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Resumo

A previsão de carga é fundamental na gestão de energia de edifícios, uma vez que previsões pre-
cisas possibilitam o consumo eficiente de energia, a gestão do lado da demanda e contribuem
para os esforços de descarbonização. Contudo, os modelos de aprendizado de máquina frequente-
mente enfrentam desafios relacionados à escassez de dados, em particular no contexto de edifícios
com limitada disponibilidade informação. Esta tese explora a eficácia do uso da transferência de
aprendizado na previsão de carga em edifícios, visando enfrentar a questão da escassez de dados
e aprimorar a precisão das previsões, preservando a eficiência computacional.

Esta tese abrange uma revisão detalhada da literatura sobre abordagens tradicionais e de apren-
dizado de máquina para previsão de carga, concentrando-se especialmente em técnicas de apren-
dizado profundo e aplicações de transferência de aprendizado. O estudo de caso enfoca um con-
junto de edifícios virtuais situados nas instalações do INESC TEC (Porto, Portugal). Um modelo
pré-treinado é utilizado como ponto de partida para o desenvolvimento de novos modelos com
camadas adicionais, os quais posteriormente passam por um processo de ajuste fino usando um
conjunto de dados menor. O desempenho da abordagem de transferência de aprendizado é avali-
ado e comparado a modelos treinados com diferentes níveis de disponibilidade de dados.

A metodologia de pesquisa engloba a coleta e pré-processamento de dados, desenvolvimento e
ajuste de modelos de aprendizado de máquina, bem como a avaliação de desempenho empregando
diversas métricas e visualizações. Os resultados indicam que a transferência de aprendizado pode
diminuir consideravelmente o tempo de treinamento, mantendo níveis de precisão similares aos de
modelos treinados com abundância de dados. Ademais, a abordagem apresenta um desempenho
superior em comparação com modelos treinados com escassez de dados. O estudo também ressalta
a aplicabilidade da transferência de aprendizado em condições não ideais, como quando o alvo
possuí distribuição probabilistica dos dados muito diferente da fonte.

A presente tese contribui para o desenvolvimento de modelos de previsão de carga mais efi-
cientes e precisos na gestão de energia de edifícios. Concentrando-se na generalização e escala-
bilidade de aplicações baseadas em dados, este trabalho promove os benefícios mais amplos da
descarbonização e estimula o progresso das operações sustentáveis de edifícios. Os resultados da
pesquisa têm implicações para gestores de instalações, prestadores de serviços de energia e for-
muladores de políticas públicas, à medida que buscam otimizar o consumo de energia, reduzir as
emissões de gases de efeito estufa e aprimorar a sustentabilidade geral do ambiente construído.
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Abstract

Load forecasting is of paramount importance in building energy management, as accurate pre-
dictions facilitate efficient energy consumption, demand-side management, and contribute to de-
carbonization efforts. However, data-driven models often face challenges due to data scarcity,
especially in the context of buildings with limited data availability. This thesis investigates the
effectiveness of transfer learning for load forecasting in buildings, aiming to address the issue of
data scarcity and enhance forecasting accuracy while maintaining computational efficiency.

The thesis presents a comprehensive literature review on traditional and data-driven approaches
to load forecasting, with a particular focus on deep learning techniques and transfer learning ap-
plications. The case study involves a group of Virtual Building (VB)s located at the INESC TEC
facilities (Porto, Portugal). A pre-trained model serves as the basis for developing new models
with additional layers, which are subsequently fine-tuned using a smaller dataset. The perfor-
mance of the transfer learning approach is assessed and compared to models trained with both
abundant and scarce data availability.

The research methodology includes data collection and preprocessing, model development
and fine-tuning, as well as performance evaluation using multiple metrics and visualizations. The
results demonstrate that transfer learning can significantly reduce training time while maintaining
accuracy levels comparable to those of models trained with abundant data. Furthermore, it ex-
hibits superior performance when compared to models trained with scarce data. The study also
highlights the applicability of transfer learning under non-ideal conditions, such as cases where
the target has a highly different probability distribution of data in comparison to the source.

Moreover, this thesis contributes to the development of more efficient and accurate load fore-
casting models for building energy management. By focusing on the generalization and scalability
of data-driven applications, this work promotes the broader benefits of decarbonization and fosters
the advancement of sustainable building operations. The research findings have implications for
facility managers, energy service providers, and policymakers, as they strive to optimize energy
consumption, reduce greenhouse gas emissions, and improve the overall sustainability of the built
environment.
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“We can’t solve problems by using the same kind of thinking we used when we created them”

Albert Einstein
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Chapter 1

Introduction

1.1 Background and motivation

As the urgency to mitigate climate change intensifies, a global shift towards decarbonization has

become imperative. This transition involves the adoption of sustainable practices across various

sectors, including the construction and operation of commercial buildings, which contribute sig-

nificantly to global greenhouse gas emissions [1].

Commercial buildings account for a considerable proportion of energy consumption globally.

The International Energy Agency (IEA) estimates that buildings and building construction sectors

combined are responsible for 36% of global energy consumption and nearly 40% of total direct

and indirect CO2 emissions [2]. These figures are projected to increase due to urbanization trends

and growth in demand for cooling and heating services, highlighting the urgency to adopt energy-

efficient practices in building management [3].

The advent of the data-driven era has led to the widespread utilization of Artificial Neural

Network (ANN) models in the context of smart cities, enabling enhanced control, optimization,

and flexibility [4]. These capabilities contribute to the reduction of energy consumption and the

mitigation of the environmental impact arising from urban infrastructures [5].

Nonetheless, the implementation of these models is constrained by a crucial factor: data avail-

ability [6]. In situations where data is scarce, these models tend to generate outputs with increased

error, leading to difficulties in controlling the system [6].

To address this challenge and ensure high replicability and scalability with minimal data re-

quirements for model fitting, this dissertation presents, tests, and applies a technique known as

transfer learning [7], assessing its advantages within the realm of load forecasting in buildings

[8]. Transfer learning is a machine learning technique in which a model developed for one task is

repurposed as the foundation for a model on a second related task [7]. The underlying principle

is that features learned by the model for one task may be beneficial for learning the second task,

ultimately saving time and resources in comparison to training a model from scratch [7]. Transfer

learning is frequently employed in computer vision and natural language processing [7], wherein

1



Introduction 2

the same basic features can be applied to various problems, such as object recognition in images

or text comprehension.

Predicting building energy consumption is a complex task that relies on numerous factors,

including weather, occupancy, and building characteristics [4]. Conventional load forecasting

methods, such as time series models, face limitations in addressing these intricate dependencies

[8]. Transfer learning has the potential to alleviate these constraints by capitalizing on pre-trained

models that have already acquired useful features from related tasks [7]. The primary concept

behind employing transfer learning for load forecasting in buildings involves leveraging a pre-

trained model, previously trained on an extensive data set of building energy consumption data,

as a starting point [9]. This pre-trained model can subsequently be fine-tuned using a smaller data

set of energy consumption data specific to the building of interest [6]. The refined model can

then be utilized to forecast energy consumption within the building [10]. It is worth noting that the

efficacy of transfer learning hinges on the similarity between the source and target tasks. in case the

tasks are overly dissimilar, transfer learning may prove ineffective [7]. Transfer learning presents a

valuable approach for smart cities to augment forecasting, monitoring, and optimization of various

systems and services [10]. Its objective is to reduce carbon emissions and promote decarbonization

[11]. Moreover, by harnessing pre-trained models, transfer learning has the potential to curtail the

financial and resource-intensive process of training new models from the ground up [6].

1.2 Objectives and research questions

The primary aim of this study is to investigate the effectiveness of transfer learning in the context

of load forecasting in buildings, particularly under scenarios with limited data availability. This

section outlines the specific objectives and research questions that guide the research.

The objectives of this study are as follows:

1. To explore the potential benefits of transfer learning for improving the accuracy of load

forecasting in buildings with scarce data.

2. To identify the factors that contribute to the success of transfer learning in the context of

building energy consumption forecasting.

3. To compare the performance of transfer learning-based models with traditional load fore-

casting methods, such as time series models.

4. To assess the relationship between the similarity of source and target tasks and the effective-

ness of transfer learning for load forecasting in buildings.

5. To provide recommendations for the practical application of transfer learning in smart cities

for the purposes of enhancing energy management and reducing environmental impact.

This study aims to formulate the necessary research questions to achieve the objectives pro-

posed and these questions will be addressed by employing a systematic approach to reserach the
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effectiveness of transfer learning in the context of load forecasting in buildings. The methodology

for addressing each research question is outlined below:

1. Research Question 1: In what ways can transfer learning enhance the accuracy of load

forecasting in buildings with scarce data?

To address this question, a load forecasting model using a transfer learning approach will be

developed. This approach involves using a pre-trained model as a starting point for training

a new model on a smaller dataset specific to the building of interest. The model architecture

and transfer learning methodology will be described in detail (Chapter 3), and the accuracy

of the model will be evaluated (Chapter 4).

2. Research Question 2: Which factors contribute to the success of transfer learning in the

context of building energy consumption forecasting?

The study will analyze the performance of transfer learning models on a group of Virtual

Buildings (VBs) with limited data availability. Factors that influence the success of transfer

learning, such as the similarity between source and target tasks [12], data quality, and model

architecture, will be identified and discussed.

3. Research Question 3: How do transfer learning-based models perform in comparison to

traditional load forecasting methods, such as time series models?

The performance of transfer learning models will be compared to that of traditional load

forecasting methods, by evaluating their accuracy and training time. The results of this

comparison will provide insights into the advantages and limitations of each approach.

4. Research Question 4: What is the effect of the similarity between source and target tasks

on the success of transfer learning for load forecasting in buildings?

The relationship between the similarity of source and target tasks and the effectiveness of

transfer learning for load forecasting in buildings will be assessed. This will involve an-

alyzing the performance of transfer learning models across different degrees of similarity

between source and target tasks, and identifying any patterns or trends that emerge.

5. Research Question 5: What practical recommendations can be provided for the application

of transfer learning in smart cities to strengthen energy management and reduce environ-

mental impact?

Based on the findings from the previous research questions, practical recommendations will

be provided for the implementation of transfer learning in smart cities. These recommen-

dations will focus on enhancing energy management and reducing environmental impact by

leveraging the benefits of transfer learning, while addressing its limitations and challenges.
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By employing the aforementioned methodologies to address each research question, this dis-

sertation aims to contribute valuable insights into the application of transfer learning for load fore-

casting in buildings, ultimately moving towards more efficient energy management and reduced

environmental impact in smart cities.

1.3 Related projects and publications

The research conducted within the scope of this dissertation is partially related to the objectives

and outcomes of two distinct research projects, namely:

• DECARBONIZE - Development of strategies and policies based on energy and non-energy

applications towards CARBON-neutral cities via digitalization for citizens and society (NO

RTE-01-0145-FEDER-000065);

• DECMERGE – Decentralized decision-making for multi-energy distribution grid manage-

ment (2021.01353.CEECIND).

The work carried out has culminated in the preparation of one scientific article intended for

journal publication. The following reference should be consulted:

• Felipe Dantas do Carmo, Wellington Fonseca, Tiago Soares, "Overcoming Data Scarcity in

Load Forecasting: A Transfer Learning Approach for Commercial Buildings", Energy and

Buildings, under review.

1.4 Scope and Limitations

The scope of this thesis is to investigate the application of transfer learning for load forecasting

models in the context of building energy management, particularly in scenarios with limited data

availability. The study presents a case study of VBs, using a pre-trained model as a starting point

to develop a new model with additional layers that are trained on a smaller dataset.

The limitations of this study include the following:

• The study focuses on load forecasting for commercial buildings and may not be directly

applicable to other domains, such as residential or industrial buildings, since those domains

may present characteristics that are not considered in a commercial building environment.

• The study uses a specific set of data for training and evaluation, and the results may not be

generalizable to other datasets or regions with different characteristics.

• The study employs a particular transfer learning approach, and other approaches or archi-

tectures may yield different results.
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• Although the computational cost of using transfer learning is relatively low in this appli-

cation, studies employing more features and larger datasets may face difficulties regarding

computational cost, which is not evaluated in this dissertation.

• The study does not explore the interpretability of the models developed using transfer learn-

ing, which may be a concern in certain applications where understanding the underlying

relationships between variables is crucial.

• The study does not consider the potential impact of external factors such as weather condi-

tions, building occupancy patterns, and region-specific characteristics, which may influence

the effectiveness of transfer learning in load forecasting.

Despite these limitations, this dissertation provides valuable insights into the application of

transfer learning for load forecasting models in building energy management. The results demon-

strate the potential of transfer learning to reduce training time and improve accuracy in scenarios

with limited data availability. This study contributes to the growing body of knowledge on the use

of machine learning techniques for sustainable and efficient energy management in smart cities.

1.5 Methodology overview

First, a review of the literature was conducted to identify existing research on load forecasting

and transfer learning. This involved a comprehensive search of academic databases and relevant

publications. The aim of this step was to gain an understanding of the current state of the field and

identify any research gaps that could be addressed through this study.

Next, a case study of a group of VBs was selected to apply the proposed transfer learning

approach to load forecasting. The VBs were chosen to represent a diverse range of building types

(within the scope of commercial buildings) and energy consumption profiles, allowing for a more

comprehensive evaluation of the proposed approach.

After selecting the case study, the necessary data was collected and preprocessed for the load

forecasting models. This involved cleaning and organizing the data, as well as transforming it into

a suitable format for model training.

The load forecasting models were then developed and trained using a transfer learning ap-

proach. This involved initializing the models with pre-trained weights from a previously trained

model and adding new layers that were trained on a smaller dataset. The performance of the trans-

fer learning models was evaluated and compared to models trained with and without abundant data

availability.

Finally, the results of the study were analyzed and discussed. The findings of the study were

compared to existing research in the field, and the implications and limitations of the study were

discussed. A conclusion was drawn regarding the effectiveness of the transfer learning approach

for load forecasting in building energy management.

The methodology overview is summarized in Figure 1.1 fluxogram:
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Figure 1.1: Fluxogram describing the steps in the implementation of the method1.

1.6 Thesis structure

This thesis is organized as follows. Chapter 1 provides an introduction to the research problem, the

motivation for the study, and the objectives and research questions. Chapter 2 presents a literature

review of load forecasting models and transfer learning, covering both theoretical and practical

aspects of these topics. Chapter 3 describes the process used to develop and evaluate the load

forecasting models based on transfer learning, including data collection, pre-processing, model

development, and performance evaluation.

In Chapter 4, the results of the experiments are presented and discussed. This chapter includes

an analysis of the performance of the load forecasting models based on transfer learning and

a comparison with models trained with abundant and scarce data availability. Finally, Chapter

5 provides a summary of the findings, conclusions, and recommendations for future research.

The appendix includes technical details and additional information on the methodology, data, and

models used in this study.



Chapter 2

Literature Review

2.1 Theoretical Framework

2.1.1 Load forecasting

In this section, the theoretical framework of load forecasting, a crucial component in building

energy management systems, will be discussed. Load forecasting involves predicting the electrical

load or energy consumption at a future time based on historical data and other relevant factors.

Accurate load forecasting can lead to efficient energy management, reduced operational costs,

and improved system reliability. Various methods have been proposed in the literature for load

forecasting, such as statistical methods, machine learning techniques, and hybrid approaches [13].

One of the most widely used load forecasting methods is time series analysis, which uses his-

torical data to model and forecast future load values. Time series can be modelled using machine

learning, which includes techniques such as ANNs, Support vector machine (SVM)s, and decision

trees. In the case of ANNs, the model can be represented as a composition of layers (Figure 2.1),

each consisting of a set of neurons connected with a weight matrix. The output of each layer is

computed using an activation function, such as the Rectified linear unit (ReLu) or the Hiperbolic

tangent (Tanh). The model is trained by minimizing the difference between the predicted load

values and the true load values, often measured by a loss function like Mean squared error (MSE)

or Mean absolute error (MAE).

1. ANNs are computational models inspired by the biological ANNs found in the human brain

[14]. ANNs consist of interconnected nodes or artificial neurons, which are organized in

layers. These layers include an input layer, one or more hidden layers, and an output layer.

Each connection between the nodes has an associated weight, which is adjusted during the

learning process. The purpose of an ANN is to learn patterns or relationships in the input

data and make predictions or decisions based on the learned knowledge.

The core of an ANN is the artificial neuron or node, which receives input from other nodes

in the previous layer and processes it to produce an output. The output is determined by

7
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Figure 2.1: Architecture of an ANN.

the weighted sum of the inputs and a bias term, followed by the application of an activa-

tion function. The activation function is responsible for introducing non-linearities into the

network, which enables ANNs to model complex relationships [15].

The weighted sum of the inputs and bias term is given by the following equation:

z =
n

∑
i=1

wixi +b (2.1)

where, wi represents the weight associated with the i-th input, xi, b is the bias term, and n is

the total number of inputs. The output of the artificial neuron, denoted by y, is computed by

applying an activation function, f (·), to the weighted sum:

y = f (z) (2.2)

Training an ANN involves adjusting the weights and biases to minimize the error between

the predicted output and the actual output (i.e., the target values). This is typically achieved

using a learning algorithm, such as gradient descent or a variant thereof, in combination

with backpropagation, which is used to compute the gradient of the error with respect to the

weights and biases [16].

The performance of an ANN is commonly evaluated using loss functions, such as the MSE

for regression tasks or the Cross-Entropy Loss for classification tasks. These loss functions
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quantify the discrepancy between the predicted output and the target values, guiding the

learning process [17].

2. A dense layer, also known as a fully connected layer, is a type of layer commonly used

in ANNs, where each neuron in the layer is connected to every neuron in the previous

layer [17]. This layer is responsible for performing a linear transformation (Equation 2.3)

followed by an activation function (Equation 2.4), where x is the input vector with n dimen-

sions, W is the weight matrix of size m×n, b is the bias vector of size m, and a is the output

vector with m dimensions. The activation function g can be any function, such as ReLu,

sigmoid, or Tanh, depending on the specific application and requirements.

a =Wx+b (2.3)

y = g(a) (2.4)

3. Convolutional neural networks (CNNs) are a specialized type of ANN architecture that

has been highly successful in a wide range of applications, particularly in computer vision

and image recognition tasks [18]. CNNs leverage the spatial structure of input data by

employing convolutional layers, which perform local operations on the input, allowing the

network to learn hierarchical and translation-invariant features.

The main building block of a CNN is the convolutional layer. In this layer, a set of learn-

able filters or kernels is convolved with the input data, resulting in feature maps that capture

spatial information from the input. Mathematically, the convolution operation can be repre-

sented as:

f (x,y) =
∞

∑
i=−∞

∞

∑
j=−∞

g(i, j) ·h(x− i,y− j) (2.5)

where f (x,y) is the output feature map, g(i, j) is the input data, and h(x− i,y− j) represents

the filter or kernel.

CNNs often consist of a series of convolutional layers, followed by non-linear activation

functions (e.g., ReLu, Tanh), pooling layers, and fully connected layers [17]. Pooling layers

are used to reduce the spatial dimensions of the feature maps, making the network more

computationally efficient and invariant to small translations. Common pooling operations

include max pooling and average pooling [17]. CNNs have been highly successful in var-

ious applications, including image classification [19], object detection [20], and semantic

segmentation [21]. Their ability to learn hierarchical and translation-invariant features from

input data has made them a powerful tool for tasks involving spatially structured data.
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4. Max pooling is a downsampling operation commonly used in CNNs to reduce the spatial

dimensions of feature maps, making the network more computationally efficient and invari-

ant to small translations [18]. The max pooling layer operates by dividing the input feature

map into non-overlapping rectangular regions and selecting the maximum value from each

region as the output. Mathematically, the max pooling operation can be represented as:

yi, j =
M−1
max
m=0

N−1
max
n=0

xi·M+m, j·N+n (2.6)

where x is the input feature map, y is the output feature map, M and N are the dimensions of

the pooling region, and i and j represent the spatial coordinates of the output feature map.

Max pooling has been widely used in various CNN architectures, such as LeNet-5 [18] and

AlexNet [19], for tasks like image classification and object recognition. By reducing the

spatial dimensions, max pooling helps to control the number of parameters in the network,

which can help prevent overfitting and improve generalization.

5. Long short term memory (LSTM) networks, first introduced by Hochreiter and Schmid-

huber [22], are a type of Recurrent Neural Network (RNN) architecture designed to address

the vanishing gradient problem encountered in traditional RNNs. LSTMs have been suc-

cessful in various sequence-to-sequence learning tasks, such as natural language processing,

time series prediction, and speech recognition.

The key innovation of LSTMs lies in their memory cell, which consists of an input gate, a

forget gate, an output gate, and a cell state. These gates and the cell state enable the LSTM

to selectively store, update, and retrieve information over long sequences, allowing them to

learn and model long-term dependencies in data. The equations governing the LSTM cell

are as follows:

it = σ(Wiixt +bii +Whiht−1 +bhi) (2.7)

ft = σ(Wi f xt +bi f +Wh f ht−1 +bh f ) (2.8)

gt = tanh(Wigxt +big +Whght−1 +bhg) (2.9)

ot = σ(Wioxt +bio +Whoht−1 +bho) (2.10)

ct = ft ⊙ ct−1 + it ⊙gt (2.11)

ht = ot ⊙ tanh(ct) (2.12)

where it , ft , gt , and ot represent the input, forget, cell update, and output gate activations,

respectively. xt is the input at time step t, ht is the hidden state, ct is the cell state, and

⊙ denotes element-wise multiplication. LSTM networks have proven effective in various

applications, such as machine translation [23], text generation [24], and speech recognition.

Their ability to model long-term dependencies has made them a popular choice for tasks

involving sequential data.
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2.1.1.1 Optimizer

6. Adaptive moment estimation (ADAM) optimizer is a widely-used optimization algorithm

for training ANNs and other machine learning models [25]. ADAM combines the advan-

tages of two other optimization algorithms: Adaptive gradient algorithm (ADAGRAD) [26]

and Root mean squared propagation (RMSPROP) [27]. It adapts the learning rate for each

parameter by computing the first-order moment (mean) and the second-order moment (un-

centered variance) of the gradients. ADAM updates the parameters using the following

equations:

mt = β1mt−1 +(1−β1)gt (2.13)

vt = β2vt−1 +(1−β2)g2
t (2.14)

m̂t =
mt

1−β t
1

(2.15)

v̂t =
vt

1−β t
2

(2.16)

θt = θt−1 −α
m̂t√
v̂t + ε

(2.17)

In these equations, t is the current iteration, gt represents the gradient of the objective func-

tion with respect to the parameters θ at iteration t, mt and vt are the first and second moment

estimates, respectively, and m̂t and v̂t are the bias-corrected estimates. The parameters β1

and β2 are the exponential decay rates for the first and second moment estimates, respec-

tively. α is the learning rate and ε is a small constant to prevent division by zero.

ADAM is known for its efficiency and robustness, as it requires minimal tuning of hyper-

parameters and works well with sparse gradients, making it suitable for various machine

learning tasks [25].

Tieleman and Hinton [27] demonstrated the effectiveness of the ADAM optimizer through

extensive experiments on various optimization tasks, including training Deep neural net-

work (DNN) and training RNNs for sequence learning tasks. The results showed that

ADAM converged faster and achieved better performance than other optimization meth-

ods, such as Stochastic gradient descent (SGD), AdaGrad, and RMSPROP, across different

tasks.

The study also provided a thorough analysis of the algorithm’s properties and established its

convergence properties under specific conditions. The authors highlighted that the algorithm

is computationally efficient, has little memory requirements, and is well-suited for problems

with large data sets or parameter spaces.



Literature Review 12

2.1.1.2 Activation functions

7. The ReLu activation function is a popular choice in modern ANNs due to its simplicity and

effectiveness in various deep learning tasks. The ReLu function is a non-linear activation

function defined as follows:

f (x) = max(0,x), (2.18)

where x is the input to the function. The ReLu function can also be represented using a

piecewise linear function:

f (x) =

x, if x ≥ 0

0, otherwise
. (2.19)

The ReLu function is known for its ability to alleviate the vanishing gradient problem often

encountered in training DNN. This is because its gradient remains constant for positive input

values:

d f (x)
dx

=

1, if x ≥ 0,

0, otherwise.
(2.20)

In practice, the ReLu function is computationally efficient and facilitates faster convergence

during training compared to other activation functions, such as the sigmoid or Tanh func-

tions.

8. Tanh activation function is another widely used activation function in ANNs. The Tanh

function is similar to the sigmoid function but maps the input values to a range between -1

and 1. This can be advantageous in some cases, as it allows the output to have both positive

and negative values, which may help with convergence during training. The equation for

the Tanh activation function is as follows:

tanh(x) =
ex − e−x

ex + e−x (2.21)

The derivative of the Tanh function is essential for back, as it is used to update the weights

during the training process. The derivative can be expressed as:

d tanh(x)
dx

= 1− tanh2(x) (2.22)

Like the ReLu, the Tanh function is a popular choice for activation functions in ANNs due

to its smooth, differentiable nature and ability to capture non-linear relationships.
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9. Sigmoid activation function is a widely used activation function in Artificial Neural Net-

works (ANNs). The sigmoid function maps the input values to a range between 0 and 1.

This is advantageous in cases where the output needs to be interpreted as a probability. The

equation for the sigmoid activation function is as follows:

σ(x) =
1

1+ e−x (2.23)

The derivative of the sigmoid function is crucial for backpropagation, as it is used to update

the weights during the training process. The derivative can be expressed as:

dσ(x)
dx

= σ(x)(1−σ(x)) (2.24)

Like the ReLu and Tanh, the sigmoid function is a popular choice for activation functions in

ANNs due to its smooth, differentiable nature and ability to capture non-linear relationships.

However, it may suffer from the vanishing gradient problem for very large or very small

input values.

2.1.1.3 Metrics

10. Mean squared error (MSE) is a commonly used loss function for regression tasks in ma-

chine learning and is particularly suited for problems where the target variable is continuous

[28]. MSE measures the average squared difference between the predicted values and the

true values, emphasizing larger errors over smaller ones. Given a dataset with N samples,

the true target values yi and the predicted values ŷi, the MSE can be calculated as follows:

MSE =
1
N

N

∑
i=1

(yi − ŷi)
2 (2.25)

Minimizing the MSE aims to reduce the average squared error between the predicted values

and the true values, which, in turn, leads to more accurate predictions. The choice of the

MSE loss function is motivated by its simplicity, differentiability, and interpretability, as

well as its relation to the maximum likelihood estimation when the output distribution is

assumed to be Gaussian [29].

11. The Mean absolute error (MAE) is another widely used loss function for regression tasks

in machine learning, particularly when the target variable is continuous [30]. In contrast

to MSE, MAE measures the average absolute difference between the predicted values and

the true values, making it less sensitive to outliers or large errors. Given a dataset with N

samples, the true target values yi and the predicted values ŷi, the MAE can be calculated as

follows:
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MAE =
1
N

N

∑
i=1

|yi − ŷi| (2.26)

Minimizing the MAE aims to reduce the average absolute error between the predicted values

and the true values, which can lead to more robust predictions in the presence of outliers.

The choice of the MAE loss function is often motivated by its simplicity, interpretability,

and robustness to outliers compared to the MSE loss function [30].

12. Root mean squared error (RMSE) is a widely-used metric for evaluating the performance

of regression models and estimating the accuracy of predictions [31]. It measures the differ-

ence between the predicted values and the actual values of a dataset. The RMSE is partic-

ularly useful in assessing the model’s overall performance, as it takes into account both the

magnitude and direction of the errors. The lower the RMSE value, the better the model’s

performance in terms of prediction accuracy. The RMSE is calculated using the following

formula:

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)2 (2.27)

In this equation:

• RMSE represents the Root Mean Square Error value

• n is the total number of observations or data points in the dataset

• yi denotes the actual value of the i-th observation

• ŷi denotes the predicted value of the i-th observation

• ∑ i = 1n(yi− ŷi)
2 is the sum of the squared differences between the actual and predicted

values for all data points

The RMSE value is computed by first calculating the squared differences between the pre-

dicted and actual values for each data point in the dataset. Next, the average of these squared

differences is determined by dividing the sum of the squared differences by the total number

of data points. Finally, the square root of the average squared difference is taken, yielding

the RMSE value.

However, it is essential to compare the RMSE values of different models within the same

context, as an absolute value may not provide sufficient information about the model’s per-

formance relative to other models [32].

13. The Mean absolute percentage error (MAPE) is a popular metric for evaluating the per-

formance of forecasting models and estimating the accuracy of predictions [33]. It measures

the average percentage error between the predicted values and the actual values of a dataset.

The MAPE is particularly useful for comparing forecasting models, as it expresses the errors
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in percentage terms, which allows for an intuitive interpretation of the results. The MAPE

is calculated using the following formula:

MAPE =
100%

n

n

∑
i=1

∣∣∣∣yi − ŷi

yi

∣∣∣∣ (2.28)

In this equation:

• MAPE represents the MAPE value

• n is the total number of observations or data points in the dataset

• yi denotes the actual value of the i-th observation

• ŷi denotes the predicted value of the i-th observation

• ∑ i = 1n
∣∣∣ yi−ŷi

yi

∣∣∣ is the sum of the absolute percentage differences between the actual

and predicted values for all data points

The MAPE value is computed by first calculating the absolute percentage differences be-

tween the predicted and actual values for each data point in the dataset. Next, the average

of these absolute percentage differences is determined by dividing the sum of the absolute

percentage differences by the total number of data points. Finally, the average absolute per-

centage difference is multiplied by 100% to express the MAPE value as a percentage. A

lower MAPE indicates a better fit of the model to the data, suggesting that the model’s pre-

dictions are more accurate. However, it is essential to compare the MAPE values of different

models within the same context, as an absolute value may not provide sufficient information

about the model’s performance relative to other models [33]. Additionally, the MAPE can

be sensitive to the presence of zero or very small values in the actual data, which may lead

to large percentage errors and potentially distorted results.

14. The Pearsson correlation coefficient (PCC), also known as Pearson’s r, is a measure of the

linear relationship between two variables. The PCC ranges from -1 to 1, where -1 represents

a perfect negative linear relationship, 1 represents a perfect positive linear relationship, and 0

represents no linear relationship between the variables. Pearson’s r is determined following

Equation (2.29).

r =
∑

n
i=1(xi − x̄)(yi − ȳ)√

∑
n
i=1(xi − x̄)2

√
∑

n
i=1(yi − ȳ)2

(2.29)

In the above equation, xi and yi are the individual sample points indexed with i; n is the

total number of samples; x̄ and ȳ are the mean values of x and y respectively. The top of

the equation, ∑
n
i=1(xi − x̄)(yi − ȳ), is the covariance of x and y. The bottom of the equation,√

∑
n
i=1(xi − x̄)2

√
∑

n
i=1(yi − ȳ)2, is the product of the standard deviations of x and y.
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When using machine learning methods for load forecasting, it is essential to select relevant

input features, such as historical load values, weather data, and calendar information. The fore-

casting performance can be evaluated using various performance metrics, such as RMSE and

MAPE.

In recent years, deep learning techniques, such as CNNs and RNNs, have also been applied to

load forecasting problems. These methods can automatically learn complex patterns and temporal

dependencies from large-scale datasets, leading to improved forecasting accuracy in many cases.

2.1.2 Transfer learning

Transfer learning is a machine learning technique that enables the reuse of a pre-trained model on

a new problem (Figure2.2), leveraging the knowledge acquired in the source domain to improve

performance in the target domain [34]. This approach can be particularly beneficial in scenar-

ios with limited labeled data or high computational costs associated with training a model from

scratch.

In the context of deep learning, transfer learning typically involves fine-tuning a pre-trained

ANN on the target task, retaining the initial layers that capture more general features and adapting

the final layers that are more specific to the target task.

Figure 2.2: Traditional machine learning versus transfer learning approach.

Mathematically, transfer learning can be represented as a domain adaptation problem, where

the source domain DS and the target domain DT have different probability distributions PS(X) and

PT (X), respectively:
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PS(X) ̸= PT (X) (2.30)

In transfer learning, the aim is to leverage the knowledge learned in the source domain DS to

improve the model’s performance in the target domain DT [35].

fT (X) = argmin
f∈F

E(X ,Y )∼PT (X ,Y )[L( f (X),Y )] (2.31)

1. The source domain (DS) consists of the dataset from which the initial model learns the

patterns and features. This domain usually has an abundance of data to facilitate the model’s

training. In transfer learning, knowledge from the source domain is utilized to improve

the model’s performance in the target domain. The source domain is represented by the

probability distribution PS(X ,Y ).

DS = (XS
i ,Y

S
i )i = 1NS , (XS

i ,Y
S
i )∼ PS(X ,Y ) (2.32)

2. The target domain (DT ) is the domain in which the transferred knowledge is applied to

improve the model’s performance. Typically, the target domain has limited data availability

or some similarities with the source domain, making transfer learning a suitable approach.

The target domain is represented by the probability distribution PT (X ,Y ).

DT = (XT
i ,Y

T
i )i = 1NT , (XT

i ,Y
T
i )∼ PT (X ,Y ) (2.33)

3. Fine-tuning is a common technique used in transfer learning to adapt a pre-trained model

to a new target task. Given a pre-trained model with a specific architecture, one or more

layers of the model are adjusted by training on the target task data [36]. The fine-tuning

process typically involves a smaller learning rate compared to the initial training of the

model to ensure that the model does not diverge too far from the pre-trained weights. Let

W (0) represent the pre-trained weights, and let α denote the learning rate. During the fine-

tuning process, the weights W (t) at iteration t are updated as follows:

W (t+1) =W (t)−α∇L(W (t)), (2.34)

where ∇L(W (t)) is the gradient of the loss function with respect to the weights at iteration t.

2.1.2.1 Transfer learning classification

Transfer learning can be classified into different categories based on various factors, such as the

relationship between the source and target domains, and the type of learning involved according

to the works of Pan and Yang [35] and Weiss et al. [7]. Here, we define four categories of transfer

learning that can unite to form the classes in Table 2.1.
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1. Inductive Transfer Learning: In inductive transfer learning, the source and target tasks are

different, but the source and target domains may be the same or different. The goal is

to improve the learning of the target predictive function ft(·) in the target domain using the

knowledge gained from the source domain. This is the most common form of transfer learn-

ing, which includes tasks like image classification, sentiment analysis, and natural language

processing.

2. Transductive Transfer Learning: In transductive transfer learning, the source and target tasks

are the same, but the source and target domains are different. The goal is to adapt the model

learned from the source domain to the target domain without changing the task. This is

especially useful when dealing with domain adaptation problems, such as adapting a model

trained on one dataset to work well on another dataset from a different domain.

3. Homogeneous Transfer Learning: In homogeneous transfer learning, the feature spaces of

the source and target domains are the same, i.e., Xs = Xt . The transfer learning process

involves using the same type of features and representations for both the source and tar-

get domains. Examples of homogeneous transfer learning include fine-tuning a pre-trained

model on a new dataset with the same input features.

4. Heterogeneous Transfer Learning: In heterogeneous transfer learning, the feature spaces of

the source and target domains are different, i.e., Xs ̸= Xt . This type of transfer learning in-

volves dealing with different feature representations between the source and target domains.

Techniques such as feature transformation, feature alignment, or feature space mapping are

employed to bridge the gap between the different feature spaces. Examples of heteroge-

neous transfer learning include text-to-image retrieval, cross-language sentiment analysis,

and cross-modal learning.

Table 2.1: Transfer learning classification.

Domain Task Example

Homogeneous inductive learning Source = Target Source ̸= Target

Transfer learning is used to enhance building
monthly electric load prediction leveraging
information from similar buildings in different districts,
that exhibits a different conditional probability.

Heterogeneous inductive learning Source ̸= Target Source ̸= Target

Transfer learning is used to fine-tune a pretrained
ANN initially built to perform
multi-class classification, to increase the accuracy of a prediction
model for building temperature setback identification.

Homogeneous transductive learning Source = Target Source = Target
Transfer learning is used for improving the accuracy of home
activity estimation by exploiting the data of a source
house applied to a target house with no labelled data.

Heterogeneous transductive learning Source ̸= Target Source = Target
Transfer learning is used to predict building dynamics
by extracting features from multiple households in an
online fashion, without having access to labelled data.

Transfer learning has been widely applied in various deep learning architectures, such as CNNs

and LSTMs, for tasks like image classification, natural language processing, and load forecasting
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[11]. By leveraging the knowledge from the source domain, transfer learning can improve model

performance, reduce training time, and enhance generalization in the target domain.

2.2 State-of-the-art

In this section, it is explored the state-of-the-art literature on the two most crucial topics addressed

in this dissertation: (i) load forecasting models and (ii) transfer learning applied to load fore-

casting. More precisely, it is discussed the latest advancements, techniques, and methodologies

employed in these fields, with a particular focus on their applications in commercial buildings.

2.2.1 Overview of load forecasting in commercial buildings

Load forecasting models are crucial for energy management, cost savings, and decarbonization

efforts in commercial buildings. These models predict future electricity consumption and demand

patterns, allowing facility managers and building owners to make informed decisions regarding

energy procurement, storage, and usage optimization. The literature on load forecasting models

can be broadly categorized into (i) traditional approaches and (ii) data-driven methods.

Traditional methods, such as time series analysis (e.g., Auto-regressive integrated moving av-

erage (ARIMA) models) and regression techniques (e.g., linear and multiple regression), depend

on historical load data and potentially external factors, such as weather conditions, occupancy

patterns, or economic indicators [37]. These methods have been widely used due to their sim-

plicity and interpretability. However, they may face difficulties in capturing complex, non-linear

patterns in load data. As the focus of this dissertation lies in data-driven models like deep learning

approaches, traditional methods will not be extensively explored.

Data-driven approaches leverage machine learning algorithms to model the intricate relation-

ships between input features and electricity consumption. ANNs [38], SVMs [39], and decision

trees [40] are examples of widely used data-driven techniques. More recently, deep learning meth-

ods, including CNNs [41], RNNs [42], and LSTM networks [43], have demonstrated promising

results in load forecasting tasks. In this dissertation, deep learning techniques are employed for

load forecasting, and as such, they will be discussed in greater detail.

Hippert et al. [38] conducted a comprehensive review of ANNs and their application to electric

load forecasting. They compared the performance of ANNs with traditional approaches such as

time series models and regression techniques. The authors concluded that ANNs have the poten-

tial to provide better results than traditional methods, particularly for short-term load forecasting

tasks. They highlighted that ANNs can capture complex, non-linear relationships in the data,

which often leads to improved forecasting accuracy. However, they also noted the importance

of selecting appropriate network architectures, input features, and training procedures to achieve

optimal performance.

Lai et al. [41] presented a deep learning framework, called the Temporal Convolutional Net-

work (TCN), for long-term and short-term time series prediction tasks, including load forecasting.

The TCN model leverages causal CNNs for automatically learning temporal features in the time
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series data. The authors compared their proposed TCN model with several state-of-the-art mod-

els, such as RNNs, LSTM networks, and Gated Recurrent Unit (GRU)s. The conclusions drawn

from [41] are that the TCN model demonstrates competitive performance when compared to the

other deep learning models, often outperforming them in terms of prediction accuracy and com-

putational efficiency. Moreover, the TCN model is more interpretable and easier to parallelize,

making it suitable for large-scale time series forecasting tasks. The results of the study support the

potential of using deep learning techniques, specifically CNNs, for load forecasting applications.

Li et al. [42] proposed a hybrid approach for short-term load forecasting, which combines the

strengths of the Wavelet transform (WT) technique and LSTM networks. The WT technique is

used for decomposing the load time series into a set of sub-series with different frequency com-

ponents, which helps in handling the non-stationary nature of the load data. The LSTM networks

are then applied to model the decomposed sub-series and capture the underlying temporal depen-

dencies. The conclusions drawn are that the proposed hybrid Wavelet-LSTM model demonstrates

superior performance in short-term load forecasting when compared to other state-of-the-art tech-

niques, such as ARIMA, Elman, Support vector regression (SVR). The study highlights the effec-

tiveness of combining the WT technique with LSTM networks for enhancing the accuracy of load

forecasting, especially in capturing the non-stationary and non-linear nature of the load time series

data. This hybrid approach presents a promising direction for further research and development in

load forecasting applications.

Marino et al. [43] presented a methodology for short-term load forecasting that leverages the

advantages of graph-based techniques and LSTM networks. The proposed approach, referred to

as Graph convolutional long short therm memory (GCLSTM), incorporates Graph convolutional

network (GCN) to capture the spatial dependencies of power grids and LSTMs to model the tem-

poral dependencies of load time series. The conclusions drawn from Marino et al. [43] highlight

that the GCLSTM model demonstrates improved forecasting accuracy compared to other state-

of-the-art methods, such as feedforward ANNs, graph CNNs, and vanilla LSTMs. The model

successfully captures the complex spatial and temporal relationships in power grids, leading to

better load forecasting performance. Additionally, the proposed approach is applicable to various

power grid topologies, making it versatile and adaptable for different scenarios. The effective-

ness of the GCLSTM model indicates that the combination of graph-based techniques and LSTM

networks presents a promising direction for further research and development in load forecasting

applications.

Zhang et al. [44] proposed a deep learning model integrating LSTMs and attention mecha-

nisms for short-term load forecasting in commercial buildings. The main conclusions of the study

are that the proposed model, which combines LSTMs with attention mechanisms, demonstrates

better performance than traditional methods and other deep learning approaches, such as stan-

dalone LSTMs or CNNs. The attention mechanism helps the model to focus on the most relevant

features and time steps in the input data, thereby improving the model’s ability to capture complex,

non-linear patterns in the load data. The authors also compared their model with other machine

learning methods like SVM and found that the proposed model outperforms these traditional tech-
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niques in terms of forecasting accuracy. The study emphasizes the importance of incorporating the

attention mechanism in deep learning models for load forecasting, as it enhances the model’s abil-

ity to capture and understand complex relationships in the data, leading to improved forecasting

performance.

2.2.2 Overview of Transfer learning in load forecasting

Transfer learning has emerged as a potential solution to address data scarcity issues in load fore-

casting for commercial buildings. By leveraging knowledge from related tasks or domains, transfer

learning can enhance the performance of load forecasting models, particularly when limited data

is available for the target task [11]. The literature on transfer learning applied to forecasting is

reviewed below.

Pan and Yang [35] presented a comprehensive survey on transfer learning, the authors dis-

cuss various transfer learning scenarios, methodologies, and algorithms proposed in the literature.

They also provide an overview of the main research issues in transfer learning, including the

relationships between tasks, domain adaptation, and the transfer of knowledge across different

feature spaces. The authors conclude that transfer learning is a promising research direction in

machine learning as it addresses the challenge of limited labeled data in many real-world ap-

plications. They highlight the different scenarios based on the relationship between source and

target domains or tasks, such as inductive, transductive, and unsupervised transfer learning. Var-

ious methods and algorithms have been proposed for transfer learning, including instance-based,

feature-representation-based, parameter-based, and relational-knowledge-based approaches. De-

spite progress in transfer learning research, several open issues and challenges remain [35]. Some

of these challenges include how to transfer knowledge more effectively, how to measure the simi-

larity between tasks or domains, and how to automatically discover related tasks or domains. The

authors emphasize the importance of transfer learning in tackling real-world problems and suggest

future research directions to address the open issues in this field.

Yosinski et al. [45] investigated the transferability of features learned by DNN and examined

the factors that influence the performance of transfer learning. The authors conducted experiments

using CNNs trained on the ImageNet dataset and evaluated the transferability of features by fine-

tuning networks on new tasks. The authors found that the features learned by DNNs are indeed

transferable across different tasks, and the transferability decreases as the dissimilarity between

the source and target tasks increases. They observed that the lower layers of the network contain

general-purpose features that can be effectively used for a wide range of tasks, while the higher

layers capture more task-specific features that may not be as transferable. The study also demon-

strated that the transferability of features can be improved by fine-tuning the network on the target

task. This suggests that utilizing pre-trained models and fine-tuning them for new tasks can lead

to better performance and reduced training time compared to training a model from scratch.

Cai et al. [46] proposed a two-layer transfer-learning-based STLF model to improve the accu-

racy of load in the target zone. In the inner layer, the latent parameter is introduced to represent

the latent factors that result in differences in electricity consumption between different zones. An
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iterative algorithm is developed in the outer layer to solve the weights. The authors reported that

the proposed architecture always resulted in an improvement in forecasting accuracy compared to

classic STLF algorithms.

Zhuang et al. [47] offered a thorough survey on transfer learning, with a focus on deep transfer

learning methods and their applications. Their work serves as a valuable reference for researchers

and practitioners working on transfer learning and its applications in various domains, providing

insights into state-of-the-art techniques, challenges, and future research directions.

Li et al. [48] used the dataset from the open source building genome project [49] with around

400 non-residential buildings to develop a transfer learning-based ANN model. This model was

developed to make the building energy forecast one-hour ahead with the task of improving fore-

casting accuracy for a target building with limited data available. The authors developed a three-

layer Back propagation neural network (BPNN) model to evaluate the performance of the model

through different source and target data samples and different source-target building pairs. They

concluded that the less available data are, the more accuracy improvement transfer learn can

achieve.

Pinto et al. [11] conducted a survey that specifically focused on the application of transfer

learning for smart buildings. This study identified four primary application areas for transfer

learning: (i) building load prediction, (ii) occupancy detection and activity recognition, (iii) build-

ing dynamics modeling, and (iv) energy systems control. Among these applications, building load

forecast was the most widely adopted. However, the study also noted that few of the examined

studies had been deployed in real-world settings, and it presented opportunities for future research.

In addition to discussing applications, the survey provided a comprehensive theoretical description

of transfer learning.

Ahn and Kim [50] applied transfer learning to the task of predicting building power consump-

tion using a simulated dataset. The researchers developed a transfer learning LSTM model that

was trained on just 24 hours of data and tasked with predicting the subsequent 24-hour period. The

study showcased the ability of transfer learning-based models to improve prediction accuracy in

comparison to LSTM models without transfer learning. Additionally, the researchers emphasized

that higher accuracy was achieved when the climate zones for the source and target datasets were

identical.

2.3 Discussion on the Benefits and Limitations of Transfer Learning

Transfer learning has emerged as an influential paradigm in machine learning, with applications

ranging from natural language processing to computer vision and predictive modeling. This sec-

tion presents a detailed discussion about the potential advantages and potential challenges associ-

ated with this technique.

Advantages:

• Reduced training time: One of the major benefits of transfer learning is the ability to

leverage pre-trained models, which have already learned relevant features from large-scale



2.3 Discussion on the Benefits and Limitations of Transfer Learning 23

datasets. This ability greatly minimizes the need for extensive computational resources and

significantly reduces the time required for training, thereby facilitating faster model deploy-

ment [35, 36].

• Less data requirement: Transfer learning is particularly beneficial when there is a scarcity

of labeled data in the target domain. It offers an effective approach to compensate for this

deficiency by utilizing the knowledge from the source domain, thereby enhancing model

performance even with limited target data [35, 47].

• Improved generalization: Transfer learning encourages the model to develop more general-

ized and robust representations, by introducing it to diverse and extensive knowledge from

the source domain. This characteristic makes it suitable for tasks with a high degree of

variability and can lead to improved performance on unseen data [45, 35].

Limitations:

• Negative transfer: While transfer learning offers numerous advantages, it also carries the

risk of negative transfer, where the performance of the model on the target task deteriorates

rather than improving. This situation typically arises when the source and target domains

are not adequately related or exhibit distinct characteristics, which can lead to the transfer

of misleading or irrelevant knowledge [35, 45].

• Model complexity: The implementation of transfer learning often involves complex archi-

tectural modifications or additional fine-tuning steps. These intricacies can increase the

model’s complexity and the computational cost, possibly making it challenging to adapt

and interpret [36, 51].

• Domain adaptation challenges: Adapting the pre-trained model to the target domain can

be a challenging process, especially when there exists a significant disparity or distribution

shift between the source and target domains. Addressing this requires effective strategies to

align the source and target distributions, which may not always be straightforward to achieve

[47, 35].



Chapter 3

Transfer Learning Approach for Load
Forecasting Models

3.1 Data collection and preprocessing

3.1.1 Data source and cleaning

The data for this study was obtained from the INESC TEC building database, which contains

energy consumption data from 156 meters across two buildings (Building A and Building B), as

presented in Figure 3.1. Specifically, this study used processed data that contained the energy

consumption for each floor in 15-minute intervals. The data was divided by floor to facilitate the

creation of VBs, which represented each floor of the two buildings. It is important to note that

some floors were not used in the study because the pattern they presented were highly different

from most of the floors, meaning they represented a totally different statistical distribution. This

approach enabled the creation of load forecasting models that were specific to each floor, allowing

for the implementation of transfer learning.

The selected data covered a period of under two years, from March 2021 to October 2022, and

was stored in CSV files. The data was chosen for its completeness and reliability, and any missing

or corrupted data was removed during the data cleaning process.

An important observation to be made is that the selected data does not encompass the entirety

of the information contained in the INESC TEC database. Instead, it covers a period deemed

unaffected by the recent pandemic episode. This pandemic has dramatically altered the load con-

sumption behavior in the building. Therefore, training the model with data from this period could

potentially result in a skewed understanding of consumption patterns and, consequently, higher

errors in the load forecasting.

The data cleaning process involved the use of several techniques to ensure that the data was

suitable for analysis. One of these techniques was the Interquartile range (IQR) method, which

is a statistical method used to identify outliers in a data set. The code calculated the first and

third quartiles of the load consumption time series and then computed the IQR by subtracting the

first quartile from the third quartile. The lower and upper bounds were defined by subtracting and

24
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Figure 3.1: INESC TEC building.

adding 1.5 times the IQR, respectively. Any values of load consumption outside of these bounds

were considered outliers and were removed from the data set.

In addition to the IQR method, a manual cleaning was conducted to identify and remove any

obvious errors in the data collection that were not detected by the IQR algorithm. This process

involved the graphical and analytical observation of the time series. One of the cleaning methods

used in this part was to remove any data that does not have its immediate predecessor. For instance,

consider a situation where data for 19:15 is present in the database, but data for 19:00 is absent.

In such a case, the data for 19:15 must be removed. The rationale for this is rooted in the data

collection methodology employed in the database, which involves the accumulation of energy

consumption data. Consequently, the absence of data for 19:00 leads to the combined sum of data

for both 19:00 and 19:15 being present at 19:15, which constitutes a clear error. This error may not

be easily detectable through outlier removal methods. To mitigate any inaccuracies, this cleaning

step was executed prior to all other data cleaning processes.

Overall, the data used in this study were carefully selected and preprocessed to ensure that it

was of high quality and suitable for the load forecasting models used in the study.

3.1.2 Data normalization and split

Data normalization is a widely used technique in machine learning to standardize input data and

improve model performance [17]. In this study, the data was normalized using the Min-Max

normalization method, which scales the data to a range between 0 and 1.
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• MinMax normalization is a scaling technique used to normalize the range of input features.

It scales the values of the features to be within a specified range, usually [0, 1]. The MinMax

normalization can be calculated as:

xnorm =
x− xmin

xmax − xmin
(3.1)

where xnorm is the normalized value, x is the original value, xmin is the minimum value of

the feature, and xmax is the maximum value of the feature. To revert the normalized values

back to the original scale, one can use the following inverse transformation formula:

x = xnorm(xmax − xmin)+ xmin (3.2)

The normalization process was applied to the features of the load forecasting models, which

included the load consumption time series (the model’s target), day of the week, week in the year,

hour, minute, holiday (a Boolean flag), the load consumption delayed one day, and load consump-

tion delayed seven days. By normalizing the input features, the models could more effectively

learn the patterns and relationships between the features.

Next, the data was split into training, validation, and testing sets for each VB. The last two

months of data were reserved for the test set to evaluate the performance of the predictions, while

the remaining data was divided into 80% for training and 20% for validation as represented in

Figure 3.2.

Figure 3.2: Graphical representation of the data split.

The training set was used to train the load forecasting models, while the validation set was

used to fine-tune the hyperparameters and prevent overfitting. Finally, the testing set was used to

assess the model’s performance on new and unseen data, which is crucial for ensuring that the

models generalize well. By applying data normalization and splitting the data into three sets, the

load forecasting models in this study were optimized to accurately predict energy consumption for

each VB.
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3.2 Virtual building creation

As discussed, the data from the different floors in the INESC TEC building were divided into what

was referred to as VBs. Each VB has its own unique characteristics, which can be compared to a

company that rents a floor from a building and operates independently from the other floors. This

means that each VB has a different load consumption behavior than the other floors, but it is still

located in the same geographical region with similar weather conditions, time zones, holidays, and

other factors that can influence the energy consumption pattern.

Using this methodology, the two buildings composing INESC TEC were divided into eight

VBs as described in Figure 3.3 and a load forecasting model will be developed for each VB.

Additionally, the transfer learning technique will be applied and evaluated to improve the accuracy

of the models.

Figure 3.3: Illustration of the division of the floors of INESC TEC in VBs.

To further characterize the VBs, the average monthly energy consumption (in kWh) was cal-

culated, providing insight into the load profiles and intensities of energy consumption across each

VB. In addition, to evaluate the consumption during peak and valley hours, the average values

were calculated and presented in Table 3.1.
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Table 3.1: Average monthly consumption and hourly peak/valley consumption for each building.

VB Average consumption(kWh) Peak(Wh) Valley(Wh)
A1 1194.10 6558.91 344.73
A2 817.08 4074.91 325.45
A3 1398.86 6765.82 290.91
A4 1246.35 6628.00 389.45
B1 1764.73 6383.64 622.91
B2 814.16 3574.18 361.09
B3 604.23 2159.27 380.73
B4 417.61 1891.27 385.82

Another factor to be considered include the similarities between the load consumption time

series of the different VBs. It is expected that the higher the similarity between the buildings, the

greater the efficiency of the transfer learning technique. The similarity was calculated using the

PCC and shown in Table 3.2.

Table 3.2: PCC between all buildings.

PCC A1 A2 A3 A4 B1 B2 B3 B4
A1 X 0.8070 0.7898 0.8189 0.6099 0.7819 0.4352 0.4255
A2 X X 0.7687 0.7686 0.5797 0.7757 0.4013 0.4152
A3 X X X 0.7859 0.6914 0.7890 0.4536 0.3947
A4 X X X X 0.5655 0.7700 0.4826 0.4375
B1 X X X X X 0.6576 0.3040 0.2645
B2 X X X X X X 0.4169 0.4544
B3 X X X X X X X 0.2358
B4 X X X X X X X X

Through the PCC analysis, it was possible to identify high similarity between Buildings A1,

A2, A3, A4, B1, and B2. However, VBs B3 and B4 showed low PCC values (under 0.5) between

each other and with other buildings, indicating that they have more diverse patterns compared to

the others. This information is crucial for selecting the appropriate transfer learning approach to

be used in the load forecasting models.

To implement transfer learning, it is important to choose a building as the base model from

which the weights will be transferred. It is crucial that the base model has good load forecasting

performance so that the knowledge transferred from the source to the target results in an improve-

ment. In this study, after data analysis, it was evident that one of the VBs presented a clearer and

more recognizable pattern of energy consumption, with less noise or corrupted data, and a higher

PCC with other buildings (Table 3.3). Therefore, the VB B2 was selected as the base model in the

preliminary analysis.
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Table 3.3: PCC between B2 and the other buildings.

PCC B2
A1 0.7819
A2 0.7757
A3 0.7890
A4 0.7700
B1 0.6576
B3 0.4169
B4 0.4544

3.3 Load forecasting model development and training

In this section, the development of the load forecasting models for all VBs in this study will be

described, using the same model architecture for each one of them. The primary focus of this

section is to create a highly accurate model for the base VB (B2), while the models for the other

buildings will serve for comparison purposes. The load forecasting models were developed using

deep learning techniques, specifically a combination of CNNs and LSTM networks. The models

were implemented using the Keras library in Python [52], which is built on top of TensorFlow

library [53].

The first step in the training process was to preprocess the data. The data was first scaled using

the MinMaxScaler from the scikit-learn library (subsection 3.1.2). The data was then split into

training and testing sets (according to Figure 3.2). The training set consisted of seven features of

chronological and historical data, while the testing set consisted of data that was not seen by the

model during training.

The architecture of the sequential model (illustrated in Figure 3.4) comprises an initial 1D

convolutional layer designed to extract features from the input sequence. This layer is configured

with 64 filters, a kernel size of 3, and the ReLu activation function. A subsequent max pooling

layer, with a pool size of 2, serves to reduce the output size of the convolutional layer. The output

of the max pooling layer is then channeled into an LSTM layer, containing 32 hidden neurons

and utilizing the tanh activation function, to model the sequence of features extracted by the con-

volutional layer. An additional LSTM layer, featuring the same architecture as its predecessor

but with 16 hidden neurons, follows. To prevent overfitting, dropout layers with a rate of 0.2 are

incorporated. Finally, a dense output layer is employed to generate the ultimate prediction.
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Figure 3.4: Illustration of the model architecture.

The models were trained using the MSE loss function and the ADAM optimizer for up to 1000

epochs using a batch size of 32. Early stopping was used to prevent overfitting and improve the

generalization performance of the model. The patience of the early stopping callback was defined

at 15 epochs, this value was reached through a process of running the training and evaluating the

graphic of training and validation error as presented in Figure 3.5.

The best performing model was selected based on a model checkpoint module provided by

the Keras library, which saves the weights of the epoch with lower validation error. Once the best

model was selected, its weights are saved to be used later for transfer learning, and predictions

are made using the test set that was separated from the core data. The predictions were evaluated

using a range of metrics, MSE, RMSE, MAE, and MAPE and training time. The predicted values

are plotted against the true values for manual observation.
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Figure 3.5: Training and validation MAE as function of the number of epochs.

3.4 Transfer learning approach

Transfer learning is a powerful machine learning technique that enables us to use pre-trained mod-

els to perform a new task. It allows us to leverage the knowledge learned from previous tasks

and apply it to new ones. In this section, it is discussed how it has been used transfer learning to

enhance the performance of our load forecasting models.

To implement transfer learning, it has been removed data from the inputs, leaving only a month

of data for training and validation of the new models. The previous load forecasting model was

then retrained with this reduced data. The outcome of this new model was used as a baseline to

evaluate the benefits and performance of transfer learning. We have three Case Scenario (CS)s:

the first one involves models trained with an abundance of data, the second one involves models

trained in a data-scarce scenario. The next step was to create the third, which is a hybrid scenario

in which data is scarce, but we have access to the weights of the pre-trained model from the first

case. The three CSs are presented and summarized in Figure 3.6.

Figure 3.6: Case Scenarios.

To initialize the model, we constructed an architecture identical to the one described in the

previous section. These layers were loaded with the weights of the pre-trained model and frozen

so that new training sessions wouldn’t change the loaded weights. We then added a few new

layers to the model that will be trained on the specific dataset of building energy consumption

data (Figure 3.7). Added two LSTM layers and a dense output layer. The first LSTM layer with
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32 hidden neurons, modeled the sequence of features extracted by the convolutional layer, and

the second LSTM layer, with 16 hidden neurons, performed further sequence modeling. Dropout

layers were added after each LSTM layer to prevent overfitting. Finally, a dense output layer was

added to produce the final prediction.

Figure 3.7: Illustration of the transfer learning model architecture.

The transfer learning approach allowed to evaluate the performance of the load forecasting

model in comparison to the other CSs. By using the pre-trained model as a starting point, one

can expect to reduce the training time in comparison to the first case and improve accuracy in

comparison to the second case.

In summary, the process consisted in a data science project in the beginning, where the data is

selected and cleaned, followed by the methodology definition, which is facilitated by the previous

process. After methodology is defined, the data is separated, in order to create several different

models to use as sources and targets. The source models goes through a stage of several trial and

error in order to optimize it’s performance. Once the results are deemed adequate, a process of

knowledge extraction is made, where the weights and hyper-parameters of the source are loaded

into the target models. Those layers loaded with the knowledge from the source are freeze, so that

further training won’t change the results acquired, and new layers are added to be trained with the

small target data set, in a process called fine tuning. The architecture and several parameters of

the new layers are put through a trial and error process to optimize the model and, as soon as the

results go in line with what was expected and further enhancement seem to make little to no effect,

the discussion and conclusions are drawn. A workflow of the process is depicted in Figure 3.8.
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Figure 3.8: Fluxogram describing the entire transfer learning process.

3.4.1 Evaluation metrics

To evaluate the performance of the transfer learning approach, various metrics were used. The

following metrics were considered:

• MAE: It is the average absolute difference between the actual and predicted values. It gives

a measure of how well the model performs on average.

• MSE: It is the average squared difference between the actual and predicted values. It is a

measure of the model’s ability to predict values accurately.

• RMSE: It is the square root of the MSE. It gives a measure of the model’s ability to predict

values accurately while taking into account the scale of the data.

• MAPE: It is the average absolute percentage difference between the actual and predicted

values. It gives a measure of how well the model performs in percentage terms.

The evaluation metrics were computed for each VB, and the outcomes were stored in a Dataframe1.

This Dataframe contains the metrics for every VB, encompassing MAE, MSE, RMSE, MAPE, and

1A dataframe is a two-dimensional, size-mutable, potentially heterogeneous tabular data structure with labeled axes
(rows and columns). Essentially, it’s a data structure that represents data in a table format, similar to an SQL table or
an Excel spreadsheet.
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training time. These metrics served to compare the performance of the transfer learning method

with the conventional approach.

Scatter plots featuring regression lines were employed to visually represent the model’s perfor-

mance. The scatter plots depict predicted values on the y-axis and true values on the x-axis, while

the regression line illustrates the relationship between predicted and actual values. The closer the

regression line approaches a forty-five-degree angle, the stronger the correspondence between ac-

tual and forecasted values. Additionally, line plots were used to display the model’s performance

over time. These plots exhibit predicted and true values, enabling a comparison of trends between

them.

Both the evaluation metrics and visualizations contributed to the assessment of the transfer

learning approach’s performance. The results were compared with those of the traditional ap-

proach to determine the efficiency of transfer learning in load forecasting.



Chapter 4

Results and Analysis

This chapter presents the results obtained from the load forecasting models developed using the

transfer learning approach explained in Chapter 3. This chapter is divided into four sections, each

of which focuses on different aspects of the results and analysis. Section 4.1 presents the data

cleaning results, where it is provided insights into the preprocessing steps taken to prepare the

data for the models.

Section 4.2 provides an in-depth analysis of the load forecasting results for each VB. This sec-

tion includes a discussion of the performance of the models developed using the transfer learning

approach and the baseline models developed without transfer learning. Section 4.3 compares the

transfer learning approach to the baseline models in terms of their performance and efficiency.

Finally, Section 4.4 summarizes the key findings of the study and draws conclusions about the ef-

fectiveness of the transfer learning approach for load forecasting in building energy management.

Moreover, the overall objective of this chapter is to provide a detailed analysis of the results

obtained from the load forecasting models developed using transfer learning. By examining the

performance of the models across multiple VBs, one can identify the strengths and limitations of

the transfer learning approach and provide insights into its potential for improving the efficiency

and accuracy of load forecasting in building energy management. The following sections provide

a comprehensive overview of the results obtained from studying and analyzing the performance

of the models developed using transfer learning.

4.1 Data cleaning results

The data cleaning process applied in this study aimed to ensure that the data used for load fore-

casting models were of high quality and suitable for analysis. In this section, one can present the

results of the data cleaning process described in Chapter 3. The first part consists of selecting

which floors were gonna take part in the study and eventually become VBs. The floors excluded

were the ones that represented either the reception of the building, a laboratory or just a floor with

a really different statistical distribution of data. The floors removed from the study were:

35
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• Building A floor -1: The decision to remove this floor was due to the low visibility of a

pattern that could benefit from the transferred knowledge from the base VB. This conclusion

is based on the graphical analysis of the load in Figure 4.1, where each point presents the

consumption (in watts) with a frequency of fifteen minutes.

Figure 4.1: Floor A-1 cleaned load (last 5000 rows).

• Building A floor 0: This floor is the reception of Building A and represents a consumption

pattern that is different from the base VB. While it was not suitable for the purposes of

this study, it could potentially be used in a future study to test transfer learning between

reception floors of different buildings. The consumption pattern of this floor is presented in

Figure 4.2.

Figure 4.2: Floor A0 cleaned load (last 5000 rows).

• Building B floor -1: The aforementioned floor in Building B is INESC TEC’s Smart Grids

and Electric Vehicles laboratory. Even though it presented a clear consumption pattern, it

was removed from the study due to the difference in the nature of the work carried out in

that laboratory. The load for this floor can be observed in Figure 4.3.
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Figure 4.3: Floor B-1 cleaned load (last 5000 rows).

• Building B floor 0: Similar to building A floor 0, building B floor 0 also corresponds to

the reception area and presents a different consumption pattern from the base building. The

load consumption for this floor is shown in Figure 4.4. It is evident that during the first

half of the analyzed period, the consumption behaves in an unpredictable and non-recurring

manner, almost like noise, which further justifies the removal of this floor from the study.

Figure 4.4: Floor B0 cleaned load (last 5000 rows).

• Building B floor 5: The analysis of the load consumption on Building B floor 5, as pre-

sented in Figure 4.5, indicates that this time series does not exhibit any discernible pattern

that could contribute to the objectives of this paper. As expected, this is due to the fact that

this floor is used as a rooftop in the building, which explains not only the low consumption

but also the completely different statistical distribution of data compared to the other floors.

Thus, the decision to remove this floor from the data set was necessary for the accuracy of

the load forecasting models developed in this study.



Results and Analysis 38

Figure 4.5: Floor B5 cleaned load (last 5000 rows).

The removal of all the aforementioned floors is justifiable, as they do not provide any signif-

icant pattern that could contribute to the development of the load forecasting models. The base

VB, which corresponds to building B floor 2, has a high correlation with the day of the week and

the hour of the day, which are the main features that this work attempts to extract and transfer.

This is evident from the data distribution shown in Figure 4.6. Thus, it can be concluded that the

floors removed do not provide any useful information for the transfer learning approach used in

this study.

Figure 4.6: Floor B2 cleaned load (last 5000 rows).

In the data cleaning process, as described in Section 3.1, several rows were identified as out-

liers and were removed for the remaining floors. Table 4.1 provides the number of removed rows

for each floor.
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Table 4.1: Summary of the data cleaning results.

VB Nº rows Nº removed Nº final % Removed
A1 53175 4453 48722 8.37
A2 54290 5072 49218 9.34
A3 54289 4536 49753 8.36
A4 54291 4921 49370 9.06
B1 54317 4574 49743 8.42
B2 54318 4604 49714 8.48
B3 53789 10099 43690 18.78
B4 54315 11542 42773 21.25

By analyzing the graphical comparison of the time series before and after cleaning, it is clear

that the process was successful. Figure 4.7 illustrates this comparison for the Base VB. Without

data cleaning, it was impossible to visualize the data due to clear errors in data collection.

Figure 4.7: Before and after cleaning on B2 (last 5000 rows).

Despite presenting clearly different consumption patterns and a high presence of outliers,

buildings B3 and B4 were kept in the study to demonstrate the results of transfer learning even in

non-ideal circumstances. Both buildings represent the VBs with the least amount of correlation

among all buildings, as shown in Table 3.2. Figure 4.8 presents the time series of VB B3, while

Figure 4.9 shows the same for B4. It is clear that these VBs exhibit significantly different patterns

when compared to the base VB in Figure 4.6, which will significantly impact the results discussed

in the following sections.
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Figure 4.8: Cleaned time series of VB B3 (last 5000 rows).

Figure 4.9: Cleaned time series of virtual building B4 (last 5000 rows).

4.2 Analysis of load forecasting results for each VB

In this section, it is presented a detailed analysis of the load forecasting results obtained for each

VB. One can assess the performance of the proposed transfer learning model by comparing its

predictions with the actual load values for each building. In addition, it is provided insights into

the accuracy and reliability of the model for different scenarios. By analyzing the results of the

experiments, it is intended to identify the strengths and weaknesses of the proposed model and

to shed light on the factors that may influence its performance. This analysis allows us to draw

conclusions on the suitability of the transfer learning approach for load forecasting in VBs and to

identify potential avenues for future research.

4.2.1 Load forecasting models with full data availability

To start the analysis under the first CS, as explained in Section 3.4 and showcased in Figure 3.6,

the evaluation metrics results for each VB are presented in Table 4.2, as discussed in Chapter 3.

While these metrics alone may not be enough to understand and evaluate the models, they serve

as a basis for comparing the transfer learning approach with the baseline models in the subsequent

sections. The metrics represent the error between the actual and predicted values for the test set,
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which was not provided to the model during training and spans a duration of two months. Other

than the errors in mae, mse, rmse and mape, the table also presents the time it took for the model

to compile, the angular coefficient and the R2 of the regression line between the predicted and the

validation data set.

Table 4.2: Results of the evaluation metrics for each VB in the first case scenario.

VB mae mse rmse mape (%) time (s) m R2

A1 141.27 37405.30 193.40 53.62 95.79 1.013751 0.834947
A2 93.74 19764.76 140.59 25.87 90.16 0.739909 0.74964
A3 225.09 87791.56 296.30 87.03 52.08 0.943177 0.829429
A4 93.55 17618.90 132.74 24.92 80.04 1.020041 0.879153
B1 190.07 54619.77 233.71 52.01 57.13 0.899292 0.796311
B2 60.85 8267.05 90.92 25.02 91.88 0.835454 0.855772
B3 51.85 5553.23 74.52 29.90 112.94 0.505781 0.506303
B4 43.44 3860.55 62.13 20.57 53.26 0.542767 0.452881

In order to get a comprehensive understanding of the model’s performance, it is necessary

to evaluate the results for each VB individually. For the sake of clarity and to ensure that the

graphics fit properly within the size of the thesis layout, the following visual representations will

only display a segment of the test set and corresponding predictions. This test set consists of 5376

rows of data with a frequency of 15 minutes, spanning a period of two months. However, for ease

of presentation and analysis, only the final 1500 rows of data will be displayed.

• Building A floor 1: Despite the high error rate identified in Table 4.2, it was anticipated

that the model would perform well for this VB, given that the data presented a discernible

pattern that could be comprehended by the model. Despite a MAPE of 53.62%, a graphical

analysis revealed that the predictions closely matched the actual values, affirming that the

model had indeed captured the patterns, as evidenced by the visual inspection of Figure 4.10

and Figure 4.11. The regression model presented a slope of 1.01 and a R2 of 0.83, both of

them being close to one, which indicates the predictions are in line with the test set. All

things considered, this model was deemed to be good and reliable despite its high MAPE.
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Figure 4.10: Actual load and predicted load for VB A1 (last 1500 rows).

Figure 4.11: Scatter plot with regression line between actual and predicted load for VB A1.

• Building A floor 2: The second VB in Building A, in contrast to the first one, demonstrates a

MAPE of 25.87% as indicated in Table 4.2, representing one of the lowest errors in the entire

set. This smaller error was expected due to the statistical distribution of the data from the

provided training set, which presents a much clearer pattern, facilitating the comprehension

from the model. Further analysis of the predicted load, as shown in Figure 4.12, and the

regression, as demonstrated in Figure 4.13, with 0.73 angular coefficient and R2 of 0.74,

supports the low error rate and provides additional evidence of the model’s accuracy.
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Figure 4.12: Actual load and predicted load for VB A2 (last 1500 rows).

Figure 4.13: Scatter plot with regression line between actual and predicted load for Virtual building
A2.

• Building A floor 3: For VB A3, similar to A2, it exhibits the highest MAPE among all VBs

(87%), but this high MAPE is not reflect in the graphics. Upon evaluating Figure 4.14, it

becomes clear that the model provides predictions that accurately follow the actual values.

The regression also does not explain the high MAPE presented in Table 4.2, since the slope

of the regression (m=0.94 and R2=0.83) is close to one, as seen in Figure 4.15.
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Figure 4.14: Actual load and predicted load for virtual building A3 (last 1500 rows).

Figure 4.15: Scatter plot with regression line between actual and predicted load for virtual building
A3.

• Building A floor 4: Building A4 is characterized by a MAPE of 24.92%, which represents

the third smallest value in Table 4.2. The adequacy of the model’s predictions can be seen

in Figure 4.16, where the predicted values closely follow the actual values. Additionally,

the regression analysis of the model, depicted in Figure 4.17, also displays one of the best

results.



4.2 Analysis of load forecasting results for each VB 45

Figure 4.16: Actual load and predicted load for VB A4 (last 1500 rows).

Figure 4.17: Scatter plot with regression line between actual and predicted load for virtual building
A4.

• Building B floor 1: Building B floor 1 exhibits a MAPE of 52.01%, which is significantly

higher than the best-performing models. However, this result was somewhat anticipated due

to the high measurement errors in most building B floors. These errors had a substantial

impact on the statistical distribution of the input time series. Despite the model’s trend to

overestimate the load during most of the period, Figure 4.18 reveals that it can recognize

weekly patterns and performs better during peak hours than during valley hours. The re-

gression line in Figure 4.19 indicates that the model performs relatively well, as the slope

and the R2 are close to one (m=0.89 and R2=0.79). However, it also suggests that the model

has a slight bias towards the overestimation of the load, as the dots tending to be over the

regression line indicates.



Results and Analysis 46

Figure 4.18: Actual load and predicted load for VB B1 (last 1500 rows).

Figure 4.19: Scatter plot with regression line between actual and predicted load for virtual building
B1.

• Building B floor 2: The analysis of B2 requires special attention as it serves as the base

model, presenting a relatively small MAPE of 25.02%. This low error is expected since,

unlike other floors in building B with higher measurement errors, B2 exhibits a clear and

consistent statistical distribution pattern, as shown in Figure 4.6. This figure also reveals

a higher load measurement in September compared to the previous month, contributing

to the underestimation of the model in Figure 4.20, which displays the last two weeks of

September. The regression line in Figure 4.21 shows a slope very close to one, indicating

a good model performance. However, it also reveals the model’s tendency to underestimate

the load in certain periods.
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Figure 4.20: Actual load and predicted load for VB B2 (last 1500 rows).

Figure 4.21: Scatter plot with regression line between actual and predicted load for virtual building
B2.

When selecting the 1500 rows before the last 1500 rows, the graph in Figure 4.22 illustrates

that during this period, the model exhibits an even better performance by avoiding the un-

usually high consumption at the end of September as shown in Figure 4.6. This reinforces

the choice of B2 as the base model.
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Figure 4.22: Actual load and predicted load for VB B2 (Before the last 1500 rows).

• Building B floor 3: Building B3 was a unique case from the beginning, as it had a sig-

nificantly higher percentage of removed rows during the data cleaning process, amounting

to 18.78%, which was evidence of the high measurement errors in the floor. Despite this,

B3 did not have one of the highest MAPE values, instead having a value of 29.9%. How-

ever, Figure 4.23 depicts a low degree of accuracy in the model, visually appearing lower

than other models with higher MAPE values. The statistical distribution of the input data

shown in Figure 4.8 displays an unusual pattern that does not correspond to the expected

load consumption during the week, which would justify the removal of B3 from the study.

Nevertheless, it was decided to keep B3 in the analysis to test transfer learning even in non-

ideal scenarios. The regression line in Figure 4.24 showed a modest fit of the model, with

the angular coefficient of 0.5 and R2 of 0.5, but also presented extreme outliers.

Figure 4.23: Actual load and predicted load for VB B3 (last 1500 rows).
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Figure 4.24: Scatter plot with regression line between actual and predicted load for VB B3.

• Building B floor 4: The analysis for B4 is similar to the analysis for B3. B4 had the highest

percentage of removed rows in Table 4.1, indicating a higher error in the input data due to

measurement errors on this floor. However, B4 had an unexpectedly low error among all

models, around 20.57%. The graphical analysis of the predicted load in Figure 4.25 shows

a strange weekly pattern of consumption, with the model struggling to match it with low

success. The regression line in Figure 4.25 shows a good fit but a high bias, similar to B3.

Figure 4.25: Actual load and predicted load for VB B4 (last 1500 rows).
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Figure 4.26: Scatter plot with regression line between actual and predicted load virtual building
B4.

Note that, as shown in Table 4.2, the VBs that performed best according to MAPE are B4, A4,

B2, and A2. While MAPE is a useful metric for evaluating model performance, it is important to

use a variety of evaluation metrics and tools, as some may have different characteristics that can

lead to incorrect conclusions. This is particularly evident in some of the VBs in this study, such as

B4, which has the smallest MAPE but a graphical evaluation reveals that its performance is worse

than other VBs with higher MAPE. Therefore, a comprehensive analysis of multiple metrics is

crucial for an accurate evaluation of model performance.

Upon closer inspection of the results, it can be observed that the models tend to overestimate

the load during the night, while underestimating it during the day. This behavior may be attributed

to the fact that the training set contains more data for the daytime period, thus causing the model

to bias towards these patterns. It is recommended to conduct further analysis and adjustments to

improve the model’s performance during nighttime hours. However, despite this limitation, the

model shows promise and is deemed sufficient for the proposed case study on the implementation

and analysis of transfer learning. While further refinement of the model could potentially enhance

the results, it is essential to consider the scope and focus of this work. The primary objective of

this research is not to develop the absolute best load forecasting model, but to effectively apply

transfer learning in the context of building load forecasting. Consequently, the resources required

for additional optimization may not yield proportional improvements in the context of transfer

learning application, thus not justifying the associated costs.

4.2.2 Load forecasting models with scarcity of data

This section focuses on the models developed under the second CS presented in Section 3.4 and

illustrated in Figure 3.6. This scenario is characterized by the limited availability of data and is

included for comparison purposes, as both CSs 2 and 3 have the same data availability. This will
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allow us to assess the performance of the transfer learning approach compared to that of a deep

learning approach that does not involve knowledge transfer.

The discussion begins by presenting the results of the evaluation metrics for CS 2 in Table 4.3.

It is clear that almost all errors have increased, as the available data for this CS is limited to only

2688 rows (four weeks of data). Additionally, the training time is significantly reduced, although

the model tends to take more epochs to complete training, as the amount of data to learn from

is significantly less than in CS 1. However, as stated previously, a simple analysis of the errors

presented by the model is insufficient to evaluate the model accurately. Therefore, this study

provides a case-to-case analysis, equal to the one in the previous section, to further understand the

performance of the models.

Table 4.3: Evaluation metrics for the load forecasting in CS 2.

VB mae mse rmse mape (%) time (s) m R2

A1 277.32 148086.06 384.82 61.57 10.48 -0.01697 0.019916
A2 194.16 92704.02 304.47 49.38 19.71 -0.01106 0.010452
A3 264.74 176568.40 420.20 61.82 11.20 0.011686 0.011166
A4 206.15 130563.83 361.34 34.59 20.53 -0.00466 0.027029
B1 238.54 110190.49 331.95 39.98 15.63 0.074444 0.467513
B2 144.18 47455.83 217.84 41.65 12.97 -0.01305 0.020612
B3 87.04 12478.05 111.71 54.28 12.35 0.016114 0.042767
B4 35.39 3749.88 61.24 15.13 12.97 0.01142 0.002411

• Building A floor 1: In VB A1, the expected increase in errors due to scarce data is clear,

as presented in Table 4.3. The MAPE grows by almost 15% and the RMSE increases by

almost 99%. Figure 4.27 clearly shows that, for the last 1500 rows of the test set, the model

is unable to accurately predict the load consumption pattern, in contrast to its counterpart

from CS 1. The increase in RMSE more clearly shows the decrease in accuracy than the

increase in MAPE. Additionally, the regression in Figure 4.28 has a slope far from the forty-

five degrees reference, indicating that the model cannot accurately capture the pattern.

Figure 4.27: Actual load and predicted load for VB A1 in CS 2 (last 1500 rows).
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Figure 4.28: Scatter plot with regression line between actual and predicted load for virtual building
A1 in CS 2.

• Building A floor 2: For VB A2, it is observed that the MAPE has increased by 90.8%

in comparison to CS 1, while the RMSE has grown by a staggering 116%. The growth

in error is clear when analyzing Figure 4.29, which shows an almost continuous line that

fails to capture any pattern of consumption. Furthermore, Figure 4.30 shows a slope with a

negative inclination and high bias, confirming the visual analysis of the line plot.

Figure 4.29: Actual load and predicted load for VB A2 in CS 2 (last 1500 rows).
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Figure 4.30: Scatter plot with regression line between actual and predicted load for VB A2 in CS
2.

• Building A floor 3: When analyzing the metrics for VB A3, it is important to note that the

MAPE for CS 2 shows an unexpected reduction of 28.96% compared to CS 1. However, the

RMSE presents a significant increase of 41.82%, which is expected since CS 2 has fewer

data available, making it a worse scenario. When analyzing Figure 4.31 in comparison to

Figure 4.14, it is clear that the model’s error is much higher in CS 2, as it is unable to

identify the pattern or magnitude of energy consumption. The regression line in Figure

4.32 also shows evidence of the model’s poor performance, with a negative slope and a

distribution of dots that do not fit the expected pattern. For this VB, the MAPE shows a

different scenario than the RMSE, but the graphics presented clearly show that the RMSE

metric is more reliable, emphasizing the need for several evaluation metrics.

Figure 4.31: Actual load and predicted load for VB A3 in CS 2 (last 1500 rows).



Results and Analysis 54

Figure 4.32: Scatter plot with regression line between actual and predicted load for VB A3 in CS
2.

• Building A floor 4: For A4, all error metrics show an increase in comparison to CS 1.

The MAPE shows an increase of 38.77%, while the RMSE shows a much higher increase

in error, of about 172.22%. Looking at Figure 4.16, it is clear that the model misses the

pattern and magnitude of energy consumption, without a clear pattern of consumption. The

visual error increase is much more noticeable with the RMSE than with the MAPE. The

regression line in Figure 4.34 also shows a negative slope and a distribution that is different

than expected, reinforcing the impression given by the line plot.

Figure 4.33: Actual load and predicted load for VB A4 in CS 2 (last 1500 rows).
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Figure 4.34: Scatter plot with regression line between actual and predicted load for virtual building
A4 in CS 2.

• Building B floor 1: The results for VB B1 are similar to those observed for A3, with

a decrease of 23.13% in MAPE and an increase of 42.05% in RMSE when compared to

CS 1. The plot in Figure 4.35 shows a significant deviation from the expected pattern, thus

reinforcing the scenario presented by the RMSE. Moreover, the regression analysis depicted

in Figure 4.36 also confirms this trend, with a regression line that is far from desirable

angular coefficient and a distribution of dots that does not follow the expected pattern for a

good model.

Figure 4.35: Actual load and predicted load for VB B1 in CS 2(last 1500 rows).
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Figure 4.36: Scatter plot with regression line between actual and predicted load for virtual building
B1 in CS 2.

• Building B floor 2: For the base VB (B2), the results align with the expectation of increased

errors across all metrics in comparison to CS 1. Specifically, the MAPE shows a 66.45%

increase and the RMSE shows a 139.59% increase. Figure 4.37 also indicates the poor

performance of the model, with an inability to capture the pattern of consumption due to

the low availability of data. Similarly, Figure 4.38 corroborates the same outcome, thus

highlighting the difficulty faced in accurately modelling the load consumption in this case.

Figure 4.37: Actual load and predicted load for VB B2 in CS 2 (last 1500 rows).
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Figure 4.38: Scatter plot with regression line between actual and predicted load for VB B2 in CS
2.

• Building B floor 3: For VB B3, as previously discussed in subsection 4.2.1, it is expected

to have worse performance than other models due to its high measurement errors. As antici-

pated, the model for this CS shows an increase in error across all metrics. However, there is

a particularity in this case, as the MAPE shows a higher increase, about 81.55%, compared

to an increase of 49.9% in the RMSE. This is the first time in this study that the MAPE

shows a higher increase in error than the RMSE. Figure 4.39 illustrates the increased error

compared to Figure 4.23, and the regression line in Figure 4.40 further confirms the poor

performance of the model. In this scenario, it is difficult to determine which metric is more

significant in telling the story of the comparison between the two CSs.

Figure 4.39: Actual load and predicted load for VB B3 in CS 2(last 1500 rows).
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Figure 4.40: Scatter plot with regression line between actual and predicted load for VB B3 in CS
2.

• Building B floor 4: B4 is a specific case, since both the MAPE and RMSE presents a

decrease in error in comparison to the case of high availability of data. MAPE decreased in

26.47% while RMSE descreased 1.44%. This is a non-expected result since the expected

outcome of more data availability is an increase in performance. Figure 4.41 shows that the

predictions are far from the true values, not corresponding to the 15.13% MAPE presented

in Table 4.3, although this figure does not show the whole validation set, meaning that the

model could have performed better for the other frame.

Figure 4.41: Actual load and predicted load for VB B4 (last 1500 rows).

To study that, instead of plotting the last 1500 rows of the test set (Figure 4.41), Figure

4.42 depicts the first 1500 rows, showing a little improvement in performance compared to

Figure 4.41. Yet, this still does not explain the far above average error for this model. The
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regression line in figure 4.43 shows a slope much closer to forty-five degrees than the other

in this CS, but still does not corroborate the 15% error presented by the MAPE.

Figure 4.42: Actual load and predicted load for VB B4 (first 1500 rows).

Figure 4.43: Scatter plot with regression line between actual and predicted load for VB B4 in CS
2.

In this case, the results align with the expected outcome, as there was an increase in error due

to low data availability in almost all VBs, as Table 4.4 indicates, which presents an opportunity for

the application of transfer learning. However, some of the VBs showed an increase in MAPE, such

as A3 and B1, while one VB showed an increase in all error metrics. For A3 and B3, the increase

in MAPE did not reflect in other evaluation tools used in this study, indicating that this metric is

not able to properly assess the model performance. In the case of B4, both MAPE and RMSE

increased, but this result is not concerning as this building has a complex consumption pattern due

to measurement errors. In this way, the performance of the model is impacted by the randomness

of the statistical distribution. While removing B4 from the study could have been justified, it
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was kept to test transfer learning in data-challenging contexts. Another point to be noticed is the

significant reduction of training time in all models in CS 2, going from an average of 79.16 to

14.48 seconds, meaning they need less computational effort due to limited data. Additionally, it

is evident that CS 1 tends to perform better than CS 2, the mean angular coefficient of CS 1 is of

0.81 compared to 0.00849, while the mean R2 for CS 1 is 0.73 against 0.0752 on CS 2, indicating

that even if CS 2 performs better than CS 1 according to some metrics in specific cases, the results

are not reliable when analysing graphically.

Table 4.4: Comparison of errors between CS 2 and CS 1 for all VBs.

VB Case Scenario 1 Case Scenario 2 Case 2/Case 1
RMSE MAPE (%) RMSE MAPE (%) RMSE MAPE (%)

A1 193.40 53.62 384.82 61.57 98.97% 14.82%
A2 140.59 25.87 304.47 49.38 116.57% 90.85%
A3 296.30 87.03 420.20 61.82 41.82% -28.96%
A4 132.74 24.92 361.34 34.59 172.22% 38.77%
B1 233.71 52.01 331.95 39.98 42.04% -23.13%
B2 90.92 25.02 217.84 41.65 139.59% 66.45%
B3 74.52 29.90 111.71 54.28 49.90% 81.55%
B4 62.13 20.57 61.24 15.13 -1.44% -26.47%

4.3 Comparison of transfer learning approach to baseline models

In the previous section (Section 4.2), it has been presented the results of the experiments on apply-

ing transfer learning to the task of energy consumption forecasting in VBs. The performance of

the models in two different CSs was evaluated, one with high availability of data and one with low

availability of data. In this section, a third CS (Figure 3.6) is developed, comparing the results of

the transfer learning approach with the results of the baseline models. Note that the baseline mod-

els were developed using traditional deep learning models without transfer learning, as described

in chapter 3.

The comparison will be based on the evaluation metrics presented in the previous chapter,

such as MAPE, RMSE, the regression angular coefficient, R2 and training time. Additionally, it

is analyzed the graphics generated by the models, which provide a visual representation of their

performance. Our goal is to determine whether the transfer learning approach offers significant

results over the baseline models, particularly in the case of low data availability. The analysis will

be performed separately for each VB since they have varying levels of correlation with the base

model B2 (as shown in Table 3.3) and are expected to have different outcomes. To start with, Table

4.5 shows the results of the metrics used to evaluate the model’s performance for this CS.



4.3 Comparison of transfer learning approach to baseline models 61

Table 4.5: Evaluation metrics of the models for CS 3.

VB mae mse rmse mape (%) time (s) m R2

A1 179.14 53336.18 230.95 57.77 16.85 0.86413977 0.688583574
A2 98.60 21811.66 147.69 34.32 12.89 0.821721401 0.728215736
A3 163.88 53081.38 230.39 52.14 31.97 0.851125453 0.688551049
A4 115.06 30405.07 174.37 27.31 15.18 0.876891476 0.748942704
B1 145.41 33269.52 182.40 36.28 17.37 0.870978007 0.74941258
B2 62.14 9115.53 95.48 24.88 29.18 0.769839011 0.794294547
B3 108.32 17508.88 132.32 70.93 14.43 0.261461595 0.176170862
B4 35.10 3059.17 55.31 16.27 16.95 0.484999986 0.510738059

• Building A floor 1: The evaluation of the transfer learning approach for VB A1 is presented

in Table 4.5. The MAPE for this model is found to be 57.77%, which is 6.17% lower

than that of CS 2, and 7.74% greater than that of CS 1. This outcome aligns with the

expected scenario, where the transfer learning model is expected to perform better than the

one with scarce data (CS 2), and approach the performance of the model trained with full

data availability (CS 1). The RMSE, when compared across the scenarios, shows an even

better performance for the transfer learning approach, with a 39.99% improvement against

CS 2, and a higher proximity from CS 1, with an RMSE that is 19.41% higher. The line

plot in Figure 4.44, in comparison to Figure 4.27, shows a significant improvement in the

model’s capability to capture the consumption pattern, with a plot comparable to that of

Figure 4.10, where both show a good forecasting performance.

Figure 4.44: Actual load and predicted load for VB A1 in CS 3 (last 1500 rows).

Upon examination of the regression plot presented in Figure 4.45, it can be observed that

the slope of the regression closely approaches forty-five degrees, indicating an improved

understanding of the pattern of consumption in comparison to the regression plot in Figure

4.28, with the angular coefficient and R2 much closer to one. However, a significant amount

of bias is also evident from the distribution of dots, which is higher than that observed in
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Figure 4.11. This difference in bias might account for the variation in accuracy between the

two models.

Figure 4.45: Scatter plot with regression line between actual and predicted load in CS 3 for VB
A1.

Overall, the transfer learning approach for this VB presents remarkable outcomes, as it

surpasses CS 2 and approaches CS 1, taking only 17.6% of the training time required for

the latter (training time in CS 1 is 95.79 seconds against 16.85 seconds in CS 3), leading

to reduced computational effort. These results were expected, given that the VB exhibits

a high correlation with the base model, approximately 78.2%, which is the second-highest

correlation among all models (Table 3.3).

• Building A floor 2: For VB A2, similar to A1, it is expected to achieve good results when

applying transfer learning mostly because of the high correlation with the base building,

as shown in Table 3.3. As presented in Table 4.5, this model showed a MAPE of 34.32%,

indicating a 30.49% reduction when compared to CS 2 (table 4.3) and 32.66% higher than

CS 1 (table 4.2). Upon investigating the RMSE, the results improved significantly, with a

reduction of 51.49% against CS 2 and only 5.05% more error than CS 1. In Figure 4.46, a

clear consumption pattern is visible, with a good match with the actual energy consumption.

It is very different from what was seen in its counterpart in CS 2 (Figure 4.29) and much

closer to the line plot in CS 1 (Figure 4.12).
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Figure 4.46: Actual load and predicted load for VB A2 in CS 3 (last 1500 rows).

Upon scrutinizing the scatter plot in Figure 4.47, a slope that is much closer to the forty-five

degrees angle is noticeable, with angular coefficient of 0.82 and R2 of 0.72, providing further

evidence of the model’s precision. In comparison to CS 1 (Figure 4.13), a slight increase

in the dispersion of the dots is observed, indicating a greater bias that could explain the

difference in accuracy between the two models. Once again, CS 3 demonstrated excellent

results, surpassing CS 2 in all aspects, while requiring little computational effort compared

to CS 1. The graphical analysis also validates the evaluated metrics, especially the RMSE.

Figure 4.47: Scatter plot with regression line between actual and predicted load in CS 3 for VB
A2.

• Building A floor 3: Great results are expected from this VB, as it has the highest correlation

with the base VB (Table 3.3). As discussed in Section 4.2.2, for this VB, CS 1 presented a

higher MAPE than CS 2, and CS 3 showed a 15.66% reduction in MAPE compared to CS
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2 and a 40.09% reduction from CS 1. Regarding the RMSE, the context returned to the ex-

pected scenario, with CS 1 presenting a lower error than CS 2. However, it was unexpected

that CS 3 remained the best scenario, with a 45.17% reduction in error compared to CS 2

and a 22.24% reduction compared to CS 1. Figure 4.48 demonstrates a great understanding

of the pattern, and when compared with Figure 4.14, it is clear that although both predictions

appear to be quite accurate, the one from CS 3 shows fewer data noisy in general.

Figure 4.48: Actual load and predicted load for VB A3 in CS 3 (last 1500 rows).

The scatter plots for both CS 1 (Figure 4.14) and CS 3 (Figure 4.48) show a regression line

with a slope close to the forty-five degrees mark, but the latter presents a higher dispersion

of the dots. Overall, the transfer learning model for VB A3 performs extremely well, with

significantly better results than CS 2 and slightly better than CS 1 (althought with worst

angular coefficient and R2 in the regression), while taking only 61% of the training time

required for CS 1.
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Figure 4.49: Scatter plot with regression line between actual and predicted load in CS 3 for VB
A3.

• Building A floor 4: The results for VB A4 show an increase in error in all metrics when

compared to CS 1 (Table 4.2) and a decrease in MAPE and RMSE when compared to CS

2 (Table 4.3). Specifically, the MAPE presents a reduction of 21.03% while the RMSE

decreases by 51.74% against CS 2. On the other hand, compared to CS 1, the MAPE

increases by 9.59% and the RMSE increases by 31.37%. Regarding the line plot in Figure

4.50, it presents a clear pattern of consumption and performs extremely well compared to

CS 2, and slightly worse than CS 1, showing less noisy data but making more mistakes in

the magnitude of consumption.

Figure 4.50: Actual load and predicted load for VB A4 in CS 3 (last 1500 rows).

Regarding the regression line, both CS 1 (Figure 4.17) and CS 3 (Figure 4.51) have a good

slope, but CS 1 has considerably less bias and the dots are way less dispersed, indicating a
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higher accuracy of the model. This is also evidenced by the angular coefficient and the R2 of

the regression line, which are closer to one in CS 1. Overall, CS 3 still shows a significant

improvement compared to CS 2 and achieves relatively good performance given the low

data availability and a training time of about 19% of the training time for CS 1 (Table 4.5

and Table 4.2).

Figure 4.51: Scatter plot with regression line between actual and predicted load in CS 3 for VB
A4.

• Building B floor 1: For VB B1, similar to A3, the transfer learning model presented CS

3 as the best performing scenario. The model showed a MAPE reduction of 9.25% in

comparison to CS 2 and a reduction of 30.24% compared to CS 1. Regarding the RMSE, it

shows a decrease of 45.05% in comparison to CS 2 and 21.95% compared to CS 1 (Table

4.5). The line plot in Figure 4.52 presents a much better understanding of the pattern than in

CS 2 and shows less noisy data than CS 1, performing better in the magnitude of the peaks

and valleys.
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Figure 4.52: Actual load and predicted load for VB B1 in CS 3 (last 1500 rows).

The regression lines in Figure 4.53 are quite similar to CS 1, making it hard to visually spot

the differences, with angular coefficient and R2 very close. Once again, the transfer learning

model showed excellent results, performing above expectations with limited resources.

Figure 4.53: Scatter plot with regression line between actual and predicted load in CS 3 for VB
B1.

• Building B floor 2: Upon analyzing Building B floor 2, it was observed that this VB was

included in the study to demonstrate the best possible scenario for the application of transfer

learning. This is the scenario where the target and source are as similar as possible. The

weights and parameters from the pre-trained model in CS 1 were transferred to the model

in CS 3, with the expected outcome being that they would have very similar results, and of

course, a significant improvement from CS 3 in comparison to CS 2. The results showed a

40.26% improvement in MAPE and a 56.17% improvement in RMSE.
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In terms of the comparison between CSs 3 and 1, there was a small improvement of 0.57%

in MAPE in favor of CS 3, while RMSE showed 5% more error in CS 3. The graphical

analysis confirmed the evaluation of metrics, where a significant improvement was observed

in Figure 4.54 compared to Figure 4.37 and it was very similar to Figure 4.20. The CS 1

shows better accuracy in the magnitude of consumption during peak hours but also predicted

some spikes during weekends that were not present in CS 3.

Figure 4.54: Actual load and predicted load for VB B2 in CS 3 (last 1500 rows).

Upon inspecting the scatter plot in Figure 4.55, it was observed that the slope is excellent

and very similar to CS 1 (Figure 4.21). However, there is a higher density of dots at the end

of the graphic for CS 1, indicating less bias. Overall, the results for this CS line up well with

expectations, as CS 3 shows significant improvement from CS 2 and is very close to CS 1,

all while requiring much less computational effort.

Figure 4.55: Scatter plot with regression line between actual and predicted load in CS 3 for VB
B2.
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• Building B floor 3: The analysis of VB B3 reveals that this VB presented the most chal-

lenging task in the study, given its low correlation with the base VB, only 41.69% (Table

3.3). This low correlation is reflected in the results, showing a clear case of negative transfer

[11], where the transferred knowledge results in a downgrade of the model. When compar-

ing to CS 2, the model showed a 30.68% higher MAPE and 18.46% more RMSE. Compared

to CS 1, the MAPE increased by 137.25% and the RMSE by 77.56%. Graphical analysis

shows that the model understands some pattern, which does not happen in CS 2, but this

pattern recognized by the model does not fit well with the unusual behavior of the load in

the first half of the load curve of VB B3 (Figure 4.8), as seen in Figure 4.56.

Figure 4.56: Actual load and predicted load for VB B3 in CS 3 (last 1500 rows).

The scatter plot for CS 3 in Figure 4.57 indicates an improvement compared to CS 2 (Figure

4.40), with the slope of the regression much closer to forty-five degrees and the angullar

coefficient and R2 much higher than CS 2. For this VB, the analysis indicates that it performs

much worse than CS 1. The graphical analysis indicates a slight improvement in comparison

to CS 2, but this improvement is not corroborated by the evaluation metrics (MAPE and

RMSE). The pattern displayed by the forecasting curve for this scenario suggests that if the

load had a more reliable pattern, not degraded by measurement errors, an improvement from

this model to the CS 2 model would be expected.
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Figure 4.57: Scatter plot with regression line between actual and predicted load in CS 3 for VB
B3.

• Building B floor 4: The evaluation of floor 4 in Building B yields some of the most unan-

ticipated findings. In comparison to CS 1, there is a 20.93% reduction in and a 10.98%

reduction in RMSE, thus surpassing CS 1 based on these performance indicators. When

juxtaposed with CS 2, the MAPE is 7.54% higher. However, the RMSE reveals a 9.68% de-

crease in error. These metrics alone would suggest that CS 3 is the most effective scenario,

followed by CS 2, with CS 1 being the least desirable. Upon examining the line plot of CS

3 in Figure 4.58, it becomes evident that the model recognizes a pattern similar to that in CS

1 (Figure 4.25), albeit with reduced data noise. Furthermore, the line plot demonstrates a

marked improvement over CS 2 (Figure 4.41), which fails to exhibit any discernible pattern.

Figure 4.58: Actual load and predicted load for VB B4 in CS 3 (last 1500 rows).

The scatter plot depicted in Figure 4.59 exhibits performance strikingly similar to that of CS
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1 (Figure 4.26), rendering it visually challenging to discern any differences in effectiveness

between them. In contrast to CS 2, the regression line displays a significantly improved

slope, and the data points are less dispersed. Upon scrutinizing all metrics and visual rep-

resentations for this scenario, it becomes apparent that, in this instance, applying transfer

learning not only enhances performance compared to CS 2 but also outperforms CS 1 (in

MAPE, RMSE and R2). This is despite the low PCC between the base VB and this VB

(Table 3.3).

Figure 4.59: Scatter plot with regression line between actual and predicted load in CS 3 for VB
B4.

4.4 Discussion of results

This section presents the findings and conclusions derived from the application of transfer learning

for load forecasting in buildings. The study’s primary objective was to investigate the effectiveness

of employing transfer learning techniques to improve the accuracy and reliability of load forecast-

ing models. The results and analysis were conducted based on multiple scenarios, comparing the

performance of different models and techniques.

The results demonstrated that transfer learning could significantly enhance load forecasting

performance under several building contexts. In most of the cases, due to the high correlation

between source and target (Table 3.3), the transfer learning approach (CS 3) outperformed the

baseline model with a scarcity of data (CS 2), even surpassing, for some cases, the baseline model

with a richness of data (CS 1). The improvement was evaluated across different performance

metrics, including MAPE, RMSE, and the manual observation of graphics such as line and scatter

plots.

The findings also revealed that the performance of the transfer learning models varied depend-

ing on the specific scenarios and the degree of similarity between the base VB and the other VBs.
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In some cases, transfer learning models exhibited remarkable improvement over the traditional

baseline models, while in other instances, the performance gains were more modest or even non

existent, configuring a case of negative transfer. Figure 4.60 and Figure 4.61 illustrates this results.

Figure 4.60: RMSE on all CSs (%).

Figure 4.61: MAPE on all CSs (%).

Considering the RMSE metric, seven out of the eight VBs exhibited improved performance,

with an average error reduction of 42.76% compared to CS 2. The only VB that demonstrated

negative transfer was B3, with an increase of the RMSE of about 18.46%. B3 and B4 represent
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specific cases where the application of transfer learning may not be ideal. The target building B3

has a load curve that is substantially different from the source building B2 for most of the domain

(Figure 4.8 and Figure 4.6), which implies that any knowledge transferred from the base case may

lead to prediction errors.

A similar issue arises for B4, which has an unreliable load curve (Figure 4.9) due to measure-

ment errors. Consequently, even the model for CS 1 encounters prediction challenges. However,

for B4, the most accurate model in terms of RMSE employed the transfer learning approach. In

comparison to CS 1, only three buildings demonstrated superior performance: B4 (as previously

mentioned), A3, and B1, with error reductions of 10.98%, 22.24%, and 21.95%, respectively.

These results are summarized in Table 4.6.

Table 4.6: Comparison between CS 3 and baseline models using RMSE.

VB CS 3/CS 2 CS 3/CS 1
A1 39.99% -19.41%
A2 51.49% -5.05%
A3 45.17% 22.24%
A4 51.74% -31.37%
B1 45.05% 21.95%
B2 56.17% -5.01%
B3 -18.46% -77.56%
B4 9.68% 10.98%

In what concerns to the MAPE metric, the results are more modest, with an average error

reduction of 20.48% compared to CS 2 (accounting only for positive transfer cases). B3 was the

sole building exhibiting negative transfer, with the transfer learning application yielding 30.68%

more error than CS 2. Despite the error observed in Building 4 (B4) for Case Study (CS) 3 being

higher than that of CS 2, this should not be construed as an occurrence of negative transfer. This

is due to the fact that B4’s performance exceeded that of the scenario from which it assimilated

knowledge, specifically, CS 1. Indeed, there was a reduction of 20.93% in MAPE, as can be

substantiated in Table 4.7.

Despite the models for B3 and B4 are not ideal, the transfer learning results would likely be

positive if the test data utilized for metric calculation were replaced with actual building consump-

tion data. The data for these buildings (Figure 4.8 and Figure 4.9) exhibit abnormal behavior for

load consumption in a commercial building, which could explain the observed discrepancies in

performance.
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Table 4.7: Comparison between CS 3 and baseline models using MAPE.

VB CS 3/CS 2 CS 3/CS 1
A1 6.17% -7.74%
A2 30.49% -32.66%
A3 15.66% 40.09%
A4 21.03% -9.59%
B1 9.25% 30.24%
B2 40.26% 0.57%
B3 -30.68% -137.25%
B4 -7.54% 20.93%

According to the graphical analysis conducted in section 4.3, the transfer learning approach

resulted in improvements compared to CS 2 for all VBs, except for B3 and B4. However, even in

these cases, the knowledge transfer provided a pattern for the model that, if not for the measure-

ment errors distorting the load curve, would likely have led to performance enhancement. This

statement is clear when comparing the slope of the scatter plot from CS 3 (Figure 4.57) to CS 2

(Figure 4.40), where the first one presents a slope much closer to forty-five degrees. the mean

angular coefficient for CS 2 was of 0.00849, while for CS 3 was of 0.72, stunningly better. Also,

the R2 averaged 0.0752 on CS 2 against 0.63 on CS 3. Those metrics indicates that despite the

error results, the model’s pattern understanding was much better in CS 3 compared to CS 2. It is

important to note that the graphical analysis aligned more closely with the results obtained from

the RMSE metric than those from the MAPE metric.

The analysis conducted in this study indicates that transfer learning can be an effective ap-

proach for enhancing load forecasting performance in buildings. By leveraging the knowledge

acquired from a base building, and supplying only a month of data, the transfer learning mod-

els can adapt and generalize to new, yet related, VB contexts, leading to improved forecasting

accuracy and reliability.

However, the extent of improvement in forecasting performance depends on several factors:

(i) the degree of similarity between the base and VBs, (ii) the quality and quantity of available data

both in source and target models, (iii) the choice of transfer learning techniques, (iv) geographical

and weather conditions. Therefore, it is essential that practitioners carefully consider these factors

when implementing transfer learning for building load forecasting.

This study has demonstrated the potential of transfer learning as a promising technique for

improving load forecasting in buildings. The findings contribute to the growing body of knowledge

on the application of machine learning in energy forecasting and support the adoption of transfer

learning in building energy management systems to optimize energy consumption and reduce

operating costs.
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Conclusion and Future Work

This thesis presents a comprehensive literature review on data-driven methods for load forecasting,

with particular focus on transfer learning applied to commercial buildings. To evaluate the impor-

tance of the proposed methodology, three case scenarios were assessed. The first is a scenario of

full data availability, with more then two years of collected data at disposal. The second is a case

scenario simulating a situation with low data availability, containing only a month of measured

data. Lastly, the third is a hybrid scenario, where low quantity of data is available, but the models

have access to the weights of a pre-trained neural network model with high data availability to

gather knowledge from.

The results effectively demonstrate the advantages of transfer learning approach for load fore-

casting within the context of virtual buildings employed in this study. By using pre-trained models

and fine-tuning them with limited data, mean forecasting accuracy improvement was observed

in 42.76% in RMSE and 20.48% in MAPE compared to the CS with scarce data. This achieve-

ment bears significance, as it addresses one of the foremost challenges encountered by data-driven

models, i.e., data scarcity. Moreover, the enhanced generalization and scalability of data-driven

models can facilitate building manager in implementing techniques for reducing energy consump-

tion, thereby contributing to decarbonization.

Another contribution of transfer learning methods is the potential for reducing computational

time from load prediction. It was observed a 72.62% reduction in computational time whilst using

transfer learning when compared to the traditional approach on CS 1. Such accomplishments may

be of interest for building operators to update existing models upon the acquisition of new data

by transferring knowledge between models. The proposed methodology can be particularly ben-

eficial for buildings with newly installed energy metering and desire to implement their own load

forecasting model but lack data for traditional architectures. Furthermore, the results presented in

this thesis also indicate that transfer learning can contribute to improve patterns recognition within

dataset, even under usually difficult scenarios.

Finally, the implementation of transfer learning techniques applied to data-driven models for

load forecasting in commercial buildings provide insights and lay further groundwork for research

and development in this field of study. The results observed hold significant implications for smart

75
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cities, as they underscore the potential of transfer learning in improving energy management and

reducing environmental impact of the building sector.

Nevertheless, to successfully employ the proposed model presented in this thesis, it is of ut-

most importance to consider its limitations. The implementation of models considered electricity

consumption in commercial buildings. Therefore, it may not be as effective when employed to dif-

ferent categories of buildings such as residential and industrial constructions. Furthermore, in this

study it was employed the transfer learning technique of homogeneous inductive learning, which

was the best fit for the scope of this project. There are other frameworks, as discussed in chapter 2

that may address potential reader’s needs more properly. Although it was observed improvement

in pattern recognition, the employed method did not explore model interpretability, which is an

aspect of increasing interest but without a solid literature available yet.

Considering the limitations and opportunities identified during the development of this thesis,

it is presented below potential directions for future work that can be explored:

1. Diverse Building Types and Domains:investigate the applicability of transfer learning for

load forecasting in diverse building types and domains, such as residential or industrial

environments;

2. Multiple Datasets and Contexts: assess the generalizability of the transfer learning ap-

proach to multiple contexts, weathers and geographical locations to determine its broader

utility in different scenarios;

3. Alternative Transfer Learning Approaches: explore alternative transfer learning approaches

and compare their performance in load forecasting for building energy management;

4. Computational Effort Implications: evaluate the computational effort implications of

transfer learning in more complex environments, involving larger datasets or more features,

to better understand its practical limitations and possible benefits;

5. Model Interpretability: examine the interpretability of models developed using transfer

learning and explore techniques to improve their explainability in real-world applications;

6. Additional Data Sources: Develop methods to enhance the transfer learning approach by

incorporating additional data sources, such as building automation systems or IoT devices,

to provide a richer context for forecasting and energy management.

7. Transfer learning integrated in a smart management environment: Directly integrate

the transfer learning forecast enhanced model to a management system to evaluate the en-

hancement in control of the energy system provided by the transfer learning approach.

Pursuing these directions in future work will help address the limitations of the current study

and expand our understanding of the potential applications and benefits of transfer learning in the

domain of building energy management and load forecasting.
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Overcoming Data Scarcity in Load Forecasting: A Transfer Learn-
ing Approach for Commercial Buildings

Felipe Dantas do Carmo, Wellington Fonseca, Tiago André Soares

• Development of a case study involving virtual buildings in the INESC
TEC facilities;

• Development of multiple load forecasting models using recurrent and
LSTM layers;

• Development of transfer learning based load forecasting models with
data scarcity;
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Nomenclature

ADAM Adaptive moment estimation
ANN Artificial Neural Network
BPNN Back propagation neural network
CNN Convolutional neural network
CS Case Scenario
DNN Deep neural network
IQR Interquartile range
LSTM Long short term memory
MAE Mean absolute error
MAPE Mean absolute percentage error
MSE Mean squared error
PS(X) Source probability distribution
PT (X) Target probability distribution
PCC Pearsson correlation coefficient
ReLu Rectified linear unit
RMSE Root mean squared error
RNN Recurrent Neural Network
seq2seq sequence-to-sequence
STLF Short-term load forecasting
DS Source domain
DT Source domain
Tanh Hiperbolic tangent
TL Transfer Learning
VB Virtual Building

1. Introduction

1.1. Background and motivation

The urgency of mitigating greenhouse gas emissions is escalating the sig-
nificance of energy-efficient buildings worldwide. Considering that approxi-

2



mately one-third of these emissions come from buildings, energy efficiency in
this sector has become an indispensable focal point (Pinto et al., 2022). Load
forecasting , a prominent factor in these efforts, is very important in facili-
tating energy management strategies that are both effective and sustainable.

The advent of data-driven methods, particularly those employing deep
learning techniques, has become the foundation of load forecasting (Tan
et al., 2018). Data-driven models hasve the capability to understand complex,
non-linear patterns within load data, thus potentially improving forecasting
accuracy. However, such models need great amounts of data for effective
training. The latter is a prerequisite that is often unfulfilled in the context
of individual buildings.

Despite the remarkable advances in data-driven for load forecasting, the
bottleneck that data scarcity represents remains a great barrier for the widespread
adoption of smart buildings (Alanne and Sierla, 2022).

In this light, transfer learning (TL) emerges as a promising solution. TL
consists in a machine learning technique that harnesses the knowledge from
one domain to enhance learning in another (Figure 1), TL offers a potential
pathway to overcome data scarcity (Pan and Yang, 2010). Within the scope
of load forecasting, TL can employ pre-trained models on buildings to which
available dataset require improvement to develop reliable forecasting models
(Ahn and Kim, 2022).

This paper concentrate its efforts into the application and efficacy of
TL for load forecasting in commercial buildings. The study employs a pre-
trained model as its foundation and fine-tunes it on a smaller dataset. In this
sense, the research aims to evaluate whether TL can retain high forecasting
accuracy meanwhile mitigating the requirement for copious training data.

1.2. Literature review

It is essential to comprehend the research gaps in the fields of load fore-
casting and TL, as well as to grasp the context and background of the study.
The overview is primarily focused on the concept of TL, its applications,
advantages, and limitations, with a special emphasis on its use in load fore-
casting.

Cai et al. (2020) introduced a two-layer transfer learning-based short-term
load forecasting (STLF) model designed to enhance load prediction accuracy
in the target zone. This innovative model utilizes a latent parameter in the
inner layer to encapsulate the latent factors influencing electricity consump-
tion variances across different zones. Concurrently, the outer layer utilizes

3



Figure 1: Transfer learning graphical description.

an iterative algorithm to optimize the weights. The results underscored the
efficacy of this model as it consistently improved forecasting accuracy in
comparison to conventional STLF algorithms.

Gao et al. (2020) tackled the challenge of accurate energy consump-
tion prediction in buildings with limited historical data by proposing two
deep learning models: a sequence-to-sequence (seq2seq) model and a two-
dimensional convolutional neural network (2D CNN) with an attention layer.
Incorporated into a TL framework, these models aimed to enhance predic-
tion accuracy for a target building with scarce data. The case study involving
three commercial buildings showed that the proposed models outperformed
a long short-term memory (LSTM) network, improving forecast accuracy in
mean absolute percentage error (MAPE) by 19.69% and 20.54% on average,
respectively.

In their research, Li et al. (2021) utilized the open source Building Genome
Project’s dataset, which encompasses around 400 non-residential buildings,
to establish a TL-based Artificial Neural Network (ANN) model for one-hour
ahead building energy prediction. The main objective was to enhance pre-
diction accuracy for a target building with limited available data. To evalu-
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ate the model’s performance, a three-layer Backpropagation Neural Network
(BPNN) model was developed, tested across various source and target data
samples and different source-target building pairings. The study concluded
that the scarcity of available data inversely corresponds to the accuracy im-
provement achievable through TL.

In their work, Pinto et al. (2022) presented a detailed survey concentrating
on the utilization of TL within the realm of smart buildings. Their research
distinguished four central domains for the application of this technique: the
prediction of building load, the detection of occupancy and recognition of
activity, the modeling of building dynamics, and the control of energy sys-
tems. Out of these, building load prediction emerged as the most prevalent
application. Nevertheless, the authors highlighted that a limited number
of the reviewed studies have seen real-world deployment, thereby presenting
potential opportunity for future research.

Ahn and Kim (2022) utilized TL in the context of building power con-
sumption prediction, leveraging a simulated dataset. They engineered a Long
Short-Term Memory (LSTM) model that incorporates TL, where the model
was trained utilizing 24 hours of data to predict the next 24 hours. The
findings from their research underscored the potential of transfer learning-
based models to augment prediction precision, particularly when compared
to regular LSTM models.

Current literature has largely focused on non-residential buildings (Cai
et al., 2020; Li et al., 2021). This study narrows the scope to commercial
buildings, providing valuable insights into the unique challenges and oppor-
tunities within this specific building type. Studies such as those by Gao et al.
(2020) and Li et al. (2021) have demonstrated the efficacy of TL in enhancing
prediction accuracy in situations with limited data availability. Therefore,
this study further explores this aspect, investigating scenarios with limited
data availability, and aims to provide additional evidence supporting the
effectiveness of TL under such conditions. Finally, besides evaluating the
accuracy of the TL models, this research also examines computational time,
which is often neglected in the current literature, thereby contributing to the
understanding of the further benefits of TL in building load forecasting.

In this light, the present paper seeks to provide the following contributions
to the current literature on TL techniques focused in commercial building
load forecasting models:

• Designed and implement a transfer learning approach for load forecast-
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ing in the context of commercial buildings.

• Presented the effectiveness of transfer learning for improving forecast-
ing accuracy, particularly when data is scarce.

• Demonstrated the ability of transfer learning to achieve comparable
performance to models trained on abundant data.

• Identified a positive correlation between Pearson correlation coefficient
(PCC) and the success of transfer learning, suggesting that similarities
in load patterns play a crucial role in the transferability of learning.

• Highlighted the resilience of the transfer learning model under non-ideal
conditions.

• Demonstrated a significant reduction in model training time through
the implementation of transfer learning.

1.3. Paper structure

The rest of this paper will be structured as follows. In Section 2, the base
load forecasting model and its structure will be presented. Section 3 will
introduce the applied TL method and the connection between the base model
and the target model. The results will be displayed in the first subsection of
Section 4 and a discussion will be held in the second subsection of the same
section. To finalize, Section 5 will present the conclusions.

2. Case Study

This study explores the application and effectiveness of TL techniques
for load forecasting in commercial buildings by conducting a case study.
Hereby we use virtual buildings (VB) located at the INESC TEC, in Porto,
Portugal. The VB were selected for their diverse characteristics and varying
energy consumption patterns, providing a comprehensive set of data for the
analysis.

INESC TEC is originally divided in two building blocks, labelled A and
B. In this study, we are considering only floors with office analogue activities,
being floors 1 to 4. Thus, there are a total of eight VBs analysed in this study.
One of them was selected as a base VB from which the knowledge will be
transferred to the remaining VBs. Figure 2 illustrates that division.
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Figure 2: Division of INESC TEC floors in virtual buildings.

The case study involves training deep learning models using historical load
data from the VBs. A robust model, pre-trained on a large dataset from a
building with abundant data, serves as the base for the development of new
models. For comparison, each VB will have a model trained, with the same
architecture, using full and scarce data, to provide ground for comparison
with the TL model. The TL models will be developed utilizing the same
architecture as the baseline models. That is, the networks layers will be
loaded with the hyperparameters of the pre-trained base model. In order
to retain the knowledge previously acquired, these layers are frozen to avoid
loosing previous information with further training. Finally, new additional
layers are added to the model for fine tuning with a small dataset from the
target VB. A fluxogram describing the process is presented in Figure 3.
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Figure 3: Fluxogram describing the transfer learning models development.

In the case study, we aim to answer the following key questions:

• Can transfer learning provide high forecasting accuracy when training
data is scarce?

• How does the performance of models trained using transfer learning
compare with those trained without it?

• What is the impact of the source-target building pair on the perfor-
mance of the transfer learning model?

• How does the similarity between load consumption time series of differ-
ent virtual buildings influence the effectiveness of the transfer learning
technique?

Subsequently, the performance of these new models is evaluated and com-
pared with models trained on large and small datasets. The evaluation in-
cludes metrics such as Root Mean Square Error (RMSE), and training time.
It also includes a visual representation of the model’s performance through
scatter plots and line plots.
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The findings from this case study contribute to our understanding of the
potential of TL in improving load forecasting, especially in scenarios where
data availability is limited. They also shed light on the conditions under
which TL can be most effectively applied.

3. Baseline Models

The baseline models were implemented in compliance to good practices in
ML. That is, the original INESC TEC database was cleaned, processed, and
structured to minimize quality issues and bias from the dataset. The inputs of
the model consisted in day of the week, week in year, hour, minute, a boolean
flag stating if that day is a holiday or not, the load consumption delayed by a
day and the load consumption delayed by a week. The features of the model
were normalized using the Min-Max normalization method and divided in
according to Figure 4, being 80% for training and 20% for validation. Also,
the last two months of data were removed for later testing and calculation
of evaluation metrics. Therefore, the last two months represent data that
was not used to calibrate model hyperparameter nor used for training early
stopping.

Figure 4: Data split graphical representation.

The model was implemented in Python and its architecture consists in a
1D Convolutional Layer with 7 inputs (one for each feature), A 32 memory
cell LSTM layer, a 16 memory cell LSTM layer, and a dense layer for output.
Figure 5 illustrates the model architecture employed in this study.

The architecture commences with a one-dimensional convolutional layer,
equipped with 64 filters, a kernel size of 3, and the Rectified Linear Unit

9



Figure 5: Graphical description of the model architecture and features.

(ReLU) activation function. This layer is purposed for the extraction of
salient features from the input sequence.

Subsequently, a max pooling layer with a pool size of 2 is utilized, aiming
to diminish the output dimensions of the convolutional layer. This output
is then fed into a Long Short-Term Memory (LSTM) layer, which consists
of 32 hidden neurons and employs the hyperbolic tangent (tanh) activation
function. This layer aids in modeling the sequence of features extracted
previously.

Following, a second LSTM layer mirrors the architecture of the first but
incorporates only 16 hidden neurons. To avoid overfitting, dropout layers
with a drop rate of 0.2 are interspersed within the architecture. The archi-
tecture culminates in a dense output layer, which is responsible for generating
the final prediction.
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The aforementioned architecture was employed to construct the baseline
models for all VBs, accommodating both abundant and scarce data scenarios.

4. Transfer learning model

The TL method utilized in this study is the homogeneous inductive learn-
ing (Table 1), where the target uses information extracted by the source to
enhance load prediction, and, later, is fine-tuned with limited target data, to
enable the model to adapt to the target task (Pinto et al., 2022).

Table 1: Transfer learning classification.
Type Domain Task Example

Homogeneous inductive
learning

Source = Target Source ̸= Target

Transfer learning is used to
enhance building monthly

electric load prediction leveraging
information from similar

buildings in different districts,
that exhibits a different
conditional probability.

Heterogeneous inductive
learning

Source̸= Target Source ̸= Target

Transfer learning is used
to fine-tune a pretrained
neural network initially

built to perform
multi-class classification,
to increase the accuracy
of a prediction model

for building temperature
setback identification.

Homogeneous transductive
learning

Source = Target Source = Target

Transfer learning is used
for improving the accuracy
of home activity estimation

by exploiting the data of a source
house applied to a target

house with no labelled data.

Heterogeneous transductive
learning

Source ̸= Target Source = Target

Transfer learning is used
to predict building dynamics
by extracting features from
multiple households in an
online fashion, without

having access to labelled data.

The development of the TL model consists in applying the architecture
defined in Figure 5, and subsequently loading the hyperparameters of the
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pre-trained model B2, which was trained using abundant data (two years
of data before cleaning). These layers were subsequently frozen, with new
layers being appended to each model in accordance with Figure 6.

Figure 6: Graphical description of the transfer learning models.

5. Results and Discussion

5.1. Results

The effectiveness of the TL approach was evaluated based on Root Mean
Square Error (RMSE) and Mean Absolute Percentage Error (MAPE). These
metrics were computed over a period of two months of data that were not
involved in the training process. The baseline for this investigation was the
model trained with abundant data from Virtual Building B2, from which
knowledge was transferred to other models. Figure 7 showcases the com-
parison between predicted and actual values for the base model’s test set,
consisting in a period of two months. The model, from which knowledge will
be transferred, demonstrates a MAPE of 25.02% and a RMSE of 90.92 Wh.

For discussion purposes, the implemented models will be categorized into
three distinct case scenarios, as described in Figure 8. The first scenario
(CS1) encompasses models trained with the full dataset. The second scenario
(CS2) includes models trained with partial dataset, for a one month period.
The third and final scenario (CS3) comprises models trained with limited
data, similar to the CS2, but with the application of TL.

5.2. Root Mean Square Error (RMSE)

An analysis of the RMSE metric revealed that, with the exception of
VB B3, the TL model led to improvements in all VBs when compared to
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Figure 7: Line plot of the predicted load for the baseline model B2.

Figure 8: Case scenarios.

the model trained with scarce data. The average improvement across all
buildings was approximately 42.76% and the results are present in Table 2
and demonstrated in Figure 9. When the TL model was compared with
the model trained on abundant data, it was found to deliver comparable
performance. Interestingly, the TL model even surpassed the performance of
the model trained with abundant data in Virtual Buildings A3, B1, and B4.
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Table 2: RMSE for all case scenarios and comparison.

VB CS 1 CS 2 CS3 CS 3/CS 2 CS 3/CS 1
A1 193.40 384.82 230.95 39.99% -19.41%
A2 140.59 304.47 147.69 51.49% -5.05%
A3 296.30 420.20 230.39 45.17% 22.24%
A4 132.74 361.34 174.37 51.74% -31.37%
B1 233.71 331.95 182.40 45.05% 21.95%
B2 90.92 217.84 95.48 56.17% -5.01%
B3 74.52 111.71 132.32 -18.46% -77.56%
B4 62.13 61.24 55.31 9.68% 10.98%

Figure 9: RMSE results for all case scenarios.

5.3. Mean Absolute Percentage Error (MAPE)

The MAPE metric offered further insights into the performance of the TL
model. The model succeeded in enhancing the accuracy of load forecasting
for all virtual buildings except B3 and B4, with an average improvement of
approximately 20.48%. The results are depicted in Table 3 and illustrated in
Figure 10 In comparison to the model trained with abundant data (CS 1),
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the TL model yielded similar, and in some cases superior, results. The latter
model demonstrated better performance for Virtual Buildings A3, B1, B2,
and B4.

Table 3: MAPE for all case scenarios and comparison.

VB CS 1 CS 2 CS 3 CS 3/CS 2 CS 3/CS 1
A1 53.62 61.57 57.77 6.17% -7.74%
A2 25.87 49.38 34.32 30.49% -32.66%
A3 87.03 61.82 52.14 15.66% 40.09%
A4 24.92 34.59 27.31 21.03% -9.59%
B1 52.01 39.98 36.28 9.25% 30.24%
B2 25.02 41.65 24.88 40.26% 0.57%
B3 29.90 54.28 70.93 -30.68% -137.25%
B4 20.57 15.13 16.27 -7.54% 20.93%

Another metric evaluated in this study was the training time, specifically
comparing the time required to train the models in CS1 versus CS3. The
findings from this comparison are summarized in Table 4.

Table 4: Training time (in seconds) comparison between case scenario 1 and 3.

CS 1 training time (s) CS 3 training time (s) Reduction
95.79 16.85 82.41%
90.16 12.89 85.71%
52.08 31.97 38.61%
80.04 15.18 81.03%
57.13 17.37 69.59%
91.88 29.18 68.24%
112.94 14.43 87.23%
53.26 16.95 68.17%

5.4. Discussion

The results of this study provide compelling evidence of the successful ap-
plication of TL in the context of load forecasting for building energy manage-
ment. Despite the challenges posed by data scarcity in individual buildings,
TL has demonstrated its capacity to leverage knowledge from a pre-trained
model to improve forecasting accuracy in the target buildings. This was
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Figure 10: MAPE results for all case scenarios.

accomplished without necessitating an abundance of training data, thereby
overcoming one of the most significant hurdles in the deployment of data-
driven forecasting models. Our findings underscore the potential of TL to
address issues of data scarcity, and its consequent implications for the broader
adoption of smart building technologies.

In the growing field of study of TL, a significant finding of this study is
the relationship between the Pearson Correlation Coefficient (PCC) and the
effectiveness of the TL technique. The results suggest a direct correlation:
the higher the PCC between the base case and the target building, the more
successful the TL application tends to be, this is depicted in Figure 11. This
observation aligns with the core principle of TL, which leverages commonal-
ities and patterns shared between different datasets. Therefore, the higher
the correlation between the base case and the target, the more effective the
transfer of knowledge becomes. It underlines the importance of selecting a
relevant and representative base model when employing TL methods.

Particular attention is drawn to the results corresponding to VBs B3 and
B4. These buildings demonstrate the least successful implementation of TL.
The reasons are twofold: firstly, these buildings exhibit a low PCC with the
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Figure 11: PCC and RMSE (comparison from CS 3 to CS 2) for all virtual buildings.

base case (0.41 and 0.45 respectively), which, based on the aforementioned
discussion, inherently limits the effectiveness of the TL technique. Secondly,
the original measurements in these buildings were abundant in errors and
missing values, resulting in distorted load patterns. This distortion compli-
cates the task for the predictive model, as it must attempt to predict patterns
based on flawed data. In Figure 12, we present the load consumption for the
testing set of VB B3, compared to the corresponding predictions. Upon ex-
amination, we can discern a certain weekly pattern in the load consumption
during the second half of the analyzed time series. However, this pattern is
absent in the first half. This inconsistency in the data significantly jeopar-
dizes the model’s ability to generate accurate predictions, since the model
learned the pattern from the base model and the presented load for B3 has a
far distinct pattern comparing to the one present in Figure 7. This serves to
underscore the challenges associated with forecasting in environments where
data exhibits irregular or unpredictable patterns.

Interestingly, in the case of building B4, the model trained with scarce
data outperforms the model trained with abundant data (Table 3 and 2).
This phenomenon might seem counter-intuitive at first, given the general
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Figure 12: Line plot of the actual and predicted load for Virtual Building B3 in case
scenario 3.

principle that models trained with more data tend to be more accurate.
However, it underlines the notion that the quality of the data is more cru-
cial than the quantity, especially in the context of deep learning models.
When the data is implemented with measurement errors, a larger dataset
may worsen the model’s performance by further reinforcing incorrect pat-
terns. Consequently, the results for B4 underscore the importance of data
quality and integrity in the training of predictive models.

When it comes to training time, the results are rather straightforward:
a significant reduction in training time was observed across all models, av-
eraging a decrease of 72.62%. In this particular study, the longest training
time recorded was 112.94 seconds for the larger models. However, in a more
expansive study involving more features and data, this duration could sig-
nificantly increase, underscoring the potential of TL as a method to reduce
training time while preserving high levels of accuracy.

6. Conclusion

This study delved into the application of TL for load forecasting in vir-
tual buildings, with a particular emphasis on addressing the constraints of
data scarcity. The findings firmly establish the efficacy of TL in augmenting
forecasting accuracy, especially under conditions of limited data availability.

Consistently, the TL approach surpassed the performance of models that
were trained exclusively on scarce data, with an average enhancement of
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42.76% in RMSE across the virtual buildings. Moreover, this approach ex-
hibited comparable performance to models trained with full dataset, even
exceeding their performance in certain instances.

The research further discovered a positive correlation between the Pearson
correlation coefficient (PCC) and successful application of TL. Buildings that
demonstrated a higher PCC with the base case often yielded superior results,
suggesting that the resemblance in load patterns is a crucial factor in the
effective transfer of learning.

Nonetheless, the results derived from the virtual buildings B3 and B4
deviated noticeably, largely due to their low correlation with the base case
and distortions in load patterns due to measurement errors. Nevertheless,
the TL model outperformed the model trained on scarce data for building
B4, indicating its robustness in less than ideal situations.

Importantly, this investigation also revealed a significant reduction in
model training times when employing TL, with an average reduction of
72.62% compared to the models trained with large amount of data. This
highlights another significant advantage of TL, particularly in larger-scale
projects where training times could be considerably longer.

In conclusion, this study contributes to the ongoing development of pre-
cise and efficient load forecasting models, thus supporting building energy
management and wider decarbonisation efforts. It underscores the potential
of TL as a promising strategy to overcome data scarcity, thereby facilitating
wider adoption and generalization of smart building applications.
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