idea of discrimination re-

mains, but how it is achieved is different: In the biological context, the immune system would use

surrounding signals (cell death, for example) to match potential threats and react. The difculty of

selecting what is normal(self/safe) and threat(non-self/danger) still exists, but with DT, the signal

does not depend on an arbitrary representation of non-self [3].

2.1.1.1 Danger Theory: Biological perspective

Biologically, danger signals are generated by necrosis and apoptosis. Necrosis is unregulated

cell death that follows cellular stress and generates inammation through debris. Apoptosis is a

regulated cell death with very dened triggers. Even though both processes end with cell death, the

path that the immune systems follow in both of these processes is different. The immune system

then uses the signals generated from the cell deaths (input) to trigger a pro-inammatory response

(immune response/output) or not. [3]

2.2 Intrusion Detection Systems 11

Figure 2.3: Danger Theory Model [4].

2.1.1.2 Danger Theory: Application in AIS

For mapping ideas from the Danger Theory in a biological context to an AIS context, rstly, the

signals must be decided on. This is a very specic task that depends heavily on the problem, and it

is a task that must be thought through. As an example, for applications in data mining, there is no

inherent "danger" meaning to danger signals, as shown in [4]. Besides the challenge of mapping

the signals and danger contexts of the problem at hand to t the DT model, there is also the need

to map the system itself as well. What is going to be the antigen-presenting cells? Do we need

an abstraction for T-cells? One popular answer to these questions is the Dendritic Cell Algorithm

(DCA), which is particularly popular for Intrusion Detection Systems.

The DT is by no means the academic consensus regarding how the immune system works, but

its interpretation of the BIS has some proven characteristics useful for AIS ([21], and [9]).

AIS-based approaches have seen some success in recent research, applied in elds such as

networking and aviation [43].

2.2 Intrusion Detection Systems

IDS are one of a myriad of techniques to protect computer systems. One of its primary goals is to

detect misuse and abuse, both from internal and external entities [3]. [14] proposes a taxonomy

for intrusion detection systems. Figure 2.4 presents his characteristics for dening IDS.

Background 12

Figure 2.4: Taxonomy of IDS [14].

The usage frequency refers to the "periodicity" of the IDS. There are systems that run in real-

time, while there are others that need to run periodically due to the requirement of having an

existing "database" to be scanned and classied. The audit source location refers to the source of

information to be analyzed (this will depend on a number of factors besides the actual IDS, such as

the environment it is running on and the particular use case). behavior on detection characterizes

the type of action that is taken once an intrusion is detected. It is self-explanatory: any sort of

action besides alarming is characteristic of an active IDS. Finally, we have the detection method,

which is divided into knowledge-based and behavior-based. The former relies on signatures of

known attacks, while the latter relies on a model of normal behavior, and behavior that falls out of

the model is deemed malicious.

A signature-based IDS utilizes signatures of known attacks and threats, for example, the mem-

ory trace or network packet pattern of a known virus, to detect malicious behavior. The main dis-

advantage of this approach is its lack of robustness: it cannot detect previously unknown threats,

2.2 Intrusion Detection Systems 13

so it is not appropriate for a scenario in which new threats are deployed at a high frequency [36].

On the other hand, an anomaly-based IDS relies on a known pattern of normal/healthy be-

havior, usually called a baseline. Having a baseline prole, the IDS can differentiate anomalous

behavior from the normal baseline prole. The main advantage of this approach is that it can detect

known threats and previously unknown threats since the system relies on a normal baseline prole.

On the other hand, the main disadvantage is that normal behavior is classied as anomalous [36].

There are also hybrid systems that try to leverage both manners of detection ([3], [14], [36]).

In the context of these IDS categories, signature-based IDS might not be the most appropriate

type for our context due to its lack of robustness and adaptability. On the other hand, anomaly-

based IDS seems more suited to our context since its capable of detecting the traces of previously

unseen forms of attack. There are also a category of AIS-based IDS. These IDS rely on bio-

inspired computation, more specically articial immune techniques, to build a more robust and

adaptable IDS.

AIS-based IDS uses a number of different techniques, including articial antibodies, articial

antigens, and articial lymphocytes, to detect and respond to potential threats. These systems

have several advantages over traditional IDS, including the ability to adapt and learn from past

experiences and the ability to detect previously unknown threats. It also offers a way of thinking

about these systems that do not rely entirely on the distinction between self/non-self, which has its

fair share of scope problems ([3], [4]).

There have been numerous studies on AIS-based IDS in recent years, and the results have

been generally positive ([41], [44]). Generally, common metrics to verify the performance of such

systems are detection rate, false positive rate, precision, and recall.

Overall, AIS-based IDS shows great promise as a method for detecting and defending against

cyber threats. However, further research is needed to fully understand their capabilities and limi-

tations and to determine how they can be effectively integrated into distributed environments, such

as blockchain systems.

2.2.1 Dendritic Cell Algorithm

The DCA is the focus of this work. The DCA is based on the DT and the behavior of Dendritic

Cells (DC). According to [19], "DCs have the power to suppress or activate the immune system

through the correlation of signals from an environment, combined with location markers in the

form of antigen." Firstly, it is important to note that the DCA does not attempt dynamic learning

and, as it is going to be explained, is different from traditional negative selection.

To briey present the DCA in vivo, basic DC biology and terminology will be presented. For

a more detailed explanation and overview of the DC from a biological perspective, refer to [37].

The DC’s job in the innate immune system is to detect threats and determine the T-cell’s re-

sponse to antigens. This response could either be a tolerable or an immune response. The response

to be generated by the DC will depend on the concentration of a handful of signals: Pathogenic

Background 14

associated molecular patterns (PAMPs), apoptotic signals, and inammatory cytokines. The con-

centration of these signals will determine the state of the DC: immature, semi-mature, or mature.

[19]

• PAMPs—Known threat-signatures.

• Danger signals—Released by damage to cells.

• Safe signals— Released by expected cell death.

• Inammatory cytokines—Released by general cell distress.

The DCA was rst introduced in the Danger Project [3]. Even though its focus was on IDS

(which is one of the focuses of this work), the DCA has been shown to work successfully in

other scenarios, such as machine learning [18]. As demonstrated in [18], the DCA is sensible for

changes in context, one of the characteristics that might make it suitable for IDS problems.

PAMPs have a very important role in the classication process of the DCA. This means that

PAMPs are very problem-specic. In other words, the DCA heavily benets from expert knowl-

edge. It is a double-edged sword: While it can benet greatly from expert knowledge, this means

that problem modeling can be challenging, and getting at least an adequate representation of what

should the danger signals be is paramount for the success of the algorithm.

Besides the problem modeling, its rst implementation had a couple of problems. For in-

stance, it relied on randomly generated numbers, and as a consequence of that, the deterministic

DCA (dDCA) was introduced in [17]. Over the years, other adaptations of the algorithm, like

the cursory DCA [41] that focuses on modularizing the DCA and reducing the reliance on entire

dataset pre-processing, were introduced in the AIS literature as well, with the objective of solving

its limitations.

In the following Algorithm (1), we present a basic pseudo-code example of how the DCA

works at a high level, extracted from [18].

2.2 Intrusion Detection Systems 15

Algorithm 1 High-level DCA.
1: Create DC pool of N cells
2: for each data item do
3: Pick M DCs from pool
4: for each DC do
5: Add antigen(DataLabel) to antigenCollected list
6: Update input signal concentrations
7: Calculate concentrations for output cytokines
8: Update running total of each output cytokines
9: if total cms > fuzzy threshold then
10: Remove DC from the pool and migrate
11: Create new DC
12: for each DC that migrates do
13: if concentration of semi > mature then
14: antigenContext ← semi
15: else
16: antigenContext ← mature
17: for each antigen that entered the system do
18: Calculate the number of times presented as mature or semi
19: if semi > mature then
20: antigen← benign
21: else
22: antigen← malignant

Initially, a dendritic cell (DC) pool is created. For every data item in the dataset, M DCs are

randomly selected from the pool. Each of these DCs then performs a series of actions. The selected

DCs gather an antigen corresponding to the data label, after which they adjust their input signal

concentrations accordingly. Subsequently, the DCs compute the output cytokine concentrations

and update the cumulative counts of each cytokine type. If the total count of cms (safe signal added

to danger signal) exceeds a specied fuzzy threshold, the DC is removed from the pool, simulating

migration. To maintain the size of the DC pool, a new DC is created. The algorithm then evaluates

each migrating DC to determine whether the concentration of semi-mature cells surpasses that of

mature cells. Depending on the comparison result, the antigen context is assigned as either ’semi’

or ’mature’. Lastly, the algorithm assesses each antigen introduced into the system. The counts

of times an antigen is presented as either ’mature’ or ’semi’ are calculated, and based on these

counts, the antigen is classied as either ’benign’ or ’malignant’.

Figure 2.5 also shows an overview of the possible states of a DC.

Background 16

Figure 2.5: Dendritic cell (in vivo) maturation stages [18].

There are known limitations of the traditional DCA algorithm, namely that it can only classify

data after processing the entire dataset, heavily impacting the size of datasets that can be classied

with the DCA. This also means that there are no online or real-time classication capabilities. As

pointed out in [18], the Dendritic Cells in an anomaly detection system should be part of a whole

[system] and not entirely isolated. Thus, subsequent research around DCA focuses on eliminating

these limitations, either directly increasing the sizes of viable datasets or changing the architecture

to allow online classication or its use in more distributed environments.

2.2.1.1 The Cursory Dendritic Cell Algorithm

The Cursory Dendritic Cell Algorithm (CDCA) is a version of the DCA that has three main fea-

tures when compared to the "traditional" DCA: it is supposed to be modular, it should offer near

2.2 Intrusion Detection Systems 17

real-time classication capabilities, and it should also allow for a data-driven approach for the

pre-processing stage [41].

Figure 2.6: CDCA components overview [41].

Figure 2.6 shows the main components of the CDCA. The Signal Extractor is responsible for

the signal extraction logic. It outputs danger and safe signals from antigens and associated data.

PAMPs and inammatory signals are not used in the CDCA, though the reason for that is not

explicit. The Sampler is responsible for distributing antigens and associated signals across the

available dendritic cells. The Antigen Repertoire is responsible for storing all antigens received

by the system, which can then be queried by the Interface to get data and context to achieve

classication.

One of the main purposes of the data-driven approach is to solve the classic limitations of

the DCA: problem modeling. Usually, the DCA requires expert knowledge to map antigens to

appropriate signals. However, being that one of the purposes of the CDCA is to provide online

classication, being able to easily select a range of data analysis algorithms is a suitable way to

solve this limitation. In the paper presenting and dening the DCA, the example algorithm used

was KMeans [41].

In order to provide online classication, the CDCA classication owworks as follows: rstly,

every time a DC matures, the MCAV values for all its antigens are computed. If every DC stor-

ing a specic antigen has already matured, but the MCAV value is still below the predetermined

threshold, it is considered safe. However, if, at some point, the MCAV value passes the threshold,

the antigen is classied as anomalous. This means that a data point can be classied as normal

or anomalous before processing the entire dataset, but the value can be updated after the whole

processing [41].

Background 18

This is the version of the DCA that we are going to use to make performance comparisons

against the proposed solution in Chapter 5. We are not going to use the CDCA in the implemen-

tation of the proposed solution, and the main reason for that is due to the availability of the source

code of the CDCA, and implementing it from scratch would take too much time. Also, using a

more complex version of the DCA might compromise the clarity of this rst specication of a

distributed DCA for a blockchain environment.

Chapter 3

Related Work

3.1 Distributed Dendritic Cell Algorithm

[10] proposed a distributed DCA based on the Spark framework for distributed data processing. Its

main purpose was to solve the classical DCA memory inefciencies since there must be m copies

of each data point, where m is the antigen multiplier. This makes applying the classical DCA to

Big Data problems infeasible. The algorithm works by making a Distributed File System (DFS)

available to the algorithm and partitioning the data in disjoint sets. Then the data is processed in

a manner similar to the MapReduce framework. It was tested in a high-performance computing

facility across data sets of 10,20,30, and 40 million data points and obtained speed-ups of up to 16

times. However, this algorithm works under specic partition conditions and might not be suitable

for real-time IDS in a decentralized system unless specic nodes are assigned specic types of

antigens and signals.

Figure 3.1 shows the overall schema of the MapReduce framework.

Figure 3.1: MapReduce framework [10].

19

Related Work 20

The overall steps of the algorithm are:

• Initialization phase In this phase, a dimensional reduction is performed, and each input is

assigned to its category: Danger Signal (DS), Safe Signal (SS), or PAMP.

• Detection phase In this phase, a signal dataset is generated. The signal attributes from the

rst phase are combined with the antigens.

• Context assessment phase The DCA processes each input and generates three values that

accumulate over time. This value is then used to decide if the antigen is anomalous or not.

• Classication phase The DCA calculates the context value for all copies of the antigens

and measures how much of the cells are fully mature.

Figure 3.2 visually represents the ow of the sp-DCA.

Figure 3.2: sp-DCA owchart [10].

The focus of this work, as mentioned at the beginning of the section, is to solve the problem

of scalability when traditional DCAs are used with large datasets. The paper does not explore the

suitability of this solution in a blockchain context, and its main distributed component is in the

data processing phase only: the data has to be later sent to a single component.

3.2 Agent Based Articial Immune System

[40] proposed an IDS architecture based on the Danger Theory and on Multi-Agent Systems

(MAS). The motivation was to combine both areas to generate a better IDS. The paper proposes

four agents:

• DC Agents Agents that simulate the functionality of the Dendritic Cell.

• T-Cell Agents Agents that calculate thresholds from danger signals detected by dendritic

cell agents that exceed a certain threshold.

3.2 Agent Based Articial Immune System 21

• Antigen Agents Agents that parse inputs from the environment into antigen format.

• Responding Agent Agent installed in a central entity that receives signals that exceed a

threshold from other agents and classify it as malicious or not. The central entity is then

responsible for activating a countermeasure.

Figure 3.3 shows the diagram of the architecture. Hosts only communicate with each other via

the TC agents, and these agents are responsible for communicating with the Security Operations

Center (SOC).

Figure 3.3: ABAIS Architecture diagram [40].

The idea is that TC agents in the different hosts will exchange threshold values between dif-

ferent hosts by sending the values to nearby hosts and receiving values from nearby hosts. The

dendritic cells are responsible for analyzing antigens provided by the antigen agent, and PAMPs,

danger levels, and safe levels are calculated. Then, results are sent to the TC agents, which are

responsible for warning the central entity.

The work describes the self-organizing feature map (SOM) for initial clustering input. The

advantage of this solution is that it is a distributed architecture, and the paper already describes a

way of exchanging information between agents and hosts. However, the suitability of this system

is not explored and not even encouraged since it relies on a central authority for nal classication

and response.

Related Work 22

3.3 DeliveryCoin: Blockchain and IDS

[16] proposes an IDS for a blockchain used in a drone delivery service. The blockchain utilizes

Practical Byzantine Fault Tolerance (pBFT) to achieve consensus. Also, there are ve network

entities: buyer entities, vendor entities, the delivery service, unmanned aerial vehicles (UAV) and

antennas. Figure 3.4 shows the high-level threat model of the network.

Figure 3.4: Threat model [16].

In this architecture, the macro eNB represents a ground component that supports the edge

devices (vehicles). The IDS algorithm runs at each of these components. The IDS is a machine

learning algorithm that was previously trained with the dataset. Figure 3.5 shows the IDS diagram.

There is little detail on ne-tuning details regarding the IDS, but much like other works in IDS

research, the data points are network packets.

3.3 DeliveryCoin: Blockchain and IDS 23

Figure 3.5: IDS model training scheme [16].

Some of the attack scenarios(explaining each one is beyond the scope of this work) used for

training are:

• SSH and FTP Brute force

• Inltration

• Web attacks (e.g. SQL Injection)

• DOS/DDOS

This work has some characteristics that are similar to what we propose to do, like an IDS for

a blockchain. However, it uses an IDS that is not related to Danger Theory, nor to AIS, for that

matter. For some algorithms, it presented accuracy in detection of 90% and higher. This is an

interesting result, showing that an IDS in a blockchain environment could be suitable and provide

satisfactory detection capabilities.

Related Work 24

3.4 Distributed ConsensusMechanismwith Novelty Classication Us-
ing Proof of Immune Algorithm

[2] proposes a novel consensus mechanism for a peer-to-peer lending system that adapts the DCA.

From the abstract: "Proof of Immune Algorithm was proposed by leveraging the potential dendritic

cell algorithm mimicking human immune system to provide consensus among peers involved in the

lending process to enable trust" [2].

In the paper, the Proof of Immune (POI) is introduced. It differs from mainstream consensus

algorithms in that the algorithm does not intend to form an equal view from the perspective of

borrowers and lenders but accepts that each entity will have a different level of trust in relation to

each other entity in the network. It does so by dening a Danger Quotient (DQ) and computing

the trust between an entity and another entity. The DQ is based on danger theory and dendritic

cells, and it is calculated as Self-Danger Score (SDS) and Neighbourhood-Danger Score (NDS).

These are the denitions of such scores:

• SDS It is a score based on the participation in transaction events by a given peer. The author

characterizes it as a sort of "Karma" of the peer in the network, and it is computed by:

SNS= (f ailure− contexts)(total− validations) (3.1)

The paper works with a borrower/lender network, but the default values for a peer’s SNS

are use-case specic.

• NDS It is a score based on successful requests from borrowers and from lenders. It has the

primary purpose of identifying trustworthy borrowers for lenders and maintaining an overall

healthy activity in the network. It is computed by:

NDS= (∑acceptances)(total− requests) (3.2)

From the above denitions, 3.1 and 3.2:

DQ= SDSNDS (3.3)

Trust = 1−DQ (3.4)

The results obtained were as follows:

3.5 Comparison 25

Figure 3.6: Performance of PoI with standard consensus approaches [2].

Signicant improvements in the ability to detect suitable borrowers were obtained, and the

POI can also be used to build consensus on other domains besides banking.

3.5 Comparison

Table 3.1: Related Work comparison.

DCA Distributed Blockchain Environment IDS

Distributed DCA Yes Yes No Yes

Agent Based AIS Yes Yes No Yes

DeliveryCoin No Yes Yes Yes

Proof of Immune No Yes Yes No

Table 3.1 shows us that, even though there is research around some of our requirements, it

seems that a DCA-based IDS in a blockchain environment has not yet been studied. It is also

important to note that, even though the Proof of Immune paper references dendritic cells, it does

not implement the DCA but instead tries to mimic the behavior of dendritic cells regarding danger

signals: it is not properly a DCA adapted to a consensus algorithm.

Related Work 26

Overall, while there is some research concerning the distributed properties of the DCA, most

of them do not cover the suitability of the DCA in a blockchain environment, or it is not used

as an IDS but rather as a consensus mechanism. There is still a gap in the understanding of the

suitability of the DCA to a fully decentralized environment of the blockchain as a satisfactory IDS.

In the next section, we dene a concrete use case for a problem and start the outline of a possible

solution.

Chapter 4

Proposed solution

4.1 Requirements

As demonstrated by the state-of-the-art analysis, and with the context and motivation in mind,

there is a gap in research studying the DCA in blockchain environments. That said, we propose

with this work an architecture for the DCA with the use of blockchain networks in mind.

Firstly, as mentioned in the introduction, Industry 4.0 is characterized by highly distributed

systems, so an IDS that matches these distributed topologies would be ideal while also removing

the reliance on a central entity for data processing. This rst requirement is going to be achieved

by distributing the data processing and classication tasks across the nodes in the network.

Secondly, industrial blockchains are usually permissioned, resulting in a lower number of

nodes when compared to public blockchains. This characteristic allows us to use the blockchain

itself as a communication layer, reducing the number of dependencies and guaranteeing that the

communication is closely attached to transactions and actions in the blockchain layer. This is going

to be achieved by implementing the communication between nodes as events that are emitted from

the blockchain.

Lastly, in order to reduce overall classication error, besides distributing the classication tasks

between nodes, the nodes should achieve a consensus regarding the classications by utilizing

their local classications as a vote. This would help reduce classication error (as it is going to

be demonstrated in Section 5) while also allowing the voting process to happen if a minority of

nodes fail (not tested in this work, but it is a characteristic of the architecture). This is going to

be achieved by executing a majority voting with the active nodes in the network to achieve a nal

classication.

To summarize, these are the requirements of the proposed solution:

• The architecture should distribute the data processing across the multiple nodes in the net-

work.

• The nodes should communicate using the blockchain as a medium.

27

Proposed solution 28

• The nodes should be able to communicate their local classication in order to reach a con-

sensus for a nal classication, reducing classication error in the process.

4.2 High-level description of the solution

The proposed solution has the following high-level architecture:

Figure 4.1: High-level architecture of the solution.

In this solution, the blockchain is the only communication channel between the nodes: the

nodes use blockchain events t communicate with each other. A node is an abstraction of an entity

that interacts with the network by sending data points to the network to be classied by other

nodes. Naturally, the nodes could be thought of as devices that send sensor data to the network.

Every time a node pushes data to the blockchain, a network event is triggered and captured by the

other peers (how exactly this process works is dependent on the blockchain layer, and how it works

in our specic layer is going to be described in the next section). After capturing the necessary

data from a particular node, a node will then classify the data from each node with separate local

DCA instances, and send the result of its local classication as another network event, initiating

the voting process. After all the nodes receive the classications from every required node, the

voting process processes all the classications, generating a nal classication.

4.3 Implementation

4.3.1 The blockchain layer

Ideally, the architecture should be blockchain agnostic, and it would be up to the nodes to prop-

erly implement adequate communication with the blockchain to allow the nodes to retrieve data

published to the chain by other nodes. Thus, the blockchain technology to be used is going to be

4.3 Implementation 29

selected based on how much its properties and Application Programming Interface (API) facilitate

the mapping between the high-level architecture and the actual implementation.

4.3.1.1 Hyperledger Fabric

4.3.1.2 Overview

Hyperledger Fabric is an open-source blockchain framework developed by the Linux Foundation.

One of its primary design principles is to provide a modular architecture, allowing for exibility

and customization. These characteristics make it well-suited for a variety of use cases. It is a

permissioned blockchain with secure and private transactions between multiple parties.

Hyperledger Fabric provides tools and APIs to enable developers to build applications that

interact with network events. The available Software Development Kits (SDKs) provide a set of

APIs that enable developers to subscribe to network events emitted from smart contracts besides

common blockchain interactions ([22], [23], [24]).

4.3.1.3 Smart contracts

Hyperledger Fabric’s smart contracts, known as chaincode, are one of the most important aspects

of the framework. Chaincode is responsible for executing transactions and for the implementa-

tion of the business logic of the system. Particularly, Hyperledger Fabric supports chaincodes in

Golang, Javascript, and Java.

The chaincode can be accessed and invoked by any authorized participant on the network. Ev-

ery time a transaction (in our context, the publishing or retrieval of an data point or classication)

is submitted, it is validated by the ordering nodes and passed to the endorsing peers after that. The

endorsing peers, which are the peers responsible for validating transactions , are then responsible

for executing the chaincode and generating a response containing the result of the transaction and

a digital signature. In case that the transaction is successful, it is returned to the ordering peers to

be added as a new block on the blockchain.

Chaincode is designed to be modular, allowing developers to create logic that can be easily

integrated with the blockchain network. It can also be updated and/or replaced without network

disruption.

Smart contracts provide a number of benets over traditional contracts: immutability, meaning

that once a chaincode is deployed, it cannot be changed. It is also self-executing, meaning that it

can automatically execute when certain conditions are met, such as when a certain date is reached

or an event occurs. This makes chaincode suited for industrial settings, such as supply chain

management, for example ([22], [23], [24]).

4.3.1.4 Events

Hyperledger Fabric provides a robust event system enabling the reception of real-time network

events. Events in Hyperledger Fabric are generated by different layers and components of the

Proposed solution 30

network, such as endorsing peers, orderer peers, and chaincode execution. These events can be

used to monitor the state of the network and set triggers for specic events.

Hyperledger Fabric events are published through channels, a logical construct that allows for

private communication between multiple parties, meaning that generated events are not public.

Clients can subscribe to specic channels and receive notications when events occur on the sub-

scribed channels. Events can be ltered and searched based on a number of criteria, such as event

type, transaction ID, and block number.

Chaincode events, which are more relevant to our purposes, are events triggered by the exe-

cution of chaincodes on the network (only a chaincode that emits an event explicitly in its logic

generates a chaincode event). These events allow applications to react to specic events emitted

by the business logic. Transaction events are generated when a transaction is successfully vali-

dated and committed to the ledger. Block events are emitted when a block is added to the network.

These events contain metadata associated with their respective source, and in the case of chain-

code events, they may contain a payload. These events can include information about the health

of the network, such as node status and resource usage, or contain information about actions being

performed by nodes that need to be captured by the rest of the network.

In conclusion, the event system provided by Hyperledger Fabric provides a powerful and ex-

ible way to monitor the network and trigger event-specic actions. The system enables clients and

applications to receive real-time notications about network events, which can be used to create

more efcient and effective blockchain solutions([22], [23], [24]).

4.3.1.5 Decision overview

Although the blockchain itself doesn’t have an impact on the architecture, the Hyperledger Fabric’s

properties would greatly facilitate the implementation of the communication since it provides

chaincode events, which serve as a direct mapping to the high-level architecture’s communication:

a node will send data to the blockchain (via chaincode), and this chaincode will trigger an event,

that will be captured by other nodes, enabling the classication and voting process.

4.3.2 Our chaincodes

The following listings show the chaincodes used in this work. In all the listings displayed be-

low, the ctx parameter refers to the internal hyperledger context, which is not important for our

purposes.

Listing 4.1: Put Antigen.

1 async put(ctx, key, value) {
2 await ctx.stub.putState(key, Buffer.from(value));
3 ctx.stub.setEvent("putEvent",Buffer.from(value));
4 return { success: "OK" };
5 }

4.3 Implementation 31

Listing 4.1 represents the chaincode that nodes use to send a reading to the blockchain. It also

sends a "putEvent" event that nodes listen to and react to. It allows nodes to react to new readings

instead of having to poll the ledger and check for new readings. There is also a "putMultiple"

version of this chaincode to allow sending multiple readings in a single transaction.

Listing 4.2: Get Antigens.

1 async list(ctx) {
2 const allResults = [];
3 const iterator = await ctx.stub.getStateByRange(’’, ’’);
4 let result = await iterator.next();
5 while (!result.done) {
6 const strValue = Buffer.from(result.value.value.toString()).toString(’utf8’);
7 let record;
8 try {
9 record = JSON.parse(strValue);

10 } catch (err) {
11 console.log(err);
12 record = strValue;
13 }
14 allResults.push(record);
15 result = await iterator.next();
16 }
17 return JSON.stringify(allResults);
18 }

Listing 4.2 represents the chaincode that nodes use to list the readings in the blockchain ledger.

It allows peers to get all current readings stored in the ledger. Its main purpose is to facilitate

testing, so we do need to wait for every peer to generate each reading individually´ If, for any

reason, an asset that cannot be parsed to JSON was submitted to the ledger, the catch clause will

guarantee that the record is still retrieved as a string. This is mainly due to testing and debugging

purposes, and it is not particularly relevant to the overall ow of the architecture since dealing

with errors is not the purpose of this work.

Listing 4.3: Classify antigens.

1 async classify(ctx, key, value) {
2 ctx.stub.setEvent("classificationEvent",Buffer.from(value));
3 return { success: "OK" };
4 }

Listing 4.3 represents the chaincode that nodes use to send their votes to the other nodes. The

chaincode emits a "classicationEvent" to the other nodes so that they can process that peer’s

votes. The votes are not stored in the blockchain for usability purposes.

It is worth reiterating that these events are the main reason that led to the decision to use

Hyperledger: it facilitates development and allows nodes to react to events instead of polling the

ledger.

Proposed solution 32

4.4 The application layer

4.4.1 The classication process

In this architecture, each node is responsible for running the DCA locally, with its own data and

the data originated from the other nodes in the network. The distributed component takes place as

a voting system in which each node shares its local classication of the data of every other node

with all the nodes to achieve a consensus regarding each individual data point. The following

diagrams visually represent the steps of the classication process.

Figure 4.2: First step: a node sending its local classications to the network.

Figure 4.2 represents the rst step to be taken by each node in the network: First, it will

classify its own data points with its local DCA. After that, it will retrieve the data points of each

other node separately and classify each set with the DCA as well. The data points from another

4.4 The application layer 33

node can be retrieved in one of two ways: when a node emits data to the network, an event with

the data as the payload is emitted and captured by the other nodes in the blockchain. The other

way to retrieve data is to query assets from the distributed ledger, since the data points are stored

as assets in the blockchain. The classication mode will determine how the data points will be

retrieved, and these modes will be explained later in this section.

After it has classied the data points of each node, it is going to send its local classications

to the ledger, and each classication will generate an event with the classications as the payload,

and these events will be processed by the other nodes in the network. After that, the node waits,

until itself has received all the classication events from all the other nodes in the network, and it

will then compute the votes and generate the nal classication.

Figure 4.3: Second step: a node executing the voting process after it has received all classications
from all peers.

Proposed solution 34

Then, Figure 4.3 represents what happens after a node nishes receiving all classications

from the other nodes and it has also nished its own classications: it then uses the classications

to vote on the consensus for each data point and generates the result le.

There are two modes of classication. The rst one is the "normal" mode. In this mode, each

node listens to the network events, and after a predetermined amount of data points from a specic

peer is received, the classication process for that peer’s data points begins. This mode is more

suited for real environments, where each node emits data constantly in real-time. This does not

solve the DCA’s limitations: After a classication or after a specic DCA instance’s DCs expire

their lifetimes, the maturation process must be done again. The peers listen for data in real time,

but the classication process only takes place after enough data has been captured.

The other mode is the "dataset" mode. In this mode, a dataset is stored in the blockchain

ledger, by committing a series of transactions issuing the data points as assets, with the necessary

metadata such as the node of origin and ID, to allow retrieval and classication of these data

points. After that, each peer will get the necessary data from the ledger at once and classify the

data points in the dataset. This was developed to help with validating the proposed solution with

CPS datasets, while the "normal" mode is more suited for a real testbed/scenario.

4.4.2 Voting process

This architecture does not depend on a single type of voting. The following pseudo-code (2)

illustrates how a node would register its vote and the vote of other peers.

Algorithm 2 Basic voting.

1: function ADDVOTE(electionId, voterId, vote)
2: temp← electionMap.get(electionId)
3: if tempsize= votesPerElection then
4: throw "Maximum votes reached!"
5: tempset(voterId,vote)
6: areElectionsOver← true
7: for all [electionId,voteMap] in electionMap do
8: if voteMapsize ̸= votesPerElection then
9: areElectionsOver← false
10: if areElectionsOver then
11: emit-event("election-over", electionMap)

In the above algorithm, the electionId refers to the peer whose data points are being voted for,

voterId refers to the peer that is adding that specic vote, and vote is a list of all antigens from

peer <electionId> that were classied by peer <voterId> ’s DCA and its respective classication.

The value votesPerElection is an aspect of the type of voting taking place. If there is already the

required number of votes for a specic electionId, any further votes received will throw an error

and will not be considered. Further handling of this scenario is out of the scope of this work and

would depend on the particular use case.

4.4 The application layer 35

In this work, it is equal to the number of nodes. That is, an election (there is one election per

peer) is over when all peers have received the classications from all other peers. This value would

not need to be equal to the number of nodes. For example, if there are N nodes in the network,

with N greater than or equal to 4, each node may need to only receive classications from N/2

other nodes (or any even number for larger networks), or there may be an entirely different voting

logic.

One particular example that might be worth mentioning, as it was considered by the authors in

the early stages of this work, is by having each node receive only the classications of the "closest"

nodes. This denition of close could be the XOR between two nodes: as demonstrated in [34],

the XOR can be used as a distance metric. Alternative voting logic like this one might be needed

in more complex/larger networks, in which receiving classications from all peers might be too

time-consuming. This idea was then later abandoned because testing different voting alternatives

or focusing too much on them is outside of the scope of this work.

4.4.3 The result format

The entire classication process generates one le that has the following items:

• An ID column, in the format antigen-peer<peer-number>-<antigenId>

• A value column representing the value that was used as antigen for that particular point.

• One column per peer, with the column name being the peer ID and the value being the label

attributed by that peer to that particular data point.

• A nal label column, representing the consensus about that particular point.

• A correct label column, representing the actual value of that particular point.

For columns with label values, that are two possible values are Normal and Anomaly. If the votes

for a particular data point result in a draw, there are no particular criteria taken into consideration:

implementation-wise, if there is a draw, the rst label in an array will be chosen as the nal label.

Also, there is something important to keep in mind: since all nodes share their respective

classications with the network, this means that by default, the result generated by every node is

the same since every node has the classications made by every other node, so, by default, unless

some behavior is added to each peer, we only need to make one of the peers generate the result

le. The following gure shows a couple of lines of such a result le generated by our rst test,

which will be discussed further in the next section.

Proposed solution 36

Figure 4.4: Example result format.

4.4.4 The DCA

As stated in the previous section, the architecture is composed of multiple nodes, and each node

uses the traditional local version of the DCA. The exchange of data points and events through the

blockchain and the communication of the results from each peer is what makes the distributed

component of the architecture.

That being said, over the years, multiple variants of the DCA have emerged, each with its own

advantages and shortcomings. Our architecture is not bound to a single version of the DCA: As

long as the researcher is able to get the data from the blockchain to be used in the algorithm, that

version of the DCA will be able to be used with the architecture.

In this work, we are using a more traditional version of the DCA, similar to its rst con-

ceptualization: it does not have online capabilities, like the cursory DCA, nor is it completely

deterministic, like the deterministic DCA.

Listing A.1 in the appendix shows the implementation of the DCA that we used. This version

is an implementation by [8]. The nal code that we used is not presented because it was adapted

to an object-oriented paradigm, and the visibility and clarity would be decreased in relation to the

original version we present here.

4.5 Architecture Review

As mentioned in Section 1.4.2, to study the feasibility of using a DCA-based IDS in a blockchain

environment, the proposed architecture has to be distributed. The developed architecture fullls

this requirement: the IDS does not depend on a single entity, and the multiple nodes communicate

with one another to achieve a nal classication. This is made possible by each node receiving

the data points from each other node, classifying the data points from each node individually,

and communicating the classications to the network. Then, after each node has received the

classications from the required amount of nodes (in our case, the required amount of nodes is

equal to the number of nodes), the nal classication of each data point is decided by the majority

class from individual classications (voting process).

However, the optional requirement of minimal redundancy was not reached. This is due to two

main reasons: The rst reason is that when a node emits a datapoint to the network, it generates an

event (also containing the datapoint itself as the payload). Even if some nodes ignore this event,

the event is processed, so the overhead of transmitting every event to every node exists. This

4.5 Architecture Review 37

is a "limitation" of the technology being utilized (Hyperledger Fabric). This could be solved by

creating more than one hyperledger channel and assigning nodes to a new one once the available

channels are full, with the purpose of limiting the number of events each node receives and better

spreading the architecture communication.

The second reason is not caused by the architecture itself but by the implementation. Although

the architecture itself does not depend on this specic voting system, we implemented a voting

system that requires every node to classify the data points of every other node, including itself.

Chapter 5

Testing & Validation

5.1 Test setup

5.2 Methodology

For performing the tests described in this section, we used a computer with an AMD hexacore

processor with 12 threads and 3.6 GHz, with 32GB of RAM. We used 4 hyperledger fabric nodes

running on this computer. Unless specied, the plotted results are an average of 5 runs.

In order to assess the suitability of our architecture, three tests are going to be performed.

For the rst test, we are simply going to use a dummy dataset with randomly generated values

(one range of values for "Normal" and another for "Anomaly" values). For the second test, we

are going to validate the solution with the OPC UA dataset [41]. And for the third and nal

test, we are going to use the SKAB dataset [45]. For every dataset, we are assessing accuracy

and f1-score (to account for the distribution of labels in the dataset) for performance. For direct

comparison between the performance of the solution and the performance of other work, and the

performance of using the DCA locally, other metrics such as False Alarm Rate (FAR), Missed

Alarm Rate (MAR), and Receiver Operating Characteristic - Area Under the Curve (ROC-AUC)

may be used, depending on the dataset. Here is a brief description of these metrics:

• FAR It represents the rate of false alarms. It is represented by the ratio between the number

of emitted false alarms and the total number of anomalous data points.

• MAR It represents the rate of missed alarms. It is represented by the ratio of false negatives

and the total number of anomalous data points.

• ROC-AUC It represents the trade-offs between True Positive Rate (TPR) and False Positive

Rate (FPR).

The main scope of this methodology is to test the suitability of the proposed solution as a rst

step towards integrating the DCA in blockchain environments. So, for our purposes, four peers are

enough to demonstrate the characteristics of the majority voting system that we are using. Other

38

5.3 Dummy dataset 39

metrics, such as time for classication, are not being compared due to the lack of sufciently

similar work: the CDCA [41] that we are going to use to compare with our solution has a very

different classication system and a different environment, so with that in mind, comparing the

time between the two approaches might not be very indicative of the proposed solution’s potential.

Also, scalability tests with a higher number of nodes are considered to be out of the scope of this

work since our main focus is to present a rst attempt at integrating the DCA with a blockchain

environment. The two datasets were selected to provide a frame of reference for comparison since

they are tested with another DCA version in an IIoT context.

For this work, the use case that will guide the development process of the proposed solution

will be that of a network of devices connected to each other through a blockchain. These devices

send data to the network, be it sensor or communication data, and the data is readable by all other

devices in the network. The DCA module in each device is responsible for analyzing such data,

both from its own device and from the other, classifying it, and sending its results to the other

devices as well.

5.3 Dummy dataset

In this scenario, the data "emitted" by the network devices is completely simulated. The feature

being used in cell maturation and for the classication is temperature. The values are gener-

ated randomly, with a 70% chance of being between 25ºC and 75ºC (Normal) and 30% of being

between 76ºC and 100ºC (Anomaly). We present the results for this dummy dataset here only

because it was the primary dataset used during development, tuning, and debugging.

5.3.1 Test I

5.3.1.1 Performance metrics

Figure 5.1: Overall f1-score of dummy dataset.

Testing & Validation 40

The results show that the fact that different nodes miss classifying different data points can be used

to improve the overall rating. This is just a dummy dataset to work as a rst proof of concept, and

no further conclusions are going to be drawn from these results.

5.4 OPC UA dataset

This dataset was published by [42]. The dataset was generated by modifying packets in a CPPS

testbed; it is comprised of normal data points, data points describing a Denial of Service (DoS)

attack, man-in-the-middle (MITM) attacks, and Spoong attacks. There is also a boolean ag

indicating if a specic data point is anomalous (any of the three attack types) or normal.

The dataset has 32 features. However, since the version of the DCA that we are using for this

work is better suited for single values, we are going to capture metrics using two different single

features, one per run. The selected features are b_pktTotalCount and octetTotalCount. Both these

features have a high correlation with the anomaly label.

For both runs, we are going to consider two scenarios: one scenario in which all the data points

in the dataset are emitted once by each peer (in other words, the dataset is replicated by each peer)

and one scenario in which the dataset is partitioned between the peers, with no particular criteria (

thus allowing peers with different label distribution).

5.4.1 Test I - Replicated Dataset

5.4.1.1 Performance metrics - b_pktTotalCount

Figure 5.2: Overall accuracy (replicated dataset) using b_pktTotalCount - unique run.

5.4 OPC UA dataset 41

Figure 5.3: Overall F1-score (replicated dataset) using b_pktTotalCount - unique run.

For the binary feature b_pktTotalCount, we can see that even though three peers have had relatively

poor performances (around 63% on f1 (5.2, 5.3)), one high performing peer was able to raise the

voting results to higher performance as well. This might happen because, even though the three

least-performing nodes had approximately the same performance, they miss-classify different data

points, and in this case, if peer1 gets the majority of classications correct, the nal results can be

corrected. This is in line with what was concluded by [49], that an ensemble can result in higher

performance at the trade-off of possibly lower individual performances. This happens because the

variance in classications will dilute the error across the multiple nodes, resulting in the majority

voting classifying most of the data points correctly. However, the potency of this effect depends

on multiple factors, and more precisely, analyzing its effect in this architecture and maximizing its

effect would require further research.

This particular test scenario was not the result of averaging ve runs. It is a unique test result

that is worth analyzing because it demonstrates a more extreme example of the effect described by

[49]. Figure 5.4 depicts the average f1-score for this feature.

Testing & Validation 42

Figure 5.4: Average f1-score (replicated dataset) using b_pktTotalCount feature.

5.4.1.2 Performance metrics - octetTotalCount

Figure 5.5: Overall accuracy (replicated dataset) using octetTotalCount feature.

5.4 OPC UA dataset 43

Figure 5.6: Overall F1-score (replicated dataset) using octetTotalCount feature.

In this particular scenario, when peers have relatively similar performances, there is no signicant

difference between the overall results and the voting results. It is important to note that this

characteristic of the architecture goes both ways: with a different dataset or using a different

feature of this dataset that had a lower correlation to the label if the individual nodes themselves

end up with poor performance due to that fact, the vote is also going to have no positive effect over

the nal classications.

Regarding individual results, it is possible that the difference between classication perfor-

mance for both features is entirely due to the nature of both features: the rst one, b_pktTotalCount

being binary, and the second one octetTotalCount being numeric (integer numbers only). [17]

mentions that the DCA is sensitive to changes in context, but it is less precise on context change

points. It may be that abrupt changes in the context, such as with binary features, translate to better

classication performance.

Testing & Validation 44

5.4.2 Test II - Partitioned Dataset

5.4.2.1 Performance metrics - b_pktTotalCount

Figure 5.7: Overall accuracy (partitioned dataset) using b_pktTotalCount.

Figure 5.8: Overall F1-score (partitioned dataset) using b_pktTotalCount.

Now, with the partitioned dataset, we get the highest performance across individual nodes, of

around 82% to 87% (5.7, 5.8). Particularly, we can see in this scenario that a poorly performing

peer, in this case, peer1, does not affect the overall performance of the nal results. This is

straightforward: if the majority of peers have a high performance, it follows that the nal votes

will also have a high performance. But here, we can infer another characteristic: even a malicious

node intently classifying anomalous behavior as normal (it is not the case here, but it might be

a real scenario), the other nodes will be able to detect malicious behavior, as the voting results

will yield anomalous classications for the malicious node. Moreover, as long as the majority of

5.4 OPC UA dataset 45

nodes are not malicious and have a decently performing DCA, anomalous behavior can be detected

on the network. In this particular scenario, one of the nodes will perform poorly because when

the dataset is partitioned into four parts, one of the peers will be responsible for simulating the

behavior of the more unbalanced partition.

5.4.2.2 Performance metrics - octetTotalCount

Figure 5.9: Overall accuracy (partitioned dataset) using octetTotalCount feature.

Figure 5.10: Overall F1-score (partitioned dataset) using octetTotalCount feature.

Here, we can see that partitioning the dataset does not necessarily compromise overall perfor-

mance. This is desirable due to two reasons: rstly, fewer data points per node means faster

classication times, fewer transactions, and less network overhead for the same performance. Of

course, this may also be a consequence of the features being highly correlated with the label -

Testing & Validation 46

more work would need to be done to verify the relation between partitioning the dataset and the

characteristics of the dataset and its features.

It is also possible to verify that this test scenario yielded better results for the octetTotalCount

feature, as opposed to what happened in the Replicated dataset section. This might be an indication

that the nature of the features (binary or real) might have less to do with overall performance than

the maturation process of the DCs. In the partitioned scenario, each DCA instance has access

to a partitioned pool of data with different distributions. This can mean that the distribution of

types has an impact on performance, and extra effort might be needed to expose each node in the

network to a pool that has a sufcient distribution of types to guarantee better performance.

5.4.3 Local DCA and other works

The next plot shows the accuracy and f1-score observed when running the DCA on a single ma-

chine. In this context, it only makes sense to compare against the partitioned dataset since, in the

replicated scenario, each peer is already running the whole dataset locally.

Figure 5.11: Local metrics - octetTotalCount.

5.5 SKAB dataset 47

Figure 5.12: Proposed architecture metrics - octetTotalCount.

By comparing 5.12 and 5.11, we can see that generally, the performance of the votes is very

similar to running the classication locally, with slightly better metrics. Even though even if the

overall performance is similar, the proposed solution still allows classications without a central

entity, and the voting system can also compensate for poor individual node performances, as shown

in previous tests. Here, we can also verify that the main downside of usual DCA implementations

had not been alleviated: a relatively high false alarm rate. Overall, it will depend on the specic

use case. If it can cope with false alarms relatively well, this would not be a problem.

For a nal comparison, [41] observed Area Under Curve (ROC-AUC) values between 64%

and 99%. The proposed solution yielded results between 82% and 94%. Not as high results, but

with a higher lower bar. As shown in the previous results, the higher lower bar can be attributed to

the voting system, which can compensate for individual lower performances.

5.5 SKAB dataset

The SKAB dataset [45] is a dataset used for bench-marking anomaly detection. It contains 11

features. This dataset was particularly hard to handle with our specic DCA implementation: the

version we are using is not very suited to classify real values (which compose all the features

of this dataset). So, instead of implementing another version of the DCA and redoing all of the

tests with the previous dataset or at least comparing its performances, we decided to add a new

feature to this dataset for the purposes of facilitating the testing process: we cluster the data points

with the K-means algorithm and add a binary feature that is true if the data point is in one of the

clusters with the highest anomaly to normal rates, and 0 otherwise. Also, for this dataset, we are

only going to run tests with the replicated dataset. The reason for that is the number of data points.

While the OPC UA dataset contains over one hundred thousand data points, the section of SKAB

we are using contains only around thirty thousand points. This means that if we were to run the

replicated dataset, that would not be enough data on each node to get reasonable results, and we

Testing & Validation 48

would see what was described in the previous section: a poor voting result due to overwhelming

poor individual performances.

5.5.1 Test I - Replicated Dataset

5.5.1.1 Performance metrics

Figure 5.13: Overall F1 - SKAB.

5.5.2 Comparison with other IDS

Table 5.1: Comparison with SKBA results obtained by [41] and other anomaly detection algo-
rithms.

F1 FAR[%] MAR[%]

Proposed solution - Replicated 0.69 22.4 9.15

CDCA_100_10_20_original 0.71 28.27 15.61

CDCA_100_10_5 0.72 29.18 15.24

CDCA_100_10_20 0.72 37.95 5.71

CDCA_100_5_20 0.72 38.27 5.75

LSTM-AE 0.68 14.24 35.56

T-squared+Q (PCA) 0.67 13.95 41.16

MSCRED 0.64 13.56 41.16

5.6 Result analysis 49

Table 5.1 shows a direct comparison between the performance of the proposed solution and

the performance of the Cursory Dendritic Cell Algorithm (CDCA) captured for the SKAB dataset

by [41]. It also contains other IDS displayed in the scoreboard available on the Kaggle page [45].

From the results, comparing directly with the CDCA, we see a slightly lower F1, with a relatively

lower False Alarm Rate (FAR) in relation to all scenarios, along with a lower Missed Alarm Rate

(MAR) in two of the four scenarios.

5.6 Result analysis

The proposed solution proved to be similar to other versions of the DCA, with slight differences

in the overall classication performance. We observed a higher low bound in classication perfor-

mance in the OPC UA dataset when compared to the same metric (ROC-AUC) observed by [41].

This could be attributed to the capacity of the voting system to compensate for individual poor per-

formances. We also observed lower FAR rates when compared to the CDCA scenarios tested by

[41] and lower MAR rates than two of the four scenarios. Also, compared to other IDS, although

we observed a higher FAR rate, we observed a signicantly lower MAR rate. These results can be

explained by the fact that the majority of the nodes have to either classify an anomalous point as

normal or classify a normal point as anomalous.

When comparing to the local DCA (same version), with the proposed solution partitioning the

dataset across nodes, we also observed a similar performance, meaning that at least in some sce-

narios with some datasets, individual node’s dendritic cells can indeed go through the maturation

process with only a sub-pool of the total dataset.

We were able to observe that, from the point of view of measuring the performance of the

classication, the proposed architecture is able to compensate for individual poor performances

while also being capable of penalizing the best performers. However, from the point of view of

the network, this means that even if there are nodes that are behaving in an anomalous manner, if

the majority of nodes have a coherent baseline of normal behavior, the anomalous behavior can be

detected.

Furthermore, the voting system can be thought of as an ensemble technique, given that there

is some randomness in the utilized DCA version. [49] showed that an ensemble model can reduce

overall testing error with the trade-off of possibly increasing individual error, which is shown

in some of the tests presented in this chapter. This also explains the cases where the overall

performance was equal to the highest-performing node, even though the other 3 nodes performed

worse.

After analyzing the observed results, we can qualitatively say that the DCA can indeed be

used in the proposed architecture as an IDS in a blockchain environment. The main advantage

presented by this work is being able to lift the restriction of running the classication process in

a single centralized machine. The proposed solution enables the use of the IDS in a blockchain,

which, given the provided contextualization, might be useful for IIoT environments that are in-

creasingly relying on these systems. The main limitations are: the need for expert knowledge for

Testing & Validation 50

the DCA still exists here, as demonstrated in the DCA research referenced in this document, and

it can prove a substantial effort depending on the use case. Also, there is no support for real-time

classication. However, both of these problems relate to the DCA, and as it is going to be pointed

out in Section 6.2, adapting the architecture for other DCA versions might be a way to overcome

these limitations.

Chapter 6

Conclusions & Future Work

6.1 Conclusions

A new solution for using the DCA in blockchain environments has been developed. This archi-

tecture utilizes an implementation of a more traditional DCA version, combined with blockchain

events, to communicate individual classications and achieve a distributed IDS. The architecture

utilizes a majority voting system to get a consensus on the nal classication of individual data

points. The architecture could also be extended to other voting systems and DCA versions.

The proposed solution was tested with two datasets simulating IIoT scenarios. The tests with

the rst dataset, OPC UA, were compared against running the DCA locally and with the CDCA

by [41]. The tests revealed that the proposed solution could compensate for individual poor per-

formances, although it did not get as high classication results as the CDCA. At the same time,

we obtained a signicantly higher lower bound, which can demonstrate that the performance can

be further improved by ne-tuning algorithm parameters and/or improving the partitioning pro-

cess, such as the partitioning process used by [10]. The second dataset yielded competitive results

also when compared to the CDCA. However, if not consistently better performance metrics, the

proposed solution achieved the capability of not relying on a central machine to perform classi-

cation. This means that once the data points are sent to the network, failing or disconnected

peers could also have their data points classied. However, limitations of the proposed solution

were also observed: the usual high FAR typical of anomaly-based IDS is still present, even if we

observed a lower FAR in the case of the SKAB dataset when compared with the CDCA, the rates

are still considerably high when compared with the non-DCA based models made available in the

SKAB Kaggle page.

The main drawbacks of the proposed solution are: it does not offer online or near-real-time

classication capabilities, like the CDCA, and the proposed solution relies on the individual nodes

to have a DCA that has access to an accurate normal baseline, meaning that there is still the need

of expert knowledge.

Based on the state-of-the-art analysis and the work presented in this document, there is also the

possibility that the need for the dendritic cell population to mature again once its lifetime is over

51

Conclusions & Future Work 52

might be a considerable limitation to the integration of the DCA with blockchain environments

since the local DCA in each node will end up needing multiple maturation processes over the

existence of the network. Further research needs to be conducted in order to assert the impact of

this in the DCA-blockchain integration. Due to the lack of sufciently related work, the testing

methodology had a narrow scope. And as it is going to be described in Section 6.2, improvements

can be made to the methodology to understand better the qualities and limitations of DCA-based

IDS and blockchain integration.

Overall, the proposed solution achieved the goal of providing a distributed DCA-based IDS

for a blockchain environment. The quantitative results, however, do not provide sufcient evi-

dence for the suitability or lack of suitability of the proposed solution on their own, based on

the comparisons made with other local DCA-based approaches tested on the selected datasets.

However, considering that there are possibilities of further studying this architecture with other

DCA versions and that the solution already provides a distributed DCA-based IDS, the proposed

solution can be assessed as a generally positive step towards integrating the DCA in blockchain

environments.

Furthermore, having IDS suited for blockchain environments could have a positive impact on

Industry 4.0, which is relying more than ever before on blockchain technologies for its guarantees

of condentiality, integrity, and availability, by helping them to mitigate attacks on these systems

without having to rely on centralized systems for this part of its security.

6.2 Future Work

More tests with the architecture could be performed with different versions of the DCA. As men-

tioned in the document, there have been numerous versions of the DCA developed to overcome

the limitations of the original algorithm and improve performance. As such, analyzing how the

architecture could perform with other versions of the DCA, such as the cursory DCA, with on-

line classication capabilities, can provide more evidence of the advantages and disadvantages

of using the DCA in a blockchain environment. Another possible exciting integration would be

the distributed DCA by [10]; with its reliance on distributed data storage, it might be a natural

candidate to be tested with the proposed architecture.

The architecture could also be extended to leverage more properties of the DCA algorithm:

One possibility that was even envisioned in the early stages of this work is exchanging dendritic

cells, using an external node’s dendritic cells in the classication process could prove useful to

amplify the incorporation of normal baseline across nodes. The architecture could be extended

to, for example, expose the dendritic cells to data points of all other nodes for the classication

of the data points of a particular peer, as opposed to what happens in the current version, that is,

using that node’s data points in the maturation process. The idea is that the architecture could be

extended to distribute more aspects of the algorithm.

Another particularly interesting idea might be extending the architecture and classifying the

nodes themselves. Although the architecture can be used to detect anomaly behavior coming

6.2 Future Work 53

from devices in the network in a distributed manner, it classies individual data points. Thus,

to improve the overall capabilities of the architecture, it might be extended to also classify the

node as "Normal" or "Anomaly," depending on the collective behavior of its data points and other

conditions. This would work in a kind of multi-level classication.

Due to the lack of standard datasets used to test IDS in blockchain environments specically,

proper comparisons with other approaches to the same problem are still not possible. Also, testing

the architecture in a real environment could provide more reliable data on the proposed solution’s

true capacities. As mentioned before, a test in a CPS testbed was envisioned, but due to time

constraints, we could not execute it.

Also, as mentioned in Section 6.1, more research is needed to verify the impact that mul-

tiple maturation processes have on the overall classication capabilities of DCA-based IDS in

blockchain environments. The methodology could also be extended to perform isolated tests on

the voting system in order to provide more evidence to answer the second research question. How-

ever, what would be an appropriate manner to approach these tests is not yet clear.

Appendix A

Relevant code

A.1 DCA reference implementation

Listing A.1: Original DCA Reference implementation [8].

1 from random import randrange
2 from random import random
3
4
5 def rand_in_bounds(min, max):
6 aux = min + ((max − min) * random())
7 return aux
8
9

10 def construct_pattern(class_label, domain, p_safe, p_danger):
11 set = domain[class_label]
12 selection = randrange(len(set))
13
14 pattern = {}
15 pattern[’class_label’] = class_label
16 pattern[’input’] = set[selection]
17 pattern[’safe’] = (random() * p_safe * 100)
18 pattern[’danger’] = (random() * p_danger * 100)
19
20 return pattern
21
22
23 def generate_pattern(domain, p_anomaly, p_normal, prob_create_anom=0.5):
24 pattern = {}
25 if random() < prob_create_anom:
26 pattern = construct_pattern("Anomaly", domain, 1.0 − p_normal, p_anomaly)
27 print(">Generated Anomaly {}".format(pattern[’input’]))
28 else:

54

A.1 DCA reference implementation 55

29 pattern = construct_pattern("Normal", domain, p_normal, 1.0 − p_anomaly)
30
31 return pattern
32
33
34 def initialize_cell(thresh):
35 cell = {}
36 cell[’lifespan’] = 1000.0
37 cell[’k’] = 0.0
38 cell[’cms’] = 0.0
39 cell[’migration_threshold’] = rand_in_bounds(thresh[0], thresh[1])
40 cell[’antigen’] = {}
41 return cell
42
43
44 def store_antigen(cell, input):
45 if cell[’antigen’].get(input) is None:
46 cell[’antigen’][input] = 1
47 else:
48 cell[’antigen’][input] += 1
49
50
51 def expose_cell(cell, cms, k, pattern, threshold):
52 cell[’cms’] += cms
53 cell[’k’] += k
54 cell[’lifespan’] −= cms
55 store_antigen(cell, pattern[’input’])
56 if cell[’lifespan’] <= 0:
57 initialize_cell(threshold)
58
59
60 def can_cell_migrate(cell):
61 if cell[’cms’] >= cell[’migration_threshold’]
62 and len(cell[’antigen’]) > 0:
63 return True
64 else:
65 return False
66
67
68 def expose_all_cells(cells, pattern, threshold):
69 migrate = list()
70 cms = pattern[’safe’] + pattern[’danger’]
71 k = pattern[’danger’] − (pattern[’safe’] * 2.0)
72 for cell in cells:
73 expose_cell(cell, cms, k, pattern, threshold)

Relevant code 56

74 if can_cell_migrate(cell):
75 migrate.append(cell)
76 if cell[’k’] > 0:
77 cell[’class_label’] = "Anomaly"

78 else:
79 cell[’class_label’] = "Normal"

80 return migrate
81
82
83 def train_system(domain, max_iter, num_cells, p_anomaly, p_normal, thresh):
84 imature_cells = list() # list of imature cells
85 migrated = list() # List of migrated cells
86 migrants = list() # List of possible cells to be migrated
87
88 for c in range(0, num_cells):
89 input_cell = initialize_cell(thresh)
90 imature_cells.append(input_cell)
91
92 for iter in range(0, max_iter):
93 pattern = generate_pattern(domain, p_anomaly, p_normal)
94 migrants = expose_all_cells(imature_cells, pattern, thresh)
95 for cell in migrants:
96 imature_cells.remove(cell)
97 imature_cells.append(initialize_cell(thresh))
98 migrated.append(cell)
99
100 return migrated
101
102
103 def classify_pattern(migrated, pattern):
104 input = pattern[’input’]
105 num_cells = 0
106 num_antigen = 0
107 for cell in migrated:
108 if cell[’class_label’] == "Anomaly"

109 and cell[’antigen’].get(input) is not None:
110 num_cells += 1
111 num_antigen += cell[’antigen’][input]
112
113 if num_antigen > 0:
114 mcav = oat(num_cells) / oat(num_antigen)
115 else:
116 mcav = 0
117
118 if mcav > 0.5:

A.2 Blockchain interface code 57

119 return "Anomaly"

120 else:
121 return "Normal"

122
123
124 def test_system(migrated, domain, p_anomaly, p_normal, num_trial=100):
125 correct_norm = 0
126 for i in range(0, num_trial):
127 pattern = construct_pattern("Normal", domain, p_normal, 1.0 − p_anomaly)
128 class_label = classify_pattern(migrated, pattern)
129 if class_label == "Normal":
130 correct_norm += 1
131 print("Finished testing Normal inputs {}/{}".format(correct_norm, num_trial))
132
133 correct_anom = 0
134 for j in range(0, num_trial):
135 pattern = construct_pattern("Anomaly", domain, 1.0 − p_normal, p_anomaly)
136 class_label = classify_pattern(migrated, pattern)
137 if class_label == "Anomaly":
138 correct_anom += 1
139 print("Finished testing Anomaly inputs {}/{}".format(correct_anom, num_trial))
140
141 return [correct_norm, correct_anom]
142
143
144 def execute(domain, max_iter, num_cells, p_anom, p_norm, thresh):
145 migrated = list()
146 migrated = train_system(domain, max_iter, num_cells, p_anom, p_norm, thresh)
147 test_system(migrated, domain, p_anom, p_norm)
148 return migrated

A.2 Blockchain interface code

Listing A.2: Blockchain interface.

1 public async classicationHandler(event:ContractEvent) {
2 if(event.eventName != "classificationEvent"){
3 return;
4 }
5 try{
6 let classication = JSON.parse(event.payload!.toString("utf-8"),reviver);
7 if(classication["Origin"] == this.peerId ||
8 classication["RunSequence"] != this.runSequence)
9 return;

10 this.electionExecuter.addVote(

Relevant code 58

11 classication["For"],
12 classication["Origin"],
13 classication["labels"]
14);
15 } catch(e) {
16 console.error("Handling error!");
17 console.error(e)
18 }
19 }
20
21 public async putAsset(key, value){
22 let result = await this.chaincodeHandler.contract!.submitTransaction("put",key,value);
23 return result
24 }
25
26 public async getAsset(key){
27 let result = await this.chaincodeHandler.contract!.submitTransaction("get",key);
28 return result
29 }
30
31 public async getAllAssets(){
32 let result = await this.chaincodeHandler.contract!.submitTransaction("list",);
33 return result
34 }
35
36 public async getAllAssetsWithPagination(bookmark){
37 let result = await this.chaincodeHandler.contract!.submitTransaction(
38 "listWithPagination",
39 bookmark
40);
41 return result
42 }
43
44 public async deleteAllAssets(){
45 let result = await

this.chaincodeHandler.contract!.submitTransaction("deleteAll","dummy");
46 return result
47 }
48
49 public async deleteAsset(key){
50 let result = await this.chaincodeHandler.contract!.submitTransaction("delete", key);
51 return result
52 }
53
54 public async classify(key,value){

A.2 Blockchain interface code 59

55 let result = await this.chaincodeHandler.contract!.submitTransaction("classify",key,value);
56 return result
57 }
58
59 public async putMultiple(value){
60 let result = await this.chaincodeHandler.contract!.submitTransaction("putMultiple",value);
61 return result;
62 }

References

[1] Editorial introduction. Seminars in Immunology, 12(3):159–162, 2000.

[2] S. Adarsh, V. S. Anoop, and S. Asharaf. Distributed consensus mechanism with novelty
classication using proof of immune algorithm. In Deepak Gupta, Ashish Khanna, Sid-
dhartha Bhattacharyya, Aboul Ella Hassanien, Sameer Anand, and Ajay Jaiswal, editors,
International Conference on Innovative Computing and Communications, pages 173–183,
Singapore, 2023. Springer Nature Singapore.

[3] U. Aickelin, P. Bentley, S. Cayzer, J. Kim, and J. McLeod. Danger theory: The link between
ais and ids? volume 2787, pages 147–155. Springer Nature, 2008.

[4] Uwe Aickelin and Steve Cayzer. The danger theory and its application to articial immune
systems. 2008.

[5] Mark C. Ballandies, Marcus M. Dapp, and Evangelos Pournaras. Decrypting distributed
ledger design-taxonomy, classication and blockchain community evaluation. Cluster com-
puting, 25(3):1817, 2022;2020;2018;.

[6] Aniruddha Bhattacharjya. A holistic study on the use of blockchain technology in cps and
iot architectures maintaining the cia triad in data communication. International journal of
applied mathematics and computer science, 32(3):403–413, 2022.

[7] Dhruba K Bhattacharyya and Jugal Kalita. Network Anomaly Detection: A Machine Learn-
ing Perspective. 04 2013.

[8] Jason Brownlee. Clever algorithms: nature-inspired programming recipes. Jason Brownlee,
2011.

[9] Steve Cazyer and Uwe Aickelin. A recommender system based on the immune network.
2008.

[10] Zaineb Chelly Dagdia. A scalable and distributed dendritic cell algorithm for big data clas-
sication. Swarm and Evolutionary Computation, 50:100432, 2019.

[11] Hong Chen, Kecheng Su, and Wandong Gao. The analysis of blockchain digital currency
product innovation based on articial immune algorithm. IEEE access, 10:132448–132454,
2022.

[12] Giovanna Culot, Fabio Fattori, Matteo Podrecca, and Marco Sartor. Addressing industry 4.0
cybersecurity challenges. IEEE Engineering Management Review, 47(3):79–86, 2019.

[13] Leandro De Castro and Jon Timmis. Articial immune systems: A new computational intel-
ligence approach. 06 2002.

60

REFERENCES 61

[14] Hervé Debar, Marc Dacier, and Andreas Wespi. Towards a taxonomy of intrusion-detection
systems. Computer Networks, 31(8):805–822, 1999.

[15] F. Esponda, S. Forrest, and P. Helman. A formal framework for positive and negative detec-
tion schemes. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),
34(1):357–373, 2004.

[16] Mohamed A. Ferrag and Leandros Maglaras. Deliverycoin: An ids and blockchain-based
delivery framework for drone-delivered services. Computers (Basel), 8(3):58, 2019.

[17] Julie Greensmith and Uwe Aickelin. The deterministic dendritic cell algorithm. In Interna-
tional conference on articial immune systems, pages 291–302. Springer, 2008.

[18] Julie Greensmith, Uwe Aickelin, and Steve Cayzer. Introducing Dendritic Cells as a Novel
Immune-Inspired Algorithm for Anomaly Detection, volume 3627, pages 153–167. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2005.

[19] Julie Greensmith, Uwe Aickelin, and Jamie Twycross. Articulation and Clarication of the
Dendritic Cell Algorithm, volume 4163, pages 404–417. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2006.

[20] Stuart Haber and W Scott Stornetta. How to time-stamp a digital document. Journal of
Cryptology, 3(2):99–111, January 1991.

[21] Steven A. Hofmeyr and Stephanie Forrest. Architecture for an articial immune system.
Evolutionary computation, 8(4):443–473, 2000.

[22] Hyperledger fabric documentation, 2023. Accessed on 2023-05-09.

[23] Ibm developer documentation on hyperledger fabric, 2023. Accessed on 2023-05-09.

[24] Hyperledger fabric whitepaper, 2023. Accessed on 2023-05-09.

[25] IBM. Blockchain for supply chain - ibm blockchain (accessed on 2023/01/20), 2023.

[26] IBM. Blockchain security - ibm blockchain (accessed on 2023/06/19), 2023.

[27] Aamir Iqbal, Mohammad Amir, Vinod Kumar, Aftab Alam, and Mohammad Umair. In-
tegration of next generation iiot with blockchain for the development of smart industries.
Emerging science journal, 4:1–17, 2020.

[28] Markus Jakobsson and Ari Juels. Proofs of Work and Bread Pudding Protocols(Extended
Abstract), pages 258–272. Springer US, Boston, MA, 1999.

[29] Danial Ritzuan Junaidi, Maode Ma, and Rong Su. Secure vehicular platoon management
against sybil attacks. Sensors, 22(22), 2022.

[30] Jungwon Kim and Peter J. Bentley. An evaluation of negative selection in an articial im-
mune system for network intrusion detection. In Proceedings of the 3rd Annual Conference
on Genetic and Evolutionary Computation, GECCO’01, page 1330–1337, San Francisco,
CA, USA, 2001. Morgan Kaufmann Publishers Inc.

[31] Ralph Langner. Stuxnet: Dissecting a cyberwarfare weapon, 2011.

REFERENCES 62

[32] Hongwei Li, Rongxing Lu, Liang Zhou, Bo Yang, and Xuemin Shen. An efcient merkle-
tree-based authentication scheme for smart grid. IEEE Systems Journal, 8(2):655–663, 2014.

[33] Lodovica Marchesi, Michele Marchesi, Roberto Tonelli, and Maria I. Lunesu. A
blockchain architecture for industrial applications. Blockchain: Research and Applications,
3(4):100088, 2022.

[34] Petar Maymounkov and David Mazieres. Kademlia: A peer-to-peer information system
based on the xor metric. pages 53–65. Springer, 2002.

[35] Weizhi Meng, Elmar Wolfgang Tischhauser, Qingju Wang, Yu Wang, and Jinguang Han.
When intrusion detection meets blockchain technology: A review. IEEE Access, 6:10179–
10188, 2018.

[36] Aleksandar Milenkoski, Marco Vieira, Samuel Kounev, Alberto Avritzer, and Bryan D.
Payne. Evaluating computer intrusion detection systems: A survey of common practices.
ACM computing surveys, 48(1):1–41, 2015.

[37] Tim R. Mosmann and Alexandra M. Livingstone. Dendritic cells: the immune information
management experts. Nature immunology, 5(6):564–566, 2004.

[38] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.

[39] L. Nunes de Casto and F. J. Von Zuben. An evolutionary immune network for data clustering.
pages 84–89. IEEE, 2000.

[40] Chung-Ming Ou, C. R. Ou, and Yao-Tien Wang. Agent-Based Articial Immune Systems
(ABAIS) for Intrusion Detections: Inspiration from Danger Theory, pages 67–94. Agent and
Multi-Agent Systems in Distributed Systems - Digital Economy and E-Commerce. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2013.

[41] Carlos Pinto, Rui Pinto, and Gil Gonçalves. Towards bio-inspired anomaly detection using
the cursory dendritic cell algorithm. Algorithms, 15(1), 2022.

[42] Rui Pinto. M2m using opc ua. 2020.

[43] Rui Pinto and Gil Gonçalves. Application of articial immune systems in advanced manu-
facturing. Array, 15:100238, 2022.

[44] Galina Samigulina and Zarina Samigulina. Development of a unied articial immune sys-
tem for complex objects control within the framework of the industry 4.0 concept. Procedia
computer science, 219:824–831, 2023.

[45] SKAB. Skab dataset. https://www.kaggle.com/datasets/yuriykatser/
skoltech-anomaly-benchmark-skab, 2020. Accessed: 2023-06-13.

[46] Mohammad H. Tabatabaei, Roman Vitenberg, and Narasimha R. Veeraragavan. Understand-
ing blockchain: denitions, architecture, design, and system comparison. 2022.

[47] Youliang Tian, Ta Li, Jinbo Xiong, Md Z. A. Bhuiyan, Jianfeng Ma, and Changgen Peng. A
blockchain-based machine learning framework for edge services in iiot. IEEE transactions
on industrial informatics, 18(3):1918–1929, 2022.

[48] Keqi Wang, Wei Xie, Wencen Wu, Jinxiang Pei, and Qi Zhou. Blockchain-enabled internet-
of-things platform for end-to-end industrial hemp supply chain. 2020.

REFERENCES 63

[49] G. I. Webb and Z. Zheng. Multistrategy ensemble learning: reducing error by combin-
ing ensemble learning techniques. IEEE transactions on knowledge and data engineering,
16(8):980–991, 2004.

[50] Dominik Widhalm, Karl Goeschka, and Wolfgang Kastner. A review on immune-inspired
node fault detection in wireless sensor networks with a focus on the danger theory. Sensors,
23, 01 2023.

[51] Jacob Wurm, Khoa Hoang, Orlando Arias, Ahmad-Reza Sadeghi, and Yier Jin. Security
analysis on consumer and industrial iot devices. In 2016 21st Asia and South Pacic Design
Automation Conference (ASP-DAC), pages 519–524, 2016.

[52] Shiyong Yin, Jinsong Bao, Yiming Zhang, and Xiaodi Huang. M2m security technology of
cps based on blockchains. Symmetry (Basel), 9(9):193, 2017.

[53] Liangpei Zhang, Yanfei Zhong, Bo Huang, Jianya Gong, and Pingxiang Li. Dimension-
ality reduction based on clonal selection for hyperspectral imagery. IEEE transactions on
geoscience and remote sensing, 45(12):4172–4186, 2007.

[54] Qingyi Zhu, Seng W. Loke, Rolando Trujillo-Rasua, Frank Jiang, and Yong Xiang. Appli-
cations of distributed ledger technologies to the internet of things: A survey. ACM Comput.
Surv., 52(6), nov 2019.

