
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Adopting Containers in
Microcontrollers for the IoT

Xavier Ruivo Pisco

Mestrado em Engenharia Informática e Computação

Supervisor: João Pedro Dias

Second Supervisor: André Restivo

July 27, 2023

© Xavier Ruivo Pisco, 2023

Adopting Containers in Microcontrollers for the IoT

Xavier Ruivo Pisco

Mestrado em Engenharia Informática e Computação

Approved in oral examination by the committee:

President: Prof. Pedro Nuno Ferreira da Rosa da Cruz Diniz

External Examiner: Prof. Ângelo Manuel Rego e Silva Martins

Supervisor: Prof. João Pedro Matos Teixeira Dias

July 27, 2023

Abstract

Over the last few years, there has been an increase in the number and computing capabilities
of Internet of Things (IoT) devices. At the same time, DevOps has been revolutionizing how
software is created, mostly through the appearance and evolutions of the cloud, virtualization, and
containerization.

More capable microcontrollers have allowed containerization to be used in these pieces of
equipment with the surge of container platforms like Toit [40] and Wasmico [33]. Full-fledged
computers use containerization for various reasons, including easier portability between different
hardware and isolation of tasks running in the same device; the same reasons can also be proven
helpful in the IoT context. Containerization tools for microcontrollers are still fairly new and lack
important features so that they can be used more frequently.

The tools that are normally used in computers have good-looking user interfaces that allow
users to easily know which containers are running and to quickly manage them with options such
as starting and stopping the containers. This is not a reality in containerization tools for microcon-
trollers. These tools generally lack an easy-to-use user interface that gives information about the
running containers and helps manage them.

In devices capable of running Linux and Docker, some solutions allow the user to save the state
of containers and continue them, either on the same device or on a different one [22]. With the
emergence of containerization for lower-end microcontrollers, we want developers to be able to
use this feature when working with these devices. Microcontrollers are used in many conditions,
which will utilize containerization differently, creating the need for this feature, e.g., orchestrating
multiple microcontrollers while changing the devices responsible for each task or checkpointing
tasks and resuming them in case of failure.

This thesis aims to adapt one of the current containerization tools used in low-end micro-
controllers and improve it. We will change it by adding both features that we mentioned, a user
interface that gives information about the containers running in each microcontroller while helping
users manage them and allow them to pause and resume those containers on different devices with
low latency while minimizing the side effects on the running system. The resulting system should
give all the necessary information to users, be easy to use by developers, and enable the user to
save the state of a running task to memory and continue the application in the same state using the
saved memory.

To validate it, we will develop the described system and evaluate both parts separately. We
will evaluate the time consumed when saving the task’s state, moving it, and restarting a task from
a saved state. With the results, we can determine if the system is quick and small enough to be
used in real scenarios. Then, we will conduct a user experiment with possible users of the tool and
evaluate it based on their appreciation of the tool.

Keywords: Microcontroller, IoT, Internet of Things, Container, Migration, State, User Interface

i

Resumo

Durante os últimos anos, tem existido um grande aumento no número e nas capacidades com-
putacionais dos equipamentos da Internet of Things (IoT). Ao mesmo tempo, DevOps tem revolu-
cionado a maneira como o software é desenvolvido, maioritariamente através do aparecimento e
evolução da cloud, da virtualização e da containerização.

A evolução das capacidades dos microcontroladores tem permitido que a containerização
comece a ser utilizada nestes equipamentos com o surgimento de aplicações como Toit [40] e
Wasmico [33]. Containerização é utilizada em computadores por várias razões, incluindo a facil-
idade de migração de tarefas entre diferentes computadores e o isolamento de tarefas a correr no
mesmo dispositivo, e estas mesmas razões podem ser aplicadas no contexto de IoT. As ferramen-
tas de containerização para microcontroladores são relativemente novas e ainda não têm algumas
funcionalidades importantes para que sejam usadas mais frequentemente.

As ferramentas de containerização normalmente são usadas em computadores e têm boas in-
terfaces que facilitam ao utilizador o controlo sobre que containers estão a correr e rapidamente
geri-los através de opções como começar e parar os containers. Isto ainda não existe nos micro-
controladores pois estas ferramentas normalmente não têm uma interface fácil de usar que mostre
informação sobre os containers que estão a correr e que ajude na gestão dos mesmos.

Em dispositivos capazes de correr Linux e Docker, já existem soluções que perimetem ao
utilizador guardar os estado de containers e continuá-los no mesmo dispositivo ou num differ-
ente [22]. Com a chegada da containerização aos microcontroladores, nós queremos que os pro-
gramadores consigam usar esta funcionalidade quando estão a trabalhar com estes dispositivos.
Os microcontroladores são utilizados em muitas condições, que vão utilizar a containerização de
modo difrente, criando a necessidade desta funcionalidade, e.g., facilitar a orquestração de múltip-
los microcontroladores ao alterar os dispositivos responsáveis por cada tarefa ou guardar o estado
das tarefas e continuá-las nesse estado no caso de um falha.

Esta tese vai adaptar uma das ferramentas de containerização existentes para microcontro-
ladores e melhorá-la. Vamos alterar o programa ao adicionar as duas funcionalidades que men-
cionámos, uma nova interface que mostre informação sobre os containers que estão a ser exe-
cutados em cada microcontrolador enquanto ajuda os utilizadores a geri-los e permitir a pausa e
resumo dos containers em diferentes dispositivos com uma baixa latência minimizando os efeitos
secundários no sistema. O programa final deverá mostrar a informação necessária aos utilizadores,
ser fácil de utilizar por programadores e permitir que o utilizador salve em memória o estado de
uma tarefa que esteja a correr e continuar essa aplicação no mesmo estado usando a memória
guardada.

Para validar a nossa tese, vamos implementar o sistema que foi descrito e avaliar cada uma das
partes em separado. Vamos avaliar o tempo necessário para guardar o estado de uma tarefa, para
movê-lo e para recomeçar a tarefa a partir do estado guardado. Com os resultados vamos poder
determinar se o sistema é rápido e leve o suficiente para ser usado em cenários reais. Depois,
vamos fazer experiências com possíveis utilizadores da ferramenta e avaliá-la com base na sua

ii

iii

avaliação da ferramenta.

Palavras-chave: Microcontrolador, IoT, Internet of Things, Container, Migração, Estado, Inter-
face

Acknowledgements

First of all, I would like to express my gratitude to my supervisors, João Pedro Dias and André
Restivo, who not only taught me as well as guided me through the process of writing this disser-
tation, but also assisted me and motivated me to complete it.

During the course of these five years, it was a blessing to be able to spend the majority of
the good as well as the difficult times with my FEUP friends, who assisted me through all of the
various stages of getting this degree. My friends "da terrinha" were always there for me, and I will
never forget how helpful they were.

In closing, I would like to express my gratitude to my family for their unwavering support
throughout my life and throughout the pursuit of this degree, as well as for the fact that they were
always supportive of the choices I have made throughout my life.

Xavier Pisco

iv

“No matter how hard or how impossible it is,
never lose sight of your goal”

Monkey D. Luffy

v

Contents

1 Introduction 1
1.1 Context . 1
1.2 Problem . 3
1.3 Motivation . 3
1.4 Goals . 4
1.5 Document Structure . 4

2 Background 6
2.1 Containerization . 6
2.2 User Interfaces . 7

2.2.1 Command Line Inteface . 8
2.2.2 Terminal User Inteface . 8
2.2.3 Graphical User Inteface . 9
2.2.4 Web User Inteface . 9

2.3 Summary . 9

3 State of the Art 10
3.1 Methodology . 10

3.1.1 Research Questions . 11
3.1.2 Databases . 11
3.1.3 Inclusion and Exclusion Criteria . 12
3.1.4 Broad Search . 13

3.2 Virtualization and Containerization for Microcontrollers 13
3.3 Container Migration in IoT . 16
3.4 Conclusions . 18

4 Problem Statement 19
4.1 Current Issues . 19
4.2 Desiderata . 20
4.3 Hypothesis . 21
4.4 Research Questions . 21
4.5 Scope . 22
4.6 Validation . 22
4.7 Summary . 23

5 Solution 24
5.1 Wasmico . 24

5.1.1 Architecture . 24

vi

CONTENTS vii

5.1.2 Operations . 25
5.1.3 Code Structure . 27

5.2 Improvements . 27
5.2.1 Pause and Unpause Tasks . 27
5.2.2 Device Status . 28
5.2.3 Restarting the Microcontroller . 28

5.3 Task State Migration . 29
5.3.1 Save the Task’s State . 29
5.3.2 Upload the Task’s State . 30
5.3.3 Starting the Task . 30

5.4 Terminal User Interface . 31
5.4.1 Wasmico API . 31
5.4.2 User Interface Requirements . 33
5.4.3 User Interface Type . 33
5.4.4 Implementation Details . 35

5.5 Known Limitations . 38
5.5.1 Previous Limitations . 39
5.5.2 Including Library Functions . 39
5.5.3 Migration During Long Operations . 40

5.6 Summary . 40

6 Evaluation and Validation 42
6.1 Validation Goals . 42
6.2 Experiments . 43

6.2.1 Task’s State Migration . 43
6.2.2 User Interface . 44

6.3 Results . 44
6.3.1 Task’s State Migration . 44
6.3.2 User Interface . 47

6.4 Threats to Validity . 51
6.4.1 Task’s State Migration . 51
6.4.2 User Interface . 52

6.5 Summary . 52

7 Conclusions 53
7.1 Summary . 53
7.2 Hypothesis Revisited . 54
7.3 Future Work . 54

References 56

A Validation Task 60

B Validation Questionnaire 63

List of Figures

1.1 Evolution of the number of IoT devices. 2

2.1 Example of containerization architecture. 7

3.1 Wasmico Architecture Overview. 16

5.1 Get a task’s state. 29
5.2 Upload a task’s state. 30
5.3 Start a task with a state. 31
5.4 Terminal User Interface. 38

6.1 Comparison between get and upload state. 47
6.2 Time spent on the experimental task. 48
6.3 Users experience with containerization. 49

viii

List of Tables

3.1 Inclusion and exclusion criteria . 12

4.1 Comparison of containerization tools for microcontrollers 21

6.1 Pinging a microcontroller. 45
6.2 Get and Upload a task’s state. 45
6.3 Get and Upload a task’s state when overloaded. 46
6.4 Start a task with and without a state. 46
6.5 Time spent on the experimental task . 48
6.6 SUS Score for each user. 50

ix

Abreviaturas e Símbolos

API Application Programming Interface
CLI Command Line Interface
CRIU Checkpoint/Restore In Userspace
FaaS Function-as-a-Service
GUI Graphical User Interface
HTTP Hypertext Transfer Protocol
IoT Internet of Things
OS Operating System
OTA Over the Air
RAM Random-access memory
ROM Read-only memory
SLR Systematic Literature Review
SSH Secure Shell
SUS System Usability Scale
TCP Transmission Control Protocol
TUI Terminal User Interface
UI User Interface
VM Virtual Machine
WUI Web User Interface

x

Chapter 1

Introduction

1.1 Context . 1

1.2 Problem . 3

1.3 Motivation . 3

1.4 Goals . 4

1.5 Document Structure . 4

In this chapter, the topics that are discussed in the document are introduced. The problem we

tackled and the main reasons it is essential to achieve a solution are presented. Lastly, this chapter

identifies the main goals of this document and its structure.

The Section 1.1, p. 1 gives the context of this dissertation. Section 1.2, p. 3 explains the

problem explored in the rest of the document. Section 1.3, p. 3 contains the motivation for the

developed work. In Section 1.4, p. 4, we will present the goals we want to achieve. Lastly,

Section 1.5, p. 4 describes the structure of this document.

1.1 Context

The Internet of Things (IoT) has emerged as a paradigm-shifting technological innovation, rev-

olutionizing our digital and physical interactions. With its ability to seamlessly connect devices,

objects, and systems, IoT has the potential to revolutionize industries, increase productivity, and

improve our daily lives. As a result, it has attracted the attention of researchers, technologists, and

businesses, paving the way for a period of unprecedented connectivity and innovation.

Since the first time it was presented by Kevin Ashton in 1999 [21], the term IoT has had many

definitions, and most of them refer to the Internet of Things as a global network composed of

different devices that monitor and interact with the environment around and with the ability to

self-organize and operate autonomously without the need for human intervention [20, 3, 12, 14].

In recent years, IoT has been used in a variety of fields, like home automation and Industry

4.0, and that’s provided a steady growth that is predicted to continue in the future. In 2022, more

1

Introduction 2

than 13 billion IoT devices were connected; by the end of the decade, that number is projected to

surpass 30 billion [37] as you can see in Figure 1.1, p. 2.

Figure 1.1: Evolution of the number of IoT devices and expected growth according to Statista [37].

This expansion has propelled IoT devices to unprecedented levels of power and capability. IoT

devices have undergone substantial improvements in processing power, connectivity, and data-

handling capabilities over time.

Alongside this evolution in microcontrollers, virtualization and containerization have under-

gone a remarkable evolution, revolutionizing the landscape of software deployment and resource

management. Initially, virtualization enabled users to run multiple operating systems on a single

physical server by creating virtual machines. This innovation improved hardware utilization and

scalability, but it was resource-intensive. In response, containerization emerged as a lightweight

alternative. Containers offer a more effective method, allowing applications and their dependen-

cies to be packaged in a portable and isolated manner. Currently, containerization is utilized

extensively in cloud computing, microservices architectures, and DevOps practices. It allows for

rapidly deploying applications, scalability, and simplified management of complex distributed sys-

tems. Containerization improves portability, accelerates development cycles, and enables seamless

deployment across different environments by encapsulating applications and their dependencies

into self-contained units.

For many years, these shifts in the day-to-day practices of developers were not readily available

for microcontrollers. With their limited resources and constrained environments, microcontrollers

couldn’t do virtualization and containerization. However, this scenario has changed with the recent

introduction of tools and frameworks such as MicroPython [29] and Toit [40].

1.2 Problem 3

1.2 Problem

The usage of high-level programming languages and frameworks has been made possible thanks

to virtualization-like abstractions on microcontrollers. By abstracting the hardware being used, the

virtualization and containerization tools make programs more portable and reusable than classic

solutions. This makes the work done while programming in microcontrollers much more straight-

forward and more appealing to developers, which in turn improves the cycle of development and

operations and reduces the amount of time that developers need to spend programming, debugging,

and porting their programs to multiple architectures.

Even though these tools have shown that they can be effective in making the process of devel-

oping software for microcontrollers easier, we believe they are still missing important capabilities

that would make them better and facilitate the development process for the Internet of Things. Mi-

crocontrollers are used in high-mobility environments, which makes them battery dependent and

prone to disconnections from other devices due to increases in their distance; thus, the ability to

pause a job that is now being executed on one device and resume its execution later, either on the

same device or on a different device, is one of the potential improvements that might be made [15].

There are solutions for this problem designed specifically for devices with higher processing

power capable of running operating systems like Linux and state-of-the-art container platforms

like Docker [16, 22]. However, microcontrollers are not powerful enough to execute these pro-

grams, and the available containerization options lack this and other capabilities.

Some solutions have more functionalities than others, but currently, no solution in the market

includes all the capabilities that we consider that are fundamental for a containerization tool in

microcontrollers. For instance, Toit [40] has a decent user interface but forces users to use Toit-

lang [41], whereas Wasmico [33] allows users to use more common programming languages but

only offers a hard-to-use and mostly incomplete command line interface.

We will explore both of these problems with the containerization tools that are currently avail-

able in Chapter 4, p. 19, where we define what we think a good solution would be.

1.3 Motivation

Based on the problems that we mentioned before, allowing the migration of a container’s state

between multiple microcontrollers and the lack of a solution that combines the best functionalities

of the existing containerization tools, we think that a solution for those problems would bring

advantages to microcontrollers’ developers, such as:

Improve the orchestration of multiple devices. If a developer can migrate tasks from one

device to another, it will bring new possibilities to the orchestration of IoT networks. This

solution would allow the developer to change the task that is being run to another device to

free the initial microcontroller to execute different, and possibly more important, tasks;

Introduction 4

Checkpoint the state of a task. By checkpointing the state of a task the user can backup a

running task and resume it in the same state after a failure, e.g., if a device runs out of

battery, it will be possible to restore the task that was being executed and continue it. By

saving the state in an external computer, the user can use the checkpoint as a way to pause

the task, fully clean the microcontroller, and use it for other tasks that are more important.

Encompasses most of the benefits available in one tool. Users may be uncertain of which

tools to choose from because of the different advantages and disadvantages of each tool,

so we think it will be better to change one of the tools to guarantee the best possible one,

especially in features that we consider important, such as the already mentioned usability

of multiple programming languages, which would allow users to choose the language they

prefer to solve for their specific problem, and a good user interface for managing the tasks,

which would also facilitate the orchestration of microcontrollers.

To summarize, our main motivation is to improve app development and container management

in microcontrollers through good containerization tools.

1.4 Goals

The main objective of this dissertation is to enhance one of the existing containerization options

for microcontrollers and expand it through the development of new features.

After this dissertation, we want to have a tool that has the ability to quickly migrate containers

from one device to another and save a state for future use, maximize the number of programming

languages with which a developer can work with the tool, and have an easy-to-use user interface

that allows users to manage and orchestrate the containers across multiple microcontrollers.

When the implementation is concluded, we will evaluate the potential benefits that these en-

hancements may bring to its users, both on the improvements in the time needed for some tasks

execution and the usability of the tool interface.

To determine which containerization tool we will be working with, we will evaluate all of the

available options and select the one that best meets our requirements. Then, we will proceed to

work on the selected tool in order to make it a more effective tool that will be of assistance to

developers in the future.

1.5 Document Structure

This document is structured into seven chapters that can be described as follows:

• Chapter 1 (p. 1), Introduction, introduces the problem that we will try to solve, why we’ll

be working on that problem, and what achievements we want to accomplish.

• Chapter 2 (p. 6), Background, presents some concepts that will be important to understand

the whole document.

1.5 Document Structure 5

• Chapter 3 (p. 10), State of the Art, describes the solutions discovered through a Systematic

Literature Review on the topics relevant to this dissertation, virtualization and containeriza-

tion in microcontrollers and other IoT devices and the migration of containers in computers.

• Chapter 4 (p. 19), Problem Statement, presents and describes the problem that this disser-

tation intends to address, what our ideal solution is, how we’re going to solve it, and how

we’ll validate that it works and is beneficial for developers.

• Chapter 5 (p. 24), Solution, describes how we implemented the new features on the existing

tool and the limitations it has that this dissertation did not address.

• Chapter 6 (p. 42), Evaluation and Validation, presents the evaluations that we did in order

to validate some of the research questions that were proposed.

• Chapter 7 (p. 53), Conclusions, contains a summary of the work that was done, a recap of

the hypothesis that was presented, and some ideas of future work that we think is important

to be done in this area.

Chapter 2

Background

2.1 Containerization . 6

2.2 User Interfaces . 7

2.3 Summary . 9

In this chapter, we will introduce some concepts that will be utilized throughout the remainder

of the document. In Section 2.1, we will define containerization, discuss its relationship to virtu-

alization, and outline its benefits. Section 2.2, p. 7 provides a simple introduction to what a user

interface is and the four types that will be discussed in this dissertation.

2.1 Containerization

Containerization is a widely-used modern software development and deployment approach that

facilitates the packaging and execution of applications and their dependencies in a lightweight,

isolated environment known as a container. Each container encapsulates an application, its li-

braries, and any required dependencies, providing a portable and consistent runtime environment.

Containers offer a greater level of abstraction than traditional virtualization, allowing for efficient

system resource utilization and simplified application management [1].

This method originates from virtualization. In virtualization, virtual machines (VM) simulate

physical machines without needing distinct hardware; thus, a single computer can simultaneously

operate multiple virtual machines. The virtual machines operate on top of a hypervisor, which

administers them, the computer’s resources, and their allocation to the respective VMs, and that

can operate natively on the hardware or on top of an operating system. By using virtualization,

people are able to use their computers and servers more efficiently by utilizing the same hardware

for multiple purposes. Additionally, it is simpler to deploy and interrupt machines on demand, as

well as to update them for security or functionality purposes [2].

Containers are defined by container images, which comprise the application’s code, dependen-

cies, and configurations. The container will subsequently be executed on top of an engine such as

Docker [16] or Kubernetes [25]. These engines construct containers based on the specifications

6

2.2 User Interfaces 7

from the container’s files and act as an intermediary between the application and the host operat-

ing system to ensure that the application is able to run on any operating system supported by the

engine.

Figure 2.1: Example of containerization architecture using Docker. The containers (Apps) are run
on top of Docker, which ensures isolation from each other and the hosting OS [16].

Containerization has resulted in a number of advancements in software development and de-

ployment processes. A software developer is able to create their program on their own personal

computer and then use it on any other computer, regardless of the machine’s architecture, operating

system, or hardware. Since a container is more compact and utilizes its resources more effectively

than a virtual machine, a greater number of containers may be operated concurrently on the same

physical computer. While running concurrently, containers are separated from one another and

from the host system to ensure isolation between all the tasks. This means that they are unable to

access contents that are not related to their own application, and in the event that a problem arises

with one of the containers, it will not have an impact on the operation of the other containers.

2.2 User Interfaces

According to Debbie Stone et al. [38], user interfaces serve as the interface between humans

and computers, allowing for efficient human-computer interaction. They offer users a visual rep-

resentation of the software or application, shielding them from the underlying complexities and

presenting only the essential information and actions.

A good user interface is designed to encourage users to execute their desired duties without

difficulty, providing a seamless and intuitive experience. It emphasizes plain and concise com-

munication to guide users through the interface and simplify complex actions. and prioritizes

Background 8

usability and user-centric design principles to improve efficiency and user satisfaction. A poor

user interface, on the other hand, introduces frustration and complicates users’ goals. It may have

cluttered layouts, confusing navigation, or non-intuitive controls, impeding the ability of users to

complete tasks efficiently and creating unneeded obstacles, hindering productivity, and can result

in higher user dissatisfaction.

For this dissertation, we will need to explain and discuss the advantages and disadvantages

of four different types of user interfaces: (1) command line interface, (2) terminal user interface,

(3) graphical user interface, and (4) web user interface.

All these user interfaces are widely used in the context of IoT systems programming and

orchestration, being some of the most widely used ones PlatformIO (CLI), and Node-RED (Web

UI) [42, 36, 14].

2.2.1 Command Line Inteface

The Command line interface (CLI) is a text-based interface that enables users to interact with a

computer system or program by typing commands. Users input specific commands into a CLI,

and the system responds accordingly [18]. These interfaces have their own set of benefits and

drawbacks.

One of the major advantages of CLIs is their resource efficiency. Since this type of interface

typically only works with text and does not maintain state across multiple usages, it executes input

commands quickly and consumes significantly fewer resources than the alternatives we’re dis-

cussing. In automation scripts, CLIs are frequently combined with commands from other tools to

automate complex duties with a single command. Due to their compatibility with low-bandwidth

connections, CLIs are widely utilized for remote server and computer access.

Conversely, CLIs can be intimidating and difficult to use for users unfamiliar with terminals.

They can have a steep learning curve, requiring users to memorize commands and comprehend

their syntax, and without external resources or documentation, commands and options may not be

easily identifiable to newcomers. Furthermore, CLIs may lack visual feedback and interactivity,

making complex tasks involving multimedia or graphical content potentially more cumbersome.

2.2.2 Terminal User Inteface

Terminal user interfaces (TUIs) are text-based interfaces that run on a terminal by providing a

visual representation of what is happening and allow the user to interact with it both through

mouse and keyboard inputs [44].

TUIs are well-known for their adaptability, as they can be used in a variety of contexts, includ-

ing terminals and remote sessions, which makes them useful for system administration, remote

access, and software development, as they provide a consistent and familiar interface across plat-

forms and environments. Terminal user interfaces typically demand fewer resources than graphical

user interfaces, making them faster.

2.3 Summary 9

However, TUIs offer a limited visual representation compared to other options, particularly

because the interface must be created using text. TUI-based applications are typically less appeal-

ing to users, particularly non-technical users who may not be acquainted with the terminal and

will therefore have a steeper learning curve.

2.2.3 Graphical User Inteface

Graphical user interfaces (GUIs) are visual interfaces that enable users to interact with computer

systems or software via graphical elements such as windows, icons, menus, and buttons, where

users can move the mouse to select an object and click or drag it to interact with it. Over the years,

GUIs have become more common than TUIs and are currently one of the most prevalent interface

paradigms [27].

An important advantage of graphical user interfaces is their intuitive and user-friendly nature.

With graphical representations of elements and visual signals, GUIs facilitate user comprehension

and interface navigation. In addition, GUIs are user-friendly through menus, tooltips, and context-

sensitive help and can manage complex visualizations and multimedia content.

Nevertheless, GUIs are typically resource-intensive applications that operate more slowly than

their terminal-based counterparts, and they cannot be accessed via terminals, which reduces their

versatility, particularly in servers and remote sessions.

2.2.4 Web User Inteface

Web user interfaces (WUIs) are comparable to graphical user interfaces (GUIs), but instead of

running directly on the operating system, they operate atop web browsers. Their functionalities

and use cases are nearly identical.

The primary advantage of WUIs over GUIs is their ability to operate on any operating system

or browser with minimal modification.

2.3 Summary

In this chapter, we introduced different topics that are necessary for a full understanding of this

dissertation and all the topics that we will explore in the rest of the document.

In Section 2.1, p. 6, we explain the concept of containerization. We dive into the concept

of containerization and its capabilities, what virtualization is and how it affects and compares to

containerization, and how containers are used in modern computing and their benefits.

Then, in Section 2.2, p. 7, we explain and compare four different types of user interfaces,

command line interface, terminal user interface, graphical user interface, and web user interface.

These user interfaces are commonly used today, so we discussed the advantages and disadvantages

of each one.

Chapter 3

State of the Art

3.1 Methodology . 10

3.2 Virtualization and Containerization for Microcontrollers 13

3.3 Container Migration in IoT . 16

3.4 Conclusions . 18

This chapter discusses the current state of container migration, the Internet of Things, and

microcontrollers as they relate to this dissertation. Firstly, we will clarify the methodology we

used to comprehend the current state of these topics in Section 3.1. Then, we will present our

findings regarding virtualization and containerization in microcontrollers and container migration

in the Internet of Things in Section 3.2, p. 13 and in Section 3.3, p. 16, respectively. Lastly, in

Section 3.4, p. 18, we will present our conclusions regarding the state of the art based on our

findings.

3.1 Methodology

We conducted a Systematic Literature Review (SLR) to comprehend better the current publications

and initiatives related to the already discussed topic. An SLR is a study of the existing literature

that strives to be as thorough as possible while minimizing our bias, it is described as a set of

procedures that should be taken to obtain the most comprehensive understanding of the state of

the art [23, 24]. Firstly, we must identify the topics we want to explore by defining the main

research questions. Next, we must decide which databases should be used to search. Lastly,

we must develop inclusion and exclusion criteria that will be applied to the retrieved results. In

addition to the SLR, we made the decision to broaden the search to find various results that were

not present in the selected databases.

10

3.1 Methodology 11

3.1.1 Research Questions

To research the state of the art related to this thesis, we decided to separate the problems described

in Section 1.2, p. 3 into two different parts, the first related to virtualization and containerization,

and the second associated with the migration of tasks.

3.1.1.1 Virtualization and Containerization in Microcontrollers

What are the existing solutions for virtualization and containerization in microcontrollers?

This question was used to know what solutions are currently available that allow developers

to program using virtual machines or containers in microcontrollers. This allows us to get an

overview of the recent developments in this area and explore the solutions to find the most suitable

one to be enhanced in this thesis.

In the queried databases, we executed this search using the following query:

(virtuali* OR "virtual machine" OR container*) AND (iot OR "Internet of Things" OR micro-

controller OR micro-controller)

3.1.1.2 Container Migration in IoT

What are the existing solutions for migrating containers between IoT devices?

The second question is used to understand how container migration is currently done in IoT

devices. With this question, we can understand the solutions found to migrate containers not

only in microcontrollers but also in other devices used in IoT, e.g., Raspberry PIs. Even if these

solutions use more advanced tools than the ones found in the previous question, they will give us

ideas and a direction toward the development we’ll do.

The query that was used to find results was:

(migrat* OR checkpoint*) AND (iot OR "Internet of Things" OR microcontroller OR "micro-

controller")

3.1.2 Databases

We selected the following databases for the Systematic Literature Review: ACM Digital Li-

brary [26] and IEEEXplore [45]. Both databases are renowned for their reliability and extensive

collections of diverse papers in this dissertation’s field. In addition to their databases, we used their

search systems that provided us with the results from the mentioned queries and the information

needed to apply the inclusion and exclusion criteria. We employed their search systems in addition

to their databases, which gave us the results from the aforementioned searches as well as the infor-

mation we needed to apply the inclusion and exclusion criteria. Apart from these two databases,

we also used the Google platform to execute a broader search and identify other solutions that

weren’t found in the previous databases.

State of the Art 12

3.1.3 Inclusion and Exclusion Criteria

After collecting all the results, we had to sort through them to determine which were essential

for our Systematic Literature Review and which weren’t, so we used the inclusion and exclusion

criteria detailed in Table 3.1 to filter the results.

I/E ID Description

In
cl

us
io

n IC1 Solution is related to virtualization, containerization, or execution environment
IC2 Solution is applied to microcontrollers
IC3 Solution allows updates over the air
IC4 Solution allows migration of a container’s state between devices

E
xc

lu
si

on EC1 The work is duplicated
EC2 Work is not in English
EC3 Solution uses Linux or another non-RTOS
EC4 Solution is not a migration tool

Table 3.1: Inclusion and exclusion criteria that were used to filter the results obtained after doing
the research questions on the databases.

IC1 and IC2 are the two inclusion criteria defining this work’s domain, we want to work in mi-

crocontrollers with architecture-agnostic tools, such as virtual machines, containers, or execution

environments. IC3 and IC4 are the desired features that we want to explore, we want our work

to have updates OTA and to allow migration of the state of the tasks between different devices,

preferably also over the air.

EC1 and EC2 are two exclusion criteria that serve as a deduplication of work and as a focus

on the solutions we are able to read. EC3 refers to all the found solutions that would work on

devices with higher capabilities that can run normal operating systems, such as Raspberry PIs,

which makes them unusable in microcontrollers. Lastly, EC4 is meant to exclude all the found

papers about migration that focus on the orchestration of the migration and not on the specifics of

how to migrate a task.

For each of the proposed research questions in Section 3.1.1, p. 11, we used multiple of the

shown criteria in a series of steps to filter the results we achieved from the mentioned databases.

We executed the following filtering steps after searching for virtualization and containerization

in microcontrollers:

1. Filtering #1: Remove all the duplicates and non-English results (EC1 and EC2) based on

the papers’ title.

2. Filtering #2: Select the results that were specific to the domain we want (IC1 and IC2)

and remove the ones that used non-RTOS operating systems (EC3). For this stage, we read

through the abstracts of the remaining results and filtered them.

3. Sorting by Relevance: By applying the IC3 and IC4 criteria, we defined which results were

more important based on their title, keywords, and abstract.

3.2 Virtualization and Containerization for Microcontrollers 13

4. Final Filtering: We read carefully through the remaining solutions and applied the used

criteria again in case some of the results seemed relevant but were not.

For the results from the second research question, we applied the following criteria in a similar

process:

1. Filtering #1: Remove all the duplicates and non-English results (EC1 and EC2) based on

the papers’ title.

2. Filtering #2: We tried to apply the same criteria as in the previous question, but after ap-

plying the IC2 and EC3, we were left with no results. This was explained by the fact that

the found papers used Raspberry PIs or similar IoT devices that aren’t considered micro-

controllers. So, in this phase, we only applied IC1 to the papers based on their abstract.

3. Filtering #3: In this question, both IC4 and EC4 were major criteria, and, as such, they

were enforced based on the papers’ titles, keywords, and abstracts.

4. Final Filtering: After reading the whole solutions, we did a final filtering based on the used

criteria.

Through the application of these two processes, we ended our search with some of the papers

that will be detailed in the rest of this chapter.

3.1.4 Broad Search

After filtering all the results found in ACM Digital Library and IEEEXplore we broadened our

search by doing manual searches on Google. We used keywords based on the presented search

queries and added the results we got to the ones we already had.

3.2 Virtualization and Containerization for Microcontrollers

Over the last few years, there has been a development of new technologies which allow for the

use of virtualization and containerization in microcontrollers. These technologies have been able

to help developers with advantages, such as the possibility to use high-level languages in these

devices, better isolation of tasks that increase fault tolerance and security of the whole system, and

better code portability between devices with different architectures.

The solutions we found about this topic are described in this list.

Micropython [29] is described as a Python compiler and runtime that enables the use of Python

in microcontrollers. Microptyhon compiles Python code into bytecode that is then executed

on a Virtual Machine.

State of the Art 14

This program was developed to allow developers to create code meant to run on microcon-

trollers without the need to program in a low-level language. Micropython has some differ-

ences from the more commonly used CPython in order to be usable in microcontrollers, but

it allows Python to be used on a variety of architectures and different devices.

This solution brings the advantages of Python to IoT microcontrollers, such as dynamic

typing and high-level language readability. Still, it also comes with the disadvantages, such

as a slower speed than low-level languages like C.

Wasm3 [43] is a similar application to Micropython that enables programmers to write code in

high-level languages and execute it on microcontrollers. Wasm3 is a WebAssembly inter-

preter and runtime used in microcontrollers to execute code written in different program-

ming languages.

To use it, developers must compile their code into WebAssembly, and the Wasm runtime

will then execute the application on the device. This tool supports multiple architectures,

allowing developers to separate their code from vendor-specific architectures.

When compared to the previously mentioned Micropython, Wasm3 has lower hardware

requirements, executes more quickly, and consumes less memory.

Toit [40] is a product for managing and deploying containers in ESP32 microcontrollers. This

program allows users to deploy and manage containers over the air by creating a web server

on the microcontroller that exposes an API that can be accessed via HTTP requests. It allows

users to deploy their containers without needing to connect via USB to the microcontroller

or restart the device and monitor those containers for quicker and easier maintenance.

To avoid the need for low-level languages for programming for microcontrollers, Toit de-

velopers created their language, a language designed specifically for programming micro-

controllers in IoT [41].

One of the main goals of this application is to be as secure as possible, so the developers’

focus is on ensuring that even if the uploaded code has bugs or is exploitable, the device

running it should still be able to function and continue to receive other commands via the

mentioned API.

This solution has some overhead expected to exist compared to running code in bare metal.

However, compared to similar solutions, such as Wasmico, it is still slower and uses more

memory to execute similar tasks.

Golioth [19] is a tool similar to Toit, defined as an IoT development platform built for scale.

This tool consists of a program running on the microcontroller and creates a Web server to

deploy and manage containers into the device.

Golioth is compatible with over 100 boards and includes ZephyrOS and FreeRTOS, meaning

users can choose their operating system. Communication with the microcontroller can be

3.2 Virtualization and Containerization for Microcontrollers 15

done via their web console, REST APIs, or a CLI. All the telemetry and logs can be stored

in multiple databases, allowing for easier debugging in case of errors.

While their program allows the user to run their code in a container, it focuses on updating

the code OTA and doesn’t allow running multiple containers simultaneously. This tool is

mostly designed to be used in DevOps as a simple way to deploy different applications to

multiple microcontrollers.

Femto-Containers [47] is a system that produces multiple concurrent VMs using the multi-

threading capabilities of the RIOT OS [34] which are created in an event-based model that

responds to events like internet connections, sensor readings, or scheduled events. This

architecture allowed the authors to create a hardware-agnostic tool that can be run on various

microcontrollers with differing capabilities and architectures and eases the developers’ work

by easing code portability between those devices.

Besides allowing developers to run multiple applications concurrently, the authors wanted to

minimize the overhead created by their program when compared to running the applications

on bare metal. They compared the ROM and RAM usage, and the cold start and run times

between WASM3 [43], rBPF [46], Micropython [29], and RIOTjs, and decided to proceed

with the rBPF based virtual machines, which demonstrated negligible memory overhead. To

prevent malicious code from accessing memory areas that are owned by other applications,

those virtual machines are isolated from one another.

Wasmico [33] is a containerization tool that allows the development of applications for mi-

crocontrollers in the most popular programming languages. In their paper, Ribeiro et al.

explain how they developed a program that enables users to deploy and manage containers

in microcontrollers remotely by allowing users to upload, edit, start, stop, delete, pause, and

unpause containers over the air. All these functionalities are available via a command line

interface that sends information via HTTP to the microcontroller to request the execution of

one of the operations.

On the microcontroller, the tool consists of a running web server that handles the mentioned

HTTP connections and the FreeRTOS operating system [17], which has a scheduler for the

parallel execution of containers and controls the memory allocations for those tasks. The

FreeRTOS is part of the Espressif IoT Development Framework, which was used as the

development framework for the ESP32 devices. Each container is a separate task that the

FreeRTOS control, which runs on top of the WebAssembly interpreter, Wasm3. All the in-

formation that needs to be saved in non-volatile memory is stored in the SPIFFS filesystem,

which allows for information to be consistent even after a device reboot. This architecture

can be seen in Figure 3.1, p. 16, which is included in the Wasmico dissertation.

With this program, we can circumvent some of the disadvantages usually associated with

microcontrollers, such as allowing the deployment and management of tasks OTA, which

avoids the typical USB connection and reboot needed to update the code on the device.

State of the Art 16

Figure 3.1: Wasmico Architecture Overview. [33]

Another advantage is the possibility of developing code in high-level languages familiar to

developers instead of low-level languages, such as C or Assembly.

On the other hand, by using Wasmico, we are introducing some expected overhead com-

pared to native code execution. Still, it’s significantly less than the overhead introduced by

other tools such as Micropython.

3.3 Container Migration in IoT

In more powerful computers used in IoT, such as the Raspberry Pi, there has been a development

that led to the possibility of creating checkpoints of tasks by saving their state and migrating it to

be used in other microcontrollers. It is now possible to save the running state of a program and

continue when it’s needed, where it’s needed.

These are the publications with different solutions and different goals that solved this problem:

Checkpointing and Migration of IoT Edge Functions [22] describes how to create checkpoints

in Docker containers that are running on a Raspberry PI device. This paper’s primary goal

is to enable the function-as-a-service (FasS) model that is widely used today in regular

computers to be used in edge devices, in this case, in Raspberry PIs.

Karhula et al. created a solution using Linux’s CRIU functionality on top of Docker to

enable developers to checkpoint their programs and save the state of the containers. With

3.3 Container Migration in IoT 17

their tool, they managed to pause tasks that were executing functions for a long time and

functions with established TCP connections and continue both in their expected state.

In this paper, they also managed to migrate the containers after checkpointing to another

device and continue the tasks in their previous state. The paper’s results show that this

feature is achieved with a low memory footprint that allows many containers to be on the

same device.

Efficient service handoff across edge servers via docker container migration [28] done by

Ma et al. show in detail how to migrate docker containers from one edge server to another.

This paper’s authors explain in depth how docker works and define the nine steps needed to

complete the migration of a container from one device to another. These are the steps:

1. Synchronize Base Image Layers. Ensure that the Docker image layers are equal in

the destination and the source servers.

2. Pre-dump Container. Dump a snapshot of the container runtime memory.

3. Migration Request Received on Source Server. A request is sent to the source server

to start the migration of the task

4. Checkpoint and Stop Container. After receiving the request, the server will check-

point the container and stop it.

5. Container Layer Synchronization. Send the runtime and configuration files from the

container to the destination server.

6. Docker Daemon Reload. Reload Docker in the destination source to recognize the

new container.

7. Get, Send, and Apply Memory Difference. Compare the new memory dump with

the memory dump from step 2 and send the memory differences to the destination

server.

8. Restore Container. Restore the container in the destination server and ensure it’s

running as expected.

9. Clean Up Source Node. Remove the container and all the associated information

from the source server.

This solution focuses on using the minimal needed information to migrate the containers by

creating small files that can be transferred quicker between the devices.

Checkpoint/Restore In Userspace (CRIU) [9] is a Linux software that can do many tasks on

containers, including migration. It is designed to work with many different types of con-

tainers, including Docker, LXC, Podman, and many others. CRIU allows users to migrate

containers between two devices, speed-up long boots by saving the state after boot, take

snapshots of applications, etc. [10]

State of the Art 18

In Linux, everything is a file, and based on that, CRIU uses the files created by running con-

tainers and saves them; this includes the running task, file descriptors, network connections,

and other task information. This idea is not usable on microcontrollers since most of the

information is stored on RAM instead of files.

3.4 Conclusions

After doing the Systematic Literature Review on the topics that we will work on, we found that

there are multiple solutions for microcontrollers that give developers the freedom of choice when

choosing the programming languages to work on, even languages that are less common on mi-

crocontrollers development, like Python with Micropython [29] or Rust and Golang with Wasm3

[43]. Recently there were developments with containers in microcontrollers with the appearance

of tools like Toit [40] and Golioth [19]. Wasmico [33] is one of those recent tools that allows both

the choice of language and the containerization of tasks at the same time.

On the topic of container migration, we found different solutions that were capable of doing it,

but none of the solutions was viable for use in microcontrollers. Both CRIU [9] and the Karhula

et al. solution [22] use the Linux filesystem to save the state of the running containers, and

the Ma et al. tool [28] is done specifically for Docker containers, which are not available for

microcontrollers. Since all three solutions use software that cannot be used in microcontrollers,

we can only use them as proven ideas for what we want to do in our solution.

Finally, none of the found solutions can use both features that we discussed, so if we are able

to change one of the available containerization tools and add the option to migrate its containers

between devices, we will create a solution in a new area that has no tools yet.

Chapter 4

Problem Statement

4.1 Current Issues . 19

4.2 Desiderata . 20

4.3 Hypothesis . 21

4.4 Research Questions . 21

4.5 Scope . 22

4.6 Validation . 22

4.7 Summary . 23

In this chapter, we will describe in detail the problem we intend to address in this dissertation,

as well as the strategy we will employ to do so. Firstly, we will outline the prevalent problems with

containers in microcontrollers in Section 4.1. In Section 4.2, p. 20, we construct desiderata based

on the problems we identified and our ideal solution for those problems. Then we will present

our hypothesis in Section 4.3, p. 21 and outline the research questions we will be working on in

Section 4.4, p. 21. In Section 4.5, p. 22, we will present the scope of the work that will be done in

this dissertation. In Section 4.6, p. 22, we will present how we will validate that the solution we

discovered is capable of resolving the problems described. Lastly, we will summarize this chapter

in Section 4.7, p. 23.

4.1 Current Issues

Even though microcontrollers are known as low-end devices that have constrained computing abil-

ities, recent developments have increased their capabilities, and those devices are more developed

than ever. This increase in computing abilities has provided significant developments in IoT and,

in recent years, has allowed bringing DevOps to the code development in microcontrollers. One

of the DevOps tools now available in microcontrollers is the containerization of tasks. Some new

containerization tools, which were detailed in Section 3.3, p. 16, such as Wasmico [33], work on

microcontrollers, which brings many benefits to developers who use these devices.

19

Problem Statement 20

Those tools allow developers to abstract their code from each vendor’s existing architectures,

code in different languages besides the usually used low-level programming languages, and ex-

ecute multiple isolated programs concurrently. But they still lack some features that would be

helpful for developers to use the devices’ capabilities as much as possible.

We have pointed out two main issues with the existing solutions, (1) lack of container’s state

migration and (2) bad user interfaces. The first issue is already solved for regular computers that

can run operating systems with containerization tools, such as the already mentioned Karhula et al.

solution [22], so we can build our solution with similar ideas.

4.2 Desiderata

The following desiderata can describe our vision of the ideal containerization tool for microcon-

trollers:

D1: Architecture agnostic tool. The ability to operate in any of the several microcontroller ar-

chitectures would be necessary for our tool to be useful. Otherwise, users would be trapped

in the architectures we choose to offer, and the solution’s applicability would be significantly

reduced.

D2: Run multiple containers in parallel. A good containerization tool has to be capable of

running multiple containers at the same time.

D3: Support multiple programming languages. Our perfect solution would be able to run

any programming language. By doing that, we are giving users the freedom to work on the

languages they are already acquainted with.

D4: Over the air updates. To avoid having to physically connect to each device each time a

change has to be made, the user should be able to carry out updates over the air.

D5: Migrate containers’ state between devices For the tool to be fully functional, we want it

to allow users to migrate the state of running tasks between microcontrollers.

D6: User-friendly interface. This tool is intended to be used by developers; thus, it must have

an intuitive user interface that doesn’t obstruct their work.

D7: Incorporation into other applications. For a containerization tool to reach its true poten-

tial, it should have an API that developers can use to integrate it into their applications and

use it in automatic tasks, such as CI/CD.

From the tools described in Section 3.2, p. 13, four of them can be described as container-

ization tools for microcontrollers, (1) Toit [40], (2) Golioth [19], (3) Femto-containers [47], and

(4) Wasmico [33]. We decided to compare these solutions based on their fit with our description

of the ideal tool in Table 4.1, p. 21.

None of the existing tools fit our description of the perfect tool for containerization in micro-

controllers, which means there’s a gap between what exists today and what we want to use.

4.3 Hypothesis 21

Tool D1 D2 D3 D4 D5 D6 D7
Toit ✓ ✓ - ✓ - - ✓

Golioth ✓ - - ✓ - ✓ ✓
Femto ✓ ✓ - ✓ - - -

Wasmico ✓ ✓ • ✓ - - -
Table 4.1: Comparison of containerization tools for microcontrollers according to their completion
of our desiderata. (•) means WebAssembly compilable languages.

4.3 Hypothesis

This dissertation’s work will be focused on the following hypothesis:

“Through a user-friendly interface, as well as the facilitation of containers’ state

migration between constrained devices, quality of service in microcontrollers’ con-

tainerization will be increased by simplifying containers management and reducing

the time to recover from failures.”

We aim to improve the users’ experience with the existing tools by incrementing one of them

with an updated and user-friendly interface and validating the usability of the new interface with

user tests based with a validation based on the System Usability Scale [7].

We also want to allow developers to migrate containers from one device to another to help de-

velopers reduce the downtime of tasks and validate it by comparing the time to recover from fail-

ures with the previous versions of the tool. This is based on the fact there already exist migration

solutions for some IoT devices and that applying the same logic to containers in microcontrollers

will bring similar benefits.

4.4 Research Questions

We have separated our hypothesis into three research questions, which, if validated separately, will

validate our hypothesis.

RQ1 Can we provide a way to migrate the state of a container from one microcontroller to

another?

To allow the continuation of a running container in a different microcontroller, we should

be able to copy the state it contains to the new microcontroller and start that container with

the copied state.

RQ2 If we find a solution for RQ1, does it help developers by reducing the time to recover from

failure?

If we manage to develop a solution for the RQ1, we need to validate if the state migration

helps developers and, for that, we will need to compare the time to recover from failure with

and without the state migration.

Problem Statement 22

RQ3 Will a new user interface be easy to use and help users manage the containers running in

each microcontroller?

After implementing the new user interface for the containerization tool, we will need to

test it with potential users to know if it improves and simplifies container management in

microcontrollers.

We will dwell on these three questions and create solutions that together will represent an

answer to our hypothesis.

4.5 Scope

After the comparison shown in Table 4.1, p. 21, we decided to develop our solution using Wasmico.

It was one of the tools that fulfilled more of our desiderata, and besides that, we had two other

reasons:

• Firstly, it is an open-source tool that allows us to understand and expand the existing func-

tionalities quickly. By having access to the source code, it will probably be easier to under-

stand how the tool works and how to increment its functionalities.

• The other reason is the already implemented functionalities. Wasmico already allows its

users to pause and resume containers by sending commands via HTTP, so our work will use

those functionalities and expand on top of them by allowing users to copy the state of the

paused container to another microcontroller and resume it in the new device.

This dissertation’s scope is to expand the existing Wasmico tool. As a first step, we will

develop the container migration functionality, which involves capturing the state of a running

container on a designated device and subsequently transferring that state to another device for

future utilization when the container is initiated. After that, we will focus on developing a user-

friendly interface to ease the use of all the functionalities that are implemented.

4.6 Validation

After completing the implementation that’s defined in Section 4.5, we must validate that our im-

plementation confirms our hypothesis. We will need to validate our implementation in two parts,

(1) migration of a task’s state between two microcontrollers and (2) the usability of the new user

interface.

To validate the quality of service improvement caused by the migration of a task’s state, we

will compare the recovery time from failures when beginning the task from its initial state versus

from a previously saved state. We will need to determine how long it will take to store the state of

a task and upload it to a new microcontroller, how long it will take to start a task with and without

a state, and ultimately, how advantageous it will be to be able to migrate the state.

4.7 Summary 23

To validate the usability and simplicity of our user interface, we will conduct a user survey

based on the System Usability Scale [7] to determine whether the interface improves the users’

satisfaction with the tool. In addition to the SUS queries, we will also include questions to identify

user groups and determine if any of their characteristics will influence their evaluation of the

interface.

4.7 Summary

In this chapter, we discussed the problems that exist in the currently available containerization

programs for microcontrollers. After defining the existing problems, we specified what our ideal

containerization tool would be able to do in our desiderata and contrasted the features of the solu-

tions presented in the state of the art with the features that we specified. From this, we formulated

our hypothesis regarding what we wish to be able to do and how this will enhance the work of

developers. This hypothesis was divided into three research questions that are simpler to com-

prehend and validate separately. After delineating what needed to be done, Section 4.5, p. 22

describes how it will be accomplished. Finally, we described how we will validate the hypothesis

by testing our implementation.

Chapter 5

Solution

5.1 Wasmico . 24

5.2 Improvements . 27

5.3 Task State Migration . 29

5.4 Terminal User Interface . 31

5.5 Known Limitations . 38

5.6 Summary . 40

In this chapter, we will describe the work we performed on top of Wasmico in order to solve

the previously mentioned problems. In Section 5.1, we begin with a comprehensive overview

of Wasmico’s capabilities before our work. In Section 5.2, p. 27, we will describe some minor

changes that were made to Wasmico that did not correspond directly to the previously mentioned

issues but were nonetheless deemed necessary. Then we explain how we implemented the con-

tainer’s state migration in Section 5.3, p. 29. In Section 5.4, p. 31, we discuss the ideas we had for

the user interface and explain the implementation we chose to proceed with. In Section 5.5, p. 38,

we discuss the tool’s limitations following our implementations. We conclude by summarizing

our work in Section 5.6, p. 40.

5.1 Wasmico

Our solution will expand Wasmico, so we will start by doing an in-depth analysis of the tool. We

will start with an overview of the architecture of the tool, then we will explain each of the available

operations, and lastly, how the code should be structured before being compiled to Web Assembly

and used in Wasmico.

5.1.1 Architecture

Wasmico was built to work on different microcontroller architectures, so it is built on top of the

FreeRTOS operating system [17]. This operating system can run on ESP32s, Raspberry Pi Picos,

24

5.1 Wasmico 25

Arduinos, and many more devices, thus bringing Wasmico to those devices. FreeRTOS and Ar-

duino are the base of the Wasmico architecture and represent the API that connects the rest of the

code to the hardware.

On top of the FreeRTOS, Wasmico has two different services, (1) a web server and (2) a wasm

interpreter. The web server is responsible for allowing the users to do updates over the air, it

receives HTTP connections, and based on the request, it will execute the code corresponding to

the requested functionality. The wasm interpreter is Wasm3 [43] which has one environment setup

for an easy start of new runtimes that will be launched and execute each new task.

All the running tasks started by the users are a thread on FreeRTOS. For each different task

that the users start, Wasmico launches a new thread which starts a Wasm3 runtime that executes

the WebAssembly code that was previously uploaded. Wasmico can manage all these threads to

allow pause, resume, and stoppage of the running containers.

Lastly, Wasmico uses the SPIFFS filesystem[39], which allows Wasmico to store the uploaded

files and read them when needed.

5.1.2 Operations

Before our additions to Wasmico, this tool offered the following operations:

Task Upload. This operation allows users to upload a WebAssembly file to the microcontroller.

This file should contain the task to be executed and, additionally, four parameters can be

sent: (1) reservedStackSize, (2) memoryLimit, (3) reservedInitialMemory, and (4) liveUp-

date. The reserved stack size is the size of the stack memory that the program will need to

execute. It needs to include the minimum memory for a FreeRTOS thread, 768 bytes, and

the memory needed for the program. The memory limit is the stack size for the Wasm in-

terpreter, and it should be equal to the stack-size parameter set when compiling the original

code to WebAssembly. The reserved initial memory refers to the initial-memory parameter

also set when compiling. Lastly, live update is a boolean that defines if the task should be

updated if it’s running. If it is set to true, the task will be stopped and started with the new

code.

Edit Task Details. This operation allows users to edit the four parameters set on task upload.

It is supposed to be used when users want to change any of those values but don’t need to

change the code meant to be executed.

Task Start. This operation allows users to start tasks that were previously uploaded. When

this operation is called, Wasmico will check if the code for the task has been uploaded, the

details were correctly set, the task is not already running, and enough resources are free to

execute the task. If all the conditions are set, Wasmico starts a new FreeRTOS thread that

will load the file, prepare the Wasm runtime and start executing the WebAssembly code.

The needed information about the running thread is stored in memory to be used by some

of the other available operations.

Solution 26

To execute this operation, the uploaded code must implement the _start function. This

function is the main function of the program; it is normally divided into two parts, the setup,

where all the initial variables and configurations are set, and the main loop, an infinite loop

that will execute the task periodically.

Task Stop. This operation allows users to stop a running task. Before stopping a task, Wasmico

verifies if the task is running, and if it is running, it is stopped. When a task is stopped,

Wasmico removes the task from the FreeRTOS task list and erases all the info about the

running thread. This sets the microcontroller in the same state as if the task was not started,

which means, the WebAssembly file remains in the device, all the execution parameters are

still available, but all the information created after starting the task is lost.

Task Deletion. When a task is no longer needed in a device, it should be deleted by the user.

Even if a task is not running, its code and some of its information still occupy space that

other tasks may need, so users should make sure to delete all the tasks that are not needed in

a device. When this operation is called, Wasmico will first check if the task exists and if it

is running. If the task is being executed, Wasmico will cancel the operation as running tasks

should be first stopped, and only then can they be deleted. If the operation proceeds, the

WebAssembly file and the details for that task will be removed from the device, and after

deletion, if the user needs to rerun the task, it must be uploaded, and only then can it be

started again.

Task Pause. If the user wants to pause a task so that it can be continued again in the same state

later on, he should call the pause operation. This operation saves the current state of the

running task on the microcontroller’s memory and pauses its execution.

This operation relies on the _pause function. The _pause function should guarantee that the

program is in a savable state and proceed to save it. To save the state, the user can import

the pauseTask function from the Wasm interpreter, which allows users to save an array of

bytes in the device’s memory for later use.

Task Unpause. This operation allows users to unpause a task that has been previously paused.

To use this operation, the task has to have been uploaded, started, and paused. The _start

is called again, and if the user wants to retrieve the previously saved state, he should call

the function resumeTask, which loads the same byte array that was previously stored on the

pauseTask call.

List Task Details. Users can access the information that was specified for each of the uploaded

tasks using this operation. It is used to identify which tasks were uploaded to the device and

for troubleshooting reasons.

List Active Tasks. This operation lets users know which tasks are being executed, their current

status (running or paused), and the task’s thread’s maximum memory utilization. It may

5.2 Improvements 27

be used to keep track of the tasks that are running on each device and to determine the

reservedStackSize that should be set on a task upload.

Get Heap Info. This operation shows the current memory available in the device. It provides

details on the amount of free memory on the device as well as the size of the largest available

contiguous memory block.

Our work will ensure that these operations will continue to be available while adding new ones

as we need them.

5.1.3 Code Structure

When developing code to be run in Wasmico, the code should be structured into three different

parts:

1. Import link functions. At the beginning of the program, it is important to import the needed

functions provided by the Wasm interpreter. Wasmico defines these functions, which in-

cludes delay, print, pauseTask, resumeTask, and others. The functions are linked by Wasm3

to the executed code and connect the high-level programming to the low-level programming

specific to microcontrollers.

2. _start function. This function is the entry point of the program. It is equivalent to the main

function of a C program. Normally it contains an initial setup that, if needed, should get the

previously saved state and a main loop that executes infinitely doing the main task.

3. _pause function. This function is only called when a program is paused. The function

should make sure that the program is in a normal state, and if needed, it should save the

state at that moment.

From these sections, only the _start function is necessary for the program to be run. All the

others are extensions that may be needed for some functionalities but are not mandatory for the

task to be executed.

5.2 Improvements

In this section, we will cover some improvements we made to the tool. These changes were made

to clarify some doubts that users had and to allow for new functionalities that were not important

for the hypothesis being tested in this dissertation.

5.2.1 Pause and Unpause Tasks

When pausing a task, firstly, Wasmico executes the _pause function that should be defined in the

code compiled to WebAssembly. That function can use the pauseTask function, that’s defined in

Wasmico and can be imported from the Wasm interpreter, which will store an array of bytes of

Solution 28

any length that will be considered the task’s state. After that call, Wasmico will completely stop

the running task and free all the memory it was using.

This way of pausing a task means that when resuming it, the task will be completely loaded

again, and the unpause task operation will work the same way as the start task operation. In fact,

both of these operations start a new FreeRTOS thread which calls the _start function to run the

task, with the only difference being checking if the task was previously paused.

The implementation of task state migration also means that the program would behave strangely

under certain circumstances. With the previous Wasmico pause and unpause logic, if we upload a

task’s state that is supposed to be a backup state to a device while the task is paused, that state will

be used on the unpause function instead of the state that existed at the time of the pause, meaning

that the unpause operation would resume the container in a different state than when it was paused.

To avoid this strange behavior, we changed the implementation of the pause and unpause

operations to utilize the FreeRTOS thread management features instead of saving the state and

starting based on that state. Instead of calling the _pause function that’s inside the user’s program

and saving the state, we call the vTaskSuspend function from the FreeRTOS API, this function

changes the state of the task to eSuspended, which means that the microcontroller will never

give any processing time to the thread executing the task. When unpausing the task, we call the

vTaskResume function, which will resume the task. By doing the pause and unpause operations

this way, we enforce that when unpausing a task, it continues in the exact same state it was when

it was paused.

While changing the way these operations work, we also decided that “resume” would be a

better name for “unpause” so we changed the names and, in the rest of this document, we will be

using the name “resume”.

5.2.2 Device Status

When working with Wasmico, especially while doing the user interface, we found that we needed

a command which would quickly check if a device was running Wasmico or not. With the old

Wasmico version, this could be done by making a request to any of the available endpoints that

existed and ignoring the content of the response, but this would bring more workload to the micro-

controllers. To lower the amount of processing needed to check if a microcontroller was running

Wasmico, we created a new endpoint, which we called “wasmico” that responds to the request

with a confirmation that the device is on.

5.2.3 Restarting the Microcontroller

On some occasions, while developing code to be executed in Wasmico, we created bad code that

would use too much memory or processing time, and we would need to restart the microcontroller

manually. Since Wasmico was made to work over the air, we thought that it would be helpful

if we could restart it with a command, so we created the “restart” endpoint, which restarts the

microcontroller, thus stopping all the tasks and freeing all the memory used by the tasks.

5.3 Task State Migration 29

5.3 Task State Migration

Task state migration is separated into three parts, saving the state of the task that is running in a

device, uploading that state to a new device that will run that task, and finally, starting the task on

the last device.

5.3.1 Save the Task’s State

The first step in migrating the state of a task between two microcontrollers is saving the state of the

running task on the original device. Wasmico was already doing this on the pause operation before

our changes, so we kept the idea and changed the _pause function to a similar _state function and

changed the pauseTask function to the saveTaskState function.

As part of this operation, we had to allow the users to export that state. When a user calls the

save state operation, Wasmico will call the _state function to retrieve the current state of the task

and save it in memory as an array of bytes together with an integer corresponding to the array’s

length. After that, it will respond to the request in JSON notation containing the data and len

fields. The data field is a hexadecimal string containing the state of the task. For example, if the

task needed to save a state which is the bytes 0xDE, 0xAD, the data field would be “DEAD”. The

len field is the length of the sent data in the number of bytes. In the same example, the len would

be the number 2.

At the end of the operation, the state of the task is both in the response from the device and in

the device’s memory, which already contains each task’s parameters and runtime. By saving the

state in the device, we allow users to use it as a backup without having to upload the state at a later

time, this means that we users can do the same steps involved in the task state migration without

uploading it to restart the task from a checkpoint in the same microcontroller.

The process of saving a task’s state can be seen in Figure 5.1.

Client HTTP Server Internal Data
Structures

get state request
start new FreeRTOS task

 to get the state

get runtime object

Wasm Interpreter

call _state operation

store state

return the state
send the state in JSON

FreeRTOS

Figure 5.1: Sequence diagram of the get state operation. To avoid cluttering the image, we re-
moved the check operations.

Solution 30

5.3.2 Upload the Task’s State

The second step in migrating a task to a different microcontroller is uploading that task to the

destination device.

To avoid changes between the state that was saved and the state that is uploaded, we decided to

keep the same format across both steps, this means that when uploading the state, the user should

send a JSON object containing, at least, the data and len fields. The uploaded state is stored in the

microcontroller’s memory in the same way that the save state operation stores it to be used when

starting the task.

Users can upload a state for the same container as many times as they want, but to reduce

the memory used on each microcontroller, the device will only store the most recent one. This

allows for periodic backups of tasks in different microcontrollers without drawbacks besides the

time needed to upload and store the state.

In Figure 5.2, you can see the sequence of operations done when uploading a state.

Client HTTP Server

upload state request

Internal Data
Structures

save state

confirm upload

Figure 5.2: Sequence diagram of the upload state operation. To avoid cluttering the image, we
removed the check operations.

5.3.3 Starting the Task

If a task’s state is saved on the device, when the task is started, in the _start function, the user can

call the getTaskState function, which allows the user to get the saved state from the Wasmico data

structures and use it instead of the task’s initial state. The state will be available in the same state

as it is saved, an array of bytes together with the length of that array.

To avoid the confusion mentioned when pausing and resuming tasks, if the users want to

update a task’s state, that task should be stopped and started again, as the pause and resume will

ignore the new state and continue with the same state the task had when it was paused.

The sequence of operations that are executed in the microcontroller can be seen in Figure 5.3,

p. 31

5.4 Terminal User Interface 31

Client HTTP Server Internal Data
Structures

Device Filesystem
(SPIFFS)

task start request

FreeRTOS

response to task
start operation

WASM Interpreter

get file details / parameters

start new FreeRTOS task

get file contents

create WASM runtime

store runtime object
parse and load
Wasm module

bind link functions

get saved task state start WASM routine

Figure 5.3: Sequence diagram of the start task operation with a saved state. To avoid cluttering
the image, we removed the check operations. This was mostly taken from the paper about Was-
mico [33].

5.4 Terminal User Interface

To simplify container management and facilitate the use of Wasmico, we created a terminal user

interface. While developing it our main objectives were for the TUI to be simple and easy to use,

even for developers unfamiliar with Wasmico or microcontroller-related tools.

Wasmico already had a command line interface developed using NodeJS [30]. To reuse as

much as possible of the existing code, we also decided to use NodeJS and separated the creation

of the TUI into two different parts. Firstly, we created a core library with an API that can be used

on other NodeJS applications. From that, we restructured the CLI and built the TUI using that

API. In the end, we delivered an API that can be used for other use cases that use Wasmico, such

as the automatic deployment of code to microcontrollers and two different terminal tools that can

be used to do container management with Wasmico.

5.4.1 Wasmico API

The Wasmico API is a NodeJS module that allows its users to call functions that we created that

execute the needed HTTP requests to run the commands on the microcontroller. With this API,

developers can create their own programs that use Wasmico while avoiding constantly checking

the endpoints for each of the available commands.

Through the use of this API, users can execute the following functions:

uploadTask. This function receives the IP address of the microcontroller, the path to the file that

will be uploaded, and the task parameters that need to be set when uploading. It reads the

file, extracts the filename from the path, and sends all the information to the microcontroller.

Solution 32

deleteTask, startTask, pauseTask, and resumeTask all receive the IP address of the microcon-

troller and the filename of the task and send a request to the microcontroller to execute the

corresponding command.

getTaskDetails. This function receives the IP address and requests the available information

about the tasks that were previously uploaded.

editTaskDetails. This function receives the IP address, the filename, and all the parameters

that will be edited for the corresponding task and sends this information to be edited in the

microcontroller.

getTaskState. This function receives the IP address and the filename of the running task and

requests the state to the microcontroller, which, in case of success, will return a JSON

message with the state of the task.

uploadTaskState. This function receives the IP address, the filename, and the state of the task

and, after checking the validity of the state, sends it to the microcontroller, where it will be

stored.

getActiveTaskDetails. This function receives the IP address of the microcontroller and requests

the details about the running tasks.

getFreeHeapSize. This function receives the IP address of the microcontroller and returns the

information about its heap.

restartDevice. This function restarts the device at the given IP address.

scanNetwork. This function will scan a given network for microcontrollers running Wasmico.

It pings all the possible IPs on the network, and, for the found devices, it sends a request to

the “wasmico” endpoint to verify if that device is running Wasmico.

pingDevice. This function receives an IP address and sends a request to the “wasmico” endpoint,

which should only respond if the device is running Wasmico.

These functions correspond almost one-to-one with the available endpoints implemented in

Wasmico as they connect the command-line interface, the terminal user interface, and possible

future applications to the Microcontrollers using Wasmico.

Even though this API was not part of the hypothesis that we wanted to validate, we found that

it would facilitate the development of the user interface and be beneficial for future tool users in

developing their own applications. Besides different user interfaces for the different needs that

each user may have, we also thought that this API could be useful for CI/CD applications, where

the developers could test their code automatically on some devices and easily deploy the new and

tested applications to multiple devices.

5.4 Terminal User Interface 33

5.4.2 User Interface Requirements

Before choosing the type of user interface that we would implement for Wasmico, we had to

decide the specifics of the interface that we wanted, and we determined that our interface would

need to have three major functionalities, (1) display information about the microcontrollers using

Wasmico, (2) manage microcontrollers individually, and (3) manage microcontrollers as a group.

Firstly, the user interface would need to show the microcontrollers using Wasmico. For each

of the connected devices, the interface should display a custom name for it, the IP address of the

device, if the device is on or off, and, if it’s turned on, the tasks that it’s running. The device’s

name should serve as an identifier so that the user can distinguish between devices quicker than

by using the IP address. The IP address of the device is essential for identifying the devices in

a network and for troubleshooting. The device’s status should be used to determine whether the

device is available or not, as well as whether the interface-using computer can connect to the

microcontroller. The device’s tasks should aid container management by providing information

on which tasks are operating on which microcontrollers and preventing simple errors, such as

stopping a non-running task.

In addition to displaying the information, the interface should allow users to send all API

commands to the various microcontrollers. It is essential that the interface we design is able to

utilize Wasmico’s features and that users can easily send the appropriate commands and set the

correct parameters. The tool should display a list of the available parameters, plainly indicate the

required parameters when executing a command, and, if necessary, provide suggestions regarding

particular parameters.

Lastly, in cases where the user has many microcontrollers and needs to manage them all, it’s

important that the user can set them in groups and manipulate them in the same way he can manage

individual devices. The user should be able to create new groups, add devices to the groups,

and send commands to all the devices in the group simultaneously. This should be beneficial

in situations involving many devices, such as a phased task deployment to multiple devices or a

separation of devices with different functionalities.

5.4.3 User Interface Type

When deciding what would be a good interface, we debated over the four different types that we

might use: (1) command line interface, (2) terminal user interface, (3) graphical user interface,

and (4) web user interface and the advantages and disadvantages of each one.

5.4.3.1 Command Line Interface

The first option we considered was a command line interface. Before this dissertation’s work, there

was already a CLI as part of Wasmico, but it didn’t feel easy to use for us, and, most important, it

did not fulfill the requirements that we had set.

Solution 34

Command line interfaces normally don’t store information between multiple usages, if there’s

information that is needed to execute the program, it usually comes either from the program ar-

guments or the standard input. This means that to keep track of the available information about

the containers in the microcontrollers, we would need to send new commands, which would be

additional work and give less information than automatic updates periodically.

This type of interface would be a good option to send a single command to a single microcon-

troller, as it would be quick and simple, but when dealing with multiple microcontrollers or more

than one command, this interface would require multiple commands that would have to be typed

separately, meaning this interface type would not be a good solution.

Due to their normal format, CLIs are usually used as part of larger programs that use the tool

as part of a bigger task. Users will use a command line interface to execute one-time tasks or

in junction with other tools where they can chain the information from previous commands to be

used in the tool and use the output as input for another tool.

Concluding, even though a CLI is useful when integrated with other tools in more complex

scripts or when sending single commands to the microcontrollers, it was not a good user interface

to manage the containers running in those microcontrollers.

5.4.3.2 Terminal User Interface

Terminal user interfaces are normally designed to be used when the tool is only meant to run

in a terminal or when the user may not have access to a desktop environment where there’s the

possibility of using applications apart from a terminal. This means that a TUI can be used in most

situations, even in special cases, such as in servers where the user may only have terminal access

or through a remote shell to another computer with tools such as SSH.

With a TUI, users can easily keep track of the state of the tool that is being used; in our case,

keep track of the containers that are running in each microcontroller. TUIs normally are tools

that are continuously running and, thus, have a state which is kept, at least, while the user doesn’t

terminate it.

By using this type of interface, we can create menus with which the user interacts to send

commands, and we can create groups to send commands to multiple devices at once without

requiring more effort from the user’s perspective.

5.4.3.3 Graphical User Interface

Graphical user interfaces usually are large programs with a wide variety of features or programs

that are used not only with a keyboard but also with a mouse. Normally these programs consume

more resources from the computer and require the computer where it’s used to have a screen and

a desktop environment, which may not be available on servers and smaller computers, which may

work as routers to the microcontrollers’ network.

5.4 Terminal User Interface 35

On the contrary, graphical user interfaces are easier for most people, especially those who may

not be used to terminals. This would make the tool more friendly for non-developers needing to

work with it.

Just like with TUIs, GUIs would be able to save the information of multiple containers and

display menus and tooltips to help users send the needed commands to the microcontrollers, thus,

managing them easily and efficiently.

5.4.3.4 Web User Interface

The last option that we considered was a web user interface. WUIs are similar to GUIs, but

instead of running the user interface directly on the operating system, the interface is designed

for browsers. The advantages and disadvantages are mostly the same, with some exceptions. In

the process of developing a web user interface, it is not typically necessary for developers to

modify their code or tools in order to ensure compatibility with the majority of web browsers.

In the process of creating a graphical user interface, the requisite code and tools will likely vary

depending on the specific operating system for which the program is intended. Also, web user

interfaces are more similar across multiple programs, which makes the adaptability to our program

much faster than the other options.

5.4.3.5 Conclusions

After deliberating about the possible user interfaces that we could create for Wasmico, we found

that a terminal user interface would be the one with the most benefits and least drawbacks. We

decided to keep the existing command line interface but not develop it further because, in the end,

the tool would not be a good management tool. We think that the tool is still important to build

scripts and to send single commands quickly, but not for our main purpose.

Both the GUI and the WUI would require more resources and larger computers to be executed

in, and, thus, they would not be suitable for use in servers or routers, which may be important for

companies with separated networks for microcontrollers and other devices.

Lastly, the biggest disadvantage that the TUI had, not being user-friendly for non-developers,

can be mostly ignored since Wasmico is for microcontrollers’ developers, and a terminal is already

a frequent tool when working with those devices.

5.4.4 Implementation Details

The solution we implemented is a terminal application, which can be divided into two parts, the

table display, which shows information to the user, and the command menu, which allows users to

send commands to the microcontrollers shown in the table.

The table appears always before the menu and contains the following information for each of

the devices:

Name. The device’s name is a unique identifier set by the user to distinguish between multiple

devices. When sending commands from the command menu included in the TUI, the name

Solution 36

will be used to choose the device to send the commands. By default, the name of a device

is the IP address, as it should be unique across all devices.

Group. When the user has many devices which execute the same tasks, for example, multiple

temperature sensors in different rooms, they should be set in the same group. Groups work

the same way as names for the devices, but instead of selecting one device at a time, the

user can select the whole group at once. This may be useful to execute the same command

on all the devices of a group simultaneously.

IP address. Each device’s IP address is an identifier similar to the name, but the IP address

should not be used to choose the device to work with. Since the communication with the

microcontrollers is done via HTTP requests, the IP address is used to send the commands.

Status. The status of a device corresponds to whether the device is on or off. It is determined by

whether or not the computer operating the interface can communicate with the microcon-

troller. To test this communication, the interface periodically sends a ping command to the

Wasmico microcontroller and waits for a positive response.

Number of running tasks. To easily keep track of the tasks running on a microcontroller, the

TUI shows the user how many tasks are running on each device for each online device.

Free Space. Lastly, for all the online devices, the TUI shows the free space available in the

microcontroller’s heap. This is the space that will be occupied by uploading and starting

tasks, so the user should check this value before executing memory-consuming tasks to

guarantee that there’s enough memory for the task.

Under the table containing this information is a menu from which the user can select various

operations to carry out. Depending on the selected operation, the TUI will request additional

information required to execute it.

The available commands and the needed information are the following:

Add / Rename a device. This option enables the user to add a device not already present in the

table or rename an existing device. This operation requires the following information for

each microcontroller: the name that the user wants to use for future references to the device,

the IP address of the device, which is especially important for devices whose IP address is

in a network that you can’t or shouldn’t scan, and the group that the device belongs to; by

default, the group is named ”default,” and should be used if the user does not need to set a

specific group.

Remove a device. If the user doesn’t need a device anymore, it should be removed from the

interface. This command removes the information that the tool has about a specific micro-

controller. To remove the device, the user only needs to select it from a list of all the names

of the configured devices.

5.4 Terminal User Interface 37

Scan network. When the user wants to add all the microcontrollers running Wasmico that exist

in a specific network, such as the company network, this option scans the whole network

and finds all the devices whose HTTP server responds with status 200 to a request to the

“/wasmico” endpoint. To run this command, the user must only specify the network ad-

dress according to the CIDR [4] format (IP address and suffix). To facilitate, the active

network interface of the computer running the TUI is the default option that corresponds to

the network that the user’s currently using the most.

Upload file. This option will execute the API calls needed to upload the file to all the selected

devices. The user starts by selecting all the devices to which he wants to upload the file by

name, group, or both. Then enters the path to the file that’s been compiled to wasm relative

to the terminal being used. Lastly, the user enters the reserved stack size, reserved initial

memory, and memory limit, which are needed when uploading the file and whether to live

to update the task. Finally, the tool will output the answer given by each microcontroller

that was chosen.

Remove file. Once a file is not needed anymore, the user should use this command to remove it

from the device. Microcontrollers are devices that have low memory and low storage space,

so the users should not keep files that aren’t needed on devices. To remove them, the TUI

will ask which device to remove from and the file’s filename that should be removed. After

sending the request, the console will print the response given by each of the devices.

Start task. After uploading a file to a microcontroller, the user needs to start the task for it to

execute. The parameters needed by the TUI are the devices to start the task on and the

filename of the task.

Stop task. To stop a task that has been previously started and is running, the user will need to

select the devices to stop the task on and then select one of the tasks currently running on

any of those.

Pause task. The conditions and parameters needed to pause a task are the same as stopping a

task.

Resume task. Resume task is similar to the pause task option, but instead of selecting a task that

is running, the user selects a task that has been paused before.

Save task state. This option allows users to save the state of a running task. To save the state,

the user needs to specify the device running the task, the task whose state is supposed to be

saved, and a filename to output the state to that file. In the end, either the console prints an

error or the given file will contain the task’s state.

Upload task state. In conjunction with the save task state options, the upload task state option

should be used to upload a state that was previously saved. There needs to be a device

Solution 38

to upload the state, a file with the state in the same format in which it was saved, and the

filename of the task whose state belongs to.

Migrate task state. This option does the same as the save and upload task state options together

without storing the state in a file. In this case, the user needs to specify the device that is

running the task, the task whose state will be migrated, and the device that will receive the

state of the task.

Restart device. After selecting this option, the user needs to select one or more devices, and they

will be restarted.

Refresh devices. This option refreshes the table display and the information about the devices.

It will update the device’s state, the number of tasks running, and the free space available

on each microcontroller. These updates are done automatically every five seconds, but the

table information is only updated after running a command. If the user wants to update

the information without sending it using other commands, this option forces a refresh of

information and updates the table.

The user interface that corresponds to this description can be seen in Figure 5.4.

Figure 5.4: Terminal User Interface developed for Wasmico. On top there’s a table displaying
the information about the microcontrollers, and below that a menu containing all the available
commands.

5.5 Known Limitations

No tool is perfect, and Wasmico is a tool.

5.5 Known Limitations 39

While working with the tool for this dissertation, we discovered additional constraints beyond

those already known to Wasmico. While some of these issues may be crucial for Wasmico to gain

developer support, others may be less crucial but nonetheless worth mentioning.

5.5.1 Previous Limitations

In their paper, Eduardo Ribeiro et al. mention three different limitations in Wasmico. Since our

work was not focused on any of those topics, the tool still has those problems. We will explain

them, but if you need more information, you should read their paper.

The first limitation happens when stopping a task. After the user stops a task, not all the

allocated memory is deallocated. In their paper, they show an experiment in which they start and

stop a task, and the available memory after stopping the task is smaller than the memory available

before starting the task. Even though the cause of this is not precisely defined, they mention that

the Wasm interpreter may cause it because the same happens when running a Wasm task directly

on top of FreeRTOS.

Then, they mention the lack of adaption of the stack size to the needed memory. Wasmico

doesn’t allow a task to grow or shrink the memory they need at runtime; the memory needed

needs to be set before starting a task and is constant during the execution of the program. This

means that if the task needs more memory than what was set, it will fail to allocate it and crash,

and if the task doesn’t need as much memory as initially predicted, it locks that memory from

other tasks.

The last limitation described in the paper is related to the overhead created when starting a

task. When the user calls that operation, Wasmico launches a new FreeRTOS thread and, inside

that thread, reads the file content, prepares the Wasm runtime, and only then starts the task. All

of these tasks require memory, which may push the required stack size to a higher value than the

need for the task execution.

These three limitations still exist in Wasmico, but in our vision, they weren’t as important as

the work we’ve done on other parts of the tool.

5.5.2 Including Library Functions

In the current version of Wasmico, developers cannot easily include functions not implemented

in the language’s main library. When using functions from an external library, we had to include

them in Wasmico and expose them via a Wasm link imported into the code.

We didn’t find a way to do static linking when compiling using Wasic++, which was already

being used in the previous version of Wasmico, and we believed that was the cause of not being

able to utilize libraries when using Wasmico.

The other compilers we found didn’t allow setting the parameters needed for reservedStack-

Size, reservedInitialMemory, or memoryLimit, and the wasmer compiler documentation didn’t

specify how to do static linking with the libraries we needed.

Solution 40

In the end, we didn’t solve this problem because we didn’t find a solution, but it may be easier

to solve in the future since WebAssembly is also a recent technology being developed.

5.5.3 Migration During Long Operations

Container’s state migration is currently divided into three steps, getting the state of a task, upload-

ing the state to another device and starting the task with that state. The first part of the migration

is done through a call to the _state fuction that should be implemented in the WebAssembly code,

where the user is responsible for storing the stateusing the saveTaskState function.

This execution will run in parallel with the main task which was previously started and that

may be executing an operation which requires a long time to finish, e.g., during HTTP connections

with a server. If this is the case, the state may be in an inconsistent state when _state is called which

would make the developer’s job of ensuring that the saved state is consistent and usable harder or

even impossible.

Karhula Pekka et al. [22] solve this problem in their paper by dumping all the information

about a docker container and using that as its state, but we didn’t found a similar function to get

all the information about a FreeRTOS thread, which would be a solution that would eliminate this

problem and remove the need of the _state and saveTaskState functions that are currently needed

to save the task’s state.

5.6 Summary

This chapter described Wasmico and the modifications we made to it throughout this dissertation

which are available in the github repository 1.

We began with an overview of Wasmico, in which we presented the instrument as designed

and implemented by Eduardo Ribeiro et al. . We discussed the Wasmico architecture, how the tool

was divided into two services, and how it handled multiple containers operating in parallel. We

review in depth every operation available on microcontrollers operating Wasmico. And finally, the

structure that the code should have in order to be utilized in Wasmico.

Then, we discussed the minor modifications we made to the code, ranging from small quality-

of-life features, such as restarting a microcontroller remotely and verifying if a device is connected

or disconnected, to renaming and modifying the functionality of pause and resume operations.

In Section 5.3, p. 29, we demonstrated how we reused the previous code from Wasmico for

the pause and unpause operations to implement the migration of a task’s state by separating it into

three distinct parts: saving the state outside of the device, uploading the state to another device,

and starting the task from the new device.

Following that, we presented our user interface development. First, we created an API based

on the existing code to facilitate the creation of Wasmico-based applications. Then, we presented

1https://github.com/SIGNEXT/wasmico-ng

5.6 Summary 41

the requirements that we believed were essential for the user interface and a comparison of dif-

ferent types of user interfaces. Finally, we elaborated on the implementation’s specificities and

described the information the interface contained and the commands it permitted users to execute.

Lastly, we discussed the most significant limitations that we believe are still present in the tool,

beginning with those that existed in the previous version of Wasmico and concluding with those

we discovered while using it.

Chapter 6

Evaluation and Validation

6.1 Validation Goals . 42

6.2 Experiments . 43

6.3 Results . 44

6.4 Threats to Validity . 51

6.5 Summary . 52

In this chapter, we will present the evaluations and the validations that we did in order to test

our hypothesis. In Section 6.1, we will define what the validations that we want to achieve are. In

Section 6.2, p. 43, we describe the experiments that we are going to do and how they will proceed.

We will present the results of our experiments and how they prove our goals in Section 6.3, p. 44.

Then, we will show some threats to the validity of the experiments in Section 6.4, p. 51. Finally,

we will summarize all the information in this chapter in Section 6.5, p. 52.

6.1 Validation Goals

By revisiting our hypothesis and our research questions, defined Section 4.3, p. 21 and Section 4.4,

p. 21 respectively, we can define the tests that we need to do to validate the hypothesis and answer

the RQ2 and RQ3 questions.

We can separate our dissertation’s validation into two smaller validations, validating that the

migration of a container’s state between microcontrollers can be used to reduce the time to recover

from failures and validating that the user interface that was built is easy to use by people in software

development or related areas.

To ensure that migrating the state of a task between two microcontrollers will benefit micro-

controllers developers, we have to calculate the total time it takes to save the state and upload it.

Then, we need to compare the time the user needs to complete the migration and the time needed

for the task to reach a similar state when starting without a state.

42

6.2 Experiments 43

For the usability of the terminal user interface that was created, we will run a controlled ex-

periment where the users execute some predefined tasks using it and evaluate the tool in a post-

experience questionnaire.

6.2 Experiments

We conducted different experiments for each of the validations that we mentioned before. Still,

through all the experiences, all the microcontrollers used were AZ-Delivery ESP32 Dev Kit C V2.

This type of device has 4MB of external flash memory, 512KB of RAM, and an ESP32-Wroom

32 chip which guarantees a frequency of up to 240MHz 1.

6.2.1 Task’s State Migration

For the validation of the task’s state migration, we conducted speed tests to ensure that the migra-

tion would occur quickly, thus minimizing the time required to recover from failures.

The first decision we made was to calculate the duration of a state migration. This time could

be defined as the time it takes the user to send the necessary commands, the time it takes Wasmico

to save the task’s state, and the time it takes the task to start in its new state. For this, we measured

each part separately.

All of the experiments utilized the “temperature” task, which measures the temperature every

5 seconds and outputs the moving average of the most recent readings. The number of readings

in the average corresponds to the state’s size. For testing purposes, all of the temperatures in this

task are determined at random.

First, we determined how long it would take Wasmico to save the state of a task and then the

time required for each saved state to be uploaded to another device. We used the temperature task

with three varying state sizes: 10 bytes, 100 bytes, and 1000 bytes, and we expect that with these

three different sizes, we would start seeing some patterns in the time needed for the operations.

After that, we realized it was crucial to understand if such timings would alter if the micro-

controller was already working on other projects; thus, we conducted the same experiments while

running a version of the temperature job that would run every 0.5 seconds.

Last but not least, we had to compare how starting the task was affected by the state, so we

timed how long it took to launch each of the tasks used before, both with and without a previously

stored state.

To prevent significant discrepancies in the obtained data, all measurements were performed 20

times, a local internet connection was used to minimize latency, and the time required to query the

utilized devices was determined as a baseline for the minimum time to execute an operation.

1The information mentioned here was obtained from the AZ-Delivery website (https://www.az-delivery.
de/en/products/esp32-developmentboard) on the 12th of June 2023

https://www.az-delivery.de/en/products/esp32-developmentboard
https://www.az-delivery.de/en/products/esp32-developmentboard

Evaluation and Validation 44

6.2.2 User Interface

To validate the user interface that we built, we decided to conduct a user experiment with master’s

students in Informatics or Electrical related fields. This experiment is divided into two different

parts, a task that is supposed to be done by the users and a post-experience questionnaire to evaluate

their experience using the tool.

The task they had to do (cf. Appendix A, p. 60) is divided into four parts, an initial explanation

of the experiment and the tool to familiarize the users, a setup part where the user prepares their

computer and all the files that will be needed, a tutorial to familiarize the user with the user

interface, and the task that they need to execute. Throughout the first three sections, users were

assisted with setting up everything correctly, and any questions that may have arisen were clarified.

On the experimental task part, little to no assistance was provided, as users were expected to

complete everything independently; we only intervened in cases of minor confusion. During the

final phase of the experiment, we measured how much time each user required for each segment.

The post-experience questionnaire (cf. Appendix B, p. 63) comprises two parts, an initial part

to identify users by their experience and familiarity with some concepts related to this dissertation

and a second part that corresponds to the SUS questions [7]. We decided to use the SUS because

it’s a system that has been widely used and corroborated by multiple researchers, and the original

author, John Brooke, did a retrospective on why SUS was still good based on multiple reviews

done by other people [8]. This provided us with a systematic way to validate the usability of the

created interface that removed a possible bias in the evaluation that was done.

We decided to conduct this experiment with finalist students of informatics or electrical engi-

neering masters. Informatics engineering students are expected to be familiar with programming

and the terminal, while electrical engineering students will probably know more about microcon-

trollers. We decided to proceed with the experiments with eleven different students who would

execute the proposed tasks and answer the post-experience questionnaire.

6.3 Results

After doing the experiments, we got the results that will be shown and discussed in this section.

6.3.1 Task’s State Migration

Before starting the validation of the state migration, the first experiment we did was to test the ping

command on Wasmico. This will be useful as a baseline for the minimum time that a command

may need to be executed, which already encompasses the latency time of the internet, the time for

establishing the connection with the microcontroller, and waiting for a response, which should be

the fastest in Wasmico. The statistics of the results we gathered can be seen Table 6.1, p. 45 and

show us that the commands sent to Wasmico will always take around 120 milliseconds just for

the basic connection. Only the remaining time of the operation will be on processing the given

information.

6.3 Results 45

Task min max x x σ

ping 60 141 122 123 16

Table 6.1: Statistics from pinging a microcontroller running Wasmico in milliseconds. These times
correspond to the time needed to connect to the microcontroller and receive a simple response in
the network used for the tests.

To validate the state migration across microcontrollers we started by measuring the time Was-

mico needed to get the state from one device and the time needed to upload the device to another.

As mentioned Section 6.2.1, p. 43, this was performed with similar tasks whose only difference

was the size of the state. This experiment produced the results shown in Table 6.2. The first thing

we noticed was that most operations had a high standard deviation, which was caused by some

operations taking three to four hundred more milliseconds than the average time for the operation.

Even though we have no clear explanation for this, since the device only has one thread, it may

be caused by other non-Wasmico computations that may be running in the background that delay

the operation. The operations that involved the tasks with 10 and 100 bytes had average durations

between 0.1 and 0.15 seconds, which means that the duration of the operations had almost no

difference from the ping command. The operations with 1000 bytes had much higher durations,

especially the upload operation; still, in the worst case, the operation needed a little over 2 seconds

but, on average, only 0.5 seconds.

Task min max x x σ

Get 10 Byte State 103 515 153 113 120
Get 100 Byte State 99 129 108 106 7
Get 1000 Byte State 64 552 217 146 165
Upload 10 Byte State 100 506 129 109 87
Upload 100 Byte State 98 514 134 115 87
Upload 1000 Byte State 273 2282 516 288 541

Table 6.2: Comparison between the time needed to get the state of a task with a state of 10, 100,
and 1000 bytes and the time needed to upload the same states in milliseconds.

In order to verify the prior results, we repeated the experiment, but this time included a tem-

perature task that measured the temperature every 0.5 seconds while the operations were being

called and compared to the results from the previous experiment. This time around, there were,

as was to be expected, even bigger variances. This is because there were conflicts in CPU time

with the new container that was running. However, as can be seen by the values in Table 6.3, p. 46

and the plots in Figure 6.1, p. 47, the average and median duration of each of the tasks did not

increase by a significant amount. This can be explained by the fact that the operation was just as

quick when both tasks weren’t competing for processing time. The only operation whose duration

increased significantly was the upload of the 1000-byte state because it was, on average, longer

than the loop time of the running task.

Evaluation and Validation 46

Task min max x x σ

Get 10 Byte State 100 617 266 122 197
Get 100 Byte State 90 518 185 109 157
Get 1000 Byte State 71 158 127 135 30
Upload 10 Byte State 96 511 129 109 88
Upload 100 Byte State 102 520 156 116 121
Upload 1000 Byte State 287 2300 844 676 744

Table 6.3: Comparison between the time needed to get the state of a task with a state of 10,
100, and 1000 bytes and the time needed to upload the same states when the microcontroller is
overloaded with another task in milliseconds.

Lastly, we compared how much these tasks would require to start when loading the state from

Wasmico and when there’s no state to be loaded. The statistics of the results we got can be found

in Table 6.4 and show us that there’s no real difference between starting the task with and without

the state. Even though there are some differences in the average time to start each of the tasks,

with and without a state, those differences are not significant, especially due to the high standard

deviation that exists in the data we gathered.

Task min max x x σ

Start 10 Byte Without State 141 2020 682 476 563
Start 100 Byte Without State 136 2479 968 416 915
Start 1000 Byte Without State 139 2457 694 373 690
Start 10 Byte With State 135 2850 821 461 906
Start 100 Byte With State 139 2477 763 548 705
Start 1000 Byte With State 139 2477 426 166 540

Table 6.4: Comparison between starting a task with and without a previously uploaded state in
milliseconds. The tasks used had 10, 100, or 1000 bytes-long states.

Looking back at all the parts that constitute the migration of a task’s state between two micro-

controllers, we can separate into saving the state, uploading the state, and starting the task with the

state. After this, the new device should be running the task in the same state as it was in the old

device.

When using tasks with small states, i.e., less than 100 bytes, the first two steps are negligible.

The time between when the user begins saving the state from one device and when the state is

stored on another device is likely between 0.3 and 0.4 seconds, plus the time required to send

the commands, which could be reduced to almost zero with automation. Starting the task after

migrating the state would likely take between 0.5 and 1 seconds, but this time would always be

used, with or without state migration, so the migration does not affect the task’s beginning.

In the case of tasks with a larger state, there will be a high increase in the time needed to save

and upload the state. Still, larger states usually require more time to be achieved, which means

that, for tasks with larger states, the migration will save more time, probably compensating for the

6.3 Results 47

2200

2300

2400

Get 10 Get 100 Get 1000 Upload 10 Upload 100 Upload 1000
Operation

0

200

400

600

800

Du
ra

tio
n(

m
s)

Normal
Overload

Figure 6.1: Comparison between get and upload state with and without a task running in the
background. The “Get N” operation corresponds to getting the state with N bytes, while “Upload
N” corresponds to uploading the state with N bytes.

extra time needed to migrate. For example, with the temperature task that was explained before,

for the task to get a state of 1000 bytes, which corresponds to 1000 temperature readings, the user

would have to wait at least 5000 seconds, or 1 hour 23 minutes and 20 seconds, which would be

much higher than the average of 1 second we measured to save and upload the state.

Lastly, some tasks might have an important state that is not replicable. For example, if we

have a microcontroller that monitors the heart rate of an ill person and needs to record all the

timestamps when the heart rate falls below a certain threshold, that state is not replicable. If the

state is not saved in an external computer, that data may be lost in the case of a failure and may

never be recovered. This makes it important not only to be able to migrate a task’s state from one

microcontroller to another but also to save the current state in a different machine.

6.3.2 User Interface

The experiment we conducted produced two distinct results: the time required by each participant

to complete each task and their responses to the questionnaire (cf. Appendix B, p. 63).

Evaluation and Validation 48

We will begin by discussing the results of the time measurements taken during the experiment.

While the users were doing the tasks, we measured the time needed to complete each part of

the experiment, then those values were rounded down to the nearest five, e.g., 103 seconds was

rounded to 100 seconds, to accommodate for small differences between the user finishing the task

and the timer being stopped. Table 6.5 displays the statistics from our measurements. The duration

of the experimental task was, on average, 8 minutes and 30 seconds. Figure 6.2 demonstrates that,

with the exception of the first section, where some users were still becoming acquainted with the

instrument, there were no significant differences. Without the outliers, the results of the second

part varied between 150 and 190 seconds; in the third part, the results were between 30 and 80

seconds; and those of the last part were between 50 and 120 seconds, with one user requiring 180

seconds.

Part 1 Part 2 Part 3 Part 4 Total

Min 120 120 30 50 380
Max 240 270 110 180 700
Average 174 185 60 91 510
Median 180 180 60 90 480
Standard Deviation 37 44 21 39 104

Table 6.5: Statistics for the time spent by the users on each part of the experimental task in seconds.

Part 1 Part 2 Part 3 Part 4

50

100

150

200

250

Du
ra

tio
n

(s
ec

on
ds

)

Figure 6.2: Time spent on each part of the experimental task.

The majority of users completed the task in between 380 seconds (6 minutes and 20 seconds)

and 540 seconds (9 minutes), while two users required 700 seconds (11 minutes and 40 seconds)

6.3 Results 49

each. These two users represent most of the outliers found in the time needed to execute each part

of the task. The majority of variances in time, specifically outliers, can be attributed to the type

of person using the tool, some users were attempting to complete the tasks swiftly and accurately,

while others were exploring the interface and attempting to comprehend the Wasmico tool without

a focus on speed.

After the experiment, we conducted a questionnaire that started by determining the familiarity

and experience with certain Wasmico-related concepts. We found that 36.4% of the users we sur-

veyed had never worked with microcontrollers, while the rest had varying degrees of experience,

with some having used it infrequently and others quite frequently and all of them having worked

with Arduino or ESP devices using the Arduino IDE. When asked about their expertise with con-

tainerization tools such as Docker, the majority of users reported having at least some container

experience (cf. Figure 6.3).

1 2 3 4 5
Score (1 to 5)

0

1

2

3

4

5

Fr
eq

ue
nc

y

Figure 6.3: Answers given by users when asked about their experience with containerization tools.
Score 1 corresponds to very inexperienced, and 5 corresponds to very experienced.

Also included in the questionnaire were the questions written by John Brooke when defining

the System Usability Scale [7]. On the basis of these queries, we calculated each user’s SUS score,

which can be seen in Table 6.6, p. 50. According to Aaron Bangor et al. [5], an app with a score

between 70 and 80 is considered to have decent usability, while an app with a score between 80

and 90 is considered to be good, and a score of more than 90 defines an app as the best imaginable.

Other authors, such as Jonh Brooke, cite 68 points as the average result, separating bad and good

interfaces. Only two users found this user interface to have poor usability, and the average score

was 80.7, indicating that this tool was rated as a strong tool, 12.7 points above the average rating

of 68. The two negative scores did not come from any of the above-mentioned outliers or the users

who required 700 seconds to complete the task, further proving our hypothesis that the variation

in time was not due to user difficulties with the tool.

Evaluation and Validation 50

User Number 1 2 3 4 5 6 7 8 9 10 11

SUS Score 70 55 82.5 97.5 80 95 92.5 57.5 85 80 92.5

Table 6.6: SUS Score for each user. A score of 68 is considered an average score. The users were
numbered based on the order of the experiments for anonymization.

When examining specific responses to SUS statements, we discovered some noteworthy pat-

terns. First, we discovered that users believed Wasmico was easy to use in general, two out of

eleven users who worked with the user interface disagreed with the statement "I thought Wasmico

was easy to use", and only one user responded that Wasmico was unnecessarily complex.

Then, we realized that users think of Wasmico’s TUI as easy to learn and use. No one said they

would need the support of a technical person to be able to use Wasmico, and no one said it would

take a long time to learn how to use Wasmico. On average, users said they didn’t need to learn

much before beginning to use Wasmico and probably only needed the basic information given at

the start of the validation task.

We calculated multiple Pearson correlation coefficients on multiple pairs of questions that we

deemed important in determining whether they are related or not in order to determine if there

are any correlations between the users’ experience with the various concepts mentioned in the

questionnaire and the results obtained from the SUS questions. We did the calculations as defined

by Jacob Benesty et al. [6], and we used a probability of 95% that the results obtained for each of

the variables are correlated (P < 0.05), even though this value has been contested in recent years

as not significant enough to prove correlations [11].

The most important relation that we found in the answers was that the users who used more

microcontrollers were the same that agreed with the statement, “I think that I would like to use

Wasmico frequently when working with microcontrollers.”. When comparing the answers to these

two statements, by using Pearson’s correlation coefficient, we got a p-value of 0.0274 which means

there’s a high probability these values are correlated, and a correlation value of 0.6589, which

proves there’s a direct relation, i.e., the users who used microcontrollers more are the same that

would use Wasmico more. This relationship was significant to us because these users are already

familiar with some of the tools used when interacting with this type of device and are, there-

fore, potential future users of this tool, which could give Wasmico the upper hand when selecting

containerization tools for microcontrollers.

The other relations that we had in our answers were not relevant to our purpose, as they mostly

related two similar questions or opposite questions that we already expected users to answer in

similar ways, e.g., the users that mentioned they had more experience with containerization tools

were the same that had more experience with orchestration tools, and the users that answered that

Wasmico was unnecessarily complex also answered that they wouldn’t imagine that most people

would learn to use Wasmico very quickly.

6.4 Threats to Validity 51

6.3.2.1 Improvements

At the end of the questionnaire, we asked users to leave some observations about the tool. Some

of the observations done were recurrent across multiple users, so we think they’re important to

address.

Add / Rename a device is confusing. During the experiment, users had to change the names

of the devices that were previously scanned on the network, and most of the users were

confused at first when doing that. This confusion was due to the ordering of the introduction

of the device’s information. When renaming a device, the menu asks first for the name that

the device will have and then the IP address of the device that’s being changed. Most people

confused this and thought that the name that was asked was the current name of the device

instead of the name that should appear after renaming. After asking those users they said

that a simple order change between the name and the IP address, or a better tip, would clear

this issue.

Choosing multiple tasks at once. In multiple menus, it was impossible to choose more than one

task at once, e.g., when pausing a task, the user had to choose a device and pause one task

and repeat it for all the other tasks he wanted to pause. Most users said it would be helpful to

be able to choose multiple tasks when pausing, migrating, stopping, and other task-related

functions.

There were some other observations, such as saying the tool was really simple to use and

understand, and some design choices with which we disagree, e.g., allowing CTRL+C to return

to the main menu instead of closing the interface, that we didn’t include in this improvements

because we thought were not relevant for this dissertation.

6.4 Threats to Validity

In both parts of our validation of the development we did, there were some limitations that can

affect the validity of our results.

6.4.1 Task’s State Migration

The majority of the validation procedure for the migration of a task’s state involved measurements

of the time required to complete specific operations. Several of the presented statistics indicate a

high degree of variation in the results we obtained, which suggests that if we were to repeat the

experiences, the outcomes might differ from those we obtained. We’ve already mentioned that,

based on our comprehension of this issue, we believe that the high variances are caused by factors

outside of Wasmico that we can’t fix or that would require a modification to some of Wasmico’s

foundations, which are not addressed in this dissertation.

Even with this limitation, the results were satisfactory for our validation, and even if they lose

their validity, the last reason for having task migration that we mentioned, saving an unreplicable

Evaluation and Validation 52

task state, is a strong reason why this section of our work may be important to future Wasmico

users.

6.4.2 User Interface

Our validity of the user interface stands on the tests that were made and the answers given by the

users that did those tests. The selected people that responded to the questionnaire and the answers

they gave could have some bias, and we identified three types of different biases that may influence

the results and impair the replicability of our results.

Sampling bias. As mentioned, eleven students with master’s degrees in informatics engineering

and electrical engineering were interviewed, but they all attended the same two universities,

which may have created a bias in terms of the type of individuals who filled out the survey.

In our work samples, we excluded students from other universities, localities, and courses

that may work with microcontrollers, such as computer science.

Courtesy bias. Some users may have provided answers with higher values than intended to

improve our results. We attempted to mitigate this by incentivizing interviewees to provide

what they believed to be the most appropriate response for how they felt and not to be biased

towards assisting our validation, as this would reduce the validity of the results, whether they

were positive or negative.

Sample size. In our experiments, we used eleven people, which is a small number of people. We

recognize that with a larger sample, the results may have been different and more significant

than the results we had.

We attempted to mitigate these threats to the greatest extent possible, but they still exist and

may therefore have influenced our results.

6.5 Summary

In this chapter, we validated the research questions RQ2 and RQ3 through some experiments.

Firstly, we validated that by allowing users to migrate the state of a container between micro-

controllers, we reduce the time to recover from failures. We measured the time needed to get the

state from one device, upload it to another device, and start the task and concluded that, in many

cases, it would be faster than starting a task again and waiting until a similar state is reached.

Besides that, this migration allows users to save states which are not replicable.

Then we validated the user interface we created by doing an experiment where the users

worked with the TUI and answered a form to evaluate the tool. Through this, we found that

users think the tool is easy to use, and the more experience with microcontrollers a user had, the

more they wanted to use the tool.

Chapter 7

Conclusions

7.1 Summary . 53

7.2 Hypothesis Revisited . 54

7.3 Future Work . 54

In this chapter, we will reflect on the work done in this dissertation and the work that’s still

to be done. Firstly, we will summarize this document in Section 7.1. Then we will revisit our

hypothesis and research questions in Section 7.2, p. 54. Lastly, in Section 7.3, p. 54, we will show

some topics in which there’s still some work to do

7.1 Summary

With the expansion that has occurred and is expected to continue in the number of IoT devices, it

is more necessary than ever to assist developers working with low-end devices such as microcon-

trollers. At the same time, we witnessed significant revolutions in computer software development

with the introduction and advancement of the DevOps paradigm. Thus, incorporating DevOps

best practices into microcontroller programming is one strategy to improve development for these

devices [32, 13].

Containerization has been introduced to microcontrollers as an important DevOps paradigm

in recent years, but the available solutions still lacked some of the capabilities we believe are vital

in today’s software development. As a result, this dissertation enhanced one of the current tools in

order to improve its functionality and ease of use.

These needs led us to expand the Wasmico tool and implement the migration of a container’s

state between multiple microcontrollers. We re-used the code from the existing pause and unpause

operations and changed it to allow users to migrate the state to another microcontroller and to

back up their tasks on those devices or a computer. After that, we created a new user interface

that allowed easier management of the containers running in each microcontroller from a sepa-

rate computer. We decided to go with a terminal user interface that shows the main information

53

Conclusions 54

about the microcontrollers and the containers running on them and a menu with all the available

commands that facilitate executing the operations in the devices.

Lastly, we validated both of these new features to ensure that they would be useful for de-

velopers. We started by measuring the time needed to migrate a container’s state between two

microcontrollers and the time needed to start the task after the migration and found that the time

needed to execute those operations was small enough that, in most cases, it would be faster to mi-

grate and start a task than to start a task and wait until it got a similar state. We also validated the

usability of the user interface through a user experiment which gave us positive results validating

that the TUI we created was easy to use and facilitated container management.

7.2 Hypothesis Revisited

Considering our hypothesis as it was defined in Section 4.3, p. 21, it encompasses the issues that

we identified on the tools that existed and the validations that would need to be done. It was

defined as:

“Through a user-friendly interface, as well as the facilitation of containers’ state

migration between constrained devices, quality of service in microcontrollers’ con-

tainerization will be increased by simplifying containers management and reducing

the time to recover from failures.”

We separated this hypothesis into three different research questions, which were easier to

validate and, when proved, would also prove this hypothesis.

The first research question debates whether it is possible to migrate the state of a container

between two microcontrollers, similar to how this is already done in computers. This was proven

possible by our implementation, which is described in Section 5.3, p. 29.

The other questions were confirmed in Chapter 6, p. 42. RQ2 was confirmed by our validation

that the state migration would be useful for microcontroller developers. RQ3 was confirmed with

the results we got from our user experiment, which proved that the tool was easy to use and helped

users manage the containers in each microcontroller.

By answering the three research questions separately, we have confirmed our hypothesis. Fol-

lowing the implementation of a user-friendly interface and container state migration, we improved

the quality of service in microcontroller containerization by simplifying container management

and reducing the time required to recover the state of a task in the event of failure.

7.3 Future Work

Since this area is still an undiscovered path, there’s much to do in order to improve what’s already

been done. Here, we will present some work that we think should be done, both in relation to

Wasmico and this dissertation and in relation to containerization for microcontrollers.

7.3 Future Work 55

Fix known Wasmico limitations. Wasmico has some limitations that were already presented in

Section 5.5, p. 38. These problems may stop Wasmico from being widely used in micro-

controller development, so we think it’s important to address and try to solve them.

Improve the user-interface. In Section 6.3.2.1, p. 51, we mention some improvements that

users mentioned about the tool, which could be implemented to improve its usability.

Improve the user study. The user study that we conducted has some threats to its validity,

such as the number of users that were used. With a better user experiment, the results we

had would either be confirmed or be denied, but in both cases, it would have an increased

validity.

Real-world orchestration. Wasmico was not tested in real-world experiments that could prove

its usability in orchestration. A future developer who works with Wasmico should use it in

complex orchestrations of microcontrollers to demonstrate the tool’s full capabilities [31,

35].

Containerization in microcontrollers is still far from what could be achieved, and several points

were not addressed in this dissertation that can be used as future research topics.

References

[1] Inc. Amazon Web Services. What is Containerization? - Containerization Explained -
AWS. https://aws.amazon.com/what-is/containerization/. [Online; ac-
cessed 2023].

[2] Inc. Amazon Web Services. What is Virtualization? - Cloud Computing Virtualization Ex-
plained - AWS. https://aws.amazon.com/what-is/virtualization/. [Online;
accessed 2023].

[3] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The Internet of Things: A survey. Com-
puter Networks, pages 2787–2805, October 2010.

[4] AWS. What is CIDR? - CIDR Blocks and Notation Explained - AWS. https://aws.
amazon.com/what-is/cidr/. [Online; accessed 2023].

[5] Aaron Bangor. Determining What Individual SUS Scores Mean: Adding an Adjective Rating
Scale. J. Usability Studies, 4(3), 2009.

[6] Jacob Benesty, Jingdong Chen, Yiteng Huang, and Israel Cohen. Pearson Correlation Co-
efficient. In Noise Reduction in Speech Processing, volume 2, pages 1–4. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2009. Series Title: Springer Topics in Signal Processing.

[7] John Brooke. Sus: A quick and dirty usability scale. Usability Eval. Ind., 189, 11 1995.

[8] John Brooke. SUS: a retrospective. Journal of Usability Studies, 8:29–40, January 2013.

[9] CRIU. CRIU. https://criu.org/Main_Page. [Online; accessed 2023].

[10] CRIU. Usage scenarios - CRIU. [Online; accessed 2023].

[11] Giovanni Di Leo and Francesco Sardanelli. Statistical significance: p value, 0.05 threshold,
and applications to radiomics—reasons for a conservative approach. European Radiology
Experimental, 4(1):18, March 2020.

[12] Joao Pedro Dias, Joao Pascoal Faria, and Hugo Sereno Ferreira. A reactive and model-based
approach for developing internet-of-things systems. In 2018 11th International Conference
on the Quality of Information and Communications Technology (QUATIC), pages 276–281.
IEEE, 2018.

[13] Joao Pedro Dias, Hugo Sereno Ferreira, and Tiago Boldt Sousa. Testing and deployment pat-
terns for the internet-of-things. In Proceedings of the 24th European Conference on Pattern
Languages of Programs, pages 1–8, 2019.

56

https://aws.amazon.com/what-is/containerization/
https://aws.amazon.com/what-is/virtualization/
https://aws.amazon.com/what-is/cidr/
https://aws.amazon.com/what-is/cidr/
https://criu.org/Main_Page

REFERENCES 57

[14] Joao Pedro Dias, André Restivo, and Hugo Sereno Ferreira. Designing and constructing
internet-of-things systems: An overview of the ecosystem. Internet of Things, 19:100529,
2022.

[15] Joao Pedro Dias, Tiago Boldt Sousa, André Restivo, and Hugo Sereno Ferreira. A pattern-
language for self-healing internet-of-things systems. In Proceedings of the European Con-
ference on Pattern Languages of Programs 2020, pages 1–17, 2020.

[16] Docker. Docker. https://www.docker.com/. [Online; accessed 2023].

[17] FreeRTOS. FreeRTOS - Market leading RTOS (Real Time Operating System) for embedded
systems with Internet of Things extensions. [Online; accessed 2023].

[18] G2. What Is Command Line Interface? Learn the Basics in One Go. https://www.g2.
com/articles/command-line-interface. [Online; accessed 2023].

[19] Golioth. Golioth: the straightforward commercial IoT development platform built for scale.
https://golioth.io/. [Online; accessed 2023].

[20] Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and Marimuthu Palaniswami. Inter-
net of Things (IoT): A vision, architectural elements, and future directions. Future Genera-
tion Computer Systems, pages 1645–1660, September 2013.

[21] RFID JOURNAL. That ’Internet of Things’ Thing. https://www.rfidjournal.com/
that-internet-of-things-thing. [Online; accessed 2023].

[22] Pekka Karhula, Jan Janak, and Henning Schulzrinne. Checkpointing and migration of iot
edge functions. In Proceedings of the 2nd International Workshop on Edge Systems, Analyt-
ics and Networking - EdgeSys ’19, pages 60–65. ACM Press, 2019.

[23] Barbara Kitchenham. Procedures for performing systematic reviews. Keele, UK, Keele Univ.,
33, August 2004.

[24] Barbara Kitchenham, O. Pearl Brereton, David Budgen, Mark Turner, John Bailey, and
Stephen Linkman. Systematic literature reviews in software engineering – a systematic liter-
ature review. Information and Software Technology, 51:7–15, January 2009.

[25] Kubernetes. Production-Grade Container Orchestration. https://kubernetes.io/.
[Online; accessed 2023].

[26] ACM Digital Library. ACM Digital Library. https://dl.acm.org/. [Online; accessed
2023].

[27] LINFO. GUI Definition. http://www.linfo.org/gui.html. [Online; accessed 2023].

[28] Lele Ma, Shanhe Yi, and Qun Li. Efficient service handoff across edge servers via docker
container migration. In Proceedings of the Second ACM/IEEE Symposium on Edge Comput-
ing, SEC ’17, pages 1–13, New York, NY, USA, October 2017. Association for Computing
Machinery.

[29] MicroPython. Micropython - python for microcontrollers. http://micropython.org/.
[Online; accessed 2023].

[30] Node.js. Node.js. https://nodejs.org/en. [Online; accessed 2023].

https://www.docker.com/
https://www.g2.com/articles/command-line-interface
https://www.g2.com/articles/command-line-interface
https://golioth.io/
https://www.rfidjournal.com/that-internet-of-things-thing
https://www.rfidjournal.com/that-internet-of-things-thing
https://kubernetes.io/
https://dl.acm.org/
http://www.linfo.org/gui.html
http://micropython.org/
https://nodejs.org/en

REFERENCES 58

[31] Duarte Pinto, Joao Pedro Dias, and Hugo Sereno Ferreira. Dynamic allocation of serverless
functions in iot environments. In 2018 IEEE 16th international conference on embedded and
ubiquitous computing (EUC), pages 1–8. IEEE, 2018.

[32] Antonio Ramadas, Gil Domingues, Joao Pedro Dias, Ademar Aguiar, and Hugo Sereno Fer-
reira. Patterns for things that fail. In Proceedings of the 24th Conference on Pattern Lan-
guages of Programs, pages 1–10, 2017.

[33] Eduardo Carreira Ribeiro. Micro-Containerization in Microcontrollers for the IoT. Master’s
thesis, University of Porto, Portugal, July 2022.

[34] RIOT. RIOT. https://www.riot-os.org/. [Online; accessed 2023].

[35] Margarida Silva, Joao Dias, André Restivo, and Hugo Ferreira. Visually-defined real-time or-
chestration of iot systems. In MobiQuitous 2020-17th EAI International Conference on Mo-
bile and Ubiquitous Systems: Computing, Networking and Services, pages 225–235, 2020.

[36] Margarida Silva, Joao Pedro Dias, André Restivo, and Hugo Sereno Ferreira. A review
on visual programming for distributed computation in iot. In International Conference on
Computational Science, pages 443–457. Springer International Publishing Cham, 2021.

[37] Statista. Iot connected devices worldwide 2019-2030. https://www.statista.com/
statistics/1183457/iot-connected-devices-worldwide/. [Online; accessed
2023].

[38] Debbie Stone, Caroline Jarrett, Mark Woodroffe, and Shailey Minocha. User Interface De-
sign and Evaluation. Elsevier, April 2005.

[39] Espressif Systems. SPIFFS Filesystem - ESP32 - — ESP-IDF Programming Guide
latest documentation. https://docs.espressif.com/projects/esp-idf/en/
latest/esp32/api-reference/storage/spiffs.html. [Online; accessed 2023].

[40] Toit. Toit. https://toit.io/. [Online; accessed 2022].

[41] Toit. Toit programming language. https://toitlang.org/. [Online; accessed 2023].

[42] Diogo Torres, Joao Pedro Dias, André Restivo, and Hugo Sereno Ferreira. Real-time feed-
back in node-red for iot development: An empirical study. In 2020 IEEE/ACM 24th Inter-
national Symposium on Distributed Simulation and Real Time Applications (DS-RT), pages
1–8. IEEE, 2020.

[43] Wasm3. Wasm3: A fast webassembly interpreter, and the most universal wasm runtime.
https://github.com/wasm3/wasm3. [Online; accessed 2023].

[44] Wikipedia. Text-based user interface. https://en.wikipedia.org/wiki/
Text-based_user_interface. [Online; accessed 2023].

[45] IEEE Xplore. IEEE Xplore. https://ieeexplore.ieee.org/Xplore/home.jsp.
[Online; accessed 2023].

[46] Koen Zandberg and Emmanuel Baccelli. Minimal Virtual Machines on IoT Microcontrollers:
The Case of Berkeley Packet Filters with rBPF. In 2020 9th IFIP International Conference
on Performance Evaluation and Modeling in Wireless Networks (PEMWN), pages 1–6, De-
cember 2020.

https://www.riot-os.org/
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/storage/spiffs.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/storage/spiffs.html
https://toit.io/
https://toitlang.org/
https://github.com/wasm3/wasm3
https://en.wikipedia.org/wiki/Text-based_user_interface
https://en.wikipedia.org/wiki/Text-based_user_interface
https://ieeexplore.ieee.org/Xplore/home.jsp

REFERENCES 59

[47] Koen Zandberg, Emmanuel Baccelli, Shenghao Yuan, Frédéric Besson, and Jean-Pierre
Talpin. Femto-containers: lightweight virtualization and fault isolation for small software
functions on low-power IoT microcontrollers. In Proceedings of the 23rd ACM/IFIP Inter-
national Middleware Conference, Middleware ’22, pages 161–173, New York, NY, USA,
November 2022. Association for Computing Machinery.

Appendix A

Validation Task

In this annex, we present the validation task that was done with the users. It can be divided into

four parts, an initial overview, the setup, a tutorial, and the experimental task.

60

interview.md 5/31/2023

1 / 3

Wasmico Interview

Wasmico is a containerization tool developed for microcontrollers. It allows multiple WebAssembly files

(.wasm) to be run on a single microcontroller. The basic flow to get a task running is to upload the code file

to the device and start the task, and, if you need, you can pause, resume and stop the running tasks. The

tasks may have a state. As an example, if you have a task that counts upwards to infinite, the counter is the

state of the task. This state can be saved in your machine and uploaded to a microcontroller or directly

migrated from one microcontroller to another.

For this experiment, we'll simulate that each of the 3 microcontrollers is a temperature and CO sensor and

that you'll work with 2 of them each time. More details will follow as you progress in the task.

Setup:

Install Wasmico (npm package) on your computer

In my computer, there are 3 terminals, one for each microcontroller, that should be used for

debugging purposes.

Ensure your computer is connected to the same network as the microcontrollers.

Download the temperature.wasm and co.wasm files.

You should read the documentation before starting.

Tutorial:

The tutorial will guide you through the TUI until you've set up all the devices on it and uploaded one file

that will be needed later.

1. Open the TUI using wasmico-tui

interview.md 5/31/2023

2 / 3

2. Scan the network that contains the devices

3. Rename the devices and attribute groups (2 on "main" group and 1 on "extra" group)

4. Upload the temperature file to all the devices

Experimental task

Part 1

You have two sensors in different rooms. Both sensors can read the temperature and the quantity of

carbon monoxide in the air. You start a task that reads the temperature every 5 seconds and prints the

moving average (temperature.wasm), and a task that reads the CO quantity every 3 seconds and prints a

warning if it's above a threshold (co.wasm) on each sensor.

Pause for at least 30 seconds.

Part 2

While they are running, one of the devices gets low on battery, and you need to replace it with another

device. Start both tasks in the "extra" device while maintining the state they had in the device that's low on

battery.

Pause freely.

Part 3

You need to move one of the devices to a different room and don't want to keep the tasks running while

you move it, so you decide to pause them while you move the device.

Pause freely.

Part 4

You don't need those sensors anymore, so you terminate all the tasks and remove all the files.

Appendix B

Validation Questionnaire

This annex includes the questionnaire done to the users after the user experience. This question-

naire was divided into two parts, the part with questions about the knowledge of the user, from

question one to question eleven, and the SUS questions part, from question twelve until the end.

63

1.

Other:

Tick all that apply.

Informatics Engineering

Electrical Engineering

Computer Science

2.

Mark only one oval.

Very inexperienced

1 2 3 4 5

Very experienced

3.

Mark only one oval.

Very inexperienced

1 2 3 4 5

Very experienced

Wasmico - Post Experience
This form is a way to get feedback on the experience that was made with the Wasmico

tool.

* Indicates required question

Which course did/do you attend? *

How do you estimate your programming experience? *

How do you estimate your experience with containerization (e.g. Docker or

Podman)?

*

Wasmico - Post Experience https://docs.google.com/forms/d/1dkzKIjrTPIRpkZRzt_TWS...

1 of 7 6/21/23, 19:00

4.

Mark only one oval.

Very inexperienced

1 2 3 4 5

Very experienced

5.

Mark only one oval.

Very inexperienced

1 2 3 4 5

Very experienced

6.

Mark only one oval.

Unkown

1 2 3 4 5

Very familiar

7.

Mark only one oval.

Never used

1 2 3 4 5

Frequently

How do you estimate your experience with orchestration tools (e.g. Kubernetes

or Docker Compose)?

*

How do you estimate your experience with Web Assembly? *

How familiar are you with the concept of Internet of Things? *

How often do you use microcontrollers? *

Wasmico - Post Experience https://docs.google.com/forms/d/1dkzKIjrTPIRpkZRzt_TWS...

2 of 7 6/21/23, 19:00

8.

Other:

Tick all that apply.

Arduino

ESP8266 / ESP32

Raspberry Pi Pico

9.

Other:

Tick all that apply.

Arduino IDE

PlatformIO

10.

Other:

Tick all that apply.

Toit

Golioth

Femto-Containers

11.

Mark only one oval.

Much harder

1 2 3 4 5

Much easier

Select all the devices in this list that you've worked with.

Select all the tools in this list that you've worked with.

Select all the containerization tools for microcontrollers that you've worked with.

If you've used any of the tools in the last list, do you think it was easier to use

Wasmico compared to the tools you've used?

Wasmico - Post Experience https://docs.google.com/forms/d/1dkzKIjrTPIRpkZRzt_TWS...

3 of 7 6/21/23, 19:00

12.

Mark only one oval.

Strongly disagree

1 2 3 4 5

Strongly agree

13.

Mark only one oval.

Strongly disagree

1 2 3 4 5

Strongly agree

14.

Mark only one oval.

Strongly disagree

1 2 3 4 5

Strongly agree

Wasmico experience

I think that I would like to use Wasmico frequently when working with

microcontrollers.

*

I found Wasmico unnecessarily complex. *

I thought Wasmico was easy to use. *

Wasmico - Post Experience https://docs.google.com/forms/d/1dkzKIjrTPIRpkZRzt_TWS...

4 of 7 6/21/23, 19:00

15.

Mark only one oval.

Strongly disagree

1 2 3 4 5

Strongly agree

16.

Mark only one oval.

Strongly disagree

1 2 3 4 5

Strongly agree

17.

Mark only one oval.

Strongly disagree

1 2 3 4 5

Strongly agree

18.

Mark only one oval.

Strongly disagree

1 2 3 4 5

Strongly agree

I think that I would need the support of a technical person to be able to use

Wasmico.

*

I found the various functions in Wasmico were well integrated. *

I thought there was too much inconsistency in Wasmico. *

I would imagine that most people would learn to use Wasmico very quickly. *

Wasmico - Post Experience https://docs.google.com/forms/d/1dkzKIjrTPIRpkZRzt_TWS...

5 of 7 6/21/23, 19:00

19.

Mark only one oval.

Strongly disagree

1 2 3 4 5

Strongly agree

20.

Mark only one oval.

Strongly disagree

1 2 3 4 5

Strongly agree

21.

Mark only one oval.

Strongly disagree

1 2 3 4 5

Strongly agree

22.

This content is neither created nor endorsed by Google.

I found Wasmico very cumbersome to use. *

I felt very confident using Wasmico. *

I needed to learn a lot of things before I could get going with Wasmico. *

Observations

Wasmico - Post Experience https://docs.google.com/forms/d/1dkzKIjrTPIRpkZRzt_TWS...

6 of 7 6/21/23, 19:00

Validation Questionnaire 70

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Problem
	1.3 Motivation
	1.4 Goals
	1.5 Document Structure

	2 Background
	2.1 Containerization
	2.2 User Interfaces
	2.2.1 Command Line Inteface
	2.2.2 Terminal User Inteface
	2.2.3 Graphical User Inteface
	2.2.4 Web User Inteface

	2.3 Summary

	3 State of the Art
	3.1 Methodology
	3.1.1 Research Questions
	3.1.2 Databases
	3.1.3 Inclusion and Exclusion Criteria
	3.1.4 Broad Search

	3.2 Virtualization and Containerization for Microcontrollers
	3.3 Container Migration in IoT
	3.4 Conclusions

	4 Problem Statement
	4.1 Current Issues
	4.2 Desiderata
	4.3 Hypothesis
	4.4 Research Questions
	4.5 Scope
	4.6 Validation
	4.7 Summary

	5 Solution
	5.1 Wasmico
	5.1.1 Architecture
	5.1.2 Operations
	5.1.3 Code Structure

	5.2 Improvements
	5.2.1 Pause and Unpause Tasks
	5.2.2 Device Status
	5.2.3 Restarting the Microcontroller

	5.3 Task State Migration
	5.3.1 Save the Task's State
	5.3.2 Upload the Task's State
	5.3.3 Starting the Task

	5.4 Terminal User Interface
	5.4.1 Wasmico API
	5.4.2 User Interface Requirements
	5.4.3 User Interface Type
	5.4.4 Implementation Details

	5.5 Known Limitations
	5.5.1 Previous Limitations
	5.5.2 Including Library Functions
	5.5.3 Migration During Long Operations

	5.6 Summary

	6 Evaluation and Validation
	6.1 Validation Goals
	6.2 Experiments
	6.2.1 Task's State Migration
	6.2.2 User Interface

	6.3 Results
	6.3.1 Task's State Migration
	6.3.2 User Interface

	6.4 Threats to Validity
	6.4.1 Task's State Migration
	6.4.2 User Interface

	6.5 Summary

	7 Conclusions
	7.1 Summary
	7.2 Hypothesis Revisited
	7.3 Future Work

	References
	A Validation Task
	B Validation Questionnaire

