
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Automatic classification of Drosophila

Daniela Maria da Silva Tavares

International Master in Computer Vision

Supervisor: Jorge Manuel de Sousa Basto Vieira

Co-Supervisor: Cristina Alexandra Gonçalves Paula Vieira

Co-supervisor: Miguel Fernando Paiva Velhote Correia

Co-supervisor: Alba Nogueira Rodríguez

August 3, 2023



Automatic classification of Drosophila

Daniela Maria da Silva Tavares

International Master in Computer Vision

August 3, 2023



Resumo

Espécies do género Drosophila, nomeadamente D. melanogaster, têm sido usadas como espécies
modelo para elucidar os principais mecanismos da vida, bem como no estudo de diversas doenças,
como por exemplo Alzheimer e Parkinson. Na área da Genética, D. melanogaster está associ-
ada às maiores descobertas. Não é por isso surpreendente que esta espécie seja considerada um
organismo modelo. Contudo, o estudo de populações naturais tem sido também essencial para
entender a função, estrutura e evolução do genoma, a adaptação das espécies a mudanças climáti-
cas, bem como questões fundamentais da genética populacional como evolução neutral, seleção,
recombinação, inversões, demografia, o papel dos elementos transponíveis, entre outras questões
fundamentais da Biologia. Muitas destas questões requerem dados de genómica de múltiplos
indivíduos da mesma espécie (Poolseq sequencing) para poderem ser respondidas. Assim, a iden-
tificação correta da espécie usada é fundamental, embora este não seja um procedimento trivial.

Para facilitar a identificação de espécies de Drosophila, nesta dissertação, usaram-se métodos
de Processamento de Imagem e Redes Neuronais para classificar as espécies, usando fotografias
de várias espécies de Drosophila, nomeadamente de D. americana, D. melanogaster e D. no-
vamexicana. A metodologia adoptada consiste em duas fases. Na primeira fase foram usadas
técnicas de Processamento Digital de Imagem, usando filtros e combinando alguns desses filtros
com técnicas de thresholding. Na segunda fase foram usados métodos de Deep Learning, mais
precisamente Redes Neuronais Convolucionais. Esta metodologia baseada em filtros é inovadora
pois em trabalhos anteriores usaram-se keypoints em Deep Learning.

Concluiu-se que, embora os resultados das imagens com fundo sejam melhores, que os resul-
tados das imagens sem fundo, estes últimos são mais fidedignos. Comparando as redes neuronais
usadas, DenseNet-121, EfficientNet-b0, e ResNet-50, e usando as imagens sem fundo como dados
de entrada, foi com a primeira destas que se obtiveram os melhores resultados; uma veracidade
de 78%, uma precisão de 71%, uma sensibilidade de 72% e uma F1-score de 71%. De entre os
pré-processamentos feitos, nomeadamente a aplicação de filtros Gaussianos, de mediana, bilateral
e da técnica de unsharp masking, a que mostrou melhores resultados para as imagens sem fundo
foi o filtro Gaussiano. Com este método, aplicado à DenseNet-121, obteve-se uma veracidade e
uma precisão ambas de 88%, e uma sensibilidade e F1-score ambos de 87%. Estes resultados são
superiores aos já citados, em que não foi aplicado nenhum pré-processamento às imagens.

Como trabalho futuro, pretende-se melhorar o programa, para que seja possível classificar um
maior número de espécies de Drosophila. Também se pretende diminuir o overfitting de alguns
dos métodos usados.

i



Abstract

Drosophila species, namely D. melanogaster, have been used as model species to elucidate the
principal life mechanisms, as well as the study of several diseases, such as Alzheimer and Parkin-
son. In genetics, D.melanogaster is associated with some of the greatest discoveries. Therefore,
it is not surprising that this specie is considered a model organism. However, the study of natural
populations has also been essential to understand the role, structure, and evolution of the genome,
the adaptation of this species to climatic changes, as well as fundamental questions of populational
genetics, such as neutral evolution, selection, recombination, inversions, demography, the role of
transposable elements, among other Biology fundamental questions. Many of these questions re-
quire genetic data of multiple individuals of the same specie (Poolseq sequencing) to be answered.
In this way, the correct identification of the specie being used is critical, although this is not a
trivial procedure.

To facilitate the identification of Drosophila species, in this thesis, Image Processing and
Deep Convolutional Networks were used to classify the species, using data of various Drosophila
species, namely D.americana, D.melanogaster, and D.novamexicana. This methodology based in
filters is innovative, as in the previous works keypoints were used.

We conclude that, whereas the results with images that had background was better than the
results with images with no background, the latter results are more trustworthy. Comparing the
Neural Networks used, DenseNet-121, EfficientNet-b0, and ResNet-50, and using images with
no background as input, the best results were achieved by DenseNet-121; an accuracy of 78%, a
precision of 71%, a recall of 72%, and a F1-score of 71%. Among the procedures made, namely
the use of Gaussian, median, and bilateral filters, and unsharp masking, the one that provided the
best results was the Gaussian filter. Applying this method to DenseNet-121, it was obtained both
an accuracy and a precision of 88%, and both a recall and a F1-score of 87%. These results are
higher than the ones already cited, where no preprocessing was applied to the images.

As future work, it is aimed to improve the program, so it can be used to classify more
Drosophila species. It is also intended to diminish the overfitting of some of the methods used.

ii



Acknowledgements

I want to start by thanking Cristina Vieira and Jorge Vieira, from Instituto de Investigação e Ino-
vação em Saúde, i3S, for all the support, and for giving me the opportunity to use the laboratory
to obtain the dataset.

I want to thank Professor Miguel Correia, from FEUP, for helping me during this journey, and
for all the great ideas and advice to continuously improve my thesis.

I want to thank my co-supervisor Alba Rodríguez for the support, and Hugo López Fernández
for the support he gave me, even though he was not my co-supervisor.

I want to thank all professors from all the universities in this Master’s. A special thanks go to
Professor Lucía Ramos García from Universidad de la Coruña for helping me during the first year
of the Master.

Even though I am currently not a student at FCUP (Faculdade de Ciências da Universidade do
Porto), I want to thank the whole team from the Mathematics department for always helping me
during my undergraduate path, especially Professor José Carlos Santos for everything he has done
for me, not only course related, but also with extracurricular activities.

I want to thank Diogo for all the love and support he gave and for always believing I was
capable.

I want to thank Cláudia Pinto for being my first friend, and for all the moments we have been
through.

Finally, I want to thank my family, my brother, my father, and my mother for everything they
have done for me, for giving me all the conditions to handle this phase, giving me the love and
support I always needed in the good and bad moments.

iii



Contents

Abbreviations x

1 Introduction 1
1.1 Importance of Drosophila . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Related Work 4

3 Background 8
3.1 Computer Vision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1.1 Thresholding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.1.2 Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1.3 Lowpass Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1.4 Highpass Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1.5 Nonlinear Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1.6 Peak Signal-to-Noise Ratio . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Machine Learning and Deep Learning . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.1 Types of Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.2 The Perceptron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 Types of Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3.1 Feed-Forward Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3.2 Recurrent Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3.3 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . . . 16

3.4 Training Algorithms for ANNs . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4.1 Evolutionary algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4.2 The Gradient Descent Algorithm . . . . . . . . . . . . . . . . . . . . . . 18
3.4.3 The Backpropagation Algorithm . . . . . . . . . . . . . . . . . . . . . . 18

3.5 Common Convolutional Networks . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.5.1 ResNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.5.2 EfficientNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.5.3 DenseNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.6 Evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Methodology 25
4.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Processing pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3 Background Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

iv



CONTENTS v

4.4 Smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.5 CNNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5 Results and Discussion 30
5.1 Experiments with the original images . . . . . . . . . . . . . . . . . . . . . . . 30

5.1.1 DenseNet-121 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2 Experiments with images with no background . . . . . . . . . . . . . . . . . . . 31

5.2.1 With no preprocssing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2.2 With preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2.3 Global results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.3 Overall Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6 Conclusions 42

A Novikoff’s Theorem 43

B Tutorial to use the program 45

References 47



List of Figures

1.1 Drosophila phylogeny tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Dual-channel model (from Yim and Sohn (2017)) . . . . . . . . . . . . . . . . . 7

3.1 Example of a convolution operation, reproduced from Podareanu et al. (2019) . . 10
3.3 Plot of the ideal highpass filter Jobling (2018) . . . . . . . . . . . . . . . . . . . 11
3.4 Processing of unsharp masking, reproduced from Gonzalez and Woods (2008) . . 12
3.5 Differences between AI, ML and DL, AI- (2018) . . . . . . . . . . . . . . . . . 13
3.6 Architecture of a Perceptron (from Rosebrock (2021)) . . . . . . . . . . . . . . . 14
3.7 Architecture of an ANN, reproduced from TIBCO . . . . . . . . . . . . . . . . . 15
3.9 A CNN with 1 hidden layer with 2 nodes, reproduced from TIBCO . . . . . . . . 19
3.10 ResNet building block, reproduced from He et al. (2015) . . . . . . . . . . . . . 20
3.11 ResNet-18 architecture, reproduced from Ramzan et al. (2019) . . . . . . . . . . 21
3.12 ResNet-50 architecture, reproduced from Challa and Vaishnav (2020) . . . . . . 21
3.13 Scale each of the parameters separately vs compound scaling method, reproduced

from Tan and Le (2019) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.14 Efficient Net basic architecture, reproduced from Tan and Le (2019) . . . . . . . 22
3.15 EfficientNet-b0 architecture, reproduced from Tan and Le (2019) . . . . . . . . . 22
3.16 DenseNet approach, reproduced from Hassan et al. (2021) . . . . . . . . . . . . 23
3.17 Example of a DenseNet, reproduced from Badgujar (2021) . . . . . . . . . . . . 23
3.18 DenseNet-121 architecture, reproduced from Radwan (2019) . . . . . . . . . . . 23

4.1 Selected Drosophila species. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Processing pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3 D. melanogaster before and after background removal . . . . . . . . . . . . . . 27
4.4 PSNR variation according to kernel size for Gaussian filter, median filter, and

unsharp masking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.5 PSNR variation, according to sigma, for bilateral filtering . . . . . . . . . . . . . 28
4.6 Filtered images – with the parameters described in the subsection 4.4 . . . . . . . 29

5.1 DenseNet-121 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2 Confusion matrix for DenseNet-121 . . . . . . . . . . . . . . . . . . . . . . . . 31
5.3 DenseNet-121 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.4 Confusion matrix for DenseNet-121 . . . . . . . . . . . . . . . . . . . . . . . . 32
5.5 ResNet-50 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.6 Confusion matrix for ResNet-50 . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.7 EfficientNet-b0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.8 Confusion matrix for EfficientNet-b0 . . . . . . . . . . . . . . . . . . . . . . . . 34
5.9 Gaussian filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

vi



LIST OF FIGURES vii

5.10 Confusion matrix for Gaussian filter as preprocessing . . . . . . . . . . . . . . . 36
5.11 Median filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.12 Confusion matrix for DenseNet-121 with median filtered images . . . . . . . . . 37
5.13 Unsharp masking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.14 Confusion matrix for DenseNet-121 with unsharp masked images . . . . . . . . 38
5.15 Bilateral filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.16 Confusion matrix for DenseNet-121 with bilateral filter as preprocessing . . . . . 39



List of Tables

5.1 DenseNet-121 results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2 DenseNet-121 results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.3 ResNet-50 results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.4 EfficientNet-b0 results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.5 Model’s comparison for images with no background . . . . . . . . . . . . . . . . 34
5.6 DenseNet-121 results for Gaussian filtered images . . . . . . . . . . . . . . . . . 35
5.7 DenseNet-121 results for median filtered images . . . . . . . . . . . . . . . . . . 36
5.8 DenseNet-121 results for unsharped images . . . . . . . . . . . . . . . . . . . . 37
5.9 DenseNet-121 results for bilateral filtered images . . . . . . . . . . . . . . . . . 38
5.10 Comparison of the preprocessing techniques . . . . . . . . . . . . . . . . . . . . 39

viii



List of Algorithms

1 The Perceptron Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2 Evolutionary algorithms general approach . . . . . . . . . . . . . . . . . . . . . 18
3 Gradient Descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

ix



Abbreviations

Acc Accuracy
ANN Artificial Neural Network
CNN Convolutional Neural Network
DL Deep Learning
FN False Negatives
FP False Positives
LR Learning Rate
ML Machine Learning
ReLU Rectified Linear Unity
Sxy neighborhood centered at the point of coordinates (x,y)
TN True Negative
TP True Positives

x



Chapter 1

Introduction

Drosophila is a very large group of well over 1500 described fly species (Markow, 2006) and has

been widely used in Biology and Medicine for several reasons, such as being easy to keep in the

lab, its high reproduction, its low mean lifetime – which means that experiments take less time–,

and its low cost. Besides that, it shares genes, tissues, and even organs, with mammals (Matthews

and Gelbart, 2005).

1.1 Importance of Drosophila

Woodworth was the first to suggest that Drosophila could be used in genetics1. However, the first

person to really use it was Thomas Hunt Morgan, who discovered a mutation in D. melanogaster

that leads to white eyes, instead of red. Based on Thomsons’ work, Hermann Joseph Muller, a

collaborator of his, showed that exposure to X-rays produces genetic mutations. More recently,

in 2011, Jules Hoffman and Bruce Beutler, discovered how receptors detect microorganisms and

activate our innate immunity. In 2017, Jeffrey Connor Hall, Michael Rosbash, and Michael War-

ren Young made discoveries about the molecular mechanisms that control the circadian rhythm 2.

Other important discoveries include the discovery of Notch gene, by Poulson, that causes a malfor-

mation in Drosopila’s wings; the discovery of the embryonic development of the nervous system,

by Nusslein-Volhand and Wieschaus; the behavioural responses of Drosophila in countercurrent

assays; and, in 2000, the Drosophila full genome sequence, by Craig Venter’s team (Stephenson

and Metcalfe, 2013).

In today’s research, Drosophila has a fundamental role. It is a model organism for the study

of several diseases, such as Alzheimer, Parkinson, epileptic encephalopathy, Autism spectrum

disorders, and obesity, among others. It is also a model organism for genetics and inheritance,

embryonic development, organ regeneration, learning, behaviour, and ageing (Yamaguchi and

Yamamoto, 2022). Drosophila is also used in Bioengineering, for the production of artificial

tissues, and in the clinical drug discovery process (Jennings, 2011). The different Drosophila

1https://www.nobelprize.org/prizes/medicine/1933/morgan/biographical
2https://www.nobelprize.org/drosophila/

1

https://www.nobelprize.org/prizes/medicine/1933/morgan/biographical
https://www.nobelprize.org/drosophila/


Introduction 2

species can be distinguished by several morphological features. For instance, D. americana has

an overall dark body, whereas the closely realted D. novamexicana displays a derived light body.

Besides that, D. melanogaster wings are evenly pigmented throughout the wing blade (see Fig.

1.1) in contrast to other species (Massey and Wittkopp, 2016).

Figure 1.1: Drosophila phylogeny3

In this thesis, we are going to compare Drosophila americana, Drosophila novamexicana, and

Drosophila melanogaster. D. americana and D. novamexicana are from virilis group and have

been diverging for 40 million years (Reis et al., 2020). D. melanogaster is from melanogaster

group. Even though the inter-variance is relatively low, as the features are the same in all species

(for example, head, abdomen, eyes, and wings), it is possible to distinguish them, as it can be seen

by Fig. 1.1. Some features, such as, eye size is an incomplete dominant trait that is largely affected

by overall body size (Reis et al., 2020).

A spatial filter is an operation where it is chosen a centre pixel, and operations are performed

in its neighbourhood, where the size of the neighbourhood is defined. The result of this operation

is the output at that point. This process is repeated for every pixel. If all the performed operations

are linear, we say that it is a linear spatial filter, otherwise we say it is a nonlinear filter.

3https://cre.syr.edu/2018/03/26/national-science-foundation-recommends-funding
\-to-support-drosophila-evolutionary-phenomics-research-by-the-cre/

https://cre.syr.edu/2018/03/26/national-science-foundation-recommends-funding\-to-support-drosophila-evolutionary-phenomics-research-by-the-cre/
https://cre.syr.edu/2018/03/26/national-science-foundation-recommends-funding\-to-support-drosophila-evolutionary-phenomics-research-by-the-cre/


1.2 Objectives 3

Convolution Neural Networks (CNNs) are consecutive operations of filtering and convolution,

where data features are learned. For that to work, some hyperparameters are needed. These

include the definition of a loss function, a learning rate, an optimizer, the number of epochs, and

the batch size. The loss function is a criterion that measures how far the model at the actual instant

is from what is intended. There are various types of losses, depending on the problem at hand; the

learning rate is the step size of the parameter to be updated; optimizer is a mathematical method so

the function converges to an optimal solution; batch size controls, in the gradient descent algorithm

(see 3.4.2), the number of images that get into the model before the weights are updated; finally,

the number of epochs controls, in the gradient descent algorithm, and the number of complete

passes in the training set.

For example, suppose that we have 4000 images/samples and that we choose a batch size of 4

and 20 as the number of epochs. This means that the model will have 4000/4 = 1000 batches, each

with 4 samples, and consequently that the weights will be uploaded after each batch of 4 samples.

It also means that the model will pass through the training dataset 20 times, and a total of 1000

×20=20000 during the entire training.

1.2 Objectives

The objective here is to classify different species of Drosophila. As Drosophila is a small insect,

that brings us the difficulty of analysing it. Some species may be easy to differentiate, but others

may only be distinguishable by their genitalia (Xia et al., 2018), and, because of that, a dataset

was created.

1.3 Thesis Outline

In this chapter the state of the art is reviewed, as well as some concepts of Image Processing.

Chapter 2 lays down the background needed for the thesis. Some basic techniques, principles, and

concepts are explained, both for Computer Vision, and Machine Learning and Deep Learning. In

Chapter 3, we present the method used to solve the problem. In Chapter 4, the results are presented

and discussed. Finally, in Chapter 5, we draw conclusions. In Appendix A, it is presented a

Theorem that proves that the Perceptron algorithm converges in a finite number of steps, and in

Appendix B it is provided a tutorial to use the program created.



Chapter 2

Related Work

Deep Learning has provided us with excellent results both for regression and classification prob-

lems. Thereby it is increasingly easy to find Deep Learning models for biological applications.

Drosophila classification is no exception and that is quite noticeable. The search for the related

work grouped by the works that were related with Drosophila, and by the works that were not

about this theme, but used either filtering as preprocessing, or used a Deep Learning architecture

that we also used.

Cao et al. (2020) proposed a method based on transfer learning for insect recognition. The

dataset contained 9 species of insects – mythimna separata, rice borer, rice plant hopper, mole

cricket, mantis, locust, grass fly, ladybug, and ditch beetle. Firstly, they start by applying between

0 and 5 preprocessing techniques to each image. In total, they have 10 options for preprocessing:

flip and transform the image; randomly use one of Gaussian blur, mean blur and median blur

to enhance the picture; sharpening; edge detection superimposed on the original image; noise

disturbance with Gaussian noise added to the image; rotation or reflection transformation; contrast

transformation to change the contrast of the entire image to half or double the original; change

RGB into grayscale image and multiply it by alpha to add to the original image; move the pixels

to the surrounding area; distort local areas of the image. To expand their dataset, they used a Deep

Convolution Generative Adversarial Network (DCGAN)1. The transfer learning was based on

Imagenet’s dataset. The neural networks they used before applying this technique were VGG16,

VGG19, InceptionV3, and InceptionV4. They also used in their pipeline various digital image

processing techniques, such as Gaussian, mean, and median blur; sharpening; edge detection;

noise disturbance (add Gaussian noise to the picture); and contrast transformation. the best result

was achieved by VGG19, with an accuracy of 97.39%.

Le et al. (2020) propose a method to predict the landmarks manually, and create a Convolu-

tional Neural Network (CNN), the EB-Net, which builds in a modular way the concept of “Ele-

mentary Blocks”, each made up of usual CNN layer types. First, they asked entomolists to position

manually the landmarks on digital images. Then, they created their automatic approach. They start

by using a custom data augmentation procedure; trained and tested EB-Net, based on a dataset of

1https://developer.ibm.com/articles/generative-adversarial-networks-explained/

4

https://developer.ibm.com/articles/generative-adversarial-networks-explained/


Related Work 5

different parts of carabids (pronotum, head, and elytra). To evaluate, and improve, the obtained

results, they either train the model from scratch, or fine-tune it. Comparing the distances between

the manual landmarks and the ones obtained by the automatic method, they concluded that their

method can replace the manual landmarking.

Kumar et al. (2022), created an automated pipeline to classify Drosophila species based on the

wings, as wings are a powerful genetic model for studying cellular and developmental processes.

With this in mind, they created MAPPER, which is an ML-based pipeline that quantifies high-

dimensional phenotypic signatures, with each dimension quantifying a unique morphological trait

of Drosophila’s wings. The MAPPER’s first module is based on Deep Learning, and segments

the images to separate the foreground from the background. They start by training an U-Net, train

the last few layers of their model with a Convolutional Neural Network, and finally use K-Nearest

Neighbours method to classify the intervein regions. Their results overcome the ones obtained

with thresholding, and the active contours method. The second method is a Machine Learning

based pixel classifier for the same task. They concluded that MAPPER’s automated measurements

are statistically equal to manual measurements.

Luo et al. (2022), tried to identify ticks, as these are vitally important to assess threats. How-

ever, most approaches are based on taxonomy, and because of that are time-consuming and require

expertise skills. The images were obtained from a tick passive surveillance program that receives

ticks from public individuals, partnering agencies, or veterinary clinics. It consists of 12000 high-

resolution micrographs. All species were molecularly confirmed by a species-specific TaqMan

PCR assay, so there is no human error in the distinction. The program distinguishes between

Amblyomma americanum, Dermacentor variabilis, and Ixodes scapularis. They applied Transfer

Learning to pretrained Convolutional Neural Networks, specifically VGG-16, ResNet-50, Incep-

tionV3, MobileNetV2, and DenseNet-121. The best result was an accuracy of 99.5%, even though

all the accuracies were greater than 98%.

Shen et al. (2021) two main objectives were to distinguish between Tephritid and Non-Tephritid

fruit flies, as the first are important agricultural pests around the world, and classify between Anas-

trepha, Ceratitis, Rhagoletis, and Bactrocera, the 4 major species of Tephritid. For the creation of

the dataset, they used iNaturalist fruit fly database. They cleaned the data using InceptionV3 neural

network, and used K-means clustering to identify between the four species. They obtained 95.44%

accuracy for EfficientNet-b0 to identify Tephritid fruit flies, and 89.65% accuracy for classifying

representatives of the major tephritid genus.

Using more traditional methods, Loh et al. (2017) identified 16 Drosophila species. They

created a system to detect and measure keypoints and vein segments from Drosophila’s wings.

For this purpose, they used image transformations, as well as template matching. The accuracy

was 94% in identifying the correct species, and 56% in identifying the correct sex. Badirli et al.

(2021), made a more general approach, in the sense that they tried to classify insects, but not just

Drosophila or ticks. They classified 32848 instances of insects of 1040 described insect species.

DNA-based methods have aided in providing additional evidence of separate species, however

expertise knowledge is needed, so they created a Bayesian Deep Learning method, based on hier-



Related Work 6

archy of species around corresponding genera and uses deep embeddings of images and barcodes

together to identify insects at the lowest level of abstraction possible, for the open-set classification

of species. They got an accuracy of 96.66% classifying the instantiated species, and an accuracy

of 81.39% identifying genera of undescribed species.

Şaban Öztürk and Akdemir (2018), classified histopathological images of cancer vs non-

cancer patches. The dataset used was the one of CAMELYON challenge, which consists of 400

whole-slided images for breast cancer detection. It was used a similar approach to the one of

this thesis. They preprocess the images in four different ways, (1) no preprocessing, (2) normal

preprocessing, that consists in reducing background noise and in enhancing the cells; (3) other

normal preprocessing techniques; (4) over preprocessing, that consists in applying a threshold,

morphological operations, besides the normal preprocessing. The images are then used as input

to AlexNet, which is trained by 500 epochs. The best results were obtained using normal prepro-

cessing. With this study, they found that preprocessing algorithms make training faster and help to

achieve better results, compared to not using it. However, excessive preprocessing may not help

either.

Also in other biomedical applications, we find Giełczyk et al. (2022) and Avşar (2021). In

Giełczyk et al. (2022) they used for preprocessing (1) none; (2) histogram equalization; (3) his-

togram equalization followed by a Gaussian filter, with a kernel of 5×5; (4) histogram equaliza-

tion followed by a bilateral filter with diameter=5, σcolor = σspace = 5 as parameters; (5) adaptive

masking; (6) adaptive masking followed by histogram equalization and Gaussian blur. The results

showed that the best preprocessing method was the last one referred, but that overall preprocessing

improves the results. Without preprocessing, accuracy was of 93%, and F1-score was of 91–96%

for every class, whereas with just histogram equalization, Precision, Recall, and F1-score raised

by 2%. In Avşar (2021), the CNNs used were MobileNetV2 and EfficientNetB0, that were trained

with and without the preprocessing techniques. The methods used were contrast limited adaptive

histogram (CLAHE), unsharp masking, and Wiener filtering. With this study, they found out that

the best results for both models were obtained with Wiener filter, although CLAHE and unsharp

masking may improve the performance only with MobileNetV2. It was also concluded that there

were not substantial improvements with more than 30 epochs.

Image processing is such a common method that there are groups using it in cultural stud-

ies. An example of this is Kusrini et al. (2022). A shadow puppet show of Indonesian culture,

“Wayang Kulit” is facing the end of its existence, as there is almost no support from the govern-

ment, among other factors. As the characters are not publicly available, they needed to create their

own dataset with images similar to those used in the show. With this study, it is aimed to recre-

ate the Punakawan puppet show with less costs. The group used filtering as preprocessing –that is

classified as Gaussian or non-Gaussian–, VGG-16 as CNN, and KNN method for the classification

task. Among all the experiments made, the researchers found that the combination of CLAHE,

RGB images (as, in some experiments, only the green channel of the images is used), Gaussian

filter, and thresholding was the process with the highest accuracy, 98.75%. It was also found that

CLAHE improved the accuracy of green channel images. Besides that, this study found two ways



Related Work 7

of reducing image noise, which were Gaussian filter, and median filter.

As the quality of the images used in Deep Learning models is one of the most influential factors

for an high accuracy, we could not miss a study that tried to find a solution to obtain good results

with low quality images, as for example JPEG images. That’s what Yim and Sohn (2017) do. They

suggest a generalised architecture of a dual-channel model (Fig. 2.1). The architecture receives

Figure 2.1: Dual-channel model (from Yim and Sohn (2017))

two inputs, the original images and the outline-enhanced images. The denoising methods used

were (1) nonlocal filtering; (2) bilateral filtering; (3) total variation. This group obtained different

conclusions than the previously discussed research. They found that a preprocessing method does

not produce any significant improvement per se, but provides a stable accuracy with any dataset

using the dual-channel structure.



Chapter 3

Background

3.1 Computer Vision

Computer Vision is an engineering-related area that tries to extract useful information from images

and videos. The manual extraction of features is labour-intensive, expensive, and time-consuming,

and the number of extracted features may not be enough for the project at hand. With Computer

Vision, this process gets automated, and so, faster. Another advantage is that with technology’s

help, the datasets can be larger, and so the results can be more accurate, without so much subjec-

tivity from experts in taking features. Below we review some of the most important concepts in

this field. The definitions and equations of the following sections were taken from Gonzalez and

Woods (2008) and Mitra (2001).

3.1.1 Thresholding

Global thresholding is a technique that divides the image into two components based on the

pixel’s intensity values. That division is done by choosing an “arbitrary” threshold value, T.

g(x,y) =

1, f (x,y)≥ T

0, f (x,y)< T

The pixels labeled as 1 are expectedly part of the foreground, and the ones labeled as zero would

be part of the background.

Adaptive thresholding is the method where the threshold value is calculated for smaller re-

gions and therefore, there will be different threshold values for different regions.

Otsu’s method gives us the best threshold automatically. The idea of the algorithm is to sep-

arate image pixels into foreground and background. We are assuming that the image is grayscale

– which means that the image is normalized– and that its intensity distribution is bimodal. The

8



3.1 Computer Vision 9

objective is to minimize the within-class variance, which is the same as maximizing the between-

class variance. Otsu method relies on the second choice, and the expression is Eq. 3.1:

σ
2
w = q1(t)σ2

1 (t)+q2(t)σ2
2 (t) (3.1)

where:

q1 and q2 are the class probabilities given by

q1(t) =
T

∑
i=1

Pi & q2(t) =
I

∑
i=T+1

Pi (3.2)

the class means are given by

µ1(t) =
T

∑
i=1

iP(i)
q1(t)

& µ2(t) =
I

∑
i=T+1

iP(i)
q2(t)

(3.3)

and finally, the individual class variances are given by

σ
2
1 (t) =

T

∑
i=1

(i−µ1(t))2 P(i)
q1(t)

& σ
2
2 (t) =

I

∑
i=T+1

(i−µ2(t))2 P(i)
q2(t)

(3.4)

3.1.2 Filtering

The concept of filtering comes from Signal Processing, where the method is used to transfer certain

frequency components without any distortion and to block other frequency components (Mitra,

2001).

A lowpass filter is the one that transfers all the frequency components below a specified fre-

quency ωc, named cutoff frequency, and blocks all frequencies above it. A highpass filter does the

opposite, so it transfers all frequency components above ωc, and blocks all the ones below it. The

range of frequencies that the filter trasnfers is called passband, and the range of frequencies that

is blocked is called stopband.

The main concept in the filtering process is the convolution operation. This is defined, in

images, by Eq. 3.5,

(w∗ f )(x,y) =
a

∑
s=0

b

∑
t=0

w(s, t) f (x− s,y− t) (3.5)

where w is a a×b filter. An example of this operation is given in Fig. 3.1.

One important concept in Image Processing is the one of edge. As said in Chapter 1, edge

detection techniques were used in this thesis. We define an edge as a pixel where there is an abrupt

change in intensity. To detect edges we use first and second-order derivatives because gradients

point in the direction with the greatest rate of change. The first-order partial derivative is defined

by Eq. 3.6
∂ f
∂x

= f (x+1)− f (x) (3.6)



Background 10

Figure 3.1: Example of a convolution operation, reproduced from Podareanu et al. (2019)

whereas the second-order partial derivative is defined as in Eq. 3.7

∂ 2 f
∂x2 = f ′(x+1)− f ′(x)

= f (x+1)+ f (x−1)−2 f (x)
(3.7)

The difference in using the first or second-order derivative is in the sharpness, which is usually

better with the second-order derivative. So, while we use gradients for first-order derivatives, we

use the Laplacian operator to detect the second-order derivatives. Finally, we say that an edge has

been detected if its intensity is higher than a threshold T.

3.1.3 Lowpass Filters

3.1.3.1 Ideal Lowpass Filter

The ideal lowpass filter is defined by Eq. 3.8.

H(w) =

1 ,ω ≤ ωc

0 ,otherwise
(3.8)

where ω is the frequency. The respective plot is illustrated in Fig. 3.2.

Lowpass filters smooth the image, including the edges, giving to the image a blurring effect.

An example of lowpass filter is the Gaussian filter, whose kernel is given by Eq. 3.9.

w(x,y) =
1√

2πσxσy
e
−( x−µx

2σ2x
+

y−µy
2σ2y

)
(3.9)



3.1 Computer Vision 11

Figure 3.2: Plot of the ideal lowpass filter Jobling (2018)

3.1.4 Highpass Filters

3.1.4.1 Ideal Highpass Filter

The ideal highpass filter is defined by Eq. 3.10

H(w) =

1 ,ω > ωc

0 ,otherwise
(3.10)

where ω is the frequency, and the respective plot is illustrated in Fig. 3.3.

Figure 3.3: Plot of the ideal highpass filter Jobling (2018)

A highpass filter enhances the edges of an image. A technique for sharpening images is un-

sharp masking, and it is given by the following process:

1. Blur the image

2. Subtract the blurred image from the original one (this difference is called mask)

3. Calculate the sum between the original image and the weighted mask

The general equation for this procedure is given by equation Eq. 3.11

g(x,y) = f (x,y)+ kgmask(x,y) (3.11)

where f(x, y) is the original image, and gmask is its mask. Do just note that blurring an image is the

same as applying a lowpass filter. When doing f (x,y)− k fblurred(x,y) we obtain just the edges, as



Background 12

the other pixels get 0-valued. We can then say that it is a highpass filter. Finally, when summing

f (x,y) and f (x,y)− fblurred(x,y), we obtain 2 f (x,y)− k fblurred(x,y). So, the 0-valued pixels that

were near the edges, get the value 2 f (x,y)− k fblurred(x,y). This process is illustrated in Fig. 3.4.

Figure 3.4: Processing of unsharp masking, reproduced from Gonzalez and Woods (2008)

3.1.5 Nonlinear Filters

3.1.5.1 Median Filter

Median filter replaces the center pixel value by the median value of a predefined neighbourhood.

It is quite useful for salt-and-pepper noise, which is manifested by black and white dots over the

image.

3.1.5.2 Bilateral Filter

Most of the times, sharpening filters smooth too much the areas where frequencies are low. If we

want to avoid this, a good solution is bilateral filter. It is given by equations Eq. 3.12 and Eq. 3.13.

Let I be a grayscale image, and p be the pixel location. We define the Bilateral Filter (BF) as in

Eq. 3.12

BF [I]p =
1

Wp
∑
q∈S

Gσs(||p−q||)Gσr(||Ip − Iq||)Iq (3.12)

where Wp is a normalisation factor given by Eq. 3.13

Wp = ∑
q∈S

Gσs(||p−q||)Gσr(||Ip − Iq||) (3.13)



3.2 Machine Learning and Deep Learning 13

σr and σs are measures of the amount of filtering for an image I; Gσs is the spatial Gaussian

that decreases the influence of distance pixels, and Gσr is the range (Gaussian that decreases the

influence of pixels q with an intensity value different from Ip).

3.1.6 Peak Signal-to-Noise Ratio

The Peak Signal-to-NOise Ratio (PSNR) block computes the peak signal-to-noise ratio, in deci-

bels, between two images. This ratio is used as a quality measurement between the original and

a compressed image. The higher the PSNR, the better the quality of the compressed, or recon-

structed image1. It is computed using Eq. 3.14.

PSNR = 10log10

(
R2

MSE

)
(3.14)

The higher the PSNR, the better is the image after being processed. MSE stands for Mean

Squared Error, between the two images that we are analyzing.

3.2 Machine Learning and Deep Learning

Artificial Intelligence (AI) is the ability of a machine to do human tasks2. Machine Learning (ML)

is the area of AI where the learning algorithms are created3, and Deep Learning (DL) is the area

of ML “that involves training artificial neural networks with large amounts of data to recognize

patterns and make predictions or decisions” (Hector Martinez, 2023). These concepts are Fig. 3.5.

Figure 3.5: Differences between AI, ML and DL, AI- (2018)

1https://www.mathworks.com/help/vision/ref/psnr.html
2https://www.britannica.com/technology/artificial-intelligence
3https://www.ibm.com/topics/machine-learning

https://www.mathworks.com/help/vision/ref/psnr.html
https://www.britannica.com/technology/artificial-intelligence
https://www.ibm.com/topics/machine-learning


Background 14

3.2.1 Types of Learning

Unsupervised Learning In this type of learning all information is extracted from the data itself,

we do not know what will be the output. This means that the output is part of just the

pseudo-labelled set.

Supervised Learning In this type of learning, the data is already labelled and we know that the

output will be in the input set of labels.

Semi-Supervised Learning In Semi-Supervised Learning, we do have just part of the data la-

belled. Then, during the training, according to a rule that is established by the person that

is making the system, data is matched and the system creates new labels (also known as

pseudo-labels). The output may be part of the input set of the labels or part of the pseudo-

labels).

3.2.2 The Perceptron

Perceptron is the simplest type of network, actually being a linear binary classifier. An input is

given, and the respective output is either 1 or -1, according to the prediction correctness (Algo-

rithm 1). Its architecture is shown in Fig. 3.6.

Figure 3.6: Architecture of a Perceptron (from Rosebrock (2021))



3.3 Types of Artificial Neural Networks 15

Algorithm 1 The Perceptron Algorithm

Input: An input set S of tuples {(xi,yi)} where xi ∈Rn, yi ∈ {−1,1} is a label, and η is a positive
scalar

Output: w and b so that when w · x+b > 0, it’s true that yi is 1, otherwise it is -1
1: Initialise: w = 0, b = 0, k = 0, and R = maxi∥xi∥
2: if there’s a mistake then
3: k = k+1
4: w = w+ηyixi

5: b = b+ηyixi

6: if there are no more errors then
7: algorithm finishes
8: end if
9: end if

3.3 Types of Artificial Neural Networks

3.3.1 Feed-Forward Networks

It is a system based on the human brain, where neurons are called nodes, and synapses are called

connections (Fig. 3.7). A Feed-Forward Network is theoretically an agglomeration of perceptrons,

although, as in real life most applications are non-linear, quite often the neurons are actually

sigmoid-neurons instead of perceptrons4.

Figure 3.7: Architecture of an ANN, reproduced from TIBCO

Input is given, and with that, the respective output is computed through the formula

y = f (wT · x+b)

4https://blog.adxy.dev/what-is-a-neural-network-visualising-understanding-a-neu
ral-network-in-depth

https://blog.adxy.dev/what-is-a-neural-network-visualising-understanding-a-neural-network-in-depth
https://blog.adxy.dev/what-is-a-neural-network-visualising-understanding-a-neural-network-in-depth


Background 16

where y is the output, w is the vector of the weights connections, and b is a vector formed by

the biases. Finally, f is a non-linear function, also known as activation function. Non-linearity is

important in these models because it adds complexity to the model, which makes it more adaptable

to new inputs.

Some well-known activation functions are the ones below:

• ReLU: f (x) = max(0,x)

• Sigmoid/ Logistic activation function: f (x) = 1
1+e−x

• Tanh: f (x) = ex−e−x

ex+e−x

• Softmax: f (xi) =
exi

∑ j ex j , where xi is the value of the ith-class of the model

3.3.2 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are a variant of CNNs that deal with sequential data. This

means that their inputs and outputs are not independent of each other, as it happens for feed-

forward networks (Fig. 3.8). Also, while feed-forward networks have weights across each node,

RNNs share the same parameters within each layer of the network, which is saying that RNN

architectures do have cycles, whereas feed-forward networks do not. RNNs are used, for example,

in language translation, speech recognition, and video Schmidt (2019).

Figure 3.8: RNN vs Feed-Forward networks Jeans (2019)

3.3.3 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are the method most often used in DL. Even though their

architecture is quite similar to ANNs, they are mainly used in Computer Vision tasks, as they are

proven to be highly effective in solving problems that use images as data input.

The different layers of a CNN are the following:



3.4 Training Algorithms for ANNs 17

• Convolutional Layer: it is where the input image is convolved with a convolutional filter

(also called a kernel). Some parameters of the convolutions are the following:

– Padding: to add extra pixels 0-valued around the boundary of the image

– Stride: when we want to downsample, we move our window more than one element

at a time, skipping intermediate locations. It is the number of rows and columns tran-

versed per slide.

• Pooling Layer: the maps between layers are sub-sampled, i.e. large-size feature maps are

shrunk to create smaller feature maps, so we get just the most important information. In this

way, there are fewer parameters to learn. The most common pooling functions are Alzubaidi

et al. (2021):

– Global Pooling: each channel in the feature map is reduced to a single value. The most

common operations in global pooling are

1. taking the maximum value (global max pooling)

2. taking the minimum value (global min pooling)

3. taking the average value (global average pooling - GAP)

– Average pooling: compute the average value for each patch (typically 2×2) on the

feature map

• Batch normalization: converts interlayer outputs into a standard format, called normalizing.

This makes the model to be trained more efficiently.

• Fully Connected Layer: is usually at the end of the CNN. In this layer, each node is con-

nected to the others. The output is the final result from this layer.

3.4 Training Algorithms for ANNs

3.4.1 Evolutionary algorithms

Evolutionary algorithms are unsupervised learning algorithms based on the theory of evolution.

These algorithms have three fundamental aspects5:

• Population-based: all possible solutions from the algorithms are in one population. Encod-

ing the solution in the population, it will make crossover and mutation much easier

• Fitness-oriented: the fitness function is used to evaluate partial solutions, to know how much

the solution is right

• Variation-driven: solutions will vary when changing the solution space.

There are many types of evolutionary algorithms, but in general they have the structure of

Algorithm 2.
5https://optimization.cbe.cornell.edu/index.php?title=Evolutionary_algorithms

https://optimization.cbe.cornell.edu/index.php?title=Evolutionary_algorithms


Background 18

Algorithm 2 Evolutionary algorithms general approach

Require: A population
Output: A solution (in case it exists)

1: Randomly generate the initial population of individuals (first generation)
2: Evaluate the fitness of each individual in that population with the preferred fitness func-

tion
3: while Optimal solution is not found do
4: Select the parents (best-fit individuals) for reproduction
5: Breed new individuals through crossover and random mutation, giving “birth” to the next

generation
6: Use the fitness function to gauge the individual fitness of the new individuals
7: Replace least-fit population with new individuals
8: end while

3.4.2 The Gradient Descent Algorithm

Gradient Descent (Algorithm 3) is an optimization algorithm with the objective of minimizing the

objective loss function used to train the model. For that, the gradient is computed, and the method

reaches for a solution in its opposite direction.

Algorithm 3 Gradient Descent
Require: Loss function L, Maximum Number of Steps
Input: Random value xi for each parameter i
Output: Optimal solution

1: Take the gradient of L
2: Plug xi into the gradient
3: while Step size does not converge to 0 or Maximum Number of Steps is not reached do
4: Compute the step size: Step size = Slope×LR
5: Compute the new parameters: New Parameters = Old Parameters−Step size
6: end while

3.4.3 The Backpropagation Algorithm

The backpropagation algorithm is constituted of two phases, a forward pass and a backward pass.

In the forward pass, the input is propagated through the NN, whereas in the backward pass, we

start from the last layer, and from there, we compute the optimal parameter for each layer using

the chain rule. These algorithms are computed in parallel with the Gradient Descent algorithm.

In the forward pass, we propagate the data in the input layer. This input is propagated through

the hidden layer, measures the networks’ predictions from the output layer, and computes the

network error based on the predictions that the network has made. At this time, we enter in the

backward process. In the backward pass, we start by propagating the error from the output layer

until reaching the input layer, passing through the hidden layers. The process of propagating the

network error from the output layer to the input layer, through the chain rule, is called backward



3.4 Training Algorithms for ANNs 19

propagation, or simply backpropagation. The backpropagation algorithm is the set of steps used

to update network weights to reduce the network’s error.

For example, suppose there is one entry for the input, one hidden layer with two nodes with an

activation function (the same), and one output. Let w1,w2,w3, and w4 be the weights of the NN,

and b1,b2, and b3 be its biases, as in Fig. 3.9. Also, let f (x) be our activation function. We want

these parameters to be optimal, so we get the curve that best fits our data.

Input

×w1 +b1

×w2 +b2

Activation
Function

Activation
Function

×w3

×w4

Sum +b3 Output

Figure 3.9: A CNN with 1 hidden layer with 2 nodes, reproduced from TIBCO

We start by initializing biases to 0, and we randomly choose values from a normal distribution

for the weights.

From the forward propagation step, we know that our output is going to be given by sum+b3,

where sum is f (Inputi ×w1 +b1)w3+ f (Inputi ×w2 +b2)w4 +b3. Then, we compute the Sum of

the Squared Residuals (SSR). A residual is given by the difference of the predicted value from the

observed value. SSR is given by equation Eq. 3.15.

SSR =
n

∑
i=0

(Observed −Predicted)2 (3.15)

As we want to know how b3 varies, and we know that b3 is related to SSR through the predicted

values, using the chain rule, we have Eq. 3.16.

dSSR
db3

=
dSSR

dPredicted
× dPredicted

db3
(3.16)

= ∑
i
−2(Observed −Predicted)×1 (3.17)

= ∑
i
−2(Observed −Predicted) (3.18)

Now we want to find the optimal value for w3 and w4. So, we compute dSSR
dw3

and dSSR
dw4

.

dSSR
dw3

=
dSSR

dPredicted
× dPredicted

dw3
(3.19)



Background 20

We had already computed dSSR
dPredicted in Eq. 3.16, we know that Eq. 3.19 is equal to ∑i−2(Observed−

Predicted)× f (Input ×w1 +b1). Analogously, we know that dSSR
dw4

is equal to ∑i−2(Observed −
Predicted)× f (Input ×w2 +b2).

With the help of the chain rule, we also compute dSSR
dw1

, dSSR
db1

, dSSR
dw2

, and dSSR
db2

.

As we had initially chosen the values for each of the parameters, all we have to do now is to

do an initial forward pass and apply the Gradient Descent algorithm to each one of the parameters

to get the optimal values.

3.5 Common Convolutional Networks

3.5.1 ResNet

When CNNs were starting to gain popularity, there was the idea that the more layers the model

had, the better it would perform. However, that is not always true, as there is a vanishing gradient

problem. Vanishing gradients happen when doing backpropagation, because when doing the par-

tial derivatives successively, the gradient starts getting too small, and the accuracy tends to infinity.

With that in mind, ResNet was created He et al. (2015). With ResNet, instead of stacking more

layers, we do an identity map (so, we do not learn any new features) and sum that output to the

output of the previous layer. With this architecture, also called residual blocks, we do not lose

so much information and the architecture does not get as deep. Apart from that, ResNet is quite

similar to the structure explained in the previous chapter.

Figure 3.10: ResNet building block, reproduced from He et al. (2015)

3.5.1.1 ResNet-50

ResNet-50 is a 50-layer CNN, 48 convolutional layers, 1 max pooling layer, and 1 average pooling

layer.

The main difference from the previous ResNets is that it has a bottleneck. A bottleneck is a

1×1 convolution. It reduces the number of parameters and multiplications, making the procedure

faster.



3.5 Common Convolutional Networks 21

Figure 3.11: ResNet-18 architecture, reproduced from Ramzan et al. (2019)

Figure 3.12: ResNet-50 architecture, reproduced from Challa and Vaishnav (2020)

According to Fig. 3.7, the input layer here is a convolutional layer (the 7×7 convolution layer)

that accepts as input an RGB image. The hidden layers are all up to the average pooling layer, and

the output layer is the FC layer.

3.5.2 EfficientNet

EfficientNet was constructed so there could be a way to scale up a CNN without the network

getting too deep, thus getting high accuracy and efficiency. Usually, to overcome that, we try

to adjust the height, width, depth, and resolution by trial and error and just adjusting one of the

parameters each time. Here it was created a method, called compound scaling method (Fig. 3.13,

so instead of randomly scaling up width, depth or resolution, compound scaling uniformly scales

each dimension with a certain fixed set of scaling coefficients6.

3.5.2.1 EfficientNet-B0

According to the figure Fig. 3.15, the respective layers in Fig. 3.7 are the following: the input

layer is the first 3×3 convolution, hidden layers are all the layers until the last MBConv block.

A Mobile Inverted Residual Bottleneck Convolutional (MVConv) block is a series of operations

such as depthwise convolutions, pointwise convolutions, and squeeze-and-excitation operations.

These operations are aimed at reducing computational complexity while maintaining a high level

of representation power. The output layer in EfficientNet-b0 consists of a combination of an FC

layer and a softmax function.

6https://medium.com/mlearning-ai/understanding-efficientnet-the-most-powerful-c
nn-architecture-eaeb40386fad

https://medium.com/mlearning-ai/understanding-efficientnet-the-most-powerful-cnn-architecture-eaeb40386fad
https://medium.com/mlearning-ai/understanding-efficientnet-the-most-powerful-cnn-architecture-eaeb40386fad


Background 22

Figure 3.13: Scale each of the parameters separately vs compound scaling method, reproduced
from Tan and Le (2019)

Figure 3.14: Efficient Net basic architecture, reproduced from Tan and Le (2019)

Figure 3.15: EfficientNet-b0 architecture, reproduced from Tan and Le (2019)

3.5.3 DenseNet

As well as ResNets, DenseNets were created to overcome the problem of vanishing gradients.

However, instead of shortcuts as in ResNets, here all the layers are connected (Fig. 3.16). In other

words, in ResNet we were summing the output of the previous layer with the actual output. In

DenseNet all outputs from previous layers are used for the output of the actual layer.

3.5.3.1 DenseNet-121

Comparing with the figure Fig. 3.7, the input layer of DenseNet-121 is a convolution 7×7, the

hidden layers are all layers up to the last pooling layer. Finally, the output layer is a FC layer.



3.6 Evaluation metrics 23

Figure 3.16: DenseNet approach, reproduced from Hassan et al. (2021)

Figure 3.17: Example of a DenseNet, reproduced from Badgujar (2021)

Figure 3.18: DenseNet-121 architecture, reproduced from Radwan (2019)

3.6 Evaluation metrics

With the dataset tested, we need to evaluate the method used. There are different metrics, and

whereas some can be interpreted together, there are some that are better used in specific cases.

All the most-known ways to evaluate a dataset are based on True Positives (TP), False Positives

(FP), True Negatives (TN), and False Negatives (FN). TPs and TNs are well-classified data, as



Background 24

being part of the class, or not, respectively. FPs are the data that was classified by the system as

being Positive but actually is not. FNs are the data that were misclassified as being Negative. These

numbers can be agglomerated in a matrix called confusion matrix, where the principal diagonal of

the (squared) matrix corresponds to the well-classified data.

Some of the most well-known metrics are the following:

• Accuracy: computes the number of correct predicted classes in relation to the total number

of samples

Accuracy =
T P+T N

T P+T N +FP+FN

• Precision: computes the fraction of positive patterns that are correctly predicted by all pre-

dicted patterns in a positive class

Precision =
T P

T P+FP

• Recall (also known as Sensitivity): computes the fraction of positive patterns that are cor-

rectly classified

Recall =
T P

T P+FN

• F1-score: computes the harmonic mean between Precision and Recall

F1 =
2 ·Precision ·Recall
Precision+Recall

• True Positive Rate (TPR): computes the probability of a false alarm

T PR =
T P

T P+FN



Chapter 4

Methodology

4.1 Dataset

In the first approach, a subset from Drosophoto’s website1 has been used. On one hand, it contains

numerous species, however there are very few images in each class (not more than 20 images in

a given class). Therefore, as a second approach, images were taken in the i3S lab, and the image

resolution was varying, even though it was always relatively similar. The images were taken with

three different states of contrast: low, medium, and high. In total, there are 275 images of size

1600×1200 (weight and height, respectively). From these, 89 are classified as D. melanogaster

– Fig. 4.1a – 50 images with low contrast, 20 with medium contrast, and 20 with high contrast);

94 are of D. novamexicana – Fig. 4.1b– 83 with low contrast, and 9 with medium contrast); lastly,

there are 91 images of D. americana – Fig. 4.1c – 80 images with low contrast, and 10 images

with medium contrast.

(a) D.melanogaster (b) D. novamexicana (c) D. americana

Figure 4.1: Selected Drosophila species.

4.2 Processing pipeline

The created pipeline (Fig. 4.2) consists of three phases, a first one where images are preprocessed,

a second one where images are trained and tested through a CNN, and a last one where the desired

1https://drosophoto.com/

25



Methodology 26

images are classified. To the user, it is possible to just preprocess the images; to do preprocessing

and train one the possible models (DenseNet-121, EfficientNet-b0, and ResNet-50); to preprocess,

train and test a model, and classify other images that are not in the dataset (this means, external

images); and just the classification – just note that in this last case, the user has to train and test

the model at least once.

Figure 4.2: Processing pipeline

As the name suggests, the first phase is named Preprocessing, and consists in using techniques

such as thresholding and smoothing. The second part is Training and Testing and is where the

model learns its parameters (weights and biases). Training is done using the backpropagation

algorithm. Notice that before images are used as input for NNs, data augmentation is done. Data



4.3 Background Removal 27

augmentation is a method to have more images using linear transformation and is used when the

dataset is relatively small. In this case, the operations made were a resize of 256×256, a centre

crop of 224×224, conversion of the image to a tensor, and lastly a normalisation according to

ImageNet parameters. In this phase, there is a sub-phase where we plot the variations in accuracy

and losses, and is where we plot some metrics, namely the Precision, Recall, and F1-score.

The last phase is the classification per se of the image the user provides. It is worth noticing

that the problem at hand is of supervised learning type, as the data is all labelled before the training.

4.3 Background Removal

Thresholding is a segmentation procedure. This means that we are interested in analyzing in our

image just an element in particular, which is in the foreground. For that purpose, we used the

rembg application 2, which is written in Python. An example of its output can be seen in Fig. 4.3.

(a) Original image
(b) Example of an image with the back-
ground removed by the applocation rembg

Figure 4.3: D. melanogaster before and after background removal

4.4 Smoothing

The objective of using smoothing filters is to reduce the noise from the image we are analyzing.

Depending on the filter used the result differs. The only linear filter used was the Gaussian filter,

whereas the remaining ones (median and bilateral) are nonlinear.

To decide the best kernel to use in the Gaussian filter, median filter, and unsharp masking, we

computed PSNR, for each filter, for several values (Fig. 4.4). With the kernel size that provided

us with the highest PSNR, we compute the respective contrast. For the bilateral filter, the process

was the same, although the parameter that was varying was the sigmaColor (and consequently the

sigmaSpace, as it is recommended to use the same value for both, for simplicity 3).

2https://github.com/danielgatis/rembg
3https://docs.opencv.org/4.7.0/d4/d86/group__imgproc__filter.html#ga9d7064d478c95

d60003cf839430737ed

https://github.com/danielgatis/rembg
https://docs.opencv.org/4.7.0/d4/d86/group__imgproc__filter.html#ga9d7064d478c95d60003cf839430737ed
https://docs.opencv.org/4.7.0/d4/d86/group__imgproc__filter.html#ga9d7064d478c95d60003cf839430737ed


Methodology 28

(a) Gaussian filter (b) Unsharp masking (c) Median filter

Figure 4.4: PSNR variation according to kernel size for Gaussian filter, median filter, and unsharp
masking

Figure 4.5: PSNR variation, according to sigma, for bilateral filtering

According to the described method to be used, we decided to use a kernel size of 3×3, and a

sigmaX (which is Gaussian kernel standard deviation in X direction) of 1. sigmaY value was the

default value, which is the same value used for sigmaX. Lastly, the borderType value used was

also the default one, which is 0. The borderType is the pixel extrapolation method. As unsharp

masking is the sum between the mask and the original image, and as the filter used was a Gaussian

filter, the parameters for the unsharp masking method were the same as the ones of the Gaussian

filter.

The kernel size used for the median filter, which is its only parameter, was of size 3×3.

For the bilateral filter, the diameter of each pixel neighborhood used was 7, the sigmaColor

(which is the filter sigma in the color space) was of 0, as well as sigmaSpace (which is the filter

sigma in the coordinate space). The borderType used (this is, the border mode used to extrapolate

pixels outside of the image) was the default value.

4.5 CNNs

For this thesis, three different CNNs were trained: EfficientNet-b0, ResNet-50, and DenseNet-

121, with the first dataset that was presented in section 4.1. Afterwards, we decided to create our



4.5 CNNs 29

(a) Gaussian filter (b) Unsharp masking (c) Median filter (d) Bilateral filter

Figure 4.6: Filtered images – with the parameters described in the subsection 4.4

own dataset instead, although the images were trained only in ResNet-50, EfficientNet-b0, and

DenseNet-121 as these were the ones that had better results with the first dataset.

To train the model, it was used Adam’s optimizer and Cross-Entropy loss function. We used

a LR and a weight decay both of 10−4. Weight decay is a regularization term that is added to

weights. It is useful because it prevents CNN from overfitting. All experiments were made for 40

epochs. Finally, we used a batch size of 16. Then, before splitting the dataset, we applied

The dataset was split into train and test sets, with percentages of 70% and 30%, respectively,

meaning that 83 images were used for testing. Ten, the results with and without preprocessing

were compared. The main advantage of Convolutional Neural Networks is that it automatically

detects the features to be learned without human supervision, besides being able to learn extensive

amounts of data.



Chapter 5

Results and Discussion

5.1 Experiments with the original images

5.1.1 DenseNet-121

When feeding the raw images as input, DenseNet-121 obtains a train accuracy of 100%, a train loss

of 0.012, and a test accuracy of 98.80%. Results with DenseNet-121 are astonishing (Table 5.1).

At a first glance, we would say that this is the perfect CNN for this dataset.

Species Precision Recall F1
D. americana 100% 97% 98%

D. melanogaster 100% 100% 100%
D. novamexicana 96% 100% 98%

Table 5.1: DenseNet-121 results

However, these results cannot be taken seriously, as experiments made in the lab prove that the

images were being classified based in their background, instead of being classified by the features

that are important to really learn to distinguish the different species. Because of this, we decided

not doing anything that involved these results, and, as this happened with every species, the results

involving the two other CNNs are not presented.

(a) Train vs Test accuracies (b) Train vs Test losses (c) F1-score for each class

Figure 5.1: DenseNet-121

30



5.2 Experiments with images with no background 31

Figure 5.2: Confusion matrix for DenseNet-121

5.2 Experiments with images with no background

5.2.1 With no preprocssing

5.2.1.1 DenseNet-121

In the images with no background, the training accuracy was 99.48%, train loss was 0.03, and the

test accuracy was 71.08%. Overall, with the images with no background as input, DenseNet-121

provides good results (Table 5.2). The worst test measures are D. americana precision, and D.

novamexicana recall, as we can see in Table 5.2.

Species Precision Recall F1
D. americana 49% 83% 61%

D. melanogaster 86% 77% 81%
D. novamexicana 100% 55% 71%

Table 5.2: DenseNet-121 results

Also, according to figures Fig. 5.3a and Fig. 5.3b, we can conclude that there is overfitting, as

at the beginning of both train and test accuracies and losses are very similar, but around the fifth

epoch, the CNN starts having discrepancies between train and test results. This means that either

the patterns learned in the training phase were wrong, the patterns learned were not enough, or we

would need more data. About the F1-score, Fig. 5.3c, the highest grade is for D. melanogaster,

and the worst is for D. americana. However, it is interesting to notice that this score gets higher,

and lower, for all three species approximately at the same time.

We can see by the respective confusion matrix, Fig. 5.4, why D.americana is the one with

the lowest F1-score. All misclassified images of the other two species were predicted as being D.

americana. This is actually something that was not expected, as the other two species are much

more similar between them compared to D. melanogaster. Also, these images had no background,

which means that the problem was about some feature that was not the best for this classification.



Results and Discussion 32

(a) Train vs Test accuracies (b) Train vs Test losses (c) F1-score for each class

Figure 5.3: DenseNet-121

Figure 5.4: Confusion matrix for DenseNet-121

5.2.1.2 ResNet-50

With the images with no background, the training accuracy was 98.95%, train loss was 0.02, and

the test accuracy was 72.29%. An interesting fact about this experiment is that all the scores are

approximately uniform (Table 5.3). This means that, for this CNN, all the species were relatively

similar, so even though it seems that the system suffers from overfitting, it actually may not be the

case.

Specie s Precision Recall F1
D. americana 64% 78% 71%

D. melanogaster 70% 68% 69%
D. novamexicana 84% 72% 78%

Table 5.3: ResNet-50 results

Another interesting point is that, as it happened with the original images, F1-score converges

to 100% in all classes, as can be seen in figures Fig. 5.5b and Fig. 5.5c. This means that with the

“experience”, the system actually learned to distinguish the three species correctly.

Surprisingly, the CNN seems to have been more overfitting with the images with no back-

ground (Fig. 5.5a and Fig. 5.5b). This fact had already occurred with the original image with



5.2 Experiments with images with no background 33

(a) Train vs Test accuracies (b) Train vs Test losses (c) F1-score for each class

Figure 5.5: ResNet-50

Figure 5.6: Confusion matrix for ResNet-50

ResNet-50. This may be happening either because of the dataset or because of the CNN archi-

tecture. We believe this is due to the second option, as this did not happen with DenseNet-121.

According to what was said in the previous chapter, ResNet-50 sums the actual output with the

output of some layers before. This means that if some of these outputs are not as good, the ac-

tual output gets affected. To change this issue, maybe trying CNNs that do not have these skip

connections provides better results. Another option would be to change the locations of these skip

connections so that the output of the sum has “more actual” features.

With the images with no background, the training accuracy was 93.72%, train loss was 0.20,

and the test accuracy was 57.83%.

Species Precision Recall F1
D. americana 46% 70% 55%

D. melanogaster 66% 61% 63%
D. novamexicana 68% 45% 54%

Table 5.4: EfficientNet-b0 results



Results and Discussion 34

5.2.1.3 EfficientNet-b0

Clearly, in this experiment, EfficientNet-b0 suffers from overfitting. It can be seen in several ways,

such as:

• the astonishing difference between train and test accuracy, seen in Fig. 5.7a

• the test loss gets worse along the epochs, whereas the opposite happens for train loss, see

Fig. 5.7b

• F1-score is never higher than 70% for any class, see Fig. 5.7c

• the confusion matrix, see Fig. 5.8, has FPs in every class

(a) Train vs Test accuracies (b) Train vs Test losses (c) F1-score for each class

Figure 5.7: EfficientNet-b0

Figure 5.8: Confusion matrix for EfficientNet-b0

Model Accuracy Precision Recall F1
DenseNet-121 78% 71% 72% 71%

ResNet-50 72% 73% 73% 72%
EfficientNet-b0 58% 60% 59% 58%

Table 5.5: Model’s comparison for images with no background



5.2 Experiments with images with no background 35

The results from DenseNet-121 and ResNet-50 are very similar, with the exception of accu-

racy, which is higher in DenseNet-121. EfficientNet-b0 provides very poor results in all parame-

ters. These results are in line with the previous results, as DenseNet-121 had always the best results

and EfficientNet-b0 was the worst. From now on, we will just apply the filters to DenseNet-121,

as it is the NN that provided the best global scores, to compare which filter(s) provide the best

results.

5.2.2 With preprocessing

These experiments were conducted just with DenseNet-121, as it was with this CNN that the best

results were obtained.

5.2.2.1 Gaussian filtering

In this experiment, train accuracy was of 100%, the train loss was 0.02, and the test accuracy was

of 87.95%. D. melanogaster was the species with the best results, as it can be seen in Table 5.6,

even though the results for the three species are good.

Species Precision Recall F1
D. americana 86% 78% 82%

D. melanogaster 86% 100% 93%
D. novamexicana 92% 83% 87%

Table 5.6: DenseNet-121 results for Gaussian filtered images

According to Fig. 5.9a and Fig. 5.9b, the model seems to suffer a little overfitting in the first

epochs, but it is overcome. According to Table 5.6 and Fig 5.9c F1-scores are all high, with the

best being D. melanogaster and the worst being D. americana. This is saying that D. melanogaster

is the class with the least FPs, which can be seen in Fig. 5.10.

(a) Train vs Test accuracies (b) Train vs Test losses (c) F1-score for each class

Figure 5.9: Gaussian filter



Results and Discussion 36

Figure 5.10: Confusion matrix for Gaussian filter as preprocessing

5.2.2.2 Median filtering

In this experiment, train accuracy was 98.95%, train loss was 0.03, and the test accuracy was

60.24%. Once again, D. melanogaster is the one with the overall best score, but now by a large

margin (Table 5.7).

Species Precision Recall F1
D. americana 41% 83% 55%

D. melanogaster 81% 81% 81%
D. novamexicana 100% 21% 34%

Table 5.7: DenseNet-121 results for median filtered images

With this mean filter. Fig. 5.11a is similar to Fig. 5.9a, however overfitting is never overcome.

From Fig. 5.11b we can conclude that either the system does not learn the right features for species

identification, or the data is not enough. Fig. 5.12 and Fig. 5.11c tell us that there is some feature

that is not being learned, that is what should help to distinguish between D. americana and D.

americana, although this is counterintuitive according to what was said previously.

(a) Train vs Test accuracies (b) Train vs Test losses (c) F1-score for each class

Figure 5.11: Median filter



5.2 Experiments with images with no background 37

Figure 5.12: Confusion matrix for DenseNet-121 with median filtered images

5.2.2.3 Unsharp masking

In this experiment, train accuracy was 98.95%, train loss was 0.03, and the test accuracy was

85.54%. With unsharp masking, D. novamexicana was the species with the best results overall,

even though D. melanogaster’s recall is higher, according to Table 5.8.

Species Precision Recall F1
D. americana 88% 65% 75%

D. melanogaster 77% 97% 86%
D. novamexicana 96% 90% 93%

Table 5.8: DenseNet-121 results for unsharped images

The plot of 5.13a is what is expected of a well-trained model. The worst about this method

is the number of D. americana that were classified as being D. melanogaster, as it is shown in

Fig. 5.13c and Fig. 5.14. Biologically this does not make much sense, as they are not from the

same group. However, the only problem can actually be the dataset not being big enough, as it is

the problem that is shown in Fig. 5.13b.

(a) Train vs Test accuracies (b) Train vs Test losses (c) F1-score for each class

Figure 5.13: Unsharp masking



Results and Discussion 38

Figure 5.14: Confusion matrix for DenseNet-121 with unsharp masked images

5.2.2.4 Bilateral filtering

In this experiment, train accuracy was 100%, train loss was 0.015, and the test accuracy was

85.54%. The species with the highest overall score is D.melanogaster, although none of the classes

had a score below 80%, which is very good (Table 5.9).

Species Precision Recall F1
D. americana 78% 78% 78%

D. melanogaster 86% 97% 91%
D. novamexicana 92% 79% 85%

Table 5.9: DenseNet-121 results for bilateral filtered images

Fig. 5.15a shows a bit of overfitting, although the losses in Fig. 5.15b are as expected. This

means that there are no big information losses about features. In this way, Fig. 5.15a may be

explained by the NN not having learned the right features, or not having the right amount of

features. The results in Fig. 5.16 (and in Fig. 5.15c) show that there is not a high amount of

misclassified images of one of the species, even though the FPs are distributed along all of the

three species, which may mean that the NN would need more training epochs, or more data.

(a) Train vs Test accuracies (b) Train vs Test losses (c) F1-score for each class

Figure 5.15: Bilateral filter



5.2 Experiments with images with no background 39

Figure 5.16: Confusion matrix for DenseNet-121 with bilateral filter as preprocessing

5.2.3 Global results

Technique Accuracy Precision Recall F1
Gaussian filter 88% 88% 87% 87%
Median filter 74% 61% 57% 60%

Usharp masking 86% 87% 84% 85%
Bilateral filter 86% 85% 85% 85%
Table 5.10: Comparison of the preprocessing techniques

The best preprocessing technique was the Gaussian filter, followed by both unsharp masking

and bilateral filter, and the median filter lastly. It is worth noting that although the images had

noise, the background was homogeneous. This is saying that the noise was not of the salt-and-

pepper type, which can explain why the median filter got the worst results.

Gaussian noise is a lowpass filter, and unsharp masking can be considered a highpass filter.

As both provide good results, it may mean that the ideal filter would be a bandpass, which is

an intermediate type of filter between these two. The bilateral filter enhances the edges (high

frequencies), so it may be a plus for learning some features through the contours, such as the size,

the perimeter, the area, and the number of details in the wings. The bilateral filter can be thought

of as a band-reject filter.

In conclusion, the only thing we can say is that the median is the worst of the preprocessing

made, and all of the other preprocessing methods provided relatively similar values. From here

we can conclude that the “problem” is actually in the images, because, as in images in Chapter 3

show, they are all relatively similar and mostly black. Besides that, the kernels used were small

(3× 3), except for the bilateral filter. So, it was expected that at least the Gaussian filter and

unsharp masking had similar results.



Results and Discussion 40

5.3 Overall Discussion

Our results are in agreement with the results obtained by Şaban Öztürk and Akdemir (2018), that

it is better to use a normal processing – removing the background and apply a filter to enhance

part of the image – than not using any preprocessing. This is somewhat expectable, as real-world

images contain noise, in different quantities, that affect the training, and this influences the image

classification task.

Avşar (2021) results are also in agreement with ours when saying that more than 30 epochs

do not make much difference. In fact, in the plots of the Results section, the values were mainly

stable when achieving 30 epochs. In some cases, the accuracy decreased abruptly, but it could

have also happened with more epochs, as that has to do with the features learned, and not with the

number of epochs per se.

Shen et al. (2021) achieved an accuracy of 95.44% with EfficientNet-b0. In our case, just

with the background removed, we obtained an accuracy of 57.83%. We do not have results with

EfficientNet-b0 with preprocessing, due to our methodology, where filters were applied to the

CNN that had the best results with no background. However, their dataset contains 674 images of

Anastrepha, 1463 of Ceratitis, 1030 of Rhagoletis, and 1061 of Bactrocera. We have less than a

quarter of the images in this study. We do believe that if we had more images, our results would

be better. However, when we removed the background, EfficientNet-b0 was the CNN with the

worst result. It may be because it is the only one we tried that changes all the parameters at the

same time. Probably, when changing one parameter each time we have more control over it and

can change the parameters accordingly.

Luo et al. (2022) obtained accuracies greater than 98% with all CNNs, in particular ResNet-50

and DenseNet-121. With just the background removed, we obtained an accuracy of 72.29% for

ResNet-50 and an accuracy of 71.08% for DenseNet-121. Applying filtering operations after the

background removal, we obtained accuracies of 87.95% for the Gaussian filter, 60.24% for the

median filter, and 85.54% for both unsharp masking and bilateral filter. The main difference in

the results of Luo et al. (2022) is that their images are high resolution. In the dataset used for this

thesis, we tried to have images of low, medium, and high resolution. That may degrade the results,

so we can say that when creating a dataset for insect classification, it is better to have all images

with the same level of resolution.

Giełczyk et al. (2022) concluded that adaptive masking followed by histogram equalization

and Gaussian blur was the best preprocessing method. Our results partially agree with this, as the

Gaussian blur was the one with the best results, having achieved an accuracy of 87.95% for the

images with no preprocessing. Their results were better, although the difference is not that much.

It can be explained by the fact that they used a 5×5 kernel, while we used a 3×3 kernel, which

has less effect. We used a 3×3 kernel as this was the kernel size that provided the highest PSNR.

However, as the PSNR decreased smoothly, we could have used actually a 5×5 kernel.

Our results are in agreement with the ones obtained by Kusrini et al. (2022) in the part that

the Gaussian filter after applying a threshold is the best technique (our background removal is,



5.3 Overall Discussion 41

actually, thresholding). It is expectable, as Gaussian noise is an very common type of noise. Also,

when doing a threshold, Machine Learning knows where to find the features, and with that, the

probability of learning the correct features increases. However, Kusrini et al. (2022) concluded

that the median filter is also one of the best, which is opposite to our conclusion. It can be, as

already said, that the noise of our images really is not of the salt-and-pepper type.



Chapter 6

Conclusions

The main objectives of this thesis were achieved, to develop a program that distinguishes success-

fully Drosophila species, and compare the results with and without preprocessing the images.

The first conclusion to be taken is that we should always remove the background before the

images are used as input for the CNNs, as it may happen that the CNN learns the background

features instead of the Drosophila features to be classified. With the background removed from

the input data, with and without image preprocessing, DenseNet-121 is always the best-performing

CNN. This may be related to its architecture, as DenseNets use the features from all layers up to the

actual layer, whereas neither EfficientNet or ResNet have that mechanism. Actually, the results of

ResNet-50 can be explained by its architecture, because the actual output can have not-so-correct

features that are used for the sum in the skip connections, and that can poorly affect the results. The

second conclusion is that there is not much difference in using Gaussian filtering, bilateral filtering,

or unsharp masking. This can be explained by the arguments given in the previous chapter, that

the image is relatively homogeneous, that the kernel sizes are small, and that the frequency range

is very limited.

As future work, it is intended to improve the program, so it can classify more Drosophila

species. It is also intended to diminish the overfitting of some of the methods used.

42



Appendix A

Novikoff’s Theorem

This theorem proves that if we have a data set that is linearly separable, and non-trivial, it converges

after a finite number of steps (in this case to converge means that all the points are well-classified).

Besides that, it provides us with an upper bound on the time complexity. But before we get into

the theorem, some definitions are needed (this appendix was adapted from University (2023a),

Collins (2023)), and University (2023b)).

Definition 1. A dataset is said linearly separable if

∀(⃗x,y) ∈ X ∃w⃗∗ ∃γ > 0 :< w⃗∗, x⃗ > y ≥ γ

Definition 2. A set is said to be non-trivial if not all xi have the same label.

Definition 3. The distance between the hyperplane (w,b) and the nearest point in D is given by

margin(D,w,b) =


min

(x,y)∈D
y(w · x+b) if w separates D

−∞ otherwise

Definition 4. The margin of a dataset is given by

margin (D) = sup
w,b

margin(D,w,b)

Theorem 1 (Novikoff’s Theorem). Let S be a set of tuples {(x1,y1), · · · ,(xn,yn)} where xi are

vectors in Rn and yi is a label, either -1 or 1. If S is linearly separable and non-trivial, then there

exists a vector wo pt in Rn, a scalar bopt , and a positive scalar γ , so that ||wopt ||= 1 and

yi(wopt · xi +bopt) ≥ γ

If this holds and we use with Perceptron Algorithm to find values of w and b that separates the

points, then the number of mistakes made by the algorithm is bounded by R2/γ2.

Proof. Let ŵ be the vector in Rn+1 which is the vector w augmented by a magnitude of b/R, and

x̂i the vector in Rn+1 which is the vector xi augmented by the magnitude of R. This makes it so that
43



Novikoff’s Theorem 44

w · x+b = ŵi − x̂i. One can easily check that the update rule ŵ = ŵ+ηyixi preserves the updates

to w and b in the algorithm.

It will be proved by induction that k ≤ (R/γ)2 ∀k. However, firstly there will be proved a

couple of Lemmas that are going to be useful for the proof.

Lemma 2. ŵk · ŵopt ≥ kηγ

Proof. By induction,

ŵk · ŵopt = (ŵk−1 + ηyix̂i) · ŵopt

= ŵk−1 · ŵopt + ηyix̂iŵopt

≥ (k−1)ηγ + ηyix̂i · ŵopt

≥ (k−1)ηγ + ηγ

= kηγ

Lemma 3. ||ŵk||2 ≤ kη2R2

Proof. By induction,

||ŵk||2 = ||ŵk−1 + ηyixi||2

= ||ŵk−1||2 + 2ηyiŵk−1 · xi + η
2||x̂i||2

≤ ||ŵk−1||2 + η
2(||xi||2 +R2)

≤ (k−1)η2R2 + η
2R2

= kη
2R2

Do just notice the fact yiŵk−1 · xi < 0 is used from step 2 to step 3.

In conclusion, to prove the main theorem, we assemble these lemmas:

k ≤
ŵk · ŵopt

ηγ

≤
||ŵk|| ||ŵopt ||

ηγ

≤ ||ŵk||
ηγ

≤
√

kηR
ηγ

=

√
kR
γ

∴ k√
k
=

√
k ≤ R

γ
=⇒ k ≤ (R

γ
)2



Appendix B

Tutorial to use the program

The code, which is covered under an MIT License, can be found at https://github.com/D

anielaFCUP/DrosophilaV2.

1. Create a conda environment

(a) conda create –name myenv python=3.10

(b) conda activate myenv

where myenv is the name you want for your environment

2. Install the requirements: pip install -r /path/to/requirements.txt

where /path/to/requirements.txt is the path to where the requirements file is located.

3. Change the parameters in the file conf.yaml, in case you want, except the outputs parameter

• optim: Adam

• model: densenet, resnet, or efficientnet

• epochs: Any integer greater than 0, even though it is better to be > 30

• batch: 16 (it is convenient to be a power of two)

• lr: !!float 5e-4 (it can be any number between 0 and 1)

• raw: ’in/’

4. If you just wish to preprocess your images: python main.py -c conf/conf.yaml -r preproc -i

[image] –preproc [preprocessing method]

where:

• image is the link to the image you want to classify

• the preprocessing methods available are: skip, remove_background, bilateral, gaus-

sian, median, unsharp; skip is an option if you do not want to preprocess your images

• preproc: it only does image preprocessing

45

https://github.com/DanielaFCUP/DrosophilaV2
https://github.com/DanielaFCUP/DrosophilaV2


Tutorial to use the program 46

• prepare: it does preprocessing, training and testing, and plots the performance plots

and metrics

• ’classify’: it classifies the respective image. You must have a trained model first and

point to it with the -m flag

• ’full’: it does everything from preprocessing to classification

Obs1: The results from training and testing are saved in /out/outputs.txt

Obs2: If you wish to do two followed preprocessing methods, in your second preprocessing

you should write the path to the outputs folder in [image]



References

Brief about ai/ml/dl, 2018. URL https://harikrishnabhyravi.blogspot.com/2018
/10/aimldl.html. Accessed June 2, 2023.

Laith Alzubaidi, Jinglan Zhang, Amjad J. Humaidi, Ayad Al-dujaili, Ye Duan, Omran Al-
Shamma, Jesus Santamaría, Mohammed Abdulraheem Fadhel, Muthana Al-Amidie, and Laith
Farhan. Review of deep learning: concepts, cnn architectures, challenges, applications, future
directions. Journal of Big Data, 8, 2021.

Ercan Avşar. Effects of image preprocessing on the performance of convolutional neural networks
for pneumonia detection. In 2021 International Conference on INnovations in Intelligent Sys-
Tems and Applications (INISTA), pages 1–5, 2021. doi: 10.1109/INISTA52262.2021.9548351.

Sumeet Badgujar. Unpacking densenet to understand and then creating using tensorflow, 2021.
URL https://medium.com/analytics-vidhya/unpacking-densenet-to-und
erstand-and-then-creating-using-tensorflow-670d88aace5c. Accessed May
30, 2023.

Sarkhan Badirli, Christine J. Picard, George Mohler, Zeynep Akata, and Murat Dundar. Classify-
ing the unknown: Identification of insects by deep open-set bayesian learning. bioRxiv, 2021.
doi: 10.1101/2021.09.15.460492. URL https://www.biorxiv.org/content/early/
2021/09/17/2021.09.15.460492.

Hugo Bellen, Chao Tong, and Hiroshi Tsuda. 100 years of drosophila research and its impact
on vertebrate neuroscience: A history lesson for the future. Nature reviews. Neuroscience, 11:
514–22, 04 2010. doi: 10.1038/nrn2839.

G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000.

Rémi Cadène, Nicolas Thome, and Matthieu Cord. Master’s thesis: Deep learning for visual
recognition, 2016. URL https://arxiv.org/abs/1610.05567.

Juan Caicedo, Sam Cooper, Florian Heigwer, Scott Warchal, Peng Qiu, Csaba Molnar, Aliaksei
Vasilevich, Joseph Barry, Harmanjit Bansal, Oren Kraus, Mathias Wawer, Lassi Paavolainen,
Markus Herrmann, Mohammad Hossein Rohban, Jane Hung, Holger Hennig, John Concannon,
Ian Smith, Paul Clemons, and Anne Carpenter. Data-analysis strategies for image-based cell
profiling. Nature Methods, 14:849–863, 09 2017. doi: 10.1038/nmeth.4397.

Xu Cao, Ziyi Wei, Yinjie Gao, and Yingqiu Huo. Recognition of common insect in field based
on deep learning. Journal of Physics: Conference Series, 1634(1):012034, 09 2020. doi:
10.1088/1742-6596/1634/1/012034. URL https://doi.org/10.1088/1742-6596/16
34/1/012034.

47

https://harikrishnabhyravi.blogspot.com/2018/10/aimldl.html
https://harikrishnabhyravi.blogspot.com/2018/10/aimldl.html
https://medium.com/analytics-vidhya/unpacking-densenet-to-understand-and-then-creating-using-tensorflow-670d88aace5c
https://medium.com/analytics-vidhya/unpacking-densenet-to-understand-and-then-creating-using-tensorflow-670d88aace5c
https://www.biorxiv.org/content/early/2021/09/17/2021.09.15.460492
https://www.biorxiv.org/content/early/2021/09/17/2021.09.15.460492
https://arxiv.org/abs/1610.05567
https://doi.org/10.1088/1742-6596/1634/1/012034
https://doi.org/10.1088/1742-6596/1634/1/012034


REFERENCES 48

Pierre Capy and Patricia Gibert. Drosophila melanogaster, drosophila simulans: so similar yet so
different. Genetica, 120:5–16, 04 2004. doi: 10.1007/978-94-007-0965-2_1.

Sri Venkata Divya Madhuri Challa and Hemendra Vaishnav. Weather Categorization Using Fore-
ground Subtraction and Deep Transfer Learning, pages 595–601. 03 2020. ISBN 978-981-15-
2042-6. doi: 10.1007/978-981-15-2043-3_64.

Channabasava Chola, Bibal Benifa Jv, Devanur Guru, Abdullah Y Muaad, Hanumanthappa Da-
vanagere, Mugahed A. Al-antari, and Abdu Gumaei. Gender identification and classification of
drosophila melanogaster flies using machine learning techniques. Computational and Mathe-
matical Methods in Medicine, 2022:1–9, 01 2022. doi: 10.1155/2022/4593330.

François Chollet. Deep Learning with Python. Manning, November 2017. ISBN 9781617294433.

Michael Collins. Convergence proof for the perceptron algorithm, 2023. URL https://www.
cise.ufl.edu/~arunava/Teaching/Lectures-CN/perceptron_convergence
.pdf. Accessed January 5, 2023.

Yarin Gal. Uncertainty in deep learning. 2016.

Agata Giełczyk, Anna Marciniak, Martyna Tarczewska, and Zbigniew Lutowski. Pre-processing
methods in chest x-ray image classification. PloS one, 17(4):e0265949, 2022. ISSN 1932-6203.
doi: 10.1371/journal.pone.0265949. URL https://europepmc.org/articles/PMC89
82897.

Rafael C. Gonzalez and Richard E. Woods. Digital image processing. Prentice Hall, Upper
Saddle River, N.J., 2008. ISBN 9780131687288 013168728X 9780135052679 013505267X.
URL http://www.amazon.com/Digital-Image-Processing-3rd-Edition/dp/
013168728X.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016. http:
//www.deeplearningbook.org.

Sk Hassan, Arnab Maji, Michał Jasiński, Zbigniew Leonowicz, and Elżbieta Jasińska. Identifica-
tion of plant-leaf diseases using cnn and transfer-learning approach. Electronics, 10:1388, 06
2021. doi: 10.3390/electronics10121388.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition, 2015. URL https://arxiv.org/abs/1512.03385.

Hector Martinez. What is deep learning?, 2023. Accessed May 30, 2023. https://pyimages
earch.com/2021/04/17/what-is-deep-learning/.

Nathalie Jeans. How i classified images with recurrent neural networks, 2019. URL https:
//medium.com/@nathaliejeans/how-i-classified-images-with-recurrent
-neural-networks-28eb4b57fc79. Accessed June 9, 2023.

Barbara H. Jennings. Drosophila – a versatile model in biology & medicine. Materials Today, 14
(5):190–195, 2011. ISSN 1369-7021. doi: https://doi.org/10.1016/S1369-7021(11)70113-4.
URL https://www.sciencedirect.com/science/article/pii/S13697021117
01134.

Chris P. Jobling. Eg-247 signals and systems, 2018. URL https://cpjobling.github.i
o/eg-247-textbook/introduction/index.html. Accessed June 8, 2023.

https://www.cise.ufl.edu/~arunava/Teaching/Lectures-CN/perceptron_convergence.pdf
https://www.cise.ufl.edu/~arunava/Teaching/Lectures-CN/perceptron_convergence.pdf
https://www.cise.ufl.edu/~arunava/Teaching/Lectures-CN/perceptron_convergence.pdf
https://europepmc.org/articles/PMC8982897
https://europepmc.org/articles/PMC8982897
http://www.amazon.com/Digital-Image-Processing-3rd-Edition/dp/013168728X
http://www.amazon.com/Digital-Image-Processing-3rd-Edition/dp/013168728X
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://arxiv.org/abs/1512.03385
https://pyimagesearch.com/2021/04/17/what-is-deep-learning/
https://pyimagesearch.com/2021/04/17/what-is-deep-learning/
https://medium.com/@nathaliejeans/how-i-classified-images-with-recurrent-neural-networks-28eb4b57fc79
https://medium.com/@nathaliejeans/how-i-classified-images-with-recurrent-neural-networks-28eb4b57fc79
https://medium.com/@nathaliejeans/how-i-classified-images-with-recurrent-neural-networks-28eb4b57fc79
https://www.sciencedirect.com/science/article/pii/S1369702111701134
https://www.sciencedirect.com/science/article/pii/S1369702111701134
https://cpjobling.github.io/eg-247-textbook/introduction/index.html
https://cpjobling.github.io/eg-247-textbook/introduction/index.html


REFERENCES 49

Florian Jug, Tobias Pietzsch, Stephan Preibisch, and Pavel Tomancak. Bioimage informatics in
the context of drosophila research. Methods, 68(1):60–73, 2014. ISSN 1046-2023. doi: https:
//doi.org/10.1016/j.ymeth.2014.04.004. URL https://www.sciencedirect.com/scie
nce/article/pii/S1046202314001480. Drosophila developmental biology methods.

Sebastian Bas Kanå. Automatic landmark identification in digital images of drosophila wings for
improved morphometric analysis. 2019.

Martin Kapun, Joaquin C B Nunez, María Bogaerts-Márquez, Jesús Murga-Moreno, Margot Paris,
Joseph Outten, Marta Coronado-Zamora, Courtney Tern, Omar Rota-Stabelli, and et al. Guer-
reiro, Maria P García. Drosophila Evolution over Space and Time (DEST): A New Population
Genomics Resource. Molecular Biology and Evolution, 38(12):5782–5805, 09 2021. ISSN
1537-1719. doi: 10.1093/molbev/msab259. URL https://doi.org/10.1093/molbev
/msab259.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep con-
volutional neural networks. In F. Pereira, C.J. Burges, L. Bottou, and K.Q. Weinberger, editors,
Advances in Neural Information Processing Systems, volume 25. Curran Associates, Inc., 2012.
URL https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b7
6c8436e924a68c45b-Paper.pdf.

Nilay Kumar, Francisco Huizar, Keity Farfán-Pira, Pavel Brodskiy, Dharsan Soundarrajan, Marcos
Nahmad, and Jeremiah Zartman. Mapper: An open-source, high-dimensional image analysis
pipeline unmasks differential regulation of drosophila wing features. Frontiers in Genetics, 13,
04 2022. doi: 10.3389/fgene.2022.869719.

Kusrini Kusrini, Muhammad Arif, Arif Yudianto, and Hanif al Fatta. The effect of gaussian filter
and data preprocessing on the classification of punakawan puppet images with the convolutional
neural network algorithm. International Journal of Electrical and Computer Engineering, 12:
3752–3761, 08 2022. doi: 10.11591/ijece.v12i4.pp3752-3761.

Van-Linh Le, Marie Beurton-Aimar, Akka Zemmari, Alexia Marie, and Nicolas Parisey. Auto-
mated landmarking for insects morphometric analysis using deep neural networks. Ecological
Informatics, 60:101175, 2020. ISSN 1574-9541. doi: https://doi.org/10.1016/j.ecoinf.2020.10
1175. URL https://www.sciencedirect.com/science/article/pii/S1574954
120301254.

Sheng Loh, Yoshitaka Ogawa, Sara Kawana, Koichiro Tamura, and Lee Hwee-Kuan. Semi-
automated quantitative drosophila wings measurements. BMC Bioinformatics, 18, 06 2017.
doi: 10.1186/s12859-017-1720-y.

Chu-Yuan Luo, Patrick Pearson, Guang Xu, and Stephen M. Rich. A computer vision-based
approach for tick identification using deep learning models. Insects, 13(2), 2022. ISSN 2075-
4450. doi: 10.3390/insects13020116. URL https://www.mdpi.com/2075-4450/13/2
/116.

Moritz Lürig, Seth Donoughe, Erik Svensson, Arthur Porto, and Masahito Tsuboi. Computer
vision, machine learning, and the promise of phenomics in ecology and evolutionary biology.
Frontiers in Ecology and Evolution, 09:642774, 04 2021. doi: 10.3389/fevo.2021.642774.

Kapun M, Barrón MG, Staubach F, Obbard DJ, Wiberg RAW, Vieira J, Goubert C, Rota-Stabelli
O, Kankare M, Bogaerts-Márquez M, Haudry A, Waidele L, Kozeretska I, Pasyukova EG,

https://www.sciencedirect.com/science/article/pii/S1046202314001480
https://www.sciencedirect.com/science/article/pii/S1046202314001480
https://doi.org/10.1093/molbev/msab259
https://doi.org/10.1093/molbev/msab259
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://www.sciencedirect.com/science/article/pii/S1574954120301254
https://www.sciencedirect.com/science/article/pii/S1574954120301254
https://www.mdpi.com/2075-4450/13/2/116
https://www.mdpi.com/2075-4450/13/2/116


REFERENCES 50

Loeschcke V, Pascual M, Vieira CP, Serga S, Montchamp-Moreau C, Abbott J, Gibert P, Por-
celli D, Posnien N, Sánchez-Gracia A, Grath S, Sucena É, Bergland AO, Guerreiro MPG,
Onder BS, Argyridou E, Guio L, Schou MF, Deplancke B, Vieira C, Ritchie MG, Zwaan
BJ, Tauber E, Orengo DJ, Puerma E, Aguadé M, Schmidt P, Parsch J, Betancourt AJ, Flatt
T, and González J. Genomic Analysis of European Drosophila melanogaster Populations
Reveals Longitudinal Structure, Continent-Wide Selection, and Previously Unknown DNA
Viruses. Molecular Biology and Evolution, 37(9):2661–2678, 05 2020. ISSN 0737-4038. doi:
10.1093/molbev/msaa120. URL https://doi.org/10.1093/molbev/msaa120.

Therese A. Markow and Patrick M. O’Grady. Chapter 6 - handling wild-caught specimens. In
Therese A. Markow and Patrick M. O’Grady, editors, Drosophila, pages 182–185. Academic
Press, San Diego, 2006. ISBN 978-0-12-473052-6. doi: https://doi.org/10.1016/B978-01247
3052-6/50006-8. URL https://www.sciencedirect.com/science/article/pii/
B9780124730526500068.

Therese Ann. Markow. Drosophila : a guide to species identification and use, 2006.

Daniel Luis Simões Marta. Deep learning methods for reinforcement learning. 2016.

J.H. Massey and P.J. Wittkopp. Chapter two - the genetic basis of pigmentation differences within
and between drosophila species. In Virginie Orgogozo, editor, Genes and Evolution, volume
119 of Current Topics in Developmental Biology, pages 27–61. Academic Press, 2016. doi:
https://doi.org/10.1016/bs.ctdb.2016.03.004. URL https://www.sciencedirect.com/
science/article/pii/S0070215316300965.

Kathleen Matthews and William Gelbart. Research resources for drosophila: the expanding uni-
verse. Nature reviews. Genetics, 6:179–93, 04 2005. doi: 10.1038/nrg1554.

S.K. Mitra. Digital Signal Processing: A Computer-based Approach. McGraw-Hill international
edition electrical engineering series. McGraw-Hill/Irwin, 2001. ISBN 9780072321050. URL
https://books.google.pt/books?id=SjNxQgAACAAJ.

Thomas B. Moeslund. Introduction to Video and Image Processing - Building Real Systems and
Applications. Undergraduate Topics in Computer Science. Springer, 2012. ISBN 978-1-4471-
2502-0. doi: 10.1007/978-1-4471-2503-7. URL https://doi.org/10.1007/978-1-4
471-2503-7.

Francis Jesmar Montalbo. Automated diagnosis of diverse coffee leaf images through a stage-wise
aggregated triple deep convolutional neural network. Machine Vision and Applications, 33, 01
2022. doi: 10.1007/s00138-022-01277-y.

W. James Murdoch, Chandan Singh, Karl Kumbier, Reza Abbasi-Asl, and Bin Yu. Definitions,
methods, and applications in interpretable machine learning. Proceedings of the National
Academy of Sciences, 116(44):22071–22080, 2019. doi: 10.1073/pnas.1900654116. URL
https://www.pnas.org/doi/abs/10.1073/pnas.1900654116.

Francisco Gerardo Medeiros Neto, Ítalo Rodrigues Braga, Matthew Henry Harber, and Iális Cav-
alcante De Paula. Drosophila melanogaster gender classification based on fractal dimension. In
2017 30th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), pages 193–
200, 2017. doi: 10.1109/SIBGRAPI.2017.32.

https://doi.org/10.1093/molbev/msaa120
https://www.sciencedirect.com/science/article/pii/B9780124730526500068
https://www.sciencedirect.com/science/article/pii/B9780124730526500068
https://www.sciencedirect.com/science/article/pii/S0070215316300965
https://www.sciencedirect.com/science/article/pii/S0070215316300965
https://books.google.pt/books?id=SjNxQgAACAAJ
https://doi.org/10.1007/978-1-4471-2503-7
https://doi.org/10.1007/978-1-4471-2503-7
https://www.pnas.org/doi/abs/10.1073/pnas.1900654116


REFERENCES 51

Patrick M O’Grady and Rob DeSalle. Phylogeny of the Genus Drosophila. Genetics, 209(1):1–25,
01 2018. ISSN 1943-2631. doi: 10.1534/genetics.117.300583. URL https://doi.org/10
.1534/genetics.117.300583.

Damian Podareanu, Valeriu Codreanu, Sandra Aigner, Caspar Leeuwen, and Volker Weinberg.
Best practice guide - deep learning, 02 2019.

Noha Radwan. Leveraging Sparse and Dense Features for Reliable State Estimation in Urban
Environments. PhD thesis, 06 2019.

Farheen Ramzan, Muhammad Usman Khan, Asim Rehmat, Sajid Iqbal, Tanzila Saba, Amjad
Rehman, and Zahid Mehmood. A deep learning approach for automated diagnosis and multi-
class classification of alzheimer’s disease stages using resting-state fmri and residual neural
networks. Journal of Medical Systems, 44, 12 2019. doi: 10.1007/s10916-019-1475-2.

Micael Reis, Gordon Wiegleb, Julien Claude, Rodrigo Lata, Britta Horchler, Thuy Ha, Christian
Reimer, Cristina Vieira, Jorge Vieira, and Nico Posnien. Multiple loci linked to inversions are
associated with eye size variation in species of the drosophila virilis phylad, 03 2020.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object
detection with region proposal networks, 2016.

Adrian Rosebrock. Implementing the perceptron neural network with python, 2021. URL https:
//pyimagesearch.com/2021/05/06/implementing-the-perceptron-neura
l-network-with-python/. Accessed December 2, 2022.

Robin M. Schmidt. Recurrent neural networks (rnns): A gentle introduction and overview. CoRR,
abs/1912.05911, 2019. URL http://arxiv.org/abs/1912.05911.

Yefeng Shen, Md Hossain, Shafin Rahman, and Khandaker Asif Ahmed. Systematics of tephritid
fruit flies: A machine learning based pest identification system. page 10400, 06 2021. doi:
10.3390/IECE-10400.

M.N.H. Siddique and M.O. Tokhi. Training neural networks: backpropagation vs. genetic algo-
rithms. In IJCNN’01. International Joint Conference on Neural Networks. Proceedings (Cat.
No.01CH37222), volume 4, pages 2673–2678 vol.4, 2001. doi: 10.1109/IJCNN.2001.938792.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition, 2014. URL https://arxiv.org/abs/1409.1556.

Anne Sonnenschein, David Vanderzee, William Pitchers, Sudarshan Chari, and Ian Dworkin. An
image database of drosophila melanogaster wings for phenomic and biometric analysis. Giga-
Science, 4, 05 2015. doi: 10.1186/s13742-015-0065-6.

R Stephenson and Neil Metcalfe. Drosophila melanogaster: a fly through its history and current
use the use of drosophila melanogaster in medical and scientific research. The journal of the
Royal College of Physicians of Edinburgh, 43:70–75, 01 2013.

Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking model scaling for convolutional neural
networks. 2019. doi: 10.48550/ARXIV.1905.11946. URL https://arxiv.org/abs/19
05.11946.

Sergios Theodoridis. Machine Learning: A Bayesian and Optimization Perspective. Academic
Press, Inc., USA, 1st edition, 2015. ISBN 0128015225.

https://doi.org/10.1534/genetics.117.300583
https://doi.org/10.1534/genetics.117.300583
https://pyimagesearch.com/2021/05/06/implementing-the-perceptron-neural-network-with-python/
https://pyimagesearch.com/2021/05/06/implementing-the-perceptron-neural-network-with-python/
https://pyimagesearch.com/2021/05/06/implementing-the-perceptron-neural-network-with-python/
http://arxiv.org/abs/1912.05911
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1905.11946
https://arxiv.org/abs/1905.11946


REFERENCES 52

TIBCO. What is a neural network? URL https://www.tibco.com/reference-center/
what-is-a-neural-network. Accessed December 2, 2022.

Seiichi Uchida. Image processing and recognition for biological images. Development, growth &
differentiation, 55, 04 2013. doi: 10.1111/dgd.12054.

Oregon State University. On convergence proofs for perceptions, 2023a. URL https://clas
ses.engr.oregonstate.edu/eecs/spring2021/cs519/extra/novikoff-196
2.pdf. Accessed January 5, 2023.

Oregon State University. On convergence proofs for perceptions, 2023b. URL https://classe
s.engr.oregonstate.edu/eecs/fall2017/cs534/extra/novikoff-1963.pdf.
Accessed January 5, 2023.

Enrique Varela, E. Ulises Moya-Sanchez, Armando Aguilar-Meléndez, Octavio Castillo Reyes,
Eduardo Vázquez-Santacruz, Sebastián Salazar-Colores, and Ulises Cortés. Detection, count-
ing, and classification of visual ganglia columns of drosophila pupae. Computacion y Sistemas,
23:391–397, 06 2019. doi: 10.13053/CyS-23-2-3200.

Denan Xia, Peng Chen, Bing Wang, Jun Zhang, and Chengjun Xie. Insect detection and classi-
fication based on an improved convolutional neural network. Sensors, 18:4169, 11 2018. doi:
10.3390/s18124169.

Chengjun Xie, Jie Zhang, Rui Li, Jinyan Li, Peilin Hong, Junfeng Xia, and Peng Chen. Automatic
classification for field crop insects via multiple-task sparse representation and multiple-kernel
learning. Computers and Electronics in Agriculture, 119:123–132, 2015. ISSN 0168-1699. doi:
https://doi.org/10.1016/j.compag.2015.10.015. URL https://www.sciencedirect.co
m/science/article/pii/S0168169915003282.

Masamitsu Yamaguchi and Shinya Yamamoto. Role of drosophila in human disease research 2.0.
International Journal of Molecular Sciences, 23:4203, 04 2022. doi: 10.3390/ijms23084203.

Jonghwa Yim and Kyung-Ah Sohn. Enhancing the performance of convolutional neural networks
on quality degraded datasets. In 2017 International Conference on Digital Image Computing:
Techniques and Applications (DICTA), pages 1–8, 2017. doi: 10.1109/DICTA.2017.8227427.

Aston Zhang, Zachary C. Lipton, Mu Li, and Alexander J. Smola. Dive into deep learning. arXiv
preprint arXiv:2106.11342, 2021.

Şaban Öztürk and Bayram Akdemir. Effects of histopathological image pre-processing on convo-
lutional neural networks. Procedia Computer Science, 132:396–403, 2018. ISSN 1877-0509.
doi: https://doi.org/10.1016/j.procs.2018.05.166. URL https://www.sciencedirec
t.com/science/article/pii/S1877050918309001. International Conference on
Computational Intelligence and Data Science.

https://www.tibco.com/reference-center/what-is-a-neural-network
https://www.tibco.com/reference-center/what-is-a-neural-network
https://classes.engr.oregonstate.edu/eecs/spring2021/cs519/extra/novikoff-1962.pdf
https://classes.engr.oregonstate.edu/eecs/spring2021/cs519/extra/novikoff-1962.pdf
https://classes.engr.oregonstate.edu/eecs/spring2021/cs519/extra/novikoff-1962.pdf
https://classes.engr.oregonstate.edu/eecs/fall2017/cs534/extra/novikoff-1963.pdf
https://classes.engr.oregonstate.edu/eecs/fall2017/cs534/extra/novikoff-1963.pdf
https://www.sciencedirect.com/science/article/pii/S0168169915003282
https://www.sciencedirect.com/science/article/pii/S0168169915003282
https://www.sciencedirect.com/science/article/pii/S1877050918309001
https://www.sciencedirect.com/science/article/pii/S1877050918309001

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms
	Abbreviations
	1 Introduction
	1.1 Importance of Drosophila
	1.2 Objectives
	1.3 Thesis Outline

	2 Related Work
	3 Background
	3.1 Computer Vision
	3.1.1 Thresholding
	3.1.2 Filtering
	3.1.3 Lowpass Filters
	3.1.4 Highpass Filters
	3.1.5 Nonlinear Filters
	3.1.6 Peak Signal-to-Noise Ratio

	3.2 Machine Learning and Deep Learning
	3.2.1 Types of Learning
	3.2.2 The Perceptron

	3.3 Types of Artificial Neural Networks
	3.3.1 Feed-Forward Networks
	3.3.2 Recurrent Neural Networks
	3.3.3 Convolutional Neural Networks

	3.4 Training Algorithms for ANNs
	3.4.1 Evolutionary algorithms
	3.4.2 The Gradient Descent Algorithm
	3.4.3 The Backpropagation Algorithm

	3.5 Common Convolutional Networks
	3.5.1 ResNet
	3.5.2 EfficientNet
	3.5.3 DenseNet

	3.6 Evaluation metrics

	4 Methodology
	4.1 Dataset
	4.2 Processing pipeline
	4.3 Background Removal
	4.4 Smoothing
	4.5 CNNs

	5 Results and Discussion
	5.1 Experiments with the original images
	5.1.1 DenseNet-121

	5.2 Experiments with images with no background
	5.2.1 With no preprocssing
	5.2.2 With preprocessing
	5.2.3 Global results

	5.3 Overall Discussion

	6 Conclusions
	A Novikoff's Theorem
	B Tutorial to use the program
	References

