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Resumo  

A utilização do vento como fonte renovável de energia tem sido uma constante nos últimos 

anos, razão essa associada às mudanças climáticas provocadas principalmente pela utilização 

de combustíveis fósseis. Essa fonte primária é capaz de ser aproveitada por turbinas eólicas 

com o objetivo de gerar eletricidade, pelo que a sua produção de energia considera o regime de 

vento do local de operação. Esse regime é caracterizado por meio de uma série temporal de 

vento, no qual contem dados de velocidade, direção, temperatura e pressão desse recurso ao 

longo de um período determinado de medição. 

Para caracterizar a produção de energia e considerando um modelo definido de turbina, uma 

das abordagens mais tradicionais empregadas nessa avaliação é o de produção de energia anual 

(AEP). Para isso, as séries de dados de vento são aproximadas por parâmetros estatísticos e 

ajustamentos funcionais.  

Entretanto, a utilização desse fator pode nem sempre ser o mais confiável para estimar a 

produção de energia da turbina. Isso deve ao fato de que os parâmetros atmosféricos e muitos 

outros são reduzidos a um valor médio anual, o que pode causar incertezas e variações bruscas, 

quando comparado com a produção de energia obtida diretamente das séries de vento. 

Por isso, o objetivo deste trabalho é realizar um estudo da bondade do ajustamento de 

parâmetros estatísticos a séries a partir de dados das características do vento em dois casos de 

estudo, representando locais com características climáticas diferentes. Além disso, também será 

estudado possibilidades de análise de energia no período não anual, como por exemplo 

semestral ou noite/dia, a fim de descobrir se os ajustamentos nesses casos são melhores que no 

modelo anual.  

Essa análise será conduzida em dois casos de estudo, a região da Polónia e a região Nordeste 

do Brasil (Rio Grande do Norte), para essas diferentes discretizações de tempo. 
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Time Series vs Statistical Approaches in Estimating Wind Turbines 
Energy Yield 

Abstract 

The use of wind as a renewable source of energy has been a constant in recent years, a reason 

associated with climate changes caused mainly by the use of fossil fuels. This primary source 

is capable of being harnessed by wind turbines to generate electricity, so its energy production 

considers the wind regime at the place of operation. This regime is characterized by means of 

a wind time series (WTS), which contains data on speed, direction, temperature, and pressure 

of this resource over a given period of measurement. 

To characterize the energy production and considering a defined turbine model, one of the most 

traditional approaches used in this evaluation is the annual energy production (AEP). For this, 

the wind data series are approximated by statistical parameters and functional adjustments. 

However, using this factor may not always be the most reliable way to estimate turbine energy 

production. This is due to the fact that the atmospheric parameters and many others are reduced 

to an annual average value, which can cause uncertainties and sudden variations, when 

compared with the energy production obtained directly from the wind series. 

Therefore, the objective of this work is to carry out a study of the goodness of adjustment of 

statistical parameters to series from data on wind characteristics in two case studies, 

representing locations with different climatic characteristics. In addition, possibilities of energy 

analysis in the non-annual period, such as half-yearly or night/day, will also be studied in order 

to find out if the adjustments in these cases are better than in the annual model. 

This analysis will be conducted in two case studies, the region of Poland and the northeastern 

region of Brazil (Rio Grande do Norte), for these different time discretizations. 
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1. Introduction 

1.1. Background/Framework 

The electricity represents one of the most current and important demands on the world stage, 

as it enables the implementation of projects and the development of the industry as a whole, in 

addition to being widely used in other sectors such as residential, transport in the case of electric 

vehicles, powering appliances for agricultural purposes and many other equipment with 

different purposes for people's daily situations. Throughout history, numerous energy sources 

have been used to obtain electricity, such as oil, gas, coal, water in the case of hydroelectric 

plants, among others. However, with climate changes occurring every year and their harmful 

consequences, it is necessary to resort to alternative energy sources that do not contribute to 

atmospheric pollution, namely the large-scale production of carbon dioxide in the atmosphere. 

From this, it was possible to perceive that in the last decades, there was a movement of research 

and development of new sources of energy, resources that could be captured in a simple way 

and with capacity of electricity production that supplied the demands of the community, either 

it, local, national, or worldwide. Thus, new technologies for converting renewable energy 

sources into power, such as wind and solar energy, were developed. The first example operates 

in capturing wind by means of wind turbines, transforming kinetic energy into electricity and 

the second operates using photovoltaic panels converting sunlight energy into power. 

An example of how renewable energy sources can replace fossil fuels is by obtaining hydrogen 

gas (green hydrogen), Figure 1, which can later be converted into electricity. Despite this, the 

technology for using hydrogen gas for electricity production purposes, for example, has not 

reached technological maturity, that is, whether a reliable and well-structured energy 

conversion system already exists. For this reason and as an alternative to fossil fuels, one of the 

most used forms of energy to generate power is wind, through the simple use of wind turbines. 

Although there have been prototypes of wind technology since the 19th century, it has only 

been 30 years since it reached maturity. 
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Figure 1: Primary energy sources for the production of hydrogen and its uses. (Shanmugaratnam et al., 2021) 

However, for the implementation of wind technology, there are some factors that must be 

considered, such as the annual energy production (AEP) that is expected in a given location for 

a certain model of wind turbine. One of the analysis methods for this factor is based on a wind 

time series (WTS) at the location where a wind farm is to be installed, with information on 

speed, wind direction, air temperature, atmospheric pressure, and other parameters at time 

intervals of generally 10 minutes. 

Besides the definition of the project conditions, such as the locations where the turbines will be 

positioned and their model, the expected total period of operation, the other technologies to be 

used and the size of the project in general, another process is the calculation of the AEP, the 

production estimate that can be revised in the face of different methodological approaches or 

new design information. As the operation of a wind farm involves intensive capital investment, 

the AEP calculation can serve as a basis for forecasting revenues and expected amortization, 

enabling wind farm investors to estimate the financial return on the investment. 

Therefore, the calculation of the AEP is conducted from the wind series, in which the collected 

data are approximated by statistical adjustment models and their parameters. The best-known 

fits in this application are the Rayleigh distribution and the most used, the Weibull fitting, which 

uses shape and scale parameters. There are other parameters that are equally necessary to obtain 

production estimates, such as the shear factor and air density, which are treated on the basis of 

annual average values. 

However, the statistical adjustments perform estimation predictions by simplifying parameters 

on an annual basis. So, the major concern of it is how close the estimated value of annual energy 

production by these models approximates and reproduces the AEP values if the calculation 

were done using the wind series directly. In this case, the values of the shear factor and density 

parameters would be considered every 10 minutes and not an annual approximation. 
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The analysis of energy production on an annual basis, though, is not always the most required 

by electricity consumer companies, that is, there are applications in which this annual period 

time is not always sufficient for customers who buy energy. When there is a Power Purchase 

Agreement (PPA), which is an energy purchase agreement between a power generation 

company and a consumer company, the second party does not always want an annual profile, 

but a monthly or daily discretization, as in figure 2. In this case, those who buy energy from the 

wind farm to sell electricity to consumers usually request production studies on a short time 

scale, in order to predict the quantity and quality of service that will be provided, in addition to 

making it easier to predict risks in cases of low production rather than relying on overestimates. 

 

Figure 2: Example of Energy production profile during a 1-week period (JRC et al., 2006) 

As production is continuous over time, there is also the case that the majority of production in 

AEP occurs outside of peak energy demand times, which is not advantageous for companies 

since electricity sales prices will not be the highest, decreasing their profitability. In SPOT 

markets, for example, the purchase and sale of electricity occurs in real time, with prices 

determined at the time of the transaction. Therefore, the demand for electricity is hourly, so the 

AEP calculation is neither considered nor accurate for this discretization, the previously 

mentioned statistical distribution hardly produces a good fit for this scenario. 

An equally important case that is related to the optimization of energy systems that needs a 

different time discretization use is the hybridization of technologies, such as, for example, wind 

and solar together. In this, the energy forecast/profile is hourly to check the overlap of wind and 

sun in the simultaneous production of electricity, or on each season of the year (Figure 3) as 

there might be variations depending on the place. Furthermore, this discretization is useful in 

checking the potential need for energy storage when a technology does not produce efficiently, 

such as on days without sun or days without wind. 
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Figure 3: Daily averages of solar and wind energy availabilities between seasons (Siqueira et al., n.d.) 

Therefore, before implementing a wind farm, it is necessary to carry out a wind resource 

analysis (WRA) in order to characterize potential energy production in a defined location. This 

analysis is done using wind data at a given location that was obtained through measurements 

of speed, direction and other parameters over a given time. The estimation of energy production, 

therefore, can be done using wind climate data series or using other approaches such as 

statistical models to perform the forecast. 

For statistical approximations, therefore, one must consider whether the adjustment produced 

can obtain better results if used for shorter periods, either Winter/Summer, every semester or 

night and day. In addition, it is necessary to analyze whether depending on the method of 

obtaining the Weibull parameters, the level of accuracy of the energy production estimation 

calculations increases or decreases. 
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1.2.  Objectives 

This work will address the study of the goodness of adjustment of statistical parameters to series 

from data on wind characteristics in two case studies, representing locations with different 

climatic characteristics. 

So, the objectives of this study are: 

• Understand to what extent these annual adjustments allow reproducing the AEP values 

that would have been obtained directly using the wind series and the other necessary 

parameters. 

• Analyze whether the data series with a discretization of 1 or more years is relevant for 

obtaining good results with the adjustments. 

• Study the different discretizations in the WTS in order to consider seasonality 

phenomena and their impacts on the AEP estimate 

• Understand if the adjustment of shear factor parameters in a greater discretization of 

the wind series can contribute to better results. 

• Understand if the variation of the scale factors of the Weibull adjustment influences 

the quality of the results. 

 

1.3. Structure 

Chapter 2 gives an overview of how the wind resource is traditionally analyzed. Section 2.1 

highlights the process of measuring a wind regime in a given location and the characteristics of 

the equipment used to do so. Section 2.2 presents the concept of Wind Time Series (WTS) and 

how the measured wind data is translated into a series. Section 2.3 already details the common 

process of characterizing this wind regime through a statistical adjustment. Section 2.4 defines 

other important parameters for the study of energy production. 

Chapter 3 focuses on presenting the adjustment methods that are usually used to estimate energy 

production, in addition to criteria that allow qualifying the goodness of adjustment of such 

methods. These methods and criteria will be further employed in chapter 5. 

Chapter 4 defines the case studies present in this work, as well as the design conditions of the 

reference turbine to be used. In it, the objectives are referenced again and also the methodology 

to be used to conduct the study of energy production in different discretizations. Section 4.2  

defines the study environment of each case, the local characteristics, and base values of some 

important parameters for energy calculation. 

Chapter 5 already refers to the results obtained in each case study. It will contain measured 

values, calculation of some parameters and analysis of each time approach used. For each case 

study, there will be a separation of the analysis according to the defined time discretizations. 

Chapter 6 contains the conclusions and the main findings of the project. In addition, it proposes 

recommendations on future work related to this work. 
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2. Wind resource evaluation 

The activities required to implement a wind farm must have the best cost-benefit ratio because 

wind technology is capital intensive, that means, it requires a significant investment in planning 

and construction before the operation of the wind farm. A wind energy project must be carried 

out with the least amount of uncertainty feasible at every stage, including the estimate of energy 

production, as mistakes made during the project implementation phase are hardly corrected, or 

even not corrected at all. 

With the evolution of technologies that manage to take advantage of the wind energy source 

for conversion into other forms of energy, society's demands for electricity, for example, are 

increasingly being met. However, it is necessary to study the viability of energy production in 

a given location to analyze whether the wind farm can supply energy in different periods of 

time with a good cost benefit. The factors that directly impact wind energy and its price 

volatility are multiple and more complex (Hosius et al., 2023). 

In order to have a standard approach in the assessment and evaluation of the wind resource to 

subsequently carry out estimates of energy production in a given location, some steps are 

conducted, as in figure 4. 

 

Figure 4: Wind resource assessment in five stages (ADB, 2014) 

In this case and having the objective of this work presented, steps 2 and 3 will be analyzed. The 

AEP (annual energy production) is represented as an approximation approach to production 

statistics and for that, some considerations are made. After collecting wind data, this 

information is given in the form of a wind time series and traditionally used in a statistical 

distribution whose parameters are obtained through approximations. 

Therefore, before carrying out any calculation of energy production, it is necessary to consider 

how the wind data are obtained, how they are related during the measured time period and also 

how the characterization of these data in a distribution is done. 
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2.1. Field measurements 

The use of wind energy in a given location for the production of electricity requires a study on 

the viability in terms of production, that is, an analysis to understand whether in the chosen area 

of implementation of this technology the expected production is met. For this, it is essential to 

have wind data in place and the most effective method to capture this information is through a 

measurement campaign. 

The measurement campaign can be done with some technologies, but it is usually carried out 

by installing anemometric towers that measure the speed and direction of the wind at different 

heights above the ground, as well as other relevant meteorological features such as air 

temperature, relative humidity, and atmospheric pressure. Installing a mast in a specific location 

to obtain wind information is one of the most traditional and reliable ways of measuring data 

(Shende et al., 2023). 

As measurement campaigns aim to collect enough wind data at a given location in order to 

provide a characterization of the wind resource, the duration of measurement campaigns is 

usually over 1 year. This allows the dataset to be able to integrate the effects of seasonality into 

the wind regime. 

The location of installation of equipment for the measurement campaign, traditionally masts, is 

based on ensuring that the position of the tower has the least possible interference from other 

obstacles that may influence the measured wind parameters. In addition, the tower must be 

located in a region not too far from the location where the wind turbines are to be positioned, 

so that the collected data will reliably portray the wind regime at the installation location of the 

turbines. 

Height is an important variable to consider as wind speed varies with height above the ground 

and therefore the measuring station consists of anemometers for three components of wind 

direction, in addition to wind sensors positioned at different elevations. The type of anemometer 

to be chosen is related to the operation requirements during the measurement and also the cost 

associated with each one. The sonic anemometer (Figure 5a), for example, does not need 

recalibration or frequent maintenance but has a high cost and high energy consumption. The 

cup anemometer (Figure 5b), in turn, is widely used in measuring stations due to its low cost 

and its simplicity of use and handling. 

 

Figure 5: Thies Clima 4.3350 cup anemometer (Roibas-Millan et al., 2017) (a) and Sonic Anemometer/MTi-G 

schematic (Stevens et al., 2013) (b) 

The definition of the height points at which the anemometers will be installed on the mast are 

based on the wind turbine model previously chosen to be installed in the wind farm. Ideally, 

the wind measurement heights should be close to the height of the turbine rotor axis, in which 
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some literature indicates that measurements should be taken at least 2/3 of the height of the 

rotor axis. Measurement heights close to the planned hub height will reduce the vertical 

extrapolation uncertainties of the wind conditions (Measnet_SiteAssessment_V2.0.Pdf, n.d.). 

In addition to wind speeds, another parameter collected by the measuring tower is the direction 

that is obtained by a piece of equipment called a wind vane. It is composed of a rotating 

structure, usually in the form of arrows or propellers, which aligns with the direction of the 

wind flow. It is noted that sonic anemometers can also provide wind direction and even flow 

inclination. 

In the measuring towers there are also temperature and atmospheric pressure sensors. An 

example of the measuring mast and its components can be seen in figure 6. 

 

Figure 6: Example of a mast scheme (GENERG SGPS) 

Despite this, turbines are getting bigger, both in terms of the diameter of the blades and the 

height of the rotor axis, so the anemometers and the towers must also be bigger to capture the 

wind values in a more representative way at a given height of the wind turbine. rotor shaft. This 

can mean higher costs for building more extensive towers and, consequently, an increase in 

project risk. The need for more flexible methods of monitoring wind is therefore clear (Lang & 

Mckeogh, 2011) 

Therefore, new forms of technologies were designed for these cases that also have easy mobility 

on the ground, when compared to measuring towers, LIDAR (Light Detection and Ranging) 

and SODAR (Sound Detection and Ranging).  
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The first method consists of a remote sensing technology equipment that, through 

monochromatic laser rays with a certain frequency, reach the air particles and through 

backscattering, the reflection of light has a shifted frequency, which allows the estimation of 

the speed of the wind (Figure 7). 

 

Figure 7: Lidar system in an offshore situation 

The second method consists of a principle similar to LIDAR but instead of electromagnetic 

waves, it uses sound waves that propagate through the air and find variations in wind speed and 

direction at different altitudes to then be reflected towards the SODAR equipment. (Figure 8) 

 

Figure 8: Sodar system (Triton) 

One of the advantages of a remote measurement technology is the low environmental impact, 

as the machine used does not require large buildings, in addition to the good behavior of the 

sensors in conditions of intense cold, in which conventional anemometers can freeze and cause 

data loss, in information gaps. Operation difficulties related to large amount of data or power 

supply may, however, occur and in foggy days for example, LIDAR measurements are usually 

poor. 

Despite the existence of these different remote measurement technologies, for the work carried 

out and considering a medium to long-term measurement campaign, the mast measurement 

tower is the most suitable. 

It is important to mention that for the development of exploitation projects, methods have 

emerged to try to create a wind behavior database in order to be used before installing any 

measuring tower. An example of this that is widely used is the global wind ATLAS, which 

represents a tool that provides wind resource data and helps to understand the wind resource 

potential of each location, as in the example in figure 9. 
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Figure 9: Global Wind Atlas interface 

2.2.  The wind Time Series 

For the implementation of a wind farm, it is not enough just to know the place where it is 

intended to generate electricity, it is necessary to conduct studies to understand if there is a 

financial, logistical, and energetic viability. The estimation of energy production is not simple, 

it is necessary to characterize it in a given time, considering factors of orography, land cover, 

the presented obstacles and, above all, the characterization of velocities throughout time. 

After carrying out the measurement campaigns in a given period, the collected wind data are 

stored in a format, in which they are preserved without any value modification, that is, no 

correction is made to the data considered with suspected error. The set of these data collected 

and transposed in a temporal scale represents a wind time series. A time series analysis draws 

on regular observations over a defined time interval for a particular phenomenon (Glass et al., 

2009) 

Regarding the analysis of wind time series, it is conducted from a database of wind speeds every 

10 mins interval, in which the value defined in this range is actually an average of 300 values. 

So, every 2 seconds a value is registered by the data logger. Therefore, the use of time series 

resorts to these data in such a way as to predict the energy production of a wind farm. 

The variables collected and presented in the wind time series are: 

• Average, maximum, minimum, and standard deviation of wind speed, [m/s], for each 

anemometer. 

• Mean and standard deviation of wind direction relative to true (geographic) north 

• Average air temperature, [ºC]. 

• Mean atmospheric pressure, [hPa]. 

From this, the calculation of energy production estimates, in a specific location, uses a 

fundamental tool for analyzing the feasibility of implementing a wind farm, the wind time series 

(WTS). The series, thus are a collection of wind parameter data measured at a specific location 

and at a specific time interval via masts, as previously described. The majority of wind 

measurements are performed through the use of simple mechanical devices, as the traditional 
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cup anemometer (Mortensen, 1994). Based on this information, engineers can predict how 

much power can be generated in a given area. An example of a wind time series distribution 

can be seen in Figure 10 below. 

 

Figure 10: Example of Wind Time Series  

In addition to temporal discretization, wind energy time series can also have variable durations. 

While some series may last only a year, others may go on for many years, for example 5 years 

or a decade. The amount of time deemed pertinent for the analysis in question determines how 

long the time series will last. 

The advantages of using the time series are based on the fact that it considers the dynamics of 

time during the entire measurement period and calculates how the wind speed over time can be 

standardized to make accurate estimates of energy yield. In addition, this approach is not 

restricted to one type of time series, it is generally used in numerous regions with energy 

potential that have different types of climates, which also allows considering the seasonality 

and variation of the data. 

Although the wind series contain important data on the characterization of the wind regime at 

a given place, it cannot always be admitted that this database is completely reliable and 

representative, as there is intermittency and possible random variations of air masses, 

temperature, and pressure values throughout time. In order to get a more precise assessment of 

the climatic conditions in a given area, wind reanalysis series are also utilized, which 

corresponds to a modeling technique that integrates observational data, such wind series, with 

atmospheric modeling data. The atmospheric reanalysis series are a temporal and geographic 

description of the climate, produced through models with observations, containing estimates of 

quantities for several meteorological parameters (Matos, 2022). 

Reanalysis series are used to extend the temporal representativeness of short-period series. In 

this case, methods such as MCP (Measure-Correlate-Predict) are used to estimate energy 

production in a location where a short measurement campaign has been carried out. Otherwise, 

if there was already a mast station measuring wind data for 10 years, the reanalysis series would 

not be needed at all. 

Data accounting before carrying out any AEP calculation process must consider the existence 

of information failure in some intervals due to sensor freezing or any other interference in the 

measuring station. In longer periods of measurement of wind data, it is more likely that there is 

large intervals with error of measured speeds, that is, the existence of blocks of data without 

information can be found in the series more frequently.  

According to general literature, the availability or recovery rate of the series can be represented 

as the proportion between the effectively obtained data that contains non-error information in 

relation to the total amount of data, including any type of information generated, including 
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errors. Some common error messages appearing in wind time series may have characters like 

"999", “NaN” or blank spaces. 

As the objective of the entire implementation of a wind farm is based on reducing calculation 

inaccuracies, mainly energy, a common activity to deal with the existence of gaps in values in 

the series is to perform data collation. However, the collation is only justified if there is indeed 

a large number of data failure blocks and if the energy production calculation is not done in a 

statistical approach, in which small failures are not relevant. 

One of the approaches used to fill gaps in data blocks is to perform a pattern analysis of velocity 

information and conduct a linear interpolation between the values. For example, if there is a 

block of data failure for an entire day, the population of this data will be based on the values of 

the previous day and the next day.  

If the missing data is not filled in and also for the calculation of the AEP done directly from the 

series, there is a correction of the energy production, based on the present availability. Equation 

[1] is used to obtain the availability-corrected AEP. 

𝑨𝑬𝑷𝒄𝒐𝒓𝒓𝒆𝒄𝒕𝒆𝒅 = 𝑨𝑬𝑷𝒑𝒓𝒆𝒗𝒊𝒐𝒖𝒔 𝒂𝒗𝒂𝒊𝒍𝒂𝒃𝒊𝒍𝒊𝒕𝒚⁄  [1] 

 

In which the availability can be calculated from the equation [2]. 

 

𝒂𝒗𝒂𝒊𝒍𝒂𝒃𝒊𝒍𝒊𝒕𝒚 =
𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒖𝒔𝒆𝒇𝒖𝒍 𝒅𝒂𝒕𝒂 𝒑𝒐𝒊𝒏𝒕𝒔 

𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒕𝒐𝒕𝒂𝒍 𝒅𝒂𝒕𝒂 𝒑𝒐𝒊𝒏𝒕𝒔
 

 [2] 

 

Therefore, the determination of wind series represents a first step and a fundamental role in the 

analysis of energy production. From that moment on, new steps will be taken to better forecast 

the site's annual energy production (AEP). The common methodology of these steps can be 

represented in Figure 11 below, in which after obtaining wind measurements over time, 

extrapolations of the data will be carried out at a given turbine height to then combine the 

distribution of wind speeds with a power curve of a turbine model and forecast the energy 

produced on the site. 

 

Figure 11: Energy Yield prediction process  
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2.3. Characterization of wind resource 

Bearing in mind that the wind resource is intermittent, that is, its availability varies according 

to local meteorological and climatic conditions, it is necessary to understand the distribution of 

wind in a given time in order to estimate the energy production closest to the reality. To 

understand this availability of wind energy over time, it is necessary to analyze the distribution 

of speeds, at daily, weekly, and monthly intervals (Jani et al., 2023). 

One of the characterizations of the wind regime defined by the measurement data in a given is 

the wind occurrence rose. This representation is made from the count of occurrences of wind in 

a given range of direction and its subsequent normalization to make the polar graph. There is 

usually a division of the 360º into 16 equal intervals of 22.5º, but this is not always done in this 

way, it might depend on the project requirements. The wind rose allows, for example, to analyze 

whether the wind turbine operating region has a more prevalent direction for the angle of attack. 

From the wind data contained in the time series, the set of speed information is generally 

characterized by histogram, in order to characterize the regime through a representation that 

allows describing the behavior of the measured velocities, respectively, regarding their central 

tendency, shape and dispersion. 

So, the construction of this representation is done by counting the number of occurrences of 

velocities that are in the same bin, that is, each velocity range will have the same value “length”, 

such as 1 m/s, 0.5 m/s or another and the "height" of the columns in the histogram will be the 

frequency of the velocities that are within each range. An example of the rose of occurrences 

and a histogram is shown in figure 12. 

 

Figure 12: Rose of occurrences and histogram 

The estimate of energy production is then directly associated with the discretization of the speed 

bins, that is, its occurrence distribution profile. Regarding the approaches for characterizing the 

frequency distribution and considering the objective of this study, two options can be reported, 

the first being to use only the time series and obtain the frequencies manually, without any 

statistical interference. The second approach is to use statistical methods to try to predict the 

speed occurrence frequencies from a measurement database. 

Wind is a random variable and is subject to temporal and spatial fluctuations. The use of a 

statistical distribution allows modeling these fluctuations and providing an adequate 

mathematical representation of the wind behavior, as from a probability density function. 

According to the literature, one of the distributions most used by researchers is the Weibull 

distribution, for the purpose of optimizing the algorithms that determine the parameters of the 

statistical model (Al-Quraan et al., 2023). Therefore, it is important to analyze how close the 
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Weibull distribution is to the real velocity distribution, that is, to the time series that does not 

have any statistical approach. Each time the Weibull method becomes closer to the real 

distribution, that is, more adjusted, the estimate of energy production is made with greater 

precision. 

As a Weibull distribution fitting is therefore the statistical method most commonly used in wind 

energy studies to obtain a smooth distribution (Dayal et al., 2021), it is necessary to understand 

its characterization. Its distribution is the generalization of the Rayleigh model, which contains 

a scale factor, A, and a shape factor, k, and therefore the Weibull method is used when the 

Rayleigh distribution fails to obtain a sufficiently adjusted approximation to reality. The 

Weibull distribution function [2] and the cumulative distribution function (CDF) [3] are 

expressed according to these two parameters. 

{
𝒇(𝒖) =

𝒌

𝑨
(

𝒖

𝑨
)

𝒌−𝟏

𝒆−(𝒖 𝑨⁄ )𝒌

𝑭(𝒖) = 𝑪𝑫𝑭(𝒖) = 𝟏 − 𝒆−(𝒖 𝑨⁄ )𝒌

 

[2,3] 

 

The cumulative distribution function of the velocity u gives the fraction of time (or probability) 

that the wind velocity is equal or lower than u, while in equation 1, f(u) represents the frequency 

of occurrence of velocity u. An example of a Weibull distribution adjustment can be seen in 

Figure 13, in which, from an example of series of wind data at a location in Portugal, and with 

the WAsP program, it was possible to calculate the model parameters (A,k)  and obtain a fit to 

the distribution of wind speeds. 

 

Figure 13: Example of Weibull adjustment 

The WAsP program is widely used in the field of wind energy because, based on meteorological 

and topographic data from a given region, together with the combination of turbine models 

distributed in that area, it is possible to estimate the annual energy production. In this case 

above, a histogram is represented with the current distribution of occurrence of velocities and 

a Weibull model adjustment made in the software. As the approximation, in this case, follows 

quite well the frequency variations of the velocity intervals, it can be said that it has a good fit. 

According to Hennessey (1977) and Justus et al. (1978), the advantages of using of the Weibull 

distribution to adjust the measured wind data are: 

• It is a function with only two parameters to be determined, thus having a simple 

application 

• Knowing the parameters, A and k at a given height, one can directly extrapolate 

the distribution to other heights 
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• Provides a good representation of the asymmetry of the wind distribution. 

The values of parameters A and k are related to the measurement height in relation to the surface 

and therefore, from different heights, the distribution can widen or not, resulting in lower or 

higher maximum probability values. If there are obstacles or the terrain has a slope, it is possible 

to see the presence of the speed-up effect in which these barrier elements cause the wind air 

masses to be compressed and have a velocity acceleration. 

The scale parameter (A) indicates the wind speed at which the probability of occurrence of it is 

greatest, expressed in meters per second (m/s), and the shape parameter indicates the dispersion 

in the probability distribution. As the k parameter increases, the Weibull fit is also modified, 

indicating that there is more occurrence of stronger and weaker winds, as in figure 14.  

 

Figure 14: Example of variation of k and different fittings (Rodrigues, 2022) 

When k is equal to 2, the function assumes a Rayleigh distribution, while when it assumes a 

value of 3.5, the function assumes a normal distribution, close to a Gaussian distribution. For 

the case of the Rayleigh function, the distribution is represented by equation [4]. 

𝒇
𝒓
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𝒆
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𝒖
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)
𝟐

 
[4] 

 

In which �̅� is the average speed of the series. 

However, very high or very low Weibull k values do not always indicate a good fit, as this 

factor depends on the climate of the location where the measurement campaign was conducted. 

In monsoon weather, for example, a single Weibull fit is not enough to represent the wind 

regime, so a combination of adjustments is needed as in figure 15. 

 

Figure 15: Before and after Combined Weibull fitting (Rodrigues, 2022) 

Another parameter that can be obtained using the Weibull parameters is the average speed of 

the data series, according to equation [5]. 
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�̅� = 𝑨𝜞 (𝟏 +
𝟏

𝒌
) 

[5] 

where 𝛤 is the gamma function. 

Therefore, whenever the frequency of occurrence for each speed u is obtained and by relating 

it to the power curve distribution of a certain wind turbine, the gross annual energy production 

(AEP) can be calculated in a more general way using the following equation [6]: 

 

Where f(u) is the frequency of occurrence of wind speed [%] and 𝑃(u) is the power produced 

by the wind turbine at wind speed [kW]. The 8760 factor represents the number of hours the 

wind blows at that speed u in a year (365 days x 24 hours a day). The multiplication of  f(u) 

with 8760 can be denominated as a parameter H(u) that represents the total number of hours 

per year in which the wind blows at such speed. 

It is important to reiterate that for this equation, considering the use of statistical 

approximations, traditionally the Weibull adjustment, the portrayed velocity is not the specific 

value, but the representative value of each velocity interval. 

Statistical approximations, when used to calculate energy production, adjust the wind regime, 

and are associated with the power curve of the wind turbine model chosen by the project. 

The power curve of a wind turbine, in turn, represents the relationship between wind speed and 

the electrical power generated by the turbine. It represents a fundamental step in the calculation 

of energy production, as it is integrated with the wind speed values obtained from the wind time 

series. 

The operation of a wind turbine can be characterized by some parameters, as in the example in 

Figure 16. The turbine starts its operation at a cut-in speed, which is the minimum wind speed 

necessary for the wind turbine to start generating power and thereafter, the power output 

increases with the wind speed in a curve of third power, cubic. The curve grows until reaching 

a point of rated speed and rated power, in which the turbine is operating at its maximum 

efficiency point. The rotor is stopped when the wind speed exceeds the cut-out speed, in order 

to prevent damage (Dupont et al., 2017). 

 

Figure 16: Typical wind turbine power curve (Dupont et al., 2017) 

 

               𝑨𝑬𝑷𝒈𝒓𝒐𝒔𝒔 = ∑[𝒇(𝒖) ∗ 𝑷(𝒖)] ∗ 𝟖𝟕𝟔𝟎 [6] 
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The characterization of the wind regime, therefore, by statistical approximations, namely the 

most common being the Weibull adjustment, is the first and most traditional step to perform 

the calculation of AEP. These and other parameters are adjusted in an annual representation, 

that is, when calculating the energy production by using the statistical adjustment, an annual 

average of the density and the shear factor is made. 

The energy market does not establish a single way to analyze the production of energy and later 

the sale of electricity in final consumption may not require energy values in the annual period. 

An example of this is the case of the wind farm having a Power Purchase Agreement (PPA) 

between the energy producer and the buyer, which establishes terms and conditions for the sale 

of renewable energy over a specific period of time. PPAs can be seen as a hedging tool by the 

market, as they offer an opportunity for energy buyers to achieve price certainty beyond 3–5 

years, and at the same time meet their sustainability objectives (Jiménez et al., 2023) 

This exposes some questions, such as whether extending the series for a period of 1 year 

provides the presentation of good adjustment results and, furthermore, if changing the 

discretization, the adjustment is more reliable, produces better results. 

An example of the different requirements of an analysis of energy production, that is, of an 

energy representation made for a non-annual period is in the SPOT markets. This type of 

financial market trades assets instantly, with service delivery, for example, electricity almost 

immediately. In this case, it makes no sense to present an energy analysis conducted for a year, 

as the energy buyer has the demand in a shorter period of time, such as month, week or even 

daily, as in the example of figure 17. 

 

Figure 17: Example of daily market price -SPOT market (SPOT Hoje | OMIE, n.d.) 

Another example in which the AEP calculation is not required is seen in the hybridization 

models of technologies that take advantage of solar and wind energy, for example. In this case, 

there is the operation of wind turbines with photovoltaic panels and, as the energy sources are 

different, there may be periods of low production in one or the other, or in both. Therefore, an 

energy analysis is necessary for daily and weekly demands, as in the case of figure 18. 
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Figure 18: Wind power and solar energy generation curves compared with power demand of grid (Edrisian et al., 

2013) 

 

2.4. Other relevant parameters for estimating production 

Although the series of wind measurements already provide parameters such as wind speed, 

direction, temperature, and pressure at certain time intervals, it is necessary to analyze some 

more parameters to estimate electricity production. These parameters, therefore, are not 

obtained directly from the data series but from relations between the parameters already 

obtained in them. 

Since current wind turbines have high rotor shaft heights and many times greater than the 

maximum height of the measuring station, the speed values need to be extrapolated in order 

to conduct the AEP estimate in a more precise way. Therefore, a new parameter called the 

shear factor is obtained to be able to relate the velocities at different heights. 

A second parameter of interest in the study of energy production refers to the fact that for 

each time interval and a given speed, there is a corresponding air density value, so the 

variation of it must be considered for obtaining a specific power at each value of this 

parameter. 

In addition, it is also necessary to consider that during the period of operation of wind turbines, 

they are subject to turbulence variations, together with extreme winds. 

2.4.1. Shear factor 

The choice of a turbine model requires that the speed conditions obtained in a Wind Time 

Series (WTS) be recalculated for the height of the hub rotor shaft and with that, the 

distribution of speed occurrences is also modified, along with the estimate of energy 

production, either with methods statistical or not. Vertical variation of wind speed is an 

important parameter for wind turbine design, especially for those with large diameter rotors 

(Lopez-Villalobos et al., 2022). 

According to Custódio (2007), it is possible to establish the wind speed at different heights 

through a logarithmic relationship, defined by equation [7]. 
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[7] 

In which 𝑉ℎ1 and 𝑉ℎ2 are the velocities of the respective heights ℎ1 and ℎ2, 𝑧0, the roughness 
length in place. 

In order to be able to perform a speed extrapolation at a height different from the station's 

measurement elevations, at a power law model, a parameter called the shear factor (α) is used. 

This parameter is determined by the relationship between the wind speed at different heights, 

and is generally expressed as an exponential function, expressed in equation [8]. 

𝜶 =
𝐥𝐧 (𝑽𝒉𝟏 𝑽𝒉𝟐⁄ )

𝐥𝐧 (𝒉𝟏 𝒉𝟐⁄ )
 

[8] 

 

The velocity profile according to the height change can be represented by the power law as in 

figure 19. 

 

 

Figure 19: Example of velocity profile (Rodrigues, 2022) 

It is important to consider that the calculation of the shear factor is not calculated at a random 

time, without any reference. The IEC 61400 standard requires that the shear factor exponent be 

calculated over the rotor -swept area, from lower blade tip height, and for each turbine position 

(Figure 20). 

 

Figure 20: Illustration of determination of equivalent rotor wind speed over the rotor swept area divided into four 

segments corresponding to the four heights measurements. (Lopez-Villalobos et al., 2022) 
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Wind shear factor also depends on atmospheric stability, which could change, e.g., as the 

surface warms, and so the power law with a constant shear exponent becomes even less accurate 

for determining turbine-height winds (Badger et al., 2016).  

An example of the change in shear factor values according to weather conditions can be seen 

in figure 21, in which for different months, the average values change. 

 

Figure 21: Monthly variation of the wind shear coefficient (Abbes & Belhadj, 2014) 

In addition to this difference in a longer period, in months, the shear factor variation can also 

be seen in a daily period, as in figure 22, in which extrapolations were made from 65 m to 120 

m. 

 

Figure 22:Diurnal variation of wind shear coefficient for the elevations 65 and 120 m agl at the Phangan station 

(Werapun et al., 2017) 
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2.4.2. Air Density  

The estimation of energy production also considers another parameter that is not obtained 

directly from the measuring stations but whose value is obtained from the time series and which, 

together with the power curve of the wind turbine, indicates the respective power value at a 

certain speed. This parameter is the air density. 

Air density can vary significantly from factors such as air temperature, atmospheric pressure, 

and relative humidity, and therefore, its correct estimation ensures that errors in production 

estimation are also minimized. Note that air density is likewise a function of temperature, 

humidity, and especially atmospheric pressure.(Guerrero-Villar et al., 2019) This density 

relationship with these other parameters that are obtained in the time series is described 

according to perfect gas equation [9]. 

𝝆 =
𝒑

𝑹𝑻
 

[9] 

In which, p is the air pressure in the given period of time, R is the universal gas constant of 287 

J/Kg. K and T, the absolute temperature.  

Due to the fact that atmospheric conditions determine the value of air density, it is possible to 

perceive the variation of this parameter over time and, above all, to try to analyze whether there 

is a pattern of variation between years. Figure 23 shows an example of density variation on a 

monthly basis, in a 20-year database. 

 

Figure 23: Monthly variation of air density based on the observational data for 1998-2018.(Liang et al., 2022) 

Air density affects the power available in the wind in a linear way, as the power available in the 

wind that will pass through the wind turbine is defined by equation [10]. This power is the 

amount of energy in the air  that can be generated from wind.  This power is determined by the 

air density, the swept area A of the turbine blades, and the wind speed V. 

 

 

It should be noted that this is a simplified formula and that it ignores a number of important 

elements, like the height of the wind turbine, the wind profile, and losses from aerodynamic 

𝑷 =
𝟏

𝟐
𝝆𝑨𝑽𝟑 

[10] 
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resistance, among others. More intricate models that take these variables into account are 

employed in actual projects to estimate wind power more precisely. 

 

2.4.3. Turbulence intensity 

The operation of every wind turbine requires a direct interaction with the layers of air in the 

atmosphere that meet the turbine blades, causing the rotation of the rotors to produce energy, 

that is, a conversion of kinetic energy into mechanical power and then electrical power. 

However, the movement of the air layers does not present a homogeneous model of 

characterization, that is, there is turbulence and complex and chaotic wind variations over time, 

either by a change in temperature and pressure or even by wake effects from the turbines. The 

wake effect refers to the phenomenon caused by the passage of air in a wind turbine, creating 

an altered wind pattern in its wake, that is, in the region immediately behind the turbine, which 

may result in turbulence. These effects cause downstream turbines in wind farms to extract less 

energy from the wind and also can cause structural issues (Öztürk et al., 2023). Figure 24 shows 

a schematic of the regions before and after the wake effect. 

 

Figure 24: Interaction of a wind turbine with the air flow (Porté-Agel et al., 2020) 

However, it is important to reiterate that there is no significant conversion of energy contained 

in the turbulence scales, as they are of small scales and therefore absorbed by the structure of 

the blades, and not very useful from the point of view of energy conversion. 

The turbulence regime presupposes the existence of a time and space scale, in which the 

velocity parameter is defined by the sum of two components, average value plus a fluctuation. 

Thus, the turbulence intensity, 𝐼𝑡𝑢𝑟𝑏 , can be seen as a parameter that describes the variability 

of wind speed over time caused by turbulent fluctuations and can be obtained according to 

equation [11]. This relationship describes this parameter when used for industrial purposes, but 

in the broadest meaning, the turbulence intensity is the square root of the mean value of the 

velocity fluctuation component. 

𝑰𝒕𝒖𝒓𝒃 =
𝝈

�̅�
 

 

[11] 

In which 𝜎 is the standard deviation of the wind speed and �̅�, the average speed measured over 

a 10-minute interval in the series. 

This parameter is considered, for example, when choosing wind turbines, in order to ensure that 

the equipment, especially the blades, are sized to withstand fluctuations in speed and the 

respective load requests. The derived turbulence intensity is calculated for the measurement 
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positions at measurement height and for the wind turbine positions at hub height. 

(Measnet_SiteAssessment_V2.0.Pdf, n.d.) Therefore, in places with a large variation in speed or 

with a high value of turbulence intensity, it may be necessary to implement more resistant 

turbines in order to guarantee a good useful life. 

 

2.4.4.  Extreme Winds 

Another parameter that is also related to the variability of speeds caused by different pairs of 

temperature and pressure in the atmosphere is the extreme wind, which can be described as 

maximum velocity value (10 minutes average), expected in 50 years return period. 

Extreme wind conditions are essential for evaluating the structural robustness of wind turbines. 

It is crucial to build wind turbines that can withstand these challenging conditions and maintain 

their structural integrity because during extreme wind events, wind turbines are subject to 

increased loads and mechanical efforts. 

However, the calculation of extreme wind based on a wind time series is not standardized, as it 

is a prediction of a maximum value of a magnitude for a long period of time. The wind data are 

represented by a period of short duration when compared to the 50 years of wind analysis, so it 

is necessary to consider a model adapted to the characteristics of wind speed. 

For the calculation of this parameter, it was decided to use the Gumbel model, in which this 

distribution is characterized by two parameters, the location (𝛼) and the scale (β), and it is 

possible to estimate the probability of occurrence of extreme winds above a certain limit. The 

Gumbel distribution has been used as an extreme value distribution in many research areas, 

including wind energy (D. Kang et al., 2015). The probability function that a velocity X exceeds 

x is given by equation [12]. 

𝑷(𝑿 > 𝒙) = 𝟏 − 𝒆𝒙𝒑 {− 𝐞𝐱𝐩 [− (
𝒙 − 𝜶

𝜷
)]} 

[12] 

 

In which 𝑥 is the maximum velocity in 50 years. The location parameter and scale parameter 

values can be obtained using relations [13-14]. 

𝜷 =
𝝈√𝟔

𝝅
 

 

[13] 

𝜶 = 𝑽𝒎𝒂𝒙 − 𝟎, 𝟓𝟕𝟕 ∗ 𝜷 [14] 

 

In which 𝜎 is the standard deviation and 𝑉𝑚𝑎𝑥, the maximum velocity obtained in the WTS.  
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3. Statistical Approaches for Wind Regime Analysis 

3.1.  Methods for estimating Weibull parameters 

The Weibull distribution represents a model with good flexibility to accommodate a wide 

variety of distribution shapes via the scale factor and shape factor parameter pair. Technical 

evaluations usually use the Weibull distribution to identify the optimal wind turbine technology 

in a given location, in addition to being able to obtain data such as wind power density, annual 

energy output, and capacity factor (Alrashidi, 2023). 

In addition to this, the distribution is easy to interpret because the shape factor, for example, 

indicates the probability of a certain wind speed occurring, which can be centered in a range of 

speeds or shifted depending on the local climate. The scale factor, on the other hand, indicates 

the wind speed at which the probability of occurrence of it is greatest, which already allows 

forecasting a possible range of more frequent speeds during the operation of a wind turbine. 

The definition of the Weibull parameters allows a discretization of the frequency and later, with 

the power curve, an estimation of energy production, being therefore necessary to obtain the 

best estimate of the pair of parameters and to reduce the errors in the estimation. 

The advantages of using a statistical approach to predict the energy yield of a wind farm are 

based on the fact that there is no need to have a very large and complex amount of data, because 

in software such as WAsP and others, the AEP calculation using directly the series may take 

some time. Thus, the statistical models can adapt to the amount of information available, that 

is, the calculation of parameters will be done independently and will consider the entire data 

set. 

However, a major disadvantage of using statistical approaches is the simplification of wind 

data, which can influence the calculation of the AEP, that is, depending on the behavior of the 

data, the Weibull distribution may not be well adjusted to the wind histogram as in figure 25. 

This can lead to poorly made estimates of the AEP, that is, cause a greatly altered overestimate 

or underestimation, far from the closest value to the real that is the AEP with the wind time 

series. 

 

Figure 25: Example of a poor Weibull fitting 

In this case, it seems there is a clear case of poor fit, but it is necessary to have more robust 

criteria than simple appearance in order to support these conclusions, criteria addressed in the 

next section 3.2. 
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Therefore, for this work analysis, it was decided to employ five models for obtaining the 

Weibull parameters, Maximum Likelihood Method (MLM), Energy Pattern Factor Method 

(EPFM), the WAsP algorithm, Method of Moments (MOM) and the Empirical Method of 

Lysen (EML). Weibull parameters estimate the characteristics for a specific location and 

therefore need to be calculated and compared with different methods than the adoption of a 

single statistical model (Yaniktepe et al., 2023). 

It is important to point out that as the amount of data extends over time, the calculation of the 

parameters becomes more and more accurate. The ideal is to have a relatively long period that 

allows to make an overview of all the data and from that, there is also the possibility of 

discretizing the time series and calculating the parameters on an annual basis or during defined 

periods such as Winter and Summer. 

The calculations of these parameters for estimating energy production must be done after 

extrapolating the results to the height of the chosen wind turbine, otherwise the accuracy is 

lower. 

 

3.1.1. Maximum Likelihood Method (MLM) 

The statistical model of the Maximum Likelihood Method uses time-series wind data for 

calculating Weibull parameters and consists of estimating those values that best fit the time-

series data, based on the likelihood of information. Thus, the distribution will be more adjusted 

to reality so that later it can combine the information with the power curve of a wind turbine. 

The statistical approach of MLM is based on carrying out iterative processes in which an initial 

value for the shape factor k is first assumed and after finding a convergence of values for this 

parameter, the next step is to determine the value of the scale factor A . For the first stage, the 

relation, proposed by Harter and Moore (1965a, 1965b), used to define k is given by equation 

[15], while for the second part, the relation in [16] is used. The aim is to find those values that 

maximize the likelihood function of the data. 

𝒌 = (
∑ 𝑼𝒊

𝒌𝐥𝐧 (𝑼𝒊)
𝑵
𝒊=𝟏

∑ 𝑼𝒊
𝒌𝑵

𝒊=𝟏

−
∑ 𝐥𝐧 (𝑼𝒊)

𝑵
𝒊=𝟏

𝑵
)

−𝟏

 
[15] 

 

𝑨 = (
∑ 𝑼𝒊

𝒌𝑵
𝒊=𝟏

𝑵
)

𝟏
𝒌

 

[16] 

 

Where N is the number of non-zero data points obtained from the time series and Ui is the 

average velocity for each 10-minute time interval in the series. 

The difference between shape factor values obtained when intending to use the method for 

different time intervals (Annual or Winter/Summer) can be seen in figure 26. In this example, 

a series from a Portugal mountain region was used that had data for 5 years, from 2015 to 2019. 

If the MLM approach were based on each whole year, the values of k obtained would be 

described in the annual series (gray), while if it was chosen to have a Winter (blue) and Summer 

(orange) approach, the values already have modifications. 
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Figure 26: Example of k values for different discretizations-MLM 

Although some values of k practically coincide using one approach or another, it is possible to 

notice that there are differences in some years, which can be explained by the more detailed 

discretization of the Winter/Summer series and possibly by the weather variation.  

In the case of increasing the discretization, as was done in the previous example, the comparison 

of energy production values is usually done by first calculating the AEP and then doing the 

calculation with the half-yearly productions, to see how they can relate. It is interesting to try 

to understand how the Weibull parameters can influence the calculation of production, both for 

an annual period and for larger discretizations. 

Analogously to the shape factor, the scale factor also undergoes changes depending on the time 

discretization performed, as can be seen in figure 27, where the same comparison of A values 

was made for each whole year and values obtained by the approach of Winter and Summer. 

 

Figure 27: Example of A values for different discretizations -MLM 

3.1.2.  Energy Pattern Factor Method (EPFM) 

The second method approached EPFM, also called Power Density Method, uses the wind speed 

profile obtained through in situ measurements or numerical modeling. The objective of this 

method is to adjust the occurrence distribution in such a way that the wind power available in 

the wind is equal to the equivalent power. 

This statistical approach is based on the principle that the estimate of energy production can be 

made according to the amount of air mass passing through the rotor. Energy pattern factor is a 

sign of wind speed variability (Akdağ & Güler, 2015). From this, a parameter called energy 

pattern factor is defined, which is the ratio between the total power available in the wind and 

the power corresponding to the cube of the mean wind speed [17]. 

𝑬𝒑𝒇 =
𝑻𝒐𝒕𝒂𝒍 𝒂𝒎𝒐𝒖𝒏𝒕 𝒐𝒇 𝒑𝒐𝒘𝒆𝒓 𝒂𝒗𝒂𝒊𝒍𝒂𝒃𝒍𝒆 𝒊𝒏 𝒕𝒉𝒆 𝒘𝒊𝒏𝒅

𝑷𝒐𝒘𝒆𝒓 𝒄𝒂𝒍𝒄𝒖𝒍𝒂𝒕𝒆𝒅 𝒇𝒓𝒐𝒎 𝒄𝒖𝒃𝒆 𝒐𝒇 𝒕𝒉𝒆 𝒎𝒆𝒂𝒏 𝒔𝒑𝒆𝒆𝒅
 

  

[17] 
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The wind power density depends directly on the third moment of the Weibull distribution 

(Gugliani et al., 2018).Therefore, the energy pattern factor can also be defined by the velocity 

ratio of the mean of the wind speed cube with cube of the mean wind speed, according to 

relation [18], where n is the total number of data obtained in the time series. 

𝑬𝒑𝒇 =

𝟏
𝒏

∑ 𝒗𝒊
𝟑𝒏

𝒊=𝟏

(
𝟏
𝒏

∑ 𝒗𝒊
𝒏
𝒊=𝟏 )

𝟑 

[18] 

 

Another way to express the EPF is through the relation [19]. 

𝑬𝒑𝒇 =
𝜞 (𝟏 +

𝟑
𝒌

)

𝜞𝟑
(𝟏 +

𝟏
𝒌

)
 

[19] 

 

Once this factor is obtained, the parameter k is approximated according to Akdag and Dinler 

(2009) to relation [20]. 

𝒌 = 𝟑. 𝟗𝟓𝟕𝑬𝒑𝒇
−𝟎.𝟖𝟗𝟖 [20] 

 

According to the literature survey conducted for this study shows that Epf is between 1.45 and 

4.4 for most wind distribution in the world and therefore, the constants were established after 

performing power densities tests (Akdağ & Dinler, 2009). 

The Energy Factor pattern can be related to the shape parameter as shown in figure 28. 

 

Figure 28: The energy pattern factor of a Weibull shape factor (Lysen, 1983) 

And therefore, when the shape factor is already known, the value of the scale parameter, A, can 

also be obtained by using the relation [5]. 

In terms of discretization of the measurement period, the variation of the k and A parameters 

can also be seen according to the choice of an analysis of whole years or with the 

Winter/Summer combination for each year, figure 29. In this figure, there is the Portugal 

mountain region series as an example, from the years 2015 to 2019. 
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Figure 29: Example of k and A values for different discretizations -EPFM 

 

3.1.3.  WAsP Method  

The WAsP algorithm method is the one used in the software of the same name, which is used 

for estimating energy production. For the sake of curiosity, in this software, the program is fed 

with the temporal data series of the measurement campaign and for the calculation of the AEP, 

it is necessary some factors such as topographic information, wind maps in high resolution and 

the roughness of the soil, in order to assign a study of the estimation with a given number and 

model of wind turbines. 

However, for the case study, the focus is on the statistical methodology that WAsP uses to 

obtain the Weibull parameters and produce an adjustment with the wind time series. The 

approach taken is based on iterative processes that starts with two definitions of wind power 

density [21] and [22]. 

𝑾𝑷𝑫 =
𝟏

𝟐
𝝆𝑨𝟑𝜞 (

𝟑

𝒌
+ 𝟏) 

[21] 

 

𝑾𝑷𝑫 =
𝟏

𝟐𝑵
𝝆 ∑ 𝑼𝒊

𝟑

𝑵

𝒊=𝟏

 

[22] 

 

Wind power density can be characterized as a measure of harnessing wind energy in a specific 

location and considers both wind speed and air density.  

From these two relations [21-22], it is possible to obtain another one to find the scale parameter 

A [23], depending on the number of data points from the wind time series (N), the respective 

speeds for each 10-minute time interval (𝑈𝑖) and the shape parameter k, which will start with 

an initial value stipulated to start the iterative process. 

𝑨 = √

𝟏
𝑵

∑ 𝑼𝒊
𝟑𝑵

𝒊=𝟏

𝜞 (
𝟑
𝒌

+ 𝟏)

𝟑

 

[23] 

 

After finding parameter A, obtaining the shape factor k is done according to relation [24] by an 

iteration process of values until convergence is reached. In it, a new element is introduced, an 

X parameter that is related to the cumulative distribution for an average velocity of the series 

(�̅�), according to equation [25]. 
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(

𝟏
𝑵

∑ 𝑼𝒊
𝟑𝑵

𝒊=𝟏

𝑨
)

𝒌

= −𝐥𝐧 (𝑿) 

[24] 

 

𝑿 = 𝒆𝒙𝒑 [− (
�̅�

𝑨
)

𝒌

] 
[25] 

 

Analogously to the other methods, the temporal discretization also directly impacts the values 

of the Weibull parameters. By using the same example series from Portugal mountain area in 

the Weibull statistical approximation approach, it is also possible to notice the difference in 

values when the velocity profile is characterized for whole years with a profile that characterizes 

the Winter/Summer period of a year and then considers the average of values (Figure 30). 

 

 

Figure 30: Example of k and A values for different discretizations - WAsP 

 

In this specific case, we already see a difference from other methods in the convergence of k 

values that have the same values for Winter/Summer and whole year discretizations. However, 

this convergence does not strictly mean that the method of this algorithm is the most 

recommended, it is necessary to have methods for comparing the statistical models to check 

their respective reliability. 
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3.1.4. Method of Moments (MOM) 

The Method of Moments is based on the numerical iteration of the mean wind speed and the 

standard deviation of the wind speeds used to estimate the parameters of a probability 

distribution based on the sample moments. 

The Weibull parameters, in this case, are defined in terms of the wind speed population mean 

[26] and [27] and standard deviation. 

𝒗𝒎 = (
𝟏

𝑵
) ∑ 𝒗𝒊

𝑵

𝒊−𝟏

 
[26] 

𝝈 = {(
𝟏

𝑵 − 𝟏
) ∑(𝒗𝒊 − 𝒗𝒎)𝟐

𝑵

𝒊=𝟏

}

𝟏 𝟐⁄

 

[27] 

 

Where 𝑣𝑚 is the average wind speed, 𝑣𝑖 is the speed for each interval, N is the total number of 

observations and 𝜎  as the standard deviation of wind speeds. 

Furthermore, the standard deviation can be represented by the gamma function and depends on 

the parameters A and k, as in the case of the average velocity equation [5]. This alternative 

relationship can be seen in equation [28]. 

𝝈 = 𝑨 [𝜞 (𝟏 +
𝟐

𝒌
) − 𝜞𝟐 (𝟏 +

𝟏

𝒌
)]

𝟏 𝟐⁄

 
[28] 

 

Equation [5] and [28] can then be related in the following way [29] and thus obtain the shape 

parameter with equation [30]. 

𝝈

�̅�
= √

𝜞 (𝟏 +
𝟐
𝒌

)

[𝜞 (𝟏 +
𝟏
𝒌

)]
𝟐

− 𝟏 

[29] 

 

𝒌 = (
𝟎. 𝟗𝟖𝟕𝟒

𝝈
�̅�

)

𝟏.𝟎𝟗𝟖𝟑

 

[30] 

 

Obtaining the scale parameter is naturally found through equation [5]. 
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3.1.5. Empirical Method of Lysen (EML) 

As its name already suggests, this method calculates the Weibull parameters from empirical 

results of wind speeds at different locations. Therefore, after conducting analysis of the 

parameters in different circumstances of wind regime, models were established for the 

calculation. 

The shape parameter is calculated based on a study previously carried out by Justus et al. (1977), 

in which the values of the mean wind speed and the standard deviation are needed. Equation 

[31] represents the relationship to obtain k. 

𝒌 = (
𝝈

𝒗𝒎
)

−𝟏.𝟎𝟖𝟔

 
[31] 

 

Where 𝑣𝑚 is the average wind speed and 𝜎, the standard deviation of wind speeds. 

The scale parameter, in turn, is obtained through equation [32] (Elie Bertrand et al., 2020), also 

related through empirical factors. 

𝑨 = 𝒗𝒎 (𝟎, 𝟓𝟔𝟖 +
𝟎, 𝟒𝟑𝟑

𝒌
)

−𝟏 𝒌⁄

 
[32] 
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3.2.  Assessment of method accuracy 

Obtaining the Weibull parameters for estimating production through the methods may differ 

from each other, due to the estimation model employed, that is, for the same wind time series, 

with the same discretization, it is possible to obtain different distribution adjustments and 

consequently production estimates. Therefore, it is necessary to establish accuracy criteria to 

compare these methods and understand which one has the lowest variance values. 

These accuracy criteria can provide information about the level of accuracy that each statistical 

method can have in predicting power production. Evaluation of goodness of fit is an important 

step in the process of choosing the best distribution function for a certain region.(Chong & 

Ragai Henry Rigit, 2021) 

A precise adjustment of the Weibull fitting makes it possible to more reliably predict the amount 

of energy that can be generated in a given area. Considering the implementation of a wind farm 

and that the study on its feasibility should be carried out in terms of the efficiency of wind 

turbines with the wind resource and also on the expected financial return, it is recommended 

that there be the least possible uncertainty in the estimation of production, avoiding project 

estimates that exceed or are underestimated in relation to the available project resources. 

Therefore, in this subchapter, methods and efficiency tests that can be used for each statistical 

method for obtaining the Weibull parameters will be discussed. These include statistical 

indicators such as the Root Mean Square Error ( RMSE ), Chi-Square error (χ²), Correlation 

coefficient (R) and the Determination Coefficient (R²). 

 

 

3.2.1. Root mean square error (RMSE) 

The root mean square error method consists of analyzing the errors of a large number of data 

by means of the average deviation of the observed values in relation to the values predicted by 

the Weibull model. The RMSE is often employed to explore the differences between real-world 

and model data; the differences are termed residuals. (S. Kang et al., 2021) 

The focus of this criterion is based on calculating the square root of the mean squares of the 

residual errors, while the lower the RMSE value, the better the statistical model used. This 

criterion demands a large amount of data such as the wind time series. The root mean square 

error (RMSE) has been used as a standard statistical metric to measure model performance in 

meteorology, air quality, and climate research studies. This method is defined according to 

relation [33]. 

 

𝑹𝑴𝑺𝑬 = [
𝟏

𝒏
∑(𝒚𝒊 − 𝒙𝒊)

𝟐

𝒏

𝒊=𝟏

]

𝟏 𝟐⁄

 

[33] 

 

Where n is the number of wind speed dataset (bins), 𝑦𝑖 is the actual wind distribution data, from 

the measured data without using Weibull, and 𝑥𝑖 is the predicted wind distribution from the 

Weibull. 

A particularity of this method is that the measured errors (𝑦𝑖-𝑥𝑖) undergo a procedure of being 

squared before being averaged and therefore, the sum of errors has different weights assigned 

to it. The assumption of this method is that the errors are unbiased and follow a normal 

distribution (Chai & Draxler, 2014). 
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From this, for randomly generated pseudo-errors with zero mean and unitary variance Gaussian 

distribution, it is noticed that as the number of samples increases, the error distribution using 

RMSE becomes more reliable, as seen in figure 31. 

 

Figure 31: RMSE distribution according to sample size (Chai & Draxler, 2014) 

In this example, you can see that as the sample size reaches a relatively high number of data, it 

is possible to reconstruct the error distribution close to its “true” or “exact solution”. 

For the example of the case of Portugal mountain area of 7 years duration for the measure 

campaign, and for example, with the first three different methods used for estimating the 

Weibull parameters, it was possible to obtain different RMSE results, as shown in Table 1 

below. 

 

 

 

Table 1: RMSE values for different methods for Weibull parameters estimation 

Method k A RMSE 

MLM 2.47 6.08 0.0045 

EPFM 2.61 6.08 0.0034 

WAsP 2.40 6.04 0.0054 

 

Thus, the model that offers the best adjustment is the one that contains the lowest RMSE value, 

which in this example of case study is the EPFM. 

 

3.2.2. Chi-square 

The chi-square method is also used for the evaluation of the accuracy of the predicted wind 

Weibull distribution in relation to real wind distribution and its criterion is to determine whether 

there is a significant difference between the two distributions. Therefore, his method (χ²) is 

calculated by summing the squared differences between the observed frequencies and the 

expected frequencies, divided by the expected frequencies, as in relation [34]. 

 

𝒙𝟐 = ∑
(𝒚𝒊 − 𝒙𝒊)

𝟐

𝒙𝒊

𝒏

𝒊=𝟏

 
[34] 
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Where n is the number of wind speed dataset (bins), 𝑦𝑖 is the actual wind distribution data, from 

the measured data without using Weibull, and 𝑥𝑖 is the predicted wind distribution from the 

Weibull. 

For the example given, chi-square data were also obtained for the same three different methods, 

as can be seen in Table 2 below. In it, the method that offers the best distribution is the one with 

the smallest value of χ² because it indicates a smaller difference between the observed 

distribution and the expected theoretical distribution, in this case the WAsP algorithm method. 

 

Table 2:Chi square values for different methods for Weibull parameters estimation 

Method k A Chi-square 

MLM 2.47 6.08 0.076 

EPFM 2.61 6.08 0.049 

WAsP 2.40 6.04 0.021 

 

 

 

 

3.2.3. Correlation coefficient (R) 

The criteria of the correlation coefficient R already introduces another relationship between the 

data predicted by the Weibull distribution and the data observed in the wind time series. The 

approach in this criterion consists of defining a linear relationship between the two datasets, in 

which the parameter defining a good approximation is found in the interval [-1;1], in which a 

perfect correlation is one that approaches the extremes, while a lack of correlation between the 

data is seen when the R value approaches zero (Mukaka, 2012). 

Thus, the closer the R value is to the extremes, the better the fit of the Weibull model. The 

definition of the coefficient of R in relation to the predicted and observed wind data can be seen 

in equation [35]. 

𝑹 =
𝒏 ∑ (𝒚𝒊𝒙𝒊) − ∑ 𝒚𝒊. ∑ 𝒙𝒊

𝒏
𝒊=𝟏

𝒏
𝒊=𝟏

𝒏
𝒊=𝟏

√𝒏 ∑ 𝒚𝒊
𝟐 − (∑ 𝒚𝒊

𝒏
𝒊=𝟏 )𝟐𝒏

𝒊=𝟏 . √𝒏 ∑ 𝒙𝒊
𝟐 − (∑ 𝒙𝒊

𝒏
𝒊=𝟏 )𝟐𝒏

𝒊=𝟏

 
[35] 

 

In the case of the example given, the data of the correlation coefficient R obtained for the three 

Weibull parameter estimation methods can be seen in Table 3, in which the EPFM method also 

presents a better value than the others, even though the other two also present good correlation 

values, very close to 1. 

Table 3: R values for different methods for Weibull parameters estimation 

Method k A R 

MLM 2.47 6.08 0.989 

EPFM 2.61 6.08 0.999 

WAsP 2.40 6.04 0.998 
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3.2.4. The Determination Coeffiecient (R2) 

The last criterion used in the case studies is the use of an R² determination coefficient that seeks 

to measure the variability of the observed wind speed data, in addition to being able to assess 

the quality of the Weibull adjustment made to the observed data. According to this accuracy 

criterion, R² values range from 0 to 1, where values close to 1 indicate that the fit model is 

adequate to accurately predict energy production. 

Therefore, this model, according to (Kavak Akpinar & Akpinar, 2005), is able to measure the 

strength of the linear ratio of the distribution of estimated and actual frequencies through the 

relation [36]. 

𝑹𝟐 =
∑ (𝒚𝒊−𝒛𝒊)

𝟐 − ∑ (𝒚𝒊 − 𝒙𝒊)
𝟐𝒏

𝒊=𝟏
𝒏
𝒊=𝟏

∑ (𝒚𝒊−𝒛𝒊)𝟐𝒏
𝒊=𝟏

 
[36] 

 

For the example case of Portugal mountain region, data on the coefficient of determination were 

also obtained for each method, over the 7 years of measured wind regime. According to table 

4, there are the data obtained for the coefficient values, in which the method that guarantees 

greater precision for the measured period was also the EPFM. 

Table 4: 𝑅2values for different methods for Weibull parameters estimation 

Method k A 𝑹𝟐 

MLM 2.47 6.08 0.985 

EPFM 2.61 6.08 0.991 

WAsP 2.40 6.04 0.974 
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4. Case studies 

The study presented in this document aims to analyze the goodness of the adjustment of 

statistical parameters to a wind series, in order to conduct the calculation of energy production 

estimates for wind turbines. The wind series, as mentioned in Chapter 2, are first obtained by a 

measurement campaign and subsequently the collected wind data is translated into time series. 

In order to study the effectiveness of a WTS adjustment, two cases with a wind potential for 

the implementation of wind turbines will be analyzed, the first in Poland and the second in 

Brazil. Before any individual introduction about each case, the importance of this analysis can 

already be mentioned, due to the fact that the two regions are located in different zones of the 

planet and, consequently, have different climates. 

For the calculation of the annual energy production (AEP), identical steps will be taken in each 

case study. Thus, the approach of standardizing the analysis steps allows the same study to be 

reproduced by other parties, which increases the reliability of the results. 

As mentioned in section 2.4 , although for most purposes the analysis of energy production is 

commonly done in an annual period, it is important to report that this time discretization is not 

always ideal for energy buyers as they seek to understand how the production profile in short 

periods of time will affect the availability of selling energy. Thus, the calculation of energy 

production in different periods of time does not require statistical adjustments. 

The AEP calculations in the two cases will not be limited to profiles in whole years, which 

means that for each case study there will be 4 energy analysis options. The strategy of using 

these discretizations is used to analyze whether it is possible to achieve better quality Weibull 

adjustments, but always bearing in mind the annual production estimates. The discretizations 

adopted for the study are: 

• AEP based on data of a long measurement period 

• AEP every entire year 

• AEP using a Winter/Summer discretization 

• AEP using a Night/Day discretization 

According to the objective of this work, in each case study and in each previously mentioned 

discretization, the calculation of the AEP will be done with two approaches, the first of which 

is based on the wind time series and the second, using the five mentioned statistical approaches 

(MLM, EPFM, WAsP, MOM and EML) to produce a Weibull fitting to velocity distribution of 

each wind time series (WTS). 

 In addition, this approach is based exclusively on data obtained by a met station, which implies 

that the information translated into a series is the result of measurements made of wind speeds 

in all types of conditions, considering the adverse ones in very cold temperatures, there may be 

data failures due to freezing of sensors, as referred in section 2.2. Although there are already 

backup systems in case a sensor fails, the possibility of joint failure of all of them must be 

considered, which causes time intervals without measurements or with errors. 

Failures derived from interference in the sensors, of any kind, are translated into the data series 

and often there is bridging through linear interpolation or other gap-filling approaches. After 

this step, equation [1] for the AEP correction is no longer used, as the data availability becomes 

100%. 

However, this filling only makes sense if there are large gaps in the data and, moreover, if the 

calculation of the AEP is done directly by the wind time series. Otherwise, using statistical 

approximations, the correction does not make sense, since the adjustment method fits any time 

frame. Therefore, for each case study, it is interesting to analyze the respective data availability. 
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After this first step of filling in or not the data gaps, it is necessary to proceed with the choice 

of wind turbines to be used in the wind farm. As the purpose of this work is based on analyzing 

the comparison between energy yield forecast using time series or through statistical 

approaches, it assumes that the region of implementation of the wind turbines, as well as the 

study of optimization of the locations and amount of equipment, have already been defined. So, 

these factors will not be analyzed. 

 

4.1. The reference wind turbine  

The next step, therefore, is the choice of a turbine model to be used for the calculation of AEP, 

which in turn considers the characteristic power curve of the wind turbine. The power curve 

represents a graph as seen previously in figure 17 that relates the different wind speeds with the 

respective generated powers. The AEP is then calculated from the sum of the energies obtained, 

which are derived from multiplying the power generated in each time interval by the duration 

of that interval.  

Knowing that each wind turbine model has a specific power curve, the choice of the turbine 

used in this work was based on the international standard IEC 61400-1, which categorizes such 

equipment into classes and subclasses. The class is determined by the extreme winds, i.e., the 

maximum velocity value (10 minutes average), expected in 50 years return period, as already 

mentioned. The subclasses are defined by the calculated turbulence intensity. 

After these parameters are calculated, the choice is made based on the following table [5]. 

 

Table 5: Wind turbine assessment guidelines from IEC 61400-1 

Class I II III 

Vmax,50 

(m/s) 

50 42.5 37.5 

Subclass A B C A B C A B C 

Intensity of 

turbulence 

[%] 

16 14 12 16 14 12 16 14 12 

 

Extreme wind estimates for class determination are made based on the Gumbel distribution, 

seen in section 2.4, for each series of case studies. 

So, a preliminary analysis was carried out to obtain the turbulence intensity and the extreme 

wind of each one, resulting in the values in table 6. 

Table 6: Values of extreme winds and turbulence intensity on the 2 case studies 
 

Vmax,50 (m/s) Iturb (%) 

Poland 31.86 10.19 

Brazil 30.32 10.23 

 

From these tables, it is possible to see that both the case studies of Poland and Brazil indicate 

the choice of a class III and subclass C wind turbine. 
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From this, the choice of a single turbine was made based on the definition of the class with the 

subclass and from market research on the wind turbine models that are within these conditions. 

Of the analyzed models, there are some that fulfill both requirements, but the standard curve 

chosen can be seen in figure 32. This curve represents a type of wind turbine that can be applied 

to both case studies. 

 

Figure 32: Power curve of the chosen wind turbine, class III  

The chosen turbine has a rated power of 4.2 MW and, according to the curve in figure 34, a cut-

in speed of 3 m/s and a cut-out speed of 24.5 m/s. In addition, the height of the rotor axis of this 

turbine model is 105 m. 

In this curve, besides the representation of the power values relative to the speeds, there is also 

another important parameter to be considered in the study of the implementation of a wind farm, 

which is the axial thrust coefficient (Ct). This parameter represents the fraction of kinetic energy 

produced from the wind that is converted into useful work by the turbine. 

The Ct parameter also quantifies the wake phenomenon produced by the turbines because it 

affects the amount of energy that the turbine extracts from the wind. If the wind turbine works 

with a high value for this parameter, there will be a more pronounced wake with a more 

turbulent velocity distribution. 

The curves in Figure 34 then represent two fundamental parameters that are generally listed by 

the wind turbine manufacturer. However, the Ct coefficient will not be used in the scope of this 

work as the estimates will consider a single wind turbine. 

The power generated by a wind turbine (𝑃𝑤𝑡) can be modeled by the following relationship 

[37]: 

𝑷𝒘𝒕 = {
𝟎 

𝑷𝒓𝒂𝒕𝒆𝒅

𝒒 ∗ 𝑷𝒓𝒂𝒕𝒆𝒅

 

𝑽(𝒕) < 𝑽𝒊𝒏 𝒐𝒓 𝑽(𝒕) > 𝑽𝒐𝒖𝒕

𝑽𝒓𝒂𝒕𝒆𝒅 < 𝑽(𝒕) < 𝑽𝒐𝒖𝒕

𝑽𝒊𝒏 < 𝑽(𝒕) < 𝑽𝒓𝒂𝒕𝒆𝒅

 
[37] 

 

Where 𝑃𝑟𝑎𝑡𝑒𝑑 is the power defined by the wind turbine manufacturer, 𝑉𝑖𝑛is the cut-in speed, 𝑉𝑟𝑎𝑡𝑒𝑑 

is the rated wind speed, 𝑉𝑜𝑢𝑡 is the cut-off speed and v(t) is the wind speed at desired height. 

The "q" factor is defined by the relation [38]. 

𝒒 =
(𝑽(𝒕) − 𝑽𝒊𝒏)

(𝑽𝒓𝒂𝒕𝒆𝒅 − 𝑽𝒊𝒏)
 

[38] 

 

However, in the scope of this study, the relations [37] and [38] are not used because the values 

in the turbine power curves are already established by the manufacturer. 
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4.2. Scenarios 

The two case studies have a particular climate and vegetation, with no similarity between them. 

This study was conducted to try to find the influence of time series procedures and statistical 

models to characterize the wind regime, in an attempt to understand if it is indeed possible to 

calculate and predict the AEP with the lowest possible uncertainties, on each approach. 

Before any discretization of the Time Series, it is important to point out that in the study it will 

be called the base case, since its AEP is calculated without any static interference or temporal 

discretization. 

The first chosen discretization is done in such a way as not to divide the measurement period, 

to characterize the whole time period and the AEP calculation as homogeneous. That means, if 

for a given case the measurement period is 5 years, estimate of the annual energy production 

will be the same for all years. 

The second discretization is based on establishing an AEP estimate with the variation of the 

wind regime throughout the years, the so called inter annual variability. Therefore, it is expected 

that there are variations between years in production, as in figure 33, which shows an example 

of the distribution of speeds throughout the years. 

 

 

Figure 33: Inter annual variability (The Annual Variability of Wind Speed, Wind Energy - The Facts.) 

The third discretization chosen is to separate the Winter and Summer periods, calculating the 

energy production obtained from each season and then adding them to obtain the AEP. In fact, 

this discretization does not only consider the three Winter and Summer months , for the 6 

coldest months (January, February, March, October, November, and December), the total 

energy is seen as in the "Winter" category, while the other six warmer months (April, May, 

June, July, August, and September) are included in the "Summer" category. This discretization 

aims to describe seasonality for each, as in the example of figure 34.  

 

Figure 34: Example of seasonality (Rodrigues, 2022) 
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However, this example is a poor representation of the seasonality of the wind, as it is possible 

to see that the regime is practically constant throughout the year. 

The last and fourth discretization is done in an attempt to further reduce the period of analysis 

and considering, for example, market demands to have short-scale production profiles. 

Therefore, the discretization made is Night and Day, in which each series of case studies are 

separated into periods of the night that comprise from 7:00PM to 6:50AM, and periods of the 

day that are between 7:00AM to 6:50PM. 

The choice of this last Night/Day discretization has the objective of considering different values 

for the shear factor, instead of an average annual value, given the dependence of this factor on 

atmospheric stability. Atmospheric stability tends to be greater at night, which leads to more 

open wind profiles, with higher shear factors. 

Therefore, for the two case study scenarios, steps of a standardized analysis were defined below 

in the calculation of the AEP, according to each discretization previously mentioned: 

1) Interpolate, if necessary, for missing values and failed blocks of data 

2) Calculate shear factor values for each time interval from velocities measured at two heights 

above the ground and extrapolate, for the height of the turbine rotor shaft,105 m above ground 

3) Calculate density values for each time interval, for the height of the turbine rotor shaft 

4) Calculate AEP from the time series (without using Weibull fitting) 

5) Get Weibull parameters in each statistical method 

6) Calculate AEP from the Weibull adjustment parameters 

7) Calculate the accuracy criteria parameters for each statistical method 

The first step is intended to fill the data gaps, trying to predict the information related to the 

speeds not captured using a linear interpolation and considering the speed patterns on the 

previous and the following day. 

The second step uses equation [8] to calculate the shear factor values in each velocity interval, 

that is, after interpolation of missing data, the series will undergo an extrapolation in order to 

predict the velocities obtained at 105 m, at the height of the turbine rotor shaft. This was only 

possible because in all two series, the velocity data were measured at heights of 40 and 80 m, 

therefore, one more reason to standardize this step in all case studies. 

For the third step, that is, to determine the density values for each time interval at a height of 

105 m , it was first necessary to find the density values at a height of 80 m, using the relation 

[9]. After that, an air density extrapolation was made from a height of 80 m to 105 m, in all the 

two cases using the following equation [39]: 

𝝆𝟐 = 𝝆𝟏 ∗ (
𝑻𝟐

𝑻𝟏
)

(−
𝒈

𝑹(𝑻𝟐−𝑻𝟏)
)

 

[39] 

 

Where ρ2 is the air density at a height of 105 m, ρ1 is the air density at a height of 80 m, T2 and 

T1 are the absolute temperatures corresponding to heights of 105 m and 80 m, respectively, g 

is the gravitational acceleration (approximately 9.81 m/s^2), R is the ideal gas constant 

(approximately 287.1 J/(kg·K)). 

However, the temperature in each time interval at height 105 m is not given, so it is necessary 

to use equation [40] to obtain an approximation of T2. 

𝑻𝟐 = 𝑻𝟏 + 𝟎, 𝟏𝟔 [40] 
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This statistic is an average based on observations and climatological studies, showing an 

average rate of temperature decline with increasing altitude in the standard atmosphere. 

The fourth step already represents the first instance of AEP calculation, however, using only 

the time series. The procedures carried out in this activity are represented in the flowchart, in 

figure 35. 

 

Figure 35: Flowchart of AEP calculation without Weibull fitting 

All calculations performed in this study were performed using the EXCEL software, both for 

the statistical approximation methods and for the AEP calculations (with and without Weibull 

parameters). Furthermore, in the spreadsheets, the power curve present in appendix A was 

available as an auxiliary database. 

Therefore, the choice of the representative density for each wind interval was obtained using 

the "VLOOKUP" formula in order to find the values closest to the list of wind turbine densities. 

To find the power relative to each velocity interval, it was necessary to perform a linear 

interpolation, in which, with the density found previously, there will no longer be a matrix of 

columns as in figure 36 where it was necessary to carry out two simultaneous interpolations. 

Thus, the interpolation made to find the power relative to each data point is given by equation 

[41]. 

 

Figure 36: Matrix scheme of power values for each density and speed value 

 

(𝑷𝒊+𝟏 − 𝑷𝒊−𝟏)

(𝑽𝒊+𝟏 − 𝑽𝒊−𝟏)
=

(𝑷∗ − 𝑷𝒊−𝟏)

(𝑽∗ − 𝑽𝒊−𝟏)
 

[41] 

 

Where 𝑃∗ is the extrapolated velocity at 105 m of each series data and 𝑉∗, the power obtained 

according to the power curve. 

The specific energy for each speed value is obtained by the product of the power found after 

the interpolation made in the previous step with the factor (1/6). This factor represents the 

amount of time in hours that the given average speed was present, captured by the turbine, that 

is, the 10 minutes. Thus, the AEP obtained in the time series, is the sum of the energy found for 

each wind speed data. 

After calculating the AEP, the fifth step of the study is to calculate the Weibull parameters for 

each series and also for each discretization, that is, whether whole years, Winter/Summer, or 

Night/Day. There will be the calculation of the scale and shape parameters according to the 

MLM, EPFM and WAsP methods. 

The sixth step, in turn, already includes the calculation of AEP by statistical approaches, which 

means that any discretization of the series will be reduced to the conditions of the power curve. 

For example, in time series analysis, all velocity data was computed in the calculation and now 
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it is not. Because the turbine only operates above 3 m/s and below 24.5 m/s, speed values 

outside this range are not considered. Thus, the activities performed in this sixth step are 

represented in the flowchart in Figure 37. 

 

Figure 37: Flowchart of AEP calculation using Weibull fitting 

The representative speed is chosen by trying to find the average speed for each interval. For 

this, the series of wind data is divided into the speed intervals provided by the power curve of 

the wind turbine and then this representative speed is calculated between each interval. Among 

the intervals of each velocity, for example, [3; 3.5] and [24; 24.5], the average of the velocities 

within each interval is calculated, obtaining the representative velocity. 

The frequency of occurrence of each velocity is obtained using equations 1 or 2 that describe 

the Weibull model, after obtaining the shape and scale parameters by statistical methods. 

Step 3, of this approach with Weibull, represents the annual operating hours for each 

representative velocity, of each velocity interval of the power curve, that is, the number of hours 

that the wind blows for each velocity or H(u) as referred to in section 2.3. This is obtained by 

multiplying the frequency of each speed interval by constant part 8760, which represents the 

total hours in a year (365 days x 24 hours a day). However, this multiplication is only effective 

if the AEP analysis is done for whole years, that is, for the other 2 discretizations of 

Winter/Summer and Night/Day, the H(u) is multiplied by 4380 which is half. 

Obtaining the power relative to each interval is done using equation [40], similarly to the AEP 

process without Weibull and the specific energy at each interval is not obtained by multiplying 

the power by the factor (1/6) but by the factor "H(u) ". However, instead of calculating only 

with the time series that considered a density value for each interval, in the approach with 

statistical methods, only an annual average density or average densities are considered for each 

discretization. 

Therefore, the AEP is found by summing the energies relative to each velocity interval. 

Step 7 of this work is the calculation of accuracy parameters of the methods. As each statistical 

method has its own model for Weibull adjustment, it is important to understand whether their 

use is reliable for the series presented in each case study. For that, there are 4 reliability analysis 

criteria to be conducted (RMSE, Chi-square, correlation coefficient and coefficient of 

determination), as established in section 3.2. These four criteria will be used for the four 

established time discretizations and also for the two cases. 
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4.1.1. Poland 

The first case study is located in Poland, more specifically in a region called Gluchow, 

according to the location map in figure 38. This region, as it is located in central Europe, is 

characterized by a temperate continental climate with characteristics of low temperatures, rain, 

and the occurrence of snow in Winter and high temperatures in Summer. 

 

Figure 38: Poland map (Windhunter, 2013) 

According to the company "Meteoblue", the distribution of wind in the last 30 years in this 

region can be represented by figure 39, in which in Winter there are indeed winds with higher 

speeds than in Summer. 

 

 

Figure 39: Wind average month velocities - Gluchow (Meteoblue) 

According to the measuring station arranged in Gluchow, the wind time series was obtained for 

a period of 7 whole years, that is, data between January 1st and December 31st of the years 

2015 until 2021. 

From the data presented in the wind time series, the total amount of speed information at each 

10 min interval, at a height of 80 m was 368208. This number represents the total amount of 

records but the amount of data available, that is, with speed information that doesn't have errors 

was 362431. Therefore, using equation [2], data availability was 98.43%. In spite of the great 

availability in this particular case, missing data will be replaced by interpolation according to 

the technic described in section 2. 

From this series it is possible to obtain the histogram and the wind rose (see figure 40) according 

to the WAsP software, in which the series is fed into the program with data on speed, 
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temperature, pressure and wind direction at different intervals. One can notice that the 

predominant wind azimuth is West and that the predominant speed is in the range of bin [6;7] 

m/s. 

 

Figure 40: Wind rose of occurrences and histogram (Poland) 

It is important to report that this series of data obtained information for the heights of 40 and 

80 m, and in figure 41, the information refers to the height of 80 m. 

In order to understand the interaction between velocity and height, that is, to characterize the 

vertical profile of velocities in this case study, the shear factor was used according to the relation 

[8]. Thus, the overall shear factor of this series, performing an average of the value of this index 

in each time interval was 0.266. Therefore, with the average speed values for each height (40, 

80 and 105) m represented in table 7, the vertical wind speed profile of Poland is shown in 

figure 41. 

Table 7: Average velocity values for each height (Poland) 

Height (m) 40 80 105 

Velocity 
(m/s) 

  5.34 6.38 6.89 

 

 

Figure 41: Vertical velocity profile (Poland) 

The average temperature found in the series is 9.84°C and the average density, calculated by 

relation [9] is 1.22 𝑘𝑔/𝑚3. 
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4.1.2. Brazil 

The second case study is located in the northeast of Brazil, more specifically in the coastal 

region of the state of Rio Grande do Norte, as in figure 42, which represents the northeast region 

(a) of the country and the state in which the series was obtained (b). 

 

Figure 42: (a) Northeast region of Brazil (Jong, n.d.) and (b) State of Rio Grande do Norte 

This area is located in the tropical region with a climate characterized as tropical humid, in 

which temperatures have an annual average of 20°C, and a relatively high rainfall. 

Regarding wind data according to the company "Meteoblue", for 30 years, the profile of annual 

average wind speeds can be seen in figure 43, in which the highest average wind speeds are 

also seen in the winter of Southern hemisphere, in this case, July and August. 

 

Figure 43: Wind average month velocities - Rio Grande do Norte, Brazil (Meteoblue) 

The wind time series was obtained for a period of 3 years, from 20/06/2009 to 19/06/2012. 

From the data presented in the wind time series, the total amount of wind speed information, at 

a height of 80 m is 157824 data records but the amount of data available, that is, with speed 

information that doesn't have errors was 156423. Therefore, using equation [2], the data 

availability was around 99.11%. In this case, availability is also high, so there is no need to 

collate data. In this case, the availability is so high that missing data was not replaced.  

Using the WAsP software and feeding it with the series obtained in with data on speed, 

temperature, pressure, and wind direction at different intervals it was possible to obtain the 

wind rose and the speed histogram, seen in figure 44. In it, one can notice that the most 

predominant wind direction is Southeast and that the most predominant speed is in the range of 

bin [8;9] m/s. The change from a smaller velocity interval to a larger one, when comparing case 

1 with 2, can already be justified by the fact that Northeast Brazil is located close to the 
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Intertropical Convergence Zone (ITCZ), an area where air masses meet that contributes to the 

formation of low-pressure systems and the intensification of winds. 

 

Figure 44: Wind rose of occurrences and histogram (Brazil) 

The wind time series was also obtained with speeds at heights of 40 and 80 m and in figure 44, 

the information refers to the height of 80 m. 

To characterize the vertical velocity profile, the overall average shear factor of this series was 

0.07. Therefore, with the average speed values for each height (40, 80 and 105) m represented 

in table 8, the vertical speed profile of Brazil is shown in figure 45. 

 

Table 8: Average velocity values for each height (Brazil) 

Height (m) 40 80 105 

Velocity (m/s) 7.66 8.00 8.15 

 

 

Figure 45: Vertical velocity profile (Brazil) 

Besides that, the average temperature found in the series is 26.8°C and the average density, 

calculated by relation [9] is 1.16 𝑘𝑔/𝑚3. 
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5. Results 

5.1. Poland 

5.1.1. Long measurement period (7 years) 

The Polish series, as mentioned in section 4.2, has a 7-year wind time series, in the case of 

01/01/2015 to 31/12/2021. 

As the chosen wind turbine model has a hub axis height of 105 m, some parameter data provided 

by WTS were extrapolated to this height. The main quantities that went through this process 

were velocity and air density, according to equations [8] and [39], respectively. 

Considering the power curve of Appendix, A, in which the rated power is 4.2 MW, and defining 

H(u) as 10 minutes, the energy obtained directly from the 7-year series was 112011 MWh. 

Therefore, considering the discretization in 7 years, the AEP was obtained by dividing this total 

value by the time interval of 7 years, finding a value of 16002 MWh. 

The next step, after calculating the AEP directly from the 7-year WTS, was to estimate the 

Weibull parameters for each of the five methods ( MLM, EPFM, WAsP, EML, and MOM). 

The results of the shape and scale parameters for each method can be found in table 9. 

 

Table 9: Weibull parameters (7 years) 
 

Weibull parameters 

Method k A 

MLM 2.53 7.76 

EPFM 2.65 7.75 

WAsP 2.40 7.66 

EML 2.55 7.76 

MOM 2.54 7.76 

 

This table shows that the values of the Weibull parameters, both in terms of shape and scale, 

were estimated with little variability between the methods. In fact, it is possible to see in figure 

46 how much the parameters of each method vary in relation to the average value of these 

results. The mean value of the methods for the shape parameter was 2.53, while the scale 

parameter was 7.74 m/s. 
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Figure 46: Weibull parameters variation against their mean value 

In this case, the EPFM and WAsP methods were the ones that had the greatest variability in the 

k parameter in relation to the mean value. However, the existence of a greater variability of the 

parameter of a method, in relation to the average value of the methods, does not necessarily 

indicate a bad adjustment. It is necessary to see how the adjustment of each method is made in 

relation to the histogram of the wind series and conduct then the evaluation of the reliability 

criteria. 

Before that, it is also important to analyze the AEP estimated for each method and obtain a 

comparison of the value found in relation to the AEP obtained directly from the time series. In 

Table 10, it is possible to see the value found by each method and how close it is to the Time 

Series estimate. 

Table 10: AEP for each method and their variation against AEP from Time Series (Poland) 

Method  AEP (MWh) AEP Variation (%) 

MLM 16339 2.10% 

EPFM 16375 2.33% 

WASP 15897 -0.66% 

EML 16351 2.18% 

MOM 16345 2.14% 

 

According to this table, the method that lead to the AEP estimate closest to the value found 

from the time series was the WAsP Method, with an underestimation of only 0.66%. This 

concretizes the idea of not taking hasty measures in choosing the best adjustment method by 

only analyzing the variability of method parameters in relation to the mean value. 

The adjustment made by each method to the 7-year series can be seen in figure 47. In it, all 

methods have very similar adjustments, so the next step is the analysis of accuracy criteria. 
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Figure 47: Weibull adjustment for each method related to the Time Series (7 years) 

After performing the analysis of the adjustment criteria, presented in section 3.2, values were 

obtained for each method. Table 11 shows the goodness of fit results of each statistical method 

in relation to the wind time series. 

 

Table 11 : Accuracy test values for each method (7 years) 

Statistical 
methods 

The Weibull parameters Accuracy test efficiency 

   

k A RMSE 

 

R  

  

MLM 2.53 7.76 0.0040 0.0208 0.9966 0.9872 

 
 

EPFM 2.65 7.75 0.0032 0.0474 0.9976 0.9919 

WAsP 2.40 7.66 0.0051 0.0254 0.9928 0.9794 

EML 2.55 7.76 0.0038 0.0218 0.9968 0.9881 

MOM 2.54 7.76 0.0039 0.0212 0.9967 0.9877 

 

From this table, it is possible to see that for three reliability criteria, the one that offers the best 

adjustment model is the EPFM, both for higher values of R and 𝑅2, and for the lowest value in 

the RMSE. In the Chi-Square criterion, the model that offers the best fit with the lowest value 

is the MOM. 

Besides that, all methods look good in terms of goodness of fit. The EPFM method is the one 

that offers the best for three reliability criteria, the RMSE, R and 𝑅2. The MLM is the one that 

offers the best reliability criteria value with Chi-Square. 

If the work stopped here and without the need for further discretization, it would be possible to 

state that the models in general have good adjustments to the WTS. Because the EPFM method 

is the one with the best results in the reliability criteria, it would be a strong candidate to serve 

as a statistical model for estimating the AEP for the Time Series . However, the difference in 

many of these criteria is from the fourth decimal place, which can be explained by truncation 

𝑋2 𝑅2 



Time Series vs Statistical Approaches in Estimating Wind Turbines Energy Yield 

60 

and rounding errors. In the end, the best method is the one capable of reproducing the AEP 

value calculated directly by the Time Series, which in this case was the WAsP. 

For the calculation of the AEP, a parameter used, in addition to the speeds, was the air density 

but with the annual average value. So, probably, the differences in the AEP and accuracy results 

are due to the influence of the turbine power curve. According to section 4.1, the turbine 

disregards power values for speeds below 3 and above 24.5 m/s, something that the calculation 

with the Time Series does not do. If there was a good adjustment at the nominal power level, 

for example, there would be no significant impact, since for speeds from 12 to 20 m/s the turbine 

produces the same. 

Therefore, the next step to take, after this calculation, is to try to carry out the same study as the 

AEP, with the adjustment of the data series using Weibull parameters but with greater time 

discretizations. 

 

5.1.2.  Yearly discretization 

In this second approach, the AEP calculation will not be done by simply finding the total energy 

produced over the years (7 years in Poland) and dividing by 7 years, that means, finding the 

average. In this case, the energy calculation will be done each year, that is, there will be seven 

AEP values, one for each year. The 7-year series was separated into 7 different databases, 

discretizing an entire year. 

So, for each year, the respective AEP will be calculated and the final value to be considered is 

their average. This allows annual energy differences to be seen more clearly between years. In 

figure 48 there are the results of the AEP measured each year (blue) compared with the value 

obtained by the discretization of 7 years (orange), both measured directly from the Time Series, 

without the intervention of a statistical method yet. 

 

Figure 48: AEP values for each year versus AEP for 7 years calculation (Both from Time Series) 

This figure demonstrates that the AEP values with the annual discretization oscillate in relation 

to the mean of the 7-year discretization (orange) and that the average AEP between them (blue) 

is 15998 MWh, that is, having an underestimation of 0.02%, which is not significant. 

Table 12, in turn, already shows the values of the shear factor, density for each year and the 

respective AEP. 
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Table 12: Shear factor, Density and AEP calculated for each year (Poland) 

Year Shear factor Density AEP (MWh) 

2015 0.269 1.222 17174 

2016 0.272 1.223 14960 

2017 0.253 1.225 17154 

2018 0.272 1.222 14801 

2019 0.263 1.218 16860 

2020 0.269 1.220 16111 

2021 0.263 1.227 14926 

Only through these values, it is not possible to obtain a concrete relationship on the variation 

of shear factor and density with the AEP. Especially because the values of these parameters are 

very close, both for the shear factor, which has an average of 0.266, and for the density, with 

an average of 1.222 kg/m3. Thus, it is necessary to perform calculations with larger 

discretizations, as will be discussed in the next subchapters. 

The calculation of the Weibull parameters for each method was also done for each year of the 

total 7 years available in the wind time series. The results of the shape and scale parameter 

values can be seen in table 13. 

 

Table 13: Weibull parameters for each year and method (Poland) 
 

MLM EPFM WAsP EML MOM 

Year k A k A k A k A k A 

2015 2.41 8.04 2.56 8.04 2.40 8.04 2.44 8.05 2.44 8.04 

2016 2.44 7.47 2.57 7.46 2.40 7.46 2.47 7.47 2.46 7.47 

2017 2.49 7.97 2.62 7.97 2.40 7.97 2.52 7.98 2.51 7.97 

2018 2.49 7.37 2.62 7.36 2.40 7.36 2.52 7.37 2.51 7.37 

2019 2.63 7.91 2.72 7.91 2.40 7.91 2.67 7.92 2.66 7.92 

2020 2.61 7.80 2.70 7.79 2.40 7.79 2.65 7.81 2.64 7.81 

2021 2.55 7.50 2.66 7.50 2.40 7.50 2.58 7.51 2.57 7.51 

 

Considering that for each method, their respective Weibull parameters have already been 

calculated, as shown in the table above, the next step was to obtain the AEP for each year, 

according to these estimates. In table 14 these results are demonstrated with the average AEP 

for each method. 
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Table 14: AEP for each method and year (Poland) 
 

AEP (MWh) 

  MLM EPFM WASP EML MOM 

2015 17241 17385 17265 17305 17270 

2016 15216 15220 15128 15226 15223 

2017 17070 17181 16782 17132 17088 

2018 14853 14842 14609 14860 14858 

2019 16964 17032 16253 17032 17024 

2020 16535 16556 15890 16600 16593 

2021 15374 15412 14988 15423 15420 

Average 16179 16233 15845 16225 16211 

 

This average AEP value of each method obtained by this second approach (yearly 

discretization) can be compared with the AEP value obtained by the first approach (7 years), as 

shown in Table 15. 

 

Table 15: AEP variation between 7 years and yearly approach 
 

AEP (MWh) 
 

 
7 years Average for each year AEP Variation 

(%) 

MLM 16339 16179 -0.98% 

EPFM 16375 16233 -0.87% 

WASP 15897 15845 -0.32% 

EML 16351 16225 -0.77% 

MOM 16345 16211 -0.82% 

 

The obtained values in table 14 can be compared with the AEP values calculated directly by 

the time series. The annual energy production variations of each method in relation to the direct 

approach, without statistical method can be seen in figure 49. 
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Figure 49: AEP variation comparing each statistical method with Time Series (Poland) 

This figure demonstrates the importance of calculating energy for different approaches and, in 

this case for Poland, not considering the calculation period of 7 whole years as the most reliable. 

This is because in the 7-year calculation, the WASP method was the one that presented the 

lowest energy variation compared to the time series value, and therefore it was a candidate for 

the method that best fits the time series. However, this figure portrays that WAsP is the only 

one that starts to have different results from the other methods, from 2017 and not always 

having the smallest variation of AEP with the time series. 

When analyzing the figure again, it is noticed that although the WAsP method does not beat the 

other methods in terms of lowest variation in all years, it continues to beat the other methods in 

3 years (2016, 2020 and 2021). The MLM method has the best ability to reproduce the time 

series AEP in two years (2015 and 2019), while the EPFM and EML methods are better in one 

year (2018 and 2017, respectively). The MOM method does not have the lowest variability in 

any year. 

The adjustments carried out by each of the methods in each year can be consulted in Appendix 

B, figures (B1.1-B1.4). 

In terms of adjustment criteria, in this case where the discretization is yearly performed, it was 

decided to use the determination coefficient (R²) criterion, as it is more commonly used in the 

industry. Therefore, the results obtained from this test for each method are represented in table 

16. 

Table 16: Determination Coefficient values for each statistical method (yearly discretization - Poland) 
 

𝑹𝟐 Values  

MLM EPFM WAsP EML MOM 

2015 0.975 0.984 0.975 0.977 0.977 

2016 0.988 0.987 0.986 0.989 0.988 

2017 0.979 0.985 0.974 0.981 0.981 

2018 0.985 0.989 0.980 0.986 0.986 

2019 0.983 0.987 0.977 0.985 0.984 

2020 0.989 0.993 0.982 0.991 0.990 

2021 0.985 0.989 0.976 0.987 0.986 
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For a better visualization of the values and to understand which method establishes the best 

adjustments, figure 50 represents the values of the accuracy criteria of each method over the 

years. 

 

Figure 50: Annual Determination Coeffiecient values for each method 

Through this figure, it can be seen that there is a method with better accuracy values in 6 years, 

which is the EPFM (orange). The WAsP, which in the AEP variation analysis, in relation to the 

time series energy calculation, obtained the best results, in this case it was the opposite, it 

obtained the worst accuracy results.  

 

 

5.1.3.  Winter/Summer discretization 

The Winter/Summer discretization, as mentioned earlier, has the objective of studying whether 

the separation into smaller periods, in the case of half-yearly production, the calculation of the 

AEP manages to meet the seasonality phenomena. Therefore, the analysis conducted in this 

third discretization separates the year into two semesters, the first called Winter because it 

considers the six coldest months of the year (January, February, March, October, November, 

and December). The second semester, called Summer, considers the six hottest months of the 

year (April, May, June, July, August, and September). 

The first analysis obtained is relative to the monthly average speeds in each of the years from 

2015 to 2021, as can be seen in figure 51. 
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Figure 51: Monthly average velocity in each year for 105 m above ground level 

 

In this case, seasonality is not very significant for some years but in others like 2018 and 2020 

it is already possible to see its effects on the average monthly speed. 

In relation to the other parameters obtained by the wind series, such as shear factor and density, 

it is expected that there is greater variability between the Winter and Summer values, for both 

magnitudes. In figure 52 it is possible to visualize the values obtained from these parameters 

for the two periods. 

 

Figure 52: Shear factor and density values for Winter and Summer in each year 

The lower density values in Summer than in Winter can be explained by the increase in 

temperature. An example to demonstrate this is the average temperature in the Winter of 2019 

which was 4.5ºC with a density of 1.25 kg/m3, while the average temperature in the Summer 

of the same year was 16.3ºC with a density of 1.19 kg/m3. Even so, the average temperature in 

the hottest semester is still relatively low, compared to other countries further south in Europe. 

In terms of AEP, the energy results for each semester and the respective annual values 

calculated directly from the time series are represented in table 17 below. 
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Table 17: Season energy values and AEP values for each year (Poland) 
 

Semester Energy (MWh) AEP (MWh) 

Year Winter Summer 

 

2015 9675 7499 17174 

2016 9038 5922 14960 

2017 9449 7703 17151 

2018 8128 6672 14801 

2019 9928 6932 16860 

2020 9535 6575 16111 

2021 8427 6499 14926 

 

The years 2016, 2018 and 2021 had lower energy productions compared to the others. 

The next step, related to the calculation of the Weibull parameters, was based on this half-yearly 

discretization. Therefore, for each method, two parameters were obtained for Winter and 

another pair for Summer. In table 18 there is an example of these results for the MLM method. 

The remaining results of the other methods can be consulted in the tables (C1.1-C1.4), of 

Appendix C. 

 

Table 18: Weibull parameters calculated through MLM (Winter/Summer - Poland) 
 

                                     MLM parameters  

Winter Summer 

Years k A k A 

2015 2.45 8.68 2.53 7.43 

2016 2.64 8.36 2.43 6.67 

2017 2.45 8.34 2.67 7.49 

2018 2.54 8.23 2.51 7.03 

2019 2.65 8.5 2.56 7.17 

2020 3.14 8.99 2.59 6.98 

2021 2.76 7.84 2.52 6.91 

 

From this, it was possible to obtain the semiannual energy production values for each method, 

for each year. These values are in  table 19. 
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Table 19: Winter and Summer energy values for each method and year (Poland) 
 

Semester energy (MWh)  

MLM EPFM WAsP EML MOM 

Year Winter Summer Winter Summer Winter Summer Winter Summer Winter Summer 

2015 9687 7541 9775 7539 9614 7355 9703 7542 9703 7541 

2016 9294 6064 9324 6007 8862 6033 9307 6059 9301 6062 

2017 9143 7683 9256 7696 9045 7321 9173 7683 9166 7683 

2018 9010 6763 9082 6734 8761 6617 9050 6762 9045 6763 

2019 9543 7039 9596 7039 9615 6849 9704 7059 9704 7059 

2020 10750 6649 10682 6621 9460 6430 10775 6648 10767 6649 

2021 8396 6525 8409 6509 7849 6386 8396 6544 8412 6525 

 

When performing the sum of the energy productions of the Winter months with the Summer 

months, the AEP is obtained in these discretizations of less than one year. Analogously to the 

other discretizations, it is possible to establish the variation of the AEP estimated from the 

statistical methods in relation to the AEP obtained directly from the Time Series. This variation 

can be seen in figure 53. 

 

Figure 53: AEP variation between statistical methods with the Time Series, for each year (Winter/Summer 

discretization -Poland) 

Through this graph, it can be inferred that in this discretization made, the WAsP method in 

three years is the one that has the lowest variability of AEP in relation to the calculation made 

directly by the Time series. MLM is the one that has the lowest variability in two years, while 

the rest of the methods only win, in terms of the lowest variability, for one year. This data can 

be found in table 20. 
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Table 20: AEP variation between statistical methods with the Time Series, for each year  (Winter/Summer 

discretization-Poland) 
 

AEP (Winter/summer) 
 

MLM EPFM WASP EML MOM 

2015 0.31% 0.81% -1.19% 0.42% 0.41% 

2016 2.67% 2.49% -0.43% 2.72% 2.69% 

2017 -1.89% -1.16% -4.58% -1.72% -1.76% 

2018 6.57% 6.86% 3.90% 6.83% 6.80% 

2019 -1.65% -1.34% -2.35% -0.58% -0.58% 

2020 7.99% 7.40% -1.37% 8.14% 8.10% 

2021 -0.03% -0.05% -4.63% 0.09% 0.07% 

 

Regarding the reliability criteria, only the determination coefficient will be used, as in the case 

of the previous discretization. For this, the years 2017 and 2018 were chosen as those to be 

analyzed in terms of 𝑅2  values for Winter and Summer. Table 21 shows the results for these 

two years. 

 

Table 21: Determination Coefficient values for each statistical method (Winter/Summer-Poland) 
 

𝑹𝟐 Values  
2017 2018  

Winter Summer Winter Summer 

MLM 0.9777 0.9774 0.9840 0.9736 

EPFM 0.9835 0.9576 0.9902 0.9729 

WASP 0.9752 0.9576 0.9790 0.9729 

EML 0.9786 0.9775 0.9852 0.9811 

MOM 0.9713 0.9741 0.9849 0.9737 

 

In this case, it is possible to notice that the reliability values are higher in the winter period than 

in the summer. In addition, the method that has the best fit in 2017 and 2018 in winter is the 

EPFM, while in the summer of the same years it is the EML. However, as the main analysis 

factor is the ability to reproduce the AEP from the WTS, the method that for 3 years has the 

lowest variability of energy production is WAsP. 
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5.1.4.  Night/Day discretization 

The last discretization is done in order to consider shear factor values and densities that are not 

annual averages, as well as the third discretization seen previously. In this case, the study 

approach as defined in section 4.2 is to characterize the wind series in periods of night and day. 

The average annual speeds in the night and in the day, during the years 2015 to 2021 can be 

seen in Figure 54. 

 

Figure 54: Average annual speed for night and day 

Regarding the parameters of shear factor and air density, a difference in the values of these two 

magnitudes was expected due to the atmospheric stability present at night and because this 

period has lower temperatures. The result of values of this parameter can be seen in figure 55. 

 

Figure 55: Shear factor and density values for Night and Day in each year 

The averages of these parameters are shown in Table 22. 
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Table 22: Night and Day Annual average values for shear factor and air density 

Shear factor Density (kg/m3) 

Night Day Night Day 

0.359 0.173 1.228 1.217 

 

Confirming the hypotheses, the mean value of the shear factor at night is greater than that of 

the day, about twice as much, due to the greater atmospheric stability in that period. The density 

is also higher at night, which justifies the presence of higher temperatures during the morning 

and, consequently, lower density. 

When carrying out this discretization, the calculation of the AEP is given by the sum of the 

annual portions of energy from the night with the portions of energy from the day. The AEP 

data obtained directly from the Wind Time Series can be seen in Table 23. 

 

Table 23: Night and Day energy values and AEP values for each year 
 

Energy (MWh) 

Year Night Day AEP 

2015 9765 7410 17174 

2016 8559 6400 14959 

2017 9492 7658 17151 

2018 8590 6211 14800 

2019 9477 7383 16860 

2020 8913 7197 16110 

2021 8393 6533 14925 

 

The data obtained from AEP coincide with the values from the annual discretization and 

Winter/Summer. The next step is to obtain the estimates of the Weibull parameters for the night 

and day periods, for each statistical method. The result for MLM can be seen in Table 24. The 

remaining results of the other methods can be consulted in the tables (C1.5-C1.8), of Appendix 

C 

Table 24: Weibull parameters calculated from MLM (Night and Day) 
 

MLM parameters  
Night Day  

A k A k 

2015 8.21 2.58 7.68 2.14 

2016 7.67 2.6 7.07 2.17 

2017 8.19 2.68 7.7 2.29 

2018 7.67 2.76 7.00 2.25 

2019 8.04 2.78 7.60 2.34 

2020 7.84 2.63 7.51 2.35 

2021 7.42 2.42 7.00 2.13 

 

From this, it was possible to obtain the semiannual energy production values for each method, 

for each year. These values are in  table 25. 
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Table 25: Night and Day energy values for each method and year 
 

Night /Day energy (MWh)  
MLM EPFM WAsP EML MOM 

Year Night Day Night Day Night Day Night Day Night Day 

2015 8996 7894 9266 8124 8675 8436 9054 7895 9049 7875 

2016 8015 6857 8244 6980 7725 7263 8025 6837 8025 6837 

2017 9013 7979 9114 8059 8556 8173 9048 7968 9043 7968 

2018 8055 6725 8129 6728 7578 6980 8089 6723 8089 6706 

2019 8781 7818 9034 8009 8191 7942 8839 7816 8835 7813 

2020 8345 7660 8654 7907 7978 7743 8350 7639 8366 7619 

2021 7507 7391 8202 7197 7412 7112 7482 6649 7481 6649 

From these data, the AEP is obtained by adding the portions of the night with those of the day. 

The AEP variation obtained by statistical methods compared to the AEP data obtained directly 

by the Wind Time Series is shown in figure 56. 

 

 

Figure 56: AEP variation between statistical methods with the Time Series, for each year (Night and Day 

discretization) 

Through this graph, it is possible to see that with this type of night and day discretization, the 

variations in AEP estimated by statistical models no longer follow a pattern of behavior very 

well, as happened in other previous cases. Now, the WAsP method is not the only one that has 

different results from the others, but also the EPFM which is the only one that overestimates 

the production in all years.  

In terms of lower AEP variability, that is, the ability to reproduce the AEP obtained directly 

from the wind series, the MLM wins in two years (2020 and 2021), the EPFM wins in the years 

2017 and 2019, the WAsP model wins in 2015 and 2016 and MOM wins in 2018. This data can 

be seen in Table 26. 
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Table 26: AEP variation between statistical methods with the Time Series, for each year  (Night/Day 

discretization) 
 

AEP (Night/Day) 

Year MLM EPFM WASP EML MOM 

2015 -1.66% 1.26% -0.37% -1.31% -1.46% 

2016 -0.59% 1.77% 0.19% -0.65% -0.65% 

2017 -0.93% 0.13% -2.46% -0.78% -0.81% 

2018 -0.14% 0.39% -1.64% 0.08% -0.04% 

2019 -1.54% 1.09% -4.31% -1.22% -1.26% 

2020 -0.65% 2.80% -2.42% -0.76% -0.78% 

2021 -0.18% 3.17% -2.69% -5.32% -5.33% 

 

For the reliability test, the one used for this discretization will also be the R^2 for the years 

2019 and 2020 in all methods. Table 27 shows the results for these two years. 

 

Table 27: Determination Coefficient values for each statistical method (Night/Day discretization) 
 

𝑹𝟐 Values 
 

2019 2020 
 

Night Day Night Day 

MLM 0.9929 0.9867 0.9881 0.9893 

EPFM 0.9911 0.9850 0.9944 0.9866 

WASP 0.9726 0.9725 0.9735 0.9712 

EML 0.9950 0.9707 0.9928 0.9702 

MOM 0.9927 0.9699 0.9927 0.9662 

 

In this case, it is possible to notice that the reliability values are higher in the night period than 

in the day. Although there are some methods with higher values for this criterion, the decisive 

factor as mentioned earlier in the other discretizations is the reproducibility of the Wind Series 

AEP. In this case, there is not a single method that varies less, but three, MLM, EPFM and 

WAsP. 

Therefore, after these four discretizations previously analyzed, it is possible to make a 

comparison between them in terms of better adjustment results. In all these approaches, the only 

method that manages to beat the others in terms of more times with lower rates of change is the 

WAsP. Therefore, this method is the best choice of the Wind Time Series. 

In addition, it is interesting to understand in which discretization of the four discussed, it 

manages to make the best estimates of energy production. For this, the AEP variations of the 

WAsP method were compared with the AEP of the WTS, in each discretization (see table 28). 
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Table 28: AEP variation for each discretization - Poland 
 

AEP for each discretization  
Annual Winter/Summer Night/Day 

2015 0.53% -1.19% -0.37% 

2016 1.13% -0.43% 0.19% 

2017 -2.17% -4.58% -2.46% 

2018 -1.30% 3.90% -1.64% 

2019 -3.60% -2.35% -4.31% 

2020 -1.37% -1.37% -2.42% 

2021 0.41% -4.63% -2.69% 

 

Through this table, it is possible to see that despite the Summer/Winter and Night/Day approach 

do not consider annual mean values for parameters such as shear factor, air density and Weibull 

parameters, these discretizations weren’t the most reliable. The annual approach was the most 

reliable because in seven years, it had the lowest AEP variation rates in four years. 
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5.2. Brazil 

5.2.1. Long Measurement period (3 years) 

The case study of Brazil, as mentioned in section 4.2, has a 3-year wind time series, from 

20/06/2009 to 19/06/2012. 

The turbine to be used will be the same as the case study in Poland, with a rated power of 4.2 

MW (Appendix A) at a hub height of 105 m and with air velocities and densities extrapolated 

for that height. 

Analogously to the case of Poland, the total energy of these 3 years was calculated, directly 

from the Wind Time Series, which is 62759 MWh. Therefore, the AEP represented each year 

was obtained by dividing this total value by the time interval of 3 years, finding a value of 

20920 MWh. 

The next step, after obtaining the AEP by the Time Series, is to estimate the Weibull parameters 

of each method ( MLM, EPFM, WAsP, EML, and MOM) in order to perform the adjustment 

to the wind time series. The results of the shape and scale parameters for the five methods can 

be seen in Table 29. 

 

Table 29: Weibull parameters (3 years) 
 

Weibull parameters 

Method k A 

MLM 2.95 9.13 

EPFM 2.89 9.14 

WAsP 2.95 9.13 

EML 2.94 9.13 

MOM 2.93 9.13 

 

As in the case of Poland, in this first study approach, the estimated values of the Weibull 

parameters show little variation between the methods. In figure 57, it is possible to see the 

variation of the parameters for each method in relation to their average value, which in the case 

of the shape parameter was 2.93 and the scale parameter, 9.13. 

 

Figure 57: Weibull parameters variation against their mean value (3 years) 
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In this case, the methods with the largest shape parameter variations were EPFM and WAsP 

but it is not possible to draw any goodness of fit conclusion based on this analysis. The 

adjustment made by each method to the 3-year series can be seen in figure 58. 

 

Figure 58: Weibull adjustment for each method related to the Time Series (3 years) 

With the Weibull parameters already estimated, the next step was to calculate the AEP for each 

method. However, the value found is not the final one yet, as it is necessary to make the 

correction according to the availability of 99.11%. This correction is made according to 

equation 1 and only for the time series because for statistical methods it does not make sense to 

use this concept. The AEP's obtained by statistical methods and their variation with the AEP of 

the time series, after correction, are shown in table 30. 

 

Table 30: AEP for each method and their variation against AEP from Time Series (3 years) 

Method AEP (MWh) AEP Variation (%) 

MLM 21036 -0.34% 

EPFM 20973 -0.64% 

WASP 21036 -0.34% 

EML 21020 -0.41% 

MOM 21004 -0.49% 

According to this table, all methods perform underestimations of AEP compared to the value 

obtained by the time series and those with less variation are MLM and WAsP, with only 0.34% 

in both. 

Regarding the goodness of fit criteria, the four mentioned in section 3 were used, with the results 

available in table 31. 
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Table 31: Accuracy test values for each method (3 years) 

Statistical 
methods 

The Weibull parameters Accuracy Test Efficiency 

   
k A RMSE 

 

R  

  

MLM 2.95 9.13 0.00231 0.00602 0.99695 0.99619 

EPFM 2.89 9.14 0.00263 0.00762 0.99640 0.99550 

WAsP 2.95 9.13 0.00231 0.00602 0.99695 0.99619 

EML 2.94 9.13 0.00236 0.00620 0.99686 0.99612 

MOM 2.93 9.13 0.00242 0.00641 0.99676 0.99603 

This table shows that by presenting the same estimates of Weibull parameters, the MLM and 

WAsP methods have the same values in the goodness of fit criteria. These two methods are 

those with the best values, in the four criteria. Despite this, all statistical methods have good 

values, especially in the determination coefficient and in the correlation coefficient, since they 

are all close to 1. 

The choice of the best method should consider the ability to reproduce the AEP obtained from 

the wind series, which characterizes the wind regime at the site. Contrary to what happens in 

the case of Poland, both for this reproducibility criterion and for the values obtained in the 

goodness of fit tests, the MLM and WAsP methods are the ones that produce the best fit for the 

WTS. 

Now, it is necessary to check whether this pattern occurs for the other discretizations, mainly 

for the Winter/Summer and Night/Day approach. 

 

 

5.2.2. Yearly discretization  

For the second approach, the calculation of the AEP will be done for each year and not consider 

the sum of the energies of the three years and then divide by three to have the same AEP in all 

years. Therefore, there will be 3 different databases, discretizing an entire year. 

Figure 59 represents the results of the AEP obtained directly from the Wind Time Series, in 

each year (blue) with the value obtained by the first energy analysis (section 5.2.1), in orange, 

also without statistical intervention. It is important to remember that the availability was 

obtained for each year (see table 32) and after that the AEP comparison was made. 

 

Table 32: Availability for each year 

Year Availability 𝑨𝑬𝑷𝒃𝒆𝒇𝒐𝒓𝒆 

(MWh) 

𝑨𝑬𝑷𝒄𝒐𝒓𝒓𝒆𝒄𝒕𝒆𝒅 
(MWh) 

2009/2010 97.89% 18944 19353 

2010/2011 99.45% 21135 21251 

2011/2012 99.99% 22679 22681 

 

𝑋2 𝑅2 
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Figure 59: AEP values for each year versus AEP for 3 years calculation (Both from Time Series) 

Through this figure, the AEP over the years has an increase around the AEP value of the first 

discretization, that is, having a more linear than oscillatory behavior around 20920 MWh. The 

average AEP obtained each year is also 20920 MWh, with a negligible error (15th decimal 

place). 

In addition, one of the analysis factors is the shear factor, air density and the respective AEP 

directly from the Time Series, already mentioned above. Table 33 shows these values. 

 

Table 33: Shear factor, Density and AEP calculated for each year (Brazil) 

Year Shear factor Air density AEP (MWh) 

2009/10 0.074 1.155 19353 

2010/11 0.068 1.157 21251 

2011/12 0.073 1.157 22681 

 

Only through these data it is not possible to obtain a direct relationship between the variation 

of these parameters with the values of AEP of the Time Series, being necessary to perform 

calculations with larger discretizations. 

After that, Weibull parameters were estimated each year by all five methods also studied in the 

case of Poland. Table 34 shows the results of these estimates of the pair (k, A). 
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Table 34: Weibull parameters for each year and method (Brazil) 
 

MLM EPFM WAsP EML MOM 

Year k A k A k A k A k A 

2009/2010 2.93 8.69 2.89 8.70 2.94 8.69 2.92 8.69 2.91 8.70 

2010/2011 2.82 9.20 2.82 9.20 2.82 9.20 2.80 9.20 2.79 9.20 

2011/2012 3.15 9.47 2.99 9.50 3.17 9.49 3.16 9.48 3.15 9.48 

 

Based on these estimated parameters, the next step was to obtain the AEP for each year using 

these statistical methods. Table 35 presents these results. 

 

Table 35: AEP for each method and year (Brazil) 
 

AEP (MWh) 

Year MLM EPFM WASP EML MOM 

2009/2010 19473 19457 19486 19486 19483 

2010/2011 21048 21048 21048 21048 20996 

2011/2012 22485 22295 22550 22535 22518 

With the AEP data obtained by the statistical methods, it is now possible to see their ability to 

reproduce the annual energy production from the Time Series. This is done by analyzing the 

energy variation between the two approaches and then, represented in figure 60. 

 

Figure 60: AEP variation comparing each statistical method with Time Series (Brazil) 

These variations over the years can also be seen in Table 36. 
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Table 36: AEP variation for each method against AEP from Time Series 
 

AEP (Annual) 

Year MLM EPFM WASP EML MOM 

2009/2010 0.62% 0.53% 0.68% 0.68% 0.67% 

2010/2011 -0.96% -0.96% -0.96% -0.96% -1.20% 

2011/2012 -0.86% -1.70% -0.58% -0.64% -0.72% 

 

Through the graph and the table, it can be seen that the energy variations of the methods 

compared to the Wind Time Series are relatively low, which already indicates a good 

reproducibility of the AEP of the base series. Despite the variations between the methods being 

very low, it is already possible to analyze that the EPFM method and the WAsP are the ones 

that come closest to the AEP of the WTS in two years. The MLM and EML methods have the 

best reproducibility together with EPFM and WAsP, in the year of 2010/2011 and MOM, in no 

year manages to beat the other methods. 

An example of adjustment can be seen in figure 61 for the year 2009/2010, with the fittings of 

each method made to the base case (WTS). Adjustments for other years can be seen in figure 

B2.1. (Appendix B). 

 

Figure 61: Weibull adjustment for each method related to the Time Series (Brazil – 2009/2010) 

The next step was to perform goodness of fit criteria and understand whether the methods have 

good values. In terms of adjustment criteria, in this case where the discretization is yearly 

performed, it was decided to use the determination coefficient (R²) criterion, as it is more 

commonly used in the industry. Table 37 shows the values found for each method and in each 

year. 
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Table 37: Determination Coefficient values for each statistical method (Yearly discretization- Brazil) 
 

𝑹𝟐 Values 

Years MLM EPFM WAsP EML MOM 

2009/2010 0.9958 0.9952 0.9960 0.9957 0.9956 

2010/2011 0.9911 0.9911 0.9911 0.9909 0.9907 

2011/2012 0.9929 0.9860 0.9935 0.9932 0.9929 

 

Through this table, it can be seen that the statistical methods adjust very well to the Wind series, 

since the values of this goodness criterion are all very close to 1. The non-significant differences 

between them and therefore, with this criterion, it is not possible to define a better adjustment 

method. 

The choice is made based on the ability to play the Time Series AEP, which as mentioned 

earlier, the MLM and WAsP methods come closest. 

 

 

5.2.3. Winter/Summer discretization 

This discretization, as in the case of Poland, will separate the years of the series into Winter and 

Summer, in which the first refers to the months of April, May, June, July, August, and 

September. The second semester, called Summer, considers the six hottest months of the year 

(January, February, March, October, November, and December). 

The first analysis obtained is relative to the monthly average speeds in each of the years, as can 

be seen in figure 62. 

 

Figure 62: Monthly average velocity in each year for 105 m above ground level (Brazil) 

Because Brazil is located in the southern hemisphere, the coldest period in the study region is 

in the months of July, August, and September, represented in the graph as the maximum speed 

points in all years. Seasonality in 2010/2011 is more noticeable than in other years. 

Regarding the shear factor and density parameters, these values can be consulted in figure 63. 

As expected, the density values do not differ much when comparing winter and summer, due 

to the fact that the study site in Brazil does not have well-defined seasons. An example of this 

is that in 2011 the average temperature of the winter months was 25.6ºC, while in the summer 

it was 27ºC. 
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Figure 63: Shear factor and density values for Winter and Summer in each year (Brazil) 

In terms of AEP obtained directly by the Time Series, table 38 shows the energy results of the 

winter and summer periods and the total (AEP). This table already accounts for the energy 

correction made by the availability of each year and in each discretization. The availability can 

be seen in table 39. 

Table 38: Season energy values and AEP values for each year (Brazil) 
 

Semester Energy [MWh] AEP [MWh] 

Year Winter Summer 
 

2009/2010 10784 8603 19388 

2010/2011 12971 8254 21225 

2011/2012 12065 10616 22681 

 

Table 39: Season availability (Brazil) 
 

Availability 

Year Winter Summer 

2009/2010 96.25% 99.55% 

2010/2011 100.00% 98.90% 

2011/2012 99.99% 100.00% 

 

The next step is to obtain the Weibull parameters through statistical methods. Therefore, for 

each method, two parameters were obtained for Winter and another pair for Summer. In table 

40 there is an example of these results for the MLM method. The remaining results of the other 

methods can be consulted in the tables (C2.1-C2.4), of Appendix C. 

Table 40: Weibull parameters calculated from MLM (Winter/Summer) 
 

MLM parameters  
Winter Summer 

Years k A k A 

2009/2010 3.24 9.21 2.74 8.16 

2010/2011 3.35 10.33 2.68 7.96 

2011/2012 3.20 9.88 3.17 9.06 
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From this, it was possible to obtain the semiannual energy production values for each method, 

for each year. These values are in  table 41. 

 

Table 41: Winter and Summer energy values for each method and year (Brazil) 
 

Semester energy (MWh) 

 
MLM EPFM WAsP EML MOM 

Year Winter Summer Winter Summer Winter Summer Winter Summer Winter Summer 

2009/2010 10874 8653 10746 8673 10866 8658 10851 8667 10868 8667 

2010/2011 12721 8278 12482 8282 12735 8278 12683 8278 12697 8275 

2011/2012 11925 10561 11771 10486 11934 10569 11944 10547 11934 10565 

 

Therefore, the AEP is obtained from the sum of the winter and summer portions. The difference 

in the AEP obtained by statistical methods compared to the AEP resulting from the Time Series 

can be seen in figure 64 and table 42. 

 

Figure 64: AEP variation between statistical methods with the Time Series, for each year (Winter/Summer 

discretization - Brazil) 

 

Table 42:AEP variation between statistical methods with the Time Series, for each year (Winter/Summer 

discretization - Brazil) 
 

AEP (Winter/summer) 

 
MLM EPFM WASP EML MOM 

2009/2010 0.72% 0.16% 0.75% 0.67% 0.75% 

2010/2011 -1.06% -2.17% -1.19% -1.24% -1.19% 

2011/2012 -0.86% -1.87% -0.80% -0.84% -0.80% 
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Through this graph and this table, it is possible to see that the methods, in general, make good 

adjustments, and in some years, the methods have an error of less than 1% of overestimation or 

underestimation. In terms of comparison, all methods are best-fitting choices in at least one of 

the three years, except EML, which does not win in any of the years. 

An interesting point is that in the first year, the EPFM method is the one that best fits the WTS. 

However, in the next two years, this method completely deviates from the other methods, 

having the greatest variations between them. This is due to the order of magnitude of the 

Weibull parameters estimated by him, since both in winter and in summer, of the second and 

third year, the values of the other four parameters are similar and that of the EPFM already 

produces other results. 

Regarding the reliability criteria, only the determination coefficient will be used, as in the case 

of the previous discretization. Table 43 shows the results for these the three years, regarding 

Winter and Summer values. 

 

Table 43: Determination Coefficient values for each statistical method (Winter/Summer - Brazil) 
 

𝑹𝟐 Values  
2009/2010 2010/2011 2011/2012  

Winter Summer Winter Summer Winter Summer 

MLM 0.9957 0.9930 0.9886 0.9918 0.9901 0.9933 

EPFM 0.9914 0.9936 0.9771 0.9921 0.9814 0.9870 

WASP 0.9957 0.9930 0.9886 0.9918 0.9900 0.9933 

EML 0.9955 0.9925 0.9872 0.9918 0.9904 0.9925 

MOM 0.9956 0.9925 0.9873 0.9916 0.9900 0.9926 

From this table, it can be seen that all methods have good adjustment values, and an interesting 

fact is the slight reduction in the value of the EPFM method in the year 2010/2011 more than 

in the other methods. As seen previously, from that year onwards, the method begins to increase 

the variation of AEP with the Time Series, making this change in value in this criterion 

plausible. 

 

5.2.4. Night/Day discretization 

As in the other case study, this last discretization will be done in order to consider shear factor 

values and densities that are not annual averages. 

The average annual speeds in the night and in the day, during the three years can be seen in 

Figure 65. 

 

Figure 65: Average annual speed for night and day (Brazil) 
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Regarding the shear factor and air density parameters, the values obtained for this discretization 

approach are shown in figure 66. 

 

Figure 66: Shear factor and density values for Night and Day in each year (Brazil) 

The averages of these parameters are shown in Table 44. 

 

Table 44: Night and Day Annual average values for shear factor and air density (Brazil) 

Shear factor Density (kg/m3) 

Night Day Night Day 

0.101 0.039 1.165 1.145 

 

In this case, in addition to the variation in the shear factor values, it is possible to see that there 

is no significant difference in the air density values when comparing the period of night with 

day. The climatic factor and the average high temperatures present in this location justify this 

scenario. 

Before performing any AEP calculations directly from the Time Series, it is necessary to 

consider the availability of each day and night period, as shown in Table 45. 

 

Table 45: Night and day availability (Brazil) 
 

Availability  
Night Day 

2009/2010 97.80% 97.96% 

2010/2011 99.45% 99.45% 

2011/2012 100.00% 99.99% 

 

Therefore, the energy values of each part (night/day), calculated directly from the WTS and 

their respective AEP are represented in table 46. 

 

 

 

 



Time Series vs Statistical Approaches in Estimating Wind Turbines Energy Yield 

85 

 

Table 46: Night and Day energy values and AEP values for each year (Brazil) 
 

Energy (MWh) 

Year Night Day AEP 

2009/2010 11050 8307 19356 

2010/2011 11994 9257 21251 

2011/2012 12753 9928 22681 

 

The next step is to obtain the estimates of the Weibull parameters for the night and day periods, 

for each statistical method. The result for MLM can be seen in Table 47. The remaining results 

of the other methods can be consulted in the tables (C2.5-C2.8), of Appendix C. 

 

Table 47: Weibull parameters calculated from MLM (Night and Day- Brazil) 

  MLM parameters 

  Night Day  
k A k A 

2009/2010 3.34 9.33 2.72 8.04 

2010/2011 3.23 9.80 2.55 8.56 

2011/2012 3.55 10.09 2.90 8.82 

 

From this, it was possible to obtain the semiannual energy production values for each method, 

for each year. These values are in  table 48. 

 

Table 48: Night and Day energy values for each method and year (Brazil) 

  Night /Day energy (MWh) 

  MLM EPFM WAsP EML MOM 

Year Night Day Night Day Night Day Night Day Night Day 

2009/2010 11265 8542 11076 8542 11216 8542 11192 8542 11192 8539 

2010/2011 11930 9371 11782 9426 11945 9365 11907 9371 11897 9365 

2011/2012 12666 10052 12384 10048 12718 10069 12708 10052 12708 10052 

 

From these data, the AEP is obtained by adding the portions of the night with those of the day. 

The AEP variation obtained by statistical methods compared to the AEP data obtained directly 

by the Wind Time Series is shown in figure 67. 
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Figure 67: AEP variation between statistical methods with the Time Series, for each year (Night and Day 

discretization - Brazil) 

 

According to this AEP variation analysis of the statistical methods in relation to the Time Series, 

the same of the previous discretization occurs in this one. The methods perform good 

adjustments in terms of being able to reproduce the WTS AEP, as the error found is a maximum 

of 2% of estimation. 

Another point is that in this discretization, the MLM, EPFM and WAsP methods outperform 

the other methods in certain specific years. EML and MOM, despite good adjustments, are not 

the best among the five. Considering the analysis made in the other discretizations, except the 

first one, the EPFM and WAsP methods are the ones that have the greatest consistency in the 

reproduction of the Time Series AEP. 

The variation described in figure 67 can be found in table 49. 

 

Table 49: AEP variation between statistical methods with the Time Series, for each year (Night and Day 

discretization - Brazil) 
 

AEP (Night/Day) 

 
MLM EPFM WASP EML MOM 

2009/2010 2.33% 1.35% 1.94% 1.96% 1.96% 

2010/2011 0.24% -0.20% 0.05% 0.13% 0.13% 

2011/2012 0.16% -1.10% 0.35% 0.35% 0.35% 

 

Regarding the criterion used in the last discretizations, of the determination coefficient, the 

values obtained for Night and day, in each year are in table 50. 
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Table 50: Determination Coefficient values for each statistical method (Night/Day - Brazil) 
 

 𝑹𝟐  Values  
2009/2010 2010/2011 2011/2012  

Winter Summer Winter Summer Winter Summer 

MLM 0.9987 0.9924 0.9880 0.9890 0.9915 0.9956 

EPFM 0.9920 0.9902 0.9766 0.9847 0.9824 0.9877 

WASP 0.9933 0.9965 0.9869 0.9910 0.9961 0.9933 

EML 0.9957 0.9914 0.9822 0.9855 0.9916 0.9934 

MOM 0.9956 0.9925 0.9871 0.9870 0.9904 0.9883 

 

Contrary to what happened in the first case study, the four different discretizations for Brazil 

failed to converge to a more reliable method. Among the options, those that had smaller 

variations, that is, that best managed to reproduce Wind Time's AEP were MLM, EPFM and 

WAsP. 

For these three methods, the discretization that produced smaller AEP rates of change with 

WTS was Night/Day. 
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6. Conclusion and further works 

In the course of this dissertation, several statistical methods were approached to obtain the 

Weibull parameters used in the calculation of AEP. In fact, the main factor that was present in 

the case studies and in all the discretizations was the AEP, which served as a parameter for 

comparison with the energy production coming directly from the Wind Time Series. 

As explained in this work, the calculation of AEP to estimate energy production does not always 

condition the good adjustment of statistical methods to WTS, simply because parameters such 

as shear factor and air density are considered on an annual average basis. This can lead to 

estimation values with significant errors in the energy production of a turbine, in addition to not 

considering seasonality phenomena over the course of a year. 

In general terms, both in the case of Poland and Brazil, the statistical methods obtained a good 

adjustment, and the estimated Weibull parameters, for all discretizations, were higher in Brazil 

than in Poland. In addition, the AEP variation interval of each method in relation to the AEP 

obtained directly from the wind series was greater in the first case than in the second. 

For the Polish case study, the statistical methods were generally able to reproduce the energy 

obtained directly from the WTS with few errors, in which this reproducibility was between -3 

and 3%. Considering that the first discretization does not consider any seasonality phenomenon, 

in addition to assigning the same AEP to all years, the results obtained from it were not 

considered relevant for the study, only to serve as a comparison. 

Throughout the discretizations, there were methods that had good WTS energy reproducibility 

rates such as MLM and WAsP. However, in terms of lower AEP variation rates when compared 

to the energy obtained directly from the Time Series, the WAsP method was the most suitable. 

In addition, contrary to the hypothesis that perhaps a greater discretization of the wind series 

can contribute to better results, the best discretization for the WAsP method was the annual one. 

For the WAsP method and the MLM, the best discretization in terms of AEP reproduction of 

the wind series was the annual one, while with other methods, the one with the best results was 

Night/Day and Winter/Summer. This may be related to the different combinations of shear 

factors and density for each year, as for the Winter/Summer discretization there is a large 

difference in values between the average density of each period due to the average temperatures, 

but there is no significant difference of shear factor. In the case of the Night/Day discretization, 

there is a big difference between the shear factors of the night in relation to the day, but not for 

the densities. 
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For the case study of Brazil, the statistical methods had less variability of results than that of 

Poland. A possible explanation for this may be related to the local climate, which is more stable 

in terms of density variation and shear factor than in Poland. Thus, the Weibull parameters 

estimated by each method are better adjusted to the wind series. 

Another factor that may explain the better adjustments in the case of Brazil is that no single 

method was obtained as the most reliable to reproduce the WTS energy production, in which 

AEP's reproducibility were even smaller than Poland's, with -2.5 to 2.5%. In the end, three 

methods were more suitable, namely MLM, EPFM and also WAsP. Regarding the 

discretization, the option that best adjusted to WTS in terms of energy production 

reproducibility was night/day. This contributes to the idea that the adjustment of different shear 

factors to a wind series can contribute to better energy production results. 

A method present in both case studies as the one with the best ability to reproduce the AEP 

obtained directly from the wind series is the WAsP. This can be explained by the fact that this 

method is the only one that presents a double validation of data with an iterative process of 

convergence of Weibull parameters. 

The results obtained were important to understand the influence of climate and the atmospheric 

parameters derived from it for estimating the energy production of a wind turbine. Of course, 

statistical methods also play a role in influencing the adjustment, depending on your 

mathematical model, but it is essential to consider the sensitivity of the shear factor variability 

and air density to estimate the AEP. 

This study paves the way for future research that may explore aspects not yet addressed, such 

as assessing the uncertainties with both time series and statistical approaches in estimating wind 

turbine energy yield, related to orography, soil roughness and associated obstacles. Another 

interesting topic that can be derived from the study done is applying time series and statistical 

models to estimate energy yield for various types of wind turbines. 



Time Series vs Statistical Approaches in Estimating Wind Turbines Energy Yield 

90 

References  

Abbes, M., & Belhadj, J. (2014). Development of a methodology for wind energy estimation 

and wind park design. Journal of Renewable and Sustainable Energy, 6. 

https://doi.org/10.1063/1.4895919 

ADB, A. D. B. (Ed.). (2014). Guidelines for Wind Resource Assessment: Best Practices for 

Countries Initiating Wind Development. 

Akdağ, S. A., & Dinler, A. (2009). A new method to estimate Weibull parameters for wind 

energy applications. Energy Conversion and Management, 50(7), 1761–1766. 

https://doi.org/10.1016/j.enconman.2009.03.020 

Akdağ, S. A., & Güler, Ö. (2015). A novel energy pattern factor method for wind speed 

distribution parameter estimation. Energy Conversion and Management, 106, 1124–

1133. https://doi.org/10.1016/j.enconman.2015.10.042 

Al-Quraan, A., Al-Mhairat, B., Malkawi, A. M. A., Radaideh, A., & Al-Masri, H. M. K. (2023). 

Optimal Prediction of Wind Energy Resources Based on WOA—A Case Study in 

Jordan. Sustainability (Switzerland), 15(5). Scopus. 

https://doi.org/10.3390/su15053927 

Alrashidi, M. (2023). Estimation of Weibull Distribution Parameters for Wind Speed 

Characteristics Using Neural Network Algorithm. Computers, Materials & Continua, 

75(1), 1073–1088. https://doi.org/10.32604/cmc.2023.036170 

Badger, M., Peña, A., Hahmann, A. N., Mouche, A. A., & Hasager, C. B. (2016). Extrapolating 

Satellite Winds to Turbine Operating Heights. Journal of Applied Meteorology and 

Climatology, 55(4), 975–991. https://doi.org/10.1175/JAMC-D-15-0197.1 

Chai, T., & Draxler, R. R. (2014). Root mean square error (RMSE) or mean absolute error 

(MAE)? – Arguments against avoiding RMSE in the literature. Geoscientific Model 

Development, 7(3), 1247–1250. https://doi.org/10.5194/gmd-7-1247-2014 

Chong, C. H., & Ragai Henry Rigit, A. (2021). Wind Speed Statistical Analysis and Energy 

Assessment for Pulau Triso, Sarawak, Malaysia. 2021 International Conference on 



Time Series vs Statistical Approaches in Estimating Wind Turbines Energy Yield 

91 

Green Energy, Computing and Sustainable Technology (GECOST), 1–6. 

https://doi.org/10.1109/GECOST52368.2021.9538687 

Dayal, K. K., Cater, J. E., Kingan, M. J., Bellon, G. D., & Sharma, R. N. (2021). Wind resource 

assessment and energy potential of selected locations in Fiji. Renewable Energy, 172, 

219–237. https://doi.org/10.1016/j.renene.2021.03.034 

Dupont, E., Koppelaar, R., & Jeanmart, H. (2017). Global available wind energy with physical 

and energy return on investment constraints. Applied Energy, 209. 

https://doi.org/10.1016/j.apenergy.2017.09.085 

Edrisian, A., Samani, H., Sharifan, A., & Naseh, M. R. (2013). The New Hybrid Model of 

Compressed Air for Stable Production of Wind Farms. International Journal of 

Emerging Technology and Advanced Engineering, 3, 37–43. 

Guerrero-Villar, F., Dorado-Vicente, R., Fike, M., & Torres-Jiménez, E. (2019). Influence of 

ambient conditions on wind speed measurement: Impact on the annual energy 

production assessment. Energy Conversion and Management, 195, 1111–1123. Scopus. 

https://doi.org/10.1016/j.enconman.2019.05.067 

Gugliani, G. K., Sarkar, A., Ley, C., & Mandal, S. (2018). New methods to assess wind 

resources in terms of wind speed, load, power and direction. Renewable Energy, 129, 

168–182. https://doi.org/10.1016/j.renene.2018.05.088 

Hosius, E., Seebaß, J. V., Wacker, B., & Schlüter, J. Chr. (2023). The impact of offshore wind 

energy on Northern European wholesale electricity prices. Applied Energy, 341, 

120910. https://doi.org/10.1016/j.apenergy.2023.120910 

Jani, H. K., Nagababu, G., & Prasad, K. M. (2023). Enhancing offshore wind resource 

assessment with LIDAR-validated reanalysis datasets: A case study in Gujarat, India | 

Elsevier Enhanced Reader. https://doi.org/10.1016/j.ijft.2023.100320 

Jiménez, J. J., Tzianoumis, A., Stokes, L., Yang, Q., & Livina, V. N. (2023). Long-term wind 

and solar energy generation forecasts, and optimisation of Power Purchase Agreements. 

Energy Reports, 9, 292–302. https://doi.org/10.1016/j.egyr.2022.11.175 



Time Series vs Statistical Approaches in Estimating Wind Turbines Energy Yield 

92 

Jong, P. (n.d.). Location of the wind farm clusters in the Northeast subsystem... ResearchGate. 

Retrieved 4 June 2023, from https://www.researchgate.net/figure/Location-of-the-

wind-farm-clusters-in-the-Northeast-subsystem-of-Brazil-Key-BA-

Bahia_fig23_319991149 

JRC, D., Shaw, S., & Peteves, S. (2006). Bridging the European Wind Energy Market and a 

Future Renewable Hydrogen-Inclusive Economy. 

Kang, D., Ko, K., & Huh, J. (2015). Determination of extreme wind values using the Gumbel 

distribution. Energy, 86, 51–58. https://doi.org/10.1016/j.energy.2015.03.126 

Kang, S., Khanjari, A., You, S., & Lee, J.-H. (2021). Comparison of different statistical 

methods used to estimate Weibull parameters for wind speed contribution in nearby an 

offshore site, Republic of Korea. Energy Reports, 7, 7358–7373. 

https://doi.org/10.1016/j.egyr.2021.10.078 

Kavak Akpinar, E., & Akpinar, S. (2005). A statistical analysis of wind speed data used in 

installation of wind energy conversion systems. Energy Conversion and Management, 

46(4), 515–532. https://doi.org/10.1016/j.enconman.2004.05.002 

Lang, S., & Mckeogh, E. (2011). LIDAR and SODAR Measurements of Wind Speed and 

Direction in Upland Terrain for Wind Energy Purposes. Remote Sensing, 3, 1871–1901. 

https://doi.org/10.3390/rs3091871 

Liang, Y., Wu, C., Ji, X., Zhang, M., Li, Y., He, J., & Qin, Z. (2022). Estimation of the 

influences of spatiotemporal variations in air density on wind energy assessment in 

China based on deep neural network. Energy, 239, 122210. 

https://doi.org/10.1016/j.energy.2021.122210 

Lopez-Villalobos, C. A., Martínez-Alvarado, O., Rodriguez-Hernandez, O., & Romero-

Centeno, R. (2022). Analysis of the influence of the wind speed profile on wind power 

production. Energy Reports, 8, 8079–8092. https://doi.org/10.1016/j.egyr.2022.06.046 

Lysen, E. H. (1983). Introduction to wind energy. 



Time Series vs Statistical Approaches in Estimating Wind Turbines Energy Yield 

93 

Matos, J. C. (2022). Perdas de produção de eletricidade em parques eólicos: Expectativas vs. 

realidade. INEGI. http://www.inegi.pt/pt/noticias/perdas-de-producao-de-eletricidade-

em-parques-eolicos-expectativas-vs-realidade/ 

Measnet_SiteAssessment_V2.0.pdf. (n.d.). Retrieved 8 June 2023, from 

https://www.measnet.com/wp-

content/uploads/2016/05/Measnet_SiteAssessment_V2.0.pdf 

Mortensen, N. G. (1994). Wind Measurements for Wind Energy Applications—A Review. 

Mukaka, M. (2012). A guide to appropriate use of Correlation coefficient in medical research. 

Malawi Medical Journal : The Journal of Medical Association of Malawi, 24(3), 69–

71. 

Öztürk, B., Hassanein, A., Akpolat, M. T., Abdulrahim, A., Perçin, M., & Uzol, O. (2023). On 

the wake characteristics of a model wind turbine and a porous disc: Effects of freestream 

turbulence intensity. Renewable Energy, 212, 238–250. Scopus. 

https://doi.org/10.1016/j.renene.2023.05.002 

Porté-Agel, F., Bastankhah, M., & Shamsoddin, S. (2020). Wind-Turbine and Wind-Farm 

Flows: A Review. Boundary-Layer Meteorology, 174. https://doi.org/10.1007/s10546-

019-00473-0 

Roibas-Millan, E., Cubas, J., & Pindado, S. (2017). Studies on Cup Anemometer Performances 

Carried out at IDR/UPM Institute. Past and Present Research. Energies, 10(11), Article 

11. https://doi.org/10.3390/en10111860 

Shanmugaratnam, S., Yogenthiran, E., Koodali, R., Ravirajan, P., Velauthapillai, D., & 

Shivatharsiny, Y. (2021). Recent Progress and Approaches on Transition Metal 

Chalcogenides for Hydrogen Production. Energies, 14, 8265. 

https://doi.org/10.3390/en14248265 

Shende, V., Patidar, H., Baredar, P., & Agrawal, M. (2023). Estimation of wind characteristics 

at different topographical conditions using doppler remote sensing instrument—A 

comparative study using optimization algorithm. Environmental Science and Pollution 

Research, 30(16), 48587–48603. https://doi.org/10.1007/s11356-023-25689-z 



Time Series vs Statistical Approaches in Estimating Wind Turbines Energy Yield 

94 

Siqueira, J., Feiden, A., & Gurgacz, F. (n.d.). Analysis of the energetic dynamism between solar 

and wind energy available in the south of Brazil. Retrieved 2 June 2023, from 

https://www.researchgate.net/publication/314175018_Analysis_of_the_energetic_dyn

amism_between_solar_and_wind_energy_available_in_the_south_of_Brazil/link/59a0

b90d0f7e9b0fb8994561/download 

SPOT hoje | OMIE. (n.d.). Retrieved 10 June 2023, from https://www.omie.es/pt/spot-hoy 

Stevens, W., Squier, W., Mitchell, W., Gullett, B., & Pressley, C. (2013). Measurement of 

motion corrected wind velocity using an aerostat lofted sonic anemometer. Atmospheric 

Measurement Techniques Discussions, 6, 703–720. https://doi.org/10.5194/amtd-6-

703-2013 

The annual variability of wind speed. (n.d.). Wind Energy The Facts. Retrieved 16 June 2023, 

from https://www.wind-energy-the-facts.org/the-annual-variability-of-wind-

speed.html 

Werapun, W., Tirawanichakul, Y., & Waewsak, J. (2017). Wind Shear Coefficients and their 

Effect on Energy Production. Energy Procedia, 138, 1061–1066. 

https://doi.org/10.1016/j.egypro.2017.10.111 

Yaniktepe, B., Kara, O., Aladag, I., & Ozturk, C. (2023). Comparison of eight methods of 

Weibull distribution for determining the best-fit distribution parameters with wind data 

measured from the met-mast. Environmental Science and Pollution Research, 30(4), 

9576–9590. https://doi.org/10.1007/s11356-022-22777-4 

 



Time Series vs Statistical Approaches in Estimating Wind Turbines Energy Yield 

95 

7. APPENDIX A: Power curves of the chosen wind turbine 

 

Figure A1: Power curves of the chosen wind turbine 
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8. APPENDIX B: Weibull adjustment to the time series 

B.1. Poland 

 

Figure B1.1: (a) 2015 and (b) 2016 adjustments  

 

 

Figure B1.2: (a) 2017 and (b) 2018 adjustments 

 

 

Figure B1.3: (a) 2019 and (b) 2020 adjustments 
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Figure B1.4: 2021 adjustment 

B.2. Brazil 

 

 

Figure B2.1.: (a)2010/2011 and (b) 2011/12 adjustments 
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9. APPENDIX C: Weibull parameters for the different 
discretizations 

C.1. Poland 

 
Table C1.1: Weibull parameters calculated from EPFM (Winter/Summer) 

 

EPFM parameters  

Winter Summer 

Years k A k A 

2015 2.58 8.66 2.40 7.34 

2016 2.72 8.19 2.40 6.65 

2017 2.66 8.30 2.40 7.32 

2018 2.67 8.13 2.40 6.95 

2019 2.73 8.66 2.40 7.07 

2020 2.99 8.57 2.40 6.86 

2021 2.80 7.61 2.40 6.83 

 

Table C1.2.: Weibull parameters calculated from WAsP (Winter/Summer) 
 

WAsP parameters  

Winter Summer 

Years k A k A 

2015 2.40 8.66 2.40 7.34 

2016 2.40 8.19 2.40 6.65 

2017 2.40 8.30 2.40 7.32 

2018 2.40 8.13 2.40 6.95 

2019 2.40 8.66 2.40 7.07 

2020 2.40 8.57 2.40 6.86 

2021 2.40 7.61 2.40 6.83 
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Table C1.3.: Weibull parameters calculated from EML(Winter/Summer) 
 

EML parameters  

Winter Summer 

Years k A k A 

2015 2.47 8.68 2.54 7.43 

2016 2.66 8.36 2.45 6.67 

2017 2.47 8.35 2.67 7.49 

2018 2.58 8.24 2.53 7.03 

2019 2.47 8.68 2.59 7.18 

2020 3.15 9.00 2.60 6.98 

2021 2.76 7.84 2.53 6.92 

 

 

Table C1.4.: Weibull parameters calculated from MOM (Winter/Summer) 
 

MOM parameters  

Winter Summer 

Years k A k A 

2015 2.47 8.68 2.53 7.43 

2016 2.65 8.36 2.44 6.67 

2017 2.46 8.35 2.67 7.49 

2018 2.57 8.24 2.52 7.03 

2019 2.47 8.68 2.58 7.18 

2020 3.14 9.00 2.59 6.98 

2021 2.75 7.85 2.52 6.91 

 

Table C1.5: Weibull parameters calculated from EPFM (Night/Day) 
 

EPFM parameters 
 

Night Day 
 

A k A k 

2015 8.30 2.78 7.76 2.41 

2016 7.76 2.80 7.14 2.42 

2017 8.22 2.77 7.71 2.49 

2018 7.70 2.82 7.01 2.44 

2019 8.14 2.92 7.67 2.58 

2020 7.96 2.85 7.61 2.63 

2021 7.72 2.95 7.25 2.61 
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Table C1.6: Weibull parameters calculated from WAsP (Night/Day) 
 

WASP parameters 
 

Night Day 

Year A k A k 

2015 8.08 2.40 7.94 2.40 

2016 7.54 2.40 7.29 2.40 

2017 8.01 2.40 7.79 2.40 

2018 7.46 2.40 7.14 2.40 

2019 7.80 2.40 7.66 2.40 

2020 7.68 2.40 7.55 2.40 

2021 7.37 2.40 7.21 2.40 

 

Table C1.7: Weibull parameters calculated from EML (Night/Day) 
 

EML parameters 
 

Night Day 

Year A k A k 

2015 8.21 2.69 7.67 2.19 

2016 7.66 2.72 7.06 2.21 

2017 8.19 2.75 7.69 2.31 

2018 7.68 2.82 7.00 2.27 

2019 8.04 2.92 7.59 2.40 

2020 7.82 2.76 7.49 2.43 

2021 7.39 2.68 6.96 2.27 

 

Table C1.8: Weibull parameters calculated from MOM (Night/Day) 
 

MOM parameters 
 

Night Day 

Year A k A k 

2015 8.21 2.68 7.66 2.18 

2016 7.66 2.72 7.06 2.20 

2017 8.19 2.74 7.69 2.31 

2018 7.68 2.82 6.99 2.26 

2019 8.04 2.91 7.59 2.39 

2020 7.83 2.75 7.48 2.42 

2021 7.39 2.67 6.96 2.27 
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C.2. Brazil 

 

Table C2.1.: Weibull parameters calculated from EPFM (Winter/Summer) 
 

EPFM parameters  
Winter Summer 

Years k A k A 

2009/2010 3.02 9.24 2.78 8.16 

2010/2011 3.07 10.38 2.75 7.95 

2011/2012 3.01 9.91 3.00 9.09 

 

Table C2.2.: Weibull parameters calculated from WAsP (Winter/Summer) 
 

WAsP parameters  
Winter Summer 

Years k A k A 

2009/2010 3.23 9.21 2.75 8.16 

2010/2011 3.35 10.34 2.68 7.96 

2011/2012 3.21 9.88 3.18 9.06 

 

Table C2.3.: Weibull parameters calculated from EML (Winter/Summer) 
 

EML parameters  
Winter Summer 

Years k A k A 

2009/2010 3.21 9.21 2.73 8.17 

2010/2011 3.30 10.34 2.68 7.96 

2011/2012 3.22 9.88 3.15 9.06 

 

Table C2.4.: Weibull parameters calculated from MOM (Winter/Summer) 
 

MOM parameters  
Winter Summer 

Years k A k A 

2009/2010 3.21 9.22 2.73 8.17 

2010/2011 3.30 10.35 2.67 7.96 

2011/2012 3.21 9.88 3.15 9.07 

 

Table C2.5.: Weibull parameters calculated from EPFM (night/day) 
 

EPFM parameters  
Night Day  

k A k A 

2009/2010 3.05 9.36 2.77 8.03 

2010/2011 3.02 9.84 2.66 8.55 

2011/2012 3.15 10.17 2.87 8.83 
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Table C2.6: Weibull parameters calculated from WAsP (night/day) 
 

WAsP parameters  
Night Day  

k A k A 

2009/2010 3.30 9.32 2.72 8.04 

2010/2011 3.23 9.81 2.54 8.56 

2011/2012 3.59 10.10 2.90 8.83 

 

Table C2.7: Weibull parameters calculated from EML (night/day) 
 

EML parameters  
Night Day  

k A k A 

2009/2010 3.27 9.32 2.72 8.04 

2010/2011 3.19 9.81 2.55 8.56 

2011/2012 3.58 10.09 2.90 8.82 

 

Table C2.8: Weibull parameters calculated from MOM (night/day) 
 

MOM parameters  
Night Day  

k A k A 

2009/2010 3.27 9.32 2.71 8.04 

2010/2011 3.18 9.81 2.54 8.56 

2011/2012 3.58 10.10 2.90 8.82 

 


