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Resumo

Sendo as propriedades dos materiais fundamentalmente definidas pela sua estrutura atómica,
o estudo das propriedades mecânicas tem vindo a evoluir para a nanoescala. A Microscopia de
Força Atómica (AFM) é um dos principais métodos quando se trata de obter imagens de uma
amostra, mas é também uma técnica poderosa para estudar as propriedades nanomecânicas de uma
vasta gama de materiais, bem como para caracterizar interacções ao nível do piconewton. Com
as nanoindentações por AFM, as propriedades superficiais em estudo podem ser obtidas através
da aplicação de modelos de contacto adequados, às curvas de força-indentação. Dado o elevado
número de pontos em cada curva e a necessidade típica de analisar milhares de curvas, o processo
de selecção de um modelo de contacto e a sua aplicação para inferir propriedades mecânicas
através dos dados das mesmas pode ser uma tarefa difícil e morosa. Consequentemente, estão a ser
exploradas alternativas a este procedimento e tem sido demonstrado que uma abordagem baseada
em modelos de Machine Learning (ML) pode ser de grande utilidade para prever propriedades
materiais relevantes, com dados AFM.

Neste trabalho, foram criados dois modelos de regressão utilizando Redes Neuronais Artifici-
ais (ANN), para prever o módulo de Young e a energia de adesão a partir de nanoindentações AFM,
que foram divididas em curvas de aproximação e de afastamento. Para fins de aprendizagem,
foram gerados dados sintéticos, utilizando dois modelos de contacto. As curvas de aproximação
foram criadas com o modelo de contacto Hertz e utilizadas para treinar um Multilayer Perceptron
(MLP), prevendo o módulo de Young, enquanto a teoria de contacto de Johnson-Kendall-Roberts
(JKR) foi o suporte para produzir curvas de afastamento, que treinaram um segundo modelo MLP,
que não só previu o módulo de elasticidade, mas também a energia de adesão.

Os dados sintéticos foram divididos em conjuntos de treino, validação e teste, tendo sempre
em conta a sua estratificação com base nas variáveis a serem previstas. Utilizando a biblioteca
PyTorch para construir e treinar o modelo, foram definidos e aperfeiçoados os principais hiper-
parâmetros, recorrendo ao framework de optimização Optuna. O primeiro modelo foi testado com
sucesso em curvas experimentais de nanoindentações AFM e o segundo apresentou resultados
promissores nos dados sintéticos. Por fim, as previsões de curvas reais foram mapeadas em super-
fícies tridimensionais, para ilustrar uma expansão adicional do trabalho apresentado, que permite
não só inferir as propriedades superficiais a partir de curvas individuais, mas também compreender
a sua distribuição na superfície da amostra.

Ao longo deste projeto foram apresentadas previsões com elevado grau de precisão e de uma
forma computacionalmente eficiente, validando o potencial de uma abordagem de Deep Learning
para explorar nanoindentações AFM e motivando assim o desenvolvimento futuro do trabalho
apresentado.
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Abstract

The study of mechanical properties has been trending towards the nanoscale, as material prop-
erties are fundamentally defined by their atomic structure. Atomic Force Microscopy (AFM) is
one of the main methods when it comes to imaging a sample, but it is also a powerful technique to
study the nanomechanical properties of a wide range of materials, as well as to characterize inter-
actions at the piconewton level. With AFM nanoindentations, fitting the force-indentation curves
obtained for each sample with a suitable contact model, allows to acquire the properties of interest.
Given the high number of points in each curve and the typical need to analyse thousands of curves,
the process of selecting a contact model and applying it to fit the data, can be a challenging and
time-consuming task. As a result, alternatives to this procedure are being explored and it has been
shown that an approach based on Machine Learning (ML) models can be of great use to predict
relevant material properties, from AFM analysis.

In this work, two regression models using Artificial Neural Networks (ANN) were created,
to predict Young’s modulus and surface energy from AFM nanoindentations, which were divided
into approach and withdraw curves. For learning purposes, synthetic data was generated, using
two contact models. Approach curves were created with Hertz contact and used to train a Multi-
layer Perceptron (MLP), forecasting the Young’s modulus, while JKR contact was the support for
producing withdraw curves, that trained a second MLP model, that not only predicted the elastic
modulus, but also the surface energy.

Synthetic data was split into training, validation and test sets, always accounting for target
stratification. Employing the PyTorch framework to build and train the model, we set and refined
key hyperparameters, based on implementing the optimization framework Optuna. The first model
was successfully tested with experimental curves from AFM nanoindentations and the second
presented promising results on the synthetic data. At last, the predictions from real curves were
mapped into three-dimensional surfaces, to illustrate a further expansion of the current framework,
where it allows not only to infer the surface properties from individual curves, but also understand
its distribution over the sample’s surface.

Our framework provided accurate predictions, in a computationally efficient way, thus validat-
ing the potential of a Deep Learning approach to explore AFM nanoindentations and motivating
the further development of the presented work.
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Chapter 1

Introduction

1.1 Context

The last decades have brought significant advancements in the field of nanotechnology at vari-

ous levels. Several areas of research have greatly benefited from these improvements, and mechan-

ical engineering is no exception, with the study of materials at their nanoscale being substantially

leveraged. Atomic Force Microscopy (AFM) is one of the main techniques responsible for these

studies. Urging from the need of visualizing and manipulating materials at their lower scale, this

method was established in the late 20th century, following the concept of Scanning Probe Mi-

croscopy. It is based on a small probe, usually consisting of a cantilever with a tip that can have

several geometries attached to its end. From the interaction of the probe with the sampled surface,

whether involving contact or not, the target properties can be inferred.

High-resolution and three-dimensional images of the surface topography at the nanoscale can

be generated by this probe-sample interaction. Furthermore, due to its wide range of operating

modes, not only the surface height can be studied, but also key surface properties that contribute

to understanding the behaviour of materials at increasingly smaller scales. It is the case of AFM

nanoindentations, that consist in approaching the probe towards the sample and indenting it for a

defined threshold, followed by withdrawing the probe until it detaches from the sample or reaches

its original position.

Along this ramp cycle, the deflection of the probe cantilever is recorded as a function of the

probe’s displacement, which can later be translated into Force-Indentation (F-I) curves. By fitting

these curves with appropriate contact models, as Hertzian or Sneddon theories for the approach

stage and JKR or DMT for the retraction cycle, the surface properties are finally obtained. Further-

more, if there is knowledge about the location in the sample where each F-I curve was obtained, it

is possible to create surface maps for each measured property. However, the curve-fitting process

can be quite time-consuming.

Regarding approach curves, they play a crucial role in inferring the elastic modulus of the

sample. On the other hand, retraction data offers essential insights on its adhesion properties,

which are particularly relevant in low stiffness materials, as biological cells, where they play a

1
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major role in processes such as cell proliferation and migration, and sudden changes in these

properties can lead to diseases as cancer or osteoporosis (9).

Another field that has witnessed remarkable advancements in recent times is Artificial Intelli-

gence (AI) and its subset of Machine Learning (ML), taking advantage of the exponential increase

in computational power. ML algorithms can make data-based decisions autonomously, without

relying on predefined programming instructions. Hence, the availability of expanding datasets

in various domains has led to the development of diverse and adaptable models. These models

are nothing but mathematical representations that aim to capture the input features from the data

provided and associate them with the corresponding outputs. While the process of designing and

optimizing these models can be complex, when concluded they demonstrate fast and consistent

performance.

Being able to adapt to different sorts of data, allows ML to be applied across various fields,

from medicine and engineering to finance or marketing. So, it only makes sense that it can also

be used to boost techniques as AFM, mainly in the postprocessing stage. For instance, as many

contact models only assume linear elastic behaviour, the fact that ML models can easily capture

nonlinearity is a great opportunity to overcome such limitations.

In recent years, several publications have introduced various approaches that utilize ML meth-

ods to assist in diverse types of AFM analyses. A ML approach based on Artificial Neural Net-

works (ANNs) is used in (57) to classify bladder cancer cells into different grades, based on cel-

lular mechanical properties obtained with AFM. For an application more related to AFM intrinsic

properties, Convolutional Neural Networks (CNNs) models have been developed to determine

the tip sharpness directly from indentation images (55). A different study (2) has presented a

Quasi-Recurrent Neural Network to identify the coupling of vibrating modes in dynamic AFM

(intermittent contact between probe and sample). At last, ML regression models were used to pre-

dict the elastic modulus based on nanoindentation curves, without having to fit them with a contact

model, in the work presented in (30), where the ML models were trained with experimental F-I

curves from AFM analyses. This last work shares some similarities with the current project, in

the sense that they both focus on determining the sample’s stiffness without contact model fitting.

Nevertheless, the work in (30) doesn’t cover the development of Deep Learning strategies and it

requires experimental data to train the models, unlike the current framework.

Despite the several ML applications on the AFM field, there is not yet a Deep Learning-

based approach to determine surface properties, related to the elastic modulus and to the sample’s

adhesion, from both approach and retraction curves, without requiring the model to be trained

on actual data from AFM experiments. This study aims to address this gap by examining the

effectiveness of a similar method. Such is done by training the models only on synthetically

generated data and then analysing if they can accurately predict surface properties from AFM-

studied samples.
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1.2 Motivation and Objectives

Currently there is an urge to improve the postprocessing of data from AFM nanoindentations

to infer the mechanical properties of a given sample, where each force-indentation curve needs to

be individually fitted with an appropriate contact model, resulting in a time-consuming process.

Hence, the main objective of this work is to create an efficient framework that allows obtaining

the surface properties of those samples, namely the Young’s modulus and energy of adhesion, with

a special focus on biological soft tissues, without relying on experimental data to build the ML

models. To accomplish this goal, the following set of milestones was established:

• Understand the basic principles of Atomic Force Microscopy, its main operating modes and

the most suitable contact mechanics theories to infer on mechanical properties from this

kind of analysis;

• Explore the core concepts of Machine Learning and Artificial Neural Networks and their

practical implementation in PyTorch;

• Generate synthetic data that could be representative of Atomic Force Microscopy Force-

Indentation approach and retraction curves, for a low stiffness material;

• Develop, from scratch, two Deep Learning models capable of predicting surface proper-

ties from those approach (first model) and retraction (second model) curves, trained with

synthetic data;

• Evaluate the first model based on the available experimental nanoindentation approach

curves, that were fitted based on Hertzian theory;

• Generate three-dimensional surface maps and organize the experimental data within them, to

later be predicted with the developed models, further extending the scope of this framework.

1.3 Thesis outline

This thesis is composed of a total 7 chapters, including this introduction, with Chapters 2 to

4 dedicated to conducting a comprehensive literature review on important topics that form the

foundation of the framework.

Chapter 2 gives an overview of Atomic Force Microscopy, with a special focus on its working

principle, operating modes and the necessary procedures to map mechanical properties from this

analysis.

In Chapter 3, the Hertz and JKR contact mechanics theories are described and it is explained

how each can be applied to measure the surface properties from samples that have undergone AFM

nanoindentations.

Chapter 4 delves into Machine Learning, providing a concise view of its essential concepts and

techniques. It focuses particularly on Artificial Neural Networks, ending with a demonstration on

how to implement a Deep Learning framework in PyTorch.
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The generation of synthetic data to train the proposed models is explained in Chapter 5, where

the full creation, development and optimization of both Artificial Neural Networks models is

traced step by step.

Taking advantage of experimental data from AFM nanoindentations, Chapter 6 presents the

evaluation of the models built upon synthetic data, when facing the new dataset. In addition, the

experimental data is rearranged in surface maps, which are then predicted by the models, also

showing how this framework can aid in explicitly mapping surface properties.

At last, Chapter 7 summarises the main conclusions withdrawn from this thesis, highlighting

some suggestions for further development of the framework presented.



Chapter 2

Atomic Force Microscopy

This chapter will focus on the key aspects of Atomic Force Microscopy. After a brief intro-

duction, the working principle and operating modes of this method will be outlined, as well as

required procedures to map the mechanical properties of each sample. Finally, an overview of its

main applications is presented.

2.1 Introduction

In the last decades, many fields of science and technology have been turning their focus to

increasingly smaller scales, as nanoscale systems pervade our everyday lives, being present in

cellphones, computers, cars or medical equipment. Mechanical engineering and, in particular, the

study of mechanical properties are following this trend toward nano/atomic scale, since material

properties are fundamentally defined by the atomic structure.

In 1959, Richard P. Feynman hypothesized the possibility of reaching "nanotechnology" (with-

out explicitly mentioning this word) down to the atomic scale (48). At the time, he predicted that

to achieve this significant scientific progress, a series of decreasingly-sized machines would be re-

quired, each guiding the next smallest one. In the following years, it was discovered it was feasible

to go down to the atomic scale in just one step from the macroscale, with further developments in

electron microscopy.

The later invention of Scanning Probe Microscopy (SPM) allowed this technique to quickly

establish as one of the most effective for nanoscale imaging. SPM provides resolution down to the

atomic scale in real space, i.e., with instruments sized around 10 cm, images with a resolution of

about 1 Å (10−10 m) can be accomplished (51). It uses a small probe to identify local properties

of a surface, where a grid of points is scanned, so the detected properties can be mapped and

expressed as an image. Generating an image of the sample topography is one of the most common

applications of SPM, although images of many other properties can be obtained. Figure 2.1 shows

the imaging range of SPM compared with other microscopy techniques.

Scanning Tunneling Microscopy (STM) was the first kind of SPM-based approach, invented in

1982 by Binning and Rohrer (3), earning them the Nobel Prize in Physics four years later. In this

5



6 Atomic Force Microscopy

m100

1 m

10−1 10−2 10−3

1 mm

10−4 10−5 10−6

1µm

10−7 10−8 10−9

1 nm

10−10

1 Å

Human Eye

Optical Microscopy

Scanning Electron Microscopy

Transmission Electron Microscopy

Scanning Probe Microscopy

Figure 2.1: Comparison of imaging ranges for different microscopy techniques.

method, a voltage is applied between the tip of the probe and the sample, and a relation between

tip-sample distance and the corresponding measured tunneling current is established. As the dis-

tance between tip and sample slowly decreases, the tunneling current increases exponentially, thus

favouring a very precise control of tip-sample distance. A feedback mechanism is responsible for

constantly adjusting the tip-sample distance, by retracting or approaching the sample or the tip, to

a distance where the tunneling current is kept constant and equal to a preset threshold value.

One of the main disadvantages of STM is the fact that, since tunneling current is the quantity

being measured, a conducting sample is required, which creates a major limitation for the appli-

cation of this method, hence the urge for new techniques. Atomic Force Microscopy (AFM) -

can also be referred to as Scanning Force Microscopy (SFM) - arose out of this need, allowing to

measure the force between sample and tip, instead of the tunneling current, so insulating samples

can also be tested. The Atomic Force Microscope was first described in 1986, by Binning, Quate

and Gerber (4), and besides paving the way for imaging and characterizing the mechanical prop-

erties of a wide range of materials, it had a major impact on the study of biological samples. In

AFM, the sample surface is sensed by contact or near contact with a tip (that can have multiple

shapes) placed on the end of a cantilever. The cantilever will act as a spring, with its deflection

being proportional to the tip-sample force. So knowing the cantilever stiffness (spring constant,

k), the force is determined by Hooke’s law Fspring =−kzc, where Fspring is the spring force and zc

is the distance the cantilever spring is bent, in relation to its equilibrium position (51). Working

principle and main operating modes will be further explored in sections 2.2 and 2.3.

Figure 2.2 presents an example of an experimental AFM Force-Indentation curve, obtained

from nanoindentaions on smooth biological cells. As shown, the analysis can be decomposed

in two stages: approach and withdraw, corresponding respectively to the moments when the tip

moves towards the sample and then away from it, after reaching the maximum indentation value.

The contact point matches a null indentation, so positive values in the x-axis represent contact

between sample and tip, while the opposite happens for negative values, hence the more negative

the indentation, the greater the distance between sample and tip. As for the force, one can note
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that when the tip is far away from the surface, the interaction forces between them are negligible,

despite being able to observe some fluctuations in this region. In this example, there are repulsive

forces while tip and sample are in contact, and attractive adhesion forces while the tip is detaching

from the cell. In non-contact mode, there are attractive (negative) forces when sample and tip

are close to each other and repulsive (positive) forces when the distance between them gets even

smaller.
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Figure 2.2: AFM Force-Indentation example curve, obtained for a smooth muscle cell.

2.2 Working Principle and Instrumentation

The most obvious potential of AFM was first identified in terms of imaging very small samples,

since the surface structure can be obtained with remarkable resolution, allowing to get images

displaying the distribution of individual atoms in a sample. In addition, it also stands out for its

versatility, as almost any sample can be imaged, from hard ceramic materials, to flexible polymers

or soft biological tissues. Other microscopy techniques are commonly based on directing light

or electrons onto the surface. This forms a two-dimensional image, from which the height is

not directly perceived, thus needing to be inferred from the image or requiring the sample to

be rotated. In contrast, the sharp probe in AFM directly taps the sample, this way building a

map of the sample’s surface height. On the one hand, height information is obtained much more

easily compared to other microscopy methods, but on the other hand it requires processing data

from AFM to form a similar image to that of a microscope. Nevertheless, this data treatment

is typically simple and once it is done, images capturing every perspective of the sample can be
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easily generated, with suitable software, making it straightforward to measure each dimension of

any feature in the image.

Besides its imaging capabilities, AFM has many other "spectroscopic" modes that measure

sample properties at the nanoscale and which are more relevant to the main focus of this work.

Nevertheless, whether the objective is to analyse the topography of the sample or to study its

mechanical properties, there are some key features that can always be found in an Atomic Force

Microscope: probe, optical detection system, piezoelectric scanner and feedback system. A sim-

plified scheme of an AFM analysis is exhibited in Figure 2.3, where the interaction between laser,

probe and photodetector is clear.

Substrate

Sample
Cantilever

Photodetector
Laser

Figure 2.3: Schematic view of the AFM method (14).

The probe can be divided in two components: a tip and a cantilever. By directly interacting

with the sample, the tip senses attractive or repulsive forces, depending on sample properties and

surface topography. The mechanical properties of the probe are defined by the bending cantilever,

which serves as its structural component and has the tip positioned at its end, as represented in Fig-

ure 2.4. There are two main methods for oscillating the cantilever: one involves using a piezoac-

tuator that is in contact with a supporting chip, while the other consists in applying an alternating

field to a magnetic film that is deposited on the back of the cantilever. Tip-sample interaction

causes the cantilever to deflect, twist or change its harmonic oscillator characteristics. Thus, if

the cantilever properties are known, the forces resulting from such interaction can be measured.

Both tip and cantilever are usually made of silicon (Si) or silicon nitride (Si3N4). Cantilevers are

generally rectangular or triangular, having a length of 100-200 µm, a width of 20-40 µm and a

thickness of 0.5-1 µm. To enhance reflectivity, they are frequently coated with a layer of gold

or aluminum. The most common tip shapes are tetrahedral, spherical or conical. Tetrahedral and

conical tips frequently have a radius of 5-200 nm, while when it comes to spherical tips, the range

is between 0.01-10 µm.
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Figure 2.4: Views of a typical AFM probe (47).

Probe manufacturers always provide information about the properties of each model, such

as the resonance frequency, spring constant and quality factor, in addition to the probe material

and dimensions. Selecting an adequate probe is crucial to obtain good results from each specific

type of AFM analysis. For instance, when it comes to imaging in non-contact mode, the probe

must have high resonance frequency (>200 kHz) and high spring constant (>20 N/m), since under

ambient conditions, a low spring constant cantilever often creates a contaminated layer on the

sample, when its tip traps moisture. For contact mode imaging, a probe with low spring constant

(<10 N/m) and low resonance frequency (<200 kHz) must be used, because a stiff cantilever can

cause the tip to apply high forces to the surface, which can damage the tip itself, the sample surface

or both. The shape of the sample must also be taken into account, as the acquired image results

from the convolution of the tip shape with the sample surface. So, when there are details with the

same length scale of the tip dimension, the convolution will have a negative impact in the imaging

process, leading to a final image that doesn’t accurately represent the real sample surface. To map

nanomechanical properties, it is usual to work with a contact mode probe (with low frequency and

low spring constant), but more accurate results are achieved when the probe selection is adapted to

the sample properties: a soft cantilever is suitable for soft materials, while a stiff cantilever must

be applied for hard materials (47).

The optical detection system is utilized for measuring cantilever deflection and torsional vari-

ations. It is composed of a laser diode, optical amplification components and a four-quadrant

photodetector. At first, the laser beam is aimed at the cantilever backside, from which it is re-

flected to an optical amplifier and then collected at the photodetector. A deflection of 0.01 nm

can be optically amplified 300 to 1000 times, so the photodetector detects a displacement of 3-10

nm, generating a measurable voltage that translates the force variation at the sample surface (10).

Regarding the light collected in the photodetector, the output difference between upper and lower

quadrants is proportional to the cantilever deflection, while the output difference in the lateral

quadrants is proportional to cantilever torsion.

Another key part of an Atomic Force Microscope is the piezoelectric scanner, responsible for

moving either the probe in relation to the sample, or the sample in relation to the probe. It is

important to note that, as its name states, this scanner is based on the principle of piezoelectricity,

which is a property that allows a material to deform when exposed to an electric field, or to

generate an electrical charge in response to an applied mechanical stress or deformation. In AFM,
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a piezoelectric material is deformed by applying an electric current, resulting in mechanical strain

that is utilized for moving the probe or the sample. This allows very small distances to be scanned,

related to the application of a calibrated amount of current. A greatly accurate control is ensured

by the small expansion coefficient of the piezoelectric device, which is usually in the order of

0.1nm/V . There are three most common scanning possibilities: the first one relies in one scanner

that moves the sample in x,y and z directions; the second uses one scanner to move the sample in x

and y directions, and another to drive the probe in the z direction; while the third works with only

one scanner, responsible for moving the tip in x,y and z directions (10).

At last, there is the feedback system, accountable for identifying height changes at the sample

surface, based on cantilever deflection or oscillation, and then passing on information to the piezo-

electric z-scanner or to the cantilever actuator, in order to minimize those variations. Sensitivity of

the feedback system can be adjusted prior and even during AFM procedure.

To control all parameters in an AFM analysis, a software interface is needed. It allows moving

the sample to the right location to be scanned, getting the probe near the surface, selecting the

scan mode and scan parameters, besides displaying images while scanning or measuring Force-

Distance (F-D) curves. These curves translate the force experienced by the probe as a function of

distance from the sample surface. They are measured by moving the probe towards the sample

until a pre-selected position, and then retracted, while the signal corresponding to the cantilever

deflection is recorded throughout this movement. Several variables must be defined when getting

a F-D curve, such as probe start and end positions, rate of probe motion, number and location

of F-D curves to collect. This provides the opportunity to obtain several curves in a user defined

grid pattern over the surface area, being essential to study the variation of the sample’s mechanical

properties along different locations of its surface.

2.3 Operating Modes

The availability of various AFM modes and experiments has made it a versatile and powerful

tool. Initially, only contact mode imaging was available, limiting the types of experiments that

could be performed and the type of data that could be produced. However, over time, there has

been an explosion in the number of possible modes of operation of AFM, with at least 20 different

modes now available. Many of these newer modes use the high resolution scanning of an AFM

probe to measure different properties of the sample surface at the nanoscale. Overall, there are

two main groups of AFM modes: topographic and non-topographic. The first group is related to

measuring the sample topography, to later generate high resolution images of the sample. The

second group is associated with the study of sample properties. Despite not being as common as

the previously mentioned modes, surface modification is a third AFM operating mode, that relies

on the accurate control of the probe motion over the sample, to manipulate the surfaces being

analysed, based on local oxidation or scratching. Since the first two mentioned modes comprise

the large majority of AFM applications, they will be the only ones to be further explored, and
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considering that non-topographic modes have a higher relevance in the context of this framework,

their description will be more detailed in comparison with topographic modes.

2.3.1 Topographic Modes

As stated in previous sections, the probe-sample interaction generates a map of height mea-

surements, that can be subsequently transformed into a more realistic representation of the sam-

ple’s shape, using light shading, perspective and other techniques. Topographic modes differ in

the way height measurements are performed, since this can be done in contact mode, where the

static deflection of the cantilever is measured, or dynamic mode, where the dynamic oscillation of

this component is the measured quantity. Not only these differ in the experimental procedure, but

also in the information that each presents.

Contact mode was the first developed for AFM and provided the basis for development of other

more advanced modes. Despite being the oldest method, it still provides very high-resolution im-

ages, whilst being the fastest technique, since the cantilever deflection directly leads to the sample

topography, without the need of summing oscillation measurements. In this mode, the tip is con-

stantly in contact with the sample and the force is always repulsive. When cantilever deflection

information is recorded to form the topographic image, the sample surface is scanned with the

cantilever being kept at a constant height, allowing high scanning speed, but requiring smooth

samples. There is another contact method, more widely used than the previous one, which con-

sists in recording the cantilever height variations, while deflection is set at a constant value (hence

having constant tip-sample force), permanently restored by a feedback loop as the probe goes

through surface asperities. This allows for scanning hard samples, at the cost of the feedback loop

lowering scanning speed. Since here the cantilever deflection doesn’t change, the sample topogra-

phy is acquired based on the amount of movement in the z direction that the piezoelectric device

must undergo to keep the deflection constant. Plotting this information in relation to distance,

gives the height image in contact mode.

Lateral force images can also be collected in contact mode, from lateral twisting of the can-

tilever, resulting from the topography and frictional forces exerted by the sample on the tip. The

photodetector (normally made-up of four segments) determines vertical deflection by the differ-

ence in signal (in electric current or potential units) between the top two and bottom two segments,

while lateral deflection corresponds to the signal difference between right and left segments. Fig-

ure 2.5 illustrates this in a schematic manner.

Despite allowing to obtain high-resolution images, contact modes have also some drawbacks.

Due to the fact the tip and sample are always in touch, one of them (or even both) can be damaged

during the scanning process and the presence of lateral forces can have a negative impact in the

measurement of normal forces. Furthermore, the nature of the sample surface can also affect

the accuracy of the data obtained, making it important to carefully consider the experimental

conditions and potential sources of error.

Contrarily to contact modes, in dynamic modes the tip only contacts the sample intermittently,

thus experiencing attractive and repulsive forces. Due to this reason, it is also called tapping
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Figure 2.5: Photodetector identifying cantilever deflection and torsion. Adapted from (12).

mode. There is also the possibility for the tip to never be directly in touch with the sample, al-

ways oscillating above it and only experiencing attractive forces, in the so called true-noncontact

mode. Dynamic (or oscillating) modes resort to an additional piezoelectric element to oscillate

the cantilever, commonly with a frequency close to resonance and an amplitude of a few nanome-

ters. As the tip is scanning the sample, parameters as cantilever height, amplitude and phase shift

are monitored, and typically the amplitude is being kept constant by the feedback system to a

preset value, although this monitoring can also be performed by fixing the other two parameters.

Oscillating modes are particularly useful when imaging soft biological samples, as the almost neg-

ligible contact minimizes sample damage. Lateral shear forces that could induce error in contact

mode are also eliminated. Additionally, it has been noted that accurate tip-sample control, which

involves balancing the contribution of attractive and repulsive forces, will significantly improve

lateral resolution in imaging applications (35).

Dynamic modes allow obtaining height, amplitude and phase shift images. Height images

are collected by keeping the amplitude constant and recording the cantilever height, similarly to

what happens in contact mode. Amplitude images show local amplitude changes, also exhibiting

an edge accentuation effect that is independent of significant height changes, allowing for a clear

observation of small details that otherwise could not be examined. Phase shift images illustrate

the phase lag between the cantilever oscillation driving signal and its output signal. It provides

information on mechanical properties related to elasticity, viscoelasticity, friction and adhesion.

2.3.2 Non-Topographic Modes

Non-topographic modes are associated with spectroscopic techniques, in a way they study

sample properties instead of its topography. There are many non-topographic modes, such as

force spectroscopy, nanoindentation, magnetic force microscopy, electric force microscopy, elec-

trochemical AFM and thermal modes. Only the first two will be focused on, being the ones that

rely on Force-Distance or Force-Indentation curves.

In force spectroscopy, the probe is moved along the z axis, while x− y position is locked, and

the cantilever deflection is reported as the probe approaches and retracts from the sample. High

cantilever flexibility and great deflection sensitivity (provided by the optical detection system)
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allow studying interactions between single molecules, and the tip is often modified with molecules

of interest. Living cells, cell membranes and micro-organisms can be probed using this method,

as well as more common materials, like polymers, metals and ceramics.

Figure 2.6 shows an example of what an ideal AFM Force/Deflection-Distance curve would

look like. In the beggining of a force spectroscopy analysis, the probe is far from the sample sur-

face, represented by point A. It then starts the approach phase and by getting closer to the sample,

attractive forces will pull the probe towards it, creating the "snap-in" region. After establishing

contact, as the probe advances, increasingly higher repulsive forces will be felt by the tip, until the

preset value of maximum distance (or deflection) is reached in point B. After that, the probe starts

withdrawing, until "pull-off" occurs at point C, where the force applied to the cantilever becomes

higher than tip-sample adhesion. The "Adhesion data" region allows getting information on adhe-

sion force and energy. The way the cantilever deflects when undergoing different stages of force

spectroscopy is displayed in Figure 2.7, where each deflection (or resting) mode is associated to

points A, B and C.
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Figure 2.6: A model of an ideal AFM Force-Distance curve. A - Probe’s initial position; B -
Maximum indentation point; C - Point of maximum adhesion force. Adapted from (12).

However, experimental curves are not as clean as this ideal example, which can be observed by

comparing it to the graph in Figure 2.2. Hence, to conduct force spectroscopy, various experimen-

tal factors need to be considered and addressed appropriately. For instance, the rate of approach

and withdraw will affect the results and the tip radius can also have a great impact on the analysis,
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Figure 2.7: Illustration of the cantilever deflection in different AFM stages.

since it influences the number of molecules that will be in touch with the tip at once. AFM has

the advantage of being performed in a wide variety of environments and for biological samples, it

is common to do the experiment in a liquid solution (10). The composition of the liquid will then

have a considerable effect in measured forces.

If we record the data while the tip of an AFM presses onto a sample surface instead of with-

drawing from it, nanoindentation is being performed. However, this term has now been commonly

used to describe the entire ramp process. Another method (unrelated to AFM) of nanoindentation

exists, involving a specialized machine to measure load-displacement curves as a hard indenter

presses into a sample. This machine, sensitive to forces at the micronewton level, can create a

series of holes in a sample, and the size of these holes can be measured through techniques such

as light microscopy. While performing a similar experiment, using AFM-based nanoindentation

offers some advantages such as high load sensitivity (being able to reach the piconewton range),

high positioning resolution (allows to probe very small regions of a sample), and the ability to

measure indents at high resolution in x, y, and z directions. However, it also has some drawbacks,

such as the probe approach not being perpendicular, non-linear z positioning, and the need for

system calibration to extract real forces.

When hard materials undergo AFM nanoindentation, a very stiff cantilever and hard probe,

such as a steel cantilever with a diamond tip, are necessary, although these hard probes produce

lower-resolution images. Normal AFM probes can also be used for nanoindentation, but once

again it is crucial to carefully characterize the tip radius and cantilever for quantitative results.

This further characterization enables choosing probes with a broader spectrum of spring constants

and prevents on solely relying on hard probes, that are not appropriate to study soft samples.

One common approach to simplify tip radius determination is to use a normal AFM cantilever

with a spherical tip. Data analysis for nanoindentation is often carried out through modeling the

indentation using the Hertz contact model, which assumes only elastic compression and requires

information on the tip shape and radius.

Both force spectroscopy and nanoindentation are often performed in a grid pattern over the

sample, so the variation of measured mechanical properties along its surface can be determined

and the softest or hardest regions are identified. Subsequently, heat map images of the sample

surface can be generated for each measured property. It must always be taken into account that

the sample topography can affect highly specific measurements, such as the tip-sample adhesion.
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The way mechanical properties can be mapped based on Force-Distance curves, resulting from

non-topographic modes will be further depicted in Section 2.4.

2.4 Mapping of Mechanical Properties

The most common measured properties based on AFM Force-Distance (F-D) or Force Inden-

tation (F-I) curves are related to stiffness, hardness and adhesion. However, these curves are not

directly generated in an AFM analysis, so there are a series of considerations that must be taken

into account, to transform raw data from AFM, to the final F-D or F-I curves.

Throughout a non-topographic mode experiment, as the probe approaches and withdraws from

the sample, the voltage measured in the photodetector is recorded as a function of the vertical

displacement of the cantilever. In Figure 2.8, we can see that the photodetector measures the

difference between the voltage corresponding to the laser reflection in the deflected cantilever and

the reflection in the cantilever with its initial/undeformed slope (represented by the dashed laser

reflecting on the dashed cantilever). As for the cantilever vertical displacement, it is expressed

by the variable zp, also referred to as the z-piezo displacement, that identifies scanner position.

Hence, raw AFM output consists in voltage as a function of scanner position.

Sample

Photodetector

Laser Diode

Cantilever

Probe chip

Scanner

zc
δ

Figure 2.8: Experimental setup to obtain F-D or F-I AFM curves, where the dashed cantilever
represents its original/undeformed shape. zc represents the cantilever deflection and δ the

indentation depth.
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In addition, Figure 2.8 illustrates two key variables to AFM in general, with a significant

relevance on processing the raw output data. One is the cantilever deflection, zc and the other is

the indentation depth, δ . Before performing force spectroscopy or nanoindentation, it is common

to perform a full approach and withdraw cycle against an undeformable surface, to ensure that

δ equals zero, and that during contact the z-piezo displacement is equivalent to the cantilever

deflection. It also allows establishing the relation between the photodetector output (in volts)

and the corresponding cantilever deflection, thus identifying the system sensitivity, commonly

presented in V/nm. Figure 2.9 shows a typical curve from a pre-analysis with an undeformable

sample, where the voltage output remains constant until there is contact, and then starts increasing,

so that the slope observed in the graph is defined as the system sensitivity, S.

zp (nm)

∆
V

(V
)

Sensitivity (V/nm)

Figure 2.9: Example of the raw output data obtained from nanoindentation in an undeformable
surface.

At this stage, it is already known that using expression 2.1, it is possible to transform the raw

output (∆V ) into cantilever deflection (zc.)

∆V = S · zc (2.1)

When the analysis is performed in liquid media, smoothing algorithms must be applied to the

curves, to correct any hydrodynamic dragging effects that may occur. Finally, the tip-sample force

is calculated using Hooke’s law (Equation 2.2), which requires knowing the cantilever stiffness

(or spring constant, k). Indentation depth is determined using Equation 2.3 (only applied to the

contact region), where z0 is the zero indentation point, that can differ accordingly to the applied

contact model. For instance, in the Hertz model it corresponds to the contact point. It is relevant

to say that accurately establishing the contact point is one of the main challenges of AFM.
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Fspring =−k · zc (2.2)

zp− z0 = δ + zc (2.3)

We then arrive at the final F-I curves, from which one can infer key mechanical properties, as

the sample Young’s modulus (E), work of adhesion (Wa) or adhesion force (Fad). The first one is

commonly measured with the approach curve, while the other two are obtained from the retraction

curve. Likewise, the sample hardness H at the nanoscale can be obtained, only by dividing the

maximum force experienced by the tip (Fmax) and the projection of the contact area at maximum

indentation (Amax, that can be calculated from empirical equations that rely on the tip shape):

H = Fmax/Amax.

Most properties are inferred using the right contact model for each AFM stage. The approach

curve, where adhesion forces are not significant, is usually fitted with the Hertz model. As for the

withdraw curve, where adhesive forces have a great impact in the experiment, Hertzian analysis is

no longer valid, so other models must be employed. Amongst them, there are the JKR (Johnson-

Kendall-Roberts), DMT (Derjaguin-Muller-Toporov) and Maugis models. JKR and DMT models

represent two extreme cases in adhesive interaction: JKR is applicable for soft samples, small

tip radius and high adhesion forces, while the opposite is verified for DMT, since it is valid for

hard samples, large tip radius and low adhesion forces. The Maugis model represents a transition

regime between the two previously mentioned extreme states. To determine the suitable model

(that account for adhesion) for each case, the dimensionless Tabor parameter is calculated and it

is given by:

µ = (
Rγ2

E2s3 )
1/3 . (2.4)

In Equation 2.4, R is the tip radius, γ is the energy of adhesion, E is the Young’s modulus

and s is the equilibrium separation between the surfaces. When µ < 0.1 the DMT model must be

applied, while for µ > 5 the JKR model should be adopted. Typical experimental setup for soft

biological samples or gels will present a Tabor parameter value of µ ≈ 200, hence the JKR model

frequently being the preferred choice (13).

Both JKR and Hertz models assume the sample as being purely elastic and since these are the

most relevant models to this framework, they will be properly presented in Chapter 3.

Despite all the advantages inherent to mapping the mechanical properties based on AFM F-I or

F-D curves, it still has some limitations. The main limitation is determining the zero indentation or

contact point, which is key to reach the final F-I data, specially when there is no snap-in region in

the curve. Furthermore, for soft samples it might be hard to distinguish between surface forces and

sample deformation. Some problems can also arise from hysteresis and creep in the piezoelectric

scanner, that can lead approach and withdraw curves to overlap or swap positions if the load rate

is too small and the displacement is too large. In addition, postprocessing requires a significant
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amount of time, since manual observation is required to assess curve quality. Lastly, given the high

number of points in each curve and the typical need to analyse thousands of curves, the process of

selecting a contact model and applying it to fit the data can be a challenging and time-consuming

task. Hence, alternatives to this procedure are being explored, as the one presented in this work,

based on Machine Learning models. These models possess tremendous potential as robust tools

in AFM postprocessing, that could contribute to enabling the precise determination of contact

and detachment points, identifying low-quality curves, and extracting valuable insights regarding

mechanical properties and other relevant analyses.

2.5 Applications

In previous sections, the versatility of AFM has been highlighted as to its ability to operate in

a great number of modes and to study very different materials. This section aims to present some

works on those diverse applications, to get a better understanding of what is currently being done

in the scope of AFM and what are the future developments that this technology will promote.

It has become common to use AFM to study adhesives and nanocomposites, as described in

(33), where a morphological analysis of an epoxy resin, filled with graphene-based nanoparticles

is complemented with a rheological behaviour study. In dynamic mode experiments, the AFM

morphology analysis allowed observing the distribution of the nanofillers in the epoxy matrix and

confirm that it was compliant with rheological and viscoelastic properties of the resins. For each

measured property, a map was created, characterizing its distribution over the sample surface, to

facilitate the association of each morphological detail with its corresponding properties.

When it comes to the study of polymer nanocomposites, AFM is a great tool, as it doesn’t

require any special treatment that would damage the tip nor the sample. Whether in contact or dy-

namic modes, it has clear advantages over other common methods: can be performed in ambient

air (unlike electron microscopy, which requires vacuum) and offers a better resolution than Scan-

ning Electron Microscopy (AFM provides a true 3-D surface profile, whereas SEM only produces

2-D projections), as stated in (44).

The field of tribology also benefits from AFM, in the endless search for gear wear reduction

and efficiency increase. Thin film analysis has been successfully performed with AFM, by map-

ping the peak force over the sample surface. For instance, the study conducted in (42) describes the

mechanical characterization of ashless tribofilms, using nanoindentation, lateral force microscopy

and peak force mapping.

Bioengineering and biomechanics often recur to AFM analysis, due to its efficiency in deal-

ing with soft samples. It has become common to try and simulate the behaviour of a biological

sample undergoing AFM indentation, using Finite Element Method (FEM) software. In (14), both

experimental and simulation (based on the FEM) setups were produced, to analyse mechanics

and dynamics of a cell cortex during indentation. Viscoelasticity of the cell was also studied, by

keeping the probe in place at the maximum indentation depth. In the biomechanics field, it is also

usual to produce surface maps of the measured properties, as performed in (5), where the elastic



2.5 Applications 19

modulus of the cortical bone is studied through AFM nanoindentations, with the resulting stiffness

map being illustrated in Figure 2.10.

AFM topography Young’s modulus

E (GPa)
32
24
16
8
0

Probe chip

Scanner

Figure 2.10: Young’s modulus map from a cortical bone sample, obtained with AFM
nanoindentations (5).

To overcome limitations in AFM data processing, new research has been produced to replace

regular contact model fitting with Machine Learning models. It is the example of (30), where

Gaussian Process Regression, Multiple Linear Regression, Random Forest and Support Vector

Regression are applied to determine the elastic modulus of the sample, without requiring any

contact model fitting. ML models presented accurate results, motivating the further development

of similar approaches.
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Chapter 3

Contact Mechanics

Contact mechanics will be the focus of this chapter. At first, a short introduction on the topic

will be presented, followed by a more in-depth analysis to the two contact models that are more

meaningful for this work, based on Hertz and JKR theories.

3.1 Introduction

Contact mechanics, as traditionally understood, refers to the way in which solids behave when

they come into contact with one another and experience an external force. The origins of contact

mechanics can be traced back to the work of Heinrich Hertz in 1882 (16). Hertz’s original theory

of contact mechanics was limited to the study of perfectly elastic solids or surfaces without friction

or adhesion. Later, more sophisticated theories to describe the behavior of viscoelastic solids in

contact were developed. However, none of these models took into account the role of interfacial

adhesive interactions between the contacting surfaces.

In 1971, Johnson, Kendall and Roberts (17), observed that small particles undergo more de-

formation than predicted by the Hertz theory when they make contact with a flat surface or each

other. Johnson’s team attributed this excess deformation to attractive forces between the contact-

ing surfaces, and they modified the Hertz theory accordingly. The resulting theory, known as the

JKR theory, has since become widely used in the field of contact mechanics to study the adhesion

and friction of various materials. Over the last few decades, contact mechanics principles and the

JKR theory have been employed extensively to investigate these phenomena.

In recent years, with the advancement of computational methods, contact mechanics has been

studied extensively using various computational tools. The main approach is based on FEM,

which allows the simulation of complex contact problems using numerical methods. It has been

employed to study contact between materials with different properties, such as elastic, viscoelastic,

and plastic materials, as well as rough surfaces. Overall, the application of different computational

methods has greatly expanded the scope of contact mechanics research, allowing for the investi-

gation of a wider range of materials and geometries, as well as the study of contact mechanics at

different scales, from the atomic to the macroscopic level.

21
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3.2 Hertz Theory

3.2.1 Basic Principles

Upon bringing two elastic bodies into contact and subsequently applying a load, a localized

deformation will occur in the contact region where they meet. What initially is a contact point will

then increase to a contact surface. If both bodies are spheres, as in the case that will be used to

illustrate this contact model, the area of the contact surface corresponds to a circle. By knowing

the geometry and elastic properties of both bodies, conventional Hertz theory allows determining

solutions for contact area, deformation, pressure distribution and stress at the contact area.

Hertz theory can only be applied to problems that satisfy the following assumptions: the bodies

in contact only undergo elastic deformation, the surfaces are continuous and frictionless, and the

dimensions of the contact area are small in relation to the curvature radius and to the dimensions

of the bodies. Hence, despite the radii varying as deformation occurs, they are considered to be a

constant over the very small regions near the contact area (54).

R1
E1, ν1

2Rc

R2

E2, ν2

Figure 3.1: Scheme of two spheres in contact.

Starting with the example in Figure 3.1, we have two spheres in contact, with different radii

(R1 and R2) and different material properties, where E1 and E2 are the Young’s moduli, while ν1

and ν2 are the Poisson ratios. The radius of contact Rc is amplified only for illustration purposes.

An effective Young’s modulus E∗ is defined, based on Poisson ratios and Young’s moduli of

the two materials in contact, through the following relation:

E∗ =

[(
1−ν2

1
)

E1
+

(
1−ν2

2
)

E2

]−1

(3.1)
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This equation translates the ability of the system to deform at a fixed contact area. It is also

usual to define a radius R that accounts for both radii of curvature, R1 and R2:

R =

[
1

R1
+

1
R2

]−1

(3.2)

At this point, the relation between the contact radius Rc and the applied force F , based on

Hertz theory, can be introduced:

Rc =

(
3RF
4E∗

)1/3

. (3.3)

The contact displacement δ can also be defined as a function of the curvature radii and the

distance between the centers of the spheres d:

δ = R1 +R2−d. (3.4)

It can also be written as:

δ =
R2

c

R
, (3.5)

which allows defining the contact area A in relation to R and δ :

A = πR2
c = πRδ . (3.6)

Combining Equations 3.3 and 3.5, we arrive at the force predicted by Hertz theory, when

knowing the elastic properties of the materials (E∗), the radii of curvature (R) and the contact

displacement δ (which corresponds to the indentation depth when we are referring to an AFM

analysis):

F =
4
3

E∗R
1
2 δ

3
2 . (3.7)

It is often key to know the normal pressure distribution in the area of contact, as a function of

the distance from the center of this region, and it can be calculated by:

p(r) = p0(1−
r2

R2
c
)

1
2 , (3.8)

where p0 stands for the maximum contact pressure, that is verified in the center of the contact

circle. It is possible to determine this variable through the following expression:

p0 =
1
π

(
6FE∗2

R2

) 1
3

. (3.9)

The principles of Hertzian contact mechanics were originally formulated to describe the in-

teraction between two elastic spheres, and despite the formulas presented being for this specific

case, for some different contexts only slight modifications would be required. For instance, if we
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had the common case of one sphere (R1 = Rsphere) in contact with an elastic half space (R2→ ∞),

Equation 3.2 would simplify to R = Rsphere. It implies that for a sphere and elastic half space con-

tact scenario, Equation 3.7 would still be appropriate to calculate the predicted force. It is worth

mentioning that an elastic half space is an isotropic and homogeneous material, with an infinite

extension in all directions (including depth), only having the surface as a boundary.

Another common situation is having one body with a much higher stiffness than the other

(E1 << E2), as it happens when performing AFM nanoindentation to soft biological samples,

since the indenter is infinitely more rigid than the sample. Here, the contribution of the term

related to the rigid body in Equation 3.1 will be negligible in comparison with the other one, so

usually it is not considered and the effective Young’s modulus is given by E∗ = E1
1−ν2

1
.

When it comes to the application of this contact model to fit AFM data, some refinement

was required, so the Hertzian theory has been expanded by Sneddon (45), deriving the relation

between indentation depth and applied force for axisymmetric indenter shapes. For paraboloid

shaped indenters, a similar approach to Equation 3.7 is suitable, while for conical indenters, the

following expression must be applied (23):

F =
2
π

E∗ tanαδ
2, (3.10)

where α is the cone half angle. However, equations deduced by Sneddon require the AFM tip to

have simple shapes (conical or paraboloid), which is often not the case, so further refinement of

these equations must be performed to allow analysing AFM curves in a more exact manner.

3.2.2 Overcoming Hertzian Theory Limitations in AFM Analysis

Many works have been developed to achieve an accurate relation between applied force and

indentation depth, for a wider range of AFM tips, constantly using Hertz principles as a foundation.

The equations that will be presented below refer to the case of contact between an indenter and an

elastic half space, so the radius of curvature R will always correspond to the tip radius. In addition,

the indenters will be considered as rigid bodies when compared to the sample (with Esample = E),

so E∗ = E
1−ν2 . Briscoe et al. (7) came up with the expression for pyramidal indenters, that usually

have a round tip apex, approximating them to have a sphero-conical shape. This expression can

be written as:

F =
2E

1−ν2

{
Rcδ − R2

c

2tanα

[
π

2
− arcsin

(
Rt

Rc

)]
− R3

c

3R
+
(
R2

c−R2
t
) 1

2

(
Rt

2tanα
+

R2
c−R2

t

3R

)}
,

(3.11)

where Rt is the transition radius between the spherical and conical part of the indenter, that can be

calculated by Rt = Rcosα if the spherical tip merges smoothly with the body of the cone. As for

the indentation depth with pyramidal indenters, it is given by:

δ =
Rc

tanα

[
π

2
− arcsin

(
Rt

Rc

)]
− Rc

R

[(
R2

c−R2
t
) 1

2 −Rc

]
. (3.12)
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For spherical indenters, Sneddon (45) has also proposed the following expression:

F =
E

2(1−ν2)

[(
R2

c +R2) ln
(

R+Rc

R−Rc

)
−2RcR

]
. (3.13)

It relates the contact radius to the indentation depth at a specific moment of the analysis,

through:

ln
(

R+Rc

R−Rc

)
=

2δ

Rc
. (3.14)

Despite giving an accurate prediction of applied force when spherical indenters are used, Equa-

tion 3.14 doesn’t provide a direct relation between force and indentation depth, as there is a relation

between Rc and δ at every position of the sphere, Rc = Rc(δ ). Hence, it is not so practical to apply

it in AFM nanoindentation. An alternative approach, based on applying a correction factor Z to

Equation 3.7, has been proposed in (21):

F =
4
3

E
(1− v2)

R
1
2 δ

3
2 Z. (3.15)

In (20), the following expression has been proposed to compute Z:

Z = c1 +
N

∑
i=2

3
2i

ciR(
3
2−i)δ (i− 3

2 ), (3.16)

where constants ci depend on the ratio between indentation depth and tip radius. A simpler ap-

proximation has been presented in (27):

Z =

[
1− 1

10
δ

R
− 1

840

(
δ

R

)2

+
11

15120

(
δ

R

)3

+
1357

6652800

(
δ

R

)4
]
. (3.17)

The relation between force and indentation depth (with only positive values in the x-axis)

computed from Equation 3.15, approximating Z by Equation 3.17, is shown in Figure 3.2, for

different Young’s modulus values, while the other variables remain constant.

Finally, several methods for axisymmetric indenters with arbitrary shapes have been suggested.

Most rely on the concept of "effective indenter", which takes its geometry from the shape of the

plastic hardness impression formed during loading (36). It can be determined as a function of a

fitting constant B, a variable depending on the material properties d and the radial distance from

the center of contact r:

z = Brd . (3.18)
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δ
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F
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E = 1

E = 0.1

Figure 3.2: Relation between force and indentation depth, computed through Hertz theory- based
approximation in Equation 3.15.

A general formula for axisymmetric indenters has been given in (22) and can be written as:

F =
2d

d +1
E

(1−ν2)
Rcδ , (3.19)

which still has the disadvantage of requiring the calculation of the contact radius for each indenter

shape, or to define it as a function of indentation depth.

3.3 JKR theory

By studying the influence of adhesion energy (interchangeably referred to as surface energy)

on the contact between elastic solids, Johnson, Kendall and Roberts (17) derived valuable equa-

tions translating the effect of surface energy upon adhesion force and contact size. They started by

analysing the contact between two spherical solid surfaces (as Hertz had done), using rubber and

gelatine as materials.

Surface energy arises due to cohesive forces between the atoms or molecules within a material.

It is related to the work that is needed to separate bodies in close contact and to overcome the

adhesive forces between them, being expressed in energy per area units.

The need for a new contact model that would replace Hertz theory in some cases, emerged

from observations that at low loads, the contact areas between the bodies would be much larger
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than what was predicted by Hertz, because strong adhesion was observed between them. However,

at higher loads, Hertz theory presented good results. Hence, attractive forces were being observed

between the bodies, and despite being almost negligible at high loads, they had a great impact as

the load was getting closer to zero.

Figure 3.3 illustrates the difference of what happens when there are surface forces in play

(generating contact radius Rc1) and in the absence of these forces (contact radius Rc0), besides

showing the "new" surfaces that are created when there is adhesive contact. This last case is

accurately modelled with Hertzian theory and Rc0 can still be determined through Equation 3.3.

R1 E1, ν1

2Rc0

R2

E2, ν2

2Rc1

Figure 3.3: Scheme of two spheres in contact, with (Rc1) and without (Rc0) surface forces.

However, to infer Rc1 (which from now on will be referred to only as Rc), the impact of

adhesion energy must be accounted for, given that it will cause tensile stresses between the surfaces

at the edge of the contact area and compressive stresses will only be present in the centre. Johnson,

Kendall and Roberts then modified Hertz contact radius equations, into:

R3
c =

R
K

(
F +3γπR+

√
6γπRF +(3γπR)2

)
, (3.20)

in which γ is the energy of adhesion (in units of energy per area) and K relates to the effective

Young’s modulus by K = 4
3 E∗. We can see that when γ = 0, it goes back to Hertz equation

R3
c =

3RF
4E∗ . At zero applied load, we get:

R3
c =

6γπR2

K
. (3.21)

When the applied load becomes negative, the bodies are moving away from each other and the

contact radius will decrease. For Equation 3.20 to remain valid, the following condition must be

verified:

6γπRF ≤ (3γπR)2, (3.22)
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leading to

F ≥−3
2

γπR. (3.23)

This allows calculating the force of adhesion Fad at which the separation of the spheres will

occur, being defined by:

Fad =−3
2

γπR. (3.24)

It is thus verified that this force is independent from Young’s modulus, so this property will not

interfere with the instant at which the bodies break adhesive contact. As for contact displacement

δ , it is established by JKR theory as:

δ =
R2

c

R
− 4

3

√
RcFad

RK
(3.25)

At last, to fully describe an elastic model including the effects of surface energy, the total

normal force of contact with cohesion F can be written as:

F =
R3

cK
R
−
√

6πKγR3
c (3.26)

Overall, the JKR contact model provides an accurate approximation for large cohesive ener-

gies and low Young’s modulus, making it well-suited to fit data from biological samples in AFM

studies. Nevertheless, the application of this theory is not very straightforward, since the contact

radius is a function of indentation depth, so there is not an explicit expression to relate this last

parameter with the force. As done in (11), one way to tackle this problem is by approximating the

contact radius simply as:

R2
c ≈ Rδ . (3.27)

Replacing this in Equation 3.26, leads to an easier way to calculate the normal force:

F = KR
1
2 δ

3
2 −UaK

1
2 R

3
4 δ

3
4 , (3.28)

and Ua relates to the adhesion energy by

Ua =
√

6πγ. (3.29)

It is clear that this approximate way to calculate the contact radius will slightly decrease the

accuracy of the model, but by giving an explicit expression of the force as a function of the over-

lap, the complexity of the model decreases significantly, so does the analysis of data from AFM

nanoindentation.

Illustrating the correlation established in Equation 3.28 is also of key importance. Unlike

Hertzian theory equations, now there are two material properties (K = K(E) and γ) affecting the
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interdependence between force and indentation. If the adhesion energy was set as a constant and

only the Young’s modulus was changed, the relation between the different curves would be similar

to what was presented in Figure 3.2, regarding Hertz theory. However, by adjusting the energy of

adhesion and fixing the remaining variables, the plots in Figure 3.4 are obtained. It is noticeable

that by increasing the surface energy, there are increasingly negative forces, meaning that adhesion

forces become more relevant.

δ

0

F

γ = 10−4

γ = 10−3

γ = 10−2

γ = 3 · 10−2

Figure 3.4: Relation between force and indentation depth, computed through JKR theory-based
approximation in Equation 3.28, setting the Young’s modulus as an unitary constant.
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Chapter 4

Machine Learning

The goal of this chapter is to outline the main aspects related to Machine Learning, with an

increased focus on the key features for the development of this work. The topic will be introduced

and after that, Artificial Neural Networks will be described, as well as all the steps required in a

Train-Validation-Test framework. The theoretical review presented along this chapter is mostly

based on the books by Nielsen (32) and Géron (15).

4.1 Introduction

Artificial Intelligence (AI) and Machine Learning (ML) are two different concepts, although

related, whose definitions are regularly mixed up. Artificial Intelligence only refers to the capabil-

ity of machines to mimic human intelligence. On the other hand, Machine Learning is a branch of

AI (Figure 4.1) associated with the development of algorithms capable of data-driven decisions,

without the need to follow static programming instructions. It is said that based on a given dataset,

the algorithm is trained to perform a certain task, by identifying patterns in the data, from which

it will relate the specified inputs to the desired outputs. Another concept that is worth describing

is Deep Learning (DL), a subset of ML referring to techniques that teach computers how to learn

by example, using labeled datasets and neural network (NN) architectures.

ML has never been as trending as it is nowadays and its importance in today’s society only

tends to increase. Despite that, its foundations started being developed in the middle of the last

century. Walter Pitts and Warren McCulloch, in 1943, presented for the first time a mathematical

model of a neuron and described how networks of these artificial neurons could perform logical

operations (25). In 1950, Alan Turing introduced the concept of a machine demonstrating intel-

ligent behaviour if it would be able to pass the Turing test (49). Intelligent machines started to

receive widespread attention when the first checkers playing AI was conceived by Arthur Samuel,

and even more recognition as millions watched IBM’s Deep Blue defeat the long-time world chess

champion Garry Kasparov, in 1997.

Over the years, with exponential improvement in computing technology, development of mas-

sive datasets and advancement in computer science and statistics, ML models have been able to
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Artificial Intelligence

Machine
Learning

Deep
Learning
• ANNs

Figure 4.1: Illustration of the most important AI subsets for this framework, where ANNs stands
for Artificial Neural Networks.

become a key part of our everyday lives. The first example having an impact of hundreds of mil-

lions of people was the spam filter in the 1990s, and since then it can be found in recommendation

systems of every streaming service, used as a cancer prediction tool and being the key feature that

allows developing self-driving vehicles.

From the distinct approaches to train models and extract patterns from a dataset, one can

subdivide ML algorithms in two groups: supervised learning and unsupervised learning.

Supervised learning is the most common type of Machine Learning application and it is char-

acterized by using labeled datasets, designed to train the algorithms into classifying data or pre-

dicting outcomes. The accuracy of the model is calculated by relating the true labels with the

outputs of the ML model. Classification and regression are the two types of supervised learning

problems. Classification problems correspond to separating data into different categories and the

most common classification algorithms are linear classifiers, support vector machines, random

forest and decision trees. Regression problems resort to algorithms that find the relation between

dependent (outputs) and independent (inputs or features) variables, usually to predict numerical

values. Linear regression, logistic regression and polynomial regression are the most popular al-

gorithms belonging to this category.

Unsupervised learning, as the name suggests, takes unlabeled datasets and discovers hidden

patterns within it, without requiring any human interference. Clustering, which is a technique to

group unlabeled data based on their similarity, is the most frequent application of unsupervised

learning and K-means clustering is the most common of its algorithms. Other tasks performed by

unsupervised learning algorithms are association, that finds relations between the variables of a

dataset (used for recommendation engines) and dimensionality reduction, that is used to decrease

the number of features when it is too high, while maintaining the most relevant information in the

dataset.
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There are many ML frameworks built in numerous programming languages, but currently one

particularly stands out as being preferred for research in this field and that is PyTorch. PyTorch

(34) is an evolution of the open-source library Torch, written in Python, and all ML implementa-

tions in this work were made using this framework. To illustrate its relevance, in 2022, over 60%

of (open-access) published papers related to ML were performed using PyTorch (53).

4.2 Train-Validation-Test Framework

To build a ML model and improve its performance based on a given dataset, a standardized

approach has been established, based on splitting the dataset into three different groups: the train-

ing, validation and testing sets. Separating the data in this way ensures that the model is trained

and evaluated in a rigorous and unbiased manner, and that the right hyperparameters are chosen

by the developer.

First, it is key to define hyperparameters and to distinguish them from model parameters. So,

a hyperparameter is adopted prior to training the model or evaluating its behaviour and it isn’t

learned from the data. A model’s performance is highly dependant on hyperparameters, so it is

usual to select the optimal values for them, in a separate procedure from training the model. The

number of hidden layer and number of nodes in each layer are hyperparameter examples, to which

we can add the learning rate or the activation function, that will be explored in following sections,

amongst others.

On the other hand, the parameters of a ML model are internal variables, that are not directly set

by the developer. They are responsible for capturing the patterns in training data and to produce

predictions that are ever closer to the actual outputs, being improved through the application of

optimization algorithms. The existing parameters in a ML model depend on its nature and archi-

tecture, but when it comes to ANNs the model parameters correspond to the weights and bias for

each neuron in the network.

Now moving on to the dataset split, it should be noted that the biggest portion of the entire

data goes to the training set. That is because the training process has the purpose of optimizing the

model parameters, to increase its accuracy. Hence, a large fraction of the data must be provided

so that the relationships between the different features and the corresponding outputs are correctly

identified and modelled. In ANNs, the training process is strongly linked with the backpropagation

algorithm (to be explored in section 4.3.4).

The validation set is much smaller than the training one, but plays a significant role when

building a ML framework. This set is not used in training, thus when applying the model to the

validation set, a good comprehension on how it behaves on "unseen" data is obtained, from which

the hyperparameters are fine tuned. It is key to prevent overfitting to the training set, that translates

the tendency that a model has to "memorize" the data instead of "understanding" its patterns.

At last there is the test set, that is usually similar to the validation set in terms of size and it is

also disregarded during training. It ultimately defines the performance of the model.



34 Machine Learning

Some concerns must be taken into account while performing the training-test-validation split.

The first and most obvious one is to choose appropriate split ratios. The second is to apply a

splitting technique called stratification, which is defined as ensuring that the output representation

across the three sets is proportional to their original distribution. For instance, it prevents a model

that deals with continuous numerical values from training with a set that predominantly contains

lower values of the initial output range and then test it in a set with the higher values of that range,

resulting in a poor model evaluation.

To make the training process more computationally efficient, instead of updating the param-

eters only after processing the entire training dataset, the parameters are updated after feeding

the model with a subset of training data, called a batch (or mini-batch). The combination of all

batches corresponds to the training set. This way, for one iteration through the entire set, the model

is updated a number of times equal to the number of batches, rather than being updated just once.

After the model has seen all batches and therefore the entire training set, one epoch is com-

pleted. An epoch is a single pass through the whole training data, where each training instance

has been processed and used to update the model’s parameters. The number of epochs determines

how many times the model will iterate over the entire dataset during training.

To examine how the model is progressing, the loss is plotted along the epochs, both for training

and validation sets, as presented in Figure 4.2. It can be seen that in some cases, the loss increases

from one epoch to another, which shows that a greater number of epochs doesn’t mean that a better

model accuracy will be obtained.
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Figure 4.2: Example of the evolution of training and validation loss throughout the epochs.

After being successfully tested, the model must become available to being used in real appli-

cations, so for that it has to be deployed into a target platform, for which an interactive interface or

API is usually created. To sum up this section, a list of steps that outline the process of developing

a ML model will be introduced:
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1. Preprocess the data that can be relevant for the defined problem.

2. Split the data into train, validation and test sets, choosing an appropriate split ratio for each

set and applying data stratification.

3. Choose a suitable model and train it using the training set, after selecting an initial config-

uration of hyperparameters.

4. Tune the hyperparameters with the validation set, to adjust its architecture and prevent

overfitting to the training set.

5. Test the final model on the training set, once again evaluating its generalization capabilities

and performance on unseen data.

6. Deploy the ML model in a suitable environment or device.

4.3 Artificial Neural Networks

Artificial Neural Networks (ANNs) have emerged as a result of inspiration drawn from bio-

logical neurons. Although ANNs are far from replicating exactly what these neurons do, they are

both based on the same principle: individual neurons behave in a simple way, but when organized

in a vast network, they are capable of performing highly complex computations.

The nodes (or neurons) in an ANN are compiled into subsequent layers and each layer can be

of several types: dense layers, convolutional layers, recurrent layers, amongst others. Throughout

this project, ANNs with dense layers will be adopted in all ML models, meaning that each node in

layer l is connected to all nodes in layers l−1 and l+1 (Figure 4.3). The first and last layers of an

ANN are called input and output layers, respectively, as the purpose of the first is to feed the input

data into the model and the last presents the predicted output. Still regarding the architecture of an

ANN, the number of nodes in a layer is associated to the width of the network, while the number

of layers is related to its depth.

4.3.1 Perceptron

Based on the already mentioned work of McCulloch and Pitts, the concept of perceptron was

developed in the 1950s, building the base for later development of artificial neurons. A perceptron

only generates predictions that correspond to one of two states, usually ŷ ∈ {−1,1}.
The perceptron is suitable to solve simple linear classification problems, by giving a binary

output prediction ŷ after calculating the scalar product of the input data vector x with the weights

vector w, and adding the scalar bias term b:

ŷ =

{
−1 if w · x+b≤ 0

1 if w · x+b > 0
(4.1)
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Figure 4.3: Example of an ANN composed only of dense layers, with two hidden layers. Adapted
from (29).

Of course the predictions of a perceptron won’t be accurate unless the weights and the bias are

updated according to its behaviour, that is whether the prediction ŷi matches the label yi or not.

The Perceptron algorithm for updating these parameters is presented below in Algorithm 1. As

inputs, it takes the dataset features X (matrix where each vector row xi represents the features of

one data instance) and labels y. In addition, the number of instances or dataset length n and the

number of times T that the algorithm must iterate through the entire set must also be provided.

Algorithm 1 The Perceptron algorithm

procedure PERCEPTRON(X , y, n, T )
w←{0}
b← 0
for t = 1, ...,T do

for i = 1, ...,n do
if yi(w · xi +b)≤ 0 then

w← w+ yixi

b← b+ yi

end if
end for

end for
end procedure

When the algorithm spots a mistake, i.e., yi(w · xi + b) = yiŷi ≤ 0, the updated values of the

vector w and bias term b produce a better prediction if:

yi[(w+ yixi) · xi +b+ yi]≥ yi(w · xi +b). (4.2)
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Figure 4.4: Scheme of a perceptron that takes 3 inputs.

The previous expression can be simplified into:

y2
i ||xi||2 + y2

i ≥ 0 , (4.3)

which is always true, thus it is proved that the weights and bias updates always provide better

predictions than their previous values.

4.3.2 Artificial Neuron

Compared to the original perceptron, an artificial neuron is slightly more complex and has the

advantage of being able to predict not only categorical but also continuous values. It is based on

the same principle that the output of a neuron is calculated by summing the weighted inputs from

neurons in the previous layer. Then, an activation function f is applied to the resulting value and

the final output is obtained. For the i-th node in the l-th layer, the node output is given by:

a(l)i = f

(
n

∑
j=1

w(l)
i, j a

(l−1)
j +b(l)i

)
, (4.4)

where index j denotes for the node position in the previous (l-1) layer. Figure 4.5 simplifies the

understanding of this calculation method, by representing the first two layers of a generic ANN

and focusing on the output of one specific node.

To summarize these equations in matrix notation, the computation of the outputs for all nodes

in layer l can be presented as:


a(l)1

a(l)2
...

a(l)m

= f




w(l)
1,1 w(l)

1,2 . . . w(l)
1,n

w(l)
2,1 w(l)

2,2 . . . w(l)
2,n

...
...

. . .
...

w(l)
m,1 w(l)

m,2 . . . w(l)
m,n




a(l−1)
1

a(l−1)
2

...

a(l−1)
n

+


b(l)1

b(l)2
...

b(l)m



 (4.5)

a(l) = f
(

W (l)a(l−1)+b(l)
)

(4.6)
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Figure 4.5: Activation of an artificial neuron. Adapted from (29).

Although the architecture is key for a good model behaviour, it must always be hand-in-hand

with the choice of an appropriate activation function. These functions allow introducing non-

linearity to the network, performing gradient propagation or limiting the node output. An ANN

that has nonlinear activation, neurons connected to all the nodes in the previous layer and in the

subsequent layer (fully-connected), and that is composed of input, hidden and output layers, is

commonly referred to as a Multilayer Perceptron. However, sometimes there is no need to in-

troduce such complexity in the network and a simple linear pass-through function can be used

( f (x) = x), where the node output is simply the weighted sum of its inputs. Amongst the most

common activation functions there are the Sigmoid, Rectified Linear Unit (ReLU) and Hyperbolic

Tangent (tanh), which will be described below and plotted in Figure 4.6.

The Sigmoid is a differentiable function and it is a common choice when the model must

predict a probability, as it outputs values between 0 and 1. It is calculated by:

f (x) =
1

1+ e−x . (4.7)

ReLU turns negative values into zero and passes-through positive values. Nowadays, it is one

of the most common activation functions and it can be expressed by:

f (x) = max(0,x). (4.8)

One of the disadvantages of ReLU is that all negative values are immediately mapped to 0, so

its derivative is always null for negative values, which can have an unfavourable influence during

model training, particularly at the backpropagation process. To solve this issue, the Leaky ReLU

function was created. It multiplies values under 0 by a small constant (usually 0.01), so that the

negative part of its graph has a small slope instead of being flat and their derivatives are not null
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anymore. For a constant k such that 0 < k < 1, the Leaky ReLU can be written as:

f (x) = max(kx,x). (4.9)

Similarly to the Sigmoid function, the tanh also limits the range of the outputs, but between

-1 and 1, so this function has the advantage of mapping negative values into strongly negative

outputs. It is given by:

f (x) = tanh(x) =
ex− e−x

ex + e−x . (4.10)
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Figure 4.6: Activation function plots (blue) and their gradients (dashed orange). For illustration
purposes, the Leaky ReLU constant is set to 0.1, instead of the usual 0.01.

The gradients of activation functions play a significant role in the model training, as each

step to update the weights and bias requires their calculation. The update of these parameters is

proportional to the partial derivatives being computed, so if their value is too small, the updates

will be minimal and may even be null in limit cases. This issue is known as vanishing gradient, and

applying activation functions as the Sigmoid or tanh can lead to this problem, as their gradient is

almost null for a large portion of their domain. Hence, throughout the development of ML models

in this project, ReLU and Leaky ReLU were the adopted functions.

So far, we have seen that the network receives the inputs in the first layer and how they flow

sequentially through the layers of the network (applying the activation function to the weighted

sum of the inputs in each layer), until an output prediction is generated. This process of input data
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propagation until the final prediction is called a forward pass. Next, the metrics used to study the

accuracy of the model after the forward pass will be described.

4.3.3 Loss Functions

An ANN is reliable if its predictions are equal or very close to the real outputs or labels asso-

ciated with a specific instance. Predictions are evaluated through loss functions and the algorithm

that optimizes the network weights and bias, does so based on setting the minimization of the loss

function as an objective.

There are many loss functions that can be used according to each problem, so only the most

used in regression problems with continuous values will be presented.

The Mean Squared Error (MSE or L2 Loss) is the most common loss function for regression

problems. This function averages the squared difference between predicted and actual outputs, so

large errors are strongly penalized by being squared, making it less consistent to deal with outliers.

It is expressed by:

MSE =
1
n

n

∑
i=1

(yi− ŷi)
2, (4.11)

where n is the length of the dataset, ŷi represents the predicted output for instance i and yi its actual

value.

One alternative that is more robust to outliers is the Mean Absolute Error (MAE or L1 Loss).

Nevertheless, it does not emphasize the reduction of large errors when compared to small ones. It

is formulated as:

MAE =
1
n

n

∑
i=1
|yi− ŷi|, (4.12)

To merge the advantages of the previous functions, the Huber Loss was created. A threshold t

is defined, so if the absolute difference between the prediction and the actual value is greater than

t, the MAE is applied, if not, the MSE is used:

Lt =

{
1
2(y− ŷ)2 if |y− ŷ| ≤ t

t|y− ŷ|− t2

2 otherwise
. (4.13)

Figure 4.7 compares the loss obtained applying the three described methods, for the same error

(ŷi− yi), taking the threshold value of the Huber Loss as t = 2.

4.3.4 Backpropagation

Backpropagation is one of the fundamental algorithms used in ANNs, allowing the network

to update its weights and bias to increase the model performance. The backpropagation algorithm

can be divided in two steps: forward step and backward step.
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Figure 4.7: Comparison between loss functions, considering t = 2 for the Huber Loss.

The forward step essentially corresponds to everything that was previously described in this

section. First, the weights and bias are initialized, the network takes the inputs and the forward

pass is executed, concluding with the model predictions.

From that point, the backward step starts. The gradient of the loss function with respect to the

model output is calculated and then backpropagated through the network, computing the loss gra-

dient in relation to the weights and bias from the output to the input layer. At last, an optimization

algorithm is employed to update the network parameters so that the loss value decreases in each

iteration.

The equations used in the backpropagation algorithm will be presented below and the simple

scheme in Figure 4.8 intends to ease the understanding of how these equations were derived and

the notation used. Only one node is represented in each layer and a greater focus is given to the

nodes in layer l and in the output layer L.

a(l−1) a(l) = f (z(l))
w(l)

b(l)

. . . w(l+1)
. . . ŷ = a(L)

w(L)

b(L)

L (ŷ,y)

Figure 4.8: Simple ANN with only one node in each layer. Only the nodes in layers l−1, l and in
the output layer L are represented.

The vector representing the values of all neurons in layer l of a given ANN, a(l), has been

already characterized in this section, but it is necessary to define a new variable, corresponding to

the weighted inputs of the nodes in layer l, z(l), that is expressed by:
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z(l) = w(l) ·a(l−1)+b(l) (4.14)

Considering a generic activation function f (whose derivative f ′ is known), it is clear that

a(l) = f (z(l)). The objective of backpropagation is to compute the partial derivatives of the loss

function L in order to the weights w and the bias b: ∂L /∂w and ∂L /∂b, respectively. Another

variable must be introduced, translating the error of the i-th neuron in layer l, Φ
(l)
i (or simply Φ(l)

in vector notation):

Φ
(l)
i =

∂L

∂ z(l)i

, (4.15)

applying the chain rule, it is equivalent to saying that:

Φ
(l)
i =

∂L

∂a(l)i

∂a(l)i

∂ z(l)i

, (4.16)

besides, as the relation between a and z is established, the previous equation can be rewritten as:

Φ
(l)
i =

∂L

∂a(l)i

f ′(z(l)i ) . (4.17)

To simplify computation during backpropagation, it may be expressed in matrix-based form,

by:

Φ
(l) = ∇aL ⊙ f ′(z(l)) , (4.18)

where ∇aL is a vector with the partial derivatives ∂L /∂a(l)i and ⊙ is the Hadamard product or

element-wise multiplication. Now the expression to calculate the error Φ in all nodes of a given

layer l has been deduced, but it has not been presented as a function of the error in the next layer,

which is crucial to perform the backward step.

Going back to Equation 4.15, the chain rule can be once again applied, but now to introduce a

variable from the next layer l +1:

Φ
(l)
i = ∑

k

∂L

∂ z(l+1)
k

∂ z(l+1)
k

∂ z(l)i

= ∑
k

Φ
(l+1) ∂ z(l+1)

k

∂ z(l)i

, (4.19)

with k denoting the node position in layer l +1. The term ∂ z(l+1)
k /∂ z(l)i is evaluated with the help

of Equation 4.14 depicted in component form:

z(l+1)
k = ∑

i
w(l+1)

ki a(l)i +b(l+1)
k = ∑

i
w(l+1)

ki f (z(l)i )+b(l+1)
k . (4.20)

Hence, that term is given by:
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∂ z(l+1)
k

∂ z(l)i

= w(l+1)
ki f ′(z(l)i ) . (4.21)

Replacing it in Equation 4.19, we arrive at:

Φ
(l)
i = ∑

k
Φ

(l+1)w(l+1)
ki f ′(z(l)i ) , (4.22)

or in matrix form:

Φ
(l) = ((w(l+1))Φ(l+1))⊙ f ′(z(l)) . (4.23)

Finally, to reach the goal of computing ∂L /∂w and ∂L /∂b, the same reasoning can be

applied, but this time what is obtained by introducing weights or bias related terms to Equation

4.15 through the chain rule is much simpler, and the relation between z and w or b given in

Equation 4.14, leads to:

∂L

∂b(l)i

= Φ
(l)
i (4.24)

∂L

∂w(l)
i j

= a(l−1)
j Φ

(l)
i (4.25)

To conclude, the entire backpropagation process can be summarized in the following steps:

1. Initialize weights and bias randomly and define the inputs.

2. Sequentially compute z(l) and a(l) for each layer l of the network, until the final layer is

reached and a prediction is generated (feedforward).

3. For the output layer L, calculate the error Φ(L) through Equation 4.18.

4. Backpropagate the error, from the last layer to the initial, using Equation 4.23.

5. Evaluate the gradient of the loss function in order to the bias and weights, with Equations

4.24 and 4.25.

4.3.5 Optimization Algorithms

To complement backpropagation, the bias and weights of the network must be updated accord-

ing to the loss function gradients, so that the ANN performance improves and the final loss value

is minimized. These updates are carried out using optimization algorithms, for which an objective

function must be defined as well as the information of whether this function should be maximised

or minimised. Typically the objective of the optimization is set as:

min

(
L (θ) =

1
T

T

∑
t=1

Lt(θ)

)
, (4.26)
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where T is the number of times the algorithm runs through the dataset and θ represents the pa-

rameters to be optimized (usually the weights and bias for an ANN).

There are currently dozens of optimization algorithms that are regularly applied to ML frame-

works, however only the main algorithms for ANN regression problems will be covered, as they

are the most suited for this project. Going forward, the Stochastic Gradient Descent and Adaptive

Moment Estimation algorithms will be briefly introduced.

The Stochastic Gradient Descent (SGD) is very often used as an optimization algorithm for

ML purposes. It was first presented in 1951 (43), but has been improved over the years. The

foundations of SGD rely on the Gradient Descent (or Batch Gradient Descent, BGD) algorithm,

with some simplifications that steeply increase its computational efficiency. As the BGD requires

going through the entire training set to update the parameters, SGD only uses portions of this set

for each update, called mini-batches, making it much faster than BGD.

A simplified version of the SGD is presented in Algorithm 2, where η is the learning rate, a

variable defining the step size at which the parameters θ are updated. However, other parameters

besides the presented ones have been introduced to this method, such as weight decay, that prevents

overfitting, and momentum, that accelerates convergence (46).

Algorithm 2 Simplified SGD algorithm

procedure SGD(θ0, η , T , L )
for t = 1, ...,T do

gt ← ∇θ Lt(θt−1)
θt ← θt−1−ηgt

end for
end procedure

Another much more recent optimization algorithm is the Adaptive Moment Estimation, com-

monly known as the Adam algorithm. As opposed to SGD that keeps the learning rate unchanged

throughout its iterations, the Adam algorithm computes learning rates for each parameter and

adapts them based on the previous gradients of those parameters (18). This is done with the use

of 2 variables referred to as the first and second moments of the gradients, respectively u and v.

The first moment tracks the mean direction of the gradients, while the second keeps record of their

variance. Adam was presented as an improvement of algorithms that would also be appropriate

for regression frameworks, such as AdaGrad and RMSP, specially in terms of generalizing, which

translates the model’s accuracy to predict the output of instances that it hasn’t trained on.

Algorithm 3 presents a simple adaptation of Adam, which relies only on the strictly needed

inputs. A weight decay parameter could also be added and other versions of this method could

be applied, such as the AMSGrad algorithm (41), that modifies the update rule for the second

moment.
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Algorithm 3 Simplified Adam algorithm

procedure ADAM(θ0, η , T , L ,β1,β2)
u0← 0
v0← 0
for t = 1, ...,T do

gt ← ∇θ Lt(θt−1)
ut = β1ut−1 +(1−β1)gt

vt = β2vt−1 +(1−β2)g2
t

ût = ut/(1−β t
1)

v̂t = vt/(1−β t
2)

θt ← θt−1−η ût/
√

v̂t + ε

end for
end procedure

Comparing these two methods, it become evident that the SGD has the advantage of being

simpler, while still performing well. On the other hand, it presents slower convergence in some

cases and it is very sensitive to the choice of the learning rate, as it always remains constant.

Overall, the performance of Adam is usually better, since the adaptive learning rates accelerate the

convergence, however it is worst in generalizing the model, being more prone to overfitting. Thus,

both algorithms will be tested when developing the successive iterations of ANN models in this

work.

4.4 Implementation in PyTorch

Throughout this section, simplified PyTorch implementations of some of the processes that

were previously described will be presented. PyTorch allows to develop ML frameworks in a

simple way, since its many essential built-in functions perform the longest and more complex

calculations, so, for instance, there is no need to explicitly program all backpropagation equations

nor to write down all the steps of the optimization algorithms. To reduce the depicted code, it will

be assumed that the libraries and modules imported for each topic will be already imported in the

following topics. Another assumption made is that the hyperparameters (represented by uppercase

variables) have been previously defined, so their values are not shown.

Train-Validation-Test split with stratification

There are some functions in the ML library scikit-learn that allow performing the split and

stratifying the data at the same time, however they all rely on categorical outputs and the aim of

this framework is to predict continuous variables. Thus, the target variables y must be combined

into a certain number of bins (exemplified as 10), which are representative of a given output range.

The first split sets aside the test dataset, while the second distinguishes training from validation

sets. As the second split is only using a part of the original dataset, the validation ratio must be

adjusted so that its defined value (15%) is given in relation to the entire dataset.
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import pandas as pd

from sklearn import train_test_split

test_ratio = 0.15

valid_ratio = 0.15

valid_ratio = valid_ratio/(1−test_ratio)

bin_count = 10

bins = pd.qcut(y, bin_count , labels=False, duplicates=’drop’)

x_train, x_test, y_train, y_test = train_test_split(

x, y,

test_size=test_ratio ,

stratify = bins)

bins = pd.qcut(y_train, bin_count , labels=False, duplicates=’drop’)

x_train, x_valid, y_train, y_valid = train_test_split(

x_train, y_train,

test_size=valid_ratio ,

stratify = bins)

Dataset class and DataLoader

To load the dataset into a PyTorch ML model, the class DataLoader is of great relevance.

It allows defining the batch size or if whether or not the data must be shuffled, amongst other

parameters. To complement the DataLoader, a user-defined class is usually built, to differentiate

the features from the targets, as it is the case of the Hertz_Dataset class.

from torch.utils.data import DataLoader

class Hertz_Dataset():

def __init__(self,features,targets):

self.features = features

self.targets = targets

def __len__(self):

return len(self.targets)

def __getitem__(self,idx):

return self.features[idx],self.targets[idx]

train_data = Hertz_Dataset(x_train, y_train)

test_data = Hertz_Dataset(x_test, y_test)
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valid_data = Hertz_Dataset(x_valid, y_valid)

train_loader=DataLoader(train_data ,

batch_size=BATCH_SIZE ,

shuffle=True)

test_loader=DataLoader(test_data , shuffle=False)

valid_loader=DataLoader(valid_data , shuffle=False)

Create and instantiate the model

First, the ANN model must be created based on the subclass nn.Module, that contains all the

building blocks that are needed for neural networks. The example given below is for the regression

problem of trying to predict Young’s modulus of a sample, based on its F-I approach curve, so there

is only one output. As an input, there is a matrix with two columns, for indentation and force in

each point of the curve, that must be flattened to acquire the correct shape to be introduced to the

model’s first layer, as schematized in Figure 4.9. The size of the input layer is computed based on

the number of elements in the original matrix.
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δ (2) F(2)

...
...

δ (n) F(n)
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δ (2)
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δ (n)
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nn.Flatten

Figure 4.9: Flattening the inputs.

All the layers are combined inside nn.Sequential and the example presented has only one

hidden layer, using the ReLU activation function. Every subclass of nn.Module needs to override

forward(), so that the forward step is performed. Finally, the model is attributed to an instance and

the loss function and optimization algorithm are defined.

import torch

from torch import nn

# Define the ANN model

class Regression_Hertz(nn.Module):

def __init__(self, input_shape , HIDDEN_UNITS):

super(Regression_Hertz , self).__init__()
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input_size = input_shape[0] * input_shape[1]

self.layers = nn.Sequential(nn.Flatten(),

nn.Linear(input_size , HIDDEN_UNITS),

nn.ReLU(),

nn.Linear(HIDDEN_UNITS , 1))

def forward(self, x):

out = self.layers(x)

return out

# I n s t a n t i a t e the model

input_shape = x_train.shape[1:]

model_Hertz = Regression_Hertz(input_shape , HIDDEN_UNITS)

# Define the l o s s func t ion and opt imizer

loss_fn = nn.MSELoss()

optimizer = torch.optim.Adam(model_Hertz.parameters(),

lr=LEARNING_RATE)

Train one epoch

A function to train one epoch was created, to later be embedded in the training and validation

loop for all the epochs. The data in the training set is fed to the model in a "for" cycle, where a

batch is loaded in each iteration. After getting the batch data, the first step to take is to zero the

gradients, as PyTorch accumulates its previous values by default. Then, the forward and backward

steps are computed, and the optimizer updates the parameters. This simplified function returns the

loss value for each prediction, that will be useful to later analyse the model’s behaviour.

def train_one_epoch(train_loader):

loss_list = []

for _, data in enumerate(train_loader):

# Every data ins tance i s an input + t a r g e t pair

inputs, targets = data

# Zero the op t imizer grad ien t s

optimizer.zero_grad()

# Performs the forward s tep

outputs = model_Hertz(inputs)

# Compute the l o s s and i t s grad ien t s

loss = loss_fn(outputs, targets)

# Backpropagate the grad ien t s
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loss.backward()

# Adjust parameters

optimizer.step()

# Gather data and repor t

loss_list.append(loss.item())

return loss_list

Train-Validation loop

Below there is a condensed version of the train-validation cycle in which the previous function

for training one epoch is incorporated. At the beginning of each epoch, that function is called, al-

lowing the model to be trained, and then the loss associated with each training instance is recorded.

It is then studied how accurate are the model’s predictions on the validation set, and in the end

the model is saved with the parameters that allowed for the minimum value of validation loss. In

the full code of this framework, a more complete version of the code presented is built inside a

function that not only saves all the relevant training and validation information for each epoch, but

also produces essential plots that monitor the model’s performance.

best_vloss = 1e6

train_loss = []

for epoch in range(EPOCHS):

# Train one epoch

loss_list = train_one_epoch(epoch, train_loader)

train_loss.append(loss_list)

# Evaluat ion on the v a l i d a t i o n s e t

running_vloss = 0.0

for i, vdata in enumerate(valid_loader):

vinputs, vtargets = vdata

vpredicts = model_Hertz(vinputs)

vloss = loss_fn(vpredicts , vtargets)

running_vloss += vloss

avg_vloss = running_vloss/(i + 1)

# Track bes t performance

if avg_vloss < best_vloss:

best_vloss = avg_vloss

model_path = ’model_state_dict_{}.pt’.format(epoch+1)

torch.save(model_Hertz.state_dict(), model_path)
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Load and test the model

To test the saved model, it is first necessary to load it. An instance is created with the architecture

of the model and then the parameters that were saved in the end of training and validating are

assigned to it. The model is turned into test mode and its performance is analysed over the test

set. Once again, in the code developed for this project, a more complex version of this "for" loop

is used inside a function that returns a significant amount of relevant information about the model,

either as numeric values or as graphs.

loaded_model = Regression_Hertz(input_shape , HIDDEN_UNITS)

# Load in the saved parameters

loaded_model.load_state_dict(torch.load(f=model_path))

loss = 0

inputs_list , targets_list , predicts_list = [], [], []

# Test the model

loaded_model.eval()

with torch.inference_mode():

for i, testdata in enumerate(test_loader):

test_inputs , test_targets = testdata

inputs_list.append(test_inputs)

targets_list.append(test_targets)

y_predicts = loaded_model(test_inputs)

predicts_list.append(y_predicts)

loss += loss_fn(y_pred, test_targets)

avg_loss /= len(test_loader)



Chapter 5

Data Generation and Model
Development

Throughout this chapter, a detailed description will be given of all the steps taken to develop

the Machine Learning models from scratch, starting with the creation of synthetic data to later

arrive at the choice of the final models. Two ANN models were built, to predict surface properties

(Young’s modulus E and adhesion energy γ) from AFM synthetic F-I curves. The parameters of

both models were carefully optimized to enhance their performance, for later being fit to predict

these properties based on experimental data.

5.1 Synthetic Data Generation

Before starting the development of a Machine Learning model, a suitable dataset must be

defined. But there are common problems when choosing the right data or even trying to get access

to it. For some cases, the available data might be deeply insufficient, while for others there might

be privacy concerns at stake, so it is important that the model doesn’t fully replicate the original

data. To overcome these limitations, it has become common practice to train a ML model that from

synthetically generated data can represent the underlying patterns of a real dataset. In addition, it

gives more control over the characteristics of the data, thus allowing to study narrow and specific

scenarios, if needed.

Many fields have been focusing on how to improve their synthetic data to produce better

models. It has been thoroughly studied for face recognition (6), as it faces ethical concerns on

the use of authentic biometric data. Medicine and health sciences in general can also benefit from

this approach, that prevents from having to use patient-specific information and eases the process

of data sharing (40). This method can be also of key importance in AFM related ML models, as

data related to this type of analysis is usually scarce. For instance, synthetic data reproducing the

interaction between tip and sample has been created to serve as the basis for identifying vibration

mode coupling in dynamic AFM (2). In topographic modes, this method is also useful to generate
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AFM images with different kinds of distortions for then producing a model that identifies and

corrects typical AFM artifacts (19).

For this framework, AFM force-indentation curves were generated, mimicking the behaviour

of soft biological samples, both for approach and retraction stages, using the contact models de-

scribed in chapter 3. Hertzian theory-based Equation 3.15 coupled with Equation 3.17 were the

foundation to compute the force for the approach stage, while Equation 3.28 was used for the

withdraw phase. It is thus important to define what are the fundamental variables that will affect

the forces for each stage (FHertz and FJKR), so it can be written that:

FHertz = FHertz(δ ,E,ν ,R) (5.1)

and

FJKR = FJKR(δ ,E,γ,ν ,R) . (5.2)

So all these variables must be defined to reach the final curves. The Poisson ratio and the tip

radius will be the same for all curves, while the other parameters are unique for a specific curve.

Thus, each indentation vector will have material parameters assigned to it, and jointly with R and

ν will allow to compute the force for all indentation values in the vector. Knowing the force and

indentation for each point, the curves can be obtained.

Starting with the Poisson ratio, as the target of this model are soft tissues, they are usually

modeled as incompressible, due to their high-water content, and incompressibility corresponds to

a Poisson ratio of 0.5. The tip radius value, presented in Table 5.1, was chosen according to the

probe that was used to produce the experimental nanoindentations that will be later used to test the

developed models, and it is within a common range of values for spherical tips radii.

Several vectors were created, characterizing the indentation depth from the start to the end of

a nanoindentation cycle. Negative indentation values (when tip-sample contact is not established)

were also considered, but solely for illustration purposes, since only its positive values (describ-

ing tip-sample contact) are relevant for the analysis. Regarding indentation depth vectors, it is

important to define the maximum indentation and the number of positive values, which will de-

fine the number of points for each curve and consequently set the input shape of our models. For

simplification purposes, δcontact will be defined as the vector of positive indentation values for an

half-cycle. For the same F-I curve, approach and retraction indentation vectors present the same

values, but in a mirrored way, as depicted below:

δapproach = [δ (0),δ (1), ...,δ (n)] , δwithdraw = [δ (n), ...,δ (1),δ (0)] . (5.3)

In order for the indentation vectors to resemble real data more closely and to have a greater

impact on the ML models, they can’t all be composed of the same indentation values. If this was

the case, our models wouldn’t learn anything based on indentation, since different curves would

always have the same indentation values and would only differ in the tip-sample forces. Hence,
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Table 5.1: Initial variables definition for synthetic data generation.

Parameter Value

ν 0.5

R 1980 nm

δcontact
Max. indentation: 150 nm

Length: 50

apart from a first contact vector with evenly spaced values from 0 to the maximum indentation,

all the remaining were created taking advantage of NumPy’s random library, as depicted in the

following code, where the variable size represents the number of instances in the entire synthetic

dataset.

import numpy as np

# Define maximum inden ta t ion and vec tor s i z e

xmax, npts = 150, 50

# Create a f i r s t vec tor with evenly spaced values

contact = np.linspace(0, xmax, npts+1)

rnd_contact_list = [contact]

# Append to the l i s t the remaining vec tors with randomly spaced values

for _ in range(size−1):

rnd_contact = np.random.random(npts+1).cumsum()

rnd_contact = (rnd_contact−rnd_contact.min()) / rnd_contact.ptp()

rnd_contact = (xmax−0)*rnd_contact

rnd_contact_list.append(rnd_contact)

After specifying the Poisson ratio, tip radius, and a set of displacement vectors, the only re-

maining parameters are the material properties E and γ , which must also be comprised in a typical

range of values for soft tissues.

For the Young’s modulus, its values commonly fluctuate between the orders of magnitude of

10−1 to 101 kPa, reaching the hundreds of kPa in more specific scenarios (31)(24). Taking also

into account the Young’s moduli of the samples in the experimental data available, a maximum of

10 kPa was fixed.

On the other hand, our experimental dataset does not contain any information about surface

energy, since the available retraction curves are scarce and the corresponding samples didn’t nec-

essarily exhibit strong adhesion properties. Hence, its range of values was searched in existing

literature regarding biological samples (56)(50)(26). The values found go from hundreds of µJ/m2

to the dozens of mJ/m2, making it difficult to establish a shorter interval. In addition, the samples

in the available experimental dataset didn’t necessarily all have adhesive properties with high val-

ues, as the ones in the works mentioned. Thus, we sought to get a range of values that would
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somehow illustrate the relationship between the approach and retraction curves, considering the

Young’s moduli range found in the dataset. For instance, if a set of γ values around 0.1 mJ/m2 was

defined, an unrealistic representation of AFM nanoindentations would be obtained, as depicted

in Figure 5.1, where we can see that the withdraw curves are not near the approach ones, in the

contact region. For greater adhesion energies, the discrepancy would be even more pronounced.
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Figure 5.1: Unrealistic representation of AFM nanoindentation curves (E ∈ [0.1-10] kPa and γ ∈
[10-100] µJ/m2). The lines represent the mean and the bands the standard deviation.

Hence, this parameter was studied in the lower range of 1− 3 µJ/m2. Figure 5.2 illustrates

the relation between approach and retraction curves for the final material parameters range, that is

summarised in Table 5.2.
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Figure 5.2: Distribution of the synthetic approach and withdraw curves for the initial dataset.
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Table 5.2: Ranges of values for material properties.

Material property Min. Max.

E 0.2 kPa 10 kPa

γ 1 µJ/m2 3 µJ/m2

When generating values for these material parameters, it is also important to carefully consider

the choice of the distribution function, since it will significantly impact the realism and represen-

tativeness of the synthetic data generated. In addition, it is beneficial to the model that it is trained

on data with a distribution similar to a corresponding real or experimental dataset. This way it

can focus more deeply in the most frequent values, and doesn’t "waste" a great amount of time

training on instances with less frequent targets, that will have only a small impact in the testing

performance.

For the stiffness parameter in biological cells, hydrogels or soft polymers in general, it is usu-

ally closer to the lower end of our range (roughly between 0.5 kPa and 5 kPa), so a triangular

distribution, with the mode set to be inside the most frequent interval of values, would be appro-

priate to start training our model.

Regarding surface energy, as its values frequency is currently not as well established as in

the case of Young’s modulus, an uniform distribution will be the first approach for the retraction

curves model, to get a better assessment of the influence of the extreme values in our range.

At last, the dataset size must be carefully chosen. This will play a critical role in the develop-

ment of our models, as insufficient data can lead to poor model performance and overfitting, since

there is not enough information to recognize patterns in the data, so the model only "memorizes" it.

In contrast, if the dataset is too extensive, its computational complexity increases, leading to much

higher training times. In addition, there is also the chance of the model overfitting to noise in the

data. In common ML applications the number of instances in a dataset usually goes from the few

thousands to the hundreds of thousands, and it is no different when applied to AFM frameworks

(30)(52). Thus, to ensure a robust initial model without excessively compromising computational

costs, an initial dataset consisting of 40 000 curves was created.

For a more accurate study into the impact of a specific hyperparameter on the model’s be-

haviour, it is essential to train models with different settings on the same dataset. This ensures

that any observed variations in performance are solely attributed to the hyperparameter under in-

vestigation, rather than being influenced by differences in the training data. Despite the material

parameters being created with NumPy’s random library, there is no need to save the initial dataset

and constantly reload it to study models with different parameters. All it takes is to "plant" a

random.seed (by assigning to it an integer number), as depicted in the code below, that makes the

distribution functions produce always the same values for a particular seed. Figure 5.3 shows the

initial distribution of the material parameters, generated by the shown code, with the random seed

specified.
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size = 40 000

np.random.seed(42)

# Triangular d i s t r i b u t i o n for E values

E = np.random.triangular(left=0.2, mode=1.8, right=10, size=size)

# Uniform d i s t r i b u t i o n for gamma values

gamma = np.random.uniform(low=1, high=3, size=size)
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Figure 5.3: Initial distribution of the material parameters E and γ .

To allow reproducibility of the results presented in the following sections, a random seed was

set for all the functions and methods that require any sort of randomness. Not only it was applied

to the generation of material parameters, but also to the indentation vectors creation. It is also

present in tasks like the train-validation-test split, ensuring the data in each set is always the same,

and in the initialization of the ML model’s parameters, so that the initial weights and bias don’t

influence the analysis. In all these cases, the random seed parameter was defined as 42. With

an exception, of course, to when the models’ performance is being tested over different splits or

testing sets.

Finally, a set of synthetic nanoindentation curves is shown in Figure 5.4, illustrating their

behaviour for extreme E and γ configurations. The main difference from these curves to the

experimental ones is that the detachment point is coincident with the point where the contact

is established in the approach cycle. A proper correction would be required, by determining a

detachment point for each curve, which is still one of the main challenges in AFM. This won’t

have any serious negative impact on testing the model for the approach curves with experimental

data. As for retraction curves, since they’re being analysed separately from the approach cycle,

the model that predicts their material parameters will be able to capture their shapes, thus enabling

its generalisation for future applications where the zero indentation point computation could be

incorporated.
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(a) High E and high γ .
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(b) High E and low γ .
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(c) Low E and high γ .
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(d) Low E and low γ .

Figure 5.4: Synthetic nanoindentation curves in the initial dataset, for distinct E and γ

configurations.

In the following sections, the ANN models development will be explained step by step, from

their initial configuration to the procedures that led to the choice of the final hyperparameters. Each

ML model will be identified based on the contact theory used to generate the F-I curves and both

will have Multilayer Perceptron (MLP) architectures, where both the inputs and the outputs will

be continuous values and they will be composed of dense linear layers. This type of architecture is

common in problems as the one presented in this work, where there is lack of knowledge to guide

or even justify the development of craftier architectures. This stands in contrast to more frequent

Deep Learning problems, like the ones related to computer vision, where Convolutional Neural

Networks are well established, or natural language processing, where Recurrent Neural Networks

are often the preferred choice.

Concerning the developed models, at first there is the Hertz MLP, that will take the approach

curves as inputs, to predict one single parameter: the Young’s modulus. The second will be the

JKR MLP, that will predict the Young’s modulus and the adhesion energy, using the retraction

curves.
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5.2 Development of the Hertz MLP

Our first model will consist of a MLP and it can also be described as a Fully Connected Neural

Network (FCNN), since the outputs of all neurons in one layer are connected to all neurons in the

subsequent layer.

Before moving on to studying different steps in the model development and tuning the hyper-

parameters, an initial configuration will be defined, being improved with the successive iterations.

This base ANN will be composed of 2 hidden layers, the first with 256 nodes and the second with

64, to provide some strength to the model. It will be trained for 20 epochs, with a learning rate of

10−3 and a batch size of 32, which are common values for initial assessments of ML models.

ReLU was chosen as the activation function and the loss was computed with the Mean Squared

Error, while Adaptive Moment Estimation (Adam) was set as the first optimizer. The model will

be trained with 70% of the approach curves in the entire dataset, while the other 30% are equally

split for validation and testing.

Table 5.3: Hyperparameters of the baseline Hertz MLP model.

Hidden Layers (HL) Nodes HL 1 Nodes HL 2 Epochs Learning Rate Batch Size

2 256 64 20 10−3 32

Table 5.4: Initial activation and loss functions, optimization algorithm and split ratios for the
Hertz MLP.

Activation Loss Optimizer Data split
Train Validation Test

ReLU MSE Adam 70% 15% 15%

To get a better understanding of the scale of the loss values and their real meaning in the

comparison of predicted and actual Young’s moduli, the Mean Absolute Percentage Error (MAPE)

will be used along this work, being often shortened to simply "Error (%)" or represented by ε̄ .

This will serve as the foundation for another metric that will be consistently employed throughout

the work, which is to state the percentage of instances, in this case F-I approach curves, whose

Young’s moduli were predicted with an error ε (relative error for an individual instance) below

certain threshold values, generally 2.5%, 5% and 10%. The MAPE or ε̄ is calculated by:

ε̄ =
100%

n

n

∑
i=1

∣∣∣∣yi− ŷi

yi

∣∣∣∣ (5.4)

Throughout this section, we’ll first study the influence of stratification and define a suitable

dataset split ratio. After that, the most appropriate loss and activation functions will be examined.

At the end, Optuna (a framework for ML hypertuning) will be implemented, allowing to fine tune

the remaining hyperparameters of the MLP.
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5.2.1 Stratification and Split Ratio

Using the previously presented hyperparameters and model functions for the base ANN, the

importance of stratifying the data was analysed, by comparing the model’s performance with and

without a stratified split. For the Hertz MLP, stratification was done as explained in section 4.4,

splitting the target variable into 100 bins. In Figure 5.5a, there is a representation of the distribu-

tion of the target variable over the different sets, when stratification is applied, while Figure 5.5b

depicts a random split without stratification. Even with a random split, it is unlikely that the data

distribution will differ significantly between the subsets. This is because the initial dataset follows

a well-established triangular distribution, and the resulting subsets from the split will retain the

same distribution shape. As a result, visually, the subsets may appear similar due to their adher-

ence to the original distribution. Still, a closer examination of Figure 5.5b reveals a noticeable

distinction in the density of the most common values, particularly in the range of 1 to 3 kPa, as

their proportion alternates clearly between the three sets.
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(a) Stratified split.
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(b) Split without stratification.

Figure 5.5: Distribution of the target variable over the different sets, with and without
stratification.

The average test loss and error obtained for both splitting strategies are presented in Table 5.5.

It is clear that the models already have a great performance on the testing set, using simply the
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initial configuration. Even without stratification both loss and error present very low values, but

it is also noticeable that just by applying a better splitting strategy, the results clearly improved.

In addition, Figure 5.6 shows the error distribution in more detail, depicting the percentage of the

test set curves that were predicted with an error below the thresholds of 2.5% and 10%. For the

random state analysed, just by stratifying the data, there were 10.5% more curves being predicted

with a relative error under 2.5%.

Table 5.5: Average test loss and error values for the model with and without stratification.

Splitting strategy MSE Loss ε̄

Stratified 2.9 ·10−3 1.8%

Without stratification 4.2 ·10−3 2.5%
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(b) Split without stratification.

Figure 5.6: Distribution of the relative error for the testing samples.

Subsequently, an additional analysis was conducted to understand the influence of the split

ratio on the MLP behaviour. For three training set proportions (60%, 70% and 80%), the model

was trained in three random stratified splits for each training size and the average test loss (MSE)

was computed. Validation and test ratios were always defined as the same value. This process was

repeated for 20, 40 and 60 epochs, to gain deeper insights on how this factor interacts with the

training duration.

The obtained results are graphically illustrated in Figure 5.7. We can see that using only 60%

of data for training gives worst results, with the exception being when the ANN is trained for 40

epochs, where the 80% training split produced a higher loss value, which was not in agreement

with the results of this split for 20 and 60 epochs. The original split (training set with 70% of the

samples) presented a consistent behaviour for the three epoch values, despite displaying a higher

loss than the 80% split for the lowest number of epochs. When the models were trained for 60

epochs, all showed good performance and relatively close loss values.
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In conclusion, the analysis demonstrated the advantages of employing stratified data splitting

during the model development. Three different split ratios were examined, and it was found that

utilizing 70% of the data for training yielded the most favorable outcomes. Consequently, going

forward, the proportion of the training set will be maintained at its initially selected value.
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Figure 5.7: Test Loss (MSE) obtained for 3 different split ratios (Train/Test/Validation) and 20,
40 and 60 epochs. For each split proportion-epoch pair, 3 random splits were tested.

5.2.2 Activation and Loss Functions

In chapter 4, the key role of activation and loss functions in the development of NN models

was discussed. Once the split ratio has been determined, it becomes crucial to carefully choose

the activation function that introduces nonlinearity to the model and the appropriate loss function

that quantifies the values the algorithm seeks to minimize.

Two activation functions were considered: ReLU and Leaky ReLU. For this last function,

a constant of 0.01 was set, as the slope for the negative weighted inputs of each neuron. As

for the loss, the MSE, MAE and Huber Loss functions were used. An evaluation of the various

activation and loss functions was conducted by testing all possible configurations, while keeping

the remaining hyperparameters constant, and equal to those presented for the base model.

The testing results for each configuration are displayed in Table 5.6. Besides the information

of the loss and activation for each model, the MAPE (ε̄) is also presented, alongside the percentage

of curves whose Young’s moduli were predicted with an error below 2.5%, 5% and 10%.
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Regarding the loss function, what becomes more noticeable is that the MAE has a worst ac-

curacy compared to the other two, particularly in the MAPE value and in the percentage of curves

with a very low relative error (2.5% and 5%). The Huber Loss stood out from the remaining in

this last aspect, despite presenting similar ε̄ values compared to MSE. Applying the ReLU activa-

tion worked better than Leaky ReLU for the MSE and MAE loss functions, but the same did not

happen for the Huber Loss.

Table 5.6: Error values for different loss and activation functions.

Loss function Activation ε̄ ε below 2.5% ε below 5% ε below 10%

MSE ReLU 1.79% 82.95% 93.70% 98.27%

MSE Leaky ReLU 2.79% 58.03% 84.45% 98.75%

MAE ReLU 3.85% 21.00% 81.85% 98.37%

MAE Leaky ReLU 3.38% 52.17% 77.38% 94.70%

Huber Loss ReLU 2.27% 74.75% 92.5% 98.15%

Huber Loss Leaky ReLU 2.06% 81.98% 91.52% 96.52%

Overall, the best performance was obtained using MSE and ReLU, which is nothing but the

initial configuration defined for the Hertz MLP, whose error distribution was already shown in

Figure 5.6a. However, when selecting Huber Loss and Leaky ReLU, the results were very sim-

ilar for all of the presented evaluation metrics and the error distribution depicted in Figure 5.8

also confirms this aspect. Hence, this activation-loss function pair must also be accounted in the

following hyperparameter tuning.
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Figure 5.8: Error distribution when using the Huber Loss function and the Leaky ReLU
activation, alongside the base model hyperparameters.
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5.2.3 Optuna Implementation

If all the hyperparameters were manually tuned as previously done for the split ratio and the

loss and activation functions, it would require a colossal amount of time to achieve their most

suitable values. Thus, Optuna will be implemented to ease this process. It is a widely used Python

package that runs with almost any ML framework, including PyTorch, and performs automatic

hypertuning, by taking advantage of the performance history on the training process (1)(28). In

Figure 5.9 there is a schematic representation of the workflow adopted for Optuna implementation,

summarising its main steps, which will be explained in further detail.
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Figure 5.9: Optuna framework scheme with pruning, where N is the number of epochs.

Each hyperparameter analysis in Optuna is a "study", composed of a certain number of trials,

with this number being defined by the user. Within each trial, it is first necessary to choose the
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hyperparameters for the model, as one would do for a regular training process, but this time a

range of values is provided, instead of only one value. Using the suggest function, it is possible

to set up different types of hyperparameters, for instance: integers for the number of epochs or

the batch size; floats for the learning rate and categorical values for the loss, activation function or

optimization algorithm.

Before starting the analysis, an objective function has to be assigned for the "study", which

in this case is to minimize the validation loss. After the algorithm has selected all the necessary

hyperparameters from the ranges provided, the model must be compiled. Then, a regular training

and validation cycle occurs for one epoch. At the end of each epoch, the mean validation loss

is returned, and based on that value and the loss values obtained in previous trials, the algorithm

decides if it is worth carrying on with the current trial or if it would be more efficient to start

another trial with a different set of hyperparameters. This decision process is called pruning and

can be defined as a method for discontinuing unpromising trials, leading to an important decrease

in the computational cost for the hypertuning process. If the pruning algorithm states that the

training cycle should go on, it is repeated until it gets pruned in a subsequent epoch or until the

final number of epochs is reached. When this last scenario is verified, the algorithm reports the

loss obtained for the corresponding trial, as well as the hyperparameters used. Then another trial

starts, repeating this process until the maximum number of trials is reached.

Throughout this framework, the hyperparameter tuning was performed applying a Median

Pruner, that prunes the trial if its best intermediate result at a given epoch is lower than the median

of the intermediate results of previous trails, at the same epoch. To enhance reliability of the

pruning algorithm, additional parameters can be set, as the minimum number of trials that must be

ran before pruning gets activated, or a minimum number of epochs that the model must go through

before it can be pruned. Algorithm 4 shows the pruning method proposed in (1), where besides

the current trial and epoch, it takes as inputs the minimum resource m, a reducing factor λ and

early stopping rate g.

Algorithm 4 Optuna’s Pruner

procedure PRUNER(trial, epoch, m, λ , g)
rung← max(0, logλ (epoch/m)−g)
if epoch ̸= mλ g+rung then

return false
end if
value← get_trial_intermediate_value(trial,epoch)
values← get_all_trials_intermediate_values(epoch)
k← len(values)/λ

top_k_values← top_k(values, k)
if top_k_values = /0 then

top_k_values← top_k(values, 1)
end if
return value /∈ top_k_values

end procedure
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Minimum resource m can be seen as a minimum number of epochs before the pruning check

gets activated. The early stopping rate defines that pruning only happens if the intermediate value

of the current trial is consistently lower than the intermediate values of the previous trials for a

consecutive number of epochs specified by g.

The algorithm starts by calculating the variable rung, that corresponds to how many times

the current trial has escaped pruning. Then, it is checked if the current epoch is greater than the

minimum number of epochs defined for pruning. If not, it returns false and the optimization goes

on without pruning. Next, the intermediate values are obtained for the current trial and the previous

ones (for the same epoch) and if the current intermediate value is lower than the k previous best

intermediate values for the same epoch, the algorithm returns true and the trial gets pruned.

For the Median Pruner implementation, it was set that a minimum of 5 trials should be per-

formed before the pruning was enabled in a study and that for each trial, at least 3 epochs should

be completed.

5.2.3.1 Analysis 1 - Preliminary Model Evaluation

In the first Optuna implementation, only two studies will be performed, one considering the

loss/activation functions combination of Huber/LeakyReLU and the other using MSE/ReLU. For

each, a study of 100 trials was conducted, allowing Optuna to optimize an initial set of hyperpa-

rameters that are described in Table 5.7 (the remaining were maintained as in the base model).

Using the full initial dataset, the goal of this analysis is not only to have more information to

decide on the loss and activation functions, but also to evaluate if there is any of the hyperparame-

ters being studied that can already be fixed (or their initial ranges can be reduced), decreasing the

complexity of future analysis.

Table 5.7: Hyperparameters for the Hertz MLP first analysis.

Hyperparameter Type Range

Learning Rate Float [10−5; 10−2]

Num. of Epochs Integer [10, 20, ..., 90, 100]

Optimizer Categorical [Adam, SGD]

Batch Size Categorical [16, 32, 64, 128]

For each study, 3 of the best trials were selected. They were not necessarily the best 3 of the

study, since when one or more trials presented the same optimizer, number of epochs, batch size

and a learning rate of the same magnitude, only one of them was considered, to ensure that we

were not analysing points near the same local minima. Table 5.8 summarises the best trials for the

Huber/LeakyReLU combination and Table 5.9 for MSE/ReLU.

The first thing that jumps out when analysing these tables is that the Adam optimizer was the

preferred choice for all the best trials in both studies, thus it can be set as our final optimizer. The

batch size only varied between 16 and 32, so our range can be reduced to only these two values.
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Table 5.8: Best trials for the study with Leaky ReLU as the activation function.

Hyperparameter Trials
1 2 3

Learning Rate 5.5 ·10−4 6.7 ·10−4 3.4 ·10−4

Num. of Epochs 80 50 40

Optimizer Adam Adam Adam

Batch Size 32 16 32

Huber Loss 1.57 ·10−4 1.84 ·10−4 1.85 ·10−4

Table 5.9: Best trials for the study with ReLU as the activation function.

Hyperparameter Trials
1 2 3

Learning Rate 1.6 ·10−4 6.4 ·10−4 2.0 ·10−4

Num. of Epochs 100 90 40

Optimizer Adam Adam Adam

Batch Size 16 16 16

MSE Loss 1.78 ·10−4 2.63 ·10−4 2.70 ·10−4

Then, two models with the hyperparameters of the best trial for each study were trained and

evaluated on the testing set. As the model error gets lower by each optimization step, the percent-

age of curves with an error below 1% becomes more relevant, so it is already presented in Figure

5.10. The graphs in this figure show the test results for both models and this time there was a

clear improvement when using the Huber Loss and Leaky ReLU, compared to the other setting.

So these are defined as our loss and activation functions, respectively.
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Figure 5.10: Relative error distribution for the 2 models analysed.
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5.2.3.2 Analysis 2 - Evaluate Overall Architecture

For this second analysis, Optuna was allowed to optimize the overall architecture of the MLP,

with exception for the hyperparameters that have been defined in Analysis 1 (optimizer, loss and

activation functions). This approach aimed at determining the hyperparameters that were having

a greater impact in constraining the model, providing the necessary insights if further fine-tuning

was needed or some more variables could already be settled.

This time the width and depth of the NN were also included in the optimization process. As

the previous models were already providing a low loss for our target variable, it was only allowed

to increase its depth in one layer, while the maximum number of nodes was set as the width of

base model’s first hidden layer: 256. The hyperparameters being studied and their enabled ranges

are shown in Table 5.10.

Table 5.10: Hyperparameters being optimized in the second analysis of the Hertz MLP.

Hyperparameter Type Range

Learning Rate Float [10−5; 10−2]

Num. of Epochs Integer [10, 20, ..., 90, 100]

Batch Size Categorical [16, 32]

Num. of Hidden Layers (HL) Integer [2, 3]

Nodes in each HL Categorical [16, 32, 64, 128, 256]

In total, 5 studies of 100 trials each were performed. To decrease the computational cost of

the optimization, 4 of those studies used only a subset of 10 000 instances, instead of the initial 40

000. To assess if the suggested hyperparameters would be very different if the initial dataset was

used in this optimization, a fifth study was done, with the complete dataset. The results obtained

for each study can be found in Table 5.11.

Table 5.11: Best trials in each of the 5 studies performed in Analysis 2.

Hyperparameter Study
1 2 3 4 5

Learning Rate 3.59 ·10−4 3.62 ·10−4 10.5 ·10−4 6.47 ·10−4 3.56 ·10−4

Num. of Epochs 90 100 100 90 90

Batch Size 16 16 16 16 16

Num. of HL 3 3 3 3 3

Nodes HL 1 64 128 128 256 128

Nodes HL 2 64 64 32 128 128

Nodes HL 3 16 64 64 128 64

Huber Loss 7.96 ·10−4 7.01 ·10−4 7.94 ·10−4 6.06 ·10−4 1.70 ·10−4
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Many conclusions can be withdrawn from these results. For the best trial in every study, a

batch size of 16 was the preferred choice and in Figure 5.11 it is shown (for studies 1 to 4) that

the lowest losses were achieved with that batch size, in addition to a lower mean loss across all

trials. The number of epochs was always near the maximum allowed, which could indicate that

this parameter is limiting the model’s performance. However, further increasing this range could

cause overfitting and lead to a worst behaviour when doing predictions on the experimental dataset,

so its maximum value will stay the same, which can also be supported by the fact that in 3 out the

5 studies, its maximum value wasn’t reached.

A hyperparameter that could see its allowed range decrease is the learning rate, since it was

always between 10−4 and 10−3. Another common factor across all studies was that the best results

were produced with 3 hidden layers. From the number of nodes in each layer, the main aspect to

take away is that the first layer is commonly the largest, and the ANN width tends to decrease over

the sequential layers.
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Figure 5.11: MSE loss obtained for a batch size of 16 and 32, over several trials of this analysis.

To summarise this study, the number of hidden layers will be fixed at 3 and the batch size as

16. The learning rate range will decrease towards the middle values in the current range and the

number of epochs will see its range decreased towards its current maximum value.

5.2.3.3 Analysis 3 - Defining Model’s Width

Analysis 3 focuses mainly in defining the number of neurons for all three hidden layers. Learn-

ing rate and number of epochs are the other hyperparameters that the algorithm is able to optimize

in this study, but they’ve seen their allowed interval reduced compared to the last analysis, as

shown in Table 5.12. The range of neurons for each layer has also been adapted, considering the

results in Analysis 2.
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Table 5.12: Hyperparameters being optimized in the Analysis 3.

Hyperparameter Type Range

Learning Rate Float [8 ·10−5; 2 ·10−3]

Num. of Epochs Integer [60, ..., 90, 100]

Nodes in HL1 Categorical [64, 128, 256]

Nodes in HL2 Categorical [32, 64, 128, 256]

Nodes in HL3 Categorical [16, 32, 64, 128]

Once again, 5 studies were performed, 4 of them for a reduced set composed of 10 000 curves

and other (Study 5) for the full dataset, with the results being presented in Table 5.13.

Table 5.13: Best trials for each study in Analysis 3.

Hyperparameter Study
1 2 3 4 5

Learning Rate 8.00 ·10−4 3.73 ·10−4 3.38 ·10−4 4.90 ·10−4 1.46 ·10−4

Num. of Epochs 100 80 100 100 80

Nodes HL 1 256 256 256 128 256

Nodes HL 2 256 256 256 256 128

Nodes HL 3 16 32 16 32 32

Huber Loss 7.33 ·10−4 3.63 ·10−4 5.49 ·10−4 4.66 ·10−4 3.30 ·10−4

In most studies, for their best trials, the number of neurons of the first two hidden layers was

set as 256, so this can be defined as our final choice for those layers.

For the final layer, 16 and 32 were the preferred values. Figure 5.12 shows a box plot of the

loss obtained for the trials across all studies where the third layer had a depth of 16 or 32. Losses

higher than 0.1 were discarded as they are likely to be associated with early stage pruning. Despite

the loss median being slightly higher for 16 neurons, using 32 neurons in this layer generated at

least 4 trials with a lower loss than the other configuration, hence being more likely to reach a

better local minimum. Taking this into account, 32 neurons will be the choice for our final layer.

As for the number of epochs, there was also some division between 80 and 100 epochs. To try

and prevent overfitting, as mentioned in the last analysis, the lower number of epochs will be the

final choice, so it will be set as 80.

The learning rate did not reach the extreme values of the proposed interval, which legitimises

its reduction from the previous analysis to the current one.
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Figure 5.12: MSE loss obtained from using 16 or 32 nodes in the last hidden layer, across the
trials for all studies of analysis 3.

5.2.3.4 Analysis 4 - Setting the Learning Rate

Now that all the remaining hyperparameters have been sequentially defined through the previous

analyses, only the learning rate is left. We’ve seen throughout this section that the MLP being

studied is very sensitive to learning rate variations, so that changes in the magnitude of 10−4 and

even lower have a great impact on the loss obtained.

As only one variable was being studied, this time a simpler analysis was conducted, with three

studies of 100 trials each, using a reduced dataset of 10 000 instances. The allowed range for the

learning rate is the same as in Analysis 3 and it is presented in Table 5.14.

Table 5.14: Allowed range for the Learning Rate in Analysis 4.

Hyperparameter Type Range

Learning Rate Float [8 ·10−5; 2 ·10−3]

The best trials for each study are presented in Table 5.15. Once again, the lowest losses were

obtained for learning rates that are closer to the minimum value of the defined interval. In Figure

5.13 is depicted the distribution of the losses in order to the learning rate for all the trials in the

three studies. Only losses lower than 0.01 are represented, since most trials with a higher loss that

were pruned at some point.
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We can see there is a slight correlation between the increase of the learning rate and a loss

increase, but mainly for rates higher than 3 ·10−4. Other than that, it confirms the high sensitivity

of the model performance to slight variations in the hyperparameter being studied. To sum up this

last analysis, the learning rate chosen was the one that resulted in the best trial of Study 2.

Table 5.15: Best trials for the 3 studies in Analysis 4.

Hyperparameter Study
1 2 3

Learning Rate 0.994 ·10−4 2.296 ·10−4 7.147 ·10−4

Huber Loss 4.68 ·10−4 3.92 ·10−4 8.11 ·10−4
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Figure 5.13: Relation between Loss and Learning Rate for different trials over the three studies .

5.2.4 Evaluating the Models on Synthetic Data

After optimizing all the hyperparameters with Optuna, it is important to understand how each

analysis improved the model, or to check if any improvements at all were verified from one anal-

ysis to another.

Thus, for each analysis, a model will be selected with the hyperparameters that led to the

lowest loss. The only exception is Analysis 3, where very similar loss values were generated for

the best trials in Studies 2 and 5 (slightly lower for Study 5), but since Study 2 was trained on

much less instances, it will be the preferred choice. The goal is to test each model on the original

testing set and infer the more successful optimization steps.
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In total, 5 models will be tested: one for each analysis (that will be named Model 1 for Analysis

1 and from there on) and the base model initially presented. To aid in the comprehension of the

testing performance for each model, their hyperparameters are summarised in Tables 5.16.

Table 5.16: Hyperparameters of the final Hertz MLPs. All used Adam as the optimization
algorithm, while Leaky ReLU and Huber Loss were applied in all, with the exception of the base

model (ReLU and MSE).

Model HL Nodes HL 1 Nodes HL 2 Nodes HL 3 Epochs LR Batch

Base Model 2 256 64 - 20 10−3 32

Model 1 2 256 64 - 80 5.50 ·10−4 32

Model 2 3 128 128 64 90 3.56 ·10−4 16

Model 3 3 256 256 32 80 3.73 ·10−4 16

Model 4 3 256 256 32 80 2.30 ·10−4 16

After having undergone training and validation in the initial dataset with the same split ratio

(70% for training), the testing set was used to evaluate these models, which performed according

to the results in Table 5.17. The column "∆ε̄" represents the difference in MAPE in relation to

the base model. Figure 5.14 details the relative error distribution for the models that presented the

worst and best performance on the synthetic test set.

Table 5.17: Performance of the models on the synthetic test set.

Model Loss ε < 10% ε < 5% ε < 2.5% ε < 1% ε̄ ∆ε̄

Base Model 28.75·10−4 98.27% 93.70% 82.95% 45.27% 1.79% -

Model 1 2.10·10−4 99.83% 99.5% 98.10% 88.65% 0.55% −1.24%

Model 2 2.67·10−4 99.88% 98.88% 93.63% 70.65% 0.89% −0.9%

Model 3 9.62·10−4 98.30% 91.47% 74.85% 49.35% 1.88% +0.09%

Model 4 17.33·10−4 97.97% 89.60% 67.10% 32.12% 2.40% +0.61%

The first thing that comes to sight when looking at the results is that models 3 and 4 performed

worst than the base model on the test set. Based on that, one could tend to say that both these

models could be eliminated and only Models 1 and 2, that improved in relation to the initial

model, should be proposed as the final MLPs to be tested on the experimental set.

Two hypothesis can be formed based on these results. The first is that Models 1 and 2 were

trained in a way that they were able to recognize the patterns in training data and to generalize to

the testing set, opposing to Models 3 and 4. The second is that Models 1 and 2 simply memorized

the synthetic data patterns (they were optimized with the full initial dataset, unlike Models 3 and

4), performing well on this type of data, whether in the training, validation or test sets, but won’t

be able to generalize to real applications, thus presenting a bad behaviour on the experimental set.
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Figure 5.14: Relative error distribution for the models that behaved worst and best on the
synthetic testing set, respectively.

Of course this testing on the synthetic data is only a intermediate step in the global view of

this framework, so all these models will also be tested with the experimental F-I curves, to then

conclude which hypothesis was correct.

5.2.5 Hertz MLP Concluding Remarks

Throughout the development of the Hertz MLP, several ML aspects have been considered.

After defining a base model, it was demonstrated the importance of stratifying the data when

doing the train-validation-test split and an appropriate split ratio was chosen. Then, it was verified

which were the better options for the loss and activation functions, from a naive approach.

The implementation of Optuna was important to optimize the MLP hyperparameters in a more

efficient manner and sequentially reduce their target intervals until eventually reaching their final

value. In the end, the models resulting from the first two Optuna analysis performed better than

the ones which suffered greater refinement.

Throughout this section the MAPE and the relative error were commonly used as evaluation

metrics and despite being easy to understand what is the impact of a certain relative error in a

Young’s modulus value, it is not that intuitive to realize what are its consequences in an AFM

F-I approach curve. To bridge this gap, the graphs presented in Figure 5.15 depict a comparison

between the actual synthetic curves and the curves that would be produced with the predicted

Young’s modulus for that actual curve, obtained for different models developed along this section,

with relative errors of 2%, 10% and higher than 20%.
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Figure 5.15: Actual and predicted synthetic curves for different Young’s moduli with relative
errors near 2%, 10% and greater than 20%.

5.3 Development of the JKR MLP

The second model developed in this framework has also the architecture of a Multilayer Per-

ceptron, fitting also in the category of the Fully Connected Neural Networks.

Despite using the same 40 000 initially generated instances, it differs from the Hertz MLP

in the sense that it works with the retraction curves of the dataset and its goal is to predict two

target variables, instead of only one, so it is expected that this model requires higher complexity

than the previous one. With this in mind, the base model configuration will also be more robust.

We’ll start off by creating the model with 3 hidden layers (HL), each having 256, 64 and 32 nodes,

respectively. It will also be initially trained for longer, by setting the number of epochs to 50. The

learning rate was lowered to 5 ·10−4, while the batch size was maintained at 32.
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The remaining initial variables were kept the same as in the base Hertz MLP: ReLU as the

activation function, loss computed as the MSE, Adam set as the optimizer and 70% of the data

were assigned to the training set, while the remaining were equally split for validation and testing.

Table 5.18: Hyperparameters of the baseline JKR MLP model.

HL Nodes HL 1 Nodes HL 2 Nodes HL 3 Epochs Learning Rate Batch Size

3 256 64 32 50 5 ·10−4 32

Table 5.19: Initial activation and loss functions, optimization algorithm and split ratios for the
JKR MLP.

Activation Loss Optimizer Data split
Train Validation Test

ReLU MSE Adam 70% 15% 15%

Mean Absolute Percentage Error (MAPE) or simply ε̄ will remain a common metric in the

evaluation of this model, and since now there are two output variables, a frequent distinction will

be made between them, by presenting εE and εγ as the relative error for the Young’s modulus and

the adhesion energy, respectively.

5.3.1 Stratification and Split Ratio

The importance of stratifying the data over the three sets increases with the increase of target

variables, so it must be studied again for the new model, where the target parameters were split

into 30 bins to allow stratification. As the difference in the distribution of the variable E, with

and without stratification, has been shown in the Hertz MLP development, here in Figure 5.16,

only the allocation of γ in each set is presented. Having an uniform distribution, it is easier to

graphically identify the differences between the two splitting strategies.

By selecting the hyperparameters of the base model and changing only the split strategy, the

relative error results obtained for E and γ are presented in Table 5.20. Once again, it is noticeable

that stratifying the data produced better results in predicting both material parameters. As it can

be seen in Figure 5.17, by using stratification, there was an increase of about 32% in the curves

where E was predicted with an error below 2.5% and an increase close to 10% for the energy of

adhesion, regarding the same evaluation metric.

Overall, the base JKR MLP configuration produced very good results, even for a split without

stratifying data. However, it is certain that there are other sets of hyperparameters that allow

improving the results, even using less computational resources.

The split ratio was also studied for this model, using the same three training set proportions

than in the Hertz MLP (60%, 70% and 80%), and training these models for 25, 50 and 75 epochs.

To obtain more reliable outcomes, each model was trained with 3 random splits for each epoch

and split proportion combination.
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(a) Stratified split.
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(b) Split without stratification.

Figure 5.16: Distribution of the variable γ over the different sets, with and without stratification.

Table 5.20: Average test error values for both target variables, with and without stratification.

Splitting strategy ε̄E ε̄γ

Stratified 1.26% 1.87%

Without stratification 2.94% 2.38%

To get a better insight on the predictions of each variable, Figure 5.18 shows the MSE loss

for each one separately, instead of combining them into a single value. When 80% of the data is

used for training, the model presents worst performance for higher epochs and for both material

parameters, which can indicate that it is overfitting, so it is not an appropriate split ratio. Regarding

the other two, their behaviour is very similar for the loss related to the Young’s modulus, with a

slight advantage for the 60% split, but the split ratio from the initial configuration performs much

better in adhesion energy prediction, besides presenting the best overall accuracy.

To sum up, the benefits of stratification have been showed once again and different split ratios

were tested for a different number of epochs. The split where 70% of the data was attributed to

the training set presented the best performance and will be used in the following optimization of

the JKR MLP.



5.3 Development of the JKR MLP 77

0 2 4 6 8 10 12

Error (%)

0%

10%

20%

30%

40%

50%

D
en

si
ty

Num. of tested curves: 6000

E
90.5% of curves with ε < 2.5% 99.6% of curves with ε < 10%

(a) εE distribution with stratification.

0 2 4 6 8 10 12

Error (%)

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

D
en

si
ty

Num. of tested curves: 6000

γ
73.9% of curves with ε < 2.5% 99.7% of curves with ε < 10%

(b) εγ distribution with stratification.

0 2 4 6 8 10 12

Error (%)

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

D
en

si
ty

Num. of tested curves: 6000

E
58.7% of curves with ε < 2.5% 97.6% of curves with ε < 10%

(c) εE distribution without stratification.
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Figure 5.17: Relative error distribution for the material parameters in the testing set, with and
without data stratification.
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Figure 5.18: MSE loss obtained in the testing set with different split ratios and number of epochs,
for both material parameters (E at the left and γ at the right).
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5.3.2 Activation and Loss Functions

After having the split ratio determined, we can move on to the choice of the activation and

loss functions. For the activation there is no change in the functions to be studied compared to the

Hertz MLP: ReLU and Leaky ReLU (again with a constant of 0.01) will be the ones considered.

The greater difference is related to the loss functions. As now there are two continuous vari-

ables, if they had two very different scales, using regular functions as the MSE or MAE losses

could in some cases result in similar loss values for both variables, but that would then be trans-

lated into very different relative errors. It is not expected to be the case of the current framework, as

both material parameters do not differ very much in their order of magnitude, but this component

must be inferred anyways. Thus, MSE and Huber Loss will be compared to a custom loss function

based on the MAPE (there is no corresponding function already implemented in PyTorch), so that

the loss is calculated directly on the relative error. All the 6 configurations were trained and tested

on the initial dataset, generating the results presented in Table 5.21.

Table 5.21: Error values for different loss and activation functions.

Loss function Activation ε̄E εE < 10% εE < 5% ε̄γ εγ < 10% εγ < 5%

MSE ReLU 1.26% 99.62% 97.82% 1.87% 99.65% 96.43%

MSE Leaky ReLU 2.90% 94.85% 83.33% 1.93% 98.37% 91.77%

MAPE ReLU 1.82% 99.13% 95.83% 8.50% 69.50% 22.25%

MAPE Leaky ReLU 1.61% 99.07% 95.78% 2.44% 99.45% 90.70%

Huber Loss ReLU 4.46% 88.85% 68.08% 3.89% 96.15% 74.25%

Huber Loss Leaky ReLU 1.99% 99.5% 97.75% 5.74% 90.45% 46.72%

The option that allowed more accurate and consistent results for both parameters was using

MSE and ReLU. Regarding the loss functions, using the MAPE or the Huber Loss generated

higher variation in the error between the use of the ReLU and Leaky ReLU. Overall, MAPE with

ReLU and the Huber Loss with both activation functions presented the worst behaviour.

MSE provided more consistent predictions, regardless of the activation function. Despite MSE

and ReLU showing the best results, the combination of MAPE and Leaky ReLU also had a quite

good performance and MAPE has the advantage of not depending on the outputs scale. Hence,

these two best combinations were evaluated over 4 additional unseen test folds, to see if their

performance was consistent with the previous results. These folds had the same dimension as

the test set, a triangular distribution for E and uniform for γ . Figure 5.19 shows the outcomes

of this new evaluation (considering also the original test set). It is possible to conclude that both

configurations had a consistent performance and that MSE and ReLU presented the best results

for the two properties, so they’ll be set as our loss and activation functions.
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Figure 5.19: Average relative error obtained for the 5 test folds (initial test set and 4 additional
folds), using MAPE and MSE as loss functions.

5.3.3 Optuna Implementation

Optuna’s implementation will be similar to the one previously presented for the Hertz MLP.

The loss presented throughout the analysis will be the average MSE loss for both parameters,

which is not the perfect final evaluation metric (and it won’t be used as so), but it is suitable to

compare the models within each analysis.

The Median Pruner was also implemented on the same principles, ensuring that at least 5 trials

got completed before the pruning algorithm got activated and within each trial the first 3 epochs

weren’t subjected to being pruned.

5.3.3.1 Analysis 1 - Preliminary Model Evaluation

Since the loss and activation functions from our base model were already defined as the ones

to be further evaluated, the foundation for this first analysis will be our initial model. The initial

objective is just to reduce the broader initial range of allowed values for the hyperparameters being

studied, and if possible define already one of the them.

Hence, the model’s width and depth won’t be evaluated here and we’ll focus on the learning

rate, number of epochs, optimizer and batch size. Since the JKR MLP has two target variables,

the maximum allowed number of epochs will be increased and the minimum learning rate will be

decreased. The intervals for each hyperparameter in this analysis are shown in Table 5.22.

Table 5.22: Hyperparameters for the JKR MLP first analysis.

Hyperparameter Type Range

Learning Rate Float [10−6; 10−2]

Num. of Epochs Integer [10, 20, ..., 140, 150]

Optimizer Categorical [Adam, SGD]

Batch Size Categorical [16, 32, 64, 128]
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Since this is a preliminary analysis, only 2 studies were conducted, with the full initial dataset.

As the goal is not to find the final value for one hyperparameter, if two trials present the 3 integer

or categorical variables with the same value between them, only one of them will be selected, like

it was already done in the Hertz MLP. Three of the best trials for each study are presented in Table

5.23.

Table 5.23: Best trials for the studies in the first analysis of the JKR MLP.

Hyperparameter Study 1 Study 2
T1 T2 T3 T1 T2 T3

Learning Rate 2.82 ·10−3 4.15 ·10−4 1.89 ·10−3 5.09 ·10−4 6.73 ·10−4 1.07 ·10−3

Num. of Epochs 140 120 80 100 110 130

Optimizer Adam Adam Adam Adam Adam Adam

Batch Size 32 16 32 16 16 16

Loss 2.46 ·10−3 3.23 ·10−3 3.88 ·10−3 0.97 ·10−3 1.11 ·10−3 1.40 ·10−3

The two studies demonstrated that there is one hyperparameter that can also be established:

the optimizer. Throughout all the trials, SGD consistently presented a much worst performance

than Adam, so this last optimizer will remain constant in future analysis.

Regarding the other hyperparameters, it becomes clear that their range can be reduced. From

now on, the batch size will only vary between 16 and 32, the minimum number of epochs will be

set as 60 and the minimum learning rate will be raised, as it did not get even close to 10−6 in all

good trials.

5.3.3.2 Analysis 2 - Evaluate Overall Architecture

Now that the optimizer has been defined and the other hyperparameters have seen their allowed

intervals reduced, the number of layers and neurons in each layer will be added to the optimization

process. We’ll start by assigning the same range for the width in each layer, while enabling the

addition of a new hidden layer. 5 studies were performed, all of them using a reduced dataset of

10 000 instances. The allowed range for each hyperparameter is presented in Table 5.24.

Table 5.24: Hyperparameters being optimized in the second analysis of the JKR MLP.

Hyperparameter Type Range

Learning Rate Float [10−5; 10−2]

Num. of Epochs Integer [60, 70, ..., 140, 150]

Batch Size Categorical [16, 32]

Num. of Hidden Layers (HL) Integer [3, 4]

Nodes in each HL Categorical [16, 32, 64, 128, 256]
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The hyperparameters that resulted in the best trials for each study are summarised in Table

5.25.

Table 5.25: Best trials in each of the 5 studies performed in Analysis 2.

Hyperparameter Study
1 2 3 4 5

Learning Rate 8.38 ·10−4 1.07 ·10−3 5.94 ·10−4 1.03 ·10−3 2.00 ·10−3

Num. of Epochs 110 130 120 110 100

Batch Size 16 16 32 16 16

Num. of HL 4 3 3 3 3

Nodes HL 1 128 256 128 256 64

Nodes HL 2 16 256 32 128 64

Nodes HL 3 64 64 256 64 16

Nodes HL 4 128 − − − −
Loss 2.99 ·10−3 2.24 ·10−3 4.07 ·10−3 5.03 ·10−3 3.90 ·10−3

Surprisingly, 4 out of the 5 studies ended up recommending a best trial with 3 hidden layers,

thus suggesting there is no need to add another one. The first hidden layer was once again the one

with higher number of nodes across all studies. Regarding the remaining layers, their values have

changed consistently along all the best trials, so their initially admitted values will stay the same.

Regarding the number of epochs, the models are tending to choose greater values for this

hyperparameter, which makes sense taking into account the fact that the number of layers hasn’t

show inclination towards increasing, so better loss values are obtained by compensating with a

higher number of epochs. Using 16 as the batch size presented overall better results, as the graph

in Figure 5.20 confirms. At last, it can be inferred that the learning rates are showing higher values

than for the Hertz MLP, so their range can also be narrowed.
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Figure 5.20: Loss distribution for trials with a batch size of 16 and 32. Trials with losses higher
than 0.2 were eliminated for likely being associated with early pruning.
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5.3.3.3 Analysis 3 - Defining Model’s Width

Having settled the batch size and the final number of hidden layers in the second analysis, the

following studies attempt to infer if there is any pattern for the model’s width that consistently

provides the best results, while allowing Optuna to also define the learning rate and number of

epochs, as displayed in Table 5.26. The ranges of the learning rate, number of epochs and neurons

in the first hidden layer were reduced based on the results from Analysis 2.

Table 5.26: Hyperparameters being optimized in the third analysis of the JKR MLP.

Hyperparameter Type Range

Learning Rate Float [10−4; 5 ·10−3]

Num. of Epochs Integer [90, 100, ..., 130, 140]

Nodes in HL1 Categorical [64, 128, 256]

Nodes in HL2 Categorical [16, 32, 64, 128, 256]

Nodes in HL3 Categorical [16, 32, 64, 128, 256]

5 studies with a reduced dataset of 10 000 instances were performed, with their results being

summarised in Table 5.27.

Table 5.27: Best trials in each of the 5 studies performed in Analysis 3.

Hyperparameter Study
1 2 3 4 5

Learning Rate 6.38 ·10−4 1.31 ·10−3 2.45 ·10−4 2.71 ·10−4 7.24 ·10−4

Num. of Epochs 110 120 140 120 90

Nodes HL 1 128 128 128 128 64

Nodes HL 2 32 128 16 128 16

Nodes HL 3 128 256 256 64 16

Loss 2.98 ·10−3 8.05 ·10−3 4.49 ·10−3 2.93 ·10−3 4.16 ·10−3

By interpreting the results, we can infer that the only point that the majority of the best trials

have in common is the first hidden layer having 128 nodes. The remaining hyperparameters don’t

present noticeable similarities from one study to another, so from this analysis we’ll select only

the two trials (from studies 1 and 4) that provided lower losses, and try to decrease this value by

optimizing their learning rates in the following analysis.

5.3.3.4 Analysis 4 - Optimizing the Learning Rates

This analysis will have the sole purpose of trying to improve the learning rates for the best

trials of studies 1 and 4 of the last analysis. For simplification purposes, we’ll now rename them

as Models 4a) and 4b), respectively. Their architecture differs only in the number of nodes on the
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second and third hidden layers, besides training for a different number of epochs. Being the only

variable in study, the learning rate allowed range was kept the same as in the previous analysis.

For each model, 3 studies were conducted with the 10 000 instances dataset, from which the

results depicted in Tables 5.28 and 5.29 were obtained.

Table 5.28: Best trials for the 3 studies regarding Model 4a).

Hyperparameter Study
1 2 3

Learning Rate 3.390 ·10−4 1.466 ·10−3 2.990 ·10−4

Loss 4.83 ·10−3 3.52 ·10−3 2.70 ·10−3

Table 5.29: Best trials for the 3 studies regarding Model 4b).

Hyperparameter Study
1 2 3

Learning Rate 1.415 ·10−3 1.968 ·10−3 8.003 ·10−4

Loss 3.37 ·10−3 5.30 ·10−3 2.37 ·10−3

Comparing the two models, there were noticeable differences in the learning rates that gener-

ated the best results. Figure 5.21 displays the relation between the learning rate in each trial and

the corresponding loss, for each model studied. While in Model 4a) we can see a slight relation

between the increase in the learning rate resulting in a higher loss, in Model 4b) such correspon-

dence can’t be established. The low number of points presented in both graphs, when compared

to the total number of trials, shows there was very intense pruning across all studies.

10−4 10−3

Learning Rate

10−3

10−2

10−1

L
os

s

Min. loss

(a) Model 4a).

10−4 10−3

Learning Rate

10−3

10−2

10−1

L
os

s

Min. loss

(b) Model 4b).

Figure 5.21: Loss as a function of the learning rate in Analysis 4.
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5.3.4 Evaluating the Final Models

Having performed a thorough hyperparameter optimization, it is time to check if this process

was effective. Since we currently don’t possess any experimental withdraw curves with appropri-

ate fitting to test our models on, this is the final model evaluation for the JKR MLPs.

In the Hertz MLP development, this similar evaluation was just an intermediate step, with the

choice of the final models being only dependant on their experimental results. Hence, there were

considered models that had been trained on a different number of instances for this comparison

stage, although the main optimization refinements had been decided based on the common studies

with a reduced dataset of 10 000 instances.

As the evaluation circumstances are different for the JKR MLP, we’ll now only take into

account models that were optimized using the reduced dataset, which means that the models from

the preliminary studies in Analysis 1 won’t be considered, so there is no bias in the comparisons

due to the data used for hyperparameter optimization.

In addition to the base model, we’ll also compare the best model from Analysis 2 (Model 2)

and the two models that were selected from Analysis 3, whose learning rates were then improved

in Analysis 4: Models 4a) and 4b). Table 5.30 recalls the hyperparameters of these models.

Table 5.30: Hyperparameters of the final JKR MLPs, highlighting the model with the best
performance - Model 4a). The optimizer (Adam), loss (MSE) and activation (ReLU) were

common to all the models.

Model Nodes HL 1 Nodes HL 2 Nodes HL 3 Epochs LR Batch

Base Model 256 64 32 50 5 ·10−4 32

Model 2 256 256 64 130 1.07 ·10−3 16

Model 4a) 128 32 128 110 2.99 ·10−4 16
Model 4b) 128 128 64 120 8.00 ·10−4 16

To test all the models, 4 test folds of unseen data (6 000 instances each) were used in addition to

the initial test set, similarly to what was done when choosing the right activation and loss functions.

The average performance of the JKR MLPs on these folds, for both MAPE and percentage of

curves with error lower than certain thresholds, is presented in Table 5.31 for E and in Table 5.32

for γ , where the results for the best model are highlighted.

Table 5.31: Average performance of the JKR MLP models on the 5 test folds, regarding material
parameter E.

Model εE < 10% εE < 5% εE < 2.5% εE < 1% ε̄E ∆ε̄E

Base Model 99.49% 97.64% 91.01% 54.18% 1.26% -

Model 2 99.63% 98.44% 93.06% 58.28% 1.16% −0.1%

Model 4a) 99.77% 99.31% 98.03% 85.70% 0.66% −0.59%

Model 4b) 99.78% 98.11% 90.47% 48.63% 1.31% +0.05%
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Table 5.32: Average performance of the JKR MLP models on the 5 test folds, regarding material
parameter γ .

Model εγ < 10% εγ < 5% εγ < 2.5% εγ < 1% ε̄γ ∆ε̄γ

Base Model 99.62% 96.60% 73.74% 31.30% 1.89% -

Model 2 99.86% 97.55% 83.71% 45.29% 1.47% −0.42%

Model 4a) 99.82% 98.74% 88.71% 50.68% 1.27% −0.62%

Model 4b) 99.35% 67.78% 13.37% 2.88% 4.37% +2.48%

The hypertuning process proved to be successful, considering that for the optimization steps

performed, all of them introduced improvements. However, one of the models in the fourth anal-

ysis - Model 4b) - had a poor performance on the energy of adhesion predictions, showing that

its architecture wasn’t appropriate for this problem, so it can be discarded. All the other models

show very high accuracy on both parameters (slightly higher for the elastic modulus) and their

behaviour was consistent throughout the 5 folds, as depicted in Figure 5.22.
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Figure 5.22: Relative error obtained for the 5 test folds, with the three best performing models.

Based only on the tests that were carried out with synthetic data, Model 4a) had the best

performance overall, so it can be selected as our final model. Regarding the Young’s modulus,

besides the great average accuracy of 99.34%, it was able to predict more than 85% of the curves

with an error lower than 1% for this parameter. However, the corresponding numbers for γ , despite

illustrating a good model behaviour, don’t reach the same magnitude, specially for the number of

curves with an error lower than 1%. Hence, it is important to understand what are the real impacts

of a certain relative error for E and for γ in the retraction curves, which will be done in the

following section.
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5.3.5 JKR MLP Concluding Remarks

A thorough ML model development was once again applied, now for the prediction of surface

properties based on AFM retraction curves. Stratifying the data revealed better results than when

not opting for this approach, while a split with 70% of the initial dataset being used for training

proved to be the better option.

Afterwards, six different configurations of loss and activation functions were tested. Here,

MAPE was introduced as a potential loss function, since the target values were not on the same

exact scale. However, using the Mean Squared Error still provided the best results. Through the

course of this work, some experiments were also done regarding target normalization and stan-

dardization, but they didn’t present improvements from simply using MSE with the raw targets.

This can be due to the fact that the scales of both targets, despite not being the same, are not that

different either. In cases where this difference is more significant, the same verification should

be done, assessing what should be the best target normalization technique, whether using MAPE

(or another loss function that produces normalized values), normalizing or standardizing the data.

Another possibility would be defining different weights for the loss values and their gradients in

the backward step, as PyTorch allows to perform backpropagation based on tensors, instead of

always requiring a scalar value.

After optimizing all the hyperparameters that define our model, a 3 hidden layer network was

reached. The studies performed in Optuna didn’t show great evidence supporting that this number

of layers should be increased, however, the good accuracy obtained was strongly linked to an

enhancement in the number of epochs.

Not having any experimental data to verify the behaviour of these models in a real application

is certainly a downsize, that leaves space to question if they would be able to generalize to exper-

imental curves. Nonetheless, it has been shown that a Deep Learning approach is able to easily

capture the shape of a Force-Indentation curve generated through JKR theory. By ensuring that

these synthetic curves are good representations of nanoindentation retraction curves, it all indi-

cates that this is a promising framework to study the adhesion energy of a wide range of samples,

whose research is much more scarce than of the elastic modulus.

At last, there is a need to translate the relative error for both variables into the difference

between actual and predicted Force-Indentation curves, to infer if one of the material parameters

has a higher influence than the other. Figures 5.23 and 5.24 were obtained for different models

developed along this chapter and show that a bad prediction of the elastic modulus will have a

higher relevance in the accuracy of the predicted curve, so it is actually beneficial to have a higher

accuracy for the Young’s modulus, as verified in best performing models, including the final one,

Model 4a).
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Figure 5.23: Predicted and actual retraction curves for different relative errors of E.
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Chapter 6

Testing on Experimental Data and
Surface Mapping

In this chapter, the Hertz MLPs developed in chapter 5 will be tested on an experimental

dataset obtained from AFM nanoindentations. At first, a description of the dataset is going to be

made, followed by detailing the steps required for preprocessing the data, so it can be used as an

input for the ANN models. Then, all the final models chosen for the Hertz MLP will be evaluated

on this dataset to infer which one presents a better performance.

At last, a fractal surface generator will be used to create maps of the Young’s modulus for

synthetic surfaces, using the experimental stiffness values and F-I curves. The curves associated

with each indentation point on a surface will serve as inputs for the MLPs. These MLPs will then

predict the stiffness maps, showcasing the enhanced utility of the developed framework.

6.1 Introducing the Dataset

The experimental data available has information on 45 410 curves from AFM nanoindentations

on biological soft tissues. For each sample, a map of indentation points was defined in its surface

and a F-I curve was generated for each point. The dataset not only has the final F-I curves, but

also the raw outputs, sensitivity, spring constant and cantilever deflection, amongst all the required

variables to deal with the raw data. Key parameters such as the location of contact and detachment

points are also available.

Despite having both approach and retraction parts of each curve, only the first ones were fitted

with an appropriate contact model (Hertz), so only these will be used, as we have the corresponding

Young’s modulus for each approach curve. Of course some of the curves were affected by AFM

artifacts and do not possess a regular shape or a shape similar to what would be expected from

them, but they’ll still be considered as inputs to our MLPs. The maximum indentation value is not

the same for all curves, so this must be dealt with when preprocessing the data. There is a wide

stiffness range along the different samples and Figure 6.1 displays some examples of experimental

89



90 Testing on Experimental Data and Surface Mapping

approach curves for different stiffness values, while Figure 6.2 presents the Young’s modulus

distribution for all the instances.
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Figure 6.1: Examples of experimental approach curves in the available AFM nanoindentations
data.
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Figure 6.2: Young’s modulus distribution over the experimental curves.

In addition to the distribution observed in Figure 6.2, there are some outliers that were not

represented, for instance, negative stiffness values and values close to or even greater than 20 kPa.

We can see that the large majority of the sampled points has a stiffness lower than 3 kPa. 89.9%

of the data is clustered in the range of 0-5 kPa, around 8.9% between 5-10 kPa and only 1.2% of

the curves have a stiffness higher than 10 kPa, so these will also be taken as outliers.

Now that the main features of the experimental dataset have been explored, it becomes crucial

to preprocess the data and ensure its suitability as inputs for our ML models, as it will be done in

the following section.
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6.2 Preprocessing Experimental Data

As previously stated, every approach curve was fitted with Hertzian theory to predict their

Young’s modulus. However, this process was not accurate for every single curve, since some

presented an unexpected behaviour. Each fitting was evaluated using the r2 metric, calculated by:

r2 = 1− ∑i(yi− ŷi)
2

∑i(yi− ȳ)2 , (6.1)

where ŷi represents the predictions and ȳ the mean of the actual values. Approach curves that

were fitted with an r2 below 0.9 will be withdrawn from this analysis due to their likelihood of

exhibiting experimental anomalies, as illustrated in Figure 6.3, where the presented curves show

unexpected fluctuations for some indentation depths, except for the blue one, that despite having

a regular shape, does not behave as predicted by Hertzian theory.
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Figure 6.3: Examples of experimental approach curves that were fitted with an r2 below 0.9.

The next elimination process involved removing curves with outlier stiffness, specifically those

exceeding 10 kPa or displaying negative values for this parameter. Then, all the curves with a

maximum indentation lower than 150 nm (the range defined for our MLP synthetic dataset) were

dropped. This was the procedure that eliminated a greater number of curves (around 15 000), but

it allows to analyse a larger portion of the remaining curves, extracting more information from

them. In these remaining curves, the maximum indentation was set to 150 nm and the points with

higher indentation were excluded.

Then, all points that had a negative indentation or force for the contact region were removed,

since they would not be consistent with the Hertzian theory-based synthetic data in the same

region. At last, force-indentation points were uniformly removed from each curve, until they

reached the same 50 points as in the synthetic data, and the curves with less than that number of

points were ignored. To conclude, the main statistics from the preprocessed experimental data are

presented in Table 6.1.
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Table 6.1: Number of curves and Young’s modulus’ statistics in the final experimental dataset.

Num. of curves E (kPa)
Mean Standard deviation Minimum Maximum

24304 1.84 0.77 0.19 5.93

A comparison between the experimental and synthetic approach curves is presented in Figure

6.4. If considering all the synthetic curves, since they have values that go up to 10 kPa, unlike the

final experimental curves, their mean force for each indentation value will be higher (Figure 6.4a).

However, if only the synthetic curves with E lower than 4 kPa are plotted (over 22 000 curves),

it shows that there is enough data to comply with the selected experimental curves, although they

have lesser values close to the minimum Young’s modulus. Furthermore, it is worth noting that

the synthetic dataset comprises 31 811 curves with an elastic modulus that falls within the range

defined by the maximum and minimum values observed in the final experimental dataset.
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Figure 6.4: Mean synthetic and experimental curves, with errorbar representing the standar
deviation.

6.3 Hertz MLPs Performance on Experimental Data

After having the AFM nanoindentation approach curves preprocessed and ready to be submit-

ted into the developed Hertz MLPs, a new testing process can begin. At first, a similar approach

from the one presented in Section 5.2.4 will be considered, where the base model and one model

for each Optuna analysis will be tested and compared.

Then, the best performing model will be set as the final choice and it will be inferred if its

performance would considerably increase if choosing only experimental curves with an r2 higher

than 0.9 (specifically 0.95 and 0.99). The models’ performance on experimental data is detailed in

Table 6.2.
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Table 6.2: Performance of the models on the experimental test set. Note that the loss value in the
Base Model was computed with the MSE, while Huber Loss was applied for the remaining. The

best performing model is highlighted.

Model Loss ε < 10% ε < 5% ε < 2.5% ε < 1% ε̄ ∆ε̄

Base Model 31.83·10−3 70.77% 34.41% 13.42% 4.51% 8.33% -

Model 1 10.88·10−3 79.56% 47.01% 21.2% 8.3% 6.63% −1.70%

Model 2 12.12·10−3 76.17% 39.33% 15.92% 5.63% 7.42% −0.91%

Model 3 7.46·10−3 87.44% 65.61% 40.62% 17.70% 4.85% −3.48%

Model 4 6.66 ·10−3 88.08% 67.33% 41.45% 18.50% 4.70% −3.63%

There is now evidence that the hyperparameter optimization in Optuna produced good results,

with the most optimized models having better generalization properties, which allowed the last

model to have an accuracy (1− ε̄) of 95.3% on the experimental data.

In general, all models produced an MAPE lower than 10%, meaning that even the configura-

tion defined for the base model allowed to build a robust MLP. With the successive optimization

iterations, we were able to reduce the MAPE in 3.6%, but the most significant differences can be

observed for the percentage of curves with a relative error below a certain threshold.

Comparing the model that achieved the best results with the initial one, 17% more curves had

an ε below 10%, while this increase was in the order of the 33% for the curves with ε lower than

5% and 28% for curves with ε lower than 2.5%, which translate substantial improvements through

our model development stage. Models 3 and 4 performed better than the rest, since they have more

parameters: more hidden layers than the base model and Model 1, and more neurons in each layer

than Model 2. This robustness gives the model better generalization capabilities. Considering all

this, Model 4 will be set as our final proposed MLP and the only one being subjected to further

analysis.

Moving on, the impact of the criterion for selecting good experimental curves will be studied,

based on the r2 error with which they were fitted. Figure 6.5 shows the relative error distributions

if the final model was tested on the curves with r2 > 0.9, r2 > 0.95 and r2 > 0.99. As expected, it

can be seen that the model’s accuracy increases with each narrowing of the selection criterion.

When dropping the approximately 1800 curves (still keeping 22 512 experimental curves) that

have 0.9 < r2 < 0.95, there is an increase in 2.7% of the total curves with ε lower than 2.5%,

which is not a very significant increase. The overall MAPE decreases from 4.7% to 4.0%.

On the other hand, if we keep narrowing down our selection, considering the 16 263 curves

that were fitted with an r2 higher than 0.99, the MLP performance experiences a more notable

improvement. Focusing exclusively on these "top" curves, the model predicts more than half of

them with a relative error below 2.5%, increasing the overall accuracy achieved from 95.3% to

96.7%.
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Figure 6.5: Comparison between the relative error distribution, when selecting experimental
curves with different minimum r2 fitting values.

Another crucial aspect to infer is if the curves that are being predicted with a higher error are

concentrated in a specific range, specially since the Young’s modulus distribution of the synthetic

set doesn’t correspond exactly to the one in the experimental data. It is also important to check

if these curves with poor predictions have irregular shapes and were affected by AFM artifacts

and the comparison of some experimental curves with the ones resulting from the predicted elastic

modulus (and computed through the method detailed in section 5.1). Hence, Figure 6.6 shows the

curves with the worst predictions and Figure 6.7 displays the difference between predicted and

experimental curves for 3 examples.
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Figure 6.6: Experimental curves with r2 > 0.99 with a high relative error.
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It can be concluded that the curves corresponding to the worst Young’s modulus predictions

are not focused in a single range of values, but it varies between 0.3 and 5.9 kPa, with solely one

curve presenting an error significantly higher than 20%, which has a very irregular shape. This

curve is also presented in Figure 6.7, where it is markedly noted that its behaviour is quite different

from the predicted from Hertzian theory. The remaining curves shown in the same graph have high

similarity between experimental and predicted ones.

6.4 Generating Stiffness Maps
In chapter 2, it was mentioned that one of the most common applications of AFM was to create

maps for the sampled surfaces, regarding different parameters, from their height to a wide range

of mechanical properties. Current AFM software allows not only to obtain mechanical properties

from the selected F-I curves, by contact model fitting, but also to map them into the sample’s

surface. Hence, to enhance the utility of the current framework and capture a broader range of

features from AFM software, stiffness predictions from individual curves will also be rearranged

to stiffness maps. Since we currently don’t possess any experimental data from topographic AFM

that would allow to create surface height maps and together with F-I curves for each indented point,

map the surface stiffness in different locations, these surfaces will be produced using the open-

source MATLAB (MathWorks Inc., Natick, MA, USA) code proposed in (39). The code allows to

generate surfaces with random roughness based on different height probability distributions and

power spectrum.

In this section, a short description of the different parameters that can be tuned in the surface

generator will be presented. Then it will be detailed the adopted procedure to transform 3D sur-

faces with only information on its dimensions, into stiffness maps, to be later predicted by our

Hertz MLP.

6.4.1 Creating 3D Surfaces

To create authentic surface topographies, it is established that both the height and spatial dis-

tribution need to be defined. The height can be characterized using the height probability distribu-

tion (HPD), while the spatial distribution can be described by the power spectrum (PS). The code

adopted in this framework has the advantage of conceiving surfaces with various HPDs, unlike

many other generators that only adopt a Gaussian distribution. This is beneficial mainly due to the

fact that different topographies will result in distinct behaviour when it comes to stiffness, adhe-

sion or plastic deformation. In addition, it allows defining the HPD and PS separately, which is

not common in available literature (37).

Three HPD functions are available: Gaussian, Bi-Gaussian and Weibull. The first is commonly

used to represent smoother surfaces, the second often arises from multi-process manufacturing and

the latter is suitable to model the result of wear.

Regarding the PS, we can choose from self-affine or exponential functions. Self-affine sur-

faces are characterized by displaying an unfolding symmetry, meaning that they are similar at

different magnifications, i.e., in self-affine rough profiles, with the increase of magnification level,
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new roughness profiles are added to the previous one, hence having scale-invariant properties.

Nevertheless, the exponential autocorrelation function is the most common to create surface to-

pographies.

Besides the specific coefficients for each HPD or PS, the anisotropy, low and high frequency

cut-off ratios and the resolution of the map can also be modified when creating the surfaces.

6.4.2 From Height Distribution to Stiffness Maps

From the surfaces generated, only the height distribution over the x and y axes is known, so

some correlation must be established to assign Young’s modulus values for each point.

The method used in (8) proposes a linear relation between the applied load in each surface

point and the normal stiffness, while in (38) the Hurst exponent and other roughness-related pa-

rameters affect this relation. Thus, there is no explicit method to compute the Young’s modulus

with the available information on the generated surfaces.

In view of all this, the surface height will be linearly correlated to the Young’s modulus. For

each surface, a maximum and minimum stiffness will be set corresponding to the highest and

lowest points, respectively. For all the other points, their stiffness will be interpolated based on the

boundary values defined. Then, to each point will be assigned the experimental F-I curve whose

Young’s modulus is the closest to the interpolated value for that same point. The only applied

restriction is that the same curve can’t be used twice. Choosing this way to distribute the elastic

modulus values over the surface allows to visually assess if the model is performing worst for a

specific interval. In addition, by linearly relating height with the elastic modulus it is ensured that

there are no huge variations in this material parameter between two consecutive surface points,

which is more representative of real surfaces.

All surfaces were generated with a unit anisotropy ratio and a resolution of 256x256 meaning

that there were 2562 sampled points for each surface. Before assigning stiffness values to the

surface, it was downsized to a resolution of 32x32, by picking points uniformly from its surface.

With the established framework, a comparison between the actual and predicted E maps can be

presented, together with mapping the error for each prediction over the surface.

6.5 Predicting Stiffness Maps with Hertz MLP

Throughout this section, it is going to be detailed all the pipeline that allows to generate maps

with Young’s modulus predictions, starting only with surface topography.

Along the course of this explanation, two Gaussian surfaces with self-affine properties will

be used to illustrate all the described processes. The first depicts a smooth surface, that can be

found, for instance, in biological soft tissues, while the second surface has a significantly higher

roughness, that despite not being that frequently found in the kind of samples from which the

experimental data were generated, it will serve as a demonstration of how this framework could

be expanded to other types of materials. Nevertheless, this rough surface will still have an elastic

modulus range within the same order of magnitude of the experimental data.
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Figure 6.8 shows the created maps with their original resolution (256x256), that further on

will be referred to as the as the "smooth" and "rough" surfaces.
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Figure 6.8: Initial synthetic surface maps.

To prevent from having to analyse all the sample’s points from its surface, it is usual to reduce

the dimensionality of the maps, so that the points in the condensed map not only represent them-

selves but also the region that was originally near them. Therefore, after uniformly selecting the

appropriate points for dimensionality reduction, experimental F-I curves were attributed to them,

as previously detailed. The smooth surface was considered to have stiffness values on the range of

0.2 kPa to 2.0 kPa, while higher values were chosen for the rough surface, ranging from 1.5 kPa

to 5 kPa.

The F-I curves from each surface are used as inputs to our Hertz MLP, that predicts their

corresponding Young’s moduli and rearranges them back into a surface map format. Figures 6.9

and 6.10 represent a comparison between the maps of actual outputs and the predictions given by

the model.
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Figure 6.9: Real and predicted stiffness maps for the smooth surface.
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Figure 6.10: Real and predicted stiffness maps for the rough surface.

Overall, there is good agreement between the actual and the predicted maps, despite seeming

that the model had more difficulty in predicting the lower values of the smooth surface. But to

clarify which were the points where the model presented the greatest relative error, we can also

map this variable, as done in Figure 6.11, while Figure 6.12 depicts the relative error distribution

for each surface.
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Figure 6.11: Relative error maps for the smooth and rough surfaces, respectively.

We can see that for both surfaces (hence, for different stiffness ranges) the relative error was

lower than 10% for the most part. However, for the rough sample (higher E) no curve was pre-

dicted with an error much higher than 20%, while in the smooth sample (lower E) errors higher

than 20% are observed more often, despite being a minority with little significance in the big pic-

ture. The graphs presented also confirm that the model has slight more difficulty in predicting
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Figure 6.12: Relative error distribution for the predictions in the smooth (left) and rough (right)
surfaces.

lower elastic moduli, regardless of reaching a relative error under 10% for almost 80% of the sur-

face, which results in an average error of 6.5%. As for the higher modulus surface, the average

error lowers to 4.2%, while over 90% of the curves are successfully predicted with an error lower

than 10%.

To complement this analysis, Figure 6.13 identifies 3 points from the smooth surface, one that

was very accurately predicted, another with an intermediate error and the point with the worst

prediction.
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Figure 6.13: Actual and predicted curves for 3 points identified in the smooth surface.
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A sample with 0.0% error was reached, for a value closer to the maximum Young’s modulus in

the smooth surface, but once again it is confirmed that the worst prediction is close to the minimum

stiffness of the range in which the model was trained. Nonetheless, its predicted curve is still very

close to the experimental one.

To sum up, this section has demonstrated an additional path for exploring the presented frame-

work. In addition to its capability to predict surface properties from individual force-indentation

curves, the framework’s ability to map these properties represents a significant advancement in the

comprehensive characterization of samples. This approach offers a computationally optimized and

time-efficient solution for fully characterizing samples, enhancing the efficiency and effectiveness

of the analysis process.



102 Testing on Experimental Data and Surface Mapping



Chapter 7

Conclusions and Future Work

7.1 Conclusions

Throughout this work, two MLP models were designed from scratch, with the goal of predict-

ing surface properties from AFM nanoindentation curves.

In the first stage, synthetic F-I curves were generated based on Hertz and JKR contact the-

ories, with parameters that would allow them to replicate the curves that make up the available

experimental dataset. After that, the models started being developed using a similar strategy. The

advantages of stratifying the data in the split were proven and the choice of an intermediate split ra-

tio (compared to the three tested values) was demonstrated to be the better option for both models.

An initial brute-force approach was used to try and find the most appropriate loss and activation

functions. Then, a finer optimization technique was applied by implementing Optuna, that allowed

to sequentially select the hyperparameters that would translate into the best model performance.

Regarding the Hertz MLP, an intermediate comparison between the final model and the pre-

vious ones was carried out, by evaluating their performance on the synthetic test set. The final

model didn’t prove to have the best behaviour on the synthetic data, mainly because some of the

models with sub-optimal parameters had been optimized using the entire initial dataset, while the

best hyperparameters were achieved by optimizing the model with a reduced set. This indicated

the initial parameters could be leading to overfitting to the synthetic dataset, which was to be later

confirmed when testing the models on the experimental set.

As for the JKR MLP, in the absence of experimental data to evaluate it, its testing on synthetic

data had to be more robust, so the final proposed models were evaluated on 5 unseen test folds.

A model that accurately predicts the Young’s modulus at a rate of 99.3% and adhesion energy

at 98.7% was reached, showing that the Multilayer Perceptron developed can capture a F-I curve

that complies with JKR theory. However, its validation on real data is still required, such as future

adjustments on how to define the detachment point on retraction curves creation, to increase their

affinity with experimental curves.

What was initially thought concerning the first framework, was confirmed when testing the
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successive Hertz MLPs in the experimental dataset. The model that went through more hypertun-

ing stages presented the best behaviour, accurately predicting the more than 24 000 curves fitted

with a r2 > 0.9 with an accuracy of 95.3%. When selecting only the top curves (r2 > 0.99), this

value increased to 96.7%, with more than half the curves being predicted with a relative error un-

der 2.5%. These results validate the use of Deep Learning strategies to predict surface properties

from experimental AFM nanoindentation curves, trained only on synthetic data, so they can be

later rearranged into maps illustrating the distribution of these properties along the surface. How-

ever, the Hertz MLP showed a worse behaviour for curves with lower elastic moduli, thus needing

more refinement in its hyperparameter optimization, possibly even adding more complexity to the

NN, to see its results further improved.

7.2 Future Work

In future improvements of this framework, it would be important to try different approaches

in data generation, possibly using other contact models, to infer if it would increase the model’s

ability to make predictions on experimental data. Still concerning synthetic data generation, it

could be useful to test if reinforcing the data in ranges where the model had weaker performance

would impact its results on the real curves. If possible, the model should be tested on more

experimental datasets for other ranges of the studied surface properties.

Another addition that would allow to better assess the model’s performance, would be to define

a more accurate process to extract the bad curves from the dataset, identifying if any AFM artifacts

had any negative impact on each curve, instead of relying solely on the r2 fitting metric.

For the JKR MLP, it would be important to be tested on experimental data, to check its real

accuracy or if many changes would be required for it to be applied in real applications.

It would also be of great interest to define a reliable method to define the detachment point

in the retraction curves, which throughout this work was considered to be the same as the contact

point in the approach curves, and it is not generally the case in real applications. In addition,

developing a Deep Learning model capable of predicting the location of the contact point for

each curve could be of great interest, since this is one of the current main difficulties in AFM.

Furthermore, future improvements for this model could involve its generalization to a broader

spectrum of tip radii, allowing it to be applied to a wide range of values instead of being limited

to the radius specified during synthetic data generation.
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Appendix A

Implementing Optuna in Pytorch

A.1 Defining the Model

# Set cuda as the pre fered device

DEVICE = ’cuda’ if torch.cuda.is_available() else ’cpu’

# Define the model to be ca l l ed during the s t u d i e s

def define_model(trial):

layers = []

# Suggests the number of layer s

n_layers = trial.suggest_int("n_layers", 2, 4)

# Define the input shape of the model

in_features = input_shape[0] * input_shape[1]

for i in range(n_layers):

if i == 0:

layers.append(nn.Flatten())

# Suggests the number of neurons in the layer

out_features = trial.suggest_categorical("n_units_l{}".format(i),

[16, 32, 64, 128, 256])

layers.append(nn.Linear(in_features , out_features))

layers.append(nn.LeakyReLU())

in_features = out_features

layers.append(nn.Linear(in_features , 1))

return nn.Sequential(*layers)
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A.2 Defining the Objective Function

# Define the o b j e c t i v e func t ion

def objective(trial):

torch.manual_seed(42)

model_Hertz = define_model(trial).to(DEVICE)

# Suggests values for the s tud ied hyperparameters

learning_rate = trial.suggest_float("learning_rate", 1e−5, 1e−2, log=True)

n_epochs = trial.suggest_int(’n_epochs’, 10, 100, step=10)

optimizer_name = trial.suggest_categorical("optimizer", ["Adam", "SGD"])

batch_size = trial.suggest_categorical("batch_size", [16, 32, 64, 128])

train_loader=DataLoader(train_data , batch_size=batch_size , shuffle=True)

optimizer = getattr(optim, optimizer_name)(model_Hertz.parameters(),

lr=learning_rate)

loss_fn = nn.HuberLoss()

for epoch in range(n_epochs):

model_Hertz.train(True)

for i, data in enumerate(train_loader):

inputs, labels = data

optimizer.zero_grad()

outputs = model_Hertz(inputs.to(DEVICE))

loss = loss_fn(outputs, labels.to(DEVICE))

loss.backward()

optimizer.step()

# Evaluat ion

model_Hertz.eval()

running_vloss = 0.0

with torch.no_grad():

for i, vdata in enumerate(valid_loader):

vinputs, vlabels = vdata

voutputs = model_Hertz(vinputs.to(DEVICE))

vloss = loss_fn(voutputs, vlabels.to(DEVICE))

running_vloss += vloss

loss = running_vloss / (i + 1)

trial.report(loss.item(), epoch)

# Handle pruning based on the in termed ia te value .

if trial.should_prune():

raise optuna.exceptions.TrialPruned()

return loss.item()
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if __name__ == "__main__":

study_name = "hertz_Huber_LeakyReLU"

study = optuna.create_study(direction="minimize",

pruner=optuna.pruners.MedianPruner(n_startup_trials=5,

n_warmup_steps=2),

study_name=study_name)

study.optimize(objective , n_trials=100)

pruned_trials = study.get_trials(deepcopy=False,

states=[TrialState.PRUNED])

complete_trials = study.get_trials(deepcopy=False,

states=[TrialState.COMPLETE])

print("Study statistics: ")

print(" Number of finished trials: ", len(study.trials))

print(" Number of pruned trials: ", len(pruned_trials))

print(" Number of complete trials: ", len(complete_trials))

print("Best trial:")

trial = study.best_trial

print(" Value: ", trial.value)

print(" Params: ")

for key, value in trial.params.items():

print(" {}: {}".format(key, value))

# Ret r i eve the l o s s e s from each t r i a l

losses = [trial.value for trial in study.trials]
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