
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Interface OpenSCENARIO for CARLA
simulator using ROS control

Miguel Jorge Maia de Magalhães Barros Lançós

Master in Electrical and Computers Engineering

Advisor: Luís Paulo Gonçalves dos Reis

Advisor: João Manuel Leite da Silva

July 28, 2020

c©Miguel Lançós, 2020

Resumo

O potencial que os carros autónomos apresentam para o futuro da nossa sociedade inspirou muitos
investigadores a mudar o foco da sua pesquisa para contribuir para o desenvolvimento desta tec-
nologia. Nos últimos anos, sua popularidade e financiamento aumentaram substancialmente com
a participação de startups e algumas das principais empresas automobilísticas. As pesquisas mais
promissoras nesta área baseiam-se em algoritmos de aprendizagem computacional que requerem
treinar os sistemas na vida real ou com datasets de tamanho considerável. Mas este tipo de treino
não é possível em estradas públicas devido aos riscos para a segurança dos utilizadores destas vias
e questões éticas, impedindo o seu rápido desenvolvimento.

Deste modo, os simuladores poderão ser a solução ao permitirem o treino dos sistemas de
condução autónoma em ambientes virtuais, com cenários realistas e complexos, de uma forma
barata e sem pôr em perigo vidas humanas. Existem vários simuladores de condução urbana no
mercado mas cada um apresenta uma interface única e uma API personalizada o que resulta numa
elevada incompatibilidade dentro da indústria.

Esta tese propõe o desenvolvimento de uma camada de comunicação para o simulador CARLA,
fornecendo métodos standard para a interface com os algoritmos de controlo. Esta implementação,
ainda que desenhada especificamente para este simulador, permitirá uma interação completa com
o mesmo utilizando apenas os métodos de comunicação standard: ROS e OpenSCENARIO.

i

Abstract

The potential impact self-driving cars could have in our society’s future inspired many researchers
to switch their focus to further develop this technology. In the recent years its popularity and
financing has increased substantially with startups and some major car companies getting involved.
Regardless of this trend, the technology still faces many challenges ahead. The leading advances
are based on machine learning techniques, which require training on a variety of situations in
real-life or with large datasets. However, security liabilities and ethical questions prevent these
vehicles from performing freely on the public roads, halting the development progress.

Urban driving simulators present themselves as the solution, allowing to train ADSs in realistic
and complex urban scenarios while reducing costs and without endangering human lives. Many
urban driving simulators are available nowadays but all of them developed their own interface and
APIs resulting in a largely non-standard industry.

This thesis proposes the development of a communication layer for CARLA simulator pro-
viding a standard method to interface with the control algorithms. This implementation, although
tuned specifically for this simulator, will allow full interaction with the simulator using only ROS
and OpenScenario standard.

ii

Acknowledgements

My biggest thanks to my supervisors, Professor Luis Paulo Reis and Dr. João Manuel da Silva,
for providing guidance throughout the whole thesis development and for this opportunity.

To Pedro Santos, from CISTER. His workshops were essential to the success of this work.
To all my colleagues in FEUP and Altran for the help and support, especially Jorge Godinho

that contributed a lot with his CARLA experiences.
Finally, I want to thank my family that always supported me and help me navigating the world

to reach where I am and where I will end up.
And thanks to the SARS-CoV-2 virus that surely provided the development of this project with

endless challenges that I had to overcome. I will certainly come out much more wise after this
experience.

Miguel Lançós

iii

iv

“I think it’s very important to have a feedback loop,
where you’re constantly thinking about what you’ve done

and how you could be doing it better.”

Elon Reeve Musk

v

vi

Contents

1 Introduction 1
1.1 Context . 1
1.2 Motivation . 2
1.3 Goals . 2
1.4 Document Structure . 3

2 Literature Review 5
2.1 Autonomous Driving . 5

2.1.1 System Architectures . 5
2.1.2 Sensors . 5
2.1.3 Localization & Mapping . 6
2.1.4 Perception . 6
2.1.5 Assessment . 7

2.2 Robot Operating System (ROS) . 8
2.2.1 Design Goals . 8
2.2.2 Nomenclature . 9

2.3 OpenSCENARIO . 10
2.3.1 Entities . 10
2.3.2 Storyboard . 11
2.3.3 Events & Triggers & Actions . 12
2.3.4 Re-Use Mechanisms . 15

2.4 Urban Driving Simulators . 16
2.4.1 Comparison . 19
2.4.2 Overview . 24

2.5 Car Learning to Act (CARLA) Simulator . 26
2.5.1 Unreal Engine 4 . 27
2.5.2 ROS Bridge . 29

2.6 Conclusion . 31

3 Approach and Work Plan 33
3.1 Research Approach . 33
3.2 Work Plan . 33

4 WP1: Scenario Configuration 37
4.1 Scenario Runner . 38
4.2 Parameters . 38

4.2.1 Implementation . 39
4.3 Catalogs . 40

vii

viii CONTENTS

4.3.1 Implementation . 40
4.4 Entities . 41

4.4.1 Entities in CARLA . 44
4.4.2 Implementation . 44
4.4.3 Vehicle . 46

4.5 Storyboard . 49
4.5.1 Implementation . 50
4.5.2 Init . 51
4.5.3 Story . 53
4.5.4 Act . 54
4.5.5 ManeuverGroup . 56
4.5.6 Maneuver . 58
4.5.7 Event . 59
4.5.8 Daytime Animation . 61
4.5.9 Naming . 64

4.6 Actions . 65
4.6.1 Global Actions . 66
4.6.2 Private Actions . 68
4.6.3 Environment Action . 70
4.6.4 Entity Action . 75
4.6.5 Parameter Action . 77
4.6.6 Longitudinal Action . 81

4.7 Conclusion . 88

5 WP2: Scenario Constructor 89
5.1 Objectives . 90

5.1.1 Main Canvas . 90
5.1.2 Side Bar . 91
5.1.3 Attribute Window . 91

5.2 Implementation . 92
5.2.1 Visual Architecture . 93
5.2.2 Functionality . 95

5.3 Content . 101
5.3.1 OpenSCENARIO Elements . 101

5.4 Conclusion . 105

6 Conclusions & Future Work 107
6.1 Summary . 107
6.2 Future Research Directions . 108

References 109

A Absolute Target Speed Action 113

B Relative Target Speed Action 123

List of Figures

1.1 Proposed stack layers structure . 2

2.1 OpenSCENARIO structure & Storyboard content (taken from "XSD Diagram") . 10
2.2 OpenSCENARIO Storyboard’s structure.[1] . 13
2.3 Trigger conditions (AND, OR) relationship . 14
2.4 Example of a velocity condition and different edge condition responses. 14
2.5 Current vs Sulkowski et al. 2018 simulator review model 16
2.6 Carla client-server architecture [2] . 26
2.7 Carla epic vs low quality level [2]. 27
2.8 Waypoints and traffic trigger boxes in a intersection [2] 29

3.1 Proposed system structure . 34

4.1 OpenSCENARIO’s add-on content directory. 37
4.2 View of a CARLA’s map with the platform spawned. 44
4.3 Entities Base Class - UML class diagram. 45
4.4 OpenSCENARIO vehicle coordinates reference[1]. 48
4.5 VehicleConfiguration UML class diagram. 49
4.6 Storyboard UML class diagram. 51
4.7 Storyboard behavior tree. 52
4.8 Init UML class diagram. 53
4.9 Init behavior tree. 53
4.10 Story UML class diagram. 54
4.11 Story behavior tree. 54
4.12 Act UML class diagram. 55
4.13 Act behavior tree. 56
4.14 ManeuverGroup UML class diagram. 58
4.15 ManeuverGroup behavior tree. 58
4.16 Maneuver UML class diagram. 59
4.17 Maneuver behavior tree. 59
4.18 Event UML class diagram. 61
4.19 Event behavior tree. 61
4.20 Real vs intended CARLA’s sun movement. 62
4.21 Behavior tree with the TimeOfDay action. 63
4.22 TimeOfDay Action - UML class diagram. 63
4.23 Parallel and Sequence UML class diagrams. 65
4.24 Actions Base classes - UML class diagram. 66
4.25 Example of a state machine implementation. 66
4.26 Global actions UML class diagram. 67

ix

x LIST OF FIGURES

4.27 PrivateAction UML class diagram. 69
4.28 Private UML class diagram. 69
4.29 Private behavior tree. 70
4.30 Environment action - UML class diagram. 73
4.31 SetWeather action behavior - UML class diagram. 76
4.32 Entity Action - UML class diagram. 77
4.33 AddEntityAction behavior - UML class diagram. 77
4.34 DeleteEntityAction behavior - UML class diagram. 78
4.35 ParameterAction UML class diagram. 79
4.36 SetParameter behavior - UML class diagram. 80
4.37 AddParameter behavior - UML class diagram. 80
4.38 MultParameter behavior - UML class diagram. 80
4.39 LongitudinalAction UML class diagram. 81
4.40 DynamicBehavior UML class diagram. 85
4.41 AbsoluteTargetSpeed UML class diagram. 85
4.42 Speed evolution of a vehicle. Parameters: kp=1.0, Audi A2. Test script: listing

A.1 from Appendix A . 87
4.43 RelativeTargetSpeed UML class diagram. 88
4.44 Speed evolution of a vehicle following a leading vehicle. Parameters: kp=1.0,

Audi A2. Test script: listing B.1 from Appendix B 88

5.1 Scenario Constructor libraries diagram. 89
5.2 Main window - Interface mock-up. 90
5.3 Main window showing the attribute window - Interface mock-up. 92
5.4 Interface UML class diagram. 93
5.5 Interface structure - static elements. 94
5.6 Example of the creation of a script. 96
5.7 OSCElement UML class diagram. 97
5.8 OSCLabel, ListLabel and CanvasLabel UML class diagram. 98
5.9 Example modal window with the FileHeader element attributes. 98
5.10 Attribute and AttrType UML class diagram. 99
5.11 AttrWindow UML class diagram. 100
5.12 OSCChildren UML class diagram. 100
5.13 Example of a data type class. 103
5.14 OSCEnumeration data type class. 103
5.15 OSCBoolean data type class. 104
5.16 OSCUnsignedShort data type class. 104
5.17 OSCDateTime data type class. 104
5.18 OSCString data type class. 105
5.19 OSCDouble data type class. 105

List of Tables

2.1 Urban driving simulators review . 25
2.2 Currently available CARLA sensors . 28
2.3 Vehicle configurable physics parameters . 30

4.1 Vehicle custom properties . 50
4.2 CARLA’s weather parameters.[2] . 73
4.3 Conversion weather parameters between CARLA and OpenSCENARIO. 74
4.4 Speed dynamics evolution: Shape vs Dimension 86

xi

xii LIST OF TABLES

Acronyms

AD Autonomous Driving.

ADAS Advanced Driver-Assistance System.

ADS Automated Driving System.

AI Artificial Intelligence.

API Application Programming Interface.

CARLA Car Learning to Act.

DATMO Detection and Tracking of Multiple Objects.

DCNN Deep Convolutional Neural Network.

EU European Union.

FEUP Faculdade de Engenharia da Universidade do Porto.

FOV Field of View.

GNSS Global Navigation Satellite System.

GPS Global Positioning System.

GUI Graphical User Interface.

IDL Interface Definition Language.

IMU Inertial Measurement Unit.

LIDAR Light Detection And Ranging.

MoI Moment of Inertia.

MOT Multiple Object Tracking.

NHTSA National Highway Traffic Safety Administration.

NPC Non-Player Character.

xiii

RADAR Radio Detection And Ranging.

ROS Robot Operating System.

RPC Remote Procedure Call.

RPM Revolutions per Minute.

SLAM Simultaneous Localization and Mapping.

TCP Transmission Control Protocol.

UDP User Datagram Protocol.

UE4 Unreal Engine 4.

XML eXtensible Markup Language.

Chapter 1

Introduction

1.1 Context

In the last century, cars have revolutionized the mobility of individuals and groups of people.

Since their invention, the number of vehicles on public roads has increased considerably and with

it the number of road accidents. For example, in 2015 there were more than one million road

accidents in the European Union (EU) resulting in close to 1.5 million injured and 35 thousand

dead people [3]. And, according to the National Highway Traffic Safety Administration (NHTSA),

about 94% of worldwide’s road accidents are due to human error [4]. Autonomous driving is

hoping to reduce these numbers largely.

Recent advances in Artificial Intelligence (AI) algorithms and computer processing power

paved the way for Automated Driving System (ADS) of level 4 and above [5]. However, research

shows that an autonomous vehicle would need millions or even billions of driven miles to prove

it’s safety and readiness to be implemented in everyday’s use [6]. This extensive testing cannot

be accomplished in real-world situations at the risk of injuring or killing human beings. As such,

simulators present themselves as the answer by allowing to perform the necessary driven miles

needed to train and test the driving algorithms, in a variety of normal and/or challenging scenarios.

CARLA is an open-source free software, developed on Unreal Engine 4 (UE4), that allows

simulating quite realistically urban driving environments. It has an integrated set of the most

common sensors, allows creating different demanding environments and has ROS Bridge commu-

nication capabilities. This set of characteristics and many others make it one of the most suitable

options to develop city ADS control algorithms [7].

In order to strengthen its position as a strategic Engineering provider, Altran Portugal cre-

ated a joint effort with some major Portuguese scientific organizations, CISTER, NOVALincs and

HasLab, to give origin to Vortex-CoLab, a collaborative laboratory whose goal is to accelerate

the technology transfer of cyber-physical systems and cybersecurity [8]. The development of au-

tonomous driving solutions is the first target research area of Vortex-CoLab.

This thesis was proposed by Altran Portugal in the scope of assisted and Autonomous Driving

(AD) research projects, developed within the company in collaboration with the Vortex-CoLab

1

2 Introduction

association. This simulation extension work is one of the pieces composing the company’s ini-

tiatives for creating a software infrastructure to drive forward the development of AD platforms.

Modules already tackled include Perception, V2X communication, World Modeling, data label-

ing, decision & control, infotainment, data visualization. The work developed during this thesis

enables the testing, development and validation of most of the previously mentioned modules,

further extending the projects ecosystem towards an integrated and harmonized set of solutions.

1.2 Motivation

Although simulators present themselves as a solution to effectively and quickly develop, train and

validate ADSs in a safe environment, it’s not uncommon for each simulator to implement its own

personalized interface thus creating a challenge to design versatile ADS architectures.

Some standards were developed with the objective of tackling this emerging software incom-

patibility in mind. The most popular examples are ROS, which provides standard communication

for robotic systems, and OpenSCENARIO, with a standard very useful to define testing scenarios.

As proposed in figure 1.1, developing an ADS with ROS to interface with the hardware and

using OpenSCENARIO to construct and define training and testing scenarios in simulators ensures

that no aspect of the bottom layer is taken in consideration resulting in extraordinarily versatile

architectures. In theory the simulation layer replacement, with another simulator or real vehicle,

would only affect the communication layer while leaving the software layer intact.

Figure 1.1: Proposed stack layers structure

1.3 Goals

The main purpose of this thesis is to extend CARLA’s functionalities while also developing a

communication layer on top of the simulator. The final result should be a system that allows:

• complete interaction between ADSs and CARLA simulator using only the ROS framework;

1.4 Document Structure 3

• full configuration of simulator’s settings and scenario definition by using Openscenario stan-

dard;

• exportation of labelled datasets;

• configuration of the simulator using a Graphical User Interface (GUI);

Ideally one should be able to completely interact with CARLA using only the ROS framework.

1.4 Document Structure

In this chapter (1) it is presented an overview of the current position of autonomous driving devel-

opment and how this thesis could be useful to further advance this promising technology.

The chapter 2 performs an exposition of the state-of-the-art on ADS design with the objective

to better understand what should consist an urban driving simulation, a description of the necessary

communication method for this project, a short review of the market’s availability on urban driving

simulators and, to conclude, a more in-depth review of the chosen simulator, CARLA.

The chapter 3 provides a brief description of this thesis research method, objectives and mile-

stones.

The first phase of the development, the interpretation and execution of the OpenSCENARIO

scripts, is presented in the chapter 4, alongside a detailed description of the OpenSCENARIO’s

features and its implementation strategy.

In the chapter 5 it is described the implementation for a GUI, based on Qt framework, intended

to facilitate the creation of OpenSCENARIO scripts without requiring a deep knowledge of the

standard.

Finally, in the chapter 6 a final summary of the work performed in this thesis is presented

followed by a description of the planned future work in further development of this project.

4 Introduction

Chapter 2

Literature Review

2.1 Autonomous Driving

The following content presented in this section was obtained from a literature review on au-

tonomous driving [9].

2.1.1 System Architectures

Common ADSs architectures can be categorized according to their connectivity and algorithm

design.

As far as connectivity goes, an ADS can be defined as an ego-only or a connected system. An

ego-only system consists in self-sufficient vehicles with all the necessary requirements to carry

out all the intended automated driving operations. On the other hand, a connected system is able

to use its communication capabilities to improve the automated driving operations. Probably due

to the challenges presented by communications in driving scenarios, there isn’t yet a connected

system implementation.

In the algorithmic design category, there can be modular and end-to-end systems. A modular

ADS is structured as a pipeline of separate software components, for individual tasks, linking

sensor inputs to actuator outputs, which usually are motor commands. End-to-end systems are

the opposite, instead of being composed by several modules, a single software unit is developed

which is fed sensor data, directly, and outputs discrete or continuous actuator outputs.

2.1.2 Sensors

It is essential for an autonomous driving vehicle to be robust and reliable and so it is important

to have high sensor redundancy. In an ADS there are two types of sensors, exteroceptive and

proprioceptive.

5

6 Literature Review

Exteroceptive sensors are used for perceiving the environment around the vehicle, to identify

and detect both dynamic and static objects. In the current state of art, the most common exte-

roceptive sensors are cameras, Light Detection And Rangings (LIDARs), Radio Detection And

Rangings (RADARs) and ultrasonic sensors.

Since the knowledge of the surrounding environment is not enough for a vehicle to safely

perform all of its automated driving tasks, proprioceptive sensors are used. This type of sensors

are used to determine states of the vehicle, such as position, speed, acceleration, orientation...

Currently, there is a wide variety of sensors used for different goals, wheel encoders for vehi-

cle odometry, Inertial Measurement Units (IMUs) for velocity and position changes, tachometers

for velocity and altimeters to measure altitude. To increase robustness a combination of several

proprioceptive sensors is used.

2.1.3 Localization & Mapping

Another important component of an ADS is its localization. Localization, in this situation, is the

task of finding ego-position relative to a reference frame in an environment. As such, it is essential

for a vehicle to use the correct road lane and position itself accurately in it or to use local and global

navigation. The most common solutions for this challenge are an GNSS-IMU fusion, SLAM and

a priori map-based localization.

A GNSS-IMU fusion consists in using the IMU data to calculate the position changes from

a dead-reckoning, but to prevent error propagation, regularly updated by GPS information. Al-

though its performance is far superior to only IMU localization and more robust than only GPS, it

does not meet the performance criteria for vehicle localization and, as such, can be only used for

high-level route planning, or initial pose estimation for other localization technologies.

Simultaneous Localization and Mapping (SLAM), as described in the name, is the act to ego-

localization while simultaneously generating an online map without any a priori environment in-

formation. Despite being a very versatile solution that works anywhere, using SLAM outdoors

involves inaccurate and inefficient algorithms due to its high computational requirements and en-

vironmental challenges.

Lastly, a priori map based localization uses detailed a priori generated maps to match sensor

readings in order to find the vehicle position. To improve performance it can be used with other

solutions in order to provide an estimate of initial position, such as GNSS. It can be implemented

either by using landmark search, which requires a sufficient number of landmarks, or point cloud

matching, at the cost of higher computational requirement. Of course, this approach requires an

extra step of generating the map and it faces challenges in fast changing environments, such as

high vegetation or constructions.

2.1.4 Perception

As previously mentioned in the chapter 2.1.2, perception is a major task for ADSs and consists

in extracting information from the surrounding environment, which can be critical for safe navi-

2.1 Autonomous Driving 7

gation. The most common approach is by using 2D cameras but 3D vision solutions is becoming

increasingly popular. This critical task can be categorized into five topics: object detection, se-

mantic segmentation, 3D object detection, road and lane detection and object tracking.

Object detection is the task of identifying the localization and size of static and dynamic ob-

jects of interest. It is a basic task which is the support for other ADS tasks and essential for scene

understanding. Frequent approaches are based in Deep Convolutional Neural Networks (DCNNs)

either single stage or region proposal detection frameworks.

Sometimes an object is poorly defined by a bounding box and, as an alternative, semantic

segmentation allows to classify each pixel of an image with a class label.

3D object detection can be extremely useful for ADSs. To bridge the gap between 2D and 3D

images, depth estimation is introduced. There are some implementations of 3D object detection

using algorithms on top of a single 2D camera data but stereo or multi-view systems are more

robust although very hardware expensive. Recently a solution with 3D LIDAR was introduced,

providing depth naturally without any algorithm processing.

Object tracking, also known as Multiple Object Tracking (MOT) and Detection and Tracking

of Multiple Objects (DATMO), consists in applying motion models by estimating speed and head-

ing of objects to allow their tracking. Sensor fusion for this task is the most used solution in order

to correctly and accurately estimate all the necessary complex data from the frame of the object.

Road and lane detection is necessary for vehicle understanding of road semantics, which is

clearly important to properly navigate the road. This task can be divided in several levels: un-

derstanding of the current driving lane, determination of neighboring lanes and calculation of

direction and merging lanes.

2.1.5 Assessment

To assure maximum safety an ADS has to be able to evaluate the overall risk level of specific situ-

ations and predict the intentions of human drivers and pedestrians. This risk assessment has been

studied in three different subjects: overall risk assessment, human driving behavior assessment

and driving style recognition.

8 Literature Review

2.2 ROS

Robot programming is difficult nowadays with so many hardware implementations and increas-

ingly more complex tasks. The result is a long and over-complicated code which is not easily

reusable. And, since the development of a full stack is beyond the expertise of a single researcher,

a system that allows large-scale software integrations was necessary.

ROS is not a traditional operating system. It functions on top of a host operating system and

it provides a structured communications layers for heterogeneous computer clusters. Initially de-

veloped as a response to the challenges presented in the STAIR project, from Stanford University,

and Personal Robot Program, from Willow Garage, it puts its emphasis on large-scale integra-

tive robotics research and versatility to be applicable to much more than only service-robot and

mobile-manipulations domains.

2.2.1 Design Goals

To solve all the previously mentioned problems and challenges, ROS was designed with the prin-

ciples of peer-to-peer, tools-based, multi-lingual, thin and free and open-source.

Being peer-to-peer it allows multi-process and multi-host communication on a heterogeneous

network, that is a cluster of devices without a central data server. However, it still needs a main

device, called master, to enable processes to find each other at runtime.

ROS is multi-lingual to provide more comfort and agility to the programmer. Every language

has trade-offs between programming time, ease of debugging, syntax and runtime efficiency and

the appropriate use of a language depends on the project requirements and the programmer prefer-

ences. As such, ROS is currently implemented in C++, Python, Octave and LISP and to facilitate

portability all peer-to-peer connection negotiation and configuration is in XML-RPC format which

is supported by most major languages. Available messages are described, by their fields, in short

text files using language-neutral Interface Definition Language (IDL) which is implementation

independent and enables easy creation of new messages.

It is tools-based because, to manage its complexity, it is constituted by a microkernel full of

small tools that build and run various components. Although this reduces the framework efficiency,

it gains in stability and complexity management.

It is thin because it encourages the development of standalone libraries with no dependencies

on ROS by performing builds inside the source code tree and making use of CMake. The main

idea is to develop processes that only expose configuration options and route data in and out

through ROS. Also, this independent structure allows for ROS to be able to update source code

from external repositories or even apply patches.

Finally, it is free and open-source since it is distributed under the BSD license, allowing the

development of both commercial and non-commercial projects. Its independency of processes

supports the use of individual licenses for each process, from GPL to BSD.

2.2 ROS 9

2.2.2 Nomenclature

Nodes: also could be interpreted as a software module, are essentially processes.

Messages: are a predefined data structure which contains information to be transported between

nodes.

Topics: are the subject of the message, usually a string, it identifies the content of the message.

In ROS nodes can subscribe several topics they might be interested and can publish several

topics.

Services: allowing synchronous communication, similar to web services, a service responds with

the required information when requested by a node. A service name is unique and no two

nodes can run the same service.

10 Literature Review

2.3 OpenSCENARIO

Scenarios have been used in various disciplines, from military to economic and other technological

fields, as a means to stimulate thinking about possible occurrences and analyse relevant courses of

action.[10] The term scenario has been defined numerous times throughout the years and Ulbrich

et al. [11], based on the work of Geyer et al. [12], produced the definition that follows this para-

graph, mainly focusing on simulation scenarios.

"A scenario describes the temporal development between several scenes in a sequence
of scenes. Every scenario starts with an initial scene. Actions&events as well as
goals&values may be specified to characterize this temporal development in a scenario.
Other than a scene, a scenario spans a certain amount of time."

- Ulbrichet al. [11]

According to this definition a scenario is constructed by a sequence of scenes which contain

actions, events, goals and values in order to characterize a single temporal sequence of actions and

events depending on the relevant goals and values of the scene.

OpenSCENARIO is a standard providing support for scenario description containing all the

components present in the previous definition. All dynamic actors are named entities and can

be organized into catalogs for vehicles, pedestrians and miscellaneous objects, and ego vehi-

cles are defined by the keyword ego. The scenery is defined by road network characteristics,

including OpenDRIVE files, and environment settings, specifically weather and time information.

Actions&events and goals&values are represented in a series of maneuvers, which can also be

organized into a maneuver catalog, and all these maneuvers are sequenced chronologically into a

storyboard.[13]

(a) OpenSCENARIO structure

(b) Storyboard content

Figure 2.1: OpenSCENARIO structure & Storyboard content (taken from "XSD Diagram")

2.3.1 Entities

According to the OpenSCENARIO user guide, entities, often refered as Actors, are objects that

may change their position and orientation dynamically over time. In this case, entities can be

2.3 OpenSCENARIO 11

classified as Vehicles, Pedestrians or MiscObjects. The latter group, identical to the OpenDRIVE

format, comprises the following object classes: obstacle, pole, tree, vegetation, barrier, building,

parking space, patch, railing, traffic island, crosswalk, street lamp, gantry, sound barrier, wind and

road mark. In a scenario these actors can be used either in triggers, to enable actions, or as the

target to perform actions, resulting in a change of the entity’s state.[1]

Besides entity type specific properties, e.g. vehicle’s maximum acceleration, meant to al-

low for definition of test-instance or use-case specific properties, all entity types contain user-

customized set of properties, presenting a powerful instrument for providing features related to

the specific simulator, hardware or software setup responsible for executing the scenario. These

properties can be introduced in the form of a list of name-value pairs, instances of properties, or

as a reference to external files dependent on the software implementation. However, no scenario

should be dependent on these properties, i.e. custom properties can influence the scenario but its

execution should always be possible without the knowledge of their meaning.[1]

In order to keep behaviour consistency, and other software-hardware specific behaviours, enti-

ties can be assigned a default, or a user-assigned, controller responsible for managing longitudinal

or lateral movements when these are not under the effect of other user-assigned actions. Longitu-

dinal and lateral control are considered independent, and a controller can be assigned for one or

both movement directions.[1]

Entities can also be grouped into EntitySelections, allowing for actions and triggers to treat

multiple entities as one. These groups can be used as target for actions, where the action is only

considered finished when all entities involved completed it, or their aggregated information can be

used in triggers.[1]

2.3.2 Storyboard

The Storyboard element is OpenSCENARIO’s main component, it provides a concept similar to

that of classical storytelling, such as theater plays, in which answers for the question "who?",

"what?" and "when?" are given. The Storyboard should contain at least one Story element which

in turn should contain at least one Act element and so on, according to the following structure:

Storyboard ⊃ Story⊃ Act ⊃ManeuverGroup⊃Maneuver ⊃ Event ⊃ Action

Init is the first element of the Storyboard. A Storyboard needs to contain exactly one Init

element to define the initial state of the scenario. This element is intended to correctly position the

entities for the following sequence of events. Although any available action (see chapter 2.3.3) can

be executed in this environment, the execution of all actions in parallel due to the nonexistence of

triggers, only makes it suitable for simple actions, such as positioning or setting initial speed.[1]

Following an Init element, the Story elements come through. At least one Story element is

necessary but many more can exist in a Storyboard. This element permits authors to group different

acts in order to provide better organizational structure in large scenarios.[1]

12 Literature Review

Contained in the Story element, the Act element can be found. With the function to answer the

"when?" question, this element provides temporal localization in it’s Story’s timeline. To fulfill

this objective, it possesses both start, that initiate the execution of ManeuverGroups, and stop

triggers, to "close" the act.[1]

The ManeuverGroup elements, contained in the Act elements, also play a role in the classical

storytelling concept by providing an answer to the question "who?". These elements allow to

assign entities, flexibly, i.e. during runtime, to sequences of actions contained in the Maneuver

element.[1]

Finally, the Maneuver element defines "what?" happens in the scenario. It contains a series of

Event elements that describe the actions to perform.[1]

The figure 2.2 contributes to a better understanding of a Storyboard hierarchical structure.

2.3.3 Events & Triggers & Actions

Event elements serve as containers to combine actions and produce meaningful behavior for the

scenario. These elements contain start triggers for better control over the beginning of the its

actions. Although an Event can be run multiple times, by taking advantage of the "maximumEx-

ecutionCount" parameter, an Event can only have one instance running at the same time, which

means an Event can only be triggered when it is not running.

To create a broader combination of behaviours, these elements are characterized with a priority

level that defines rules for their execution in relation to other Event elements inside the same

Maneuver:

overwrite When this Event is triggered, all the other running Events are terminated.

skip The triggered Event will hold its execution until all the other running Events terminate.

parallel The Event is always executed independently of other running Events.[1]

Action elements are singular behaviours that allow to create or modify dynamic elements of

a scenario. Actions can be present in the Init element, where they are immediately executed in

parallel, due to the lack of triggers, with the sole purpose of setting up the initial state of the sce-

nario or inside Event containers subjected to their own triggers and their parent element’s triggers,

creating a timeline of actions. OpenSCENARIO defines three types of actions, PrivateAction,

GlobalAction and UserDefinedAction.[1]

PrivateActions are related to an entity, or group of entities, and describe their motion, position

and visibility in the scenario. These are organized into several categories, LongitudinalAction,

LateralAction, VisibilityAction, SynchronizeAction, ActivateControllerAction, ControllerAction,

TeleportAction, RoutingAction. On the other hand, GlobalActions do not require an entity and

serve to set or modify other scenario related quantities. These are categorized into the following:

EnvironmentAction, EntityAction, ParameterAction, InfrastructureAction and TrafficAction. Fi-

nally, users are able to create their own customized actions by providing a script file or commands

2.3 OpenSCENARIO 13

Figure 2.2: OpenSCENARIO Storyboard’s structure.[1]

with UserDefinedActions. However, these are dependent on the implementation and it’s contents

are not only dependent on the simulator, hardware but also the software responsible for running

the scenario.[1]

Triggers play an important role in creating the temporal dimension of a scenario as they are

used to start and stop ongoing scenario elements, referred as startTriggers and stopTriggers, re-

spectively. A startTrigger allows the execution of its parent element, Act or Event, and their

respective children. On the other hand, a stopTrigger halt the execution of its parent elements,

Story or Act, and all the involved children.[1]

14 Literature Review

A Trigger is a container for ConditionGroup elements which, in turn, are containers for Condi-

tion elements. A Condition is represented by a logical expression assessed during runtime produc-

ing a boolean output. The value of each Condition is backpropagated to its parent ConditionGroup

whose value is then backpropagated to its parent Trigger where a final value is reached and influ-

ence the scenario. A Trigger provides a flexible combination of conditions through a (AND, OR)

relationship, as demonstrated by the figure 2.3.[1]

Figure 2.3: Trigger conditions (AND, OR) relationship

ConditionGroups only present a "true" value once all its child Conditions also present a "true"

value, effectively representing an AND relationship. Triggers, however, are activated as soon as

one of its child ConditionGroups present a "true" value, an OR relationship.[1]

A Condition is characterized by a name, delay and a edge condition. The delay allows to

postpone the activation of the condition, starting once its parameters are met, for the required

duration. The edge condition, as exemplified in figure 2.4, allows to define a rule for the condition

output in relation to the evaluation of its parameters.[1]

(a)

(b) (c)

(d) (e)

Figure 2.4: Example of a velocity condition and different edge condition responses.
(a) Speed evolution of an actor compared to a simple condition with a specified threshold. (b)
Output of a rising edge condition. (c) Output of a falling edge condition. (d) Output of a rising or
falling edge condition. (e) Output of a none edge condition.

2.3 OpenSCENARIO 15

A rising edge only triggers its condition in the moment its parameters are met. Opposite to

the rising edge, a falling edge only triggers the condition in the moment its parameters stop being

met. A rising or falling edge, is a mix of both previous methods, and triggers the condition either

the moment its parameters are met or the moment its parameters stop being met. Finally, the

last method, none, allows to mirror the evaluation of a conditions parameters, i.e. a condition is

triggered if its parameters are currently being met.[1]

In OpenSCENARIO two types of conditions are defined, ByEntityConditions and ByValue-

Conditions. The first group contains conditions that are directly related to the state of entities

present in the scenario, while the second contains conditions related to other non-entity parame-

ters, such as traffic signals or simulation time. User defined conditions are also provided in the

ByValueCondition element.[1]

2.3.4 Re-Use Mechanisms

This file format was designed with two methods that allow the users to use repeatedly the same

value or even complex elements throughout the scenario without rewriting everything. These are

parameters and catalogs.[1]

Parameters share the same concept as the "variables" in most common programming lan-

guages. They are values that are declared inside ParameterDeclaration elements, in the beginning

of the script, catalogs, or throughout the scenario. These values can then be manipulated, by Pa-

rameterAssignment elements or by actions during the execution of the scenario, and can be used

to replace any value from the script or to trigger conditions. Parameters allow for an extension of

the scenarios providing easy manipulation of multiple values and integration with external tools to

permit re-simulations of the same scenario with different settings.[1]

Catalogs offer the possibility to outsource the description of certain elements from the scenario

to a separate file, which can then be referenced from a scenario. This feature allows reusibility of

complex, long or specific elements while also increasing the readability of the scenario file. There

are eight catalog types, and each catalog contains a list of elements corresponding to its type. All

vehicles, pedestrians, "MiscObjects", controllers, maneuvers, trajectories and routes can be stored

in their own catalogs.[1]

16 Literature Review

2.4 Urban Driving Simulators

One of the most difficult problems ADS development faces is navigation in densely populated

urban environments due to complex multi-agent dynamics at traffic intersections, the need to track

every actor present in the Field of View (FOV), recognition of traffic rule semantics and occur-

rences of rare events such as road construction, unpredictable pedestrians crossing the road, rogue

drivers, etc. Thus, to correctly develop a safe ADS it is essential to closely simulate the complex-

ity of urban driving. To complete this task urban driving simulators should be able to emulate

pedestrians, intersections, crosswalks, traffic and other common city objects. Ideally they should

also have control and customization over the environment, scenario specification and scripting, a

wide range of common autonomous driving sensors and feedback upon collision or violation of

traffic rules.

To better analyze the previous mentioned criteria and relevant others, the comparison pre-

sented next was based on Sulkowski et al. 2018 [5] work but adapted to better correspond to the

dissertation goals. This model is exposed and compared to the original in figure 2.5 and further

explained below.

Figure 2.5: Current vs Sulkowski et al. 2018 simulator review model

Engine
Most simulators suitable for urban driving simulation are based on game engines which

2.4 Urban Driving Simulators 17

have a major influence on many aspects of the resulting images and simulation, for instance

image fidelity, physics realism, etc.

This parameter reveals, to the reader, what game engine framework was used as a base for

the respective simulator, and that can be useful for project and plugins compatibility, further

research and development or just to have a better idea of the expected results.

3D Assets
As already mentioned the realism of the produced scenario is imperative to achieve a su-

perior ADS behavior. In this case, little details are very important and a good simulation

should be able to integrate all objects that are normally observed in a real-life environment.

To fulfill this parameter the software needs to able to provide traffic signs, road objects and

other dynamic Non-Player Characters (NPCs), such as pedestrians and traffic.

Collisions & Traffic Rules Violations
As referred in the chapter 2.1, many ADSs algorithms rely on reinforced learning methods.

Therefore, the ability to provide feedback on the performed actions is essential for this type

of simulators, most importantly information about collisions (position, objects involved and

impact) and reports of traffic rules violations.

If more than the basic information is provided about collisions and infractions this category

is considered accomplished.

Multiple Viewpoints
Being able to watch the ego vehicle behaviors, or any other object surrounding it or just

present in the simulator is an advantage that facilitates debugging of agent decisions and

supervision of algorithms.

This topic evaluates whether the simulator is capable of providing the user with several

viewing angles, including free cam to watch all the simulator’s world.

Sensors
Various types of sensors are used in ADSs. Usually a vehicle is composed of multiple

sensors and according to the literature, reviewed in chapter 2.1, the vehicle constitution

varies quite extensively from project to project. This means that simulators need to be

equipped with a wide variety of, both proprioceptive and exteroceptive, sensors.

Simulators are expected to support a considerable amount of proprioceptive sensors to pro-

vide position, speed, acceleration, orientation, etc. And, as far as exteroceptive sensors go,

several types of cameras, RADAR and LIDAR should be supported.

Programming Languages Support
Different programming languages bring different capabilities to projects. Each project is

written in its most convenient language, whether it is for its features, programmers ex-

perience or even taste, and if simulators support multiple languages then there is a better

compatibility with preexisting projects and it gives more freedom to the users.

18 Literature Review

Operating Systems Support
According to the literature review on autonomous driving, chapter 2.1, ADSs can be de-

signed in modular structures which allows for modules to be developed at a different time.

Therefore, some parts of the software might already be developed when researchers start

inquiring about simulation solutions. To increase compatibility with projects it is important

for a simulator to support several operating systems.

Configuration
In order to simulate diverse driving scenarios a great deal of control of the simulator’s set-

tings during runtime is essential. If a simulator is capable of providing this kind of manage-

ment, the researcher is able to easily simulate sequences of different scenarios by changing

the traffic, lighting or even the weather.

A complete software should allow for these types of configurations to be easily accessible

either through an interface or through it’s Application Programming Interface (API).

Licensing
The software license, which specifies the copyrights for the source code and object code,

can vary from free and open-source to paid and closed-source. The type of licensing is very

important both for companies who might want or not to commercialize the product and for

researchers who might want to further develop the simulator capabilities. In this sense, the

more open-source and free the better. [14]

ROS Capabilities
ROS standard implements a structured communication protocol to provide some kind of

abstraction between different connected systems. This popular tool in robotic systems al-

lows for the development of modular software unaware of other software specifications. By

using this framework ADS control algorithms could be developed to be testing in different

systems, simulators and real cars, without the need to constantly be adapted. [15]

OpenSCENARIO
OpenSCENARIO is a definition standard to provide description of complex maneuvers in-

volving dynamic content in a (virtual) world.[1] It contains a common vehicle database,

collection of Advanced Driver-Assistance System (ADAS) sample scenarios and an open

source scenario validation tool that is helpful to define different testing situations. It incor-

porates OpenDrive at its core to handle the static content. [16]

Documentation
Any software development should be followed with guidelines for its features and use cases.

This documentation facilitates the usage of the software and enables the user to harness the

full capabilities of the software while reducing the learning difficulty and time.

2.4 Urban Driving Simulators 19

Maintainability
Updating and continuous development of these types of simulators is a requirement. Au-

tonomous driving is currently a research focus and new technologies, methods and hardware

keep being developed. The consequence is the need to constantly improve the software ca-

pabilities in order to keep up with the state of art.

Annotated Sensor Data
As stated in chapter 2.1, popular algorithms in ADSs are based on supervised learning. The

requirement to use these algorithms is to have huge annotated datasets of labelled data but,

unfortunately, creating these datasets on the roads is dangerous and expensive so the solution

relies on creating the datasets on simulators, which consists in exporting annotated sensor

data.

Weather & Lighting
Many difficult environments for autonomous systems are related to the weather and lighting

variances. Training an ADS on broad daylight has different challenges from the sunset and

clear sky is completely unrelated with a rainy day. Thus, it is a requirement to have the

ability to simulate different types of weather and lighting.

2.4.1 Comparison

2.4.1.1 CARLA

CARLA is an open-source simulator that has been developed to support training, prototyping and

validation of autonomous driving models. It includes a multitude of urban 3D assets, sensor suites

and a wide range of environmental conditions. It was implemented as an open-source layer over

UE4 which permits future extensions by the community. A server-client system structure was

used where the server runs the simulation and renders the scene. The client sends commands

and meta-commands to the server in order to receive sensor readings and control the ego-vehicle.

Pedestrians navigate the streets encouraged to walk along sidewalks and marked road crossings.

The appearance of NPCs is randomized when they are added to the simulation to increase visual

diversity. [7]

Engine: Developed on top of UE4[7];

3D Assets: Contains buildings, vegetation, traffic signs, traffic vehicles, pedestrians and other

infrastructure objects [7];

Collisions & Traffic Rules Violations: Provides cumulative impact with cars, pedestrians and

static objects and detects infractions, such as opposite lane intersection, speeding and traffic

lights violation [7];

Multiple Viewpoints: Support for changes in angle view and camera position relative to the

car. Also provides final scene, depth view, segmentation view [5];

20 Literature Review

Sensors: Sensor suite of rgb cameras, depth cameras, semantic segmentation, LIDAR, RADAR,

collision, lane invasion, obstacle, Global Navigation Satellite System (GNSS) and IMU [2];

Programming Languages Support: It includes C++ and Python API [5];

Operating Systems Support: Supports Windows and Linux, since it was developed as a

layer over UE4 [7];

Configuration: Meta-commands allows the user to control the number of vehicles and pedes-

trians automatically spawned in the city and how they are spawned, the current weather and

lighting conditions and the camera view [7];

Licensing: The simulator is free and open-source supported by the MIT license [5];

ROS Capabilities: Accompanied by a ROS package to provide a ROS bridge it is possible to

publish different types of sensor data [17];

OpenSCENARIO: This compatibility is provided by a traffic scenario definition and an exe-

cution engine for CARLA [18];

Documentation: CARLA contains extensive documentation of its features and use cases [2];

Maintainability: CARLA Github is quite active, at the time of the writing, and the most

recent release was in April 2020 [19];

Annotated Sensor Data: Provides access to exact locations and bounding boxes of all dy-

namics and static objects [7];

Weather & Lighting: Lighting conditions such as position and color of the sun and intensity

and color of diffuse sky radiation can be altered. As well as ambient occlusion, atmospheric

fog, cloudiness and precipitation [7].

CARLA simulator provides the necessary conditions to simulate various challenging scenarios

for ADSs and is convenient to train and validate different types of algorithms with its feedback

information and annotated data. Researchers and developers are granted quite a lot of freedom

with this simulator as it can run in the two most popular operating systems, supports ROS and

OpenScenario standards and is free and open-source.

2.4.1.2 Microsoft AirSim

The Microsoft AirSim is an open-source platform that aims to aid in the development of au-

tonomous vehicles. Although initially focused on autonomous flying drones, it contains many

features needed in autonomous driving simulation [5]. Made publicly available on February 2017

[20], this platform is implemented as a plugin on top of UE4 and Unity [21] and follows a modular

structure in order to facilitate user extensibility. AirSim provides a high-fidelity physical and vi-

sual simulation that generates large training and validation datasets adequate for machine learning

models.[22]

2.4 Urban Driving Simulators 21

Current API supports Remote Procedure Call (RPC) communication protocol which, by cre-

ating an abstraction on top of the simulator, grants the ability for users to develop control software

on any programming language. [20]

Engine: Provides implementations on UE4 and Unity [21];

3D Assets: Contains, by default, several ego-vehicle models, NPC vehicles and pedestrians.

Some static content is also provided as traffic signs, road objects and other infrastructure con-

tent [5];

Collisions & Traffic Rules Violations: Although it informs of impact position, impact nor-

mal and penetration depth for each collision, the simulator does not incorporate traffic rules

violation analysis [22];

Multiple Viewpoints: The simulator supports sub-windows in over-lay configurations to choose

between normal, depth and segmentation view. Camera position can also be altered [5];

Sensors: AirSim only provides proprioceptive sensor models, i.e. accelerometer, gyroscope,

barometer, magnetometer, IMU and Global Positioning System (GPS) [22];

Programming Languages Support: With RPC protocol it is possible to use any program-

ming languages [20];

Operating Systems Support: Windows, Linux & OSX are supported [21];

Configuration: It allows extensive customization through the use of its settings file, such as

the vehicle, physics engine, flight controller, etc [20];

Licensing: Free and open-source software [22];

ROS Capabilities: No support for ROS communication is provided;

OpenSCENARIO: No support for OpenSCENARIO is provided;

Documentation: There are complete sets of documentation bpth on the simulator as on the

API. [21];

Maintainability: The most recent release happened on May 2019 and commits have been

pushed on January 2020, so the simulator is still maintained and in development [21];

Annotated Sensor Data: Sensor feeds may be labelled and can include 1st and 2nd order

derivatives for moving objects [21];

Weather & Lighting: Advanced control of lighting, sun position according to time of the

day, and weather, such as wind, rain, cloudiness, snow and leaves, is easily accessible [21].

With both UE4 and Unity development plugin, AirSim is compatible with a wider range of

software which might be appeasing for researchers. On the other hand the lack of exteroceptive

sensors highlights a major flaw in this simulator that can be corrected only by designing new

sensor models, but at a greater cost for the user. In the end, AirSim is a great solution as an urban

driving simulator if the user intends to develop sensor models.

22 Literature Review

2.4.1.3 SynCity

SynCity is a paid and closed-source simulation platform used to generate data for neural network

training and validation in autonomous applications, ADAS and smart sensors. [23] As a commer-

cial software, it provides little documentation or insight on its architecture. [24]

Engine: Based on UE4 [25];

3D Assets: Contains several types of dynamic, vehicles and pedestrians, and static, infras-

tructure, objects [23];

Collisions & Traffic Rules Violations: No information is provided;

Multiple Viewpoints: Allows to change angle view and camera position relative to the vehi-

cle [23];

Sensors: Syncity provides different types of sensors, LIDAR, RADAR, rgb cameras, GPS

and infrared [23];

Programming Languages Support: Provides C++ and Python API [23];

Operating Systems Support: Windows and Linux are supported [26];

Configuration: It is possible to configure several environment settings from its GUI [23];

Licensing: This software is paid and closed-source [24];

ROS Capabilities: ROS communication is suported [23];

OpenSCENARIO: This feature is not supported;

Documentation: There is little documentation on this simulator [23];

Maintainability: Since CVEDIA keeps posting results from its simulator it is assumed that it

is maintained and still in development [23];

Annotated Sensor Data: Syncity is able to export a variety of labelled data, such as bounding

boxes, proprioceptive data, segmentation and many other sensor types [23];

Weather & Lighting: In its GUI lighting and weather can be extensively configured [23].

CVEDIA’s software is considerably complete and provide a lot of features to simulate several

different ADSs and scenarios. It is also a powerful tool to generate datasets for machine learning

algorithms. Unfortunately it is a paid and closed-source simulator which provides little documen-

tation on use cases and system architecture.

2.4.1.4 Voyage DeepDrive

Voyage DeepDrive is an open-source free urban driving simulator focused on Deep Reinforcement

Learning. Sucessor of DeepDrive simulator, it is the first release of this new version collaborating

with Voyage. To motivate autonomous drive advancements, Voyage’s concentrated on developing

challenges for the community. [27]

2.4 Urban Driving Simulators 23

Engine: Based on UE4; [28]

3D Assets: Although it provides several types of 3D objects and vehicles, it does not contain

pedestrians, an essential part for urban driving simulators; [28]

Collisions & Traffic Rules Violations: No information was found;

Multiple Viewpoints: It allows changing points of view between chase cam, lateral orbit

camera, hood camera and free camera; [29]

Sensors: It provides several proprioceptive sensors, for example speed, acceleration, rota-

tions, but as far as exteroceptive sensors go, only rgb and depth cameras are supported; [28]

Programming Languages Support: It only allows interfacing with the UE4 [28], so it is

possible to use C++ and Python using UnrealEnginePython; [30]

Operating Systems Support: Only Linux is currently supported; [28]

Configuration: No information is provided;

Licensing: This is an open-source and free software using the MIT license; [29]

ROS Capabilities: No support;

OpenSCENARIO: No support;

Documentation: Little documentation is provided; [28]

Maintainability: This is a recent simulator, launched in 2019; [27]

Annotated Sensor Data: No annotated sensor data is provided;

Weather & Lighting: No weather and lighting editing is possible;

Since Voyage DeepDrive is focused on reinforcement learning algorithms, it does not provide

labelled datasets. It is also quite incomplete on several other features, like weather and lighting

control. But this lack of features are probably due to its young age and might be developed later

in time.

2.4.1.5 rFPro

rFPro is a closed-source and paid simulator. It does not provide almost any 3D models focusing

in developing the physics and realism and leaving the 3D model development for the client. This

means that besides paying for the simulator, the client will also have to invest in developing all the

necessary 3D models for their scenarios. [31]

Engine: No information was found;

3D Assets: No assets are provided; [31]

Collisions & Traffic Rules Violations: Collision detection and traffic infractions are provided;

[31]

24 Literature Review

Multiple Viewpoints: Multiple cameras are available, such as driver, follower and free cam;

[31]

Sensors: Several different sensors are provided, cameras, LIDAR, RADAR, GPS, infrastruc-

ture sensors, etc; [31]

Programming Languages Support: Simulink and C++ API are provided; [31]

Operating Systems Support: Windows and other operating systems like dSpace and Speed-

goat are supported; [31]

Configuration: Runtime configuration allows to change weather and lighting conditions; [31]

Licensing: This is a paid and closed-source software; [31]

ROS Capabilities: No support;

OpenSCENARIO: No OpenSCENARIO is supported;

Documentation: No documentation is accessible; [31]

Maintainability: No information was found;

Annotated Sensor Data: Labelled sensor feeds are provided, and 1st and 2nd derivatives

from moving objects can be exported; [31]

Weather & Lighting: This simulator allows to configure various parameters of weather and

lighting conditions; [31]

Although no assets are provided, rFPro is a very complete simulator which appears to provide a

great deal of features and realism. In addition to the provided API’s, interface with the simulator is

possible using User Datagram Protocol (UDP). However, there is not much information available

since it is a closed-source simulator.

2.4.2 Overview

The table 2.1 presents a final comparison between all the previously analyzed urban driving simu-

lators. In this table the (3) mark is used when a simulator fulfills all the requirements in a category,

the (3–) mark indicates it lacks some features in the corresponding category and the (7) mark that

the simulator does not provide any features in this category. On the rare occasion information on

a specific category is not found, it is signaled with the (- -) mark.

Of the five reviewed simulators, Voyage DeepDrive and rFPro were the ones that provided

the least number of features expected from an urban driving simulator. Unlike SynCity and rF-

Pro, CARLA, Microsoft AirSim and Voyage DeepDrive are free and open-source which can be a

deciding factor since they have an impressionable amount of features. Microsoft AirSim has the

main advantage of providing extra flexibility with programming languages but CARLA is the one

that features the best score in this review, fully supporting all the required categories.

2.4 Urban Driving Simulators 25

Table 2.1: Urban driving simulators review

Simulators CARLA
Microsoft
AirSim

SynCity
Voyage

DeepDrive
rFpro

Engine UE4
UE4 &
Unity

UE4 UE4 - -

3D Assets 3 3 3 3– 7

Collisions & Traffic
Rules Violations

3 3 - - 3 3

Multiple Viewpoints 3 3 3 3 3

Sensors 3 3– 3 3– 3

Programming
Languages Support

C++ &
Python

Any with
RPC support

C++ &
Python

C++ &
Python

FMI, C++
Simulink...

Operating Systems
Support

Linux &
Windows

Linux, OSX
& Windows

Linux &
Windows

Linux
Windows
& others...

Configuration 3 3 3 7 3

Licensing
Free &

Open-Source
Free &

Open-Source
Paid &

Closed-Source
Free &

Open-Source
Paid &

Closed-Source

ROS Capabilities 3 3 3 7 7

OpenScenario 3 7 7 7 7

Documentation 3 3 7 7 7

Maintainability 3 3 3 3 3

Annotated
Sensor Data

3 3– 3 7 3–

Weather &
Lighting

3 3 3 7 3

26 Literature Review

2.5 CARLA Simulator

The following information contained in this section was obtainned from CARLA’s Documentation

[2].

CARLA is an open-source simulator that has been developed to support the development,

training and validation of ADSs and also contains open digital assets [7]. This simulator was

developed on a scalable client-server architecture to enable a series of clients to run and collaborate

on a shared environment, figure 2.6. The server is responsible for running the simulation providing

sensor rendering, physics computation and update the world and actors state. The client side

consists of modules controlling the logic of actors and setting the world conditions by issuing

commands to the server. Communication client-server is performed through Transmission Control

Protocol (TCP) ports, defined as 2000 and 2001 as default, using its C++ and Python APIs.

Figure 2.6: Carla client-server architecture [2]

When launching the software the user is able to choose several settings: graphics API, quality

level, run off-screen, no rendering, notion of time and synchronous mode. Vulkan is the default

graphics API, that runs faster at the cost of more memory consumption, but OpenGL can be

selected as an alternative. Regarding the quality level, there are two levels, epic and low, seen in

figure 2.7, where epic is the default. If the OpenGL graphics API is being used it is possible to

run the server off-screen, meaning the simulator is running but without launching any window. To

achieve higher frequencies, the user can opt for not rendering which results in faster simulation

of traffic and road behavior because of the reduced rendering overhead at the cost of disabling the

cameras and other render-based sensors. Usually games try to simulate real time by using variable

time-steps, this feature is defaulted in CARLA but it does not render repeatable simulations. As an

alternative, fixed time-step can be chosen to allow to simulate longer periods in less time and gain

repeatability, by reducing floating-point arithmetic errors introduced in real-time. A synchronous

mode can also be enabled where the simulation halts until a tick message is received from the

client, a feature extremely useful to synchronize sensors data.

The 3D assets, models and maps are maintained in an open repository[32]. CARLA has a

extensive asset library to provide the most realistic and complete scenes. More than 90 static

objects are available ranging from small items, such as bags, newspapers and leafs, to small

2.5 CARLA Simulator 27

(a) Epic quality level (b) Low quality level

Figure 2.7: Carla epic vs low quality level [2].
It is noticeable a smaller rendering radius in low quality level.

infrastructures, for instance ATMs, benches and fountains to bigger infrastructures, buildings,

houses, tunnels, etc. In order to simulate real roads many traffic signs and traffic lights are sup-

ported. Fourteen types of pedestrian, adults and children, with several outfits and accessories, like

smartphones, guitar cases and umbrellas, are randomized for increased visual fidelity. Finally, 27

different vehicle models were designed identical to real consumer vehicles from various brands:

BMW, Audi, Mercedes, Tesla, and more. In case the user requires specific items not contained in

the open repository, there are tutorials present in the documentation explaining how to design and

import new 3D assets. Seven different cities can be used to train and validate machine learning

algorithms.

All sensors models present in the simulator are configurable in multiple ways and can be easily

placed in the desired portion of the vehicle. The currently supported sensors are described in table

2.2.

A new algorithm was implemented, named Traffic Manager, to control NPC vehicles with

the objective to improve the way cars roam through the city. Built on the client side, it provides

a more configurable traffic controller and reducing server overhead at the same time. With this

technology a set of parameters are configurable: distance to leading vehicle, above speed limit

driving allowance, velocity related to the speed limit, respectability of "keep right" rule, running

traffic lights, ignoring pedestrians or other vehicles, forcing lane changes, allowing lane changes,

forcing overtaking and avoiding tailgating.

CARLA carries out a complete environment control with an actor responsible for modifying

all the lighting and environmental actors. The users are able to adjust weather and illumination

according to their needs with the assistance of various settings, such as sun angle, direction, bright-

ness and color, cloud percentage and color, horizon gradient colors, sky’s color and light intensity,

precipitation amount and accumulation and wind angle and intensity.

2.5.1 Unreal Engine 4

UE4 is a game engine with state-of-the-art rendering quality and realistic physics that also provides

a varied set of interoperable plugins that allow to extend its capabilities. CARLA was developed

28 Literature Review

Table 2.2: Currently available CARLA sensors

Sensor type Description Configurable parameters
RGB camera This sensor acts as a regular color

camera capturing images.
Its resolution, camera settings and
lens distortion can be fully config-
ured. Furthermore, additional ad-
vanced camera attributes are pro-
vided by UE4.

Depth camera Also known as depth buffer or z-
buffer, this sensor codifies the dis-
tance of each pixel into an image.

Besides resolution and FOV its fre-
quency and lens distortion are also
configurable.

Semantic segmen-
tation camera

By tagging more than 13 differ-
ent objects beforehand, this sensor
classifies the scene into a segmen-
tated image, each label with differ-
ent colors. More labels can be de-
fined by the user.

Resolution, FOV, frequency and
lens distortion are configurable.

LIDAR This sensor, by using ray-cast, pro-
vides a point-cloud similar to a
LIDAR sensor. A laser for each
selected channel is distributed in
the vertical FOV and a rotation is
performed while ray-casting each
laser’s path.

The channel number, range, points
per second, rotation frequency, ver-
tical FOV, and frequency are con-
figurable parameters.

RADAR An implementation of a low-
fidelity RADAR, by using ray-
casting, provides range, azimuth,
altitude and velocity.

Both vertical and horizontal FOV
are configurable, as well as points
per second and range parameters.

GNSS Calculates current GNSS position
by adding the position to a refer-
ence location present in the Open-
Drive map definition.

No parameters are configurable in
this sensor.

IMU This sensor provides accelerome-
ter, gyroscope and compass infor-
mation.

No parameters are configurable

Obstacle This sensor creates "fake" actors,
with all the relevant information,
every time it detects an object
ahead of the vehicle that is not an
actor.

Range, radius, visibility and fre-
quency are configurable parame-
ters. An option to detect only dy-
namic objects is also available.

Collision This sensor creates "fake" actors
every time the ego collides against
any object. These actors have
all the information about the colli-
sions.

No parameters are configurable in
this sensor.

Lane invasion By working on the client side,
this sensor provides the percent-
age of the vehicle trespassing to
the neighboring lane based on the
OpenDrive description.

No parameters are configurable in
this sensor.

2.5 CARLA Simulator 29

as a plugin on top of UE4 which means it can use these features to develop a realistic environment,

ideal for autonomous driving.

The simulator’s maps can be created by generating map files, with the help of VectorZero’s

RoadRunner software or other tools, and importing it to UE4. CARLA is then able to generate

waypoints, based on the OpenDrive files, which allows Traffic Manager to autonomously navigate

the vehicles through the map. In figure 2.8 it is presented an intersection with all the possible

vehicle paths defined as connections of waypoints, represented as red boxes. Waypoints are struc-

tured in a graph-style pathways to allow vehicles to travel the road by iterating through the nodes.

Represented as hollow yellow boxes are the traffic triggers and every road segment entering an

intersection is accompanied by two triggers. The first one, farthest from the intersection, sig-

nals traffic lights and other cars that a vehicle is approaching and the second one, just before the

intersection, signals the respective car to wait if needed in order to drive safely.

Figure 2.8: Waypoints and traffic trigger boxes in a intersection [2]

Vehicles are models created accordingly to UE4’s user guide and so aren’t different from other

simulators. Two-wheeled vehicles are designed as a four-wheeled vehicles while adding only a

litte extra complexity to appear a normal motorbike. Through CARLA’s API is it easy to define

specific vehicle body, wheel and gear physics parameters, as described in table 2.3.

Pedestrians follow an identical navigation system by using generated waypoints indicating all

the possible pathways. A location-based cost algorithm is implemented in order to encourage

pedestrians to walk along sidewalks and marked road crossings while also permiting crossing the

road at any point for a more realistic environment. These actors roam freely in the city while trying

to avoid other actors. In case a collision occurs, the pedestrian involved is eliminated and another

one is spawned at a different location. All maps have defined specific locations where pedestrians

are able to spawn and specific locations for vehicles to spawn, called spawn points.

2.5.2 ROS Bridge

ROS Bridge was first released in 2018 as an add-on for CARLA simulator to support ROS com-

munications and control. Currently compatible with CARLA 0.9.4 or newer versions it features

sensor publishing and control over pedestrians and vehicles. This ROS package provides several

example scripts to facilitate learning and it’s configuration is conveniently organized in a single

YAML file.

In asynchronous mode, by default, this package, publishes data every "world.on_tick()" and

"sensor.listen()" callbacks. On synchronous mode, ROS controls the time-step by ticking the sim-

ulator only when all sensor data has finished receiving. This feature can slow down the simulation

30 Literature Review

Table 2.3: Vehicle configurable physics parameters

Component Parameter Description
Body torque_curve Defines a curve that relates torque (Nm) with the

RPM of the vehicle’s engine.
max_rpm Indicates the maximum RPM of the engine.
moi Defines the MoI of the vehicle’s engine.
damping_rate_full_throttle Sets the damping rate when the throttle is at maxi-

mum value.
damping_rate_zero_throttle
_clutch_engaged

Sets the damping rate when the throttle is at zero
and the clutch is engaged.

damping_rate_zero_throttle
_clutch_disengaged

Sets the damping rate when the throttle is at zero
and the clutch is disengaged.

use_gear_autobox Allows to set the vehicle with automatic transmis-
sion.

gear_switch_time Defines the switch time between gears.
clutch_strength Sets the clutch strength of the vehicle.
final_ratio Defines the ratio from the transmition to the

wheels.
forward_gears Allows to list the available gears in the vehicle.
mass Indicates the vehicle mass in Kg.
drag_coefficient Sets the drag coefficient of the vehicle’s chassis.
center_of_mass Indicates the position of the center of mass of the

vehicle.
steering_curve This curve defines the maximum steering angle for

specific forward speeds.
wheels List all the wheel objects that define the wheel

physics.
Wheel tire_friction Indicates the value of friction of the wheel

damping_rate Sets the damping rate of the select wheel.
max_steer_angle Defines the maximum angle a wheel can steer.
radius Indicates the wheel radius in centimeters.
max_brake_torque Indicates the maximum brake torque of the wheel.
max_handbrake_torque Indicates the maximum brake torque of the wheel

when the handbrake is used.
position Allows to set the position of the wheel.

Gear ratio Allows to set the transmition ratio of the respective
gear.

down_ratio Indicates the minimum RPM for the gear to down-
shift.

up_ratio Indicates the maximum RPM for the gear to up-
shift.

2.6 Conclusion 31

but it ensures reproducible results. A control topic is published that allows to pause, play and

execute a single step of the simulation.

Except for the obstacle sensor, all the other sensors CARLA supports are able to publish with

this package. A full list of actors, objects and their status are published in their respective topics.

Full control of the vehicle is possible and it even allows to override any other client’s control.

An implementation of AckermannDrive messages is supported to provide smoother control of the

vehicle with a PID controller. Pedestrians can also be controlled and their odometry information

is supplied. To enable debugging it is possible to draw markers on the simulator, such as arrows,

points, cubes and line strips, although this feature can interfere with sensor data. Finally, it allows

spawning vehicles and configure their sensors, spawn infrastructure sensors and provides waypoint

calculation.[17]

2.6 Conclusion

In this section we first reviewed the current state-of-the-art on autonomous driving to clarify

what features would be important in a simulator to properly simulate urban environments to train

ADSs. This was followed by a comparison of several urban driving simulators. In this comparison

CARLA distinctively performed well in all categories emerging as the best solution for this thesis

development. Thus, a further review of CARLA was carried out to provide a base knowledge of

its features and capabilities.

32 Literature Review

Chapter 3

Approach and Work Plan

3.1 Research Approach

In order to developed ADSs that are compatible with different hardware implementations or even

with hardware simulations, these systems need to be designed with versatibility in mind and taking

advantage of standard protocols of communication. Most available simulators only provide their

specifically designed interface not fully compatible with any available standard.

Altran’s interest in researching AD technology, requiring an urban driving simulator, is halted

by this interface incompatibility. Instead of designing different control systems for each applica-

tion, simulators and vehicle, the chosen approach was to develop one ADS with standard commu-

nication and create communication layers to bridge these two incompatible interfaces.

This thesis consists in evaluating the feasability of implementing such communication layer on

CARLA simulator, which demonstrated to be the most suitable software for the project needs. The

proposed solution is to develop a system, presented in figure 3.1, taking advantage of CARLA’s

API, to allow: communication with control algorithms, exportation of labelled datasets using the

ROS standard, definition of testing scenarios, control of the simulator and import other designed

static meshes using the OpenSCENARIO standard. In figure 3.1 a color distinction is used to

differentiate between the modules intended to be developed in this thesis, in white background, and

the modules already developed that this thesis intends to take advantage, with grey background.

3.2 Work Plan

In order to complete the objectives presented in the chapter 1.3 the thesis work was divided into

three major work packages, each responsible for: the scenario parsing, scenario GUI and ROS

Bridge node. These work packages are, then, subdivided into smaller tasks presented below:

WP1: Scenario Configuration Support
This work package consists in further developing the scenario runner add-on for the CARLA

33

34 Approach and Work Plan

Figure 3.1: Proposed system structure

simulator, more specifically improving the OpenSCENARIO support provided by this soft-

ware. The user should be able to configure all simulator’s settings through an OpenSCE-

NARIO eXtensible Markup Language (XML) file. These settings should include: envi-

ronment conditions; NPC’s, pedestrians and vehicles spawning; ego vehicle selection; ego

vehicle’s sensors setup and automatic map generation from an OpenDRIVE file.

T1.0 - API Structure & Plan: During this task, a more deep study of the scenario run-

ner code and functionality will be studied in order to design our approach to the add-on

development.

T1.1 - OpenSCENARIO Parser: This task consists in the development of the add-on,

to parse the XML OpenSCENARIO script and execute its contents on the CARLA

Simulator.

T1.2 - OpenSCENARIO v1.0.0: On mid March, a new version of OpenSCENARIO

was released by ASAM e.V., OpenSCENARIO v1.0.0, with the goal to correct sev-

eral bugs and errors present in the previous version and increase its coherence as a

scenario description. This new update was provided with abundant documentation

which proved useful to better understand some implementation details and correct a

few misunderstandings on the standard. This documentation also defined how to act

in certain situations, such as conflicting actions and unique naming. However, the two

versions of the format are incompatible, and OpenSCENARIO v0.9.1 scripts had to be

converted before executing as OpenSCENARIO v1.0.0 scripts.

Given all these advantages of this update and the incompatibility between the versions,

it was considered essential to perform the portability of the parser to execute this new

version.

WP2: Scenario Constructor Development
In order to create scenarios in an easier manner, an user graphical interface should be able

3.2 Work Plan 35

to help the user by providing a structured and fluid method of generating multiple scenarios

without the need of advanced knowledge about the OpenSCENARIO standard.

T2.1 - Interface Structure: This task consists in the development of the interface graph-

ical appearance and structure.

T2.2 - Interface Functionality: This tasks will consist in developing interface func-

tionality related to the OpenSCENARIO standard but independent of any of its ver-

sions.

T2.3 - OpenSCENARIO v1.0.0: Introduction of OpenSCENARIO v1.0.0 structure and

version specific data.

WP3: ROS Bridge Interface Development
The ROS Bridge provided by the CARLA simulator is capable of publishing sensor data and

vehicle commands. The third work package will consist in further augmenting these features

by providing the ability to export annotated sensor data originating labelled datasets to train

and validate ADSs algorithms. Additionally, the topics to control all the objects and actors

present in the simulator’s world will be added.

T3.1 - Scenario Connection: Development of the capability to control and execute sev-

eral OpenSCENARIO scripts.

T3.2 - Integration Node: Capability to publish all OpenSCENARIO entities sensors

and odometry.

T3.3 - Correct Datasets: This task will consist in developing the feature to export cor-

rected labelled datasets.

36 Approach and Work Plan

Chapter 4

WP1: Scenario Configuration

CARLA’s scenario runner plugin allows to execute a great variety of scenarios that are required

to fully test autonomous vehicles. This scenario construction capability brings a new potential for

urban driving simulators, as it allows to extensively train ADSs even in situations with very low

occurrence in real-life roads.

Adding OpenSCENARIO support to this tool increases convenience and standardizes the def-

inition of scenarios to run in the CARLA simulator. As such, this work package was focused in

developing an OpenSCENARIO parser that would work on scenario runner, making use of al-

ready existing and tested platforms. To improve compatibility with the open-source software and

promote software modularity it was designed as an add-on with minimal editions to the source

code.

scenario_runner/srunner
carla_scenario_runner_addon

OpenSCENARIO
OpenSCENARIO.xsd

parser
openscenario.py
entities.py
elements.py
actions.py
condition.py
action_behaviors.py
condition_behaviors.py
misc.py

scenarios
example1

catalogs
example1.xodr

tools
import_location.txt
OpenSCENARIO.xml
install.sh

Figure 4.1: OpenSCENARIO’s add-
on content directory.

In figure 4.1 it is described the structure of this add-on

folder that allows to execute OpenSCENARIO scripts on

scenario runner. Although the GUI will be provided in the

same directory, for simplification purposes, is not shown in

this figure, and will be further explained in the next chap-

ter. This folder is accompanied by an installation script

that places it inside the "srunner" directory of the source

code along with the necessary changes to properly execute

it. All the user’s XML scripts should be put in a folder

with the script name, inside the "scenarios" folder, as ex-

emplified by the "example1", and all the required catalogs

inside a folder named "catalogs" in the same directory.

OpenSCENARIO standard definition files are present

in the "OpenSCENARIO" folder and although they can be

replaced with newer versions, it is important to verify the

compatibility of the add-on with these versions.

Finally, all the add-on’s source code is present inside

the "parser" directory.

37

38 WP1: Scenario Configuration

4.1 Scenario Runner

The scenario runner is a software module developed by CARLA for its urban driving simula-

tor. It was designed to facilitate the creation and execution of complex traffic scenarios ensuring

the repeatably required for ADS testing purposes. The CARLA Challenge[33] was also a moti-

vation for the development of this addon, as it is used to evaluate the contestants’ ADS agents

performance.[18]

It allows to execute scenarios written in Python and OpenSCENARIO. The scenario execu-

tion is based in behavior trees, using the "py_trees" python library, where the event sequences

are represented by atomic behaviors and conditions organized in a hierarchical tree. Scenarios

can be programmed in Python by constructing its behavior tree and OpenSCENARIO scripts are

converted into their version of a python behavior tree.

With scenario runner it is possible for users to add their own scripts and create groups of

scripts. These groups of scripts can then be executed in sequence automatically.

4.2 Parameters

OpenSCENARIO provides a re-use mechanism, equivalent to the "variables" present in most pro-

gramming languages, denominated "parameters", that allow to re-use and manipulate the same

value across the script. This value can be declared in Parameter Declarations elements in the

beginning of the script or inside specific elements, such as the Story element (listing 4.1).

1 <ParameterDeclarations>
2 <ParameterDeclaration name="var1" parameterType="boolean" value="true"/>
3 <.../>
4 </ParameterDeclarations>

Listing 4.1: Example of parameters in a OpenSCENARIO script.

The location of this declaration determines the parameters scope, parameters are global, i.e.

can be used anywhere in the script, when declared in the preamble. All the other parameters are

local and can only be used inside the element where they were declared and its children elements.

For example in the listing 4.2, the parameter "varLocal" can only be available to values inside

the "FirstStory" and if tried to be used in values inside the "SecondStory" it should be indicated

that the parameter does not exist.

Parameters can have several different types supported by the W3 2001 XMLSchema: boolean,

dateTime, double, integer, string, unsignedInt, unsignedShort.

These can be accessed in any value throughout the script, according to their scope, using a

reference to the parameter name ($varLocal). All the values containing the parameter reference in

the script will be replaced by the value of the parameter if its scope is valid and the parameter type

matches the value type, otherwise an error should be thrown.

4.2 Parameters 39

1 <.../>
2 <Storyboard>
3 <.../>
4 <Story name="FirstStory">
5 <ParameterDeclarations>
6 <ParameterDeclaration name="varLocal" parameterType="integer" value="10"/>
7 </ParameterDeclarations>
8 <.../>
9 </Story>

10 <Story name="SecondStory">
11 <ParameterDeclarations/>
12 <.../>
13 </Story>
14 <.../>
15 </Storyboard>

Listing 4.2: Example of local parameters inside the Story element.

4.2.1 Implementation

4.2.1.1 Parameter Declarations

Parameter declarations present in an OpenSCENARIO script, irrespective of their scope and lo-

cation, are translated into a dictionary by the utility function parameter_declaration(node:

xml.etree.ElementTree.Element): dict, found in the misc module, in the format of a tuple

(name, value).

All the values in the dictionary are converted to the requested data type, as referenced in the

parameterType attribute. This conversion is accomplished through a mapping of XSD data types

into Python data types, present in listing 4.3.

1 parameter_type = {"boolean": (lambda x: (x == ’true’)),
2 "dateTime": (lambda x: time_parser(x)),
3 "unsignedInt": (lambda x: int(x) + 2**32),
4 "unsignedShort": (lambda x: int(x) + 2**32),
5 "integer": (lambda x: int(x)),
6 "double": (lambda x: float(x)),
7 "string": (lambda x: str(x))}

Listing 4.3: Dictionary with XSD to Python mapping data types.

4.2.1.2 Parameters Scope

In order to provide global and local scope for the parameters, every class, responsible for process-

ing an OpenSCENARIO element, receives as an initialization argument, the parameters dictionary

from its parent element. When an element contains local parameter declarations, a new copy of a

dictionary is created with the parents parameters and the newly declared local parameters, listing

4.4. This new dictionary will, then, be passed to descendants of this class.

40 WP1: Scenario Configuration

1 # Get local parameter declaration
2 decl_node = xml_node.find(’ParameterDeclarations’)
3 if (decl_node is not None):
4 decl = misc.parameter_declaration(decl_node)
5 self.parameters = dict(self.parameters, **decl)

Listing 4.4: Merging parent’s with local parameters.

4.2.1.3 Parameter Reference

When processing the XML content of an element, its class needs to verify all attributes values

for the presence of a parameter reference. Since all classes have their own parameter dictio-

nary, with global and local declarations, in order to obtain the value of an attribute the function

get_attrib(node: xml.etree.ElementTree.Element, name: str, parameters: dict, default:

?, var_type: str): ? , from the misc module, will always be used. This function verifies if a

parameter reference is present in the attribute (passed in name) and if this parameter exists in the

classes parameter dictionary (passed in the parameters argument).

4.2.1.4 Parameter Editing

During the scenario’s execution, Actions can edit parameters and Conditions can read those pa-

rameters. Since this edition is only applied to global parameter declarations, a reference of the

parameter dictionary directly from the OpenSCENARIO main class is passed to the respective

actions and conditions.

4.3 Catalogs

Another re-use method present in the OpenSCENARIO standard, is the ability to provide catalogs

for one or multiple scripts. A catalog is a collection of entries that represent a piece of code.

They are useful to contain very lengthy pieces of code, making the script cleaner and easier to

understand, or to contain pieces of code common to many scripts and spare the writer the work of

rewriting the same code multiple times.

One OpenSCENARIO script may contain multiple catalogs, one for each available type. As

shown in listing 4.5, there are 8 different types of catalogs, each containing unbounded entries of

the element type referred in the name. E.g. A VehicleCatalog can contain multiple entries of the

element Vehicle, and a ManeuverCatalog can contain multiple entries of the element Maneuver.

4.3.1 Implementation

One OpenSCENARIO script can have up to 8 catalogs and each catalog can have unlimited entries.

Not all the entries are used in the script so processing all of them in the preamble would be a waste

of time. As such, catalogs are parsed into dictionaries of entries.

Catalog files are expected to be present inside each scenario folder, and so, the path to be

provided is the relative path of the file in relation to the scenario folder. In the following example

4.4 Entities 41

1 <xsd:complexType name="CatalogLocations">
2 <xsd:all>
3 <xsd:element name="VehicleCatalog" type="VehicleCatalogLocation"

minOccurs="0"/>
4 <xsd:element name="ControllerCatalog" type="ControllerCatalogLocation"

minOccurs="0"/>
5 <xsd:element name="PedestrianCatalog" type="PedestrianCatalogLocation"

minOccurs="0"/>
6 <xsd:element name="MiscObjectCatalog" type="MiscObjectCatalogLocation"

minOccurs="0"/>
7 <xsd:element name="EnvironmentCatalog" type="EnvironmentCatalogLocation"

minOccurs="0"/>
8 <xsd:element name="ManeuverCatalog" type="ManeuverCatalogLocation"

minOccurs="0"/>
9 <xsd:element name="TrajectoryCatalog" type="TrajectoryCatalogLocation"

minOccurs="0"/>
10 <xsd:element name="RouteCatalog" type="RouteCatalogLocation" minOccurs="0"/>
11 </xsd:all>
12 </xsd:complexType>

Listing 4.5: XSD definition to import catalogs.[34]

(listing 4.6) three catalogs present inside a "Catalogs" folder are imported into a script. Since all

catalogs have the .xodr file format, only the name of the catalog file is necessary.

1 <CatalogLocations>
2 <VehicleCatalog>
3 <Directory path="Catalogs/VehicleCatalog"/>
4 </VehicleCatalog>
5 <EnvironmentCatalog>
6 <Directory path="Catalogs/EnvironmentCatalog"/>
7 </EnvironmentCatalog>
8 <PedestrianCatalog>
9 <Directory path="Catalogs/PedestrianCatalog"/>

10 </PedestrianCatalog>
11 </CatalogLocations>

Listing 4.6: Example to import three catalogs.

These catalogs would, then, be parsed by the Python’s XML library but, instead of processing

its entries, each catalog is represented by a dictionary containing all its entries and a pointer to its

parsed dictionary. All these dictionaries are then contained into a dictionary member of the main

OpenSCENARIO class, named "catalogs". A short example of the contents of this "catalogs"

variable can be seen in listing 4.7, where two catalogs, VehicleCatalog and EnvironmentCatalog,

were imported and the first catalog contains two entries, audi.a2 and chevrolet.impala, and the

second catalog contain only one entry, sunny.

4.4 Entities

OpenSCENARIO’s dynamic actors, denominated entities, are the main focus of these types of

scripts, with actions used to manipulate them and triggering conditions. In the script’s preamble,

42 WP1: Scenario Configuration

1 catalogs = {
2 ’VehicleCatalog’: {
3 ’audi.a2’: <Element ’Vehicle’ at 0x7f6b8900d550>,
4 ’chevrolet.impala’: <Element ’Vehicle’ at 0x7f6b8900da50>
5 }, ’EnvironmentCatalog’: {
6 ’sunny’: <Element ’Environment’ at 0x7f6b88ff9490>
7 }
8 }

Listing 4.7: Example of two imported catalogs.

an Entities element (listing 4.8) allows to declare entities intended to be used in the script and their

specific properties.

1 <xsd:complexType name="Entities">
2 <xsd:sequence>
3 <xsd:element name="ScenarioObject" type="ScenarioObject" minOccurs="0"

maxOccurs="unbounded"/>
4 <xsd:element name="EntitySelection" type="EntitySelection" minOccurs="0"

maxOccurs="unbounded"/>
5 </xsd:sequence>
6 </xsd:complexType>

Listing 4.8: XSD definition of the Entities element.[34]

Scenario Object: An entity that is used in the script is considered an scenario object and is

described in a ScenarioObject element, listing 4.9. Entities can later be classified into groups,

with the EntitySelection element, allowing to use a group of entities in the scenario as it was only

a single entity. The Entities element can contain unlimited ScenarioObjects and EntitySelection

elements.

1 <xsd:complexType name="ScenarioObject">
2 <xsd:sequence>
3 <xsd:group ref="EntityObject"/>
4 <xsd:element name="ObjectController" type="ObjectController" minOccurs="0"/>
5 </xsd:sequence>
6 <xsd:attribute name="name" type="String" use="required"/>
7 </xsd:complexType>

Listing 4.9: XSD definition of the ScenarioObject element.[34]

A ScenarioObject element is identified by its "name" attribute. Later in the script, when it is

intended to specify an entity to be used on an action or condition, this name is used as an entity

reference. This element contains the entity type, present in the EntityObject group, and an optional

default controller that manages the entity movements when not under the influence of an action.

In OpenSCENARIO it is possible to create three types of entities, as described in the Entity-

Object group (listing 4.10) Vehicle, Pedestrian and MiscObject. Each of these types has their own

catalog and have different properties.

4.4 Entities 43

1 <xsd:group name="EntityObject">
2 <xsd:choice>
3 <xsd:element name="CatalogReference" type="CatalogReference" minOccurs="0"/>
4 <xsd:element name="Vehicle" type="Vehicle" minOccurs="0"/>
5 <xsd:element name="Pedestrian" type="Pedestrian" minOccurs="0"/>
6 <xsd:element name="MiscObject" type="MiscObject" minOccurs="0"/>
7 </xsd:choice>
8 </xsd:group>

Listing 4.10: XSD definition of the EntityObject group.[34]

Entity Selection: After the entities are declared with ScenarioObject elements, they can be

joined into groups. These groups allow to refer multiple entities at once in the script, either for

actions or conditions. In order to create a group, one should utilize the EntitySelection element

(listing 4.11) inside the Entities element.

1 <xsd:complexType name="EntitySelection">
2 <xsd:sequence>
3 <xsd:element name="Members" type="SelectedEntities"/>
4 </xsd:sequence>
5 <xsd:attribute name="name" type="String" use="required"/>
6 </xsd:complexType>

Listing 4.11: XSD definition of the EntitySelection element.[34]

Similar to the ScenarioObject element, the EntitySelection is also identified by its "name"

attribute that can be used as an entity reference throughout the script. The Members element

allows to define what entities belong to the EntitySelection, which is of SelectedEntities type,

listing 4.12.

1 <xsd:complexType name="SelectedEntities">
2 <xsd:choice>
3 <xsd:element name="EntityRef" type="EntityRef" minOccurs="0"

maxOccurs="unbounded"/>
4 <xsd:element name="ByType" type="ByType" minOccurs="0" maxOccurs="unbounded"/>
5 </xsd:choice>
6 </xsd:complexType>

Listing 4.12: XSD definition of the SelectedEntities element type.[34]

The SelectedEntities element type allows to identify entities by two methods.

First, a list of the entity names can be provided. This list can contain unlimited EntityRef ele-

ments which contain the entity reference, content of the "name" attribute from the ScenarioObject

elements.

Alternatively, the entities can be identified by its type, grouping all script’s entities of the

correspondent type ("vehicle", "pedestrian" or "miscellaneous"). Multiple types can be grouped

into the same EntitySelection.

These two methods can be used in conjunction resulting in a group containing the union of the

selected entities.

44 WP1: Scenario Configuration

4.4.1 Entities in CARLA

In CARLA simulator, entities are refered as actors. There are also three types of actors, vehicle,

pedestrian and props. Although the last type has a different name, prop actors are the equivalent

of the OpenSCENARIO’s MiscObject entities.

Available actors in CARLA are described by blueprints which allow to edit actor properties

before spawning. The simulator contains a library where all the accessible blueprints are listed and

after selecting the desired blueprint and edit its settings, the actor can be spawned into a position

of the simulator’s world. After spawning some settings, such as physics, can be edited.

Unlike the OpenSCENARIO scripts, in CARLA an entity only exists after being spawned, and

it is necessary to have a defined position in the world to spawn, whereas in OpenSCENARIO an

entity is required to be defined before a position is provided.

CARLA’s actors have different blueprint attributes and after-spawn settings depending on the

actor type. However, all actor have a bounding box, important to determine the object dimensions

in case of collision, that is predefined and not editable during runtime.

4.4.2 Implementation

In the OpenSCENARIO main class, entities are created by its member function _initialize_actors

(config: dict): void, overriden from the BasicScenario class. This function initializes all the

entities by spawning them into the simulator’s world, in a position that won’t disturb the scenario,

and creates a dictionary of all the entities spawned into the simulator.

In order to spawn entities before executing the script it was necessary to find a position that

would be guaranteed it would not disturb any scenario event. However, with the ability to generate

any map from an OpenDRIVE file, there was no position in the map that could meet these require-

ments. As an alternative, it is spawned a platform 200m under the map, shown in figure 4.2, that

allows to spawn all the entities without interfering with the scenario or any entity sensors.

Figure 4.2: View of a CARLA’s map with the platform spawned.

4.4 Entities 45

Each entity is, then, processed accordingly to its type. This is accomplished by looping through

the list of ScenarioObject elements and mapping the entity type with the correct initialization class

using the dictionary present in listing 4.13.

1 object_type = {"Vehicle": entities.VehicleConfiguration,
2 "Pedestrian": entities.PedestrianConfiguration,
3 "MiscObject": entities.PropConfiguration}

Listing 4.13: Linking dictionary for entity types.

Although each entity type has specific properties, some are common between between all

types, in both OpenSCENARIO and CARLA. The DynamicActorConfiguration class (figure 4.3)

is the base class for all types of entities, responsible for all the activities from selecting the blueprint

to configuring actor settings after spawning. This class is abstract and each entity type is re-

quired to override the _blueprint_editor(): void member function with their specific blueprint

attributes.

Figure 4.3: Entities Base Class - UML class diagram.

In the initialization, this class, starts by fusing the global with the local parameters dictionary.

Since all entity types are required to provide information for the bounding box, this configuration

is common to all classes. The next step is to form the dictionary with all the entity’s properties,

to be used later by the derived classes. After obtaining the location to spawn the entity, it sets

the "rolename" of the blueprint and execute the abstract _blueprint_editor(): void member

function. Finally it spawns the actor.

The derived classes are required to provide a filtered carla.BlueprintLibrary and a location

to the base class when executing its initialization method. Any configurations required after the

spawning of the actor, can be performed in the derived class.

46 WP1: Scenario Configuration

4.4.3 Vehicle

The Vehicle entity type is the most complex entity, with both OpenSCENARIO and user defined

properties. The Vehicle element (listing 4.14) contains local parameter declarations, as all elements

that can be referenced in a catalog, and is identified by its "name" attribute.

1 <xsd:complexType name="Vehicle">
2 <xsd:all>
3 <xsd:element name="ParameterDeclarations" type="ParameterDeclarations"

minOccurs="0"/>
4 <xsd:element name="BoundingBox" type="BoundingBox"/>
5 <xsd:element name="Performance" type="Performance"/>
6 <xsd:element name="Axles" type="Axles"/>
7 <xsd:element name="Properties" type="Properties"/>
8 </xsd:all>
9 <xsd:attribute name="name" type="String" use="required"/>

10 <xsd:attribute name="vehicleCategory" type="VehicleCategory" use="required"/>
11 </xsd:complexType>

Listing 4.14: XSD definition of the Vehicle element.[34]

This element allows to completely characterize a vehicle by using four types of properties.

The OpenSCENARIO defines a vehicle using the BoundingBox, Performance and Axles elements.

Implementation specific properties can be set in the Properties element.

Each vehicle, in a OpenSCENARIO script, is required to provide a Performance element,

listing 4.15. In this element it is defined some characteristics of the vehicle in question. The

"maxAcceleration" attribute defines the maximum acceleration a vehicle is capable of performing,

by its own engine, and is provided in m/s2. The "maxDeceleration" attribute, as indicated by the

name, defines the maximum deceleration a vehicle is capable of producing by utilizing its own

brakes, also provided in m/s2. Finally, the "maxSpeed" attribute defines the maximum velocity

the vehicle is capable of reaching on its own, provided in m/s.[34]

1 <xsd:complexType name="Performance">
2 <xsd:attribute name="maxAcceleration" type="Double" use="required"/>
3 <xsd:attribute name="maxDeceleration" type="Double" use="required"/>
4 <xsd:attribute name="maxSpeed" type="Double" use="required"/>
5 </xsd:complexType>

Listing 4.15: XSD definition of the Performance element.[34]

The "vehicleCategory" attribute (listing 4.16) allows to classify each vehicle into multiple

common vehicle categories, such as bicycle, car, etc.

Another required element to define a vehicle entity in a script, is the Axles element (listing

4.17) where a vehicle’s axles are described. Every vehicle is required to provide a front and rear

axles, but it is possible to provide additional axles, such as bigger trucks with more than 4 wheels.

Each vehicle’s axle is defined by a set of parameters provided as attributes in the Axle element,

listing 4.18. Five values are required to correctly define an axle. It is assumed an axle is composed

by two wheels.

4.4 Entities 47

1 <xsd:simpleType name="VehicleCategory">
2 <xsd:union>
3 <xsd:simpleType>
4 <xsd:restriction base="xsd:string">
5 <xsd:enumeration value="bicycle"/>
6 <xsd:enumeration value="bus"/>
7 <xsd:enumeration value="car"/>
8 <xsd:enumeration value="motorbike"/>
9 <xsd:enumeration value="semitrailer"/>

10 <xsd:enumeration value="trailer"/>
11 <xsd:enumeration value="train"/>
12 <xsd:enumeration value="tram"/>
13 <xsd:enumeration value="truck"/>
14 <xsd:enumeration value="van"/>
15 </xsd:restriction>
16 </xsd:simpleType>
17 <xsd:simpleType>
18 <xsd:restriction base="parameter"/>
19 </xsd:simpleType>
20 </xsd:union>
21 </xsd:simpleType>

Listing 4.16: XSD definition of the VehicleCategory attribute type.[34]

1 <xsd:complexType name="Axles">
2 <xsd:sequence>
3 <xsd:element name="FrontAxle" type="Axle"/>
4 <xsd:element name="RearAxle" type="Axle"/>
5 <xsd:element name="AdditionalAxle" type="Axle" minOccurs="0"

maxOccurs="unbounded"/>
6 </xsd:sequence>
7 </xsd:complexType>

Listing 4.17: XSD definition of the Axles element.[34]

1 <xsd:complexType name="Axle">
2 <xsd:attribute name="maxSteering" type="Double" use="required"/>
3 <xsd:attribute name="positionX" type="Double" use="required"/>
4 <xsd:attribute name="positionZ" type="Double" use="required"/>
5 <xsd:attribute name="trackWidth" type="Double" use="required"/>
6 <xsd:attribute name="wheelDiameter" type="Double" use="required"/>
7 </xsd:complexType>

Listing 4.18: XSD definition of the Axle element.[34]

The "maxSteering" attribute defines the maximum angle of steering of the wheels in the cor-

respondent axle. This angle, provided in radians and as a positive double equal or inferior to π ,

indicate the maximum any wheel can turn to one side, and it is assumed the wheels can turn a

simetrical angle to the opposite side.

The "positionX" and "positionZ" attributes allow to define the position of the axle respective

to the vehicle point of origin. In OpenSCENARIO the vehicle’s relative coordinates were conven-

tionalized as displayed in figure 4.4, with the origin placed in the projection of the vehicle’s rear

axis on the floor. The "positionX" attribute, in meters, indicates the horizontal displacement of the

axle, while the "positionZ" indicates the vertical displacement of the axle. The center of the axle

48 WP1: Scenario Configuration

will always be aligned with the center of the Y-axis of the vehicle.

Figure 4.4: OpenSCENARIO vehicle coordinates reference[1].

The "trackWidth" attribute indicates the width of the axle or the distance between the axle

wheels, also provided in meters. At last, the "wheelDiameter" attribute indicates the diameter of

both wheels which is also provided in meters.

In order to better characterize the vehicle it is also possible to provide implementation specific

properties. This is defined in the Properties element (listing 4.19) and can be provided in a tuple

(name, value) or by a file. The meaning and function of each properties should be defined by the

developer.

1 <xsd:complexType name="Properties">
2 <xsd:sequence>
3 <xsd:element name="Property" type="Property" minOccurs="0"

maxOccurs="unbounded"/>
4 <xsd:element name="File" type="File" minOccurs="0" maxOccurs="unbounded"/>
5 </xsd:sequence>
6 </xsd:complexType>

Listing 4.19: XSD definition of the Properties element.[34]

4.4.3.1 Vehicles in CARLA

In CARLA simulator, vehicles are highly customizable, allowing to change some appearance set-

tings, such as color, and to edit most physics and performance related parameters as shown in the

table 2.3.

However most appearance construction are not editable at runtime, e.g. the number of axles,

the axles length, wheels size, and many other characteristics, cannot be altered after designing.

CARLA allows to create vehicles appearing to have different number of wheels but all vehicles

are required to have four wheels. In case a truck, with more than four wheels, is designed the

extra wheels only affect the appearance and are not functional. On the other hand, a two wheeled

vehicle would have four wheels with the wheels sharing the same position two by two.[2]

4.5 Storyboard 49

4.4.3.2 Implementation

Derived from the DynamicActorConfiguration class, the VehicleConfiguration class (figure 4.5)

deals with the spawning of vehicles. In CARLA the vehicle actor is the most complex type with

blueprint properties and post-spawn properties, mainly physics settings.

Figure 4.5: VehicleConfiguration UML class diagram.

In order to correctly identify the desired vehicle blueprint to spawn the "name" attribute is

used to select the brand and model of the vehicle, using the "brand.model" format. However less

specific identifications are possible: if only the brand is provided a vehicle of that brand will be

randomly selected and if no information is provided a vehicle will be randomly selected from

CARLA’s library.

Since vehicle actors can be spawned in the simulator while having their physics disabled, in

order to keep them in the simulation until requested to participate in the scenario, they are initially

positioned under the city, at -150 meters of altitude distributed into a grid format forming a square

600 meters long. The actors are separated, in all directions, by at least 10 meters from each other,

predicting the possibility of custom vehicles into the simulator, such as bigger trucks.

After selected the vehicle’s blueprint and initial spawn location, it is possible to alter the actor’s

color, which is a blueprint property. After spawn it is possible to edit the vehicle’s physics settings.

All these settings can be defined as user defined properties and the table 4.1 contains a more

detailed description of each available property and how to format its content.

As all vehicle’s in CARLA require to have four wheels, in case only one wheel is characterized

all four wheels will be characterized with the same values. Otherwise, in case only two wheels

are characterized the front wheels and rear wheels will be paired and characterized with the same

values. For more information see CARLA’s documentation.[2]

4.5 Storyboard

The dynamic description of the scenario, in OpenSCENARIO scripts, is present in the Storyboard

element. All the previous elements, ParameterDeclarations, Catalogs, RoadNetwork and Entities,

can be considered the preamble of the script and allow to initialize the scenario in order to be ready

to execute the storyboard.

The Storyboard, as described in the XSD schema (listing 4.20) is composed of an Init element,

one or multiple Story elements, and, finally, a StopTrigger element. The Init element is used to

establish the initial conditions of the scenario, position and velocities of entities, environment set-

tingsm, among other OpenSCENARIO actions. The Story elements contain the timelined actions

50 WP1: Scenario Configuration

Table 4.1: Vehicle custom properties

Property Default Value
color random choice of recommended values

(ex: "255,255,255")
torque_curve "[[0.0, 500.0], [5000.0, 500.0]]"
max_rpm "5000.0"
moi "1.0"
damping_rate_full_throttle "0.15"
damping_rate_zero_throttle _clutch_engaged "2.0"
damping_rate_zero_throttle _clutch_disengaged "0.35"
use_gear_autobox "true"
gear_switch_time "0.5"
clutch_strength "10.0"
final_ratio "4.0"
forward_gears "[[1.0, 0.5, 0.65]]"
mass "1000.0"
drag_coefficient "0.3"
center_of_mass "[0.0, 0.0, 0.0]"
steering_curve "[[0.0, 1.0], [10.0, 0.5]]"
wheels "[[2.0, 0.25, 70.0, 30.0, 1500.0,

3000.0]]"

of the scenario. The StopTrigger allows to terminate the scenario, whether because the objectives

were accomplished or because an error has occured.

1 <xsd:complexType name="Storyboard">
2 <xsd:sequence>
3 <xsd:element name="Init" type="Init"/>
4 <xsd:element name="Story" type="Story" maxOccurs="unbounded"/>
5 <xsd:element name="StopTrigger" type="Trigger"/>
6 </xsd:sequence>
7 </xsd:complexType>

Listing 4.20: XSD definition of the Storyboard element.[34]

4.5.1 Implementation

A class Storyboard (figure 4.6) is responsible for handling the creation of behavior tree nodes to

correctly impersonate the required behavior. Since it is the first class responsible to process an

element, it only receives the storyboard parsed node and a reference to the OpenSCENARIO main

class.

In the initialization, four behavior tree nodes are created, as shown in figure 4.7, in order to

ensure the correct execution of an OpenSCENARIO storyboard.

The Python’s library "py_trees" provides an implementation of behavior trees that is used by

the scenario runner and in this implementation of OpenSCENARIO. In this library there are two

main nodes, that are used in this project, the parallel and the sequence nodes. The parallel node

4.5 Storyboard 51

Figure 4.6: Storyboard UML class diagram.

allows to execute all its children in parallel while the sequence node execute its children one by

one by the order they are presented, left to right. The parallel nodes present a particularity where

it is possible to choose its success behavior, if they are "SuccessOnOne" it means that the node

will succeed once one of its children succeeds, and if they are "SuccessOnAll" it means they will

only succeed once all their children have succeeded.

The root node of the tree, OpenSCENARIO, is a parallel node with success on one. This

allows to execute both its children, Storyboard and StopTrigger, at the same time and stop the

scenario when one of them succeeds. E.g. If the Storyboard’s StopTrigger element is triggered,

the StopTrigger node would succeed ending the scenario.

The Storyboard node is a sequence node in order to allow to first execute the Init element

and only after start the execution of the Story elements. Although the Init node is not initialized

directly in this class, it is ensured to be positioned as the first child of the Storyboard node.

The StopTrigger node is also a parallel node with success on one. This allows to create the

"OR" relationships between its children, the ConditionGroup elements.

Finally, the Stories node is a parallel node with success on all. This node allows to execute,

after the completion of the Init node, all the Story nodes at the same time and only succeed once

all these nodes have also succeeded.

4.5.2 Init

The Init is the first element of the Storyboard and it is mandatory that all scenarios have an Init

element. This element has the main purpose to set the initial conditions for the execution of the

scenario, such as entities initial positions and velocities, environment settings, and many more.

As shown in the listing 4.21, the Init contains one Actions element which is, in turn (listing

4.22) a container for global, private and user defined actions.

52 WP1: Scenario Configuration

Figure 4.7: Storyboard behavior tree.

1 <xsd:complexType name="Init">
2 <xsd:sequence>
3 <xsd:element name="Actions" type="InitActions"/>
4 </xsd:sequence>
5 </xsd:complexType>

Listing 4.21: XSD definition of the Init element.[34]

1 <xsd:complexType name="InitActions">
2 <xsd:sequence>
3 <xsd:element name="GlobalAction" type="GlobalAction" minOccurs="0"

maxOccurs="unbounded"/>
4 <xsd:element name="UserDefinedAction" type="UserDefinedAction" minOccurs="0"

maxOccurs="unbounded"/>
5 <xsd:element name="Private" type="Private" minOccurs="0"

maxOccurs="unbounded"/>
6 </xsd:sequence>
7 </xsd:complexType>

Listing 4.22: XSD definition of the InitActions.[34]

Although GlobalAction and UserDefinedAction elements can be defined regularly and unlim-

ited in this element, private actions require an entity to act upon provided by the Private element,

listing 4.23.

1 <xsd:complexType name="Private">
2 <xsd:sequence>
3 <xsd:element name="PrivateAction" type="PrivateAction" maxOccurs="unbounded"/>
4 </xsd:sequence>
5 <xsd:attribute name="entityRef" type="String" use="required"/>
6 </xsd:complexType>

Listing 4.23: XSD definition of the Private.[34]

The Private element encapsulates PrivateAction elements to the same entity. In case the user

wants multiple private actions for different entities, multiple Private elements would need to be

used. The Private element is further explained in next sections.

In conclusion, the Init element is a container for OpenSCENARIO actions, and since it con-

tains no triggers, all of its actions are executed in parallel in the beginning of the execution of the

4.5 Storyboard 53

script.

4.5.2.1 Implementation

The implementation of the Init class is quite standard, figure 4.8. Its initialization receives its

xml node, a reference for the main OpenSCENARIO class and the parameters dictionary from its

parent, in this case the Storyboard class.

Figure 4.8: Init UML class diagram.

During the initialization this class constructs a simple behavior tree with only one node, figure

4.9. The member functions are responsible for creating this node children accordingly.

Figure 4.9: Init behavior tree.

The Init node is a parallel node with success on all. Being all the Init actions its children,

the parallel node allows to execute all the actions simultaneously while only ending when all the

actions are successfully complete.

4.5.3 Story

Following the Init element, the Story elements show up in the storyboard, listing 4.24. These

elements contain the scenario’s main story, providing actions with timelines through an intricate

hierarchy of elements.

An OpenSCENARIO script can contain unlimited Story elements. These elements provide the

user with an extra layer of organization. They are identified by their name, an attribute, and beside

local parameter declarations, can contain an unlimited amount of Act elements, another division

of the story for the user convenience.

54 WP1: Scenario Configuration

1 <xsd:complexType name="Story">
2 <xsd:sequence>
3 <xsd:element name="ParameterDeclarations" type="ParameterDeclarations"

minOccurs="0"/>
4 <xsd:element name="Act" type="Act" maxOccurs="unbounded"/>
5 </xsd:sequence>
6 <xsd:attribute name="name" type="String" use="required"/>
7 </xsd:complexType>

Listing 4.24: XSD definition of the Story element.[34]

4.5.3.1 Implementation

The Story class also follows the design pattern, with all the standard initialization arguments,

figure 4.10. However it also receives an extra argument, "name". This argument is a string with

the story name provided in the script.

Figure 4.10: Story UML class diagram.

During its initialization a simple behavior tree is created, figure 4.11, with one main node

descended by all its Act nodes.

Figure 4.11: Story behavior tree.

The main node represents the Story element in question. It is parallel with success on all,

allowing to execute all its children acts simultaneously and, also, only succeeding when all acts

have succeeded.

4.5.4 Act

An Act (listing 4.25) contained in the Story elements, is the first element to provide temporal and

spatial context in the scenario. This is accomplished by its triggers, both the StartTrigger and

StopTrigger. This element is identified by its name, provided as an attribute, and it is a container

for unlimited ManeuverGroup elements.

4.5 Storyboard 55

1 <xsd:complexType name="Act">
2 <xsd:sequence>
3 <xsd:element name="ManeuverGroup" type="ManeuverGroup"

maxOccurs="unbounded"/>
4 <xsd:element name="StartTrigger" type="Trigger"/>
5 <xsd:element name="StopTrigger" type="Trigger" minOccurs="0"/>
6 </xsd:sequence>
7 <xsd:attribute name="name" type="String" use="required"/>
8 </xsd:complexType>

Listing 4.25: XSD definition of the Act element.[34]

The StartTrigger element is required within an Act and indicates when its execution should

initiate. As a rule, an Act is in standby until the StartTrigger is triggered.

On the other hand, the StopTrigger is not required. This trigger indicates when the execution

of the Act element should terminate. When it is triggered, the execution of all descendant elements

of the Act element should immediately stop its execution, however this trigger is only active when

the Act element is being executed, i.e. this trigger can only be triggered if the Act was already

triggered by the StartTrigger.

4.5.4.1 Implementation

Identical to the Story class, the Act class, (figure 4.12) receives the same standard parameters as

the design pattern indicates. Its three member functions allow to create the necessary children

nodes to fill the behavior tree as intended.

Figure 4.12: Act UML class diagram.

However, this class initialization is a bit more complex than the previous. It generates a bigger

behavior tree with five nodes, and many children, for three of those five nodes, can be created with

its member functions. The behavior tree generated in the initialization method is presented in the

figure 4.13.

56 WP1: Scenario Configuration

Figure 4.13: Act behavior tree.

In order to simulate the Act element in standby mode waiting for the StartTrigger to be trig-

gered, the Act node is a sequence with the StartTrigger node as the first child. This ensures

that, when the scenario is executed, only the StartTrigger node is executed and content of the

act is only executed when this node succeeds. This node is a parallel with success on one as it is

common for the trigger nodes.

The next child, after the StartTrigger node is the ActInProgress node, which, contains the

StopTrigger and ManeuverGroups nodes as its descendants. The ActInProgress is a parallel

node in order to allow the execution of the StopTrigger, only in parallel with the execution of

the ManeuverGroups node. It is parallel with success on one allowing for either the success

of the StopTrigger node or the finish of the execution of the ManeuverGroups node to end the

execution of the Act.

Finally, the ManeuverGroups node contains all the ManeuverGroup elements in the Act. This

node is parallel with success on all in order to execute all the ManeuverGroup node simultane-

ously and only finish once all these nodes are completed.

4.5.5 ManeuverGroup

Now that the Act already provided a temporal and spacial timeline, the ManeuverGroup element

(listing 4.26) allows to identify the actors, or entities, that will be performing or affected by these

maneuvers described inside these elements.

The ManeuverGroup element is constituted by two attributes, a string that identifies it by its

name, and an integer denominated "maximumExecutionCount".

This integer indicates that the ManeuverGroup can be executed more than once and how many

times it can be executed. These executions are sequencial and never in parallel, i.e. no two

instances of the same ManeuverGroup can be executed at the same time, and it is not necessary to

execute it the indicated number of times. In case the parent Act ends prematurely, by either its own

StopTrigger or Storyboard’s StopTrigger, the executions of this element will also stop even if the

4.5 Storyboard 57

1 <xsd:complexType name="ManeuverGroup">
2 <xsd:sequence>
3 <xsd:element name="Actors" type="Actors"/>
4 <xsd:element name="CatalogReference" type="CatalogReference" minOccurs="0"

maxOccurs="unbounded"/>
5 <xsd:element name="Maneuver" type="Maneuver" minOccurs="0"

maxOccurs="unbounded"/>
6 </xsd:sequence>
7 <xsd:attribute name="maximumExecutionCount" type="UnsignedInt" use="required"/>
8 <xsd:attribute name="name" type="String" use="required"/>
9 </xsd:complexType>

Listing 4.26: XSD definition of the ManeuverGroup element.[34]

execution count has not reached its maximum. Otherwise, once the execution count has reached

its maximum, the element is complete and stops its execution.

The Actors element (listing 4.27) is required in the ManeuverGroup element and its main

function is to identify the entities which will be present in the containing Maneuver elements.

1 <xsd:complexType name="Actors">
2 <xsd:sequence>
3 <xsd:element name="EntityRef" type="EntityRef" minOccurs="0"

maxOccurs="unbounded"/>
4 </xsd:sequence>
5 <xsd:attribute name="selectTriggeringEntities" type="Boolean" use="required"/>
6 </xsd:complexType>

Listing 4.27: XSD definition of the Actors element.[34]

The Actors element can contain a list of entities by proving a series of EntityRef elements with

the name of the desired entities. However, the list of entities can also be provided by the activat-

ing the "selectTriggeringEntities" attribute. This attribute, indicates that the entities, previously

identified in the TriggeringEntities element of all conditions in the parent Act’s StartTrigger, who

enabled the trigger, are automatically selected for the maneuvers in this element.

The ManeuverGroup element main objective is to contain the Maneuver elements and provide

them with all the necessary information, in this case the entities. It can contain unlimited Maneuver

elements and these elements can be described directly in the script or insert as references from the

ManeuverCatalog.

4.5.5.1 Implementation

The ManeuverGroup class (figure 4.14) follows the design pattern quite closely, receiving the

usual arguments and containing a simple initialization.

First the actors are obtained, this is done with a loop to search for the actors in the Open-

SCENARIO main class actors dictionary, and adding them to a list of CARLA actors. Then the

behavior tree is constructed, present in figure 4.15.

The behavior tree is constituted by only the ManeuverGroup node. This node is parallel with

success on all allowing its children to execute simultaneously and only succeed once all children

58 WP1: Scenario Configuration

Figure 4.14: ManeuverGroup UML class diagram.

Figure 4.15: ManeuverGroup behavior tree.

have been completed. The ManeuverGroup node contains a list of Maneuver nodes as children.

Every Maneuver node is created by the "_element_Maneuver" member function and, in case it

is a catalog reference, the "_element_CatalogReference" inserts the catalog entry in the XML

node as if it was a normal Maneuver element and executes the previous function to create the

corresponding node.

4.5.6 Maneuver

The Maneuver element, described in the listing 4.28, is a container for Event elements. It is

identified by its "name" attribute and contains local parameter declarations.

1 <xsd:complexType name="Maneuver">
2 <xsd:sequence>
3 <xsd:element name="ParameterDeclarations" type="ParameterDeclarations"

minOccurs="0"/>
4 <xsd:element name="Event" type="Event" maxOccurs="unbounded"/>
5 </xsd:sequence>
6 <xsd:attribute name="name" type="String" use="required"/>
7 </xsd:complexType>

Listing 4.28: XSD definition of the Maneuver element.[34]

4.5.6.1 Implementation

The Maneuver class, with the following UML class diagram in figure 4.16, follows the design

pattern with the exception that it also receives a list of actors during its initialization. This list is

4.5 Storyboard 59

provided by its parent class, ManeuverGroup, to indicate which actors should the Event elements

act upon, and it will be passed to its descendants, Event classes.

Figure 4.16: Maneuver UML class diagram.

In the initialization, this class, starts by fusing its parent’s parameters dictionary with the new

local parameter declarations, if any exist. Later a simple behavior tree is generated (figure 4.17)

with only one main node.

Figure 4.17: Maneuver behavior tree.

The Maneuver is a parallel node with success on all. This configuration allows to execute

all its children, the Event nodes, simultaneously and only succeed when all the events have been

executed.

4.5.7 Event

The Event element, in turn, is a container for the Action elements. However, it also plays a role

on managing the scenarios timeline by providing start triggers. Similar to the ManeuverGroup

element, exposed in the chapter 4.5.5, it contains a "maximumExecutionCount" attribute to allow

multiple executions of the same event in sequence.

1 <xsd:complexType name="Event">
2 <xsd:sequence>
3 <xsd:element name="Action" type="Action" maxOccurs="unbounded"/>
4 <xsd:element name="StartTrigger" type="Trigger"/>
5 </xsd:sequence>
6 <xsd:attribute name="maximumExecutionCount" type="UnsignedInt"/>
7 <xsd:attribute name="name" type="String" use="required"/>
8 <xsd:attribute name="priority" type="Priority" use="required"/>
9 </xsd:complexType>

Listing 4.29: XSD definition of the Event element.[34]

60 WP1: Scenario Configuration

This element is also identified by its "name" attribute, but, unlike the previously exposed

elements, it also provides a "priority" attribute. This attribute, as explained in chapter 2.3.3, defines

how the execution of the Event element affects and is affected by the execution of other Event

elements present in the same Maneuver. The "priority" attribute content is defined by the Priority

type shown in listing 4.30.

1 <xsd:simpleType name="Priority">
2 <xsd:union>
3 <xsd:simpleType>
4 <xsd:restriction base="xsd:string">
5 <xsd:enumeration value="overwrite"/>
6 <xsd:enumeration value="parallel"/>
7 <xsd:enumeration value="skip"/>
8 </xsd:restriction>
9 </xsd:simpleType>

10 <xsd:simpleType>
11 <xsd:restriction base="parameter"/>
12 </xsd:simpleType>
13 </xsd:union>
14 </xsd:simpleType>

Listing 4.30: XSD definition of the Priority type.[34]

The Priority type (listing 4.30) is an enumeration and describes three valid values for the "pri-

ority" attribute of the Event element. These values define how the execution of its Event element

affects and is affected by the execution of other Event elements present in the same Maneuver

element. For further explanation of each value see chapter 4.2.

The Action elements (listing 4.31) contained in this element, encapsulates the various types of

action that exist in the OpenSCENARIO.

1 <xsd:complexType name="Action">
2 <xsd:choice>
3 <xsd:element name="GlobalAction" type="GlobalAction" minOccurs="0"/>
4 <xsd:element name="UserDefinedAction" type="UserDefinedAction" minOccurs="0"/>
5 <xsd:element name="PrivateAction" type="PrivateAction" minOccurs="0"/>
6 </xsd:choice>
7 <xsd:attribute name="name" type="String" use="required"/>
8 </xsd:complexType>

Listing 4.31: XSD definition of the Action element.[34]

With this element it is possible to either insert GlobalAction, UserDefinedAction and Private-

Action elements, which represent the global, user defined and private action types of the OpenSCE-

NARIO, respectively. One Action element can contain only one of the three mentioned elements

but an Event can contain unlimited Action elements.

4.5.7.1 Implementation

The Event class (figure 4.18) implement the behavior of both, Event and Action, elements. Apart

from the usual design pattern initialization arguments it also receives a list of the actors and a

string with the corresponding priority.

4.5 Storyboard 61

Figure 4.18: Event UML class diagram.

In the initialization, this class, constructs a dynamic behavior tree which size depends on the

number of actors present in the list from its parent, as seen in figure 4.19.

Figure 4.19: Event behavior tree.

The Event node is a sequence in order to provide a standby mode until the StartTrigger node

succeeds. The followed node, EventActions, contains, as children, all the actions performed on all

the actors. It has as many direct children as there are actors in the list, each node representing one

actor. These nodes then have same actions as children, the actions described in the Event element,

but acting upon the actor represented in the node. These actions are created by the corresponding

member functions of the class.

4.5.8 Daytime Animation

OpenSCENARIO presupposes the existence of an animated day. While setting the weather pa-

rameters, an attribute, denominated "animation", allows to enable or disable the animated passage

62 WP1: Scenario Configuration

of time. Although CARLA does provide extensive configurable weather parameters, animated

passage of time is not natively implemented.

When a user defines the environment settings within a script, the CARLA weather parameters

are updated to correspond to the desired settings and this parameters remain static until further

changes by the script. However, when the environment settings enable the weather animation, the

passage of time in the simulation should be accompanied by the correspondent visual cues, the

sun’s position, the movement of the clouds and the passage from day to night time and vice-versa.

In CARLA simulator the cloud’s movement is not controllable, however it is possible to con-

trol the angle of the sun and transition between day and night. As shown in the figure 4.20, the

influence of the sun’s position not only affects the lighting angle of the map objects but also defines

the night and day on the simulator. When the sun is above the map, on top of the middle dashed

line, it is day time in the simulator, when the sun transverses the dashed line and is now under the

map, it is night time as no light is capable of reaching the top of the map.

Figure 4.20: Real vs intended CARLA’s sun movement.
On the left is a description of how the sun behaves in the CARLA simulator by manipulating the
elevation and azimuth angle. On the right is a description of the intended movement of the sun to

simulate passage of time.

The figure 4.20 shows to diagrams explaining the movement of the sun. Ideally the sun’s

movement would be as suggested by the diagram on the right, where only one angle, ranging from

0o to 360o, would be responsible for the sun revolving around a full day. However, in CARLA

simulator, the sun is only capable of performing a full revolution by using both its angles, elevation

and azimuth, since the elevation angles only ranges from -90o to 90o. Thus, to simulate a full

revolution from the sun, and provide an adequate simulation of the passage of time, one would

need to increment the sun’s elevation angle until 90o were reached, add, at that moment, 180o

to the azimuth angle and start decreasing the elevation angle until it reaches -90o, followed by a

subtraction of 180o to the azimuth angle and repeat.

4.5.8.1 Implementation

To control the weather dynamically while the simulation is running, a constant update on the

weather parameters is required. To implement this ability in a behavior tree it is necessary to

4.5 Storyboard 63

create an action independent of other environment setting actions, and only dependent on the

execution of the scenario. The solution was to develop a permanent action that is always executed

throughout the whole script in the root of the tree, as shown by the behavior tree in the figure 4.21.

Figure 4.21: Behavior tree with the TimeOfDay action.

The TimeOfDay action, being a child of the OpenSCENARIO node is ensured to be execute

the whole scenario and, by always return its status as "RUNNING", it allows a continuous control

of the CARLA’s weather parameters. This action’s main objective is to regularly update the sun’s

angle, if the animation setting is enabled. In the figure 4.22, the diagram of this class shows how

the behavior is implemented. In the initialization method it receives it’s name, used to create the

action node with the correct name, and an instance of the simulator’s world, required to control

the weather parameters.

Figure 4.22: TimeOfDay Action - UML class diagram.

Two variables in tree’s blackboard are updated by this action. The first, "TimeOfDay", contains

the simulator’s time and date. The second, "Animation", contains the current state of the animation

setting, enabled or disabled.

In the setup method, this action, first updates the "TimeOfDay" blackboard entry with the real

world time and date, this occurs the moment the script is executed. Although this value can be

changed in the script, in case the user does not specify any date and time for the script, the default

value is the current date and time. The "Animation" value is also set as false, remaining disabled

until the script enables it.

During its execution, in case the "Animation" variable remains disabled, all this action does

it to incrementally update the current time with the time passed, in the simulator. However, once

the "Animation" is enabled, this action is responsible for incrementing the sun’s angle according

to the passage of time in the simulator.

64 WP1: Scenario Configuration

Since the sun’s angle can perform a 360o degree turn and the resolution of the angle of the sun

in the simulator is limited to 1o it is important to increment the sun’s angle every 240 seconds, as

demonstrated by the equation 4.1.

Sun′s rate =
FullDay
FullTurn

=
24∗60∗60

360
= 240 seconds/degree (4.1)

4.5.9 Naming

When writing an OpenSCENARIO script it is important to pay attention to the name of each

element. Throughout the scenario description elements can be reference and, as such, it is essential

to ensure that all elements can be provided with a unique name. The user needs to make sure all

element names are unique in the same scope, i.e. the parent element. For example, in the same

Story all elements should have unique names, however, between two Story elements their children

can share the same name.

When referencing an element the name of the reference should make sure only one element

corresponds to the search. In case the element name is not enough to correspond to only one

element, prefixes should be added until it is unique. These prefixes are references to their parent

elements and should be separated by an "::" symbol. As a result the "::" symbol cannot be used in

names.[1]

As an example consider the listing 4.32 where two Story elements are defined with one Act

element each, that share the name. In order to reference the first Act element using only its name

is not enough because it is not globally unique. To make sure the reference is unique one should

add the Story element name as a prefix. The final reference would be "Story01::Act1".

1 <.../>
2 <Storyboard>
3 <Story name="Story01">
4 <Act name="Act1">
5 <.../>
6 </Act>
7 </Story>
8 <Story name="Story02">
9 <Act name="Act1">

10 <.../>
11 </Act>
12 </Story>
13 <.../>
14 </Storyboard>

Listing 4.32: Example to correctly reference an element.

4.5.9.1 Implementation

In order for to allow conditions, which are leaf nodes in the behavior tree, to access the execution

status of all intermediate and leaf nodes, one entry per node is added to the shared blackboard as

soon as the node starts its execution and updated with their current status every cycle. This variable

4.6 Actions 65

entry is managed by the ActionBehavior base class, figure 4.24 from chapter 4.6, and Parallel and

Sequence classes, figure 4.23. Further explanation about the ActionBehavior class is provided in

the chapter 4.6.

Figure 4.23: Parallel and Sequence UML class diagrams.

To make sure all node names are unique the full path of the node in the behavior tree, from

the root element, is always added. Additionally, to provide more information and facilitate the

reading, all elements are referenced by their type and name, in case it exists. In the example in

listing 4.32, the first Act element would have the name "OpenSCENARIO::Storyboard::Stories::

Story(Story01)::Act(Act1)".

There are some exceptions when this pattern is not exactly as described: when elements do

not possess any identification and when actions or conditions act upon an entity. In the case

of elements that do not contain any identification attributes, e.g. actions contained in the Init

element, a sequential number, according to the order presented in the script, is provided as an

identifier. For example, in an Init element where the first action was an Environment element,

it would have the name "(...)::EnvironmentAction(0)". Another special case is when leaf nodes,

actions or conditions, are related to an entity and, in this case, a suffix is added containing the

name of the entity, "(...)::Entity(Actor01)".

4.6 Actions

The leaf nodes of the behavior tree are composed by actions and conditions. These nodes are

derived from the Behavior class from the "py_trees" python module. The scenario runner plugin

contains an implementation of the class AtomicBehavior that enables logging for all the important

events from each action.

In order to take advantage of this feature and implement some basic OpenSCENARIO features,

all actions are derived from two base classes that are, in turn, derived from the AtomicBehavior

class. The ActionBehavior class (figure 4.24) is responsible for setting and updating a variable

in the behavior tree’s common blackboard, with the name of the corresponding action and its

execution state. This feature is required in order to permit some conditions and actions to access

the state of other actions.

For other actions, with more complex movements and decisions, another base class is pro-

vided. The StateMachineBehavior class (figure 4.24), derived from the ActionBehavior class,

adds the capability to easily construct behaviors based on state machines.

66 WP1: Scenario Configuration

Figure 4.24: Actions Base classes - UML class diagram.

The usage of the StateMachineBehavior class is quite simple, but it defers from the usage of

the library’s Behavior class. An example of a state machine and its implementation, by deriving

from the StateMachineBehavior class, is presented in the figure 4.25.

Figure 4.25: Example of a state machine implementation.

The derived class ("Example" class in figure 4.25) should contain one member function for

each state from the state machine. As it is easy to see, these member functions are denominated

with the state’s name prefixed with the term "_state_".

The transitions to another state or to finish the behavior, by either success or failure, are evalu-

ated within each member function and the result should be returned. As such, each state’s member

function should return either another state, which is a pointer to another state’s member function,

or the final result of the behavior, e.g. the "_state_First" returns the "_state_Second" to transition

to the second state while the "_state_Third" return a py_trees.common.Status to terminate the

execution of the state machine and the behavior, consequently. In case a state needs to execute for

more than one cycle, it should return a pointer to itself.

Finally, the state’s member functions should not accept any argument and, in case it is neces-

sary to transmit information from one state to another, member variables should be used to contain

all the global information.

4.6.1 Global Actions

One of the main groups of actions available in the OpenSCENARIO are the global actions (listing

4.33). This group contains all the actions that do not explicitly target an entity’s state.[1] Mean-

ing that, although most actions are not associated with any specific entity, even the actions that

reference an entity do not alter its state directly.

4.6 Actions 67

1 <xsd:complexType name="GlobalAction">
2 <xsd:choice>
3 <xsd:element name="EnvironmentAction" type="EnvironmentAction"

minOccurs="0"/>
4 <xsd:element name="EntityAction" type="EntityAction" minOccurs="0"/>
5 <xsd:element name="ParameterAction" type="ParameterAction" minOccurs="0"/>
6 <xsd:element name="InfrastructureAction" type="InfrastructureAction"

minOccurs="0"/>
7 <xsd:element name="TrafficAction" type="TrafficAction" minOccurs="0"/>
8 </xsd:choice>
9 </xsd:complexType>

Listing 4.33: XSD definition of the GlobalAction element.[34]

The global actions are divided into five categories: Environment - allows to set the weather

state, road condition parameters, current time and enable the animation of the passage of time;

Entity - allows to insert or remove an instance of an entity from the scenario; Parameter - allows

to set, add or multiply a global parameter value; Infrastructure - allows to modify and control

traffic signal states and traffic signal controllers phase; Traffic - allows to create several types of

background traffic.[1]

4.6.1.1 Implementation

The class present in figure 4.26 implements the behavior expected from the GlobalAction element.

Figure 4.26: Global actions UML class diagram.

This class does not create any behavior tree node or performs any other complex operation. Its

main objective is to correctly parse the GlobalAction element and determine what type of action it

should create. This action will be created by the correspondent classes and its behavior tree node

will be stored in this class’ "tree_node" member variable.

68 WP1: Scenario Configuration

4.6.2 Private Actions

Another main group of OpenSCENARIO’s actions are the private actions (listing 4.34). These

actions have to assigned to an entity and allow to change its motion, position and visibility. Both,

the longitudinal and lateral movements of an entity can be controlled by these types of actions.[1]

1 <xsd:complexType name="PrivateAction">
2 <xsd:choice>
3 <xsd:element name="LongitudinalAction" type="LongitudinalAction"

minOccurs="0"/>
4 <xsd:element name="LateralAction" type="LateralAction" minOccurs="0"/>
5 <xsd:element name="VisibilityAction" type="VisibilityAction" minOccurs="0"/>
6 <xsd:element name="SynchronizeAction" type="SynchronizeAction"

minOccurs="0"/>
7 <xsd:element name="ActivateControllerAction" type="ActivateControllerAction"

minOccurs="0"/>
8 <xsd:element name="ControllerAction" type="ControllerAction" minOccurs="0"/>
9 <xsd:element name="TeleportAction" type="TeleportAction" minOccurs="0"/>

10 <xsd:element name="RoutingAction" type="RoutingAction" minOccurs="0"/>
11 </xsd:choice>
12 </xsd:complexType>

Listing 4.34: XSD definition of the PrivateAction element.[34]

The private actions are divided into more categories than the previously described global ac-

tions: Longitudinal - allows to control the speed and acceleration of an entity; Lateral - allows to

control the heading of an entity; Visibility - intends to enable the visibility of an entity to certain

types of sensors; Synchronize - allows to coordinate the longitudinal movement of an entity in

order to encounter another at a desired location; ActivateController - enables or disables an entity

controller; Controller - assigns a new controller to an entity while providing the ability to override

certain aspects; Teleport - allows to move the entity instantaneously to a desired position; Routing

- provides the entity with a path to follow, either describing only lateral movements or describing

both lateral and longitudinal movements.[1]

Private All private actions have to assigned to an entity. When actions are contained in the

Storyboard, this is not a problem because the entities are assigned in the ManeuverGroup elements.

However, when actions are contained in the Init element no entity is assigned so it is necessary

to encapsulate the private actions in a Private element (listing 4.23) that has the main objective to

assign an entity to all the actions contained in it.

In the Init several Private elements can be contained in order to assign several entities to private

actions. And, the Private element can contain several private actions and all will be assigned the

same entity.

4.6.2.1 Implementation

Similarly to the GlobalAction class (figure 4.26), the PrivateAction class (figure 4.27) also does

not create any behavior tree node or performs any complex operations. The objective of this class

4.6 Actions 69

is, only, to correctly parse the XML content and determine what category of private action is

necessary to create. Its member functions, each responsible for one category, should instantiate

the correct class that creates the desired behavior and store the behavior action in the "tree_node"

member variable.

Figure 4.27: PrivateAction UML class diagram.

Private On the other hand, the Private class (figure 4.28), since it is responsible to assign an

entity to a private action, retrieves the actor referenced in the script and assigns this actor to all the

actions present inside the Private element.

Figure 4.28: Private UML class diagram.

Since many private actions can be present in a Private element, the Private class generates the

behavior tree node presented in figure 4.29 where all the private actions will be contained.

Since all these actions are assigned to the same entity and it is not a good idea to perform

multiple actions on the same entity at the same time, this node is of sequence type to allow the

execution of one action at a time.

70 WP1: Scenario Configuration

Figure 4.29: Private behavior tree.

4.6.3 Environment Action

As previously explained an environment action (listing 4.35) allows to change the weather char-

acteristics, the road condition properties and time passage in the simulation.

1 <xsd:complexType name="EnvironmentAction">
2 <xsd:choice>
3 <xsd:element name="Environment" type="Environment" minOccurs="0"/>
4 <xsd:element name="CatalogReference" type="CatalogReference" minOccurs="0"/>
5 </xsd:choice>
6 </xsd:complexType>

Listing 4.35: XSD definition of the EnvironmentAction element.[34]

An EnvironmentAction element is a container for the Environment element, where all the pre-

viously mentioned settings are defined, or a catalog reference to an Environment element.

An Environment element (listing 4.36), besides the ParameterDeclarations element common

to all catalog elements, contains three types of elements that define different characteristics of the

simulation environment: TimeOfDay element, Weather element and RoadCondition element.

1 <xsd:complexType name="Environment">
2 <xsd:all>
3 <xsd:element name="ParameterDeclarations" type="ParameterDeclarations"

minOccurs="0"/>
4 <xsd:element name="TimeOfDay" type="TimeOfDay"/>
5 <xsd:element name="Weather" type="Weather"/>
6 <xsd:element name="RoadCondition" type="RoadCondition"/>
7 </xsd:all>
8 <xsd:attribute name="name" type="String" use="required"/>
9 </xsd:complexType>

Listing 4.36: XSD definition of the Environment element.[34]

TimeOfDay This element (listing 4.37) allows to set the simulated date and time of the simu-

lation, and this value is then incremented according to the speed of time in the simulation. When

the environment action is used inside the Init element, it defines the initial time and date of the

simulation. Alternatively the environment action can be used in the Story elements to reset the

date and time of the simulation to a specific moment.

The attribute "animation" enables the simulation of visual cues to infer the passage of time,

see chapter 4.5.8.

4.6 Actions 71

1 <xsd:complexType name="TimeOfDay">
2 <xsd:attribute name="animation" type="Boolean" use="required"/>
3 <xsd:attribute name="dateTime" type="DateTime" use="required"/>
4 </xsd:complexType>

Listing 4.37: XSD definition of the TimeOfDay element.[34]

Weather In an OpenSCENARIO script, the weather (listing 4.38) is highly customizeable with

a variety of parameters that allow to alter different elements, such as clouds, sun, fog and precipi-

tation.

1 <xsd:complexType name="Weather">
2 <xsd:all>
3 <xsd:element name="Sun" type="Sun"/>
4 <xsd:element name="Fog" type="Fog"/>
5 <xsd:element name="Precipitation" type="Precipitation"/>
6 </xsd:all>
7 <xsd:attribute name="cloudState" type="CloudState" use="required"/>
8 </xsd:complexType>

Listing 4.38: XSD definition of the Weather element.[34]

The "cloudState" attribute, from the Weather element, as shown in listing 4.39, allows to

define the level of cloudiness in the sky using some common descriptions: free, cloudy, overcast

and rainy. Optionally, this attribute can also instruct to disable the simulation of the sky through

the keyword "skyOff".

1 <xsd:simpleType name="CloudState">
2 <xsd:union>
3 <xsd:simpleType>
4 <xsd:restriction base="xsd:string">
5 <xsd:enumeration value="cloudy"/>
6 <xsd:enumeration value="free"/>
7 <xsd:enumeration value="overcast"/>
8 <xsd:enumeration value="rainy"/>
9 <xsd:enumeration value="skyOff"/>

10 </xsd:restriction>
11 </xsd:simpleType>
12 <xsd:simpleType>
13 <xsd:restriction base="parameter"/>
14 </xsd:simpleType>
15 </xsd:union>
16 </xsd:simpleType>

Listing 4.39: XSD definition of the cloudState type.[34]

The Weather element also contains three elements to further define its meteorological charac-

teristics. The Sun element (listing 4.40) allows to define the sun’s azimuth, elevation and intensity,

with the correspondent attributes.

The Fog element (listing 4.41) can characterize the presence of fog in the simulator by describ-

ing the affected area with a bounding box and the visual range, in meters, that an entity would be

have when present inside the defined bounding box.

72 WP1: Scenario Configuration

1 <xsd:complexType name="Sun">
2 <xsd:attribute name="azimuth" type="Double" use="required"/>
3 <xsd:attribute name="elevation" type="Double" use="required"/>
4 <xsd:attribute name="intensity" type="Double" use="required"/>
5 </xsd:complexType>

Listing 4.40: XSD definition of the Sun element.[34]

1 <xsd:complexType name="Fog">
2 <xsd:all>
3 <xsd:element name="BoundingBox" type="BoundingBox" minOccurs="0"/>
4 </xsd:all>
5 <xsd:attribute name="visualRange" type="Double" use="required"/>
6 </xsd:complexType>

Listing 4.41: XSD definition of the Fog element.[34]

At last, the Precipitation element (listing 4.42) describes the behavior of rain in the simulation

by defining its intensity, in percentage value, and a precipitation type: dry, rain or snow.[34]

1 <xsd:complexType name="Precipitation">
2 <xsd:attribute name="intensity" type="Double" use="required"/>
3 <xsd:attribute name="precipitationType" type="PrecipitationType"

use="required"/>
4 </xsd:complexType>

Listing 4.42: XSD definition of the Precipitation element.[34]

RoadCondition This element (listing 4.43) not only allows to define the friction values of the

road, using its "frictionScaleFactor" attribute, but also enables the user to define a series of per-

sonalized properties that would help better define the road in the simulation.

1 <xsd:complexType name="RoadCondition">
2 <xsd:sequence>
3 <xsd:element name="Properties" type="Properties" minOccurs="0"/>
4 </xsd:sequence>
5 <xsd:attribute name="frictionScaleFactor" type="Double" use="required"/>
6 </xsd:complexType>

Listing 4.43: XSD definition of the RoadCondition element.[34]

4.6.3.1 Weather Parameters in CARLA

The CARLA simulator also allows the configuration of multiple weather characteristics that are

detailed in the table 4.2. The CARLA’s Python API contains several predefined weather values that

facilitate the configuration of specific meteorological conditions: ClearNoon, CloudyNoon, Wet-

Noon, WetCloudyNoon, SoftRainNoon, MidRainyNoon, HardRainNoon, ClearSunset, Cloudy-

Sunset, WetSunset, WetCloudySunset, SoftRainSunset, MidRainSunset and HardRainSunset. Al-

though the simulator allows the manipulation of the friction of the road, this is only possible using

4.6 Actions 73

friction triggers, which means the entities would only be affected to this new road friction value if

they happened to pass by the location of the friction triggers. CARLA allows to define the speed

of the simulation but it has no definition of the current date and time or even visual passage of

time, as discussed in chapter 4.5.8.

Table 4.2: CARLA’s weather parameters.[2]

Parameter Values Description
cloudiness [0,100] 0 - clear sky & 100 - covered in clouds.
precipitation [0,100] 0 - no rain & 100 - heavy rain.
precipitation_deposits [0,100] Creates puddles in the road using static noise, gen-

erating puddles always in the same places. 0 - no
deposits & 100 - road completely capped with wa-
ter.

wind_intensity [0,100] The wind in the simulator can only be detected
by the RGB camera sensors through rain direction
and movement of tree leaves. 0 - no wind & 100 -
very strong wind

sun_azimuth_angle [0,360] 0 is an origin point determined by UE4.
sun_altitude_angle [-90,90] -90 - midnight & 90 - midday.
fog_density [0,100] This property affects, mainly, the fog thickness and

can only be detected by the RGB camera sensors.
0 - no fog & 100 - cannot see through fog.

fog_distance [0, ∞] Indicates the distance, in meters, from the center
point of the sensor, until the fog starts.

wetness [0,100] Defines the wetness look of the road, also only af-
fects the RGB camera sensors. 0 - dry road & 100
- completely wet road.

4.6.3.2 Implementation

In order to implement this action, the EnvironmentAction class (figure 4.30) is responsible for:

creating the leaf node for the behavior tree, mapping OpenSCENARIO’s weather settings with

CARLA’s weather parameters and update the simulation date, time and animation settings.

Figure 4.30: Environment action - UML class diagram.

74 WP1: Scenario Configuration

As it can be inferred from the content in this section, although both, CARLA simulator and

OpenSCENARIO, instances allow to characterize the desired weather conditions quite thoroughly,

the specific parameters differ a little bit making the conversion not straight forward. The table

4.3 presents the connection made to link all the CARLA weather parameters to the properties

OpenSCENARIO is able to provide. All CARLA’s parameters were met but some adjustments in

the OpenSCENARIO side was necessary.

Table 4.3: Conversion weather parameters between CARLA and OpenSCENARIO.

CARLA’s
weather parameters

OpenSCENARIO’s
weather parameters

cloudiness Weather/cloudState
precipitation Weather/Precipitation/intensity
precipitation_deposits RoadCondition/Properties/precipitationDeposits
wind_intensity RoadCondition/Properties/windIntensity
sun_azimuth_angle Weather/Sun/azimuth
sun_altitude_angle Weather/Sun/elevation
fog_density RoadCondition/Properties/fogDensity
fog_distance Weather/Fog/visualRange
wetness RoadCondition/Properties/wetness

The attribute "cloudState" was used to determine the cloudiness level of the simulator. This

attribute is not able to fully represent the simulator’s cloudiness so a conversion of values was

needed. The cloudiness presents float values from 0 to 100 while the "cloudState" attribute

presents 5 string values. Another problem is that the simulator does not allow to disable the sim-

ulation of the sky making the "skyOff" keyword useless. The adopted solution was to associate a

float value to the "cloudState" keywords, and the "skyOff" keywork associated with no clouds in

the sky. In listing 4.44 is presented a Python dictionary that is used for the conversion between

these two parameters.

1 cloudState_dict = {’skyOff’: 0.0, ’free’: 0.0, ’cloudy’: 33.3,
2 ’overcast’: 66.6, ’rainy’: 100.0}

Listing 4.44: Python dictionary to convert "cloudState" values into cloudiness float values.

The attribute "intensity" from the Precipitation element, inside the Weather element, is able

to, proportionally, provide an equivalent value for the precipitation parameter, just by multiplying

its value by 100.

The precipitation deposits, wind intensity, fog density and wetness cannot be provided by

any of the OpenSCENARIO’s weather parameters and they had to be implemented as a user-

defined property in the RoadCondition element. The advantage is that its values share the same

specification and do not need to be converted.

Although the fog density cannot be natively provided by an OpenSCENARIO attribute, the

fog distance is equivalent to the "visualRange" attribute from the Fog element. Its values, also, do

not need to be converted.

4.6 Actions 75

Finally, both the sun’s azimuth and altitude had a corresponding OpenSCENARIO attributes,

in the Sun element. Since the simulator’s origin angle of the sun’s azimuth is dependent of the

UE4 implemententation (table 4.2) and as a consequence it can vary from city to city, it was

assumed that the 0o would always be pointing to north. This is identical to the OpenSCENARIO’s

"azimuth" attribute and thus it required no other conversion than from radians to degrees. However,

the carla’s sun’s elevation ranges from -90 to 90 degrees while the "elevation" attribute from the

Sun element ranges from −pi to pi radians, i.e. CARLA’s sun only performs half a circumference

in the elevation direction while OpenSCENARIO’s sun performs a full circumference. In order

to convert the values from the OpenSCENARIO’s sun’s elevation to CARLA’s sun’s elevation

it is needed to alter the CARLA’s sun’s azimuth, according to the equations 4.2 and 4.3. In

the following equations: C_azimuth and C_elev represent CARLA’s azimuth and elevation, and

O_azimuth and O_elev represent OpenSCENARIO’s azimuth and elevation, respectively.

C_azimuth =

O_azimuth∗ 180

π
, if |O_elev| ≤ 90

(
O_azimuth∗ 180

π

)
+180, otherwise

(4.2)

C_elev =

−180−
(

O_elev∗ 180
π

)
, if O_elev <−90

O_elev∗ 180
π

, if −90≤ O_elev≤ 90

180−
(

O_elev∗ 180
π

)
, if O_elev > 90

(4.3)

Action node After parsing and converting all the values, the EnvironmentAction class creates a

SetWeather action behavior (figure 4.31) that will be a leaf node in the behavior tree.

This action receives all the converted values from the EnvironmentAction class and is respon-

sible for applying the values to the simulator. In case of the date, time and animation settings, it

updates the variables "dateTime" and "animation" that should already be present in the behavior

tree’s shared blackboard.

This action succeeds once it verifies that the simulator’s weather parameters are the same as

the received settings.

4.6.4 Entity Action

The EntityAction element (listing 4.45) contains two global actions that are designed to add or

remove an entity from the scenario.[34]

The EntityAction element is the only group of global actions that act upon entities. As such,

its "entityRef" attribute allows to select the entity that the selected action will be performed on. In

76 WP1: Scenario Configuration

Figure 4.31: SetWeather action behavior - UML class diagram.

1 <xsd:complexType name="EntityAction">
2 <xsd:choice>
3 <xsd:element name="AddEntityAction" type="AddEntityAction" minOccurs="0"/>
4 <xsd:element name="DeleteEntityAction" type="DeleteEntityAction"

minOccurs="0"/>
5 </xsd:choice>
6 <xsd:attribute name="entityRef" type="String" use="required"/>
7 </xsd:complexType>

Listing 4.45: XSD definition of the EntityAction element.[34]

order to add an entity to a scenario, the AddEntityAction element (listing 4.46) allows to select a

position for the entity to assume in the scenario.

1 <xsd:complexType name="AddEntityAction">
2 <xsd:all>
3 <xsd:element name="Position" type="Position"/>
4 </xsd:all>
5 </xsd:complexType>

Listing 4.46: XSD definition of the AddEntityAction element.[34]

When the entity is already on the scenario, the DeleteEntityAction element allows to remove

it. This element does not have any attributes or descendant elements.

4.6 Actions 77

4.6.4.1 Implementation

The EntityAction element is implemented by the EntityAction class (figure 4.32) that is responsible

for identifying the referenced entity and, in case of the AddEntityAction element, convert the

position data into the correspondent CARLA’s coordinates.

Figure 4.32: Entity Action - UML class diagram.

With this class two action behavior can be created, one to add an entity and another to remove

the entity. The action behavior AddEntityAction (figure 4.33) performs the action of adding an

entity to the scenario. As previously explained in the chapter 4.4, due to differences between

the OpenSCENARIO and CARLA, all entities are first spawned in a specific location, under the

loaded map, before the scenario begins its execution. Thus adding an entity to the scenario actually

means moving the entity to the intended position in the scenario.

Figure 4.33: AddEntityAction behavior - UML class diagram.

Alternatively, the DeleteEntityAction (figure 4.34) completely removes an entity from the sim-

ulator, making it impossible from using it again in the scenario.

4.6.5 Parameter Action

The ParameterAction (listing 4.47) element provides the ability to change parameter values dur-

ing runtime. In a normal implementation of the OpenSCENARIO this is only useful to trigger

conditions that verify the parameters values, since all the other operations with parameters are

performed previously to the scenario execution, see chapter 4.2.

78 WP1: Scenario Configuration

Figure 4.34: DeleteEntityAction behavior - UML class diagram.

1 <xsd:complexType name="ParameterAction">
2 <xsd:choice>
3 <xsd:element name="SetAction" type="ParameterSetAction" minOccurs="0"/>
4 <xsd:element name="ModifyAction" type="ParameterModifyAction" minOccurs="0"/>
5 </xsd:choice>
6 <xsd:attribute name="parameterRef" type="String" use="required"/>
7 </xsd:complexType>

Listing 4.47: XSD definition of the ParameterAction element.[34]

The ParameterAction element contains one attribute, "parameterRef", to identify the parameter

that will be affected by the action. In this action two types of operations, on the parameter, are

provided. The first, performed by the SetAction element, attributes the parameter with a new value

independently of the previous value. The second operation, provided by the ModifyAction element

(listing 4.48), alters the value of the parameter by taking advantage of the previous value.

1 <xsd:complexType name="ParameterModifyAction">
2 <xsd:all>
3 <xsd:element name="Rule" type="ModifyRule"/>
4 </xsd:all>
5 </xsd:complexType>

Listing 4.48: XSD definition of the ModifyAction element.[34]

When altering the parameter value with the ModifyAction element, two methods of editing the

parameters are provided, contained in the Rule element (listing 4.49). The parameter’s value can

be added to another value, using the AddValue element, or it is possible to multiply the parameter’s

value by a ratio, with the MultiplyByValue element.

1 <xsd:complexType name="ModifyRule">
2 <xsd:choice>
3 <xsd:element name="AddValue" type="ParameterAddValueRule" minOccurs="0"/>
4 <xsd:element name="MultiplyByValue" type="ParameterMultiplyByValueRule"

minOccurs="0"/>
5 </xsd:choice>
6 </xsd:complexType>

Listing 4.49: XSD definition of the ModifyRule element.[34]

All these elements that allow to edit a parameter’s value, the SetAction, AddValue, Multiply-

ByValue elements, are simple with only one attribute "value" and without any children elements.

4.6 Actions 79

This means that in these operations the parameter’s type is never changed and the implementation

should be careful about the values and perform the correct conversions.

4.6.5.1 Implementation

The correct parsing of all the previously described elements to edit a parameter’s value is per-

formed by the ParameterAction class (figure 4.35) that will then create the correct action behavior

and store it in its "tree_node" member variable.

Figure 4.35: ParameterAction UML class diagram.

This class is responsible for finding, from the "parameterRef" attribute, the correct parameter

to be used in the action behavior, or provide user feedback in case it does not exist.

Then it will parse the rest of the elements in order to determine the correct action to apply. In

case the descendant element is the SetAction, the creation of the action behavior is simple and the

responsibility is passed to the "_element_SetAction" member function, giving origin to the Set-

Parameter action behavior (figure 4.36). However if the descendant element is the ModifyAction

it will, first, be parsed by the "_element_Modify" member function until an action is created by

the "_element_Modify_AddValue" function, generating the AddParameter action behavior (figure

4.37), or the "_element_Modify_MultiplyByValue" function, generating the MultParameter action

behavior (figure 4.38).

The SetParameter action (figure 4.36) allows to set a new value for the corresponding value

and succeeds once it verifies that the new parameter’s value is the desired value. Since the desired

value is provided as a string, and without any reference to its type, this action is responsible for

verifying if the value is able to be converted to the parameter’s type and perform the conversion

or, otherwise, fail.

On the other hand, the AddParameter action (figure 4.37) can only be performed with param-

eter types that allow mathematical calculations. However there is no constraint referred in the

OpenSCENARIO standard indicating what types are able to be used in this action, so the fol-

lowing restrictions were decided during implementation. Beside the typical types that allow to

80 WP1: Scenario Configuration

Figure 4.36: SetParameter behavior - UML class diagram.

perform the sum operation, in order to extend the compatibility of the action, the string type is

also accepted resulting in a concatenation of both values.

Figure 4.37: AddParameter behavior - UML class diagram.

Finally, the MultParameter action (figure 4.38) allows to multiply the previous parameter’s

value by a ratio. Similar to the AddParameter action, this action can, also, only be performed

with types that allow for the multiplication operation. The compatilibity of this action is reduced

relative to the AddParameter action because the multiplication cannot be applied to the string type.

Figure 4.38: MultParameter behavior - UML class diagram.

4.6 Actions 81

4.6.6 Longitudinal Action

The OpenSCENARIO defines a group of actions that act upon an entity’s longitudinal movements:

distance, velocity and acceleration. These actions are contained in the LongitudinalAction element

(listing 4.50) and are further distinguished into speed related actions, SpeedAction element (listing

4.51), and distance related actions, LongitudinalDistanceAction element.

1 <xsd:complexType name="LongitudinalAction">
2 <xsd:choice>
3 <xsd:element name="SpeedAction" type="SpeedAction" minOccurs="0"/>
4 <xsd:element name="LongitudinalDistanceAction"

type="LongitudinalDistanceAction" minOccurs="0"/>
5 </xsd:choice>
6 </xsd:complexType>

Listing 4.50: XSD definition of the LongitudinalAction element.[34]

4.6.6.1 Implementation

The LongitudinalAction class (figure 4.39) is responsible for correctly parsing all the elements that

can exist contained inside the LongitudinalAction element. It receives the entity but it is required

to find the name of the entity in order to correctly name the action node, see chapter 4.5.9.

Figure 4.39: LongitudinalAction UML class diagram.

Since it parses, not only leaf element (elements that have no children), but also intermediate

elements, such as SpeedAction, it contains more member functions that it is to be expected for a

class that can only create three different actions: speed action with absolute target speed, speed

action with relative target speed and longitudinal distance action.

82 WP1: Scenario Configuration

4.6.6.2 Speed Action

The SpeedAction element (listing 4.51) generates actions with the ultimate goal of making an

entity assume a specific final velocity, however it allows to characterize these actions by not simply

controlling an entity’s speed but also by defining two main aspects: the action dynamics, with the

SpeedActionDynamics element (listing 4.52), and the action target, with the SpeedActionTarget

element(listing 4.53).

1 <xsd:complexType name="SpeedAction">
2 <xsd:all>
3 <xsd:element name="SpeedActionDynamics" type="TransitionDynamics"/>
4 <xsd:element name="SpeedActionTarget" type="SpeedActionTarget"/>
5 </xsd:all>
6 </xsd:complexType>

Listing 4.51: XSD definition of the SpeedAction element.[34]

Action Dynamics The SpeedActionDynamics element (listing 4.52) is used to describe how the

evolution of an entity’s speed should evolve, either over time, distance or a constant rate, by

describing the shape of the desired curve.[34]

1 <xsd:complexType name="TransitionDynamics">
2 <xsd:attribute name="dynamicsDimension" type="DynamicsDimension"

use="required"/>
3 <xsd:attribute name="dynamicsShape" type="DynamicsShape" use="required"/>
4 <xsd:attribute name="value" type="Double" use="required"/>
5 </xsd:complexType>

Listing 4.52: XSD definition of the SpeedActionDynamics element.[34]

The "dynamicsDimension" attribute defines the semantics of the "value" attribute and, conse-

quently, the dimension that affects the evolution of the curve. It has three valid keywords: rate,

time and distance. In case the rate dimension is selected, velocity of the entity should evolve

according to the defined shape at a constant rate. On the other hand, if the time or distance dimen-

sions are selected the velocity of the entity should evolve, according to the defined shape, by the

passage of time or the distance travelled, respectively.[34]

The "dynamicsShape" attribute characterizes the shape of the curve that delineates how the

evolution of an entity’s speed should look like, i.e. defines a function f (x) to shape the transition

from the current speed to the desired speed according to the dimension variable selected. This

attributes can assume four keywords: linear, cubic, sinusoidal and step. Each of these keywords

indicate well known mathematical functions and little restrictions are provided by the standard

on their implementation with the exception of ensuring the gradient of both cubic and sinusoidal

functions is zero at the start and end.

The standard also provided mathematical equations to better characterize the functions:

linear: f (x) = f0 + rate∗ x

4.6 Actions 83

cubic: f (x) = A∗ x3 +B∗ x2 +C ∗ x+D

sinusoidal: f (x) = A∗ sin(x)+B

step: f (x) = f∞

However no indication about the constant values are provided.[34]

At last, the "value" attribute has different meanings depending on the dimension. In case

the rate dimension is selected it indicates the rate of evolution of the velocity, using the ∆/s

unit. Alternatively, when the dimension is either time or distance, then this attribute indicates

the amount time passed (s) or distance travelled (m), respectively, for the entity to reach the final

velocity.[34]

Speed Target After the action dynamics is completely specified, it is necessary to determine

what the goal velocity shall be. This is achieved by the SpeedActionTarget element (listing 4.53).

Currently, in the OpenSCENARIO, it is possible to define this target through two elements: Rela-

tiveTargetSpeed (listing 4.54) and AbsoluteTargetSpeed.[34]

1 <xsd:complexType name="SpeedActionTarget">
2 <xsd:choice>
3 <xsd:element name="RelativeTargetSpeed" type="RelativeTargetSpeed"

minOccurs="0"/>
4 <xsd:element name="AbsoluteTargetSpeed" type="AbsoluteTargetSpeed"

minOccurs="0"/>
5 </xsd:choice>
6 </xsd:complexType>

Listing 4.53: XSD definition of the SpeedActionTarget element.[34]

The AbsoluteTargetSpeed is a simple element with a single attribute, "value". This element

allows to define a specific terminal velocity by indicating it in the "value" attribute in m/s. This

action is considered complete once the entity reaches the desired speed.[1]

However, the RelativeTargetSpeed element (listing 4.54) is a little more complex and allows

to define a velocity relative to another entity’s velocity. Depending on the settings of this action

it can end when the speed is reached or continue, permanently, to match the entity’s velocity until

the action’s execution is forced to stop. Instead of simply matching the relative entity’s speed it

is possible define different velocities in relation to its velocity, by either adding a difference or by

multiplying it with a factor.[34]

1 <xsd:complexType name="RelativeTargetSpeed">
2 <xsd:attribute name="entityRef" type="String" use="required"/>
3 <xsd:attribute name="continuous" type="Boolean" use="required"/>
4 <xsd:attribute name="speedTargetValueType" type="SpeedTargetValueType"

use="required"/>
5 <xsd:attribute name="value" type="Double" use="required"/>
6 </xsd:complexType>

Listing 4.54: XSD definition of the RelativeTargetSpeed element.[34]

84 WP1: Scenario Configuration

The "entityRef" attribute allows to select from what entity the speed will be relative to. Instead

of simply matching the relative entity’s speed it is possible define different velocities in relation

to its velocity. The "speedTargetValueType" can receive two keywords: delta and factor. When

the delta is selected the desired velocity will be calculated by adding the entity’s velocity to the

content of the attribute "value" (equation 4.4), in m/s.[34]

v f = vR + ”value” (m/s) (4.4)

Alternatively it is possible to define a final velocity by multiplying the entity’s velocity by a

factor, the content of "value" attribute. This is achieved when the "speedTargetValueType" attribute

is set to factor (equation 4.5).[34]

v f = vR ∗ ”value” (m/s) (4.5)

Finally, in this element it is possible to alter the durability of the action. The "continuous"

attribute allows to enable the permanent execution of the action. In case the "continuous" attribute

is false, the action, similar to the AbsoluteTargetSpeed element, terminates once the main entity

reaches the desired speed. But if the "continuous" attribute is true, the action will continuously

recalculating the desired speed and follow the relative entity’s velocity evolution.[34]

4.6.6.3 Speed Action Implementation

The speed actions are implemented into two different actions behaviors: AbsoluteTargetSpeed

class (figure 4.41) and RelativeTargetSpeed class (figure 4.43). However in order to implement

the action dynamics, due to being common to both behaviors and to its complexity, a base class is

created, DynamicBehavior class (figure 4.40).

The DynamicBehavior class is derived from the ActionBehavior class, however it is not an

action and cannot be executed on its own. Its main objective is to calculate the desired velocity

values according to the action dynamics profiled.

Through the dimension, shape and value, this class implements a mathematical function, as

presented in table 4.4, used to determine at any point of the action’s execution what is the desired

speed. The member function set_constants is called in its setup function and initializes the

correct type of function and constants. When the rate dimension is selected, since it’s unit of

measurement is increments per second, the dimension used in the class is time, in seconds, and

the rate value is used to determine the duration of the action.

The member function get_speed receives the current value of the x axis. So when the rate

and time dimensions are selected the member function receives the number seconds passed since

the beginning of the action and when the distance dimension is selected that input of the member

function is the number of meters travelled.

4.6 Actions 85

Figure 4.40: DynamicBehavior UML class diagram.

Absolute Target Speed The AbsoluteTargetSpeed class (figure 4.41) implements the behavior

action that allows an entity to achieve a specific velocity indicated by the user. This implementa-

tion makes use of the DynamicBehavior class in order to determine the objective velocity every

cycle. In case the action is controlling an pedestrian the control is simply indicating updating the

desired velocity in the pedestrian controller. However, if the action is controlling a vehicle, the

control is more complex since, similarly to a real life vehicle, the direct control is performed using

the throttle and brake values. In order to implement a software controller for the vehicle achieve

the desired velocities, a PID controller was implemented.

Figure 4.41: AbsoluteTargetSpeed UML class diagram.

86 WP1: Scenario Configuration

Table 4.4: Speed dynamics evolution: Shape vs Dimension

Rate Time Distance

St
ep

v(t) = v f

0

v f

t(s)

v
(m

/s
)

v(t) = v f

0

v f

t(s)

v
(m

/s
)

v(d) = v f

0

v f

d(m)

v
(m

/s
)

L
in

ea
r

v(t) = v0 + rate∗ t

0 v f−v0
rate

v0

v f

t(s)

v
(m

/
s)

v(t) = v0 +
v f−v0

T ∗ t

0 T
v0

v f

t(s)

v
(m

/s
)

v(d) = v0 +
v f−v0

D ∗d

0 D
v0

v f

d(m)

v
(m

/s
)

C
ub

ic

v(t) = A∗ t3 +B∗ t2

+ C*t + D

0 v f−v0
rate

v0

v f

t(s)

v
(m

/
s)

A =− rate3

(v f−v0)2

B = rate2

v f−v0

C = rate
D = v0

v(t) = A∗ t3 +B∗ t2

+ C*t + D

0 T
v0

v f

t(s)

v
(m

/s
)

A =− v f−v0
T 3

B =
v f−v0

T 2

C =
v f−v0

T
D = v0

v(d) = A∗d3 +B∗d2

+ C*d + D

0 D
v0

v f

d(m)

v
(m

/
s)

A =− v f−v0
D3

B =
v f−v0

D2

C =
v f−v0

D
D = v0

Si
nu

so
id

al

v(t) = A+B∗ sin(C ∗ t)

0 v f−v0
rate

v0

v f

t(s)

v
(m

/s
)

A = v0
B = v f − v0

C = π∗rate
2∗(v f−v0)

v(t) = A+B∗ sin(C ∗ t)

0 T
v0

v f

t(s)

v
(m

/s
)

A = v0
B = v f − v0

C = π

2∗T

v(d) = A+B∗ sin(C ∗d)

0 D
v0

v f

d(m)

v
(m

/s
)

A = v0
B = v f − v0

C = π

2∗D

The figure figure 4.42 shows a vehicle’s response to the absolute target speed action. This

response was achieved with a proportional control equal to 1.0. The vehicle used was the Audi

A2 vehicle, present in CARLA, modified according to the catalog described in listing A.2 from

appendix A. The action dynamics’ parameters chosen formed a sinusoidal shape with its peak in

the 3 second value, using the time dimension.

4.6 Actions 87

Although the velocity function starts at 0 seconds, the vehicle only starts moving at 0.8 sec-

onds. This is mostly due to the specific vehicle physics parameters, such as torque, friction, gear

changing time and many others. The moment the vehicle starts moving a peak on the acceleration

is noticed until it reaches a velocity close to the desired. Finally the vehicle acceleration stabilizes,

after 1.8 seconds, and follows closely the evolution of the curve with minor difference, less than

10%. The action is finished exactly after 3 seconds when the curve reaches the final speed, 5m/s,

and the vehicle’s speed is within acceptable error, less than 5%.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
0

2

4

6

t(s)

v
(m

/s
)

desired speed
vehicle’s speed

Figure 4.42: Speed evolution of a vehicle. Parameters: kp=1.0, Audi A2. Test script: listing A.1
from Appendix A

Relative Target Speed Identically to the AbsoluteTargetSpeed, the RelativeTargetSpeed class

(figure 4.43) is also derived from the DynamicBehavior class. Its implementation is very close

to the previous action with the major difference that the goal speed is calculated according to the

current velocity of the reference entity. In case the "continuous" attribute is enabled, this goal

speed is continuously updated, according to the reference entity’s speed, and the dynamic function

recalculated.

The figure figure 4.44 shows a vehicle’s response to the relative target speed action. This

response was achieved with a proportional control equal to 1.0. The vehicle used was the Audi

A2 vehicle, present in CARLA, modified according to the catalog described in listing A.2 from

appendix A. The leading vehicle is tasked to achieve 10m/s of velocity according a step evolution.

The terminal velocity is achieved around 2.5 seconds. The following vehicle is tasked to copy the

leading vehicle’s velocity and increase it by 1m/s. This vehicle follows a linear velocity curve, as

can be observed until the 5 seconds into the script’s execution, and when approaching its final ve-

locity it regulates to maintain. The following vehicle’s velocity in relation to its objective velocity,

leading vehicle’s velocity plus 1m/s, is maintained with less than 3% error.

88 WP1: Scenario Configuration

Figure 4.43: RelativeTargetSpeed UML class diagram.

0 1 2 3 4 5 6 7 8 9 10 11 12
0

2

4

6

8

10

12

t(s)

v
(m

/s
)

Leader’s speed
Follower’s speed

Figure 4.44: Speed evolution of a vehicle following a leading vehicle. Parameters: kp=1.0, Audi
A2. Test script: listing B.1 from Appendix B

4.7 Conclusion

In this chapter the implementation of an OpenSCENARIO parser as an add-on for the CARLA’s

scenario runner plugin was described.

During the development of the parser, a new version of the OpensCENARIO standard was

released with major changes and incompatibility with the previous version introducing a major

delay in the progress due to all the necessary adjustments needed to support this version.

At the end of this work package, the parser is capable of parsing all OpenSCENARIO scripts

and implement the majority of behaviors and sequences in order to construct a scenario as a behav-

ior tree to be executed by the scenario runner plugin. However the are still some OpenSCENARIO

features to be implemented and incompatibilities with the CARLA simulator to be resolved.

Chapter 5

WP2: Scenario Constructor

As it is easily deducted from the chapter 4, the OpenSCENARIO standard requires a lot of knowl-

edge about its contents and organization in order to be able to write even a short script that de-

scribes a simple scenario. Only a full understanding of all the available elements, attributes, con-

straints, actions and conditions allows to create a fluid scenario that behaves the way it is intended.

Also even the simplest scenarios, with the help of pre-existing catalogs, will required a few hun-

dreds lines of code making it an exhausting task.

The development of the interface has the main goal of minimize the previously mentioned

issues. The proposed GUI will allow the construction of scenarios by requiring less knowledge

and less work. The reduction in the necessary knowledge is achieved by providing: a list of all

the available children one element can contain, simple edition and description of the attributes

for elements and real-time validation of every element content. In addition, the amount of work

required to build OpenSCENARIO scripts is also reduced with a more fluid chaining of all the

elements and simple viewing with less information and quick access to specifics.

This GUI is designed to supplement the OpenSCENARIO parser addon (chapter 4) by pro-

viding a tool to enable the creation of scripts. As such, it is contained in the "tools" folder of

the addon, figure 4.1. The application developed was organized in four C++ libraries: Interface,

OSCBase, OSCTypes and OSCElements. The libraries are linked as shown in figure 5.1.

Figure 5.1: Scenario Constructor libraries diagram.

The Interface library allows the construction of the interface’s static elements and some gen-

eral functionality such as button actions. The OSCBase contains most of the interface’s function-

ality. The OSCTypes contains the OpenSCENARIO’s data types. And, finally, the OSCElements

89

90 WP2: Scenario Constructor

contain the OpenSCENARIO’s elements. Both the Interface and OSCBase libraries are inde-

pendent of any specific version of OpenSCENARIO, only implementing the functionality. The

OpenSCENARIO content is only containned in OSCTypes and OSCElements libraries.

5.1 Objectives

The figure 5.2 presents a mock-up for the design of the interface that implements the basic func-

tionally expected from this tool. The main window is composed by: a title bar, a menu bar, a side

bar accompanied by a title and a main canvas. The attribute window is, then, shown in figure 5.3.

Figure 5.2: Main window - Interface mock-up.

5.1.1 Main Canvas

The OpenSCENARIO script content is intended to be represented in the main canvas. Here we see

a series of rectangles organized in a hierarchical vertical tree, contained inside the main canvas,

with slide bars to provide full view of the content without reformatting or reducing readability.

Each rectangle present in the tree represents an OpenSCENARIO element and the tree’s hi-

erarchy is a direct representation of the OpenSCENARIO’s elements hierarchy. To provide the

user with visual feedback of the elements completeness and validity, i.e. if it has all the neces-

sary conditions to execute in the scenario, two methods are provided: a dark background color

5.1 Objectives 91

for an invalid element, and a dashed border line for an incomplete element. These visual cues are

not mutual exclusive and any of them indicates that further user action is required, otherwise the

element will not be accepted by the parser.

An element is represented by a rectangle with dark background color when its attributes con-

tents are not valid, e.g. "FileHeader" element in figure 5.2. These could mean that there are

mandatory attributes that were not provided with a value or that the values inputted are not valid

and should be altered. On the other hand an element represented by a rectangle with dashed border

line, e.g. "RoadNetwork" element in figure 5.2, indicates that the element still requires more chil-

dren elements in order to be valid. Since all the mandatory elements are automatically generated

as children, the dashed line would mean that in order for the element to be valid it requires one or

more optional children elements.

Alternatively, if an element is complete and valid it is represented by a rectangle with white

background color and continuous border line, e.g. "ParameterDeclarations" element in figure 5.2.

5.1.2 Side Bar

The side bar is situated left to the main canvas. It contains a title with fixed text, "Elements", in

order to indicate to the user that the side bar contains the elements available for choosing. Below

the title is located the sidebar list where all the option elements will be vertically listed according

to the selected element. For example, in the figure 5.2 the "Position" element is currently selected

and the list of elements present in the side bar list are the available option elements, according to

the OpenSCENARIO standard.

After selecting an element in the main canvas the user should be able to click on one of the

elements in the side bar to add it as a child element to the selected elements.

Since the elements presented in the side bar do not yet exist in the scenario they do not have

status, thus no dark background color or dashed border line is shown in the elements. All elements

are shown in white background color and with continuous border line.

Once an element is clicked and added to the selected element, in the main canvas, as its child it

should only remain in the side bar list if it is possible to add more of the same element, otherwise

it should disappear.

Although elements can be added in the user’s desired order, in the scenario as elements are

added as children of another element, they should be placed in the correct order, required by the

OpenSCENARIO standard.

5.1.3 Attribute Window

In order to keep the interface simple and easy to read, some details had to hidden. A view with only

the element names and their correspondent hierarchy provides the user with the optimal interface

to quickly understand what is happening in the scenario. However with a simple double click in a

specific element, present in the main canvas, a dialog window appears containing all the element’s

attributes information and current values, figure 5.3.

92 WP2: Scenario Constructor

Figure 5.3: Main window showing the attribute window - Interface mock-up.

This dialog window indicates to what element the shown attributes belong to by presenting a

rectangle with dark background color with the element’s name in the top of with window. This is

followed by a series of rectangles showing each attribute information, one rectangle per attribute.

In the rectangle it should be presented with the attribute name, its OpenSCENARIO data type and

the current values. In case the attribute value has not been edited since it was added to the scenario

(main canvas) the value shown is the default value for the corresponding type.

The input method will vary according to the attribute’s type. For example, a drop-down menu

will be shown if it is an enumeration, allowing only certain keywords to be accepted.

5.2 Implementation

In this section all the graphical interface’s static elements will be described and what techniques

were used in its implementation. The C++ Qt library [35] was used to implement the graphical

portions of this software due to the abundant and good quality documentation, its popularity and

familiarity to the developers.

5.2 Implementation 93

5.2.1 Visual Architecture

The Interface class (figure 5.4) is responsible for constructing the main window with all its static

elements, interactive buttons and general actions. All the interface’s structure and other global be-

haviors are all handled by this class. This class also initializes the root element, OpenSCENARIO,

of the script allowing for the rest of the GUI functionality to be implemented in the elements’

classes.

Figure 5.4: Interface UML class dia-
gram.

In order to implement the main window, the Interface

class was derived from the Qt::QMainWindow object,

which provides a simple framework to build the user in-

terface containing a predefined layout that readily allows

for a menu and status bar, toolbars and dock widgets.[35]

Thus the resulting application (figure 5.5) can count with

a menu bar, formed by three menus that contain several

actions useful for the user, and a toolbar, used to allow

quicker access to common actions, such as removing an

element from the script.

A central widget, which is mandatory for any

Qt::QMainWindow object[35], is used as a placeholder

for the remaining elements of the interface, the main can-

vas, the side bar and its title.

5.2.1.1 Main Canvas

The main canvas objective is to display the OpenSCE-

NARIO’s script content in a simple manner for the user

to view. The best discussed solution to achieve this was

to organize the OpenSCENARIO elements in an inter-

active tree. Since OpenSCENARIO scripts can be quite

long and, if organized in a tree, quite large, it is, also,

essential that the main canvas has the ability to scroll both in horizontal and in vertical directions.

Thus, an Qt::QTreeWidget object was used to build this part. This Qt object type provides a con-

venient method to construct classic item-based hierarchical lists while providing horizontal and

vertical scroll areas when the items overflow in either directions.[35]

5.2.1.2 Side Bar

The side bar has the main objective to display vertical lists of the available elements to add to

the currently selected element in the main canvas. When no element is selected, or the selected

element cannot contain any more descendant elements, the side bar remains in place but it is shown

empty, as in figure 5.5.

94 WP2: Scenario Constructor

Figure 5.5: Interface structure - static elements.

In order to make it more intuitive for the user to understand the usage to this bar, a title

"Elements" is place above the list, indicating that the side bar is used to contain a list of elements.

This is composed by a Qt::QLabel widget, which is commonly used to display text or images in

a Qt interface. It is a simple object, without complex functionality, that can display a wide variety

of content to the user.[35]

In some occasions the list of elements can be quite long and not be able to show all the ele-

ments in this side bar, so it should be constructed with the possibility to scroll vertically when this

situation verifies itself.

A Qt::QScrollArea object is frame that can contain a widget and provide a scrolling view its

size exceeds the frame size. A Qt::QFrame implements a frame that can be used as a placeholder

for another widgets. Finally, a Qt::QVBoxLayout allows line up widgets vertically.[35]

The side bar is constructed by a Qt::QScrollArea to allow scrolling when too many ele-

ments are displayed. The Qt::QScrollArea contains a Qt::QFrame that contains, in turn, a

Qt::QVBoxLayout allowing to display the elements in a vertical fashion.

5.2 Implementation 95

5.2.1.3 Toolbar

The toolbar, embedded in the Qt::QMainWindow object, is intended to provide easier access to

some of the most common actions. It contains four buttons, grouped two by two on each extreme

of the bar.

On the right side a drop-down menu, "Expand/Collapse", shows a list of two buttons, "Expand

All" and "Collapse All" respectively. This buttons evoke the member functions, void expandAll()

and void collapseAll(), of the root element, in the main canvas, that will perform, recursively,

the correspondent action on all its children elements. The collapse or expansion of an element

consists in hiding or showing its children elements, and this behavior is natively implemented by

the Qt::QTreeWidget object.

The second button present on the right side of the toolbar, "Remove Element", allows to delete

the currently selected element from the main canvas and, consequently, from the script’s content.

When this button is pressed, the element’s object and all its children will be deleted, recursively.

The next, remaining, element will become selected after the deletion is successful. In case the

last element of the script is deleted, the selection will switch to the last, remaining, element. This

automatic selection facilitates the deletion of several sequenced elements.

On the left side, a drop-down menu, "New File", presents two actions "OpenSCENARIO"

and "Catalog". Both actions allow to create a new OpenSCENARIO script. However the the first

creates a scenario description script while the second creates a new catalog. When the user clicks

on any of these actions, a warning window is presented informing that all data is lost if not saved,

and after saving, or not, the current content of the scenario is deleted from the main canvas and a

new root element is presented.

Next to the "New File" menu, the "Save File" button allowing to save the current contents

of the main canvas into a file. When this button is clicked, a Qt::QFileDialog, which provides

a dialog for the user to select files and directories [35], is executed allows to select the location

and filename to save the XML content. The XML content is generated by evoking the string

generateXML() member function of the root element, that will generate, recursively, the xml of all

elements and children.

5.2.2 Functionality

Most of the interface’s functionality is independent of the current version of the OpenSCENARIO

and is implemented in the "oscbase.h" library. A script content is displayed in the main canvas in a

tree view, implemented by a Qt::QTreeWidget object. The figure 5.6 shows how a script content

and the process of its creation look using the provided GUI. A portion of an OpenSCENARIO

script is displaying in the main canvas. All the elements are organized in a tree view, in a vertical

fashion. The "CatalogLocations" element is selected and all its children options are displayed in

the side bar.

The Qt::QTreeWidget present in the main canvas contains only one column and each line

is composed by a Qt::QTreeWidgetItem with a widget attached, in this case a Qt::QLabel.

96 WP2: Scenario Constructor

Figure 5.6: Example of the creation of a script.

Each element, both in the main canvas and in the side bar list, is mainly implemented by the

OSCElement class, figure 5.7, which is derived from the Qt::QTreeWidgetItem.

The OSCElement class implements most of the interface’s functionality since it is responsible

for: containing all its child elements, adding the list of elements in the side bar, adding its chil-

dren when selected from the side bar, deleting its child elements, generating XML, displaying the

attribute window, between others. This is a virtual class designed to be the base of every Open-

SCENARIO element and to simplify the creation of each element. It contains three constructors:

one for the root element, one for elements in the sidebar and one for children elements in the main

canvas.

5.2.2.1 Label

As previously stated each element is a Qt::QTreeWidget, in this case a OSCElement, with a

widget associated. This widget is a Qt::QLabel. The label is the only visible part of the element,

it contains its name and shows its state by the background color and border style and color. This

behaviors are implemented by the OSCLabel class, figure 5.8.

The OSCLabel class implements the basic OpenSCENARIO related behaviors, the complete-

ness and validity of an element. Beside presenting the element’s name, a dark background color

5.2 Implementation 97

Figure 5.7: OSCElement UML class diagram.

indicates that the element’s attributes require completion, and a dashed red contour indicate that

the element’s require more children to be complete.

However the labels present in the interface contain more behaviors, e.g. selecting a label and

double-clicking to edit the elements attributes. Since the desired mouse events are different for

an element present in the main canvas than for an element present in the side bar list, two classes

are developed. The ListLabel class implements a label for an element that will be present in the

side bar list, this class simply implements the behavior of adding a child to the selected element

when the label is clicked. The CanvasLabel class implements the behavior for when an element

is selected, highlighting the object, and opening the attribute window when the element is double-

clicked.

The OSCElement class stores a reference to the label as a OSCLabel class, ignoring the spe-

cific type of the label, only worrying with updating the status of the element, background colour

98 WP2: Scenario Constructor

Figure 5.8: OSCLabel, ListLabel and CanvasLabel UML class diagram.

and border style.

5.2.2.2 Attributes

OpenSCENARIO elements can have attributes that allow to select values for a variety of reasons.

In the GUI an element that contains attributes is presented with a dark background, if the attributes

values are yet to be defined. These attributes can be edited by double-clicking in an element and

editing their value in the modal window that will appear in the screen, figure 5.9.

Figure 5.9: Example modal window with the FileHeader element attributes.

All the element’s attributes are shown in a modal window, always with the same structure. The

window is composed by a table with four columns and as many line as attributes. In each line all

the relevant information about each attribute and their values are presented.

An attribute contains four types of information that is relevant to the user: name, data type,

requirement rule and value. The OpenSCENARIO standard can define, freely, its own data types

5.2 Implementation 99

for the attributes, and these types are contained in the "osctypes.h" library. The name of an attribute

usually indicates its function. The data type defines what kind of data is accepted in the attribute’s

value. And the requirement rule indicates if the attribute is mandatory or optional. In this software,

the attributes functionality and content is implemented by the Attribute and AttrType classes,

figure 5.10.

Figure 5.10: Attribute and AttrType UML class diagram.

The Attribute class, is a virtual class, that implements the relevant information of the attribute

in order to generate its XML content. It’s name, requirement rule, data type and current value,

converted to string, are stored. It also evaluates the state of the attribute indicating if it has a value

or if it is valid. An attribute is always valid if it is optional or if it is required but contains a

value. The OSCElement class contains a vector of Attribute classes in order to store the element’s

attribute values.

The AttrType class is derived from the Attribute class with the objective of specializing the

input of the attribute according to its data type. Since this class is a template it can store the

OpenSCENARIO data type corresponding to the attribute’s type and personalize the input values

and validation in the attributes window.

The attribute window is a modal created using an Qt::QDialog class, which generates top-

level windows for short-term tasks while blocking input to other visible windows in the application

[35]. This window is implemented by the AttrWindow class (figure 5.11) and every OSCElement

instance contains its own instantiation of this class.

The Attrwindow generates a window, as shown in figure 5.9, that displays vertically all the

attributes of the element. This vertical display is placed by a Qt::QVboxLayout and each line is

an instance of the AttrLine class.

100 WP2: Scenario Constructor

Figure 5.11: AttrWindow UML class diagram.

Each AttrLine class is responsible for displaying the information about its attribute. Using a

Qt::QHBoxLayout it organizes the attribute’s information into four horizontal columns. The first

column displays the attribute name, the second the data type, the third the requirement rule and

the last column displays the adequate widget for the user to input the attributes values.

Closing the window or clicking in cancel erases all the changes made by the user. The only

way to accept the changes and update the attributes value is by clicking in the confirm button.

5.2.2.3 Children

In case an element can have child elements, these are managed by the OSCChildren class (figure

5.12) instance that is stored in the "options" member variable of the OSCElement class.

Figure 5.12: OSCChildren UML class diagram.

5.3 Content 101

The OSCChildren class is responsible for all the aspects of managing an element’s children. It

stores a list of all the possible child elements, updates the side bar list with the available children,

stores the current children of the element and evaluates the state of the child, i.e. if the minimum

or the maximum number has been reached.

In each element’s class all possible children elements are listed along with its settings: position

and multiplicity. These elements are organized in the "options" member variable and identified by

its reference name. When a element child is created, the OSCChildren instance will make a copy

and update the information of the correspondent element in the "options" member variable and

store it in the "children" member variable. When a child element is created all its mandatory

children, with a minimum value ≥ 1, are automatically added to the scenario, simplifying and

accelerating the creation of scripts.

When an element is selected in the main canvas, it’s OSCChildren instance will scan through

all it’s options children, verify if their maximum has been reached and, otherwise, add them to the

side bar list for the user to select.

5.3 Content

The OpenSCENARIO content in this software is divided into elements and data types. The ele-

ments are created as classes by deriving from the OSCElement class and are instantiated in the

main canvas in order to construct a script, while the data types are created as classes derived from

an adequate widget for the user to input the corresponding value and are part of the attributes. The

elements are placed in the "oscelements.h" library and the data types are placed in the "osctypes.h"

library.

5.3.1 OpenSCENARIO Elements

Each OpenSCENARIO needs to be declared into a class in order to be used in the interface.

However the classes follow a standard template that is quite simple and should enable future

development of an automated method to update to a newer version of the standard. The listing 5.1

shows an example of the template all OpenSCENARIO’s elements should produce.

1 class CatalogReference : public OSCElement
2 {
3 public:
4 CatalogReference(OSCElement *parent);
5 CatalogReference(OSCElement *parent, std::string id, int pos);
6

7 void setChildren() override;
8 void setAttributes() override;
9 };

Listing 5.1: Example of an element’s class: CatalogReference element.

102 WP2: Scenario Constructor

The class’s name is the element’s name. Two constructors should be defined, one to create

elements as children in the main canvas and another one to add the element to the side bar list. Fur-

thermore each element can have two functions void setChildren() and void setAttributes(),

if the element has children and/or attributes, respectively. These functions are overriden from the

base class, OSCElement, and are not mandatory for any element.

Attributes In case an element contains attribute, the attribute’s information should be defined

in the void setAttributes() function body. This can be done easily with the help of a series of

defines with the following structure:

#define ATTR(type, name, req, default)

The "type" references the class that implements the corresponding data type of the attribute.

The "name" is a string containing the attribute’s name. The "req" is a boolean that if true indicates

that the element is required. The "req" argument is optional, being the "true" value set as default.

And the "default" is a string containing the default value for the attribute. This argument is also

optional and a default value is only defined if one is provided. The listing 5.2 shows an example

of definition of an element’s, OpenSCENARIO, attributes. In this case two attributes are defined

with the input class OSCString and with default values.

1 void OpenSCENARIO::setAttributes()
2 {
3 std::string name, value;
4 value = "http://www.w3.org/2001/XMLSchema-instance";
5 ATTR(OSCString, "xmlns:xsi", true, value);
6 name = "noNamespaceSchemaLocation";
7 value = "OpenSCENARIO.xsd";
8 ATTR(OSCString, name, true, value);
9 }

Listing 5.2: Example of an element’s attributes: OpenSCENARIO element.

Children If an element can have children elements, i.e. if it can contain other elements, these

elements should be described in the void setChildren() function body.

In order to provide an element with possible children, these should be added to the "options"

member variable, which is an instance of OSCChildren class. This class provides a method to

allows easy addition of child elements:

void add(OSCElement* elem, int index=0, int min=0, double max=INF);

In the first argument, a reference to an instance of the element’s class should be passed. The

second argument receives the index of the child, which is the position it takes in relation to other

child elements. In case an element does not require a specific order for their children, the same

index can be used for all declarations. The last two arguments define the multiplicity of the child

element. The "min" indicates the number of elements that should be present as children of the

main element in order for it to be considered complete. On the other hand, the "max" indicates the

5.3 Content 103

maximum number of instances of these element that the main element can have. An example of

an element with multiple child elements is presented in listing 5.3.

1 void OpenSCENARIO::setChildren()
2 {
3 options.add(new FileHeader(this),0,1,1);
4 options.add(new ParameterDeclarations(this),1,0,1);
5 options.add(new CatalogLocations(this),2,1,1);
6 options.add(new RoadNetwork(this),3,1,1);
7 options.add(new Entities(this),4,1,1);
8 options.add(new Storyboard(this),5,1,1);
9 }

Listing 5.3: Example of an element’s children: OpenSCENARIO element.

5.3.1.1 OpenSCENARIO Data Types

Contained in the "osctypes.h" library, all the existent data types for element’s attributes should be

declared as classes, with the objective to define an input widget that allows the user to insert or

select the correct values for the attribute data type in question.

Figure 5.13: Example of a
data type class.

The data types classes should follow the structure present in

the example figure 5.13. As a convention, all data type classes

should be prefixed by "OSC", as in the OSCExample class. The

class should be derived from the Qt widget that is most appropriate

for the type of expected input and correctly setup the widget in the

constructor. Furthermore all classes should have: a string type

member variable, where the name of the data type will be stored

as a string; a void editValue(string val) member function, that

allows to set the current value that appears on the widget and a

string getValue() member function, that will return the current value of the widget converted to

string.

OSCEnumeration The OSCEnumeration class (figure 5.14) allows the user to select from a list

of predefined words. Since OpenSCENARIO defines multiple data types that are enumerations,

this class is to be used as a base to define all these enumerations. The derived class should list the

available keywords in their constructor. This class uses the Qt::QComboBox as the input widget,

which is a combined button and popup list that allow to present a list of options to the user while

taking minimum amount of screen space.[35]

Figure 5.14: OSCEnumeration data type class.

104 WP2: Scenario Constructor

OSCBoolean The OSCBoolean class (figure 5.15) is an example of an enumeration and it makes

use of the OSCEnumeration base class. In the constructor a list of two words is defined ("true"

and "false").

Figure 5.15: OSCBoolean data type class.

OSCUnsignedShort The class present in figure 5.16 allows to implement an unsigned short

data type. It uses a Qt::QSpinBox widget for user input, providing a spin box that handle integers

allowing the users to increase or decrease with the mouse and keyboard and input directly a specific

value.[35]

Figure 5.16: OSCUnsignedShort data type class.

OSCDateTime The OSCDateTime data type (figure 5.17) allows to facilitate the input of both

a date and a time by the user. It is derived from the Qt::QDateTimeEdit, a widget that al-

lows the user to edit dates by using the keyboard, the arrow keys to navigate and increase or

decrease the date values or to use a popup calendar to select a specific date, with the help of the

Qt::QCalendatWidget.[35]

Figure 5.17: OSCDateTime data type class.

OSCString In order to allow the user to input strings as normal text, the OSCString class (figure

5.18) is derived from the Qt::QLineEdit, a one-line text editor widget that allows the user to

introduce a single line of plain text and enables several useful function such as copy, paste, undo,

redo, etc.[35]

5.4 Conclusion 105

Figure 5.18: OSCString data type class.

OSCDouble Identically to the OSCUnsignedShort class, the OSCDouble class (figure 5.19)

also allows the user to input a number, but this time with more precision. By deriving from

the Qt::QDoubleSpinBox it provides the user with a spin box that takes doubles. It also allows

the user to select a value by clicking the buttons up and down, using the arrow keys or by entering

a specific value directly.[35]

Figure 5.19: OSCDouble data type class.

5.4 Conclusion

The GUI developed to support the development of OpenSCENARIO scripts was presented in

this chapter. After a description of the goals hoped to achieve with this graphical interface, a

description of the implementation of its features and functionally was described.

The GUI implementation architecture was designed with portability between OpenSCENARIO

versions in mind and so the main functionality is independent of any specific version.

The achieved result was a simple interface that allows to easily create OpenSCENARIO scripts,

validate elements in real time and manage the elements content quite easily.

106 WP2: Scenario Constructor

Chapter 6

Conclusions & Future Work

6.1 Summary

This thesis focused on developing a product to allow to execute several complex OpenSCENARIO

scripts in seamless integration with the CARLA simulator. Furthermore, a GUI was developed as

an auxiliar tool to help simplify the process of building OpenSCENARIO scripts.

Initially it was performed an analysis of the current state of the art on autonomous driving

technologies to help better understand what would be required to perform the best urban driving

simulation. An introduction to ROS and OpenSCENARIO allowed to understand the capabilities

of these technologies and the major interest to have compatibility with the simulator. Having an

objective established for what an urban driving simulator should be capable of, it was performed

a review on the most feature-rich urban driving simulators on the market. After comparison and

highlighting the CARLA simulator as the most appropriate to our project, a deeper analysis on the

simulator’s capabilities was performed.

Using the selected simulator it was developed a software to, as add-on to the CARLA’s sce-

nario runner, improve the integration of the simulator with OpenSCENARIO. This product allowed

to convert a scenario into a timeline of actions and conditions in CARLA, while ensuring the re-

peatability of the scenarios. The implemented result consisted in developing a parser that would

build a behavior tree representing the scenario’s timeline and actions and final conclusion is that it

allowed to parse all OpenSCENARIO scripts and provided compatibility with a lot of actions and

conditions in order to build complex timelines.

In order to facilitate the creation of OpenSCENARIO scripts while reducing the user expertise

requirements, on the standard, and the work to write long and exhaustive XML scripts, a GUI

was developed using the Qt framework. The process consisted in designing an interface that was

easy to read and intuitive while also providing a fluid construction of scripts. The architecture

design accounted for future updates on the OpenSCENARIO standard consisting in a code mostly

dependent on XML structure and independent of specific OpenSCENARIO content, aside for the

libraries where OpenSCENARIO is implemented.

107

108 Conclusions & Future Work

Some challenges were presented during the development that incurred into significant delays.

The introduction of the new OpenSCENARIO v1.0.0 version two months after starting the de-

velopment of the parser had a major impact in the development where a lot more time had to be

allocated into the first work package impacting all the development timeline.

Due to the time drifts suffered in the project, it was not possible to develop the third work pack-

age - to develop communication and control through ROS framework. This is an indispensable

feature that will be added.

6.2 Future Research Directions

This project promises a lot of potential for the company and so the development should continue

on the next months to complete all the goals established. Several projects in Altran Portugal and

Vortex-CoLab, that are now starting their development, are planning to use CARLA simulator as

their base for testing and this thesis output will be the gateway for this possibilities.

More time investment in the OpenSCENARIO parser will provide the possibility to increase

the compatibility with the standard by developing more complex, control wise, actions, e.g Syn-

chronize actions, and other OpenSCENARIO specific features that will be a challenge to imple-

ment, e.g. addition of triggering entities to the actions.

The recent release of CARLA simulator v0.9.9 introduces a better interface and compatibility

with the traffic signs and lights paving the path to introduce the traffic related actions into the

OpenSCENARIO path, e.g. Infrastructure actions.

Further work on the GUI will also allow for the development of more intuitive, interactive and

user friendly capabilities in the creation of scenarios, such as dynamically design a vehicle route

on the map and the correspondent translation to OpenSCENARIO.

As said in the summary, the integration with the ROS framework is essential. The capability

to execute scenarios, control the simulation and read all the simulation’s data by using the ROS as

the communication interface simplifies all further development on projects and compatiblity with

other systems.

References

[1] ASAM. ASAM OpenSCENARIO - Dynamic content in driving simulation - User Guide.
https://www.asam.net/standards/detail/openscenario, March 2020. Ac-
cessed: 15-04-2020.

[2] CARLA. CARLA Documentation. https://carla.readthedocs.io/. Accessed:
28-06-2020.

[3] Directorate General for Transport. European Commission, Annual Accident Report. Tech-
nical report, European Commission, June 2017.

[4] S Singh. Critical reasons for crashes investigated in the national motor vehicle crash causa-
tion survey. dot hs 812 115. National Highway Traffic Safety Administration, US Department
of Transportation, 2015.

[5] Tomasz Sulkowski, Paulina Bugiel, and Jacek Izydorczyk. In Search of the Ultimate Au-
tonomous Driving Simulator. In 2018 International Conference on Signals and Electronic
Systems (ICSES), pages 252–256. IEEE, sep 2018.

[6] Nidhi Kalra and Susan M. Paddock. Driving to safety: How many miles of driving would it
take to demonstrate autonomous vehicle reliability? Transportation Research Part A: Policy
and Practice, 94:182–193, dec 2016.

[7] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen Koltun.
CARLA: An Open Urban Driving Simulator. In Proceedings of the 1st Annual Conference
on Robot Learning, pages 1–16, 2017.

[8] Altran Portugal. Rumo ao Futuro: Altran Portugal apresenta Vortex Co-
Lab. https://www.altran.com/pt/pt-pt/news_press_release/
rumo-ao-futuro-altran-portugal-apresenta-vortex-colab/. Accessed:
2019-11-20.

[9] Ekim Yurtsever, Jacob Lambert, Alexander Carballo, and Kazuya Takeda. A Survey of
Autonomous Driving: Common Practices and Emerging Technologies. CoRR, abs/1906.0,
2019.

[10] Matthias Jarke, X Tung Bui, and John M Carroll. Scenario Management: An Interdisci-
plinary Approach. Requirements Engineering, 3(3):155–173, 1998.

[11] Simon Ulbrich, Till Menzel, Andreas Reschka, Fabian Schuldt, and Markus Maurer. Defin-
ing and Substantiating the Terms Scene, Situation, and Scenario for Automated Driving. In
IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC, volume 2015-
Octob, pages 982–988, 2015.

109

https://www.asam.net/standards/detail/openscenario
https://carla.readthedocs.io/
https://www.altran.com/pt/pt-pt/news_press_release/rumo-ao-futuro-altran-portugal-apresenta-vortex-colab/
https://www.altran.com/pt/pt-pt/news_press_release/rumo-ao-futuro-altran-portugal-apresenta-vortex-colab/

110 REFERENCES

[12] Sebastian Geyer, Marcel Baltzer, Benjamin Franz, Stephan Hakuli, Michaela Kauer, Martin
Kienle, Sonja Meier, Thomas Weißgerber, Klaus Bengler, Ralph Bruder, and Others. Con-
cept and development of a unified ontology for generating test and use-case catalogues for
assisted and automated vehicle guidance. IET Intelligent Transport Systems, 8(3):183–189,
2013.

[13] Aaron Heinz and Johann Schweiger Wolfram Remlinger. Track- / Scenario-based Trajec-
tory Generation for Testing Automated Driving Functions. In 8. Tagung Fahrerassistenz,
München, 2017. Lehrstuhl für Fahrzeugtechnik mit TÜV SÜD Akademie.

[14] T A Alspaugh, H U Asuncion, and W Scacchi. Analyzing software licenses in open archi-
tecture software systems. In 2009 ICSE Workshop on Emerging Trends in Free/Libre/Open
Source Software Research and Development, pages 54–57, 2009.

[15] M Quigley, B Gerkey, K Conley, J Faust, T Foote, J Leibs, E Berger, R Wheeler, and A Ng.
ROS: An open-source Robot Operating System. ICRA Workshop on Open Source Software,
3:1–6, 2009.

[16] Arpad Barsi, Vivien Poto, and Viktor Tihanyi. Creating OpenCRG Road Surface Model
from Terrestrial Laser Scanning Data for Autonomous Vehicles. In Károly Jármai and Betti
Bolló, editors, Vehicle and Automotive Engineering 2, pages 361–369, Cham, 2018. Springer
International Publishing.

[17] CARLA. GitHub - carla-simulator/ros-bridge: ROS bridge for CARLA Simulator. https:
//github.com/carla-simulator/ros-bridge, 2018. Accessed: 03-02-2020.

[18] CARLA. GitHub - carla-simulator/scenario_runner: Traffic scenario definition and execu-
tion engine. https://github.com/carla-simulator/scenario_runner, 2018.
Accessed: 03-02-2020.

[19] CARLA. GitHub - carla-simulator/carla: Open-source simulator for autonomous driving
research. https://github.com/carla-simulator/carla, 2017. Accessed: 03-02-
2020.

[20] Daniel Aros Banda and Joel Wachsler. Exploration of AirSim using C and Rust in the Context
of SafetyCritical Systems, 2018.

[21] Microsoft. AirSim Documentation. https://microsoft.github.io/AirSim/. Ac-
cessed: 03-02-2020.

[22] Shital Shah, Debadeepta Dey, Chris Lovett, and Ashish Kapoor. AirSim: High-Fidelity
Visual and Physical Simulation for Autonomous Vehicles. In Marco Hutter and Roland
Siegwart, editors, Field and Service Robotics, pages 621–635, Cham, 2018. Springer Inter-
national Publishing.

[23] CVEDIA. Simulation Services - CVEDIA’s SynCity, A Computer Vision Simulator.
https://www.cvedia.com/solution/syncity/. Accessed: 03-02-2020.

[24] Justin Carrillo, Burhman Gates, Gabe Monroe, Brent Newell, and Phillip Durst. Using
Physics-Based M&S for Training and Testing Machine Learning Algorithms. In Jan Mazal,
editor, Modelling and Simulation for Autonomous Systems, pages 445–455, Cham, 2019.
Springer International Publishing.

https://github.com/carla-simulator/ros-bridge
https://github.com/carla-simulator/ros-bridge
https://github.com/carla-simulator/scenario_runner
https://github.com/carla-simulator/carla
https://microsoft.github.io/AirSim/
https://www.cvedia.com/solution/syncity/

REFERENCES 111

[25] C Pilz, G Steinbauer, M Schratter, and D Watzenig. Development of a Scenario Simulation
Platform to Support Autonomous Driving Verification. In 2019 IEEE International Confer-
ence on Connected Vehicles and Expo (ICCVE), pages 1–7, nov 2019.

[26] CVEDIA. GitHub - Cvedia/syncity-redist: Syncity World Simulator Redistributables.
https://github.com/Cvedia/syncity-redist, 2018. Accessed: 03-02-2020.

[27] Drew Gray. Introducing Voyage Deepdrive - Voyage. https://news.voyage.auto/
introducing-voyage-deepdrive-69b3cf0f0be6. Accessed: 03-02-2020.

[28] Voyage DeepDrive. Deepdrive from Voyage - Push the state-of-the-art in self-driving.
https://deepdrive.voyage.auto/. Accessed: 03-02-2020.

[29] Deepdrive. GitHub - deepdrive/deepdrive: Deepdrive is a simulator that allows anyone with
a PC to push the state-of-the-art in self-driving. https://github.com/deepdrive/
deepdrive, 2018. Accessed: 03-02-2020.

[30] 20tab srl. GitHub - 20tab/UnrealEnginePython: Embed Python in Unreal Engine 4. https:
//github.com/20tab/UnrealEnginePython, 2016. Accessed: 03-02-2020.

[31] rFPro. Driving Simulation for autonomous driving, ADAS, vehicle dynamics and motor-
sport. http://www.rfpro.com/. Accessed: 03-02-2020.

[32] CARLA. carla-simulator / carla-content — Bitbucket. https://bitbucket.org/
carla-simulator/carla-content/src/master/, 2018. Accessed: 04-02-2020.

[33] CARLA. CARLA AD Challenge. https://carlachallenge.org/. Accessed: 15-06-
2020.

[34] ASAM e.V. ASAM OpenSCENARIO. https://www.asam.net/standards/
detail/openscenario/. Published: 13-03-2020. Accessed: 15-04-2020.

[35] The Qt Company. Qt 4.8. https://doc.qt.io/archives/qt-4.8/index.html.
Accessed: 03-07-2020.

https://github.com/Cvedia/syncity-redist
https://news.voyage.auto/introducing-voyage-deepdrive-69b3cf0f0be6
https://news.voyage.auto/introducing-voyage-deepdrive-69b3cf0f0be6
https://deepdrive.voyage.auto/
https://github.com/deepdrive/deepdrive
https://github.com/deepdrive/deepdrive
https://github.com/20tab/UnrealEnginePython
https://github.com/20tab/UnrealEnginePython
http://www.rfpro.com/
https://bitbucket.org/carla-simulator/carla-content/src/master/
https://bitbucket.org/carla-simulator/carla-content/src/master/
https://carlachallenge.org/
https://www.asam.net/standards/detail/openscenario/
https://www.asam.net/standards/detail/openscenario/
https://doc.qt.io/archives/qt-4.8/index.html

112 REFERENCES

Appendix A

Absolute Target Speed Action

1 <?xml version="1.0" encoding="UTF-8"?>

2 <OpenSCENARIO xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="OpenSCENARIO.xsd">

3 <FileHeader revMajor="1" revMinor="0" date="2020-04-21T10:00:00"

description="FollowVehicle" author="Miguel"/>

4 <ParameterDeclarations/>

5 <CatalogLocations>

6 <VehicleCatalog>

7 <Directory path="Catalogs/VehicleCatalog"/>

8 </VehicleCatalog>

9 <EnvironmentCatalog>

10 <Directory path="Catalogs/EnvironmentCatalog"/>

11 </EnvironmentCatalog>

12 </CatalogLocations>

13 <RoadNetwork>

14 <LogicFile filepath="Town03"/>

15 </RoadNetwork>

16 <Entities>

17 <ScenarioObject name="Lead">

18 <CatalogReference catalogName="VehicleCatalog" entryName="audi.a2">

19 <ParameterAssignments>

20 <ParameterAssignment parameterRef="color" value="255,0,0"/>

21 </ParameterAssignments>

22 </CatalogReference>

23 </ScenarioObject>

24 </Entities>

25 <Storyboard>

26 <Init>

27 <Actions>

28 <GlobalAction>

29 <EnvironmentAction>

30 <CatalogReference catalogName="EnvironmentCatalog" entryName="SunnyDay"/>

31 </EnvironmentAction>

32 </GlobalAction>

33 <GlobalAction>

113

114 Absolute Target Speed Action

34 <EntityAction entityRef="Lead">

35 <AddEntityAction>

36 <Position>

37 <WorldPosition x="40" y="7" z="2"/>

38 </Position>

39 </AddEntityAction>

40 </EntityAction>

41 </GlobalAction>

42 </Actions>

43 </Init>

44 <Story name="AccelerateStory">

45 <Act name="AccelerateAct">

46 <ManeuverGroup maximumExecutionCount="1" name="LeadAccelerate">

47 <Actors selectTriggeringEntities="false">

48 <EntityRef entityRef="Lead"/>

49 </Actors>

50 <Maneuver name="AccelerateManeuver">

51 <Event name="GainSpeed" maximumExecutionCount="1" priority="parallel">

52 <Action name="LongitudinalSpeed">

53 <PrivateAction>

54 <LongitudinalAction>

55 <SpeedAction>

56 <SpeedActionDynamics dynamicsDimension="time"

dynamicsShape="sinusoidal" value="3"/>

57 <SpeedActionTarget>

58 <AbsoluteTargetSpeed value="5"/>

59 </SpeedActionTarget>

60 </SpeedAction>

61 </LongitudinalAction>

62 </PrivateAction>

63 </Action>

64 <StartTrigger>

65 <ConditionGroup>

66 <Condition name="WhenSimulationStarts" delay="0" conditionEdge="none">

67 <ByValueCondition>

68 <SimulationTimeCondition value="2" rule="greaterThan"/>

69 </ByValueCondition>

70 </Condition>

71 </ConditionGroup>

72 </StartTrigger>

73 </Event>

74 </Maneuver>

75 </ManeuverGroup>

76 <StartTrigger>

77 <ConditionGroup>

78 <Condition name="WhenSimulationStarts" delay="0" conditionEdge="none">

79 <ByValueCondition>

80 <SimulationTimeCondition value="1" rule="greaterThan"/>

81 </ByValueCondition>

Absolute Target Speed Action 115

82 </Condition>

83 </ConditionGroup>

84 </StartTrigger>

85 </Act>

86 </Story>

87 <StopTrigger>

88 <ConditionGroup>

89 <Condition name="WhenSimulationStarts" delay="0" conditionEdge="none">

90 <ByValueCondition>

91 <SimulationTimeCondition value="15" rule="greaterThan"/>

92 </ByValueCondition>

93 </Condition>

94 </ConditionGroup>

95 </StopTrigger>

96 </Storyboard>

97 </OpenSCENARIO>

Listing A.1: OpenSCENARIO script controlling the speed of an entity.

1 <?xml version="1.0" encoding="UTF-8"?>

2 <OpenSCENARIO xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="OpenSCENARIO.xsd">

3 <FileHeader revMajor="1" revMinor="0" date="2020-02-21T10:00:00"

description="Vehicle Catalog" author="miguel"/>

4 <Catalog name="VehicleCatalog">

5 <Vehicle name="audi.a2" vehicleCategory="car">

6 <ParameterDeclarations>

7 <ParameterDeclaration name="color" parameterType="string" value="0,0,0"/>

8 </ParameterDeclarations>

9 <BoundingBox>

10 <Center x="1.0" y="1.0" z="1.0"/>

11 <Dimensions width="2.0" length="2.0" height="2.0"/>

12 </BoundingBox>

13 <Performance maxSpeed="100.0" maxDeceleration="10.0"

maxAcceleration="200.0"/>

14 <Axles>

15 <FrontAxle maxSteering="35.0" wheelDiameter="65.0" trackWidth="1.8"

positionX="2.0" positionZ="2.0"/>

16 <RearAxle maxSteering="35.0" wheelDiameter="65.0" trackWidth="1.8"

positionX="-2.0" positionZ="-2.0"/>

17 </Axles>

18 <Properties>

19 <Property name="torque_curve" value="[[0,1000],[1000,1000]]"/>

20 <Property name="color" value="$color"/>

21 </Properties>

22 </Vehicle>

23 </Catalog>

24 </OpenSCENARIO>

Listing A.2: OpenSCENARIO Vehicle catalog used in the script present in listing A.1.

1 <?xml version="1.0" encoding="UTF-8"?>

116 Absolute Target Speed Action

2 <OpenSCENARIO xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="OpenSCENARIO.xsd">

3 <FileHeader revMajor="1" revMinor="0" date="2020-06-21T10:00:00"

description="Environment Catalog" author="Miguel"/>

4 <Catalog name="EnvironmentCatalog">

5 <Environment name="SunnyDay">

6 <TimeOfDay animation="false" dateTime="2002-05-30T09:30:10+06:00"/>

7 <Weather cloudState="free">

8 <Sun intensity="1.0" azimuth="0.0" elevation="1.571"/>

9 <Fog visualRange="100000.0"/>

10 <Precipitation precipitationType="dry" intensity="0.0"/>

11 </Weather>

12 <RoadCondition frictionScaleFactor="0">

13 <Properties>

14 <Property name="wetness" value="0"/>

15 <Property name="precipitationDeposits" value="0"/>

16 <Property name="fogDensity" value="0.0"/>

17 <Property name="windIntensity" value="0"/>

18 </Properties>

19 </RoadCondition>

20 </Environment>

21 </Catalog>

22 </OpenSCENARIO>

Listing A.3: OpenSCENARIO Environment catalog used in the script present in listing A.1.

1 Time (s), Desired velocity (m/s), Vehicle’s velocity (m/s)

2 0.0,0.0,0.0

3 0.0133389467373,0.0349209969889,0.0

4 0.0272630723193,0.0713721324163,0.0

5 0.0411896528676,0.107825899763,0.0

6 0.0539110759273,0.14112012407,0.00823077942435

7 0.0671811895445,0.175843674341,0.00490404422022

8 0.0803208621219,0.210217543922,0.00426451337279

9 0.0938969636336,0.245722657355,0.00287009890091

10 0.107899989933,0.282331264794,0.00238099604246

11 0.120805705898,0.316057740467,0.00194950460349

12 0.134303274564,0.35131543823,0.000454604762473

13 0.148279340006,0.387804529124,0.000321369850308

14 0.162361294031,0.424549068003,0.000302639406614

15 0.175256241113,0.45817611265,0.000610731779335

16 0.188272711821,0.492098875217,0.00255809502798

17 0.202097726054,0.528103749107,0.0025534689035

18 0.215275393799,0.562396988638,0.00165589952983

19 0.228244372644,0.596121008214,0.0027277824559

20 0.243112638593,0.634749944495,0.00304512174114

21 0.255933191627,0.66802795893,0.00056692238411

22 0.279195360839,0.728331135917,0.00361146939302

23 0.290701967664,0.758120651831,0.00457460911342

24 0.303168282844,0.790363670658,0.00442345462217

Absolute Target Speed Action 117

25 0.316234798171,0.824122885033,0.00303045026346

26 0.329268353991,0.857758515855,0.00216394165027

27 0.342336017638,0.891442063047,0.00217833075986

28 0.356884950772,0.928894601111,0.00209110292176

29 0.370289776474,0.963354262579,0.000201670372465

30 0.384201813489,0.999067599963,0.00188425654781

31 0.397306900471,1.03266097551,0.00118969824478

32 0.410427830182,1.06624625118,0.00229255082583

33 0.42419298552,1.10142641342,0.00214437787967

34 0.438253894448,1.13730335894,0.001205221867

35 0.451800595969,1.17181000229,0.00082077617932

36 0.465295124799,1.20612513696,0.0

37 0.478905294091,1.24067333691,0.000478253141768

38 0.491806724109,1.27336432388,0.000458895976814

39 0.505320490338,1.30754457816,0.00149599534906

40 0.518288217485,1.34028221204,0.000680188531022

41 0.532025345601,1.37489480398,0.00145845095991

42 0.546188207343,1.41050559981,0.000424166154335

43 0.559318798594,1.44345162733,9.02201705808e-05

44 0.573265828192,1.47837142482,0.00149059758584

45 0.586923347786,1.51248997431,0.000361665755875

46 0.600752011873,1.54695725644,0.000838725600669

47 0.613032856956,1.57749873634,0.000628778281761

48 0.627005995251,1.6121694162,0.00262027931508

49 0.640328641981,1.64514573443,0.00023289586725

50 0.653899269179,1.67865354303,0.00116570049973

51 0.674974026158,1.73052148882,0.000777989015265

52 0.686380226165,1.75850627168,0.00386688528784

53 0.699807613157,1.79136952444,0.00252789710701

54 0.712978891097,1.82351993788,0.000184510057257

55 0.725333250128,1.85359749626,0.000247255201619

56 0.739594004117,1.88821978844,0.00126740081533

57 0.752888347954,1.92040104987,0.00130788185571

58 0.766307923011,1.95279108024,0.000245638056153

59 0.780226326548,1.98628322859,0.00010894448413

60 0.794334349222,2.02012399673,0.000527257859261

61 0.808147112839,2.05314974732,0.00102601068585

62 0.821514971554,2.08500950585,0.118108965926

63 0.83433504682,2.11546779179,0.220716510682

64 0.847878825851,2.14754190195,0.318235207976

65 0.861235762015,2.17906776806,0.421594818399

66 0.875804369338,2.21333192002,0.524844079565

67 0.889185459353,2.2446897079,0.637951552529

68 0.902916752733,2.27675361105,0.743125543248

69 0.915802539326,2.30673616298,0.851079283866

70 0.944122658111,2.37226030291,0.953100837766

71 0.959341748618,2.40725808984,1.17727575654

72 0.970181431621,2.43209192148,1.29795982468

73 0.982298287563,2.45975899838,1.38564762491

118 Absolute Target Speed Action

74 0.995991856791,2.49090704171,1.48214791388

75 1.00930260308,2.52106157985,1.59118495763

76 1.02307051793,2.55212294479,1.69788099466

77 1.03688948229,2.58316611298,1.80809532034

78 1.05004879646,2.61260174651,1.91889835799

79 1.06327710673,2.64206670307,2.02438746825

80 1.07735094894,2.67327581703,2.12953679094

81 1.09026884474,2.70179385942,2.23993336002

82 1.10464385338,2.73338331919,2.34026607458

83 1.11732525751,2.76112253737,2.44876570353

84 1.13102698699,2.79095675052,2.54266675674

85 1.14485808369,2.8209269549,2.63997477634

86 1.1589416014,2.85129209358,2.73400543622

87 1.17207643017,2.87947208867,2.82421480227

88 1.18487843312,2.9068069756,2.90267906439

89 1.19871120993,2.93619593317,2.97294434982

90 1.21219811495,2.96470176885,3.04129825889

91 1.22517223936,2.99198429332,3.09998574703

92 1.23932812084,3.02159431064,3.14414271753

93 1.25326693151,3.05058808638,3.17594994721

94 1.26710239705,3.07920621147,3.19255630814

95 1.28027810622,3.10630946029,3.19854555019

96 1.29424080532,3.13487022001,3.19784921171

97 1.30682488717,3.16046750023,3.19409664061

98 1.32777451165,3.20277623566,3.19063298692

99 1.33998024464,3.22724893536,3.19636374615

100 1.35257264599,3.2523587586,3.20296553215

101 1.36589015741,3.27876062742,3.20963601084

102 1.37974866014,3.30606572024,3.21500641985

103 1.3921540929,3.33036024963,3.21911746753

104 1.40591239464,3.35713983303,3.22194869024

105 1.41727716662,3.37912924489,3.22482328461

106 1.43122499529,3.40595293169,3.22738819836

107 1.44447224122,3.43126112125,3.23106605612

108 1.45828713384,3.45747790798,3.23508465894

109 1.47287651896,3.48496803449,3.24013618887

110 1.4862858681,3.51005535627,3.24672645288

111 1.49940268788,3.53442798812,3.25409643975

112 1.51290605403,3.55934470222,3.26270989806

113 1.52659555525,3.58442324505,3.27317772823

114 1.54026430473,3.60928003313,3.2855191851

115 1.55384910107,3.63380098067,3.29961354236

116 1.56780759431,3.65880494474,3.31538971485

117 1.58129663114,3.68278229168,3.33341912594

118 1.59508329444,3.7070988384,3.35254632368

119 1.6076269215,3.72905515069,3.37374620647

120 1.62128324714,3.75277620051,3.3944199522

121 1.63455691468,3.77564869911,3.41829066448

122 1.64764336962,3.79802007138,3.44277034918

Absolute Target Speed Action 119

123 1.66128133889,3.82114449546,3.46797980897

124 1.67370260041,3.84203636514,3.49526005283

125 1.68743124884,3.86493807978,3.52089681216

126 1.70155810192,3.88829557552,3.54990442263

127 1.71444762591,3.90942168542,3.5803813178

128 1.72745517921,3.93056072439,3.60860412638

129 1.74915770348,3.96542391938,3.63734066062

130 1.76046609785,3.98338722834,3.68546346774

131 1.77324972954,4.00352574008,3.71045781541

132 1.78706560191,4.02508867161,3.73870810189

133 1.80011920165,4.04526839367,3.76910058924

134 1.81335580163,4.06553804651,3.79739342194

135 1.827273909,4.08664067229,3.82558907063

136 1.84093622584,4.10714439038,3.85463439341

137 1.85484932177,4.12780845987,3.88247485186

138 1.86923535075,4.14894457248,3.91007901255

139 1.88224283792,4.16785270017,3.93778842566

140 1.89625107218,4.18799931199,3.962093485

141 1.91026033554,4.20792207513,3.98737069353

142 1.9240065515,4.22725068941,4.01167267349

143 1.93617795315,4.24418218928,4.03462517223

144 1.94924444798,4.26216697007,4.05419303442

145 1.96287891269,4.28072079737,4.07440056079

146 1.9772654064,4.30006142117,4.0946442032

147 1.99092895258,4.31820424955,4.11516556623

148 2.00519182347,4.33690709204,4.13393223694

149 2.01862485893,4.35430061864,4.15282796054

150 2.0329628624,4.37262824112,4.17003407417

151 2.04521742091,4.38809740074,4.18780587187

152 2.0592460297,4.40558415392,4.20256530943

153 2.07291005179,4.42238794181,4.21900479706

154 2.08594284859,4.43820455072,4.23460735282

155 2.09909840766,4.4539605421,4.24914287169

156 2.11294816341,4.47031958533,4.26353567896

157 2.1263399655,4.48591416205,4.27842107945

158 2.14020980243,4.50183288552,4.29259219837

159 2.15291399229,4.51620545661,4.30708233231

160 2.16641067434,4.53125566149,4.32023127315

161 2.18624229077,4.55295922703,4.33409085393

162 2.19909316301,4.56676114245,4.35434318834

163 2.21123496816,4.57961156251,4.36743131182

164 2.22512091324,4.59408099775,4.3798382166

165 2.23853934649,4.60783255746,4.39398424593

166 2.25299523119,4.62239279143,4.40761777152

167 2.26533882972,4.6346159192,4.42226754959

168 2.27931995224,4.6482267402,4.43477182789

169 2.29318342078,4.66147706487,4.44890911212

170 2.30637667701,4.67385873404,4.46291088589

171 2.32028337009,4.68666848794,4.47619645536

120 Absolute Target Speed Action

172 2.33380252589,4.69888308027,4.49015258729

173 2.34762029257,4.71112416067,4.50365464738

174 2.36071947776,4.72250096551,4.51738424669

175 2.37389147282,4.73371699494,4.5303303821

176 2.38723642658,4.74485067803,4.54325599243

177 2.40087755304,4.75599202391,4.5562416869

178 2.41485114489,4.76715333724,4.56937760755

179 2.42814403027,4.77753410003,4.58267330211

180 2.44067497551,4.78710793154,4.59516019893

181 2.45486230031,4.79769849928,4.60677563225

182 2.46855927352,4.80767185664,4.61971504443

183 2.48132713977,4.81674601801,4.63198013393

184 2.49425996933,4.82571795632,4.6431992632

185 2.50687888917,4.83425883813,4.65434670165

186 2.52075769845,4.84340873818,4.66499691265

187 2.53426664323,4.85206916393,4.67642762567

188 2.54827529937,4.8607935542,4.68726797934

189 2.56092490256,4.86844686986,4.69818904985

190 2.57447613869,4.87640874013,4.70776590051

191 2.58793068584,4.88407092304,4.71773883437

192 2.60190256592,4.89177116534,4.72734710017

193 2.61526123527,4.89888864001,4.7370021569

194 2.62905739341,4.90598762857,4.74593469662

195 2.64227780234,4.91255016616,4.75485108874

196 2.65527269058,4.91877135483,4.76310323647

197 2.66922364477,4.9251967791,4.77092291676

198 2.68269111495,4.93115023042,4.77898433047

199 2.69603032991,4.93680528013,4.78646633589

200 2.70918914117,4.94214788858,4.793592197

201 2.72290393803,4.94746654166,4.80035137918

202 2.73711915873,4.95270999695,4.80710815534

203 2.75048889499,4.95739120807,4.81380780202

204 2.76426606998,4.96196092,4.8198339868

205 2.77665534802,4.9658497904,4.82577394328

206 2.79067050852,4.9699970972,4.83088683953

207 2.80329207983,4.97350298269,4.83640603213

208 2.81756617501,4.97720614769,4.84114207095

209 2.83091297094,4.98041722894,4.84623086257

210 2.84493535012,4.98352883679,4.8507425753

211 2.85822512116,4.98622992265,4.85522821584

212 2.87184522301,4.98874763296,4.85924793221

213 2.88534677587,4.99099301655,4.86312412245

214 2.89872720093,4.99297217213,4.86671899987

215 2.91225006711,4.99472339678,4.87005877395

216 2.9252958959,4.996175534,4.87321066095

217 2.93872907385,4.99742718301,4.87604073418

218 2.95282591973,4.99847481665,4.87873768176

219 2.96628783923,4.9992210687,4.881331745

220 2.97990790755,4.99972331629,4.88358568836

Absolute Target Speed Action 121

221 2.99388121068,4.99997433934,4.88564514626

Listing A.4: Results obtained with the script present in listing A.1.

122 Absolute Target Speed Action

Appendix B

Relative Target Speed Action

1 <?xml version="1.0" encoding="UTF-8"?>

2 <OpenSCENARIO xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="OpenSCENARIO.xsd">

3 <FileHeader revMajor="1" revMinor="0" date="2020-04-21T10:00:00"

description="FollowVehicle" author="Miguel"/>

4 <ParameterDeclarations/>

5 <CatalogLocations>

6 <VehicleCatalog>

7 <Directory path="Catalogs/VehicleCatalog"/>

8 </VehicleCatalog>

9 <EnvironmentCatalog>

10 <Directory path="Catalogs/EnvironmentCatalog"/>

11 </EnvironmentCatalog>

12 </CatalogLocations>

13 <RoadNetwork>

14 <LogicFile filepath="Town03"/>

15 </RoadNetwork>

16 <Entities>

17 <ScenarioObject name="Lead">

18 <CatalogReference catalogName="VehicleCatalog" entryName="audi.a2">

19 <ParameterAssignments>

20 <ParameterAssignment parameterRef="color" value="255,0,0"/>

21 </ParameterAssignments>

22 </CatalogReference>

23 </ScenarioObject>

24 <ScenarioObject name="Follow">

25 <CatalogReference catalogName="VehicleCatalog" entryName="audi.a2"/>

26 </ScenarioObject>

27 </Entities>

28 <Storyboard>

29 <Init>

30 <Actions>

31 <GlobalAction>

32 <EnvironmentAction>

33 <CatalogReference catalogName="EnvironmentCatalog" entryName="SunnyDay"/>

123

124 Relative Target Speed Action

34 </EnvironmentAction>

35 </GlobalAction>

36 <GlobalAction>

37 <EntityAction entityRef="Follow">

38 <AddEntityAction>

39 <Position>

40 <WorldPosition x="30" y="7" z="2"/>

41 </Position>

42 </AddEntityAction>

43 </EntityAction>

44 </GlobalAction>

45 <GlobalAction>

46 <EntityAction entityRef="Lead">

47 <AddEntityAction>

48 <Position>

49 <WorldPosition x="40" y="7" z="2"/>

50 </Position>

51 </AddEntityAction>

52 </EntityAction>

53 </GlobalAction>

54 </Actions>

55 </Init>

56 <Story name="Following">

57 <Act name="AccelerateAndFollow">

58 <ManeuverGroup maximumExecutionCount="1" name="LeadAccelerate">

59 <Actors selectTriggeringEntities="false">

60 <EntityRef entityRef="Lead"/>

61 </Actors>

62 <Maneuver name="Accelerate">

63 <Event name="GainSpeed" maximumExecutionCount="1" priority="parallel">

64 <Action name="LongitudinalSpeed">

65 <PrivateAction>

66 <LongitudinalAction>

67 <SpeedAction>

68 <SpeedActionDynamics dynamicsDimension="rate" dynamicsShape="step"

value="0"/>

69 <SpeedActionTarget>

70 <AbsoluteTargetSpeed value="10"/>

71 </SpeedActionTarget>

72 </SpeedAction>

73 </LongitudinalAction>

74 </PrivateAction>

75 </Action>

76 <StartTrigger>

77 <ConditionGroup>

78 <Condition name="WhenSimulationStarts" delay="0" conditionEdge="none">

79 <ByValueCondition>

80 <SimulationTimeCondition value="2" rule="greaterThan"/>

81 </ByValueCondition>

Relative Target Speed Action 125

82 </Condition>

83 </ConditionGroup>

84 </StartTrigger>

85 </Event>

86 </Maneuver>

87 </ManeuverGroup>

88 <ManeuverGroup maximumExecutionCount="1" name="Follow">

89 <Actors selectTriggeringEntities="false">

90 <EntityRef entityRef="Follow"/>

91 </Actors>

92 <Maneuver name="Accelerate">

93 <Event name="GainSpeed" maximumExecutionCount="1" priority="parallel">

94 <Action name="LongitudinalSpeed">

95 <PrivateAction>

96 <LongitudinalAction>

97 <SpeedAction>

98 <SpeedActionDynamics dynamicsDimension="rate" dynamicsShape="linear"

value="2"/>

99 <SpeedActionTarget>

100 <RelativeTargetSpeed entityRef="Lead" continuous="true"

speedTargetValueType="delta" value="1"/>

101 </SpeedActionTarget>

102 </SpeedAction>

103 </LongitudinalAction>

104 </PrivateAction>

105 </Action>

106 <StartTrigger>

107 <ConditionGroup>

108 <Condition name="WhenSimulationStarts" delay="0" conditionEdge="none">

109 <ByValueCondition>

110 <SimulationTimeCondition value="2" rule="greaterThan"/>

111 </ByValueCondition>

112 </Condition>

113 </ConditionGroup>

114 </StartTrigger>

115 </Event>

116 </Maneuver>

117 </ManeuverGroup>

118 <StartTrigger>

119 <ConditionGroup>

120 <Condition name="WhenSimulationStarts" delay="0" conditionEdge="none">

121 <ByValueCondition>

122 <SimulationTimeCondition value="1" rule="greaterThan"/>

123 </ByValueCondition>

124 </Condition>

125 </ConditionGroup>

126 </StartTrigger>

127 </Act>

128 </Story>

126 Relative Target Speed Action

129 <StopTrigger>

130 <ConditionGroup>

131 <Condition name="WhenSimulationStarts" delay="0" conditionEdge="none">

132 <ByValueCondition>

133 <SimulationTimeCondition value="13" rule="greaterThan"/>

134 </ByValueCondition>

135 </Condition>

136 </ConditionGroup>

137 </StopTrigger>

138 </Storyboard>

139 </OpenSCENARIO>

Listing B.1: OpenSCENARIO script two entities: leader and follower.

1 Time (s), Leader velocity (m/s), Follower velocity (m/s)

2 0.0,0.0,0.0

3 0.0101852463558,0.0,0.0

4 0.0214531207457,0.00444875066807,0.0

5 0.0314681893215,0.00468035530011,0.00548037975358

6 0.0416690856218,0.00256189915597,0.00326754063605

7 0.0517456987873,0.00215150658489,0.00277457101855

8 0.0627213818952,0.00150381599659,0.00204744558495

9 0.072867157869,0.00189958407279,0.00237696518623

10 0.0830021090806,0.000644143685651,0.001007258831

11 0.0936365677044,0.000447506294269,0.00065612985352

12 0.104310875759,0.00054264029865,0.000769942726349

13 0.114423533902,0.000458590509859,0.000534864666558

14 0.12438405212,0.000950304416634,0.000740572489641

15 0.135189046152,0.00124244853733,0.00104665914474

16 0.145467417315,0.000664372780179,0.000552018174221

17 0.155487939715,0.00129310629043,0.00115568427605

18 0.165656557307,0.00163486506555,0.00151560632123

19 0.177131655626,0.0015648331087,0.00146456714346

20 0.187179675326,0.000518439792598,0.000493302613352

21 0.197241927497,0.00195580412815,0.00189943956746

22 0.20734719187,0.00194960051108,0.00189801418978

23 0.218065385707,0.00190359438322,0.00186992062239

24 0.22829997912,0.00131361841774,0.00129359242145

25 0.23836301174,0.00182914662262,0.00181780219385

26 0.2489733072,0.00197391304614,0.00197018459774

27 0.259786355309,0.00141200386843,0.00141873660299

28 0.270161435008,0.00123184917865,0.00124490956021

29 0.280372489244,0.00168803241575,0.00170833802258

30 0.291188934818,0.00181534062078,0.00183892475158

31 0.301369450055,0.0011769216614,0.00120660554439

32 0.311606050469,0.00181072611358,0.00184207458265

33 0.321976625361,0.00169227179511,0.00172747404448

34 0.33312301524,0.00150504342007,0.0015423722903

35 0.343225888908,0.000707635261393,0.000745827053444

36 0.353359749541,0.00177186413532,0.00181330687211

Relative Target Speed Action 127

37 0.363551989198,0.00165871127805,0.00169942947341

38 0.374089187942,0.00152565693087,0.00156721660345

39 0.384301761165,0.00112318291855,0.0011662705031

40 0.394455496222,0.00140952727063,0.00145314342315

41 0.405685180798,0.0014012021143,0.00144291341916

42 0.415593987331,0.000323598430318,0.000358490774883

43 0.425800034776,0.0,0.001673393996

44 0.435802396387,5.57650201389e-05,0.0

45 0.44687080197,0.000290704033643,0.000421815403618

46 0.456834558398,0.000709423573051,0.000592809522242

47 0.466938488185,0.000605970508126,0.000699352745871

48 0.476923340932,0.000510910490396,0.000586543746778

49 0.488054843619,0.000665094512216,0.000725931735617

50 0.498040935025,0.000486772484013,0.000436214277324

51 0.508144436404,0.000851609029948,0.000888034394931

52 0.51868495252,0.000739281614122,0.000764664265426

53 0.528808468021,0.000333794242007,0.000349161805182

54 0.538869474083,0.000779305903464,0.000788746029219

55 0.548994198442,0.000832402139633,0.00083733436166

56 0.560303625651,0.00075909139777,0.000755838949173

57 0.570344315842,0.000489005444059,0.000498049441981

58 0.580453502014,0.000973015649992,0.000962580314827

59 0.590466281399,0.000875315866524,0.000855877584994

60 0.601533863693,0.00093038117683,0.000918234148114

61 0.611529598944,0.000217103422987,0.000239961086974

62 0.621508173645,0.00100035356196,0.000982921594969

63 0.631826637313,0.000968746207346,0.000937996397596

64 0.643184506334,0.000586469460556,0.000567925388474

65 0.653378718533,0.000517113084314,0.000550684826155

66 0.663487684913,0.000822498096809,0.000799058662077

67 0.674271411262,0.000868526872045,0.000832722345344

68 0.684521605261,0.000173961841748,0.000158883050669

69 0.694632834755,0.00107554872081,0.000682556075408

70 0.704627230763,0.10819041921,0.000786948572658

71 0.715763695538,0.189302753369,0.000847219362879

72 0.725896741264,0.279696065926,0.000383400837886

73 0.735853050835,0.36227845962,0.000743018448811

74 0.746014310047,0.443195173566,0.00085932650293

75 0.756893800572,0.525616329741,0.000599065202022

76 0.767114754766,0.613656578342,0.000189600393986

77 0.777013535611,0.696576552328,0.000554428797299

78 0.787705444731,0.776774208889,0.000826843641455

79 0.798303553835,0.8631125104,8.48322095788e-05

80 0.808342920616,0.948816825208,0.000125751794415

81 0.818409201689,1.03008897185,0.000666137145628

82 0.829272043891,1.11146096795,0.000586447633998

83 0.839597974904,1.19908004472,0.000268617424391

84 0.849914004095,1.2826405275,0.0

85 0.859908293001,1.36603185666,6.93050595438e-05

128 Relative Target Speed Action

86 0.871367366984,1.4469051933,0.00039644813615

87 0.881545700133,1.53921088605,0.00112022921899

88 0.891747926362,1.6218189973,0.000374310622908

89 0.901713685133,1.70436752836,0.000333216235759

90 0.912466392852,1.78508685047,0.00054474565306

91 0.922544750385,1.87196361548,0.000277221477454

92 0.932818472385,1.95373956162,0.00045455788071

93 0.943328220397,2.03693474783,0.000233527918012

94 0.954030952416,2.12204936043,4.11427207802e-05

95 0.964175852016,2.20875730397,0.00018817239692

96 0.97439484857,2.29115425496,0.000415296314993

97 0.985275756568,2.37403098249,0.000313907655389

98 0.995400841348,2.46213630795,0.000374763735413

99 1.00562181603,2.54448831172,0.000451022664698

100 1.01582237985,2.62743179719,0.000320537169026

101 1.02729046904,2.71025030891,0.000318538519576

102 1.03767795302,2.80300591596,0.00101416355099

103 1.04785332084,2.88763637457,0.000264103628811

104 1.05810997635,2.97032560233,0.000456141785852

105 1.06886180304,3.05360786972,0.000337287152719

106 1.0789665496,3.14080059373,0.000189738885558

107 1.08917099703,3.22304595599,0.000496148776033

108 1.10030929465,3.30590860678,0.00035281700417

109 1.11060808133,3.39611059168,0.000627889732366

110 1.12060373649,3.47997969268,0.000324535718748

111 1.1308258744,3.56123818563,0.000590846247411

112 1.1419045236,3.64419336066,0.000315675858975

113 1.15194360912,3.73390316226,0.000584857121425

114 1.16194715723,3.81569163972,0.00054820054873

115 1.17218803987,3.89691108767,0.000528202829764

116 1.18328864966,3.97997211694,0.000245191475517

117 1.19353748392,4.06981396884,0.000652171297776

118 1.20357047673,4.15321732415,0.000306117983642

119 1.2137344759,4.23467732027,0.000486491451834

120 1.2244896125,4.31709102635,0.000311208287589

121 1.23459036835,4.40414444685,0.000311558335734

122 1.24454221688,4.48622090587,0.000385118970509

123 1.25525159296,4.56693419315,0.000486687875674

124 1.265866125,4.65350791185,0.0

125 1.2759653423,4.73952551424,6.4917544416e-05

126 1.28606228344,4.82146279561,0.000566129490958

127 1.29704027809,4.90322084573,0.000499237873223

128 1.30728529114,4.99182449131,0.000449614153933

129 1.31744238734,5.07493473883,0.000346616853739

130 1.32750142459,5.15963925222,0.000386582771138

131 1.33895243332,5.24056408123,0.000431797558029

132 1.34927295893,5.33344578301,0.00105220791206

133 1.35939040873,5.41645321444,0.000256876134724

134 1.36996113602,5.49849424871,0.000420784870456

Relative Target Speed Action 129

135 1.38060795143,5.58375973465,8.1000450046e-05

136 1.39081444591,5.6700328273,0.000151890780985

137 1.40090753417,5.7523296171,0.000301382017949

138 1.41227298602,5.8340342106,0.000371549846735

139 1.42248087563,5.92581583132,0.000979129800826

140 1.43270243425,6.00829675407,0.000336985143925

141 1.44277561456,6.0907919976,0.000281423430871

142 1.4536026055,6.17215094768,0.000386834503471

143 1.4637430096,6.2595385608,0.000414194240081

144 1.47390666977,6.3413395517,0.000321083280933

145 1.48449407797,6.42331316247,0.000256300770852

146 1.49505705852,6.50868948926,0.000198735220708

147 1.50516722444,6.59381738665,0.000154605168996

148 1.51524663996,6.6752602865,0.000307900523567

149 1.52589271218,6.75643711345,0.000297942497455

150 1.53616375476,6.84215534348,0.000304332010233

151 1.54633726366,6.92479892693,0.000104226359607

152 1.55651679635,7.00663427322,0.000180662003755

153 1.56794184446,7.08848583436,0.000149802851529

154 1.57822059188,7.180331438,0.00115446290712

155 1.58832792472,7.26288919988,0.000178064870555

156 1.59843370877,7.3440584142,0.00032163587109

157 1.60927196778,7.4251809007,0.000284065402072

158 1.61932323314,7.51215371179,0.000486647561992

159 1.62947107013,7.59275931149,0.000356352906291

160 1.64020023216,7.67411974854,0.000712971018342

161 1.65084921289,7.76010408442,0.0486715859468

162 1.66104972828,7.84540177692,0.143746663887

163 1.67142790277,7.92707169083,0.197472682634

164 1.68238385115,8.01013206764,0.231270475239

165 1.69257657882,8.09777962756,0.275708084097

166 1.70290046651,8.17927789017,0.327339570457

167 1.71312850527,8.26179468287,0.38238939806

168 1.72410249151,8.34350943743,0.426704306254

169 1.73446521908,8.43114843037,0.46145659919

170 1.74452820886,8.51386359824,0.504141951115

171 1.75474177487,8.59415261933,0.535642627168

172 1.76558323111,8.67561085097,0.568999492371

173 1.77572599985,8.76203869234,0.603188776281

174 1.78576716222,8.84285701527,0.640012940496

175 1.79675117042,8.9228332469,0.671946269535

176 1.8068241924,9.0102805816,0.704532540328

177 1.81675207801,9.09044088078,0.737265289648

178 1.8266807925,9.16941195062,0.767929513646

179 1.83786588814,9.2483477387,0.797386554549

180 1.84814009909,9.33714835956,0.828712010931

181 1.85830400884,9.41855322472,0.858368837376

182 1.8682911247,9.49883752575,0.887648342998

183 1.87975124829,9.57734894755,0.916004826372

130 Relative Target Speed Action

184 1.88985588495,9.66684482233,0.947913215663

185 1.89989438932,9.74505203226,0.976050079549

186 1.9099415401,9.82198704526,1.00388945895

187 1.92085818667,9.89809331985,1.03149641464

188 1.93078346271,9.979609811,1.06129270827

189 1.94093044661,10.0523248254,1.08833973174

190 1.95151073672,10.1251199585,1.11581386505

191 1.96225494891,10.1991300866,1.14444480174

192 1.97244994622,10.2719519443,1.173398288

193 1.98271530401,10.3319001351,1.20094194356

194 1.99344688561,10.3835504025,1.22858479211

195 2.00379521679,10.4273195076,1.25755907459

196 2.01403263211,10.4582740719,1.28543952418

197 2.02417278662,10.4777578292,1.31313684979

198 2.03562143166,10.4853263653,1.34053603947

199 2.04590068292,10.4807546372,1.37158704852

200 2.05592766032,10.4655646688,1.39943783185

201 2.06606035959,10.44190606,1.42675170034

202 2.07690636255,10.412232622,1.45433801542

203 2.0869796155,10.3754943654,1.48400095087

204 2.09706833679,10.338310726,1.51152273154

205 2.10768628027,10.3030811535,1.53967471487

206 2.11825539265,10.267601708,1.57051560476

207 2.12850626092,10.2290733411,1.6022910692

208 2.13878340926,10.193154203,1.63354523102

209 2.14953037631,10.1590002927,1.66528863994

210 2.1596740121,10.125744722,1.69840789803

211 2.16973007005,10.0974596817,1.72970089788

212 2.17989946902,10.0720385053,1.76029943018

213 2.19113270193,10.0492217999,1.79104647344

214 2.20138645545,10.0272929492,1.82463777022

215 2.21142328717,10.0098501754,1.85523854022

216 2.22175786272,9.99451501558,1.88486636758

217 2.23265825212,9.98382234052,1.91526304344

218 2.24278429803,9.97395077568,1.94679911935

219 2.25296525564,9.96506435941,1.97568811286

220 2.26381858252,9.95504020948,2.00435758379

221 2.27429435402,9.94362369409,2.03480441663

222 2.2844407009,9.93194683005,2.06431985957

223 2.29467289057,9.92014217832,2.09258201574

224 2.30571839772,9.90791028149,2.12098362254

225 2.31578926928,9.89447484539,2.15174021087

226 2.32601545844,9.88211230159,2.17969518676

227 2.336225315,9.86942169312,2.20817545896

228 2.3475740971,9.85677877047,2.23652152478

229 2.35767484549,9.84283884555,2.26812413537

230 2.36770037282,9.83078911383,2.29617055192

231 2.37828356586,9.81902071484,2.32410773481

232 2.38845539372,9.80708351433,2.35351258779

Relative Target Speed Action 131

233 2.39852015022,9.79616484288,2.38192732581

234 2.40854259674,9.78579644259,2.4099369919

235 2.41983386222,9.7759888045,2.43793472962

236 2.42984795105,9.7655765323,2.46939472233

237 2.4399229316,9.75708497012,2.4978529209

238 2.44998789486,9.74916942592,2.52700601841

239 2.46093246434,9.74202636023,2.5559488437

240 2.47117296606,9.73507593508,2.58723204815

241 2.48135049455,9.72945970641,2.6169584894

242 2.49136404879,9.7245997427,2.64698374208

243 2.50275827385,9.72057806169,2.67650355801

244 2.51276602875,9.71682531389,2.7101527387

245 2.52284703497,9.71441057975,2.73948948381

246 2.53340743482,9.71258426291,2.76929513289

247 2.5436855983,9.71138641853,2.80136290285

248 2.5537404418,9.71091337046,2.83349696236

249 2.56378321536,9.71104018616,2.86524456439

250 2.57500216179,9.71171345912,2.89730781445

251 2.58516534045,9.71303999885,2.93269404816

252 2.59532028157,9.71480809484,2.9643194214

253 2.60556498449,9.71698627198,2.99571104822

254 2.61647521891,9.71959074366,3.02701540898

255 2.62678577937,9.72275883829,3.06018354983

256 2.63708701544,9.72609287524,3.09121678016

257 2.64779235795,9.72968249828,3.12212680321

258 2.65855162591,9.73366694392,3.15396429205

259 2.66888688877,9.7378640611,3.18593098864

260 2.67929237336,9.74203638439,3.2163932444

261 2.69010711554,9.74635938943,3.24703409122

262 2.70042319689,9.75093798076,3.27865939397

263 2.71052883379,9.75531439427,3.30887607679

264 2.72073483001,9.75961260746,3.33827811703

265 2.73186645471,9.76392798789,3.36798077747

266 2.74194578826,9.76856666527,3.40019836653

267 2.75197168346,9.77266365596,3.4294925676

268 2.76270509139,9.77664143785,3.45845351964

269 2.7728591254,9.78074987413,3.48947368543

270 2.7828703532,9.78445204537,3.51868783304

271 2.79295971431,9.78793105718,3.54754031441

272 2.80423180014,9.79123936136,3.57648480449

273 2.8141997708,9.79466115414,3.60885645608

274 2.82431183103,9.79741918868,3.63726560867

275 2.83422092628,9.79998553487,3.6659297098

276 2.8453074405,9.80222953902,3.69412726159

277 2.85563784279,9.80445351693,3.72558355914

278 2.8657056503,9.80620161048,3.75508540325

279 2.87575558852,9.80765311094,3.78373308805

280 2.88715326693,9.80884235045,3.81241842724

281 2.8972517401,9.80990189121,3.84485852886

132 Relative Target Speed Action

282 2.90744626336,9.81053990647,3.87406729977

283 2.91828694195,9.81097574249,3.90406011839

284 2.92851553857,9.81118746499,3.93584301156

285 2.93855269067,9.81114455548,3.96553684817

286 2.94876833446,9.81090709605,3.99448136378

287 2.95994542446,9.81047794757,4.02398136681

288 2.9702532338,9.80981133407,4.0561302968

289 2.98053335771,9.80900834437,4.08618670538

290 2.99073606636,9.80806802513,4.11665851935

291 3.00165755954,9.80700468132,4.14695915123

292 3.01196049806,9.80574774156,4.17952049169

293 3.02206555288,9.80445456149,4.21006857177

294 3.03315111343,9.80310892886,4.24001349154

295 3.04327649437,9.8015658856,4.2726568644

296 3.05349194445,9.80010390399,4.30255548197

297 3.06356319413,9.7985951921,4.33241216732

298 3.0742028309,9.7970788505,4.36164468986

299 3.08435346838,9.79547095559,4.39252753181

300 3.09439643472,9.79394889136,4.42186066036

301 3.10473972652,9.79244590037,4.45091007512

302 3.11611732002,9.79093146513,4.48068998751

303 3.12629912794,9.78929972788,4.51378453593

304 3.13638886437,9.78790259429,4.54399492837

305 3.14712187275,9.7865664959,4.57381681911

306 3.15720795002,9.78520464817,4.60518031951

307 3.16744588595,9.78400587871,4.63434035877

308 3.17755735759,9.78285193211,4.66372163807

309 3.18874587771,9.78178763095,4.69277916035

310 3.19872591458,9.78069471926,4.72478408001

311 3.20889806189,9.77981447734,4.75346674974

312 3.21899488475,9.77899908519,4.78254666115

313 3.22981523629,9.77827810686,4.81145588528

314 3.23974239826,9.77759622931,4.84216756805

315 3.24985185452,9.77707266177,4.87010308727

316 3.26046720706,9.77662348095,4.89838286765

317 3.271012187,9.77624201117,4.92814324802

318 3.28103911504,9.77595686281,4.95750975255

319 3.29128832743,9.7757718505,4.98521115485

320 3.30203115847,9.77566027111,5.013292577

321 3.31223360635,9.77562784694,5.04280073389

322 3.32242924161,9.77567362418,5.07019904927

323 3.33255218342,9.77578520519,5.09815786617

324 3.34391895216,9.77595877541,5.12553316449

325 3.35405673739,9.77621817659,5.15680480416

326 3.36420220416,9.77651095641,5.18423223476

327 3.37435474712,9.77684855901,5.21221431686

328 3.38528192416,9.77722716972,5.24083397618

329 3.39547103271,9.77767539912,5.27305617198

330 3.4055687543,9.77812648954,5.30306300647

Relative Target Speed Action 133

331 3.41626455076,9.77860046818,5.33365732947

332 3.42690968793,9.77912499187,5.36560636052

333 3.43688232545,9.77966668192,5.39799886172

334 3.44700339437,9.78018262276,5.42759662782

335 3.45769632235,9.78071477625,5.45792634544

336 3.46791431494,9.78127935498,5.48928985088

337 3.47780144773,9.78181246214,5.51958095155

338 3.4879333647,9.78231982021,5.54828227834

339 3.49921686109,9.78283194673,5.57795349378

340 3.50930803642,9.78338412814,5.61146086801

341 3.51926119439,9.78385429308,5.64271756841

342 3.5295158131,9.78430347729,5.6734726367

343 3.54037737101,9.78474312486,5.70583893875

344 3.55057168659,9.78518277282,5.73974685716

345 3.56064074021,9.78556806093,5.77196152459

346 3.57135723252,9.78592473882,5.80315003866

347 3.58197938185,9.78626997289,5.83639181533

348 3.59217975009,9.7865751524,5.8697618609

349 3.60226650257,9.78683741618,5.90142482817

350 3.6130138617,9.78706439431,5.93281361399

351 3.62311327271,9.78727229905,5.96567058403

352 3.63331125863,9.7874334735,5.99596788915

353 3.64326918311,9.78756603781,6.02608351947

354 3.65449858736,9.78766522328,6.05502612973

355 3.66457656119,9.78774533573,6.0876890276

356 3.67467405554,9.78778634714,6.11647714264

357 3.68468160648,9.78780256276,6.14541832339

358 3.69523604028,9.78779493653,6.17366904311

359 3.70537018403,9.78776060736,6.20308324733

360 3.71547459252,9.78770529745,6.23142599708

361 3.72653633263,9.78763091378,6.25930240026

362 3.73692815378,9.78752982736,6.28993540218

363 3.74736095872,9.7874144357,6.31826861577

364 3.75783217233,9.78728473897,6.3468826874

365 3.76859077718,9.78714073697,6.37519396758

366 3.77892213967,9.78698147611,6.40446273806

367 3.78926613368,9.78681935402,6.43215412994

368 3.79946050793,9.78664960255,6.46005723798

369 3.81077836826,9.78647699,6.4871826243

370 3.82098937407,9.78628053578,6.51747182853

371 3.83121112827,9.78610220102,6.5443883604

372 3.84196741413,9.78592195912,6.57151374756

373 3.85228231736,9.78573408784,6.59969342347

374 3.86230898928,9.78555670679,6.62692705347

375 3.87240697443,9.7853879086,6.65304679077

376 3.88364976458,9.78522292519,6.67950746754

377 3.89375602454,9.78504554442,6.70860362692

378 3.90371096879,9.78489391243,6.73500326896

379 3.91387063265,9.78475086354,6.7606619058

134 Relative Target Speed Action

380 3.92468905076,9.78461353662,6.7869957449

381 3.93474021647,9.78447716371,6.81562984915

382 3.94470572192,9.78436081766,6.8433131383

383 3.95542627852,9.78425305465,6.87091584248

384 3.9662567256,9.78414910652,6.90122269353

385 3.97660208587,9.78405564875,6.93161871365

386 3.98679066077,9.78397554245,6.96013170231

387 3.99781054631,9.78390783398,6.98773583947

388 4.00814614259,9.78384489388,7.01711667496

389 4.01836456079,9.78379721256,7.04473225705

390 4.02853538003,9.78376002146,7.07160588053

391 4.04008355364,9.78373236726,7.09839510382

392 4.0501589356,9.78371043555,7.12835625267

393 4.06034213863,9.78370185477,7.15463144552

394 4.07047506049,9.78370090346,7.18078552245

395 4.08143091854,9.78370758175,7.20686950441

396 4.09172281064,9.78372284323,7.23466151982

397 4.1018797094,9.78374382644,7.26088521593

398 4.11288768891,9.7837714855,7.28637887378

399 4.12304049823,9.7838067742,7.31409078157

400 4.1332308352,9.783846831,7.33924540849

401 4.14322323166,9.78388974888,7.36458600222

402 4.15402954817,9.78393648162,7.38909069984

403 4.16434029676,9.7839898902,7.41567393381

404 4.17460726947,9.78404425235,7.4406597615

405 4.18469670229,9.78410052175,7.46519831606

406 4.19596765377,9.78415583738,7.48898918903

407 4.20605428144,9.78421973654,7.5156997405

408 4.21622411255,9.78427695968,7.53925696345

409 4.22681982629,9.78433609029,7.56314511199

410 4.23704912048,9.78439617459,7.58772229195

411 4.24716778938,9.78445435128,7.61161234839

412 4.25731396116,9.78450966715,7.63493115362

413 4.26837601978,9.78456498293,7.65844069395

414 4.27856179606,9.78462220633,7.68374028415

415 4.28875961807,9.78467370746,7.70723027465

416 4.29896733724,9.78472139399,7.73042319581

417 4.30982507579,9.78476621931,7.75376870481

418 4.32009422313,9.7848119985,7.77826911625

419 4.33018757124,9.78485110201,7.80161605681

420 4.34090684727,9.78488734425,7.8242429723

421 4.35163078364,9.78492263328,7.84839767675

422 4.36172026489,9.78495315378,7.87221525761

423 4.37191069964,9.78497890562,7.89478638362

424 4.38286706712,9.7850008428,7.91727263324

425 4.39311925974,9.78502087293,7.94157754294

426 4.40328734461,9.78503613448,7.96397700895

427 4.41358515341,9.78504758138,7.98632163859

428 4.42493349127,9.78505616716,8.00864481115

Relative Target Speed Action 135

429 4.43506837077,9.78506189209,8.03338221447

430 4.44513143227,9.78506284844,8.05511935379

431 4.45542830508,9.78506189741,8.07682406788

432 4.46634281147,9.78505713182,8.09873573061

433 4.47653281596,9.78504950534,8.12209316643

434 4.48652860057,9.78504092478,8.14453602585

435 4.49757007137,9.78502948326,8.16746907422

436 4.50782437343,9.78501518098,8.19307050843

437 4.51789041329,9.78499992491,8.2175637703

438 4.52788174804,9.78498371509,8.24150962298

439 4.53876092564,9.7849646442,8.26554893596

440 4.54875617009,9.78494461984,8.29134492146

441 4.55875355471,9.78492459525,8.31507619894

442 4.56874847319,9.78490361706,8.33833159301

443 4.58010316174,9.78488263867,8.36145919496

444 4.59032262303,9.78485784593,8.38804959553

445 4.60052505787,9.78483591404,8.41285948188

446 4.61111950036,9.7848149359,8.43767032235

447 4.62144223694,9.78479395782,8.46385159585

448 4.63161436561,9.78477297975,8.48907728646

449 4.64168366324,9.78475295509,8.51401973587

450 4.65283371694,9.78473388419,8.53818112563

451 4.66301788576,9.7847129062,8.56473242928

452 4.67313945852,9.78469574266,8.588298727

453 4.68321996648,9.7846785791,8.61153600742

454 4.69412006624,9.78466332279,8.63412192783

455 4.70417482127,9.78464806671,8.65835008002

456 4.71437389124,9.78463471778,8.68010439629

457 4.72508859634,9.78462232257,8.702036097

458 4.73583461437,9.78461088136,8.72453237504

459 4.74606689252,9.78460039361,8.74698383054

460 4.75632837601,9.78459181319,8.76874863843

461 4.76725046337,9.78458323277,8.7913336072

462 4.77744843531,9.78457751354,8.81547306882

463 4.78763554897,9.78457274779,8.8385005429

464 4.7977945311,9.78456988939,8.86128482999

465 4.80910196435,9.78456798465,8.8841349211

466 4.81922569033,9.78456703389,8.90903064996

467 4.82932750974,9.78456703642,8.93121603014

468 4.83945768606,9.78456799254,8.95274623591

469 4.85022531729,9.7845689488,8.97408856828

470 4.8603713233,9.78457181249,8.99613566887

471 4.87038546521,9.7845756299,9.01670361756

472 4.88139912952,9.78458040085,9.03644472947

473 4.89154798724,9.78458612592,9.05795395897

474 4.90159612522,9.78459185063,9.07716101325

475 4.91158353351,9.78459852898,9.0960419104

476 4.92266277969,9.78460425363,9.11430959416

477 4.93282783218,9.78461188592,9.13443027283

136 Relative Target Speed Action

478 4.94296982419,9.7846195178,9.15232411645

479 4.953072289,9.78462714971,9.17009112119

480 4.96428884286,9.78463478182,9.18812324755

481 4.97445211932,9.78464241402,9.20780237456

482 4.98450832535,9.78465004616,9.22575057675

483 4.9951432161,9.78465863175,9.24299782796

484 5.00548430998,9.78466626403,9.26070093772

485 5.01553074736,9.78467389611,9.27783470203

486 5.02564946096,9.78468057444,9.29399380937

487 5.03695082292,9.7846872528,9.31019773948

488 5.04708901886,9.78469393146,9.32778831717

489 5.05720592756,9.78470060973,9.34356881539

490 5.06746877171,9.78470538077,9.35886389262

491 5.07841373049,9.7847111056,9.37434016841

492 5.08862505946,9.78471587691,9.39037148535

493 5.09880510997,9.78472064791,9.40534517382

494 5.11038322467,9.78472446515,9.41983820955

495 5.12016586121,9.78472828288,9.43631298663

496 5.13046021201,9.78473114655,9.44975697779

497 5.14064994641,9.78473496382,9.46390287549

498 5.15124185197,9.78473687374,9.47750994629

499 5.16148516349,9.78473878398,9.49167301054

500 5.17169347592,9.78473974041,9.50495010927

501 5.18174762372,9.78474069672,9.51821576372

502 5.19277319591,9.784741653,9.53090062897

503 5.20296228118,9.78474165585,9.544840534

504 5.21299731173,9.78474165859,9.55730128547

505 5.22306407895,9.78474070749,9.56962375352

506 5.23394611944,9.7847397565,9.58162960105

507 5.24388892297,9.78473785204,9.5946568372

508 5.25396615826,9.78473690081,9.60616677301

509 5.26464715041,9.78473499606,9.61788174887

510 5.27533946652,9.78473309148,9.62993432764

511 5.28557155188,9.78473118699,9.64209943954

512 5.29563042894,9.78472832869,9.65334902164

513 5.30653023068,9.78472547032,9.66448606977

514 5.31682502665,9.78472261207,9.67618483451

515 5.32714027259,9.78471975377,9.68735812231

516 5.33731827978,9.78471689538,9.69817855002

517 5.34920761362,9.78471403705,9.70894461766

518 5.3589325808,9.78471117906,9.72111068525

519 5.36904668715,9.78470736694,9.73126163082

520 5.37924081646,9.78470450859,9.74231189268

521 5.38996973634,9.78470260392,9.75332591518

522 5.39998310711,9.78469974562,9.76449348079

523 5.410219457,9.78469784092,9.77498202758

524 5.42100672238,9.78469593627,9.78532275545

525 5.43172162864,9.78469307808,9.79627097563

526 5.44182451256,9.78469117344,9.80671470157

Relative Target Speed Action 137

527 5.45205992274,9.78468926877,9.8166558387

528 5.46298723947,9.78468736403,9.82635569612

529 5.47314642742,9.78468545948,9.83678225593

530 5.48328024708,9.78468546219,9.84607107901

531 5.49337940384,9.78468355752,9.85541426134

532 5.50491514523,9.78468260652,9.86437406602

533 5.51511053462,9.78468260945,9.87468904665

534 5.52523404825,9.78468070481,9.88338182204

535 5.53548575006,9.78468070748,9.8921136978

536 5.54630575422,9.78468071009,9.90061383038

537 5.55637595523,9.78468071286,9.90968616953

538 5.56657394674,9.78468071555,9.91775524041

539 5.57761247363,9.78468071816,9.92602076823

540 5.58790980093,9.7846807211,9.93460101076

541 5.59798344504,9.78468167741,9.94276544874

542 5.60820126627,9.78468168009,9.95039964249

543 5.61905114073,9.78468263638,9.95780209319

544 5.62924380135,9.78468359304,9.96531135707

545 5.63919344451,9.7846845493,9.97255072899

546 5.64931324869,9.78468550553,9.979305633

547 5.66049038898,9.7846864619,9.98629800235

548 5.67073530424,9.78468741844,9.99368614899

549 5.6807326125,9.78468837495,10.0006727959

550 5.69146838039,9.78468933126,10.0071644847

551 5.70170597639,9.78469028766,10.014269388

552 5.71186066139,9.78469029038,10.0207095783

553 5.72193909716,9.78469124665,10.0272451356

554 5.73310528323,9.78469220292,10.0334287863

555 5.74321913626,9.78469220601,10.0404249705

556 5.75352466106,9.78469220868,10.0464140713

557 5.76362525485,9.78469316498,10.0526663865

558 5.7745725736,9.78469316766,10.0584914549

559 5.78479293361,9.78469412414,10.0649564406

560 5.7950290069,9.78469412678,10.0706537159

561 5.80567720812,9.78469508329,10.0765188381

562 5.81625574175,9.78469603978,10.0823028985

563 5.82646586839,9.78469699625,10.0877121641

564 5.83658138663,9.78469795261,10.0931309659

565 5.84736491367,9.78469795519,10.0982026292

566 5.85768593661,9.78469795796,10.1033114868

567 5.86799997091,9.78469796063,10.1084336947

568 5.87815947272,9.78469891698,10.1132564486

569 5.8895832561,9.78469987339,10.118198411

570 5.89965081029,9.78469987634,10.123441737

571 5.90984388534,9.78470083281,10.1283407837

572 5.91995318141,9.78470083561,10.1339331523

573 5.93061427679,9.78470083825,10.1405478603

574 5.94061637577,9.78470084105,10.1489993484

575 5.95075558219,9.78470084368,10.1575519249

138 Relative Target Speed Action

576 5.96139837522,9.78470084634,10.1671020469

577 5.97211905941,9.78470084914,10.1773245114

578 5.98218471184,9.7846998982,10.1869433004

579 5.99241241626,9.78469990087,10.195308006

580 6.00314406957,9.78469990349,10.2036469632

581 6.01317608263,9.78470086003,10.2117808819

582 6.02314423025,9.78470086261,10.2192634393

583 6.03320989385,9.78470086537,10.2261737916

584 6.04437196068,9.78470086794,10.2330345531

585 6.05459515005,9.78469991734,10.2400717471

586 6.06488385797,9.78469896626,10.2459216135

587 6.07520987652,9.784698969,10.2517962752

588 6.08619515225,9.78469897164,10.2581334695

589 6.09643935226,9.78469897447,10.2645173951

590 6.10663145781,9.78469897723,10.2706314289

591 6.11740126647,9.78469897986,10.2761961454

592 6.1281785313,9.78469802908,10.2820145407

593 6.13832278922,9.78469803186,10.2872683598

594 6.1484766202,9.78469803468,10.292220816

595 6.15942528285,9.7846970836,10.2967116928

596 6.16961912252,9.78469613285,10.301065242

597 6.17962338869,9.78469613547,10.3051832317

598 6.18976625241,9.78469613806,10.308802448

599 6.20099072624,9.7846961407,10.3125036805

600 6.21116205771,9.78469614373,10.3161515085

601 6.22119080182,9.78469614646,10.319579989

602 6.23129927367,9.78469614905,10.322561195

603 6.24194544647,9.78469615168,10.3256272777

604 6.25200541317,9.78469615455,10.3284635251

605 6.26190757006,9.78469615716,10.3312559025

606 6.27300805785,9.78469615982,10.3336467815

607 6.28341399785,9.7846961626,10.3364134099

608 6.2937239306,9.78469521176,10.3396931145

609 6.30380960274,9.78469521436,10.3439531968

610 6.31488394458,9.78469426353,10.3482991093

611 6.32505924627,9.78469426631,10.3536978805

612 6.33524744026,9.78469426918,10.3583899775

613 6.34528660774,9.78469427173,10.3632832998

614 6.35657079984,9.78469522822,10.3675862971

615 6.36675991677,9.78469523104,10.3723327554

616 6.37699923012,9.78469618749,10.37602254

617 6.38705794606,9.78469619007,10.3797132782

618 6.39782190043,9.78469523924,10.382860421

619 6.40801013447,9.78469524194,10.3862078367

620 6.41831693798,9.78469619858,10.388875281

621 6.42937036604,9.78469620132,10.3915970851

622 6.43961275369,9.78469620416,10.3940337408

623 6.44987535384,9.784696207,10.3963807497

624 6.4600607371,9.78469620963,10.3982986041

Relative Target Speed Action 139

625 6.47115048114,9.78469621235,10.4002622344

626 6.48134926986,9.78469621521,10.4019597903

627 6.49156171083,9.78469621795,10.4036563912

628 6.50174507964,9.7846962206,10.4049553085

629 6.512859351,9.78469622334,10.4063448247

630 6.52284892369,9.78469622623,10.4074558684

631 6.53300816845,9.78469622901,10.4080595554

632 6.54361925181,9.78469718521,10.4083714174

633 6.55388979055,9.78469814176,10.4088644777

634 6.56412349455,9.78469814434,10.4090084919

635 6.57439414877,9.78469814723,10.4088625882

636 6.58565675467,9.78469814981,10.4089255391

637 6.59585931897,9.7846971992,10.4086823606

638 6.60594837274,9.78469720178,10.4081635684

639 6.61612375453,9.78469625096,10.4078927313

640 6.62698312756,9.78469720719,10.4073748919

641 6.63707502466,9.78469721026,10.4070773513

642 6.64713860489,9.78469721279,10.4065375766

643 6.65780408122,9.78469721562,10.4062381276

644 6.66847980116,9.78469721839,10.4056830935

645 6.67860366404,9.78469722137,10.4054351426

646 6.68858506158,9.78469627031,10.4049411428

647 6.69934511557,9.78469627308,10.4047017741

648 6.70940196514,9.78469627584,10.4042125427

649 6.71946005337,9.7846972323,10.4040609119

650 6.72930655908,9.78469818856,10.4036765841

651 6.74068714958,9.78469723752,10.4035363969

652 6.75092446152,9.78469819414,10.4031377639

653 6.76116440073,9.78469724332,10.4031539795

654 6.77129118238,9.78469724595,10.4029117489

655 6.78217987809,9.78469629501,10.4029355935

656 6.79251242802,9.78469629783,10.4027200659

657 6.80260307528,9.78469630071,10.4028440465

658 6.81332664564,9.78469630332,10.4027219788

659 6.8241416458,9.7846963062,10.4028564497

660 6.83430218045,9.78469535534,10.4027391505

661 6.84443830606,9.78469535818,10.4029499155

662 6.85529366788,9.78469440712,10.4029279835

663 6.86534498725,9.78469441004,10.4031749887

664 6.8755740663,9.78469441265,10.4031635473

665 6.88558937609,9.78469441542,10.4034086445

666 6.89680151176,9.7846953717,10.4034372575

667 6.90690587554,9.78469537484,10.4037395756

668 6.91715535335,9.78469537745,10.4037681886

669 6.92715922836,9.78469442654,10.4040657382

670 6.93796917703,9.78469538281,10.4041468036

671 6.948075925,9.78469443207,10.4044977596

672 6.95811302215,9.78469443471,10.4045978987

673 6.96903128643,9.78469443743,10.4049583909

140 Relative Target Speed Action

674 6.97927171737,9.78469444029,10.4051291023

675 6.98954002652,9.78469444307,10.4056221559

676 6.99979352392,9.78469444576,10.4058825126

677 7.01060996018,9.78469444855,10.4064118058

678 7.02073531598,9.78469445138,10.4067370129

679 7.03095651604,9.78469445414,10.4073569054

680 7.04121250473,9.78469350314,10.4077498234

681 7.05232220516,9.78469350594,10.4084040483

682 7.0625191126,9.78469446252,10.4088694461

683 7.07261266746,9.7846944653,10.4090582776

684 7.08333880827,9.78469446795,10.4090668645

685 7.09349295311,9.78469447087,10.4093729986

686 7.10357028246,9.78469447353,10.410479266

687 7.11376253329,9.78469447628,10.4126860749

688 7.12527319323,9.78469543263,10.4152362073

689 7.13547826279,9.78469638944,10.4177377031

690 7.14562923741,9.78469639212,10.4195554136

691 7.1563713951,9.78469734847,10.421541925

692 7.16697332729,9.78469830509,10.4233186286

693 7.17702477053,9.78469830787,10.4252803451

694 7.18718138151,9.78469831062,10.4278180817

695 7.19789046049,9.7846983133,10.4313972323

696 7.20855630655,9.78469831622,10.4354322406

697 7.21868549008,9.78469831903,10.4402044407

698 7.22863451857,9.78469832179,10.445875003

699 7.23958311509,9.78469927808,10.4517134131

700 7.24974560924,9.78469928118,10.4588287962

701 7.2598389294,9.78469928382,10.4652937729

702 7.26990872156,9.78469928638,10.4710854557

703 7.2811984783,9.78470024273,10.4766568405

704 7.29125798773,9.78470024574,10.4822215519

705 7.3012797283,9.78469929475,10.4870395344

706 7.3112311773,9.78469929752,10.4912776828

707 7.3223414002,9.78469930025,10.4953394014

708 7.33254605811,9.78469930317,10.4992704685

709 7.34289559349,9.78469930596,10.5027952686

710 7.35346687865,9.78469930868,10.505820343

711 7.36420614738,9.7846983579,10.5088292053

712 7.37443975918,9.78469836072,10.512345423

713 7.38452400733,9.78469836352,10.5152636853

714 7.39530151058,9.78469836626,10.5176040199

715 7.40550909098,9.78469741541,10.5200330472

716 7.41555045638,9.78469646453,10.5217763807

717 7.42574062292,9.78469646726,10.523477752

718 7.43690369092,9.78469646992,10.524732803

719 7.44706385676,9.78469647297,10.5261003888

720 7.45717411768,9.78469647563,10.5268194732

721 7.46737855952,9.7846964783,10.52758338

722 7.47840792406,9.78469648101,10.527928623

Relative Target Speed Action 141

723 7.48864580691,9.78469648394,10.5283587433

724 7.49894031323,9.78469648667,10.5282939048

725 7.51010645833,9.78469648941,10.5283292017

726 7.52020817436,9.7846964924,10.527941067

727 7.53042728454,9.78469554143,10.527762739

728 7.54067687225,9.78469649783,10.527207709

729 7.55144710932,9.784695547,10.5267718879

730 7.56164592132,9.78469554995,10.5259431524

731 7.57177508809,9.78469555283,10.5253461589

732 7.58187435474,9.78469555566,10.5253681005

733 7.59297242109,9.78469555836,10.5264076134

734 7.60308055487,9.78469556133,10.5277761446

735 7.61315927003,9.78469556414,10.5297845913

736 7.62383430358,9.78469556682,10.5316337746

737 7.6339240456,9.78469556978,10.5330852755

738 7.6440783944,9.78469461878,10.5339550341

739 7.65410685632,9.78469462159,10.5348610325

740 7.6656370135,9.78469557783,10.5353350159

741 7.67573624197,9.78469558103,10.5359253487

742 7.6858424563,9.78469558363,10.5359539655

743 7.69610391371,9.78469463278,10.5356325834

744 7.70706471615,9.78469463552,10.5349507119

745 7.71718705539,9.78469463846,10.5343718374

746 7.7273417525,9.78469464118,10.5334648977

747 7.73798226472,9.78469464391,10.5322623183

748 7.7488477435,9.78469464678,10.5311932532

749 7.75898712501,9.78469560349,10.5297722818

750 7.76911756117,9.7846956062,10.528155806

751 7.78006207384,9.78469465524,10.5267691656

752 7.79039935116,9.78469465818,10.525003916

753 7.80061712582,9.78469561464,10.5236468389

754 7.81080096494,9.78469657116,10.5220389446

755 7.82208009064,9.78469657388,10.5206885424

756 7.83217744902,9.7846965769,10.5189347353

757 7.84233453404,9.78469657971,10.5177226155

758 7.85298143886,9.78469658233,10.5172133541

759 7.86317363102,9.78469658521,10.5165972813

760 7.87326225918,9.78469754163,10.516439926

761 7.88329301123,9.78469659069,10.5159926536

762 7.89449975546,9.78469754708,10.5157399307

763 7.90464333445,9.78469659644,10.5151686805

764 7.91485186014,9.78469659918,10.5149493367

765 7.9249765845,9.78469660195,10.514447705

766 7.93583523761,9.78469660459,10.5141701869

767 7.94593281019,9.78469660756,10.5136037054

768 7.95604224596,9.7846966103,10.5133595663

769 7.96630772483,9.78469661296,10.5128607957

770 7.97741748486,9.78469661577,10.5121207454

771 7.98753206991,9.78469661891,10.5116000406

142 Relative Target Speed Action

772 7.99772233982,9.78469662154,10.5119662537

773 8.00844879542,9.78469662441,10.5122180258

774 8.01854430139,9.7846966273,10.5128846472

775 8.02872392442,9.78469663011,10.5144095765

776 8.03879213333,9.78469663284,10.5159497648

777 8.04995129444,9.78469663564,10.5171266033

778 8.05997877847,9.78469663862,10.5185542591

779 8.07017547358,9.78469759489,10.5194545324

780 8.08037641365,9.78469759756,10.5205140698

781 8.0913055921,9.78469855403,10.5212503114

782 8.10155254975,9.78469760334,10.5217061731

783 8.11162252817,9.78469760604,10.5218091748

784 8.12227641977,9.78469856248,10.5216584988

785 8.13276270218,9.7846985654,10.5217176317

786 8.14273713157,9.78469856826,10.5225320751

787 8.15304357279,9.78469857098,10.5231338489

788 8.16398386285,9.7846985738,10.5240474747

789 8.17427789234,9.78469857678,10.5246854888

790 8.18441899959,9.78469857959,10.5255123306

791 8.19456245564,9.78469762868,10.5260139688

792 8.20590911619,9.78469763144,10.5262314118

793 8.2160106441,9.78469668085,10.5266853671

794 8.2260843832,9.78469668361,10.5267702494

795 8.23616198264,9.78469668635,10.5270697084

796 8.24706293456,9.78469573532,10.5279985935

797 8.25689978153,9.78469573832,10.5301128977

798 8.26701922249,9.78469574092,10.532210989

799 8.27751822304,9.78469478994,10.5349079888

800 8.28818523511,9.78469479285,10.5375162972

801 8.29812277202,9.78469479569,10.5404469487

802 8.30809719861,9.78469479844,10.5427176568

803 8.31866075844,9.7846948011,10.5450179293

804 8.3291575443,9.78469480403,10.5470244708

805 8.33929356374,9.78469480693,10.5490777424

806 8.34944355674,9.78469480963,10.5506265196

807 8.36060622521,9.78469481244,10.5522372859

808 8.37082635332,9.78469481552,10.5535714872

809 8.38081740681,9.78469481824,10.5549238078

810 8.3909349665,9.78469482101,10.5558574646

811 8.40157144237,9.78469482381,10.5568740913

812 8.41178856883,9.78469482664,10.5575559783

813 8.42180465441,9.78469482947,10.5583370468

814 8.43245552387,9.78469483214,10.5587423672

815 8.44299560599,9.78469483511,10.5592792951

816 8.45318313688,9.78469483792,10.5594242618

817 8.46315383352,9.78469579443,10.5597294457

818 8.47384954523,9.7846957972,10.5596970281

819 8.48402777314,9.78469675372,10.5597971717

820 8.49415822886,9.78469675654,10.5595463621

Relative Target Speed Action 143

821 8.50430623628,9.78469580558,10.5594653064

822 8.51577426866,9.7846958084,10.5590790742

823 8.52598661464,9.78469581147,10.5588339868

824 8.5364194205,9.78469581431,10.5582617875

825 8.54647984728,9.78469677088,10.5578936746

826 8.55744932778,9.78469677357,10.5572509026

827 8.56769564468,9.78469677662,10.5567588117

828 8.57791680563,9.78469677926,10.5570697148

829 8.58856218681,9.78469678213,10.5584515956

830 8.59918984026,9.784696785,10.5601539114

831 8.60933956318,9.78469678798,10.5626191679

832 8.61937040649,9.78469679071,10.5648164416

833 8.63033372909,9.78469774709,10.5672874205

834 8.64053856209,9.78469775016,10.5695228425

835 8.65079373401,9.78469775291,10.5716524066

836 8.66087874305,9.7846968021,10.5733337435

837 8.6720282454,9.78469680482,10.5750074513

838 8.68206731696,9.78469680783,10.5763864742

839 8.69230105262,9.78469776432,10.5777149518

840 8.70231415424,9.78469776707,10.5786495617

841 8.71313509997,9.78469776987,10.5796118281

842 8.72316644713,9.78469872635,10.5802288644

843 8.73333294224,9.78469872919,10.5803709697

844 8.74363951385,9.78469873194,10.5806160719

845 8.75469418522,9.78469873483,10.5814190741

846 8.76463436894,9.78469873771,10.581997963

847 8.77469079103,9.78469778685,10.5820885691

848 8.7852941351,9.78469874325,10.5818530182

849 8.79530883022,9.78469874613,10.5812531632

850 8.80539277196,9.78469874895,10.5803576682

851 8.81561980676,9.78469875167,10.5796252517

852 8.82688077539,9.78469875455,10.578592427

853 8.83702523354,9.78469875748,10.5776654608

854 8.84700113628,9.78469876035,10.5765077036

855 8.85722996574,9.78469876305,10.5751363228

856 8.86830194667,9.78469876583,10.5735017273

857 8.87841326371,9.7846968615,10.571504735

858 8.8884581048,9.78469686426,10.5694676875

859 8.89916715398,9.78469782077,10.5677367695

860 8.90993797965,9.78469687,10.5657044897

861 8.92010222282,9.78469687303,10.5640326988

862 8.93049064372,9.78469782945,10.5622512349

863 8.94162370171,9.78469687869,10.5607444291

864 8.95186444186,9.7846968818,10.5589400763

865 8.96209455654,9.78469688455,10.5576936234

866 8.97216213308,9.78469688741,10.5562535739

867 8.98356596287,9.78469689012,10.555147311

868 8.99377658311,9.7846968933,10.5537110763

869 9.00388015434,9.78469689605,10.5522529069

144 Relative Target Speed Action

870 9.01398659311,9.78469689879,10.5506869719

871 9.02477995772,9.78469690163,10.5490123181

872 9.03488570731,9.78469595087,10.5476046932

873 9.04490931984,9.78469595361,10.5471936591

874 9.05589276087,9.78469595634,10.5479413408

875 9.06609948073,9.78469595944,10.5504208974

876 9.07623626105,9.78469691588,10.5534678915

877 9.08628587052,9.78469596496,10.5574876353

878 9.09710207582,9.7846959677,10.5617000223

879 9.10709781107,9.78469597065,10.566878484

880 9.117191392,9.78469501981,10.5714761581

881 9.12719871383,9.78469502255,10.5763437237

882 9.13855548948,9.78469502528,10.5806982131

883 9.14877776615,9.78469502839,10.5850116963

884 9.15903064143,9.78469503128,10.5888245

885 9.16921535414,9.78469503407,10.593075995

886 9.17998402379,9.78469503684,10.5969641407

887 9.19014831167,9.78469503989,10.6011793981

888 9.2003088994,9.78469504265,10.6045287183

889 9.21139050182,9.78469504551,10.6077721809

890 9.22145365831,9.78469504862,10.6106933023

891 9.23142057844,9.78469505143,10.6126979407

892 9.241721984,9.78469505411,10.6146281923

893 9.25276602246,9.78469505699,10.61610068

894 9.26280289888,9.78469506007,10.6176132229

895 9.27299246565,9.78469506285,10.6194938831

896 9.28315158281,9.78469506568,10.6222328515

897 9.29437616654,9.7846950685,10.6250462066

898 9.30452782474,9.78469602517,10.6286902141

899 9.3147229366,9.78469698158,10.631585585

900 9.32567854598,9.78469698445,10.6338810944

901 9.33587282524,9.7846969874,10.6356682957

902 9.34584590048,9.78469699037,10.6366811114

903 9.35596638825,9.78469699313,10.6376138181

904 9.36726323143,9.78469699584,10.638040123

905 9.37741741259,9.78469795266,10.638442587

906 9.38746075425,9.78469795549,10.6382041792

907 9.39768138621,9.78469891186,10.6379791226

908 9.40858870186,9.78469796095,10.637279135

909 9.41867968999,9.78469796391,10.6360412745

910 9.42870108411,9.78469796676,10.6349865181

911 9.43930242397,9.78469796957,10.6344572365

912 9.44990060851,9.78469701876,10.6336389912

913 9.45982217882,9.78469702174,10.6330810987

914 9.46974953916,9.78469702452,10.6332775625

915 9.48093358055,9.78469702729,10.63337389

916 9.49111046176,9.78469703041,10.6338488275

917 9.50142701622,9.78469703314,10.6337296241

918 9.51149612106,9.78469703602,10.6336256794

Relative Target Speed Action 145

919 9.52295454778,9.7846979925,10.633070646

920 9.53304091748,9.78469799569,10.6324746051

921 9.54332043976,9.78469799849,10.6314570385

922 9.55324893445,9.78469800124,10.6305138582

923 9.5641808575,9.78469800401,10.6292273544

924 9.57436504588,9.78469800705,10.6279103331

925 9.58454331383,9.78469800989,10.6262967181

926 9.59517801087,9.78469801271,10.6243683899

927 9.60596953705,9.78469801566,10.6220538227

928 9.61605847441,9.78469706487,10.6199624151

929 9.6261687912,9.78469706778,10.6187646009

930 9.63710639905,9.78469707058,10.617420874

931 9.647153317,9.78469611982,10.6163355933

932 9.65730885137,9.78469516904,10.6162421345

933 9.66738987714,9.78469517175,10.6161114823

934 9.67855476961,9.78469517465,10.6164233355

935 9.68855598755,9.78469517773,10.616411893

936 9.69875879213,9.7846951805,10.6166035836

937 9.70952751394,9.78469518331,10.6164319238

938 9.71968714893,9.7846951864,10.6163689837

939 9.72982644476,9.78469518918,10.6159341099

940 9.73993131332,9.78469519206,10.6156451486

941 9.75099011697,9.78469519473,10.6150367059

942 9.76110115182,9.78469519789,10.6145350753

943 9.77126653213,9.78469520067,10.6137330366

944 9.78135822713,9.78469615724,10.6126563391

945 9.7922221804,9.78469616,10.6117846819

946 9.80247871205,9.78469616299,10.610563026

947 9.81266145501,9.78469616592,10.6096818317

948 9.82334925421,9.78469616861,10.6085364693

949 9.83397814259,9.78469712535,10.6075703979

950 9.84406304359,9.78469712838,10.6063353898

951 9.8541962672,9.78469713104,10.6049392102

952 9.86519535724,9.78469713394,10.6037976619

953 9.87529616803,9.78469713696,10.6033179647

954 9.88541476801,9.78469713975,10.6026809108

955 9.89557658136,9.78469618897,10.6023328206

956 9.90698817372,9.78469714544,10.6017415431

957 9.91695455555,9.78469619491,10.6013295568

958 9.92700572126,9.78469619766,10.6006896418

959 9.93718909938,9.78469620054,10.6002795629

960 9.94816941023,9.78469620335,10.6005275201

961 9.95841330476,9.78469620638,10.6006495924

962 9.96859289333,9.78469620921,10.6004645813

963 9.97997666337,9.7846971658,10.6005103598

964 9.99015486799,9.78469716893,10.6002833874

965 10.0003043441,9.78469717175,10.6004092751

966 10.0104979631,9.78469717465,10.6002681336

967 10.0215107501,9.78469717736,10.6003434766

146 Relative Target Speed Action

968 10.0317392666,9.78469718043,10.6001575129

969 10.0418845266,9.78469718328,10.6002853081

970 10.0521001332,9.78469718621,10.6011102402

971 10.0633418076,9.78469718904,10.6030471586

972 10.0733523462,9.78469719216,10.6054962012

973 10.0835327292,9.78469719494,10.6072395241

974 10.0942299012,9.78469719777,10.6086738567

975 10.1043867432,9.78469720075,10.6097991991

976 10.1145114433,9.78469720358,10.6110208628

977 10.1243442921,9.78469720641,10.6128252226

978 10.135466883,9.78469625548,10.6155384353

979 10.1456415653,9.78469721226,10.6188496038

980 10.1557345763,9.7846972152,10.6213491944

981 10.1658059889,9.7846972179,10.6238430632

982 10.1767151132,9.78469722071,10.625891566

983 10.1868876955,9.78469722376,10.6281136389

984 10.1969034262,9.78469722661,10.6296881657

985 10.2070444329,9.78469722941,10.6312789052

986 10.2180322511,9.78469723225,10.6324662404

987 10.2282058364,9.78469723533,10.6337823224

988 10.2382965768,9.78469723817,10.6345233373

989 10.2490179213,9.784697241,10.6353253873

990 10.2590004569,9.7846972439,10.6357526434

991 10.269020929,9.78469629314,10.6362428411

992 10.2790121986,9.78469629585,10.6363544295

993 10.2902508453,9.7846953449,10.6360902695

994 10.3004050003,9.78469534809,10.6358919139

995 10.3107792214,9.78469535087,10.6352987353

996 10.3210722795,9.78469440004,10.6348409786

997 10.3323363736,9.78469440288,10.6340389445

998 10.3420093348,9.78469440601,10.6328106177

999 10.3521306571,9.78469440869,10.6314449602

1000 10.3627571231,9.7846944116,10.630198512

1001 10.3734444836,9.78469346086,10.6286297213

1002 10.3835925115,9.7846944177,10.6273250981

1003 10.3938243939,9.78469442047,10.6258173414

1004 10.4047230473,9.78469442338,10.6240749802

1005 10.4147492684,9.78469442646,10.6225033267

1006 10.424971614,9.78469538287,10.6208267682

1007 10.4351283442,9.78469538587,10.6193857672

1008 10.446583868,9.78469538862,10.6177597528

1009 10.4566360181,9.78469539186,10.6162443647

1010 10.4668071922,9.7846953947,10.6146994122

1011 10.4769615848,9.78469635124,10.6134310252

1012 10.4879293656,9.7846963541,10.6119966986

1013 10.4981588898,9.78469731086,10.6107721806

1014 10.5081620542,9.78469731364,10.609445619

1015 10.5193626666,9.78469731647,10.6084642879

1016 10.5296753002,9.78469731964,10.6071920857

Relative Target Speed Action 147

1017 10.5397608252,9.78469732256,10.6064424975

1018 10.5498588188,9.7846973254,10.6055222013

1019 10.5607479885,9.78469828192,10.6048994521

1020 10.5708572231,9.78469828498,10.6040592647

1021 10.5808847416,9.78469828782,10.6036568146

1022 10.5909925988,9.78469924431,10.6030817492

1023 10.6022444377,9.78469924716,10.6027889719

1024 10.612355643,9.78469925032,10.6032696258

1025 10.6223407155,9.78469925317,10.6035252122

1026 10.6324106362,9.78469925597,10.6040726234

1027 10.6432059081,9.7846992588,10.6044245316

1028 10.6532011759,9.78469926184,10.6050539598

1029 10.6630741283,9.78469926465,10.6054068221

1030 10.6738224439,9.78469831375,10.6059904741

1031 10.6840416789,9.78469831678,10.6064129557

1032 10.6943133017,9.78469831956,10.6071072348

1033 10.7046833746,9.78469832247,10.6085253542

1034 10.7156239841,9.78469737184,10.6111088651

1035 10.7259789612,9.7846973748,10.6141510946

1036 10.7362749726,9.78469737774,10.6166153975

1037 10.7465335261,9.78469738065,10.6191817441

1038 10.7578477934,9.78469738346,10.6213675746

1039 10.7681459403,9.78469738668,10.6238948224

1040 10.778252745,9.7846973896,10.6257592655

1041 10.7882831721,9.78469643879,10.627717169

1042 10.7988552107,9.78469644163,10.6293021855

1043 10.8088853909,9.78469549095,10.6310626792

1044 10.8188290652,9.78469549378,10.6333152691

1045 10.8297473434,9.78469549659,10.636462407

1046 10.8396770377,9.78469549967,10.6401245309

1047 10.8496260419,9.78469550247,10.6441252092

1048 10.8596237786,9.78469550528,10.649066212

1049 10.870388722,9.784695508,10.6542847354

1050 10.8803963829,9.78469551107,10.6605456278

1051 10.8904104494,9.78469551381,10.6662085656

1052 10.9004880721,9.78469551667,10.6711915337

1053 10.9117528964,9.78469551954,10.6759141492

1054 10.9218132636,9.78469552263,10.6804050241

1055 10.9319272358,9.78469552551,10.6841625211

1056 10.9419533107,9.7846955283,10.6872591216

1057 10.9525892558,9.78469553117,10.6900743879

1058 10.9625863545,9.78469648789,10.6923384306

1059 10.9726930317,9.78469649074,10.693706017

1060 10.9833586989,9.78469649351,10.6944575291

1061 10.9939568825,9.78469649656,10.6950669436

1062 11.0039641578,9.78469649959,10.694966823

1063 11.0141405547,9.78469554876,10.6947656112

1064 11.0249257497,9.78469650532,10.6939864716

1065 11.0348561499,9.78469746206,10.693050929

148 Relative Target Speed Action

1066 11.0448650606,9.78469746487,10.6916013536

1067 11.0550366463,9.78469746771,10.6900993254

1068 11.0664064931,9.78469747059,10.6880823113

1069 11.0765037006,9.78469747381,10.6858192495

1070 11.0865632901,9.78469747667,10.6832824804

1071 11.0966939768,9.78469652584,10.6808286801

1072 11.1073851539,9.78469557504,10.6788574389

1073 11.1172170602,9.78469653174,10.6764656262

1074 11.1271612952,9.78469558085,10.6738668647

1075 11.1378376568,9.78469558367,10.6713377209

1076 11.1485227477,9.78469558669,10.6682983603

1077 11.1586470064,9.78469558972,10.6654640391

1078 11.168834297,9.78469559249,10.6634861179

1079 11.1798497774,9.7846955954,10.6613174608

1080 11.1898151422,9.78469655221,10.6586509849

1081 11.1999222403,9.78469560138,10.6565014008

1082 11.2099073157,9.78469560425,10.6549564464

1083 11.2211683998,9.78469560709,10.6544920064

1084 11.2313568341,9.78469561029,10.6542421432

1085 11.2416040162,9.78469656686,10.6548706154

1086 11.2514375094,9.78469656976,10.6553751099

1087 11.2620121427,9.78469561879,10.6562162523

1088 11.2722499808,9.78469562181,10.6567445894

1089 11.2821118664,9.78469562473,10.6568237458

1090 11.2927410277,9.78469467378,10.6569954088

1091 11.3034962118,9.78469467683,10.6577135286

1092 11.3136733538,9.78469563358,10.6595455418

1093 11.3236250617,9.78469563648,10.6613832773

1094 11.3343706802,9.78469563932,10.6636978512

1095 11.3443873096,9.78469564228,10.667153022

1096 11.3544792011,9.78469564516,10.6705032887

1097 11.3644571183,9.78469564805,10.6743637729

1098 11.3757676743,9.78469469723,10.6779581825

1099 11.385804845,9.78469470045,10.6822182592

1100 11.3958346304,9.78469470331,10.6852738436

1101 11.4058724055,9.78469565984,10.6881882848

1102 11.4167251671,9.78469566269,10.6904666249

1103 11.4267726177,9.78469566577,10.6927134945

1104 11.4368361784,9.78469566863,10.6940782142

1105 11.447350462,9.78469662517,10.6952941608

1106 11.4580907514,9.78469662816,10.6968581991

1107 11.4681211933,9.78469663122,10.6992776852

1108 11.47822541,9.78469758775,10.7014396777

1109 11.4888301734,9.78469759063,10.7039469012

1110 11.4987602374,9.78469759355,10.7061632544

1111 11.508754516,9.7846975965,10.7082947298

1112 11.5189653747,9.78469664557,10.7098215752

1113 11.5301299691,9.7846966484,10.71117962

1114 11.5401691031,9.78469760519,10.7129687275

Relative Target Speed Action 149

1115 11.5501180217,9.7846976081,10.7139615144

1116 11.5601509549,9.78469856465,10.714893266

1117 11.5710247625,9.78469856745,10.7161883678

1118 11.5810803073,9.78469857059,10.7172040435

1119 11.591150362,9.78469857339,10.7182588189

1120 11.6014240142,9.78469952998,10.7187003809

1121 11.6124757091,9.78469953294,10.7189884008

1122 11.6224270919,9.78469953601,10.7184734263

1123 11.6327257575,9.78469858522,10.7177801131

1124 11.6434172289,9.78469858809,10.7163896629

1125 11.6536411336,9.78469859109,10.7147340904

1126 11.6637539426,9.78469859406,10.7124605354

1127 11.6738518765,9.78469764322,10.709644338

1128 11.6851043012,9.78469764606,10.7063093402

1129 11.695287982,9.78469764923,10.7025518639

1130 11.7053427212,9.78469765211,10.6986170023

1131 11.7154868832,9.78469765505,10.6947927661

1132 11.7263700012,9.784697658,10.6905632169

1133 11.7365314765,9.78469670747,10.6861343484

1134 11.7464229576,9.7846967104,10.6816644709

1135 11.7569700684,9.78469671324,10.6774892783

1136 11.7676031366,9.78469671627,10.6728029145

1137 11.7776435586,9.78469671932,10.6683568765

1138 11.7876650905,9.7846967222,10.6649150578

1139 11.7983728936,9.78469672507,10.6625566143

1140 11.8085845551,9.78469672803,10.6603431288

1141 11.8184694247,9.78469673098,10.6590508943

1142 11.828445985,9.78469673372,10.6576919023

1143 11.8396064732,9.78469673671,10.6566666969

1144 11.8498754147,9.7846967398,10.6552256886

1145 11.8599188775,9.7846957891,10.6541804567

1146 11.8698337693,9.78469674566,10.6528739177

1147 11.880724417,9.78469674842,10.6517848169

1148 11.8907966884,9.78469675157,10.6503380877

1149 11.9006201513,9.78469580081,10.6492871346

1150 11.9110223083,9.78469580354,10.6480273265

1151 11.921778026,9.78469580656,10.6469105699

1152 11.931896735,9.78469580956,10.6455229698

1153 11.941848929,9.7846958125,10.644526377

1154 11.9522457318,9.78469486171,10.6433352341

1155 11.9623916475,9.7846948646,10.6423415025

1156 11.9724819409,9.78469582122,10.6411722944

1157 11.9824874382,9.78469582404,10.6402825139

1158 11.9935739571,9.78469487337,10.6392182107

1159 12.0037221657,9.78469487645,10.6383293839

1160 12.0136982994,9.78469487939,10.6373099037

1161 12.0236985767,9.78469488218,10.6366003682

1162 12.034309349,9.78469488509,10.635722986

1163 12.0442930488,9.78469584173,10.6350821155

150 Relative Target Speed Action

1164 12.0541869169,9.78469584464,10.6343020085

1165 12.064686737,9.78469584751,10.6338060971

1166 12.0751652075,9.78469585044,10.6331165896

1167 12.0851807417,9.7846958535,10.6327646836

1168 12.0951327607,9.78469680998,10.6322496991

1169 12.1057129372,9.7846958592,10.6315916637

1170 12.1158609781,9.78469681585,10.6307457539

1171 12.1258434681,9.7846968188,10.6302984809

1172 12.1358401207,9.78469586803,10.6297072027

1173 12.1470290087,9.78469587083,10.6294106107

1174 12.1571742585,9.78469587409,10.6289223301

1175 12.1674451092,9.78469683071,10.6288927676

1176 12.1776540698,9.78469683358,10.6286839142

1177 12.1886466173,9.78469683655,10.6287897738

1178 12.1987823388,9.78469683975,10.6287220648

1179 12.208889354,9.78469684258,10.629035826

1180 12.2195749283,9.78469684552,10.6291617135

1181 12.2303555151,9.78469684873,10.6295880094

1182 12.2403916745,9.78469589815,10.6298121258

1183 12.2504393132,9.78469590103,10.6303576313

1184 12.26125554,9.78469590391,10.6307124018

1185 12.2711291099,9.78469590702,10.6313637659

1186 12.2812328814,9.78469590986,10.6317500079

1187 12.291273321,9.78469591277,10.6319684036

1188 12.3024088787,9.78469591565,10.6320036935

1189 12.3123337347,9.78469687253,10.6318577858

1190 12.3224466164,9.78469687529,10.6321095605

1191 12.3323409501,9.78469592455,10.6330823138

1192 12.343305761,9.78469688099,10.6340111983

1193 12.3534187572,9.78469688419,10.6354445778

1194 12.3633984039,9.78469593345,10.6364983943

1195 12.3738444513,9.78469593635,10.6377477147

1196 12.3848342011,9.78469593917,10.6388043928

1197 12.3947774554,9.78469594241,10.6401557575

1198 12.4048252227,9.78469594532,10.6421365477

1199 12.4154791227,9.78469594824,10.6451444472

1200 12.4257095912,9.78469595113,10.6486463513

1201 12.435612658,9.78469690782,10.6527652841

1202 12.4456913527,9.78469786439,10.656679177

1203 12.4568030592,9.78469786724,10.6609745412

1204 12.4669287521,9.7846978705,10.6652956563

1205 12.4768360471,9.78469787335,10.6693192243

1206 12.4869002383,9.78469787617,10.6727333942

1207 12.4978871755,9.78469883281,10.676094159

1208 12.5079703201,9.7846997897,10.6791716836

1209 12.517921228,9.78469979245,10.6819230504

1210 12.5276678381,9.78469979539,10.6841098414

1211 12.5388777843,9.78469979826,10.6861469052

1212 12.5489937691,9.78469980143,10.6888420074

Relative Target Speed Action 151

1213 12.5589893721,9.78469885063,10.6907293445

1214 12.5696154619,9.78469789981,10.6920501983

1215 12.5798949013,9.78469790285,10.6933395817

1216 12.5900643012,9.78469790569,10.6939871404

1217 12.5999913774,9.78469790874,10.6945736636

1218 12.6112778476,9.78469791159,10.6946270815

1219 12.6214415003,9.78469696115,10.6946185115

1220 12.6314815488,9.78469791774,10.6940177069

1221 12.6414842233,9.78469792063,10.693436929

1222 12.6523827724,9.78469792351,10.6924002937

1223 12.6623706762,9.78469792675,10.6912749666

1224 12.6722995741,9.7846979297,10.6897624456

1225 12.6824809583,9.78469793252,10.6878922957

1226 12.6937029604,9.78469793552,10.6860526629

1227 12.7038135417,9.78469793882,10.6836312879

1228 12.7140285531,9.78469794167,10.6816600463

1229 12.7247829204,9.78469794467,10.680282944

1230 12.7349909423,9.78469794772,10.6786349974

1231 12.7451203717,9.78469699705,10.6774095282

1232 12.7551433304,9.78469699992,10.6758445502

1233 12.7663156018,9.78469700288,10.6744378819

1234 12.7762094587,9.78469700605,10.6725438852

1235 12.7863326203,9.78469700887,10.6705659645

1236 12.7963394625,9.78469701186,10.6683171996

1237 12.8071003603,9.78469606103,10.665892004

1238 12.8169879308,9.7846960641,10.663085338

1239 12.8270686027,9.78469606694,10.6608432475

1240 12.8371102512,9.78469606993,10.6583818109

1241 12.8480406869,9.7846960728,10.6558002109

1242 12.857961121,9.78469607593,10.6528657504

1243 12.8680291092,9.78469703255,10.6501143954

1244 12.8780148914,9.78469703542,10.6472514599

1245 12.8888102276,9.78469703838,10.6447947898

1246 12.8989335168,9.78469704145,10.6420768124

1247 12.9090175638,9.78469704435,10.6400054268

1248 12.9200899675,9.78469704744,10.6378653761

1249 12.9301531706,9.78469609689,10.6354897671

1250 12.9400056619,9.78469609976,10.6333068009

1251 12.9500472657,9.78469610268,10.6315911358

1252 12.9608270731,9.78469610553,10.6298220646

1253 12.97085483,9.78469610872,10.627927108

1254 12.9810164068,9.78469611157,10.6261685275

1255 12.9907563627,9.78469611457,10.6248381471

Listing B.2: Results obtained with the script present in listing B.1.

	Front Page
	Conteúdo
	Lista de Figuras
	Lista de Tabelas
	1 Introduction
	1.1 Context
	1.2 Motivation
	1.3 Goals
	1.4 Document Structure

	2 Literature Review
	2.1 Autonomous Driving
	2.1.1 System Architectures
	2.1.2 Sensors
	2.1.3 Localization & Mapping
	2.1.4 Perception
	2.1.5 Assessment

	2.2 ros
	2.2.1 Design Goals
	2.2.2 Nomenclature

	2.3 OpenSCENARIO
	2.3.1 Entities
	2.3.2 Storyboard
	2.3.3 Events & Triggers & Actions
	2.3.4 Re-Use Mechanisms

	2.4 Urban Driving Simulators
	2.4.1 Comparison
	2.4.2 Overview

	2.5 carla Simulator
	2.5.1 Unreal Engine 4
	2.5.2 ros Bridge

	2.6 Conclusion

	3 Approach and Work Plan
	3.1 Research Approach
	3.2 Work Plan

	4 WP1: Scenario Configuration
	4.1 Scenario Runner
	4.2 Parameters
	4.2.1 Implementation

	4.3 Catalogs
	4.3.1 Implementation

	4.4 Entities
	4.4.1 Entities in carla
	4.4.2 Implementation
	4.4.3 Vehicle

	4.5 Storyboard
	4.5.1 Implementation
	4.5.2 Init
	4.5.3 Story
	4.5.4 Act
	4.5.5 ManeuverGroup
	4.5.6 Maneuver
	4.5.7 Event
	4.5.8 Daytime Animation
	4.5.9 Naming

	4.6 Actions
	4.6.1 Global Actions
	4.6.2 Private Actions
	4.6.3 Environment Action
	4.6.4 Entity Action
	4.6.5 Parameter Action
	4.6.6 Longitudinal Action

	4.7 Conclusion

	5 WP2: Scenario Constructor
	5.1 Objectives
	5.1.1 Main Canvas
	5.1.2 Side Bar
	5.1.3 Attribute Window

	5.2 Implementation
	5.2.1 Visual Architecture
	5.2.2 Functionality

	5.3 Content
	5.3.1 OpenSCENARIO Elements

	5.4 Conclusion

	6 Conclusions & Future Work
	6.1 Summary
	6.2 Future Research Directions

	References
	A Absolute Target Speed Action
	B Relative Target Speed Action

