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Abstract

When subjected to large deformations, hyperelastic materials, such as soft tissues and
other biological materials, present a highly nonlinear behaviour, which often makes their
constitutive modelling complex and computationally expensive. Surrogate models can
replace these traditional and costly models and overcome some computational limitations
by learning directly from acquired data.

To develop the surrogates, Artificial Neural Networks (ANNs) were trained from a
large dataset with the deformations (inputs) and the corresponding stress and elasticity
tensors (outputs), where two material models were considered: the Neo-Hookean model
for an isotropic material and the Holzapfel-Gasser-Ogden model for transversely isotropic
materials. Then, the weights and biases of the trained models were used to write the
forward pass equations in a Fortran subroutine. By adopting this approach, it is possible
to define a material of interest in a finite element (FE) software without directly expressing
its constitutive equations.

The proposed method was used to create user-defined materials (UMATs) in the finite
element software Abaqus and the results obtained with the proposed approach for some
benchmark problems were compared with the ones obtained with conventionally defined
UMATs. The results obtained in the numerical examples highlight the possibility of using
a data-driven approach to describe the constitutive behaviour of hyperelastic materials
instead of using a classical approach and show that creating a material in a FE software
with the proposed approach can be a viable alternative, where there is no need to directly
express the material’s constitutive equations.
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Resumo

Quando submetidos a grandes deformações, materiais hiperelásticos, como tecidos moles
e outros materiais biológicos, apresentam um comportamento altamente não linear, o que
muitas vezes torna a descrição do seu comportamento constitutivo numa tarefa complexa
e computacionalmente cara. Surrogate models podem substituir os modelos tradicionais
e caros e superar algumas limitações computacionais aprendendo diretamente com dados
adquiridos.

Para desenvolver os surrogate models, redes neurais foram treinadas a partir de um
grande conjunto de dados com as deformações (inputs) e o correspondente tensor de tensão
e de elasticidade (outputs), onde foram considerados dois modelos de materiais: o mod-
elo Neo-Hook para um material isotrópico e um modelo para materiais transversalmente
isotrópicos. Em seguida, os pesos e vieses dos modelos treinados foram usados para escrever
as equações do forward pass numa sub-rotina Fortran. Adotando esta abordagem, é pos-
sível definir um material de interesse num software de elementos finitos, sem a necessidade
de expressar diretamente as equações constitutivas.

O método proposto foi usado para criar materiais (UMATs) no software de elementos
finitos Abaqus e os resultados obtidos com a abordagem proposta para alguns proble-
mas de referência foram comparados com os obtidos com UMATs definidas convencional-
mente. Os resultados obtidos nos exemplos numéricos destacam a possibilidade de usar
uma abordagem baseada em dados para descrever o comportamento constitutivo de ma-
teriais hiperelásticos em vez de usar uma abordagem clássica e mostram que a criação de
um material num software FE com a abordagem proposta pode ser uma alternativa viável,
onde não há necessidade de expressar diretamente as equações constitutivas do material.
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Chapter 1

Introduction

1.1 Context

Bioengineering applies concepts and knowledge from multiple engineering and medical
sciences to solve healthcare-related problems, improving patient care, diagnosis, and treat-
ment. It is also responsible for the design, development, and improvement of medical
devices, equipment, and technologies. There are many subfields within biomedical engi-
neering such as medical imaging, medical instrumentation, biomaterials, prosthetics, tissue
engineering and biomechanics [1]. From these subfields, biomechanics is of particular rele-
vance and has attracted more interest over the past years.

Biomechanics plays a crucial role in many different areas, such as rehabilitation, er-
gonomics, orthopaedics, prosthetics and sports performance. To better define it, it is first
important to look at the definition of biology and mechanics. Biology studies living things,
and mechanics studies motions and the applied loads that cause them. Thus, Biomechan-
ics can be defined as the study of the motions experienced by living things in response
to applied loads. More precisely, it can be viewed as the development, extension, and
application of mechanics to better understand how different loading conditions influence
the structure, properties, and function of living things [2].

Biomechanical phenomena are analysed with engineering and biophysical principles.
Such analyses have applications in several areas (pathophysiology [3–5], dentistry [6–8],
orthopaedics [9–11]) and usually require simulations with computational approaches, such
as the finite element (FE) method [12]. With these computational capabilities, it is possible
to model and simulate biological components and analyse the interaction between them and
the effects of loading conditions on stresses and strains. The simulations can be handled
numerically, but they are complex and involve nonlinear multi-physics equations, making
them computationally expensive [13].

To solve these analyses, it is necessary to have the domain of interest properly defined
(geometry), to get the constitutive equations that characterize how the material behaves
under certain conditions and to define the applied loads and boundary conditions. From
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these three stages required, identifying a proper and robust constitutive model is prob-
ably the most challenging one. The materials involved in biomechanics simulations are
usually hyperelastic materials, such as soft tissues and other biological materials and they
are extremely nonlinear and subjected to large deformations, making their constitutive
modelling expensive in terms of time and computational resources [12, 14]. Standardly, to
obtain such a constitutive model, the following procedure is used [2]:

• Delineate general characteristic behaviours;

• Establish an appropriate theoretical framework;

• Identify specific functional forms of the constitutive relation;

• Calculate the values of the material parameters;

• Evaluate the predictive capability of the final constitutive relation;

This approach requires a high level of expertise, particularly in the first three steps,
and was the golden standard for many years. Hyperelasticity theory was used to model
the mechanical behaviour of soft biological tissues, and many constitutive models (some of
them are introduced in Chapter 3) were proposed in the literature and have been widely
used in many applications. These models consider a strain energy function (SEF) of a
specific functional form constructed a priori and their material parameters are adjusted to
describe the constitutive behaviours of different subjects, without the need to derive new
constitutive equations [14].

These SEFs can be derived from phenomenological or micro-mechanically inspired
mathematical expressions. Phenomenological models try to capture the appropriate func-
tional forms of stress-strain curves observed in experiments, whereas micro-mechanically
motivated models are based on physical and geometrical phenomena at the microstructural
level of the material. Additionally, SEFs can also be classified based on their arguments.
The simplest ones are based on the principal invariants, such as the Neo-Hookean model
proposed by Treloar [15].

Recently, Machine Learning (ML) techniques are emerging as a promising solution
and alternative for many problems and leading to a breakthrough in many fields [16–24],
including a lot of works in biomechanics [25–29]. In addition, Deep learning (DL), which is
a subset of ML, has also been used to estimate material properties [30–32] and to establish
data-driven constitutive modelling as an alternative to the conventional approach.

Data-driven constitutive modelling might overcome some challenges posed by the clas-
sical approaches by providing a flexible form that can be determined directly from experi-
mental data. One of the first works that employed data-driven constitutive modelling was
the ones from Ghaboussi et al. [33] and Wu et al. [34], where a neural network (NN) was
trained with experimental data to obtain stresses from strains. The material model used in
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the FE method updates the stresses based on the current stress–strain state and strain in-
crement and calculates the material stiffness matrix for the constitutive relation. The work
from Ghaboussi et al. did not accomplish the second function, which led Hashash et al.
[35] to propose an explicit formulation of the material stiffness matrix for NN constitutive
material models. Afterwards, many authors proposed different data-driven constitutive
models for hyperelastic materials [36–40] and even extended them to anisotropic hypere-
lastic materials [41–43].

The emerging field of data-driven constitutive modelling can be divided into two major
branches. One uses geometric information about the microstructure of a material and
creates representative volume elements that exhibit a behaviour similar to the macroscopic
behaviour of the material. This branch of data-driven constitutive modelling can describe
the mechanical behaviour of a wide range of materials, but it is computationally expensive
[36]. The other one is focused on the relationship between stress and strain and often uses
ML tools to build surrogates, which are fast and straightforward models that approximate
the original model input-output relation. They use data to learn and replace expensive
numerical models, reducing the computational effort. They usually come with a trade-off
between accuracy and computation effort, but they still are becoming an interesting option
in many engineering fields, particularly when used in combination with FE models [44].
In the field of biomechanics, complex FE models have already been replaced by ML-based
surrogate models to predict stress distribution [28, 45] and to predict the biomechanical
behaviour of organs [46, 47].

This work falls into the second branch, and a hybrid approach between purely data-
driven and expert modelling is followed. The models already developed by experts obey
physical-based principles relevant to soft tissues and include knowledge about mechanical
behaviour and underlying microstructure properties. Stress-strain data is generated as-
suming different material models proposed in the literature and is then used to train a ML
model that outputs stresses and the material stiffness matrix from a given deformation
gradient. More specifically, fully connected NNs are trained for two material models: the
Neo-Hookean model and a model for transversely isotropic materials. Afterwards, the sur-
rogate model is used in Abaqus, which provides capabilities to model the problem, manage,
monitor and visualize the results obtained, and the FE method is employed. Figure 1.1
shows a flow of data and actions from the start of the Abaqus analysis to the end of the
step, with detail in the way the element stiffness is calculated. The convention used was
that for decision points or specific states, a rounded rectangular box was used, whereas,
for actions taken during the analysis, a rectangular box was used.
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Figure 1.1: Abaqus flowchart
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The stresses σ and the element stiffness matrix K are calculated in a user-defined
material (UMAT) subroutine, where the constitutive behaviour of the material is defined.
Abaqus has some of the most common materials implemented, but for complex problems
and in the field of bioengineering, it is often necessary to develop a UMAT with the
constitutive equations that model the material in analysis. The UMAT subroutine is
called at each integration and it takes as input the deformation gradient matrix F and the
user must compute the Cauchy stress tensor σ (named STRESS in the software) and a
consistent tangent matrix K (named DDSDDE).

Usually, building a UMAT subroutine is a complicated task that requires the formu-
lation of mathematical equations that model the desired material, but with a surrogate
model, the task is easier. A trained ML model can be embedded in UMAT subroutine to
calculate the isochoric parts of the stress and the material stiffness matrix, which eliminates
the need to express analytically the constitutive equations that describe the behaviour of
the material in analysis.

1.2 Motivation and Goals

This work is intended to explore the potential advantages of data-driven constitutive mod-
elling of hyperelastic materials as an alternative to the conventional way to model their
mechanical behaviour, based on phenomenological or physically based models proposed in
the literature.

Expressing the constitutive equations in a Fortran subroutine is required to define a
UMAT in Abaqus, which can be a complicated task because it is necessary to calculate
many partial derivatives and Fortran does not have a built-in function for differentiation.
This was the difficulty that motivated this dissertation, where the main goal is to develop
surrogate models based on ML algorithms to describe the mechanical behaviour of hypere-
lastic materials and to use them in Abaqus to employ the FE method. To accomplish this
fundamental goal, the following smaller objectives were defined:

1. Design and train ML models for a Neo-Hookean material to predict the stresses and
the material stiffness matrix;

2. Hyperparameter tuning to improve the accuracy of the prediction;

3. Use a more complex model for the SEF that can deal with transversely isotropic
materials;

4. Integrate the trained surrogate models in a UMAT to employ the FE method in
Abaqus;

5. Validate this framework with the comparison of the results obtained with this ap-
proach with the results obtained with a conventional UMAT for some numerical
examples.
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1.3 Dissertation Outline

Chapter 2 of this dissertation gives an overview of ML. The different categories of ML
are explained, with a focus on DL, mainly Artificial Neural Networks (ANNs). To do so,
the principles behind such algorithms are explained, with special detail in the activations
functions, the loss functions and the optimization processes used in backpropagation.

Chapter 3 gives an overview of the principles of Continuum Mechanics and of the FE
method, which are fundamental for computational simulations in the bioengineering field.
Firstly, the kinematics, motion and deformation are introduced. Then, the most important
stress tensors are exposed, followed by the conservation principles and the constitutive
modelling of hyperelastic materials. Finally, the FE method is briefly addressed.

Chapter 4 explains the process and the reasoning applied to obtain the surrogate mod-
els. The first stage was to generate the data required to feed the ML algorithms, and then
the ML models were designed and trained after a hyperparameter tuning.

Chapter 5 explains the integration of the trained surrogate models in Abaqus and
presents the results obtained for some numerical examples, where the results obtained
with a ML-based UMAT and a conventional UMAT are compared. Chapter 6 includes the
final remarks and suggestions for future works.
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Chapter 2

Machine Learning

Artificial Intelligence (AI) is the ability of computer systems to perform tasks commonly
associated with human intelligence and it is divided into two main categories depending
on the "level of intelligence": weak or narrow AI and strong or general AI. Weak AI is
designed to perform specific tasks and solve individual problems with a satisfactory level
of accuracy. ML is a subfield of AI that falls into this category, which relies on advanced
algorithms and models to improve performance automatically and autonomously in certain
tasks, without the need for explicit programming. It requires data and iterative processing
to get experience and to identify and learn patterns that enable the algorithm to make
decisions and predictions [48, 49].

The first ML algorithms date back to the 1950s, when Alan Turing proposed a test
for machine intelligence. This was the foundation for most of the ideas and techniques
behind modern ML. Afterwards, Arthur Samuel developed a program to play checkers,
often considered the first ML algorithm. Since then, the interest in ML has grown rapidly,
with a substantial increase in the publications about the topic [48], and the recent advances
in AI and computing power have enabled the application of ML to a variety of fields [49].

ML approaches can be divided into several classes and categories, depending on the
learning method and the purpose of the algorithm [48, 49]:

Supervised learning The goal of these algorithms is to learn a function that maps an
input to an output based on labelled training data. It is a task-driven approach often used
for classification and regression problems. A good performance can be achieved, but it
requires a large amount of labelled data, with quality and representative of the diversity
present in the operational environment.

Unsupervised learning These algorithms receive unlabelled data and try to find its
structure and patterns. This means that in this category, the algorithms are trained
without a specific output in mind, which makes them an interesting choice for clustering.
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Semi-supervised learning It uses a combination of labelled and unlabelled data. It
is a mixture of the two previous categories and it is useful for real-world scenarios, where
labelled data may be rare and unlabelled data is widely available.

Reinforcement learning It has an environment-driven approach. They evaluate the
optimal behaviour in a particular environment to improve efficiency and are trained to
make decisions based on positive and negative feedback, given in the form of rewards for
good decisions and penalties for poor ones.

Deep learning These algorithms are inspired by the information-processing patterns
found in the human brain. They learn hidden properties and relationships in data and
reduce the need for feature extraction and preliminary data processing. However, these
advantages only appear if there are large amounts of training data and the NN architecture
is correctly chosen. In this category, there are three main types: feed-forward NNs, recur-
rent NNs and convolutional NNs. This category is going to be the focus of this chapter
since the models trained in this work belong to this category.

2.1 Artificial Neural Networks

To understand the logic behind ANNs, it is important to first introduce the concept of
perceptrons. They were developed in the 1950s by Frank Rosenblatt and consist of a node
that receives input values. These inputs are multiplied by a corresponding weight value,
which is a number between zero and one that expresses the importance of the respective
input [50]. Afterwards, the weighted inputs are summed, giving the output value of the
node, which is passed as input to the next layer. Thus, the output yk of a perceptron k,
as the one of Figure 2.1, with n inputs can be expressed as

yk =
n∑

i=1

xiwi (2.1)

where xi is the ith input and wi is the corresponding weight.
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Figure 2.1: Scheme of a perceptron

A single perceptron can only solve linear problems, but if multiple layers of many
perceptrons are used, more complex problems can be solved. The perceptrons, also known
as neurons, process and transmit information and are usually grouped and assembled into
layers called hidden layers. The simplest ANN has only one hidden layer, connecting the
input layer to the output layer. If there are two or more hidden layers, the algorithm falls
into the category of DL. The information from the inputs is passed to the first hidden layer
after a series of mathematical computations. This process continues until the last hidden
layer produces the output of the model.

In multilayer perceptron, the inputs are fed into all neurons of the first hidden layer
and the corresponding outputs from this layer serve as input of the following hidden layer.
This process continues until the last hidden layer is reached, where its output corresponds
to the outputs of the model. A scheme of a general NN can be seen in Figure 2.2.
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Figure 2.2: Scheme of a multi-layer perceptron
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2.1.1 Activation Functions

Another way to solve more complex problems with non-linear relationships between inputs
and outputs is to use activation functions. They introduce non-linearity into the network,
and many of them can be found in the literature. Some of the most used ones are [50]:

Sigmoid This function converts input values into a value between 0 and 1, where most of
the outputs from this activation function are going to be close to the extremes. A plot with
the graphical representation of the sigmoid activation function can be found in Figure 2.3a,
where it is notorious that it is S-shaped.

Hyperbolic Tangent This function is given by the hyperbolic tangent (tanh), defined
by the ratio between the hyperbolic sine and the hyperbolic cosine, and it maps the input
to a value between -1 and 1. In comparison with the sigmoid function, this activation
function has a steeper gradient around zero and it can give negative values as shown in
Figure 2.3b.

Rectified Linear Function (ReLU) It has a linear behaviour if the input is greater
than zero. However, the inputs with negative values are mapped to zero. This activation
function is one of the most widely used in many applications, particularly for the hidden
layers. Its graphical representation can be found in Figure 2.3c.

Leaky ReLU This function is similar to the ReLU but prevents one of its main problems,
which is the so-called "dying ReLU". The previous activation function has a null derivative
when the input is below 0, meaning that in backpropagation, which is going to be explained
afterwards, numerous nodes can have a negative input and, consequently, do not contribute
to the final output. To tackle this problem, the Leaky ReLU adds a slope to the ReLU
function in the negative domain, as it is possible to see in Figure 2.3d.

Pass-Through This is a linear activation function since it keeps the input of the neuron
unaffected and they can be used, for example, in the output layer of regression NNs.
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Figure 2.3: Activation functions

The training of a NN can be divided into two processes: forward propagation and
backward propagation. The former is the process that goes through the architecture of the
network from left to right to reach a certain output, and the latter goes from right to left
and is essential for DL algorithms. Some specifications about forward propagation were
already presented, but there is still an important concept to be introduced. To facilitate the
training process, reduce the impact of noisy data and prevent problems such as overfitting,
it is common to use biases, which are numerical values that shift the activation function
of each perception [50, 51]. Thus, the fundamental equation for the forward propagation
of a perceptron k is given by

yk = f

(
m∑
i=1

xiwi + bk

)
(2.2)
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where b is the bias and f is an activation function.

2.1.2 Backward Propagation

If there was only forward propagation, the prediction obtained would be far from the
desired output because the values of the weights and biases were arbitrarily chosen. This
is why there is backward propagation, which is based on the calculation of a loss function
L that estimates the error between the prediction of the model and the true/desirable
value. As is with activation functions, there are also many loss functions proposed in the
literature. Some of the most relevant ones are listed below.

Mean Squared Error (MSE) It measures the average squared difference between the
predicted output value from the model and the true or desired one. This loss function is
often used in regression models, is sensitive to outliers and can be calculated as

MSE =
1

N

N∑
i=1

(yi − ŷi)
2 (2.3)

where N is the number of samples, ŷi is the predicted value and yi the true value.

Mean Absolute Error (MAE) It is the average absolute difference between the pre-
dicted and desired values and contrarily to the MSE, MAE is not sensitive to outliers,
which means that this loss function can be useful when dealing with unclean data since it
does not give extra importance to large errors. The formulation is very similar to the one
from the MSE and it is given by

MAE =
1

N

N∑
i=1

|yi − ŷi|. (2.4)

Huber Loss This loss function is in between the previous ones, combines the benefits of
each one and is commonly applied in regression problems. It uses the MAE if the absolute
error is higher than a certain threshold and it uses MSE otherwise. As a consequence, a
balanced evaluation criterion is obtained, where the outliers are not disregarded, but they
also do not disturb the model completely. This loss is given by

Li =
1

N

N∑
i=1

{
1
2(yi − ŷi)

2 if |yi − ŷi| ≤ δ,

δ
(
|yi − ŷi| − 1

2δ
)

if |yi − ŷi| > δ
(2.5)

where δ is a parameter that can be adjusted according to the application’s need.
In Figure 2.4 it is shown a comparison of the different loss functions introduced.
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Figure 2.4: Comparisons between loss functions used in regression models

The loss function chosen is always dependent on the weights and biases of each neu-
ron of every layer, which means that the loss function can be viewed as a surface in a
multidimensional space where the axes are those weights and biases. The main goal in
backpropagation is to reach a global minimum, where the loss function has the lowest
possible value. However, the loss function is not a smooth surface most of the time, which
introduces the risk of getting a local minimum during the process of minimization, often
called optimization.

Different algorithms can be used for the optimization process, with some of the most
widely used being the ones listed below [51].

Gradient Descent This algorithm is an iterative process that calculates the partial
derivatives of the loss function with respect to the weight and biases. After the calculation
of the gradients of each neuron, they are multiplied by a learning rate and the weights and
biases are updated in the opposite direction of the gradient. The parameters of the NNs
are updated as

wi := wi − η∇wL (2.6)

where ∇wL is the gradient of the loss function with respect to the weight of the neuron
and η is the learning rate.

Stochastic Gradient Descent It is also an algorithm based on the gradients of the
loss function. In gradient descent, the gradient is computed for the whole training dataset,
which can be computationally costly. Alternatively, in this algorithm, the gradient is
calculated for random batches of the training data, which makes this algorithm better
for large datasets and can be a way to avoid local minimums. The size of the batches is
another hyperparameter of ML algorithms that should be carefully chosen to reach the
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better results possible. Choosing a small value for the batch size can generally give better
and faster results, but also leads to stability problems.

Adaptive Moment Estimation (ADAM) It is a combination between stochastic gra-
dient descent and two other optimization methods proposed in the literature, the adaptive
gradient algorithm and the root-mean-square propagation. The main difference to the pre-
vious optimization algorithm is that ADAM uses different learning rates for each weight. It
computes individual adaptive learning rates from estimates of the first and second moments
of the gradient for each weight and bias [52].

2.1.3 Learning Rate

The learning rate is an important hyperparameter in ML algorithms because it controls
the size of each step taken in the optimization process and it prevents possible convergence
problems due to over or undershooting. If the learning rate is too low, it is likely that the
training is going to take too much time to converge and the desired minimum loss value is
not reached, as it is shown in a simple example shown in Figure 2.5a. On the opposite side,
if the learning rate has a higher value, there is a risk of not reaching the minimum value
for the loss function, or it can even diverge (Figure 2.5b). If the learning rate is chosen
properly, the minimum loss function can be reached, as it is shown in Figure 2.5c.
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Figure 2.5: Influence of the learning rate in the value of the loss function

2.2 Hyperparameters

In this section, some hyperparameters of ML algorithms were introduced, such as the learn-
ing rate and the batch size. Contrarily to the weights and biases, the hyperparameters can
not be learned directly by the model and they need to be set at the beginning of the train-
ing stages. The number of layers and the number of neurons of each hidden layer are also
hyperparameters that have to be chosen before the training process. For complex models,
it is important to find the best hyperparameters to archive the best performance on the
data in a reasonable amount of time. This process is called hyperparameter optimization
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or tuning. Unfortunately, the relationship between the hyperparameters and the perfor-
mance of ML algorithms is not clear and it is necessary to train the model with different
combinations of hyperparameters and then compare the performance to choose the best
one [53].

There are two main types of hyperparameter optimization methods: manual search
and automatic search. The former requires experience and relies on intuition. In addition,
the number of possible hyperparameters can be quite large, which makes the process of
manual search hard to manage and time inefficient [53]. The automatic search methods
overcome these drawbacks and many different algorithms have been proposed, such as the
ones listed below:

Grid Search This method is based on an exhaustive search between a set of values
defined for the hyperparameters. It trains the model with each combination possible from
the values given for the hyperparameters and evaluates the model based on performance
metrics. It is simple and effective if the hyperparameter space is small. Although, its
efficiency decreases dramatically as the number of hyperparameters and its possible range
increase [53].

Random Search This algorithm tries a random combination of the possible values for
the hyperparameters and is particularly efficient when only a few hyperparameters have
significant importance. Thus, it improves efficiency by reducing the search for hyperparam-
eters of lower significance and can be a good alternative to grid search in a high-dimensional
space. However, for complex models, the random search can be unreliable [53].

Bayesian Optimization Bayesian optimization uses a probabilistic surrogate model
to relate the hyperparameters and the unknown objective function. This model is then
iteratively refined based on new observations, balancing exploration and exploitation, and
the process ends when convergence is reached or a stopping criterion is met. In this way,
there is more focus on promising regions of the hyperparameter space and, consequently,
more efficiency. Usually, it is assumed that the optimization function obeys a Gaussian
distribution [53, 54].

In this work, an optimization software called Optuna [55] was used. It uses a variant of
the Bayesian optimization called Tree-structured Parzen which operates with the ratio of
Parzen estimators for good and bad observations instead of the standard Gaussian process.
Thus, after defining the hyperparameter space, the objective function is evaluated with a
chosen set of hyperparameters and afterwards, two probability distributions are calculated,
one for good configurations and another for bad ones. Finally, a new set of hyperparameters
is sampled from the good and the bad configuration and the selection is done according to
the highest ratio between the good and the bad distribution. The process is then repeated
until the stopping criterium is reached [55, 56]. Optuna has three main design features:
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Define-by-run style Application Programming Interface This allows the users to
define the parameter search space without the need to explicitly define everything about
the optimization strategy in advance. This is possible because Optuna formulates the
hyperparameter optimization as a process of minimization/maximization of an objective
function that takes the hyperparameters as input. Each optimization process is a study,
and each evaluation of the objective function is a trial. An objective function is defined
and the hyperparameters for each trial can be dynamically generated with the suggest

Application Programming Interface (API) and then the optimize API can be invoked with
the objective function as input [55].

Efficient pruning and sampling mechanism The efficiency of the searching and per-
formance estimation strategies is key for a cost-effective optimization method. Regarding
the searching strategy, there are generally two types of sampling methods: relational sam-
pling, which uses the correlation between parameters, and independent sampling, which
samples each parameter independently. Optuna is able to use both of them and handle
various sampling methods. Considering the performance estimation strategies, Optuna
has a strategy to stop unpromising trials, which is often referred to as pruning, which is
different from the early stopping mechanism also used in ML to prevent overfitting, as
addressed before. The pruning algorithm is extremely important to reduce the cost of the
tuning process and it can be divided into two phases: one that checks periodically the
intermediate objective and another that terminate the trials with unpromising results [55].

Easy to set up Optuna has a versatile architecture that can handle a wide range of
problems. Optuna provides visualization and analysis of studies in real-time and by default,
it uses its built-in in-memory data structure as the storage back-end [55].
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Chapter 3

Continuum Mechanics

This chapter covers the fundamental aspects and concepts related to the mechanics of
continuum bodies in motion. Continuum mechanics allow for the explanation of many
physical phenomena without the need for a deep knowledge of the internal microstructure.
It studies the kinematics (motion and deformation), the stress state in a continuum body
and the balance principles. These three topics are the ones that are going to be addressed
in this chapter, as well as the FE method. The chapter summarizes information from [57]
and [58], where a more detailed explanation can be found.

3.1 Kinematics

Kinematics describes the motion and the deformation of a body in space, considering the
time dependency and without consideration of the forces that cause them. It defines many
important quantities and constitutive relations that are essential to characterize motion
and deformation.

3.1.1 Motion

With a continuum approach and assuming the continuum theory, bodies have a continuous
distribution of matter in space and time and can be considered composed of an infinite
number of particles. Each region that the body occupies in space is called a configuration,
and there are two with significant relevance: the reference and the current configurations.
The former is usually the configuration occupied by the material at time t = 0, in which
case is called initial configuration denoted by Ω0 and the latter is the configuration of the
body at a given time t > 0 and denoted by Ω.

A set of vectors can identify each configuration and define a particle of the body. The
components of each one of these vectors are known as the material coordinates (X1, X2,
X3) if they define a particle in the reference configuration, whereas the ones that define a
particle in the current configuration are called spacial coordinates (x1, x2, x3).
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The motion of a continuum can be described by

x = ϕ(X, t) (3.1)

where ϕ is a vector field that carries each point of the reference configuration to the current
configuration.

If the motion is invertible, the reference configuration can be obtained as

X = ϕ−1(x, t). (3.2)

The motion can change some properties of the body, such as temperature, and these
changes can be described in two ways: with the Lagrangian (or material) description or
with the Eulerian (or spatial) description. The former characterizes the motion concerning
the material coordinates and the focus is on a particle, while the latter describes the motion
in the spatial coordinates and it focuses on a particular point in space.

The displacement field of a particle can be defined as

u(X, t) = ϕ(X, t)−X. (3.3)

3.1.2 Deformation Gradient

The deformation gradient F is a second-order tensor and is the fundamental measure of
deformation. Deformation can be defined as the change in size, shape or orientation of a
body when moved from the reference (undeformed) configuration to a current (deformed)
configuration. The deformation gradient characterizes the deformations, which means that
it represents the spatial changes of each material point during motion with respect to its
reference configuration. Thus, it relates X with x as

F(X, t) =
∂ϕ(X, t)

∂X
=
∂x

∂X
= ∇Xϕ(X, t) (3.4)

where ∇X is called the material gradient operator.
The deformation gradient can also be defined in the deformed configuration by

F(x, t) =
[
∇xϕ

−1(x, t)
]−1 (3.5)

where ∇x is the spatial gradient operator.
If the displacement field u is used, the deformation gradient can also be expressed as

F(x, t) = ∇Xu+ I (3.6)

where I is the second-order identity tensor.
The deformation gradient is a two-point tensor and it is homogeneous if it is indepen-

dent of the material coordinates. The determinant of the deformation gradient is called
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the Jacobian of the deformation, represents the local rate of change of the deformed con-
figuration volume v with respect to the reference configuration volume V and is given by

J = det(F) =
dv
dV

. (3.7)

Its value has to be greater than zero to adequately describe physical deformations and
if J = 1, the deformation is isochoric.

With the definition presented above, it is possible to obtain relations between the
reference and the current configuration

dx = FdX

da = JF−TdA

dv = JdV.

(3.8)

The deformation gradient is not a precise measure of deformations because it is not a
symmetric tensor and in the absence of deformation (rigid body translations), this tensor
is not equal to a null matrix. In fact, it is equal to the identity matrix, which is not
optimal. In addition, in rigid body rotations, this tensor is different from the identity
matrix, suggesting wrongly that there was a deformation.

3.1.3 Polar Decomposition

The deformation gradient can be decomposed into the product of two tensors and defined
by

F = RU = VR (3.9)

where U and V are stretch tensors and R is a rotation tensor that has no contribution to
strain.

The rotation tensor R is orthogonal (RT = R−1), unique, unimodular (det(R) = 1)
and measures the change of local orientation.

The right-stretch tensor U and the left-stretch tensor V are unique, positive definite
and symmetric and they measure the change of local shape. They can be written as

U =
√
C

V =
√
B

(3.10)

where C and B are the right and left Cauchy-Green tensors, respectively.
With the properties of these tensors and with eq. (3.9), it is possible to get the following

relations
C = U2 = FTF (3.11)

B = V2 = FFT. (3.12)
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Unlike the deformation gradient, the right and left Cauchy-Green tensors are insensible
to pure body rotations and both of them are symmetric and positive definite.

3.1.4 Stretch

Considering a line element in the reference configuration dX with its direction described
by the unit vector a0, it is possible to define the stretch vector (λa0) as

λa0(X, t) = Fa0. (3.13)

The length of this vector is called the stretch ratio (λ) and it measures the changes in
length that occurred during the motion. It is defined as the ratio between the length of a
deformed line element and the length of the corresponding undeformed line element and
is defined as

λ = |λa0 | =
|dx|
|dX| . (3.14)

If λ < 1 the element was compressed, if λ = 1, the element kept the same length, and
if λ > 1, the element was extended.

Alternatively, it is possible to express a relation between the stretch and the right
Cauchy-Green deformation tensor as

λ =
√

F a0 · F a0 =
√

a0 · FT F a0 =
√
a0 ·C a0. (3.15)

There is always a set of three mutually orthogonal directions along which the material
undergoes a pure stretch (changes in length without changes in angles between them).
These directions are called the principal reference directions, they are the eigenvectors of
U and are denoted by N̂i=1,2,3. The associated eigenvalues are the principal stretches and
are denoted by λi=1,2,3. The principal reference directions are also the eigenvectors of C
and the eigenvalues of this tensor are the stretches squared

U2N̂i = λ2i N̂i = CN̂i, i = 1, 2, 3. (3.16)

Following the same reasoning, it is possible to define the eigenvalue problem for V and
B as

V2(RN̂i) = λ2i (RN̂i) = B(RN̂i), i = 1, 2, 3. (3.17)

Is it possible now to conclude that the eigenvectors of V and B are equal to the
eigenvectors of U and C but rotated with R. Therefore, the eigenvectors of V and B are
the principal spatial directions denoted by n̂i=1,2,3 and defined as

n̂ = RN̂. (3.18)
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Finally, it is relevant to express the deformation gradient and the other deformation
tensors in terms of principal stretches:

F =

3∑
i=1

λin̂i ⊗ N̂i

C = U2 =
3∑

i=1

λ2i N̂i ⊗ N̂i

B = V2 =
3∑

i=1

λ2i n̂i ⊗ n̂i.

(3.19)

Special attention has to be taken to the deformation gradient because it is a non-
symmetric tensor, so the principal stretches are not their eigenvalues.

3.1.5 Strain Measures

Strain is a measure of deformation which characterizes the relative displacement between
particles (changes in distances and angles). To properly quantify straining, proper strain
measures are defined in the literature. The choice is influenced by mathematical and
physical convenience, but two main classes of strain measures are of great importance:
the Lagrangian strain tensors and the Eulerian strain tensors. The former ones are also
called generalized strain tensors in the material description and are based on the right
Cauchy-Green stretch tensor and are defined as

(m)E =

{
1
m(Um − I) if m ̸= 0

ln U if m = 0
. (3.20)

The other important family of strain tensors can be defined with the the left Cauchy-
Green stretch tensor. They are also called the generalized strain tensors in spatial descrip-
tion and are expressed as

(m)e =

{
1
m(Vm − I) if m ̸= 0

ln V if m = 0
. (3.21)

For m = 2 and m = −2, two well-known strain tensors are obtained: the Green-
Lagrange strain tensor E, given by

(2)E = E =
1

2
(FTF− I) =

1

2
(C− I) (3.22)

and the Euler-Almansi strain tensor e, given by

(−2)e = e =
1

2
(I− F−TF−1) =

1

2
(I−B−1). (3.23)
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These two strain tensors are independent of rotations and just contain information
about stretches. Therefore, they are suited to analyse the strain of bodies submitted to
large displacements, rotations and deformations. The Euler-Almansi strain tensor is less
used, even though it allows for strain analysis from the deformed configuration.

For m = 0, the logarithmic strain tensors in material and spatial descriptions are
obtained.

Figure 3.1 shows the difference between some of the most common strain measures,
where ϵ is the infinitesimal strain tensor, usually used for deformations where the gradient
of the displacement is small compared to unity. It is possible to observe that for values
of stretch around 1, all the strain tensors give nearly the same value of strain, but for
higher stretches, the differences are notorious, which shows the importance of selecting the
appropriate strain measure for the case in analysis.
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Figure 3.1: Comparison between strain measures for a uniaxial stretch in the x direction

3.1.6 Directional Derivative and Lie Time Derivatives

Before proceeding to the following section, it is important to introduce the concepts of
directional derivative and Lie time derivatives, which are relevant for the linearization of
equilibrium equations.

The directional derivative is a generalisation of a common derivative because it gives
the change in a field due to a slight variation in a variable on which the field depends.

A given scalar field Φ that varies in a three-dimensional space has a gradient (∇Φ =

∂Φ\∂x) that defines a vector perpendicular to the surface of constant Φ. If a unit vector
n is defined at a point x normal to the surface (direction of ∇Φ) and another vector v is
defined in the same point x but inclined at an angle θ of ∇Φ, it is possible to define the
concept of directional derivative as the dot product between the gradient of the scalar field
and the vector v, given by

DvΦ(x) = ∇Φ · v =
d
dϵ

Φ(x+ ϵv)|ϵ=0. (3.24)
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The directional derivative characterizes the rate of change of Φ along the line that goes
through x and in the direction v.

Additionally, the directional derivative of a general operator Φ applied to the motion
ϕ(X, t) in the direction of v coincides with the time derivative of Φ:

DvΦ(x) =
d
dt

Φ[ϕ(X, t)]. (3.25)

The Lie time derivative of a spatial field f(x, t) gives the change of the field relative to
a vector field v and is denoted by £v(f). To obtain the Lie time derivative, the following
steps are required:

1. Compute the pull-back of f to the reference configuration F(X, t) = χ−1
∗ (f(x, t)),

where χ−1
∗ denotes the pull-back operator;

2. Take the time derivative: Ḟ ;

3. Compute the push-forward of the result to the current configuration: χ∗(Ḟ).

Thus, the Lie time derivative can be defined as

£v(f) = χ∗

(
∂

∂t
χ−1
∗ (f)

)
= χ∗(Ḟ). (3.26)

As mentioned before, the material time derivative can be obtained from the directional
derivative. Thus, the Lie time derivative can be expressed as

£v(f) = χ∗
(
Dvχ

−1
∗ (f)

)
= χ∗(DvF). (3.27)

Therefore, the Lie time derivative of a spatial field f is the push-forward of the direc-
tional derivative of the associated material field F in the direction of the velocity vector v.
This concept is extremely useful to compute stress rates and in the process of linearization
and variation, as it is going to be explained in the following sections.

3.1.7 Material and Spatial Time Derivatives

Velocity and material time derivatives are necessary to analyse time-dependent nonlinear
processes. In addition, it is convenient to establish the equilibrium equations in terms of
virtual velocities and associated virtual time-dependent quantities, even if the process is
not rate-dependent.

The velocity and the acceleration field are defined as:

v(X, t) =
∂ϕ(X, t)

∂t
(3.28)

a(X, t) =
∂v(X, t)

∂t
=
∂2ϕ(X, t)

∂t2
. (3.29)
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The spatial velocity gradient tensor l is the derivative of the velocity field given in the
spatial description

l =
∂v(x, t)

∂x
= ∇xv. (3.30)

The material time derivative of F is expressed as

Ḟ =
∂

∂t

(
∂ϕ(X, t)

∂X

)
=

∂

∂X

(
∂ϕ(X, t)

∂t

)
=
∂v(X, t)

∂X
. (3.31)

Introducing the spatial velocity gradient, it is possible to obtain the relation given by

Ḟ =
∂v(X, t)

∂x

∂ϕ(X, t)

∂X
= lF. (3.32)

Thus, another expression for the spatial velocity gradient can be obtained as

l = ḞF−1. (3.33)

The spatial velocity gradient can be decomposed into two different tensors: the rate of
deformation tensor d and the rate of rotation tensor w:

l = d+w. (3.34)

The former is also known as the stretch tensor, is the symmetric part of l and is given by

d =
1

2
(l+ lT) (3.35)

whereas the latter is the antisymmetric part of l, also known as spin or vorticity tensor
and given by

w =
1

2
(l− lT). (3.36)

The rate of deformation tensor quantifies the rate of stretching of a material’s fibre in
the deformed solid and the rate of rotation tensor measures the average angular velocity
of all material fibres passing through a material point. Both tensors are spatial fields and
they only involve quantities acting on the current configuration.

Another important rate tensor is the so-called material strain rate tensor, which is the
derivative of the Green-Lagrange strain tensor with respect to time and is given by

Ė =
1

2
Ċ =

1

2
(ḞTF+ FTḞ). (3.37)

This tensor gives the current rate of stretching in terms of the initial elemental vectors and
it is essentially a pull-back of the already introduced rate of deformation tensor d. Thus,
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the two tensors are related as
Ė = FTdF

d = F−TĖF−1.
(3.38)

As mentioned in Section 3.1.6, the directional derivative of E in the direction of v is
equal to the material strain rate tensor:

DvE = Ė. (3.39)

The material time derivative of the Euler-Almansi strain tensor is given by

ė = d− lTe− el. (3.40)

The time rate of change of the right and left Cauchy-Green tensors are easily obtained
with the previous definitions and they are given by

Ċ = 2Ė

Ḃ = lB+BlT.
(3.41)

It is also interesting to provide the relation for the material time derivative of the
volume ratio J, given by

J̇ =
∂J

∂F
: Ḟ = JF−T : Ḟ. (3.42)

With equalities from eq. (3.42) it is possible to get alternative statements to J = 1 that
characterize necessary and sufficient conditions for an isochoric motion. One of the most
important for the treatment of incompressible solids is F−T : Ḟ = 0.

3.2 Stress Measures

During motion, deformations occur and they cause interactions between the body’s parti-
cles. The result is stress and for each strain measure, there is a different stress measure.
One of the most commonly used stress measures is the Cauchy or true stress tensor σ.

The Cauchy or surface traction vector t measures the force f applied in an element
surface defined in the current configuration with a unitary normal vector n and is given
by

t = lim
da→0

df
da
. (3.43)

The Cauchy stress tensor enables the mapping of a vector normal to a surface to the
traction vector acting on that surface. This mapping is known as Cauchy’s Law and is
given by

t = σn. (3.44)
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This stress tensor is symmetric, widely used in mechanics, and is expressed in terms
of spatial coordinates. Since in most problems, the current configuration is not known,
this stress tensor is not the most convenient one to use. If the deformations are small,
the current configuration is somehow similar to the reference one and the Cauchy stress
tensor is a reasonable way of describing the action of surface forces. However, for large
deformations, it is necessary to use other stress tensors expressed in terms of the material
coordinates.

The Kirchhoff stress tensor τ is one of those tensors. It has no physical meaning, but
it is useful, for example, for metal plasticity and it is given by

τ = Jσ. (3.45)

Finally, there are the Piola-Kirchhoff stress tensors that express stress in terms of
material coordinates and are suitable for finite strain applications. The first Piola-Kirchhoff
traction vector (T) measures the force f applied to an element surface defined in the
reference configurations with a normal vector N and is given by

T = lim
dA→0

df
dA

. (3.46)

A relation between this traction vector and the first Piola-Kirchhoff stress tensor P is
given by

T = PN. (3.47)

The first Piola-Kirchhoff stress tensor is a two-point tensor since it relates forces acting
in the current configuration with a surface element in the reference configuration and is
defined as

P = τ F−T. (3.48)

However, this tensor is not symmetric. This can be easily observed with eq. (3.48) since
the deformation gradient is not symmetric.

Contrarily, the second Piola-Kirchhoff stress tensor S is symmetric and it relates forces
in the current configuration with areas in the reference configuration and is given by

S = F−1τF−T. (3.49)

A relation between the two Piola-Kirchhoff stress tensors can also be obtained as

P = FS. (3.50)

It is also possible to relate the Piola-Kirchhoff stress tensors with the Cauchy stress
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tensor:

P = JσF−T (3.51)

S = JF−1σF−T. (3.52)

The Piola-Kirchhoff stress tensors are useful stress measures for computational me-
chanics and to formulate constitutive relations because they are work conjugates of some
presented strain measures: (P with F and S with E).

In Figure 3.2, it is shown the difference between some of the stress measures presented.
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Figure 3.2: Comparison between stress measures for a uniaxial stretch in the x direction

3.3 Balance Principles

In this section, the mathematical description of some fundamental laws of physics that
govern the motion of a continuum is going to be addressed. The mathematical represen-
tations previously introduced are not enough to make predictions if there is no relation
between them, which highlights the importance of balance and conservation principles for
continuum mechanics.

3.3.1 Conservation of Mass

From eq. (3.8), it is possible to define the element of mass in terms of initial and current
densities as

dm = ρ0dV = ρdv (3.53)

and the conservation of mass can be expressed as

(ρ0 − ρJ)dV = 0. (3.54)
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Finally, taking the material derivative of eq. (3.54) for the current density ρ, the equa-
tion for the conservation of mass can be written as

dρ
dt

+ ρ divxu̇ = 0. (3.55)

3.3.2 Balance of Momentum

The linear momentum (L) is defined as

L(t) =

∫
Ω

ρ(x, t)v(x, t)dv. (3.56)

The principle of conservation of linear momentum states that the rate of change of the
total linear momentum of a continuum L̇ is equal to the resultant force Fr and is given by

L̇(t) =

∫
Ω

ρ(x, t)v̇(x, t)dv = Fr(t). (3.57)

The resultant force on the body in the current configuration is given by

Fr(t) =

∫
∂Ω

tds+
∫
Ω

bdv (3.58)

where b is a spatial vector field called body force that is defined per unit of the current
volume of the region Ω acting on a particle and t is the already introduced Cauchy traction
vector that acts on a boundary surface ∂Ω of an arbitrary region Ω.

With the integral of Cauchy’s stress theorem given by eq. (3.44) and the divergence
theorem, it is possible to get the relation given by∫

∂Ω

t ds =
∫
∂Ω

σn ds =
∫
∂Ω

divxσ dv. (3.59)

Therefore, it is now possible to obtain the strong form of the equilibrium equation,
which describes the equilibrium between internal and external forces in the body. The
strong form of the equilibrium equation is given by

divxσ + b = ρü. (3.60)

Alternatively, it is possible to express eq. (3.60) with the material description as follows

divXP+Bf = ρ0ü (3.61)

where Bf is the reference body force.
The use of the strong formulation of the equilibrium equation in complex problems is

sometimes difficult because it involves differentiations. This led to the development of the
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weak formulation derived from the principle of virtual work which is going to be explained
in further detail in a subsequent section.

3.3.3 Thermodynamic Laws

The balance of thermal energy states that the rate of work done on the continuum body,
which is the sum of the rate of internal mechanical work Pint and the rate of thermal work
Q, is equal to the rate of internal energy E :

Pint(t) +Q(t) = E(t) (3.62)

where each one of the rates present in the above equation is given by

Pint(t) =

∫
Ω

σ : d dv (3.63)

Q(t) =

∫
Ω

q dv +
∫
Ω

r dv (3.64)

E(t) =
∫
Ω

ė dv. (3.65)

Combining the previous equation with the balance of mechanical energy, it is possible
to obtain the first law of thermodynamics that imposes the conservation of energy and is
expressed as

ė = σ : d+ r − divxq (3.66)

where e is the internal energy, r is the heat source per unit time and per unit of the
current volume and q is Cauchy heat flux defined per unit surface area in the current
configuration. Throughout this dissertation, the temperature remains constant in all the
problems analysed. Hence, eq. (3.66) reduces to

ė = σ : d. (3.67)

The first law of thermodynamics can also be defined in the material description as

ė = P : Ḟ. (3.68)

It is known that heat always flows from the warmest region of a body to the coldest one,
and a key concept associated with this is entropy, which can be viewed as the quantitative
measure of microscopic randomness and disorder. The first law of thermodynamics is not
sufficient to ensure the irreversibility of the entropy productions and this is why there is
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the second law of thermodynamics, given by

ṡ ≥ r

T
− divxq

T
+

q · divxT
T 2

(3.69)

where s is the entropy and T the temperature. For isothermal processes, the second law
of thermodynamics reduces to

T ṡ ≥ 0. (3.70)

The Helmholtz potential represents the amount of work that a closed thermodynamic
system can do at constant temperature and volume and it can be written as

Ψ = e− Ts. (3.71)

The two laws of thermodynamics can be combined with eq. (3.71) to obtain the the
Clausius–Duhem inequality given by

σ : d− q · ∇xT

T
≥ (Ψ̇ + Ṫ s). (3.72)

This inequality tells that an isolated system tends toward a state of equilibrium at
minimum free energy. It can also be expressed in the reference configuration as

P : Ḟ− Q · ∇XT

T
≥ (Ψ̇ + Ṫ s). (3.73)

Considering an isothermal process, it is possible to obtain the Clausius-Planck inequal-
ity, which is extremely useful to derive constitutive laws and is given by

P : Ḟ− Ψ̇ ≥ 0. (3.74)

3.4 Constitutive Equations

The equations presented in Section 3.1 and Section 3.2 hold for any continuum body at all
times. However, they do not distinguish different materials and they are alone insufficient
to determine the material response. Therefore, it is necessary to establish a constitutive
model that should approximate the observed physical behaviour of a real material under
specific conditions of interest. This constitutive model is a set of equations that express
stress in terms of other fields, such as strain. In addition, these equations must satisfy
some physics laws but, in solid mechanics, a phenomenological approach is usually followed,
where the main concern is fitting the mathematical equations to experimental data. The
constitutive equations must obey the thermodynamic laws and satisfy objectivity (frame
indifference), which guarantees that the reference frame used to describe the behaviour of
a material does not change the physical laws and equations that characterize it. In this
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section, nonlinear constitutive equations are presented for different types of hyperelastic
materials.

3.4.1 Objectivity Rates

Objectivity is an important topic in solid mechanics because material properties must be
independent of changes in the observer’s point of view. Some quantities that describe the
behaviour of a solid, such as the distance between two particles, remain unchanged from
the point of view of an observer attached to and rotating with the body. In this case, such
quantities are objective even if their spatial description change [58].

To show this concept, a motion which differs from the one given by the vector field ϕ

by a superposed rigid body motion is considered:

x+ = Q(t)x (3.75)

where Q is an orthogonal tensor representing a rigid body rotation of the deformed state.
The plus sign in the superscript is used to describe the quantities already introduced in
the previous sections but associated with the motion given by eq. (3.75). The vector field
ϕ+ describes the new motion and takes the points from the reference configuration to the
rotated configuration described by x+:

ϕ+ = Q(t)ϕ. (3.76)

The vector x is different from x+ but they have equal magnitude. This means that x is ob-
jective or frame-indifferent under rigid body motions. However, there are some quantities,
such as the velocity and acceleration fields, that are not objective. Stress and strain ten-
sors used to describe material behaviour must be objective. The deformation gradient, the
right and left stretch tensors and the three stress tensors introduced, namely the Cauchy
stress tensor and the Piola-Kirchhoff stress tensors, are objective.

The fact that all these tensors are objective is good, but their material time derivatives
are not objective in general. For example, the time derivative of the Cauchy stress tensor
is not an objective tensor, despite the objectivity of the tensor itself. The time derivative
of the Cauchy stress tensor is given by

σ̇+ = Q̇σQT +Qσ̇QT +QσQ̇T. (3.77)

The time derivative of the Cauchy stress is not equal to Qσ̇QT, which shows that
this rate is not objective. If the material time derivative does not retain objectivity, these
quantities are not suitable to formulate constitutive equations in rate form. Thus, it is
necessary to use objective time derivatives called objective rates.
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The objective stress rates are of bigger importance since the choice of a suitable one is
essential for the formulation of constitutive rate equations. There are different ones defined
in the literature, with some of the most used ones being the following ones [57–59]:

Truesdell Stress Rate The objective stress rate proposed by Truesdell [60] is one of the
simplest ones because it is based on the objectivity of the second Piola–Kirchhoff tensor.
It is defined as the push forward of the time derivative of the second Piola–Kirchhoff stress
tensor scaled by the inverse of the volume ratio and is given by

σTrues = J−1FṠFT = σ̇ − lσ − σlT + σtr(d). (3.78)

The Truesdell stress rate is useful to obtain a constitutive relation in the reference
configuration between S and E. However, if a constitutive equation in the current config-
uration is desired, this objective stress rate may not be useful.

Oldroyd Stress Rate The Oldroyd Stress Rate was proposed by Oldroyd and Wilson
[61] and is derived from the Lie time derivative of the Cauchy stress as

σOldr = £ϕ(σ) = F

[
D(F−1σF−T)

Dt

]
FT = σ̇ − lσ − σlT. (3.79)

A relation between the Oldroyd and the Truesdell stress rates can be obtained as

σOldr = σTrues − σtrd. (3.80)

Green-Naghdi Stress Rate This stress rate tensor was proposed in [62] and is a special
case of the one proposed by Oldroyd because it consists of the Lie time derivative of the
Cauchy stress tensor but F is replaced by R. Thus, it ignores the stretch component of
the deformation gradient and performs pull-back and push-forward operations only with
the rotation tensor R:

σGN = R

[
D(RTσR)

Dt

]
RT = σ̇ − ṘRTσ + σṘRT. (3.81)

Jaumann Stress Rate The Jaumann stress rate is widely used because if it is zero for
a given motion, the invariant of the Cauchy stress tensor is stationary during that motion
[63]. However, this stress rate tensor has not a conjugate measure of finite strain associated
with it. It is given by

σJau = σ̇ −wσ + σw. (3.82)

3.4.2 Hyperelasticity

The constitutive behaviour of elastic materials depends only on the current state of de-
formation. When the work done by stresses during deformation is only dependent on the
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initial and final configuration, the material is path-independent. This is a particular case
of elasticity, called hyperelasticity. A Helmholtz potential exists for hyperelastic materials,
also referred to as free-energy function. If Ψ is only a function of F or other strain tensors,
it is often called SEF. It represents the work done by the stresses from the initial to the
current configuration and if the material is homogeneous, the SEF does not depend on the
position of a point in the medium. In such cases, The time differentiation of it is given by

Ψ̇(F) =
∂Ψ(F)

∂F
: Ḟ (3.83)

and with the Clausius-Planck inequality, it is possible to obtain the relation given by

Ψ(F) =

∫ t1

t0

P : Ḟ dt. (3.84)

Recalling the restriction imposed by objectivity and frame indifference, Ψ must remain
invariant under rigid body rotations. Thus, it only depends on F via the stretch component
(U or V) and it can be expressed as a function of C or B for convenience. In such case,
Ψ can be expressed in a totally Lagrangian equation given by

Ψ̇(C) =
∂Ψ(C)

∂C
: Ċ =

1

2
S : Ċ (3.85)

where the work conjugacy between Ė and S is used.
It is now possible to define a relation between the Piola-Kirchhoff stress tensors and

the strain-energy function as

P =
∂Ψ(F)

∂F
= 2F

∂Ψ(C)

∂C

S = 2
∂Ψ(C)

∂C
=
∂Ψ(E)

∂E
.

(3.86)

It is also possible to express the Cauchy stress tensor in terms of the strain-energy
function as

σ = J−1F

(
∂Ψ(F)

∂F

)T

= 2J−1F

(
∂Ψ(C)

∂C

)
FT. (3.87)

3.4.2.1 Isotropic Hyperelasticity

When the material’s response to deformation is independent of the direction, the material is
said to be isotropic. The previous constitutive equations can now be restricted to isotropic
materials, implying that the relationship between Ψ and C does not depend on the material
axes chosen, this is, Ψ is only a function of the invariants of C:

Ψ(C) = Ψ(I1(C), I2(C), I3(C)) (3.88)
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where the invariants can be defined with respect to C:

I1(C) = tr(C) (3.89)

I2(C) =
1

2
(I21 − tr(C2)) (3.90)

I3(C) = det(C) = J2. (3.91)

The differentiation of the three invariants with respect to C is important to obtain the
constitutive equation and they are given by

∂I1(C)

∂C
= I (3.92)

∂I2(C)

∂C
= I1I−C (3.93)

∂I3(C)

∂C
= I3C

−1. (3.94)

After applying the chain rule differentiation and some algebraic manipulations, the
constitutive equation for isotropic materials is defined as

S = 2

[(
∂Ψ

∂I1
+ I1

∂Ψ

∂I2

)
I− ∂Ψ

∂I2
C+ I3

∂Ψ

∂I3
C−1

]
. (3.95)

It is also interesting to get the constitutive equation for these materials expressed in
spatial coordinates:

σ = 2J−1

[(
∂Ψ

∂I1
+ I1

∂Ψ

∂I2

)
B− ∂Ψ

∂I2
B2 + I3

∂Ψ

∂I3
I

]
. (3.96)

Alternatively, the invariants can be defined with respect to the eigenvalues of C which
are the stretches squared (λ2i ). In such cases, they are given by

I1(λ1, λ2, λ3) = λ21 + λ22 + λ23

I2(λ1, λ2, λ3) = λ21λ
2
2 + λ21λ

2
3 + λ22λ

2
3

I3(λ1, λ2, λ3) = λ21λ
2
2λ

2
3

(3.97)

and the constitutive equations expressed with the Piola-Kirchhoff and Cauchy stress tensors
are given by

S =
3∑

i=1

1

λi

∂Ψ

∂λi
N̂i ⊗ N̂i

P =
3∑

i=1

∂Ψ

∂λi
n̂i ⊗ N̂i

σ =

3∑
i=1

J−1λi
∂Ψ

∂λi
n̂i ⊗ n̂i.

(3.98)
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3.4.2.2 Incompressible Hyperelasticity

Some materials keep the volume nearly constant when subjected to finite strains. There-
fore, they are often assumed as incompressible and only isochoric motions are possible.
This is an idealisation applied in computational mechanics that facilitates the numerical
treatment of these materials, which can be characterized by the incompressibility constraint
J = 1 if assumed incompressible. For these constrained materials, the SEF is defined as

Ψ = Ψ(F)− p(J − 1) (3.99)

where a Lagrange multiplier p is introduced. It can be identified as a hydrostatic pres-
sure, and its determination is possible with the equilibrium equations and the boundary
conditions.

With the strain-energy function defined, it is possible to obtain the constitutive equa-
tions for these materials with the different stress measures presented:

P = −pFT +
∂Ψ(F)

∂F
(3.100)

S = −pC−1 + 2
∂Ψ(C)

∂C
(3.101)

σ = −pI+ F

(
∂Ψ(F)

∂F

)T

. (3.102)

3.4.2.3 Compressible Hyperelasticity

On the other hand, if the material changes its volume throughout the motion, it is said to be
compressible and different constitutive equations have to be obtained. Since these materials
normally have different behaviours in bulk and shear, it is useful to split the deformation
into a volumetric or dilational component (related to pure volumetric deformations) and
an isochoric or distortional component (related to volume-preserving deformations). To do
so, a decomposition of F and C is performed:

F = FisoFv

Fiso = J−1/3F

Fv = J1/3I

C = CisoCv

Ciso = J−2/3C

Cv = J2/3I.

(3.103)

The distortional components Fiso and Ciso are called the modified deformation gradient
and the modified right Cauchy Green tensor, respectively, and, since they are associated
with volume preserving deformation, their determinant is equal to 1. When a material
requires higher exterior work for dilational changes than distortional ones, the material is
called nearly incompressible and the effect of compressibility is small. Following the same
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reasoning, the SEF can also be decomposed as

Ψ(C) = Ψv(J) + Ψiso(Ciso) (3.104)

where the first term describes the volumetric elastic response and the second one describes
the isochoric response. The derivative of Ψ with respect to time is given by

Ψ̇ =
dΨv(J)

dJ
J̇ +

∂Ψiso(Ciso)

∂Ciso
: Ċiso. (3.105)

To get the constitutive equation for these materials, it is first necessary to get the
derivatives for the volumetric part present in eq. (3.105). They are defined as

∂J2

∂C
= J2C−1

∂J

∂C
=
J

2
C−1

J̇ =
∂J

∂C
: Ċ = JC−1 :

Ċ

2

(3.106)

and for the isochoric part:

∂J−2/3

∂C
= −1

3
J−2/3C−1

∂Ciso

∂C
=
∂(J−2/3C)

∂C
= J−2/3(I− 1

3
C⊗C−1) = J−2/3PT

Ċiso = 2

(
∂Ċiso

∂C

)
:
Ċ

2

(3.107)

where P is a fourth-order tensor called the projection tensor with respect to the reference
configuration and I is the fourth-order identity tensor.

The constitutive relation for these materials can now be obtained as

S = 2
∂Ψ(C)

∂C
= Sv + Siso. (3.108)

The volumetric part Sv is given by

Sv = 2
∂Ψv(J)

∂C
= JpC−1 (3.109)

where the hydrostatic pressure p is now defined with a constitutive equation instead of
being calculated from boundary conditions:

p =
dΨv(J)

dJ
. (3.110)

36



The isochoric part Siso is given by

Siso = 2
∂Ψiso(Ciso)

∂C
= J−2/3P : S (3.111)

where S the fictitious second Piola-Kirchhoff stress tensor, defined as

S = 2
∂Ψiso(Ciso)

∂Ciso
. (3.112)

Analogously and applying the same reasoning, it is possible to get a constitutive equa-
tion for the current configuration. To do so, the left Cauchy-Green tensor B is also de-
composed into volumetric and isochoric parts. For the sake of completeness and simplicity,
only the constitutive equation is presented, which is defined as

σ = 2J−1B
∂Ψ(B)

∂B
= σv + σiso (3.113)

where σv is given by:

σv = 2J−1B
∂Ψv(J)

∂B
= pI (3.114)

and σiso is given by

σiso = 2J−1B
∂Ψiso(Biso)

∂B
= (I− 1

3
I⊗ I) : σ = P : σ (3.115)

where P is the projection tensor in the Eulerian description and σ is the fictitious Cauchy
stress tensor defined by

σ = 2J−1∂Ψiso(Biso)

∂Biso
Biso. (3.116)

Finally, it is also possible to get the constitutive equation for compressible hyperelastic
materials as a function of the strain invariants. The modified invariants can be defined as

I1 = tr(Ciso) = tr(Biso) = J−2/3I1 (3.117)

I2 =
1

2

[
(tr(Ciso))

2 − tr(C2
iso)
]
=

1

2

[
(tr(Biso)

2)− tr(B2
iso)
]
= J−4/3I2 (3.118)

I3 = det(Ciso) = det(Biso) = 1. (3.119)

The SEF is expressed in terms of the modified strain invariants as

Ψ = Ψv(J) + Ψiso(I1, I2) (3.120)

and the constitutive equation can easily be obtained with eq. (3.108), where Sv is given
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once again by eq. (3.109) and Siso is defined as

Siso = 2
∂Ψiso(I1, I2)

∂C
= J−2/3P : S. (3.121)

The fictitious second Piola-Kirchhoff stress tensor is now given by

S = 2
∂Ψiso(I1, I2)

∂Ciso
= γ1I+ γ2Ciso (3.122)

where the two coefficients γ1 and γ2 are given by

γ1 = 2

(
∂Ψiso(I1, I2)

∂I1
+ I1

∂Ψiso(I1, I2)

∂I2

)
γ2 = −2

∂Ψiso(I1, I2)

∂I2
.

(3.123)

3.4.2.4 Transversely Isotropic Hyperelasticity

Some materials are composed of a matrix material or ground substance and families of
fibres. These materials are called composite materials or fibre-reinforced composites and
they have high stiffness and strength, low weight and resistance to corrosion. They also
have strong directional properties and their mechanical response is anisotropic.

Some soft biological tissues can be regarded as composite materials because they are
composed of collagen fibres and a ground substance matrix with components such as elastin
and proteoglycans.

If a composite material is reinforced with only one family of fibres, it has a single
preferred direction and the stiffness in the fibre direction is much higher than the one in
the orthogonal directions to the fibres. In this case, the material is called transversely
isotropic with respect to the fibre direction and the material response along the directions
orthogonal to the preferred direction is isotropic.

For a transversely isotropic material, the stress is dependent on the deformation gradi-
ent F and on the direction of the fibres, which is defined by a unit vector in the reference
configuration a0(X). After deformation, the fibre changes its direction and is then defined
by a unit vector in the deformed configuration a(x,t). With the definitions provided be-
fore in Section 3.1.4, it is possible to relate the fibre directions in the reference and current
configurations as

λa = Fa0. (3.124)

The SEF for transversely isotropic hyperelastic materials depends on C and on the
fibre direction a0, which is immaterial. Thus, the SEF can be written as

Ψ = Ψ(C,a0 ⊗ a0). (3.125)
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As referred previously, the SEF must be frame-indifferent and to satisfy this condition,
two additional invariants are introduced for transversely isotropic materials. Therefore,
these materials can be represented by the three invariants used for isotropic materials and
two additional ones called pseudo-invariants of C and a0 ⊗ a0 defined as

I4(C,a0) = a0 · (Ca0) = λ2

I5(C,a0) = a0 · (C2a0).
(3.126)

Therefore, the SEF for a transversely isotropic material can be written in terms of the
five invariants as

Ψ = Ψ[I1(C), I2(C), I3(C), I4(C,a0), I5(C,a0)]. (3.127)

The second Piola-Kirchhoff stress tensor for these materials can be obtained as

S = 2
∂Ψ(C,a0 ⊗ a0)

∂C
= 2

5∑
i=1

∂Ψ(C,a0 ⊗ a0)

∂Ii

∂Ii
∂C

. (3.128)

The derivatives of the first three invariants with respect to C are given in eq. (3.92)
and for the pseudo-invariants they are defined as

∂I4
∂C

= a0 ⊗ a0

∂I5
∂C

= a0 ⊗Ca0 + a0C⊗ a0.

(3.129)

Therefore, the second Piola-Kirchhoff stress tensor is given by

S = 2

[(
∂Ψ

∂I1
+ I1

∂Ψ

∂I2

)
I− ∂Ψ

∂I2
C+ I3

∂Ψ

∂I3
C−1

+
∂Ψ

∂I4
a0 ⊗ a0 +

∂Ψ

∂I5
(a0 ⊗Ca0 + a0C⊗ a0)

]
.

(3.130)

An expression for σ can be obtained with a push forward operation on S:

σ = 2J−1

[
I3
∂Ψ

∂I3
I+

(
∂Ψ

∂I1
+ I1

∂Ψ

∂I2

)
B− ∂Ψ

∂I2
B2

+ I4
∂Ψ

∂I4
a⊗ a+ I4

∂Ψ

∂I5
(a⊗Ba+ aB⊗ a)

]
.

(3.131)

In the case of transversely isotropic materials with an incompressible isotropic ma-
trix material, the embedded fibres can be extensible or inextensible. For both cases, the
isotropic matrix material is incompressible, this is I3=1, and Ψ is a function of the other
four independent invariants. Due to the incompressibility constraint, it is also necessary
to introduce an indeterminate Lagrange multiplier p/2, which is identified as a reaction
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pressure. Thus, the SEF can be written as

Ψ = Ψ[I1(C), I2(C), I4(C,a0), I5(C,a0)]−
1

2
p(I3 − 1). (3.132)

If the embedded fibres are inextensible, the fourth invariant and the stretch are also
equal to one (λ = I4 = 1). Therefore, Ψ is a function of I1 and I2, which are related to
the isotropic matrix material, and I5, which is related to the fibres. Due to the additional
constraint, another Lagrange multiplier q/2 is added, which is defined as

Ψ = Ψ[I1(C), I2(C), I5(C,a0)]−
1

2
p(I3 − 1)− 1

2
q(I4 − 1). (3.133)

The constitutive equation in the material is given by

S = −pC−1 − qa0 ⊗ a0 + 2

(
∂Ψ

∂I1
+ I1

∂Ψ

∂I2

)
I− 2

∂Ψ

∂I2
C

+2
∂Ψ

∂I5
(a0 ⊗Ca0 + a0C⊗ a0)

(3.134)

and in spatial descriptions by

σ = −pI− qa⊗ a+ 2
∂Ψ

∂I1
B− 2

∂Ψ

∂I2
B−1 + 2

∂Ψ

∂I5
(a⊗Ba+ aB⊗ a). (3.135)

In some materials, two families of fibres can be distinguished, which means that there
are two distinct preferred directions in the reference configuration, a0 and a0

′. In such
case, three additional invariants are introduced: I6 and I7, analogous to I4 and I5 and I8
and I9, which couple the two families of fibres They are defined as

I6(C,a0
′) = a0

′ · (Ca0
′)

I7(C,a0
′) = a0

′ · (C2a0
′)

I8(C,a0,a0
′) = (a0 · a0′)a0 ·Ca0

′

I9(a0,a0
′) = (a0 · a0′)2.

(3.136)

The invariant I9 is the square of the dot product between a0 and a0
′, which determines

the cosine of the angle between the two fibre directions in the undeformed configuration.
Thus, I9 is independent of deformation and can be disregarded. The derivatives of the
introduced invariants are given by

∂I6
∂C

= a0
′ ⊗ a0

′

∂I7
∂C

= a0
′ ⊗Ca0

′ + a0
′C⊗ a0

′

∂I8
∂C

=
1

2
(a0 · a0′)(a0 ⊗ a0

′ + a0
′ ⊗ a0).

(3.137)
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The constitutive equations presented before can simply be adapted and extended for
the case of two families of fibres.

3.4.3 Strain Energy Functions

As it was demonstrated before, the constitutive equations for hyperelastic materials are
obtained from the SEF. Therefore, it is essential to define it properly according to the
material in analysis, which led to the proposal of several SEFs in the literature. In this
section, some of these functions are going to be presented, particularly the ones that
are well-tried within the constitutive theory of finite elasticity and are more frequently
employed.

3.4.3.1 Volumetric Contribution

In computational analysis, incompressible materials are usually considered nearly incom-
pressible to avoid numerical problems related to incompressibility and a penalty method
is used. In such cases, the SEF is given in a decoupled way:

Ψ(C) = Ψv(J) + Ψiso(Ciso) (3.138)

where the volumetric part is characterized by a penalty parameter 1/D1 that can be viewed
as the bulk modulus. This parameter is independent of deformation and a large value is
used to model incompressible materials as slightly compressible ones:

Ψv(J) =
1

D1
(J − 1)2. (3.139)

The meaning of Ψv in eq. (3.138) for nearly incompressible materials is different from
the one presented in eq. (3.104) for compressible materials, where Ψv has physical relevance.
Alternative expressions to eq. (3.139) can be found in the literature, but all of them ensure
the same: working with a slightly compressible material to overcome potential numerical
problems of incompressible materials

3.4.3.2 Isotropic Materials

Mooney Model In 1940, Mooney [64] proposed a SEF derived on the basis of mathe-
matical arguments and employing considerations of symmetry:

Ψ = C10(I1 − 3) + C01(I2 − 3) (3.140)

where C10 and C01 are material constants.
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Mooney-Rivlin Model In 1948, Rivlin and Rideal [65] extended the previous model
by considering the SEF as a polynomial series of (I1 − 3) and (I2 − 3) as

Ψ =
∞∑

i=0,j=0

Cij(I1 − 3)i(I2 − 3)j (3.141)

where Cij are, once again, material parameters, with C00 = 0. The series is usually
truncated to terms of the second or third order since higher order requires the determination
of many material parameters. This form of strain energy is classically used for large strain
problems [66].

Ogden Model In 1972, Ogden and Hill [67] proposed the so-called Ogden model, which
was developed to obtain an adequate representation of the non-linear mechanical response
of rubberlike materials. It is expressed as a function of the principal stretches and of some
constants that are material-specific parameters and are typically determined by fitting the
model to experimental data:

Ψ(λ1, λ2, λ3) =
N∑
p=1

µp
αp

(λ
αp

1 + λ
αp

2 + λ
αp

3 − 3) (3.142)

where N is a positive integer that determines the number of terms in the strain-energy
function, αp are dimensionless constants and µp are constant shear moduli. The classical
shear modulus in the reference configuration µ, known from the linear theory, can be
obtained as

2µ =
N∑
p=1

µpαp. (3.143)

This model is important for the theory of finite elasticity and to model materials that
undergo finite strains in relation to an equilibrium state, such as biomaterials. In addition,
Ogden showed that a 6 parameters model (N=3) had an excellent agreement with simple
tension, pure shear and equi-biaxial tension data from experiments performed by Treloar
[68] in vulcanized rubber over a very large strain range.

Neo-Hookean Model All the 3 previous models are phenomenological models that are
issued from mathematical developments of the SEF. In this type of models, the material
parameters are usually hard to obtain and they can lead to inaccurate results when used
outside the deformation range in which their parameters were identified [66]. An alternative
is the so-called physically-based models. Their main drawbacks are the mathematical
complications that can arise in their formulation.
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One of the most widely used and known model of this type is the Neo-Hookean model
proposed by Treloar [15]. It is simple and a reliable way to describe the non-linear de-
formation behaviour of isotropic rubber-like materials. Treloar derived it from molecular
chain statistics and used a Gaussian statistical distribution to obtain the SEF defined as

Ψ =
1

2
nkT (I1 − 3) = C10(I1 − 3) (3.144)

where n is the chain density per unit of volume, k is the Boltzmann constant and T is
the absolute temperature. This model matches the Mooney-Rivlin model with only one
material parameter (C01 = 0) and it can also be derived from the Ogden model by setting
N=1 and α1 = 2:

Ψ =
µ1
2
(λ21 + λ22 + λ23 − 3). (3.145)

3.4.3.3 Transversely Isotropic Materials

Considering the theory presented before in Section 3.4.2.4, the isochoric part of Ψ can be
separated into different components: one that accounts for the isotropic contribution of the
ground matrix (Ψmat) and another that accounts for anisotropy of the embedded family
of fibres (Ψfib):

Ψ = Ψfib +Ψmat +Ψv. (3.146)

Humphrey and Yin Model Humphrey and Yin [69] proposed in 1987 a constitutive
model to characterize the passive mechanical response of the cardiac tissue and it was the
first anisotropic invariant-based model that accounts for fibre structure. The SEF of this
model is the sum of two exponentials, one in I1 and one in I4, and it is given

Ψ = c{exp[b(I1 − 3)]− 1}+A{exp[a(
√
I4 − 1)2]− 1} (3.147)

where c, b, A and a are material parameters.

Martins Model Martins et al. [70] proposed and developed a model for the simulation
of skeletal muscles. It is a generalized version of the model proposed by Humphrey and
Yin [69], where the SEF is divided into three different contributions, as it is given by
eq. (3.146).

The volumetric part Ψv is defined with eq. (3.139) and the contribution of the isotropic
embedding matrix is given by

Ψmat = c{exp[b(I1 − 3)]− 1} (3.148)

where c and b are material constants.
The contribution of the anisotropy of the embedded family of fibres can be divided into

a passive elastic part (ΨPE
fib ) and an active one related to the muscle contraction (ΨSE

fib ).
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The passive component is given by

ΨPE
fib (λf ) = TM

0

∫ λf

1
fPE(λ) dλ (3.149)

and the active component is defined as

ΨSE
fib (λf , ζ

CE) = TM
0

∫ λf

1
fSE(λ, ζ

CE) dλ. (3.150)

In the above equations, λf is the isochoric fibre stretch ratio in the direction of the
undeformed fibre, ζCE is a non-dimensional quantity proportional to the strain of the
contractile element and TM

0 is the muscle peak stress defined as

TM
0 =

FM
0

A0
(3.151)

where A0 is the physiological cross-section area and FM
0 is the peak isometric muscle force.

The function fPE(λ) is given by

fPE(λf ) =

{
4(λM − 1)2, if λM > 1

0, otherwise
(3.152)

where λM is the muscle stretch, given by the ratio between the muscle length and the rest
length of the muscle, whereas fSE(λ) is defined as

fSE(λf , ζ
CE) =

{
0.1{exp[100(λM − 1− ζCE)]− 1} , if λM > 1 + ζCE

0 , otherwise
. (3.153)

Holzapfel-Gasser-Ogden Model Holzapfel et al. [71] proposed a model to describe
the passive mechanical response of arterial tissue. This model is commonly referred to as
Holzapfel-Gasser-Ogden (HGO) model and separates the strain-energy function into two
parts, as the previous two models. Taking the example of a nearly incompressible material
with two families of fibres, such as the arterial walls, the SEF is expressed as

Ψ(Ciso,a0 ⊗ a0,a0
′ ⊗ a0

′) = Ψmat(Ciso) + Ψfib(Ciso,a0 ⊗ a0,a0
′ ⊗ a0

′) + Ψv. (3.154)

Alternatively, for an incompressible matrix material reinforced with two families of
fibres, eq. (3.154) can be defined in terms of invariants as

Ψ(I1, I2, I4, I5, I6, I7, I8) = Ψmat(I1, I2) + Ψfib(I1, I2, I4, I5, I6, I7, I8). (3.155)

A simple way to capture the isotropy of the ground substance is through I1 and the
transverse isotropy associated with the two families of fibres can be captured with I4 and
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I6. Thus, eq. (3.155) reduces to

Ψ(I1, I4, I6) = Ψmat(I1) + Ψfib(I4, I6). (3.156)

The ground substance can be modelled, for example, with the Neo-Hookean material,
depending on the type of material of the ground substance. Regarding the family of fibres,
Ψfib is defined with an exponential relation given by

Ψfib(I4, I6) =
k1
2k2

∑
i=4,6

{
exp

[
k2(Ii − 1)2

]
− 1
}

(3.157)

where k1 >0 is a stress-like material parameter and k2 >0 is a dimensionless parameter.
In 2006, this model was further developed by Gasser et al. [72] to account for the

orientation and distribution of the family of fibres. To do so, a symmetric generalized
structure tensor H is defined as

H =
1

4π

∫
w
ρf (M)M⊗M dw (3.158)

where M is an arbitrary unit vector located in three-dimensional Eulerian space and ex-
pressed in terms of two Eulerian angles (Θ ∈ [0, π] and ϕ ∈ [0, 2π]) and ρf is the orientation
distribution density function normalized according to

1

4π

∫
w
ρf (M(Θ, ϕ)) dw = 1. (3.159)

The generalized structure tensor is the mean of the structure tensor a0 ⊗ a0 over the
unit sphere w weighted by the orientation distribution density ρf . In general, this tensor
has six independent components but for a transversely isotropic distribution, it involves
only a single constant and it is given by

H = κI+ (1− 3κ)a0 ⊗ a0 (3.160)

where κ is the radial dispersion parameter given by

κ =
1

4

∫ π

0
ρf (Θ)sin3ΘdΘ. (3.161)

The SEF of the two families of fibres is now given by

Ψ(Ciso,Hi) =
k1
2k2

[
exp

(
k2E

2
i

)
− 1
]
, i = 4, 6 (3.162)

where Ei is an invariant of Ciso< and H given by

Ei = Hi : Ciso − 1 = κI1 + (1− 3κ)Ii − 1, i = 4, 6. (3.163)
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The radial dispersion parameter κ can range from 0 to 1/3. In the lower limit, the fibres
are perfectly aligned, without dispersion and it coincides with the HGO model proposed
in 2000. In the upper limit, the fibres describe the isotropic distribution of the collagen
fibres.

An important hypothesis introduced in this model is that the collagen fibres do not
support compressive loads since they would buckle in that situation. Thus, it is assumed
that the fibres contribute to the SEF only in extension, which means that if there are
compressive loads, the anisotropic part of the strain energy is zero and the material is
assumed as purely isotropic.

3.4.4 Elasticity Tensors

The relationship between stress and strain for hyperelastic materials is nonlinear, and to
obtain a solution to problems with these materials it is often necessary to use an incre-
mental/iterative solution technique such as the Newton-Raphson method. To apply such
techniques, it is necessary to linearize the constitutive equation with respect to an incre-
ment u. With the chain rule, it is possible to obtain a linear relationship between the
directional derivative of S and E, given by

DuSIJ(X) =
d
dϵ
SIJ [EKL(X+ ϵu)]|ϵ=0=

3∑
K,L=1

∂SIJ
∂EKL

d
dϵ
EKL(X+ ϵu)|ϵ=0=

=

3∑
K,L=1

∂SIJ
∂EKL

DuEKL(X).

(3.164)

It is possible to express eq. (3.164) more concisely with the introduction of the sym-
metric fourth-order tensor C, known as Lagrangian or material elasticity tensor, given by

DuS = C : DuE (3.165)

where C is defined as

Cijkl =
∂Sij
∂Ekl

= 2
∂Sij
∂Ckl

= 4
∂2Ψ

∂Cij∂Ckl

C =
∂S

∂E
= 2

∂S

∂C
= 4

∂2Ψ

∂C∂C
.

(3.166)

The material elasticity tensor relates the work conjugate pairs of stress and strain
tensors and measures the change in stress that results from changes in strain. Generally,
C has minor symmetries (CIJKL = CJIKL = CIJLK). For hyperelastic materials, C can
be derived from Ψ and in such case it is said that C possesses major symmetries, which
means that it has only 21 independent components at each strain state (CIJKL = CKLIJ).
The condition of major symmetries is a necessary and sufficient condition for a material
to be hyperelastic.
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To obtain the elasticity tensor in spatial coordinates C, it is necessary to do a push-
forward operation of C. This tensor is called spatial or Eulerian elasticity tensor and is
given by

cijkl = J−1FiIFjJFkKFlLCIJKL. (3.167)

The same reasoning about the symmetries is applied to the spatial elasticity tensor.
It is also possible to get a decoupled representation of the elasticity tensor, where it is

split into volumetric and isochoric components:

C = Cv + Ciso. (3.168)

The volumetric part Cv is given by

Cv = Jp̃C−1 ⊗C−1 − 2JpC−1 ⊙C−1 (3.169)

where the symbol ⊙ denotes a tensor product defined as

(C−1 ⊙C−1)ijkl =
1

2
(C−1

ik C
−1
jl + C−1

il C
−1
jk ) (3.170)

and p̃ is a scalar function defined as

p̃ = p+ J
dp
dJ

. (3.171)

The isochoric part Ciso is given by

Ciso = P : C : PT +
2

3
Tr(J−2/3S)P̃− 2

3
(C−1 ⊗ Siso) (3.172)

where C, P̃ and Tr(•) are the fictitious elasticity tensor in the material description, the
modified projection tensor of fourth order and a special operator, respectively:

C = 2J−4/3 ∂S

∂Ciso
= 4J−4/3∂

2Ψiso(Ciso)

∂Ciso∂Ciso

P̃ = C−1 ⊙C−1 − 1

3
C−1 ⊗C−1

Tr(•) = (•) : C.

(3.173)

The FE software Abaqus uses a co-rotational frame based on the Jaumann rate for solid
elements and to implement a constitutive model in a UMAT, it is necessary to provide a
Jacobian matrix (DDSDDE) as mentioned before. In order to update this matrix, the
model must be expressed in terms of the Jaumann rate of the Kirchhoff stress tensor.
Therefore, the Jacobian matrix does not correspond directly to the spatial elasticity tensor
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C and is in fact given by

DDSDDEijkl = Cijkl +
1

2
(Iacσbd + σacIbd + Iadσbc + σadIbc). (3.174)

3.5 Finite Element Method

3.5.1 Principle of Virtual Work

Variational principles, such as the principle of virtual work, are powerful tools to evaluate
continuous bodies and are fundamental in mathematics and mechanics. The FE method
does not necessarily depend on the existence of a variational principle, but a good approx-
imation is often related to the weak forms of field equations, which can be obtained with
variational principles.

The principle of virtual work is one of these variational principles that is essential for
FE formulations. To introduce it, a deformable body occupying the region Ω and the
following boundary conditions are considered:

u = u on Ωu

t = t on Ωt

(3.175)

where u is a prescribed displacement on a surface of the body denoted by ∂Ωu, which is
a Dirichlet or essential boundary condition and t is a prescribed Cauchy traction vector
applied in the rest of the surface boundary denoted by ∂Ωt, which is a Neumann or natural
boundary condition.

Considering a time-independent problem and one of the most important balance laws,
known as Cauchy’s first equation of motion and given by eq. (3.60), it is possible to
formulate a strong form of a nonlinear boundary-value problem, given by

divxσ + b = 0 ,

u = u , on ∂Ωu

t = t , on ∂Ωt

. (3.176)

To develop the principle of virtual work, a vector-valued function η(x) is defined in the
current configuration and the integration the Cauchy’s first equation of motion over Ω is
performed:

f(u,η) =

∫
Ω

(divxσ + b) · η dv = 0. (3.177)

The function η is smooth with η = 0 on ∂Ωu and with the divergence theorem, it is
possible to obtain the weak form of the boundary-value problem, given by

f(u,η) =

∫
Ω

(σ : ∇η − b · η) dv −
∫

∂Ωt

t · η ds = 0. (3.178)
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The introduced function η is arbitrary, but if it is taken as a virtual displacement field
δu on the current configuration, eq. (3.178) leads to the principle of virtual work in the
spatial description, defined as

f(u, δu) =

∫
Ω

(σ : δe− b · δu) dv −
∫

∂Ωt

t · δu ds = 0. (3.179)

The principle of virtual work states that the internal virtual work is the same as the
external virtual work for any kinematically admissible virtual displacement field. The
stress σ does internal work along the virtual strain δe, whereas the body force b and
surface traction t do external work along the virtual displacement δu. If the accelerations
are null, such as is the case for static problems, the external work δWext is equal to the
internal work δWint:

δWint(u, δu) =

∫
Ω

σ : δe dv (3.180)

δWext(u, δu) =

∫
Ω

b · δu dv +

∫
∂Ω

t · δu ds (3.181)

δWext = δWint , if ü=0. (3.182)

The principle of virtual work states the equilibrium of a deformable body and is the
basis for FE discretization. It is sometimes convenient to express this principle in material
description, defined as

F(u, δu) =

∫
Ω0

(S : δE−Bf · δu) dV −
∫

∂Ω0t

T · δu dS = 0. (3.183)

3.5.2 Linearization of the Principle of Virtual Work

The principle of virtual work is generally nonlinear in the unknown displacement u. The
non-linearities can come from the geometry, the material, the loads and the boundary con-
ditions and the exact solution to these problems is only available for very simple problems.

A common technique to solve nonlinear equations is to use Newton-Raphson, which
requires a consistent linearization of all quantities involved in the problem.

The linearization based on the first-order Taylor’s expansion of a given nonlinear and
smooth function F(u) is given by

F(u,∆u) = F(u) + ∆F(u,∆u) + o(∆u) (3.184)

where ∆(u) denotes the increment of the displacement field and the remainder o(∆u) is a
small error that tends to zero faster than ∆u.

49



In the Newton-Raphson method, eq. (3.184) is truncated after the first derivative of F .
Thus, the first term is an approximate solution for a given state u and the second term
is the linearization of F at u. The linear change in F due to an increment ∆u at u is
equal to the directional derivative of F at a given u in the direction of the incremental
displacement field ∆u:

∆F(u,∆u) = D∆uF(u) =
d
dϵ

F(u+ ϵ∆u)|ϵ=0. (3.185)

Now that the concept of linearization is introduced, it is possible to linearize the prin-
ciple of virtual work in the spatial or material description. The linearization of external
virtual work vanishes (D∆uδWext(u, δu) = 0) if it is considered a purely static problem
(ü = 0) and that Bf and t are independent of the motion of the body. Thus, only the
internal virtual work is affected by linearization. Considering the expression for internal
virtual work from eq. (3.183), it is possible to obtain its linearization as

D∆uδWint(u, δu) =

∫
Ω0

[S : D∆uδE+ δE : D∆uS] dV (3.186)

where the linearization of S is given by

D∆uS =
∂S

∂E
: D∆uE = C : D∆uE. (3.187)

After some manipulation, it is possible to obtain the final expression for the linearization
of the internal virtual work in the material description, or the so-called total-Lagrangian
formulation, given by

D∆uδWint(u, δu) =

∫
Ω0

(∇Xδu : ∇X∆u S+ FT∇Xδu : C : FT∇X∆u)dV. (3.188)

The first term in eq. (3.188) comes from the current state of stress and represents the
initial stress contribution to the linearization. It can be seen as the initial stress at every
increment in an iterative solution technique, whereas the second term is the constitutive
contribution to the linearization.

Alternatively, the principle of virtual work can also be linearized in the spatial descrip-
tion. The same assumptions used for the material description are considered and the idea
is to do a push forward to the linearized terms from eq. (3.186). After some manipula-
tions and rearranging, the linearized internal virtual work in the spatial description, or the
so-called updated-Lagrangian formulation, is given by

D∆uδWint(u, δu) =

∫
Ω

(∇xδu : ∇x∆u σ +∇xδu : C : ∇x∆u)dv. (3.189)
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The linearized principle of virtual work is the starting point for approximation tech-
niques such as the FE method.
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Chapter 4

Hyperelastic Surrogate Modelling

In this chapter, the process to get surrogate models to predict the isochoric part of σ and
of C expeditiously from F is going to be explained. Figure 4.1 shows the architecture of the
models used, where the input is the deformation gradient and the outputs are σ and C. The
surrogate models were obtained with PyTorch Lightning, an open-source Python library
that is a PyTorch wrapper and handles data loading, distributed training, and logging [73].
The development workflow is going to be explained, from the generation of the data to the
training process. Then, the results obtained with the trained surrogate models are shown,
firstly considering a Neo-Hookean material and then a transversely isotropic material with
a family of fibres embedded.

It is important to mention that all the results that are going to be presented are valid
for any system of units that is consistent. As an example, if the material parameter used for
the Neo-Hookean model was C10 = 2 and if the unit considered for the material parameter
is MPa, all the stresses shown are in MPa, displacements in mm and forces in N.
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Figure 4.1: ANN architecture
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4.1 Development Workflow

4.1.1 Dataset Generation

To train the surrogate models, it was necessary to generate the data that was going to
be used to train the NNs. Firstly, it is explained the approach used to generate the
deformation gradients, followed by the presentation of the reasoning applied to generate σ

and C.

4.1.1.1 Deformation Gradient

The deformation gradients were obtained as

F =
m∏
(eθRm Fm

e
θR

T
m), with


m = {uni, bi, ss}
θ ∈ [0◦, 180◦]

e = {Ox, y, z}
(4.1)

where Fm are the deformation gradients representative of three homogeneous loading cases:
uniaxial load (m = uni), biaxial load (m = bi) and simple shear load (m = ss). Each of
these deformation gradients has the general representative form defined as

Funi =

λuni 0 0

0 λ−0.5
uni 0

0 0 λ−0.5
uni

 (4.2)

Fbi =

λbi1 0 0

0 λbi2 0

0 0 λ−1
bi1

· λ−1
bi2

 (4.3)

Fss =

1 γ 0

0 1 0

0 0 1

 . (4.4)

For each value of m there is an associated rotation matrix e
θRm, defined by an axis of

rotation e and an angle θ.
If a dataset with only uniaxial loading cases in a given direction is desired, Fbi and Fss

are equal to the identity matrix I, as well as their corresponding rotation matrix Rbi and
Rss. A summary of the combinations used is shown in Table 4.1.
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m = uni m = bi m = ss
R F R F R F

θ = 0◦ θ = 0◦ θ = 0◦Uniaxial
e = Ox

Funi e = Ox
I

e = Ox
I

θ = 0◦ θ = 0◦ θ = 0◦Biaxial
e = Ox

I
e = Ox

Fbi e = Ox
I

θ = 0◦ θ = 0◦ θ = 0◦Simple shear
e = Ox

I
e = Ox

I
e = Ox

Fss

θ = [0◦, 180◦] θ = [0◦, 180◦] θ = [0◦, 180◦[Random
e = {Ox, y, z} Funi e = {Ox, y, z} Fbi e = {Ox, y, z} Fss

Table 4.1: Combinations to obtain the deformation gradients

To use the trained surrogate models, it was important to train them with a wide range of
deformations in order to make it viable to use them in complex numerical examples, where
the deformation gradient is much different from the ones present in eqs. (4.2) to (4.4).
Therefore, a random deformation gradient could be obtained with eq. (4.1), where the
following assumptions and considerations were taken:

1. It was considered that the final F was obtained by multiplying the deformation gra-
dient representative of three homogeneous deformations ( Fm), namely the uniaxial,
the biaxial and the simple shear;

2. Each Fm were rotated by a random rotation matrix Rm;

3. The random rotation matrixes were obtained considering that the axis of rotation
was coincident with one of the coordinate system directions (x, y or z direction)
and the angle of rotation that could go from 0 to 180◦, with increments of 5◦. The
function defined to obtain these matrixes is the following one:

1 def random_rotation ():
2 axis = np.random.randint (0,3)
3 increment =5*np.pi/180 #angle increment in radians
4 angle = np.random.choice(np.arange(0,np.pi+increment ,increment))
5

6 # Compute Rotation matrix based on the axis and the angle
7 R = np.zeros ((3,3))
8 if axis == 0: # x-axis
9 R = np.array ([[1, 0, 0],

10 [0, np.cos(angle), -np.sin(angle)],
11 [0, np.sin(angle), np.cos(angle)]])
12 elif axis == 1: # y-axis
13 R = np.array ([[np.cos(angle), 0, np.sin(angle)],
14 [0, 1, 0],
15 [-np.sin(angle), 0, np.cos(angle)]])
16 else: # z-axis
17 R = np.array ([[np.cos(angle), -np.sin(angle), 0],
18 [np.sin(angle), np.cos(angle), 0],
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19 [0, 0, 1]])
20 return R

Listing 4.1: Random rotation matrix

4. It was assumed that the deformation was isochoric, which implied that J = 1. To
ensure this, it was necessary to rescale F after applying eq. (4.1): F = F/det(F1/3);

To better understand the reasoning applied to obtain a random deformation gradient,
an example is shown below:

Funi =

1.5 0 0

0 1.5−0.5 0

0 0 1.5−0.5

 and Runi =

cos(5◦) −sin(5◦) 0

sin(5◦) cos(5◦) 0

0 0 1


⇓

Funi =

 1.495 0.0593 0

0.0593 0.822 0

0 0 0.817



Fbi =

0.8 0 0

0 1.4 0

0 0 (0.8 · 1.4)−1

 and Rbi =

1 0 0

0 cos(135◦) −sin(135◦)
0 sin(135◦) cos(135◦)


⇓

Fbi =

 0.817 0 0.0356

0 1.4 0

0.0356 0 0.876



Fss =

1 −0.5 0

0 1 0

0 0 1

 and Rss =

 cos(25◦) 0 sin(25◦)
0 1 0

−sin(25◦) 0 cos(25◦)


⇓

Fss =

1 0.354 −0.354

0 1 0

0 0 1



F = FuniFbiFss =

 1.221 0.480 −0.403

0.0831 1.180 −0.0294

0.0532 0.0209 0.697
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In Figure 4.2 it is shown this random deformation applied to a unitary cube.

x

y

z

Figure 4.2: Example of random deformation gradient
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The function defined in Python to get the deformation gradients is shown below:

1 def random_deformation_gradient(min_stretch , max_stretch , min_shear ,
max_shear):

2

3 suniaxial = np.random.uniform(low=min_stretch , high=max_stretch)
4 sshear = np.random.uniform(low=min_shear , high=max_shear)
5 sbiaxial1= np.random.uniform(low=min_stretch , high=max_stretch)
6 sbiaxial2 = np.random.uniform(low=min_stretch , high=max_stretch)
7

8 # Random stretch factors for uniaxial deformation
9 s1 = suniaxial

10 s2 = 1/np.sqrt(s1)
11 s3 = s2
12

13 # Random shear factors for simple shear deformation
14 r = sshear
15

16 # Random stretch factors for biaxial deformation
17 s7 = sbiaxial1
18 s8 = sbiaxial2
19 s9 = 1.0/(s7*s8)
20

21 F_uni = np.array ([[s1 , 0, 0],
22 [0, s2, 0],
23 [0, 0, s3]])
24 F_bi = np.array ([[s7, 0, 0],
25 [0, s8, 0],
26 [0, 0, s9]])
27 F_ss = np.array ([[1, r, 0],
28 [0, 1, 0],
29 [0, 0, 1]])
30

31 R_uni = random_rotation ()
32 R_bi = random_rotation ()
33 R_ss = random_rotation ()
34

35 # Rotate deformation gradients
36 F_uni = np.matmul(np.matmul(R_uni , F_uni), R_uni.T)
37 F_bi = np.matmul(np.matmul(R_bi , F_bi), R_bi.T)
38 F_ss = np.matmul(np.matmul(R_ss , F_ss), R_ss.T)
39

40 F = np.matmul(np.matmul(F_uni , F_bi), F_ss)
41 # Isochoric deformation gradient
42 det = np.linalg.det(F)
43 F_rescaled = F / det **(1.0/3.0)
44

45 return F_rescaled

Listing 4.2: Random deformation gradient generation
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4.1.1.2 Cauchy Stress and Spatial Elasticity Tensor

To obtain the isochoric part of σ and C for each F generated, it was used a Python library
named Pandaral·lel that speeds up computations performed in pandas. The deformation
gradients were placed in a Pandas data frame, and a function was applied to each row of
the data frame to compute the desired tensor for the deformation gradient present in the
given row. To obtain the isochoric part of σ, the SEFs of the material models in analysis
(defined in Section 3.4.3) were used, as well as the eqs. presented in Section 3.4.2.3. The
values for the material parameters required to compute the SEF were considered known.
The same reasoning was applied to obtain the isochoric part of C, where the eqs. presented
in Section 3.4.4 were used. The Python code used to obtain these two tensors is shown
below:

1 def stress(F):
2 #... Equations to obtain Cauchy stress tensor or the spatial elasticity

tensor with the SEF of the material model considered
3 return Variable
4

5 def generate_df(n):
6 pandarallel.initialize(progress_bar=True)
7 df=pd.DataFrame ()
8 df["F"]=[ random_deformation_gradient (0.8, 1.6, -0.4, 0.4) for j in

range(n)]
9 df[’Variable ’] = df.parallel_apply(lambda x: stress(x.F), axis =1)

10 return df
11

12 df=generate_df(n)

Listing 4.3: Stress and elasticity tensors generation

4.1.2 Loading the Data

After having the dataset properly generated, it was necessary some pre-processing be-
fore proceeding to the training stage. It was required to transform the numpy.arrays to
torch.tensors and to split the dataset into training, validation and testing data. The
training data is used to train the model and to fit the parameters, whereas the validation
data is used to improve the model performance by fine-tuning after each epoch. The test
data has information that the NN never saw, so it is possible to evaluate the model in an
unbiased way. The percentages of the whole dataset considered for each split are shown in
Table 4.2.

Training Data Validation Data Test Data
Percentage of the whole dataset (%) 80 10 10

Table 4.2: Dataset split
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The Python code to accomplish the pre-processing of the dataset is shown below:

1 class Dataset ():
2 def __init__(self ,features ,labels):
3 self.features=torch.tensor(features ,dtype=torch.float32)
4 self.labels=torch.tensor(labels ,dtype=torch.float32)
5

6 def __len__(self):
7 return len(self.labels)
8

9 def __getitem__(self ,idx):
10 return self.features[idx],self.labels[idx]
11

12 def pre_process(n_inputs ,n_outputs ,test_split ,val_split):
13 df=pd.read_pickle(f"(...).pkl")
14 n=df.shape [0]
15 features=np.reshape(np.vstack(df["F"]. to_numpy ()),(n,n_inputs))
16 labels=np.reshape(np.vstack(df["SIGMA"]. to_numpy ()),n,n_outputs))
17

18 train_features , test_features , train_labels , test_labels =
train_test_split(features , labels , test_size = test_split)

19 val_split=val_split /(1- test_split)
20 train_features , valid_features , train_labels , valid_labels =

train_test_split(train_features , train_labels , test_size =
val_split)

21

22 train_set=Dataset(train_features ,train_labels)
23 test_set=Dataset(test_features ,test_labels)
24 valid_set=Dataset(valid_features ,valid_labels)
25

26 return train_set ,valid_set ,test_set

Listing 4.4: Data pre-processing

Afterwards, it is possible to use the class LightningDataModule, where the batch size
was defined in the __init__ method. Then the train_dataloader(), the val_dataloader()
and the test_dataloader() methods were used to define the training, validation and test-
ing data, respectively. For each one of them, the DataLoader module was used, which took
as input the respective data set and the batch size [73, 74].

1 class DataModule(pytorch_lightning.LightningDataModule):
2 def __init__(self , batch_size):
3 super().__init__ ()
4 self.batch_size = batch_size
5 def train_dataloader(self):
6 return torch.utils.data.DataLoader(train_set ,batch_size=self.

batch_size)
7 def val_dataloader(self):
8 return torch.utils.data.DataLoader(valid_set ,batch_size=self.

batch_size)
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9 def test_dataloader(self):
10 return torch.utils.data.DataLoader(test_set ,batch_size=self.

batch_size)

Listing 4.5: Create DataModule

4.1.3 Training with PyTorch Lightning

As mentioned before, the models were trained with PyTorch Lighting and to do so, two
stages were necessary:

Configuring the model PyTorch Lightning is based on PyTorch but offers increased
structurability to the code and it is easier to scale models across multiple graphics pro-
cessing units and, thus, speed up the training of the model.

The models are created in the class LightningModule, based on the PyTorch nn.Module.
Both of them provide the building blocks to create ANNs, but the LightningModule pro-
vides additional functionality. It can be organized into the following main sections [73, 74]:

• Initialization (__init__ and setup()), where the architecture of the NN can be
defined. Then the forward() method takes the inputs, passes them by the multiple
layers and activation functions defined, and gives the outputs of the model.

1 def __init__(self ,learning_rate):
2 super(Model ,self).__init__ ()
3 self.layers = torch.nn.Sequential(
4 # 1st hidden layer
5 torch.nn.Linear(n_inputs , layer1),torch.nn.ReLU(),
6 # 2nd hidden layer
7 torch.nn.Linear(layer1 , layer2),torch.nn.ReLU(),
8 # output layer
9 torch.nn.Linear(layer2 , n_outputs))

10 self.lr = learning_rate
11 def forward(self , x):
12 return self.layers(x)

Listing 4.6: Initialization

• Training Loop (training_step()), where the training is completed. This method
takes as input two variables: batch that consists of the features and the targets
present in the training dataset, and batch_idx which is the index number for the
batch of data. With the forward() method, the prediction of the model and a loss
function can be calculated;

1 def training_step(self , train_batch , batch_idx):
2 features , labels = train_batch
3 logits = self.forward(features)
4 loss = torch.nn.functional.mse_loss(logits ,labels)
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5 #Logging options can be added
6 return loss

Listing 4.7: Training

• Validation Loop (validation_step()), where the validation occurs. It is similar to
the training_step() method, but here the validation dataset is used instead of the
training one;

1 def validation_step(self , valid_batch , batch_idx):
2 features , labels = valid_batch
3 logits = self.forward(features)
4 loss = torch.nn.functional.mse_loss(logits ,labels)
5 #Logging options can be added

Listing 4.8: Validation

• Testing Loop (test_step()), where the testing of the model is completed analogously
to the previous two methods, but this time using the testing dataset;

1 def test_step(self , test_batch , batch_idx):
2 features , labels = test_batch
3 logits = self.forward(features)
4 loss = F.mse_loss(logits ,labels)
5 #Logging options can be added
6

Listing 4.9: Testing

• Optimizers (configure_optimizers()) where the optimizers can be configured. The
ADAM optimizer is used here and it is also in this method that it is possible to define
the learning rate.

1 def configure_optimizers(self):
2 optimizer = torch.optim.Adam(self.parameters (), lr=self.lr)
3 return optimizer

Listing 4.10: Optimization

Each of these methods should be placed inside the LightningModule class:

1 class Model(pytorch_lightning.LightningModule):
2 def __init__(self ,learning_rate):
3 ...
4 def forward(self , x):
5 ...
6 def training_step(self , train_batch , batch_idx):
7 ...
8 def validation_step(self , valid_batch , batch_idx):
9 ...
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10 def test_step(self , test_batch , batch_idx):
11 ...
12 def configure_optimizers(self):
13 ...

Listing 4.11: LightningModule

Training and testing the model The models built in PyTorch Lightning can be trained
with the Trainer class that loops over the datasets and clears the gradients, for example.
It supports many functionalities such as logging, callbacks, epochs, etc. Once this class
is defined, the fit method is called, which receives the defined model and the dataset.
Finally, the test method can be used to test the trained model with data that was not
used to train [73, 74].

1 trainer = pytorch_lightning.Trainer ()
2 model = Model(learning_rate)
3 datamodule = DataModule(batch_size)
4 trainer.fit(model ,datamodule=datamodule)
5 trainer.test(model , datamodule=datamodule)

Listing 4.12: Trainer fit and test
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4.2 Neo-Hookean Model

To begin, it was considered a Neo-Hookean material and it was assumed a fixed material
parameter (C10 = 2). For this material, different models were developed, with increasing
complexity. Firstly, they were trained models to predict the isochoric Cauchy stress tensor,
some for homogeneous loading cases and another for an arbitrary deformation. For the
arbitrary deformation, the hyperparameters, namely the architecture of the NN and the
batch size, were tuned, followed by a search for the optimal learning rate. Afterwards, it
was trained a model for the computation of the isochoric spatial elasticity tensor.

4.2.1 Homogeneous Deformations

A surrogate model was developed for homogeneous deformation cases: uniaxial tension,
biaxial tension and simple shear. For each case, a NN was trained and tested as it is going
to be presented. Each one of the datasets used for these models has 5× 10−5 deformation
gradients representative of the deformation in analysis and the corresponding isochoric
part of the Cauchy stress tensor.

The hyperparameters used for every homogeneous deformation case were the same: a
batch size of 64, an input layer with 9 inputs that correspond to all the components of the
deformation gradient, two hidden layers with 64 and 32 neurons each and a final output
layer with 9 outputs that correspond to the components of the Cauchy stress tensor, as
it is summarized in Table 4.3. The maximum number of epochs was different for each
homogeneous deformation since the EarlyStopping callback was used, which monitors
the validation loss and stops the training when no significant improvement is observed.
Additionally, the activation function used was the ReLU, the loss function was the MSE
and the ADAM optimizer was used. Instead of defining a learning rate, a learning rate
finder available in PyTorch Lightning was used. It does a small run with a learning rate
that increases after each processed batch and then the corresponding loss is logged, which
gives guidance for the optimal learning rate.

Size Activation Function
Input Layer 9 -

First Hidden Layer 64 ReLU
Second Hidden Layer 32 ReLU

Output Layer 9 -

Table 4.3: NN architecture

The results obtained for each homogeneous loading case are shown in Figure 4.3, where
each row is related to each one of the deformations considered. In the first column, an
example of the deformation in the analysis is displayed, where the blue cube represents
the undeformed configurations and the red one is the deformed configuration. The second
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column shows the evolution of the training and validation loss and in the third column,
the losses in the last epoch are shown.
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Figure 4.3: Results for each NN trained

In the graph with the evolution of the training and validation losses for each deforma-
tion, it is possible to observe the expected decaying behaviour of both losses as the number
of epochs increases. The test loss is small, which shows that the model is able to accurately
predict the components of the Cauchy stress tensor for a given homogeneous deformation.
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4.2.2 Arbitrary Deformation

Despite the excellent results presented, there are some limitations. The developed models
showed good results when tested with deformation gradients representative of the corre-
sponding homogeneous loading case, but they are not suitable for a general loading case.
Therefore, to overcome this limitation, a model was trained to predict the isochoric part
of the Cauchy stress tensor for a given random deformation gradient. Considering that
Cauchy stress tensor is symmetric for an isochoric deformation gradient, it is possible to
reduce the outputs of the NN from 9 to 6.

The dataset used for this model is composed of 5× 107 random deformation gradients
and the corresponding stress. The split of the dataset was done with the values from
Table 4.2, the optimizer used was the ADAM algorithm and the loss function used was the
MSE. The NN architecture and the batch size were tuned with Optuna.

With the NN architecture defined, the learning rate was defined. To do so, the learning
rate finder (lr_find()) implemented in PyTorch Lightning was used. Such a learning
rate finder increases the learning rate in each processed batch and the corresponding loss
is logged, which produces a plot with the loss as a function of the learning rate and
suggests a good value for the learning rate. The learning rate is the hyperparameter with
more importance for this problem and is influenced by the NN architecture. This was the
reason to first tune the architecture and the batch size, and only then define a good value
for the learning rate.

To tune the desired hyperparameters with Optuna, an objective function was defined
and the possible values for the hyperparameters were defined with the suggest API. The
hyperparameters and the possible values are shown in Table 4.4: the number of layers is an
integer value chosen within a specified interval, the number of neurons and the batch size
are also integers, but they are chosen from a given list. The objective function runs every
trial and it gives the evaluation metric, which is the validation loss in this case. The study
was also defined, where the direction of the evaluation criteria was defined (minimize in
this case), as well as the pruning strategy. Finally, the optimize API was invoked, with
the objective function and the number of trials as inputs.

Hyperparameter Type Values
Number of layers Integer [2,4]

Number of neurons Categorical {4, 8, 16, 32, 64, 128, 256}
Batch size Categorical {16, 32, 64, 128, 256}

Table 4.4: Hyperparameters - Possible values

In this analysis, only a study was carried out with 100 trials and applied to a random
1 % of the training set in order to speed up the tuning process. The results are shown in
Table 4.5.
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Study results
Number of layers 3
Number of neurons 256, 256, 256
Batch size 64

Table 4.5: Hyperparameter tuning results - Stress Neo-Hook

The evolution of the test and validation losses is shown in Figure 4.4 and the values of
the final losses are presented in Table 4.6.
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Figure 4.4: Evolution of training and validation losses - Stress Neo-Hook

Last Epoch
Loss Train Valid. Test

0.0807 0.0640 0.0680

Table 4.6: Losses in last epoch - Stress Neo-Hook

The constitutive behaviour of a hyperelastic material is described by the relationship
between stresses and strains, but to apply the FE method, it is necessary to compute the
tangent stiffness matrix. To do it, it is required to calculate the spatial elasticity tensor.
Therefore, it is necessary to get a model that predicts the isochoric part of the spatial
elasticity tensor, which is then used to compute the tangent stiffness matrix. The reasoning
applied and described to obtain the Cauchy stress tensor for a general deformation gradient
is also applied here. The dataset used for this model is composed of 1 × 107 random
deformation gradients and the corresponding spatial elasticity tensor, where the major
symmetries were considered to reduce the number of outputs from 36 to 21. Everything
else is equal to the previous model and regarding the NN architecture and batch size,
another tuning was performed, with the associated results shown in Table 4.7.
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The learning rate was also tuned and the results of the training are shown in Figure 4.5
and Table 4.8.

Study results
Number of layers 2
Number of neurons 256,128
Batch size 16

Table 4.7: Hyperparameter tuning results - Elasticity tensor Neo-Hook
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Figure 4.5: Evolution of training and validation losses - Elasticity tensor Neo-Hook

Last Epoch
Loss Train Valid. Test

0.0880 0.0671 0.0698

Table 4.8: Losses in last epoch - Elasticity tensor Neo-Hook
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4.3 HGO Model

Soft biological tissues and other hyperelastic materials have fibres that confer anisotropy
to the material. To describe these materials, some models available in the literature were
already introduced, such as the HGO model. This model is more complex than the Neo-
Hookean model and it is going to be used to further prove the capabilities of modelling
hyperelastic materials with a ML-based approach, even when the material has one preferred
direction.

The dataset consisted of 1×107 deformation gradients only with uniaxial loading cases
(generated with the first combination of the first row of Table 4.1), the 6 independent
components of the Cauchy stress tensor and two angles that describe the direction of the
fibre or the preferred direction: θ ∈ [0◦, 180◦[ and ψ ∈ [0◦, 90◦[. These angles and a radial
distance r = 1 define a vector in spherical coordinates, that can then be used to get the
direction in Cartesian coordinates, given by

x = r · cos(θ) · sin(ψ)
y = r · sin(θ) · sin(ψ)
z = r · cos(ψ).

(4.5)

Firstly, total freedom to the angles was given, but this resulted in a really complex
behaviour that could not be learned by a NN with the amount of data considered because
a different direction changes completely the constitutive behaviour of the material. Thus,
the angle was varied in increments of 45◦. The material parameters used for the HGO
model are the ones shown in Table 4.9.

C10 k1 k2 κ

2 1 1 0.2

Table 4.9: Material parameters HGO model

The trained model for the SEF proposed by HGO was also tuned to get a good archi-
tecture. The batch size selected from the tuning process was 16 and the NN architecture
is the one shown in Table 4.10.

Size Activation Function
Input Layer 11 -

First Hidden Layer 256 ReLU
Second Hidden Layer 256 ReLU
Third Hidden Layer 32 ReLU

Output Layer 6 -

Table 4.10: NN architecture - HGO
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Since all the deformation gradients consisted of uniaxial deformations in the x-direction,
the first input of the NN was coincident with the stretch applied. Therefore, it was possible
to apply a stratification to split the data into the training, testing and validation datasets,
which can improve the outcome of the trained model and its generalization capabilities.
The distribution of the train+validation set and the test set with and without stratification
is shown in Figure 4.6. The training results are shown in Figure 4.7 and Table 4.11.
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Figure 4.7: Evolution of training and validation losses - Stress HGO

Last Epoch
Loss Train Valid. Test

1.191E-4 1.246E-5 1.276E-5

Table 4.11: Losses in last epoch - Stress HGO
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Chapter 5

Finite Element Method Integration

The trained models showed a small value for the test loss, which is indicative that they
can predict accurately the desired outputs. However, the main goal of this dissertation
is to use the trained surrogate models in Abaqus to analyse problems with hyperelastic
materials. Thus, it was necessary to pass the trained models to the Abaqus environment,
which then make it possible to employ the FE method and to use all its capabilities, such
as modelling the problem, managing, monitoring and visualizing results. The procedure
to accomplish such a task is explained in this Chapter, as well as the comparison of the
results obtained with a ML approach and with the conventional way.

5.1 Converting Forward Pass to Fortran

As mentioned before, it is possible to define a UMAT in Abaqus, where the constitutive
behaviour of the material in the analysis is modelled. The UMAT is written in Fortran
and, conventionally, it requires the definition of the constitutive equations. The constitutive
equations involve many partial derivatives, and Fortran does not have a built-in function
to do it. Therefore, an alternative to expressing the constitutive equations is to have a
ML-based approach, where the trained surrogate models are used.

To use the trained models in Fortran, it was necessary to use the values of the weights
and biases of every neuron and to write the forward pass equations in a subroutine. A
Python function was defined, which takes as input the torch.nn sequential container of the
model and outputs a dictionary with a length equal to the total number of layers, where
the item of each key is a vector with the output of the respective layer as a function of the
input of that layer. To write the subroutine in Fortran, the output of the defined function,
which is a Sympy expression, is translated into Fortran code with the Sympy submodule
fcode. The biggest difficulty in this process was how to deal with and implement the
activation function. With Sympy, it was possible to define a piecewise function to define
the ReLU activation function, but it was not possible to directly transfer it to Fortran code
with the fcode module. Therefore, after writing the equation for the forward pass of each
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neuron of a layer with the module fcode, it was necessary to apply the activation function,
which was accomplished with the evaluation of a logical expression in Fortran code.

This process was validated and, for a given deformation gradient, the stress values
obtained with the trained model in PyTorch Lightning and with the subroutine created in
Fortran were exactly the same.

5.2 Neo-Hook Numerical Examples

To validate the integration of the trained surrogate models with the FE method, some
numerical examples were analysed. For all of them, the principal stresses and the mag-
nitude of the displacement were computed and compared. The variable in comparison is
displayed in the deformed shape and the results obtained with the conventional Abaqus
approach (denoted by UMAT from now on) are shown on the left-hand side and the ones
obtained with the use of the surrogate models (denoted by ML from now on) are shown on
the right-hand side. To better compare the results obtained, a deformed figure with the
absolute difference between the two approaches is also displayed. In addition, for each time
increment, the relative error between all the components of the Cauchy stress tensor was
computed for all the integration points and they were displayed with a box-and-whisker
plot, where the dispersion and skewness of the results are described by the minimum, the
maximum, the sample median (black line), the first and third quartiles and the average
(black arrow). The absolute error was also computed and displayed in a box-and-whisker
plot for each problem. Finally, the total number of iterations and the total central pro-
cessing unit (CPU) time required to complete the analysis were also compared.

Regarding the numerical examples, the results were firstly compared in an elementary
cube subjected to different loading conditions and then, more complex problems were
considered.

5.2.1 One Element Cube

A cube with one hexahedral element with 8 linear nodes was submitted to three homo-
geneous deformations (uniaxial, biaxial and simple shear) and to a random deformation.
The results obtained are shown in Figures 5.1 to 5.20.
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Figure 5.1: Maximum principal stress - Cube with uniaxial load
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Figure 5.2: Middle principal stress - Cube with uniaxial load
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Figure 5.3: Minimum principal stress - Cube with uniaxial load
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Figure 5.4: Displacement magnitude - Cube with uniaxial load
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Figure 5.5: Error - Cube with uniaxial load
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Figure 5.6: Maximum principal stress - Cube with biaxial load
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Figure 5.7: Middle principal stress - Cube with biaxial load
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Figure 5.8: Minimum principal stress - Cube with biaxial load
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Figure 5.9: Displacement magnitude - Cube with biaxial load
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Figure 5.10: Error - Cube with biaxial load
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Figure 5.11: Maximum principal stress - Cube with simple shear load
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Figure 5.12: Middle principal stress - Cube with simple shear load
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Figure 5.13: Minimum principal stress - Cube with simple shear load
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Figure 5.14: Displacement magnitude - Cube with simple shear load
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Figure 5.15: Error - Cube with simple shear load
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Figure 5.16: Maximum principal stress - Cube with random deformation
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Figure 5.17: Middle principal stress - Cube with random deformation
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Figure 5.18: Minimum principal stress - Cube with random deformation
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Figure 5.19: Displacement magnitude - Cube with random deformation
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Figure 5.20: Error - Cube with random deformation
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It is possible to observe that the contour plots of the stresses have a considerable
difference. With the conventional UMAT, a homogeneous colour is obtained, indicating
that the stresses are equal in all the integration points of the cube, whereas, with the
ML model, the contour plot shows different colours. However, the legend shows that the
results are similar, with small differences. In addition, the principal stresses were the ones
chosen to be displayed, which also has some influence on the results shown because there
are residual values predicted by the surrogate models for components of the stress tensor
that are in fact zero (as an example, for a uniaxial loading case, the ML approach gives
some residual values for the shear components when they are zero in fact).

In terms of displacement magnitude, the values obtained have only differences in the
third decimal place and the contour plots are nearly equal. It was expected that the
results of the displacement were nearly equal because the boundary conditions consisted
of imposed displacements. The differences in the magnitude are related mainly to the
computation of the tangent stiffness matrix, which has an influence on the displacements
and the stresses. The relative difference between all the integration points and all the
stress components shows some high values. A possible reason for such high values is that
at the beginning of the analysis, the stress values are small, which means that even for
a small absolute error, the relative error is high. This hypothesis is supported by a box-
and-whisker plot of the absolute error that shows that, in fact, the absolute error has a
small value and by the decreasing trend of the relative error as the number of increments
increases.
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5.2.2 Block with Pressure

In this problem, a block is subjected to a pressure load on part of its upper surface, which
increases the complexity of the validation and tests the developed model in a problem with
singularities.

The displacements are fixed in the x- and z-directions on the upper surface and fixed in
the y-direction at the bottom. The symmetry of the block was considered, which implied
some additional Dirichlet boundary conditions: fixed displacements in the x-direction due
to symmetry in the x-plane and fixed displacements in the z-direction due to symmetry in
z-plane. The block is loaded partially in the upper surface with a constant pressure load
p, leading to a mixed Dirichlet-Neumann boundary condition [75].

The dimensions and the boundary conditions applied to one-quarter of the block are
shown in Figure 5.21. A mesh of 10 x 10 x 10 hexahedral elements with 8 linear nodes
was used and two analyses were performed, one with pressure and another with suction
pressure. The results obtained for a suction pressure load (p = 3) and for a pressure load
(p = −6) are shown in Figures 5.22 to 5.26 and Figures 5.27 to 5.31, respectively.

x

y

z py⃗
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Ux = 0

(symmetry)
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Figure 5.21: Geometry and boundary conditions - Block under partial load
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Figure 5.22: Maximum principal stress - Block under suction
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Figure 5.23: Middle principal stress - Block under suction
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Figure 5.24: Minimum principal stress - Block under suction
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Figure 5.25: Displacement magnitude - Block under suction
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Figure 5.26: Errors - Block under suction

95



(Avg: 75%)

S, Max. Principal

−4.726e+00
−4.079e+00
−3.433e+00
−2.786e+00
−2.140e+00
−1.493e+00
−8.470e−01
−2.006e−01
+4.459e−01
+1.092e+00
+1.739e+00

X

Y

Z

UMAT: Max. Value=1.664 ML: Max. Value=1.739

(a) UMAT (left) and ML (right)

(Avg: 75%)
S_diff, Max. Principal

+1.722e−02
+4.932e−02
+8.141e−02
+1.135e−01
+1.456e−01
+1.777e−01
+2.098e−01
+2.419e−01
+2.740e−01
+3.061e−01
+3.382e−01
+3.703e−01
+4.024e−01

X

Y

Z

(b) Absolute difference

Figure 5.27: Maximum principal stress - Block under pressure
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Figure 5.28: Middle principal stress - Block under pressure
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Figure 5.29: Minimum principal stress - Block under pressure
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Figure 5.30: Displacement magnitude - Block under pressure
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Figure 5.31: Errors - Block under pressure
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The block under partial load example introduces more complexity, not only because it
has more elements, but also because of the boundary conditions imposed. In these exam-
ples, the contour plots of the stresses have really similar colour maps and the maximum
value obtained with the two approaches has a small relative error. Despite the fact that
in these examples there is a pressure applied, the displacement magnitude is again nearly
identical. Regarding the box-and-whisker plots of the errors, they have the same behaviour
observed for the unitary cube: high relative error, mainly at the beginning of the analysis
and with a decreasing trend and small values for the absolute error.

5.2.3 Cook’s Membrane

The Cook’s membrane is a typical benchmark problem in solid mechanics, which combines
a bending and shearing response with moderate distortion. It was introduced by Cook [76]
and it consists of a tapered cantilever with one side clamped and a constant shear load
in the vertical direction applied on the opposite side. The geometry and the boundary
conditions are shown in Figure 5.32 [75].
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16F = 5

Ux = Uy = 0

θx = θy = 0

Figure 5.32: Geometry and boundary conditions - Cook’s membrane with 5 of thickness

It was used a mesh of hexahedral elements with 8 linear nodes with 32 elements on each
side of the membrane. Four elements through the thickness were used and a concentrated
load of 5 was applied [77]. The used mesh is shown in Figure 5.33 and the results obtained
are displayed in Figures 5.34 to 5.38.
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Figure 5.33: Mesh - Cook’s membrane
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Figure 5.34: Maximum principal stress - Cook’s membrane
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Figure 5.35: Middle principal stress - Cook’s membrane
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Figure 5.36: Minimum principal stress - Cook’s membrane
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Figure 5.37: Displacement magnitude - Cook’s membrane
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Figure 5.38: Error - Cook’s membrane
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The results for Cook’s membrane follow the conclusions taken for the two previous ex-
amples, with the main difference being the disparity in the displacement magnitude. In this
problem, a force is applied on the right-hand side of the membrane and the displacement
is not prescribed as it was the case of the examples of the unitary cube. The difference in
displacement in this example is higher, possibly explained by the differences in the tangent
stiffness matrix.

5.2.4 Rectangular Block - Uniaxial, Shear and Torsion

A rectangular block was subjected to three different loading conditions. The first is a
uniaxial extension with a displacement in the x-direction (Ux = 10). The second one
is a shear load, where the left side of the block is clamped and on the opposite side a
displacement was applied in x- and y-direction (Ux = Uy = 5). The last one is a torsional
load, where the left side is clamped again but on the right side, it was applied a rotation
along the x-axis (θx = 1). Hexahedral elements with 8 linear nodes were used and the
geometry and the boundary conditions of the tree examples are shown in Figure 5.39. The
results are shown in Figures 5.40 to 5.44, in Figures 5.45 to 5.49 and in Figures 5.50 to 5.54
for the uniaxial, shear and torsional load, respectively.
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Figure 5.39: Geometry and boundary conditions - Rectangular block with 1 of thickness
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(Avg: 75%)

S, Max. Principal

+2.072e+00
+2.129e+00
+2.186e+00
+2.242e+00
+2.299e+00
+2.355e+00
+2.412e+00
+2.468e+00
+2.525e+00
+2.582e+00
+2.638e+00

X

Y

Z

UMAT: Max. Value=2.421 ML: Max. Value=2.638

(a) UMAT (left) and ML (right)

(Avg: 75%)
S_diff, Max. Principal

+7.484e−03
+3.755e−02
+6.763e−02
+9.770e−02
+1.278e−01
+1.578e−01
+1.879e−01
+2.180e−01
+2.481e−01
+2.781e−01
+3.082e−01
+3.383e−01
+3.683e−01

X
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Z

(b) Absolute difference

Figure 5.40: Maximum principal stress - Rectangular block under uniaxial load
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(Avg: 75%)

S, Mid. Principal

−1.413e−01
−1.074e−01
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(a) UMAT (left) and ML (right)

(Avg: 75%)
S_diff, Mid. Principal
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+2.733e−02
+4.537e−02
+6.342e−02
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Figure 5.41: Middle principal stress - Rectangular block under uniaxial load
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(Avg: 75%)

S, Min. Principal

−2.158e−01
−1.818e−01
−1.478e−01
−1.138e−01
−7.985e−02
−4.588e−02
−1.190e−02
+2.207e−02
+5.605e−02
+9.003e−02
+1.240e−01

X

Y

Z

UMAT: Max. Value=0.0

(a) UMAT (left) and ML (right)

(Avg: 75%)
S_diff, Min. Principal

−4.053e−02
−2.631e−02
−1.209e−02
+2.129e−03
+1.635e−02
+3.057e−02
+4.479e−02
+5.901e−02
+7.323e−02
+8.745e−02
+1.017e−01
+1.159e−01
+1.301e−01

X

Y

Z

(b) Absolute difference

Figure 5.42: Minimum principal stress - Rectangular block under uniaxial load
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U, Magnitude

+2.552e−01
+1.340e+00
+2.424e+00
+3.508e+00
+4.593e+00
+5.677e+00
+6.761e+00
+7.846e+00
+8.930e+00
+1.001e+01
+1.110e+01

+0.000e+00

X
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UMAT: Max. Value=10.935 ML: Max. Value=11.099

(a) UMAT (left) and ML (right)

U_diff, Magnitude

+0.000e+00
+3.346e−02
+6.691e−02
+1.004e−01
+1.338e−01
+1.673e−01
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+2.342e−01
+2.677e−01
+3.011e−01
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Figure 5.43: Displacement magnitude - Rectangular block under uniaxial load
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Figure 5.44: Errors - Rectangular block under uniaxial load
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(Avg: 75%)

S, Max. Principal

+4.176e−01
+8.183e−01
+1.219e+00
+1.620e+00
+2.021e+00
+2.421e+00
+2.822e+00
+3.223e+00
+3.624e+00
+4.024e+00
+4.425e+00

X

Y

Z

UMAT: Max. Value=4.12 ML: Max. Value=4.425

(a) UMAT (left) and ML (right)

(Avg: 75%)
S_diff, Max. Principal

+9.055e−03
+3.996e−02
+7.086e−02
+1.018e−01
+1.327e−01
+1.636e−01
+1.945e−01
+2.254e−01
+2.563e−01
+2.872e−01
+3.181e−01
+3.490e−01
+3.799e−01

X

Y

Z

(b) Absolute difference

Figure 5.45: Maximum principal stress - Rectangular block under shear load
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(Avg: 75%)

S, Mid. Principal

−4.325e−01
−2.365e−01
−4.037e−02
+1.557e−01
+3.518e−01
+5.479e−01
+7.440e−01
+9.400e−01
+1.136e+00
+1.332e+00
+1.528e+00

X

Y

Z

UMAT: Max. Value=1.473 ML: Max. Value=1.528

(a) UMAT (left) and ML (right)

(Avg: 75%)
S_diff, Mid. Principal

−1.040e−02
−2.307e−04
+9.934e−03
+2.010e−02
+3.026e−02
+4.043e−02
+5.059e−02
+6.076e−02
+7.092e−02
+8.108e−02
+9.125e−02
+1.014e−01
+1.116e−01

X

Y

Z

(b) Absolute difference

Figure 5.46: Middle principal stress - Rectangular block under shear load
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(Avg: 75%)

S, Min. Principal

−6.156e−01
−4.456e−01
−2.757e−01
−1.057e−01
+6.426e−02
+2.342e−01
+4.042e−01
+5.741e−01
+7.441e−01
+9.141e−01
+1.084e+00

X

Y

Z

UMAT: Max. Value=1.006 ML: Max. Value=1.084

(a) UMAT (left) and ML (right)

(Avg: 75%)
S_diff, Min. Principal

−7.162e−02
−6.086e−02
−5.009e−02
−3.932e−02
−2.855e−02
−1.778e−02
−7.009e−03
+3.760e−03
+1.453e−02
+2.530e−02
+3.607e−02
+4.684e−02
+5.761e−02

X

Y

Z

(b) Absolute difference

Figure 5.47: Minimum principal stress - Rectangular block under shear load
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U, Magnitude

+0.000e+00
+7.156e−01
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Figure 5.48: Displacement magnitude - Rectangular block under shear load
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Figure 5.49: Errors - Rectangular block under shear load
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(Avg: 75%)

S, Max. Principal

−1.179e+00
−5.716e−01
+3.591e−02
+6.434e−01
+1.251e+00
+1.858e+00
+2.466e+00
+3.073e+00
+3.681e+00
+4.288e+00
+4.896e+00

X

Y

Z

UMAT: Max. Value=3.752 ML: Max. Value=4.896

(a) UMAT (left) and ML (right)

(Avg: 75%)
S_diff, Max. Principal

+3.997e−02
+1.785e−01
+3.170e−01
+4.555e−01
+5.940e−01
+7.325e−01
+8.710e−01
+1.010e+00
+1.148e+00
+1.287e+00
+1.425e+00
+1.564e+00
+1.702e+00

X
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(b) Absolute difference

Figure 5.50: Maximum principal stress - Rectangular block under torsional load
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(Avg: 75%)

S, Mid. Principal

−2.028e+00
−1.620e+00
−1.211e+00
−8.030e−01
−3.947e−01
+1.364e−02
+4.220e−01
+8.303e−01
+1.239e+00
+1.647e+00
+2.055e+00

X
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Z

UMAT: Max. Value=1.802 ML: Max. Value=2.055

(a) UMAT (left) and ML (right)

(Avg: 75%)
S_diff, Mid. Principal

−9.164e−02
−3.852e−02
+1.459e−02
+6.770e−02
+1.208e−01
+1.739e−01
+2.270e−01
+2.802e−01
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+3.864e−01
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X
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(b) Absolute difference

Figure 5.51: Middle principal stress - Rectangular block under torsional load
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(Avg: 75%)

S, Min. Principal

−3.290e+00
−2.825e+00
−2.361e+00
−1.896e+00
−1.432e+00
−9.671e−01
−5.025e−01
−3.801e−02
+4.265e−01
+8.911e−01
+1.356e+00

X

Y

Z

UMAT: Max. Value=1.22 ML: Max. Value=1.356

(a) UMAT (left) and ML (right)

(Avg: 75%)
S_diff, Min. Principal

−8.339e−01
−7.572e−01
−6.806e−01
−6.039e−01
−5.272e−01
−4.505e−01
−3.738e−01
−2.971e−01
−2.205e−01
−1.438e−01
−6.709e−02
+9.590e−03
+8.627e−02

X

Y

Z

(b) Absolute difference

Figure 5.52: Minimum principal stress - Rectangular block under torsional load

117



U, Magnitude

+0.000e+00
+2.670e+00
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(a) UMAT (left) and ML (right)
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+1.102e+00
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Figure 5.53: Displacement magnitude - Rectangular block under torsional load
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Figure 5.54: Errors - Rectangular block under torsional load

For these examples, it is possible to highlight that the main differences between the
two approaches appear where the boundary conditions are applied. For example, in the
maximum principal stress of the uniaxial loading scenario, it is visible that the values are
identical in the middle of the rectangular block, but near the points that have a fixed
displacement and near the points where the displacement is applied, the values differ a
little more. However, the values are still close and the relative and absolute errors are
small. The most complex example is the rectangular block under torsional load, where
the results are not as good as in the previous problems. It required more time increments
to complete the analysis, and the contour plots with the principal stresses show some
notorious differences. These differences are not in accordance with the small absolute error
shown in the box-and-whisker plot, which is explained by the fact that the absolute error
was calculated for the stress components and not for the principal stresses. In addition,
the absolute error tends to increase as the torsion of the rectangular block approaches

119



the rotation applied, which is a trend that was not observed in the previous examples.
This example has significant deformations in the out-of-plane direction and is the most
complex one. Despite this, the ML-based approach still gave acceptable results that show
its potential in complex problems.

5.2.5 Convergency

It is also important to compare the number of iterations and the CPU time required to
complete the analysis. Since the tangent stiffness matrix is also obtained with a ML model,
it was expected that it would require more iterations and more CPU time when compared
to an analysis that used the analytically calculated tangent stiffness matrix. In Table 5.1
it is shown the total number of iterations and the required CPU time for each problem
with each approach. For almost all examples, the total number of iterations for the ML
approach is double the total obtained with the UMAT. The difference is mainly in the first-
time increments, where the ML approach requires some more iterations. Despite these
differences, the ML approach still converges and the analysis is completed successfully,
which means that the tangent stiffness matrix predicted is accurate enough.

To further study the differences, all the numerical problems were also analysed with
a hybrid UMAT, where the stress state was calculated with a surrogate model and the
tangent stiffness matrix was calculated analytically (column name Stress ML). In terms
of the total number of iterations, the relative difference in relation to the conventional
UMAT is nearly the same as the relative difference between the ML-based approach and
the conventional UMAT. This may be indicative that the Jaumann rate has a big influence
on the convergence because the Jaumann rate for the Stress ML approach was calculated
with the ML-predicted stress, whereas the volumetric and isochoric components of the
spatial elasticity tensor were calculated analytically.
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Stress ML ML
UMAT Value Diff.(%) Value Diff.(%)

(Avg: 75%)
S_diff, Max. Principal

+5.858e−02
+6.940e−02
+8.023e−02
+9.105e−02
+1.019e−01
+1.127e−01
+1.235e−01
+1.344e−01
+1.452e−01
+1.560e−01
+1.668e−01
+1.777e−01
+1.885e−01

X

Y

Z

17 19 +11.76 21 +23.53
Uniaxial

0.12 s 0.14 s +16.67 0.13 s +8.33

(Avg: 75%)
S_diff, Max. Principal

+9.856e−02
+9.943e−02
+1.003e−01
+1.012e−01
+1.020e−01
+1.029e−01
+1.038e−01
+1.047e−01
+1.055e−01
+1.064e−01
+1.073e−01
+1.081e−01
+1.090e−01

X

Y

Z

21 20 -4.76 19 -9.52
Biaxial

0.14 s 0.12 s -14.29 0.14 s +0.0

(Avg: 75%)
S_diff, Max. Principal

+9.537e−02
+1.049e−01
+1.145e−01
+1.241e−01
+1.336e−01
+1.432e−01
+1.528e−01
+1.623e−01
+1.719e−01
+1.815e−01
+1.910e−01
+2.006e−01
+2.102e−01

X

Y

Z

11 14 +27.27 14 +27.27
Shear

0.10 s 0.11 s +10.00 0.12 s +20.00

(Avg: 75%)
S_diff, Max. Principal

+1.873e−02
+3.724e−02
+5.575e−02
+7.425e−02
+9.276e−02
+1.113e−01
+1.298e−01
+1.483e−01
+1.668e−01
+1.853e−01
+2.038e−01
+2.223e−01
+2.408e−01

X

Y

Z

12 18 +50.00 18 +50.00

One
Element
Cube

Random
0.11 s 0.12 s +9.09 0.13 s +18.18

(Avg: 75%)
S_diff, Max. Principal

+8.795e−03
+2.754e−02
+4.628e−02
+6.503e−02
+8.377e−02
+1.025e−01
+1.213e−01
+1.400e−01
+1.587e−01
+1.775e−01
+1.962e−01
+2.150e−01
+2.337e−01

X

Y

Z 21 28 +33.33 28 +33.33
Traction

7.81 s 11.91 s +52.50 19.88 s +154.55

(Avg: 75%)
S_diff, Max. Principal

+1.722e−02
+4.932e−02
+8.141e−02
+1.135e−01
+1.456e−01
+1.777e−01
+2.098e−01
+2.419e−01
+2.740e−01
+3.061e−01
+3.382e−01
+3.703e−01
+4.024e−01

X

Y

Z 21 33 +57.14 33 +57.14
Block

Compression
8.01 s 13.33 s +66.42 22.56 s +181.65

(Avg: 75%)
S_diff, Max. Principal

+4.396e−02
+5.484e−02
+6.572e−02
+7.659e−02
+8.747e−02
+9.835e−02
+1.092e−01
+1.201e−01
+1.310e−01
+1.419e−01
+1.527e−01
+1.636e−01
+1.745e−01

X

Y

Z 11 23 +109.09 24 +118.18Cook’s
Membrane 22.98 s 45.38 s +97.48 75.64 s +229.16

(Avg: 75%)
S_diff, Max. Principal

+7.484e−03
+3.755e−02
+6.763e−02
+9.770e−02
+1.278e−01
+1.578e−01
+1.879e−01
+2.180e−01
+2.481e−01
+2.781e−01
+3.082e−01
+3.383e−01
+3.683e−01

X

Y

Z

12 23 +91.67 24 +100.00
Uniaxial

4.75 s 8.81 s +85.47 15.67 s +229.90

(Avg: 75%)
S_diff, Max. Principal

+9.055e−03
+3.996e−02
+7.086e−02
+1.018e−01
+1.327e−01
+1.636e−01
+1.945e−01
+2.254e−01
+2.563e−01
+2.872e−01
+3.181e−01
+3.490e−01
+3.799e−01

X

Y

Z 12 24 +100.00 24 +100.00
Shear

4.82 s 9.17 s +90.25 15.66 s +224.90

(Avg: 75%)
S_diff, Max. Principal

+3.997e−02
+1.785e−01
+3.170e−01
+4.555e−01
+5.940e−01
+7.325e−01
+8.710e−01
+1.010e+00
+1.148e+00
+1.287e+00
+1.425e+00
+1.564e+00
+1.702e+00

X

Y

Z 100 183 +83.00 188 +88.00

Rect.
Block

Torsion
26.90 s 82.28 s +205.87 95.90 s +256.51

Table 5.1: Comparison - Total number of iterations and required CPU time
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5.3 HGO Numerical Examples

The trained model to predict the Cauchy stress tensor for the HGO model was integrated in
Abaqus and the FE method was applied. For the HGO model, it was not trained a model
to predict the isochoric part of the elasticity tensor and the analytical tangent stiffness
matrix was used to run the analysis. The ML-based approach for the HGO model was
only tested in uniaxial loading cases because the NNs were only trained with deformation
gradients representative of such loading scenarios. The example considered was a cube with
one hexahedral element with 8 linear nodes, stretched in the x direction with different fibre
orientations. The results are shown in Figures 5.55 to 5.58 for the fibre in the x-direction,
in Figures 5.60 to 5.63 for the fibre in the y-direction and in Figures 5.65 to 5.68 for the
fibre in the z-direction. Additionally, for the fibres in the x-direction, a compressive load
was also considered and the respective results are shown in Figures 5.70 to 5.73.

(Avg: 75%)
S, Max. Principal

+1.170e+01
+1.171e+01
+1.171e+01
+1.171e+01
+1.171e+01
+1.171e+01
+1.172e+01
+1.172e+01
+1.172e+01
+1.172e+01
+1.172e+01

X

Y

Z

UMAT: Max. Value=11.724 ML: Max. Value=11.71

(a) UMAT (left) and ML (right)

(Avg: 75%)
S_diff, Max. Principal

+1.390e−02
+1.433e−02
+1.476e−02
+1.518e−02
+1.561e−02
+1.604e−02
+1.647e−02
+1.690e−02
+1.733e−02
+1.776e−02
+1.819e−02
+1.862e−02
+1.905e−02

X

Y

Z

(b) Absolute difference

Figure 5.55: Maximum principal stress - Cube with uniaxial load and fibres in x-direction

(Avg: 75%)
S, Mid. Principal

+1.633e−06
+2.804e−04
+5.591e−04
+8.378e−04
+1.117e−03
+1.395e−03
+1.674e−03
+1.953e−03
+2.231e−03
+2.510e−03
+2.789e−03

X

Y

Z

UMAT: Max. Value=0.0 ML: Max. Value=0.003

(a) UMAT (left) and ML (right)

(Avg: 75%)
S_diff, Mid. Principal

+2.026e−03
+2.081e−03
+2.136e−03
+2.191e−03
+2.246e−03
+2.301e−03
+2.356e−03
+2.411e−03
+2.466e−03
+2.521e−03
+2.576e−03
+2.631e−03
+2.686e−03

X

Y

Z

(b) Absolute difference

Figure 5.56: Middle principal stress - Cube with uniaxial load and fibres in x-direction
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(Avg: 75%)
S, Min. Principal

−2.703e−03
−2.433e−03
−2.162e−03
−1.892e−03
−1.621e−03
−1.351e−03
−1.080e−03
−8.098e−04
−5.393e−04
−2.688e−04
+1.633e−06

X

Y

Z

UMAT: Max. Value=0.0 ML: Max. Value=−0.0

(a) UMAT (left) and ML (right)

(Avg: 75%)
S_diff, Min. Principal

−6.444e−05
−1.352e−05
+3.740e−05
+8.832e−05
+1.392e−04
+1.902e−04
+2.411e−04
+2.920e−04
+3.429e−04
+3.939e−04
+4.448e−04
+4.957e−04
+5.466e−04

X

Y
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Figure 5.57: Minimum principal stress - Cube with uniaxial load and fibres in x-direction
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Figure 5.58: Displacement magnitude - Cube with uniaxial load and fibres in x-direction
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Figure 5.59: Errors - Cube with uniaxial load and fibres in x-direction
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Figure 5.60: Maximum principal stress - Cube with uniaxial load and fibres in y-direction
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Figure 5.61: Middle principal stress - Cube with uniaxial load and fibres in y-direction
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Figure 5.62: Minimum principal stress - Cube with uniaxial load and fibres in y-direction
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Figure 5.63: Displacement magnitude - Cube with uniaxial load and fibres in y-direction
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Figure 5.64: Errors - Cube with uniaxial load and fibres in y-direction
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Figure 5.65: Maximum principal stress - Cube with uniaxial load and fibres in z-direction
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Figure 5.66: Middle principal stress - Cube with uniaxial load and fibres in z-direction
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Figure 5.67: Minimum principal stress - Cube with uniaxial load and fibres in z-direction
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Figure 5.68: Displacement magnitude - Cube with uniaxial load and fibres in z-direction
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Figure 5.69: Errors - Cube with uniaxial load and fibres in z-direction
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Figure 5.70: Maximum principal stress - Cube with compressive load and fibres in x-
direction
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Figure 5.71: Middle principal stress - Cube with compressive load and fibres in x-direction
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Figure 5.72: Minimum principal stress - Cube with compressive load and fibres in x-
direction
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Figure 5.73: Displacement magnitude - Cube with compressive load and fibres in x-
direction
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Figure 5.74: Errors - Cube with compressive load and fibres in x-direction

The results obtained for the principal stresses with the two approaches are similar for
every fibre direction, and the relative and absolute errors are small. The displacement
magnitude is nearly the same, which was expected since a displacement was applied. Here,
as it was with the Neo-Hookean model, the contour plot for the ML-based approach does
not give a uniform colour contour and the reasons for this are the same. The stresses in all
the integration points are not equal and have in fact some residual differences that give a
colour contour that seems much different from the one obtained with a conventional UMAT.
However, if a closer look is taken at the legend, it is possible to see that the differences
between values for each colour are minimal. Regarding the example with compression, the
relative and absolute errors are a little bit higher but still really close to the ones obtained
with a conventional UMAT. The example with the fibres in the y and z-directions and the
one of the compressive load are particularly relevant because the fibres are in compression
and the proposed HGO model refers that in such cases, the contribution of the fibres is
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ignored and the material behaves as an isotropic one, in this case coinciding with a Neo-
Hookean material. This is a complex and important aspect that the NN was able to learn
since the results are close.

It is important to mention that using the analytical tangent stiffness matrix helps to
reach such good results. If a surrogate was trained to predict it for the HGO model, the
results may have been worse because the tangent stiffness matrix also has an influence on
the calculated stresses. However, these examples still show the capability to express the
stress-strain relationship with a data-driven approach.

5.4 Concluding Remarks

In a general way, the ML-based approach yielded similar results to the ones obtained with a
conventional UMAT. The relative errors were high in some numerical examples, especially
for the first increments, but as it was mentioned, a plausible reason for such high values is
that at the beginning of the analysis, the stress values are small, which means that even
for a small absolute error, the relative error is high. This hypothesis is supported by the
box-and-whisker plot of the absolute error that shows that in fact, in most of the numerical
examples, the absolute error is small. Additionally, the relative error tends to decrease as
the number of increments increases, further supporting this hypothesis.

Additionally, the contour plots are really identical for most of the variables considered
and for most of the examples considered. This is supported by the contour plots that
display the absolute differences between the results, where the values are small.

Regarding the convergence, the ML-based approach took more iterations and more CPU
time to complete the analysts, but they were still completed. In addition, the tangent
stiffness matrix also has an influence on the stresses and displacements and since the
results are similar in general, it is possible to conclude that the tangent stiffness matrix is
accurately predicted. It is also important to highlight again the fact that the number of
iterations obtained with a hybrid approach (Stress ML) shows that the Jaumann rate has
the biggest influence on the convergence of the analysed problems.
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Chapter 6

Conclusion

6.1 Final Remarks

In this work, a data-driven approach for the constitutive modelling of hyperelastic materials
is proposed as an alternative to the conventional way of modelling the mechanical behaviour
of such materials. Surrogate models were trained to describe the behaviour of hyperelastic
materials and they were then integrated in Abaqus in order to employ the FE method.

Firstly, it was considered a Neo-Hookean material and a NN was trained to predict
the stress for some homogeneous deformations and for a general deformation. The test
losses obtained for the trained models were all small and indicative that it is possible
to consider a data-driven approach to model the constitutive behaviour of hyperelastic
materials. However, the main goal of this dissertation was to test and integrate the trained
surrogates with the FE method, in this case with Abaqus. Thus, another NN was trained
to predict the spatial elasticity tensor that would be used to compute the tangent stiffness
matrix used in Abaqus.

The NN to predict the isochoric part of the stress and of the spatial elasticity tensor for
a random deformation gradient were used to write a UMAT to describe the constitutive
behaviour of the material in analysis. To do so, the weights and biases of the trained
models were used to write the forward pass equations in Fortran. After this step, the
results from some numerical examples with the ML-based UMAT and a conventional one
were compared. The ML-based approach gave similar results, even for some complex
problems. The relative errors between the components of the stress tensor were high for
some cases, but the absolute errors showed that the differences were small. Additionally,
the contour plots of the principal stresses and the magnitude of the displacement showed
that the ML-based approach yielded accurate results. Regarding the convergence, the ML-
based approach took more iterations and more time for the most part of the examples,
which was expected because the tangent stiffness matrix was approximated and this has
a direct influence on the convergence. However, the analysis with the ML-based approach
was still completed.
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Then, a more complex model that accounts for a preferred direction was considered.
It was restricted to uniaxial loading scenarios, and the tangent stiffness matrix was cal-
culated analytically. However, this was still a hard model for the NN to learn because,
with a different fibre direction, the material behaves completely differently. Hence, for the
HGO model, the trained surrogate model trained is able to predict the stress for a material
with fixed material parameters and for uniaxial loading cases but with different material
orientations. Additionally, the proposed HGO model states that if the fibres are in com-
pression, they do not contribute to the SEF and the material is regarded as a Neo-Hookean
material in this case. This is another complexity of the HGO model that the NN was able
to learn, as it was proved with the uniaxial compressive load and for the fibres in the y
and z-direction.

Data-driven constitutive modelling is gaining more interest in recent years, and there
are already some different approaches proposed in the literature. However, most of them
use the invariants of the Cauchy-Green deformation tensors as inputs of the NN and the
strain energy and its derivatives as outputs. This solution provides more flexibility but
still requires some mathematical treatment to compute the stress and the tangent stiffness
matrix required by the UMAT. In this work, the UMAT has a model to predict the stresses
and a model to predict the spatial elasticity tensor, and there is no need to express the
mathematical equations that describe the different models used. Only the volumetric part
is calculated with mathematical equations because they depend on the boundary conditions
of the problem in analysis. Therefore, in this work, there is no need to derive equations
to describe the behaviour of the material in analysis and it is only necessary to train a
surrogate model and pass the parameters of the trained model to Fortran.

In general, the different numerical examples analysed showed that the ML-based ap-
proach was able to model the constitutive behaviour of hyperelastic materials since the
results obtained were similar to the ones obtained with a conventional UMAT. The analy-
ses took longer to converge, which was expected. However, all the analyses were completed,
requiring only more iterations to do so when compared with a standard UMAT.

6.2 Future Work

For future work, it would be important to train a surrogate to predict the spatial elasticity
tensor for the HGO model to get a UMAT based only on ML that does not need the de-
velopment of mathematical equations. This was accomplished for the Neo-Hookean model
but for the HGO model, only the stress was predicted with a ML surrogate. Additionally,
it would also be interesting to generalize the ML surrogate to predict the Cauchy stress
tensor for the HGO model for a general deformation, and not only for a uniaxial loading
scenario. Validating the ML-based approach for the HGO model for some more complex
problems is also relevant to future work.
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Additionally, incorporating the material parameters of the SEF as inputs of the NNs
would also be a valuable consideration, since the developed and trained models assume
values for the material parameters. However, generalizing the trained surrogates for any
material parameter would make the training process much harder. It would be necessary
much more data and to use regularization and other techniques to obtain better results.
This gives rise to another difficulty, which is to pass a model with dropout, for example,
from Python to Fortran.

Another interesting future work would be to explore the effect of the splits of the
dataset. During the training process of the NNs, the splits of the dataset used were fixed,
but they can have an influence on the results obtained and tuning these hyperparameters,
namely the size of the training, validation and test data, can improve the accuracy of the
predictions. In addition, in the numerical examples analysed, the mesh used was fixed and
this can also have an impact on the results obtained. Thus, doing a mesh convergence
study could also be relevant in the future.

Finally, considering different inputs and outputs for the NNs could also be relevant
to future work. For example, using the right Cauchy-Green deformation tensor as input
of the deformation gradient would be interesting because this tensor is symmetric, which
means that it would be possible to decrease from 9 inputs to 6. Then, if the output
is the second Piola-Kirchhoff stress tensor, the derivatives of the outputs in relation to
the inputs, which are easily obtained for a trained model with backpropagation, could be
used to compute the tangent stiffness matrix. This would be of great importance because
it would not be necessary to train a model for the spatial elasticity tensor. Then, the
Cauchy stress tensor required for Abaqus could be easily obtained from the second Piola-
Kirchhoff stress tensor. With this approach and in the presence of enough experimental
data for a given material without a proposed model in the literature that describes its
constitutive behaviour properly, it would be possible to use this approach to simulate a
problem involving such material instead of developing a SEF that describes the material
and to derive the correspondent material parameters.
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