
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Improving the Developer Experience of
Dockerfiles

João Pereira da Silva Matos

Mestrado em Engenharia Informática e Computação

Supervisor: Prof. Filipe Correia

July 27, 2023

Improving the Developer Experience of Dockerfiles

João Pereira da Silva Matos

Mestrado em Engenharia Informática e Computação

Approved in oral examination by the committee:

President: Prof. Jácome Cunha
Referee: Prof. Filipe Correia

Referee: Prof. Florian Rademacher

July 27, 2023

Resumo

A contentorização é uma técnica usada num número bastante elevado de sistemas para facilitar a
instalação dos mesmos. A ferramenta de contentorização mais popular é o Docker. Para utilizar
Docker, um desenvolvedor cria um Dockerfile, um ficheiro de configuração usado para criar con-
tentores. Criar estes ficheiros nem sempre é uma tarefa simples, e até ficheiros funcionais podem
ter problemas. Para além disso, os desenvolvedores também consideram que o desenvolvimento
de Dockerfiles é uma tarefa que consome bastante tempo.

Uma revisão de literatura foi desempenhada para determinar os desafios com que os desen-
volvedores de Dockerfiles se deparam e como têm lidado com eles até agora. Descobrimos que
longos tempos de construção e cheiros são alguns dos problemas que afetam os desenvolvedores,
e várias abordagens têm sido propostas para lidar com estes problemas.

Nós acreditamos que a situação pode ser melhorada através da oferta de um ambiente com um
elevado nível de liveness aos desenvolvedores. Um ambiente deste tipo deve ser capaz de melhorar
a experiência de desenvolvimento e a qualidade dos Dockerfiles que os utilizadores criam. Esta é
a nossa hipótese.

Com isto em mente, criámos uma ferramenta (baseada no Dockerlive) que visa melhorar a ex-
periência de desenvolvimento e a qualidade dos Dockerfiles através da oferta de um elevado nível
de liveness com a implementação de funcionalidades como geração e modificação automática de
ficheiros. A geração permite a um desenvolvedor gerar um Dockerfile com base na informação de
um projeto, enquanto que a reparação encontra problemas num Dockerfile e sugere ao utilizador
modificações que resolvem estes problemas.

Para avaliar o impacto desta ferramenta, realizámos um estudo empírico, mais especifica-
mente, uma experiência, com participantes da indústria. Os dados que foram recolhidos mostram
que a nossa abordagem consegue reduzir a quantidade de tempo e de alterações de contexto que
os utilizadores precisam de realizar quando trabalham com Dockerfiles. Consequentemente, isto
reduz a carga cognitiva, promove a utilização de flow state e aperta os ciclos de feedback, levando
a uma melhor experiência de desenvolvimento.

Palavras-chave: Dockerfile, Docker, Geração de ficheiros, Reparação de ficheiros, Experiência
de desenvolvimento, Infra-estrutura como Código, Ambientes de Desenvolvimento

Classificação ACM: CCS → Software e a sua engenharia → Notação de software e ferramentas
→ Frameworks e ambientes de desenvolvimento → Ambientes de desenvolvimento integrados e
visuais

i

Abstract

Containerization is a technique used in a very large number of systems to ease deployment. The
most popular containerization tool is Docker. To use it, a developer writes a Dockerfile, a con-
figuration file used to create the containers. Creating these files is not always straightforward,
and even functional files can have problems. Furthermore, developers also consider Dockerfile
development to be a time-consuming task.

A literature review was performed to determine the challenges that Dockerfile developers face
and how they have been addressed so far. We discovered that long build times and smells are some
of the problems affecting developers, and many approaches have been proposed to address these
problems.

We believe the situation can be improved by offering developers an environment with a high
level of liveness. Such an environment should be capable of enhancing the development experience
and the quality of the Dockerfiles that users create. This is our hypothesis.

With this in mind, we have built a tool (based on Dockerlive) that aims to improve the de-
velopment experience and the quality of the Dockerfiles by offering high liveness through the
implementation of features like automatic generation and modification of files. The former allows
a developer to generate a Dockerfile based on project information, while the latter finds problems
in a Dockerfile and suggests modifications that fix these problems to the user.

To evaluate the impact of this tool, we conducted an empirical study, more specifically, an ex-
periment, with participants from the industry. The data that was gathered shows that our approach
can lower the amount of time and context switching that users need to perform when working with
Dockerfiles. Consequently, this reduces cognitive load, promotes flow state, and tightens feedback
loops, leading to a better development experience.

Keywords: Dockerfile, Docker, File generation, File repair, Development experience, Infrastruc-
ture as Code, Development Environments

ACM Classification: CCS → Software and its engineering → Software notations and tools →
Development frameworks and environments → Integrated and visual development environments

ii

Acknowledgements

Firstly, I would like to thank my supervisor, Prof. Filipe Correia, for guiding me through this
journey and teaching me everything I needed to complete it.

Secondly, I would like to thank everyone I worked with and learned from during the years
I have spent at Faculdade de Engenharia da Universidade do Porto. You have all taught me
something important, and I have grown as a person because of it.

Finally, I would like to thank my mother for always supporting me and being the best mother
on the planet.

João Pereira da Silva Matos

iii

“Most good programmers do programming
not because they expect to get paid or get adulation by the public,

but because it is fun to program.”

Linus Torvalds

iv

Contents

1 Introduction 1
1.1 Context . 1
1.2 Objectives . 2
1.3 Methodology . 2

1.3.1 Dockerlive V2 . 2
1.3.2 Study . 3

1.4 Contributions . 4
1.5 Document Structure . 4

2 Dockerfile Development Challenges 5
2.1 Background . 5

2.1.1 Docker . 5
2.1.2 Developer Experience . 7
2.1.3 Liveness . 7

2.2 Goals and methodology . 7
2.3 Challenges in the Development of Dockerfiles 9
2.4 Speeding up Docker builds . 10
2.5 Dockerfile Generation . 11
2.6 Dockerfile Smells . 13
2.7 Dockerfile Good Practices . 14
2.8 Dockerfile Security . 16
2.9 Dockerfile Repair . 17
2.10 Dockerfile Bloat . 18
2.11 Dockerfile Testing . 19
2.12 Liveness . 20
2.13 General Discussion . 21

3 Designing a new version of Dockerlive 23
3.1 Goals . 23
3.2 Approach . 23
3.3 Internal Design . 24

3.3.1 Repairs . 26
3.3.2 Hermit . 26

3.4 Repair Implementation Details . 27
3.5 Hermit Contributions . 30
3.6 User Interface . 30

3.6.1 Repairs . 30
3.6.2 Dockerfile Generation . 31

v

CONTENTS vi

3.7 General Discussion . 33

4 Empirical Study 36
4.1 Goals . 36
4.2 Research Questions . 36
4.3 Methodology . 37

4.3.1 Data Collection . 37
4.3.2 Tasks . 38
4.3.3 Environment . 39
4.3.4 Procedure . 39

4.4 Tasks . 40
4.4.1 Task 1 . 40
4.4.2 Task 2 . 41
4.4.3 Task 3 . 42

4.5 Data Collection . 43
4.5.1 Tasks . 43
4.5.2 Dockerfiles . 45
4.5.3 Recruitment Questionnaire . 46
4.5.4 Task Questionnaire . 46

4.6 Recruitment, Demographics and Group Assignment 47
4.7 Data Analysis . 47

4.7.1 Anonymizing Data . 47
4.7.2 Recruitment Questionnaire . 48
4.7.3 Task Data . 50
4.7.4 Dockerfile Data . 54
4.7.5 Task Questionnaire . 57

4.8 Threats to Validity . 60
4.8.1 Internal Validity . 60
4.8.2 External Validity . 61

4.9 Findings . 61
4.10 General Discussion . 62
4.11 Future Work . 62

5 Conclusion 64
5.1 Overview . 64
5.2 Contributions . 65

References 66

A Questionnaires 71
A.1 Recruitment Questionnaire . 72
A.2 Control Questionnaire . 76
A.3 Experimental Questionnaire . 82

B Dockerfiles 90

List of Figures

2.1 Differences between containers and virtual machines Source: [10] 6
2.2 Feedback loop in Docker development Source: [49] 21

3.1 Architecture of Dockerlive V1 Source: [50] . 25
3.2 Architecture of Dockerlive V2 . 25
3.3 Generation progress notification . 30
3.4 Notification showing the generation is finished 31
3.5 Dockerfile with repairable problems . 31
3.6 Repairable warning in Dockerlive V2 . 32
3.7 Quick fix in Dockerlive V2 . 32
3.8 State of the example file after applying a fix in Dockerlive V2 32
3.9 Empty line containing a warning in Dockerlive V2 32
3.10 Generation command in Visual Studio Code’s command palette 33
3.11 Service command prompt . 33

4.1 Timestamps written in a note-taking application 44
4.2 Timestamps written in a CSV file . 44
4.3 Distribution of participants’ roles across groups 49
4.4 Distribution of years of experience across groups 49
4.5 Distribution of years of experience with Dockerfiles across groups 50
4.6 Distribution of Dockerfiles written by participants across groups 51
4.7 Distribution of Dockerfiles edited by participants across groups 51
4.8 Time spent per task . 53
4.9 Number of context switches per task . 53
4.10 Time (in seconds) spent in each context for both groups 55
4.11 Distribution of image size for Task 1 in both groups 56
4.12 Distribution of the answers to section A in both groups 58
4.13 Distribution of the answers to sections B, C and D in both groups 59
4.14 Distribution of the answers to sections E, F and G in both groups 60

vii

List of Tables

2.1 Approaches that aim to speedup Docker builds along with their speedups, limita-
tions and languages . 10

2.2 Approaches that aim to speedup Docker builds along with their need to override
Docker’s behavior, IDE integration and source code availability 10

2.3 Works about generating Dockerfiles along with their successful generation rates
and limitation . 12

2.4 Works about generating Dockerfiles along with their source code availability, IDE
integration and ability to use source code as input 12

2.5 Dockerfile smells . 14
2.6 Dockerfile good practices . 15
2.7 Works about Dockerfile security . 16
2.8 Dockerfile repairs . 18
2.9 Works about Dockerfile Bloat . 19
2.10 Works about Dockerfile Testing . 20

4.1 Mean, Standard Deviation and two-sided Mann-Whitney U test results for total
task duration (time data is presented in minutes and seconds rounded to the nearest
integer) in both groups . 52

4.2 Mean, Standard Deviation and two-sided Mann-Whitney U test results for context
switching (number of context switches) in both groups 52

viii

Listings

B.1 Dockerfile for Task 1 . 90
B.2 Dockerfile for Task 2 . 90
B.3 Dockerfile for Task 3 . 91

ix

Abbreviations and Symbols

AST Abstract Syntax Tree
DevOps Developer Operations
HPC High Performance Computing
IaC Infrastructure as Code
IT Information Technology
OS Operating System
DSL Domain-specific Language
IDE Integrated Development Environment
SATD Self-admitted Technical Debt
APT Advanced Packaging Tool
APK Alpine Package Keeper
HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol Secure
DAVS Dockerfile analysis-based vulnerability scanning
RPM RPM Package Manager
NPM Node Package Manager
URL Uniform Resource Locator
CLI Command-line Interface
HTML HyperText Markup Language
JSON JavaScript Object Notation
PDF Portable Document Format
OBS Open Broadcaster Software
CSV Comma-separated values
ID Identification
UI User Interface

x

Chapter 1

Introduction

In this chapter, we introduce the topic of this document, explain what we aim to achieve, and the

contributions we plan to make.

1.1 Context

In recent years, we have seen an increase in the adoption of DevOps (Developer Operations)

practices. These practices allow companies to automate tasks related to development and IT (In-

formation Technology) operations, with the intention of improving and speeding up the software

development life cycle [24].

An important part of DevOps practices is the use of IaC (Infrastructure as Code), a set of

practices where machine-readable configuration files enable the automation of IT infrastructure

maintenance, allowing organizations to operate at a larger scale than would otherwise be possible

if everything was done manually by humans [21].

The surging popularity of these practices translates into a growing need to operate at a large

scale. However, this need to work at a large scale does not just apply to the infrastructure or the

methodologies used by the developers. It also applies to the systems that companies are building.

They are becoming more complex and, consequently, harder to maintain.

In response to this, architectures composed of microservices have been gaining popularity.

This architecture uses several small services that each have a specific purpose and communicate

with each other to create more complex systems. These systems typically use containers to create

each service, and Docker is the most popular container platform available [23, 55].

To use Docker, one must first create a configuration file called a Dockerfile containing the

information required to build the container. However, creating high-quality Dockerfiles is not

always trivial. In fact, a large portion of Dockerfiles used in projects contains smells [59]. Many

Dockerfiles can not even be used to build an image [60]. Furthermore, developers also report

spending more time than they would like creating containers [49].

1

Introduction 2

1.2 Objectives

We think the problems affecting Dockerfile developers need to be addressed. The existence of

these problems suggests developers’ perception of their work (in other words, the developer ex-

perience [40]) is negative and their development environment lacks the ability to quickly provide

feedback after performing modifications (also known as liveness [50]). It also shows that the

quality of the Dockerfiles can be improved.

Therefore, our objectives are to improve the Dockerfile developer experience and the quality

of the Dockerfiles. With this in mind, this is our hypothesis:

The Dockerfile developer experience and the quality of the resulting images can improve if the

environment provides a high level of liveness regarding the most challenging aspects of Dockerfile

development

We believe that by providing developers with a development environment that offers a high level

of liveness, the development experience and the quality of the Dockerfiles can be improved. Our

hypothesis is aligned with the proposal made by Aguiar et al. and the concept of Live Software

Development where higher levels of liveness are used to tighten feedback loops by giving more

information to the developer [2]. Furthermore, data provided by Reis also suggests that higher

levels of liveness can improve the development experience [50].

We plan to accomplish this by providing a tool (based on Dockerlive1) that offers automatic

modification and generation of files. We believe this set of features can also improve the quality

of Dockerfiles.

1.3 Methodology

Now that we know what our objectives are, we need to know how we are going to achieve them.

We will first create a tool, Dockerlive V2, that offers these features to developers, and then, we

will conduct a study where developers use this tool to write Dockerfiles.

1.3.1 Dockerlive V2

We will develop a tool that extends Dockerlive [50, 48] (covered in section 2.12), a Visual Studio

Code2 extension. By itself, Dockerlive already provides high liveness. However, it does not

have the ability to automatically modify or repair Dockerfiles, so we will add these capabilities to

increase the level of liveness that we can offer to a user.
1Dockerlive - Visual Studio Marketplace, https://marketplace.visualstudio.com/items?

itemName=david-reis.dockerlive
2Visual Studio Code, https://code.visualstudio.com/

https://marketplace.visualstudio.com/items?itemName=david-reis.dockerlive
https://marketplace.visualstudio.com/items?itemName=david-reis.dockerlive
https://code.visualstudio.com/

1.3 Methodology 3

Before going any further, we will explain what the levels of liveness are. Tanimoto defined

6 levels of liveness that an environment could provide, with higher levels providing more live-

ness than lower levels. In level 1, the environment merely provides some information to the

programmer. As the levels increase, the environment must provide more relevant information at

a faster rate while reducing the amount of input that is required from the user. Eventually, the

environment starts to predict the user’s intentions and perform large modifications based on these

predictions [57]. This corresponds to the 6th level of liveness.

The functionality provided by Dockerlive and implemented by Reis [50] corresponds to the

4th level of liveness that is described by Tanimoto [57]. The features we propose go beyond the

4th level, but we can not say they correspond to the 5th level since the implementation proposed by

Tanimoto for this level would require more processing power than many development machines

can offer. The tool we propose could be considered a more realistic implementation of the 5th level

of liveness.

The generation functionality will be offered by Hermit [34] (covered in section 2.5). This is

something that Dockerlive is completely incapable of doing as it does not possess any components

that can generate files of any kind.

Although in its current state, Dockerlive is already capable of detecting some problems in the

Dockerfiles it analyzes, there are still limits to what it can detect. For example, it can not detect

sub-optimal use of package managers. Furthermore, it can only tell the user where they might want

to perform modifications, it can not perform them by itself. For these reasons, we will develop our

own components that are used to perform modifications to existing Dockerfiles.

The final result will be a Visual Studio Code extension that can generate Dockerfiles and per-

form some automatic modifications while maintaining all of Dockerlive’s original functionality,

creating an environment that offers a high level of liveness and improves the development experi-

ence. The architecture of this tool is described in more detail in Section 3.3.

1.3.2 Study

To answer our research questions, we will conduct a study (an experiment3) with the intent of

evaluating the extent to which liveness is actually capable of improving the development experi-

ence and the quality of the Dockerfiles created by professional software developers. This study

will be an experiment with two groups of professionals where each group has to perform the same

set of tasks, but while one of them has access to the tool, the other one does not have access to

any special tools. A short questionnaire will be run through the participants before the experi-

ment to make sure the level of proficiency and experience is similar across both groups. Another

questionnaire will be used during the experiment to evaluate the participants’ perceptions. During

the experiment, we will also gather data by measuring the amount of time spent on each task and

the amount of context switching that is performed. Finally, data will also be gathered from the

participants’ Dockerfiles.

3Empirical Standards - Experiments, https://acmsigsoft.github.io/EmpiricalStandards/docs/
?standard=Experiments

https://acmsigsoft.github.io/EmpiricalStandards/docs/?standard=Experiments
https://acmsigsoft.github.io/EmpiricalStandards/docs/?standard=Experiments

Introduction 4

1.4 Contributions

With the work outlined in the previous section, we expect to bring more attention to this topic and

further develop what is currently known about Dockerfile development. With this in mind, these

are the contributions that we made:

• An analysis of the current challenges affecting Dockerfile development and the approaches

that aim to address them

• A tool that extends Dockerlive by adding automatic generation and repair functionality to a

high-liveness environment to help developers write Dockerfiles

• A replicable empirical study (more specifically, an experiment) with participants from the

industry from which we will gather data regarding the effect of the new features on the

development experience

Firstly, we decided to conduct a literature review to analyze the problems affecting Dockerfile

developers. We also decided to create a tool with the features that have been mentioned, as we

believed they would allow us to create an environment with a higher level of liveness than would

otherwise be possible. We also thought a study was necessary to verify if the tool had the desired

impact on the Dockerfile development experience.

1.5 Document Structure

This chapter provides a brief introduction regarding the topic of this document, along with our

objectives and contributions.

After this chapter (Chapter 1) establishes our motivations, Chapter 2 goes over the state of

the art and provides the background that is required to understand the rest of the document. This

allows us to learn more about the problem we are trying to address.

After this analysis, Chapter 3 describes the tool we implemented.

The tool is then evaluated with an empirical study, which is described in Chapter 4.

Finally, Chapter 5 summarizes all the information the other chapters present and concludes

our work.

Chapter 2

Dockerfile Development Challenges

Now that we’ve established why it’s important to research Dockerfile development, we need to

look into the existing literature and understand the problems surrounding this task. At the same

time, we will also provide any background that is required to understand the topics discussed in

this section.

2.1 Background

This section covers concepts that are required to understand the rest of the document, including

Docker (cf. Section 2.1.1), Developer Experience (cf. Section 2.1.2) and Liveness (cf. Sec-

tion 2.1.3).

2.1.1 Docker

A problem commonly faced during development tasks is the variety of different systems and con-

figurations used for not only development but also deployment. Modern applications require many

dependencies, and ensuring every single machine contains the correct set of dependencies is not

always efficient or straightforward [8].

A common solution for this problem is the use of containers [56]. Containers are isolated

environments containing all the dependencies that are required for an application to be executed.

Containers can’t be executed directly by the hardware, requiring a host OS (operating system) in

order to be used. In this regard, containers might seem similar to virtual machines. However,

because containers don’t require a hypervisor, they have a much lower overhead, making them

preferable in many scenarios [22]. Figure 2.1 illustrates these differences.

Docker1 is the most popular container platform available and offers a suite of tools that al-

low developers to create their own containers. To accomplish this, a developer starts by creating

a Dockerfile2, a file written in a DSL (domain-specific language) with instructions that tell the

1Docker, https://www.docker.com/
2Dockerfile Reference, https://docs.docker.com/engine/reference/builder/

5

https://www.docker.com/
https://docs.docker.com/engine/reference/builder/

Dockerfile Development Challenges 6

Figure 2.1: Differences between containers and virtual machines
Source: [10]

Docker Engine3 what characteristics the environment should have. Each instruction leads to the

creation of a layer, with each one having a hash associated with it to verify integrity. Afterward,

the information from all the layers in this Dockerfile is processed by the Docker Engine and used

to build an image. Usually, developers don’t develop their own images from scratch and rely on

preexisting images hosted on a repository like Docker Hub4. Because of this, during the build

phase, the engine usually has to fetch several files from the network. These files contain infor-

mation about the image that is used as a base for the new image. After the build procedures are

complete, an image can be executed, resulting in a container that follows the previously defined

configuration.

Something else that we need to explain is how code smells and good practices present them-

selves in the context of Dockerfiles. Code smells are elements that may indicate the existence of

a deeper problem in the project being developed [14]. However, smells can also show up in other

development artifacts like configuration files. This also applies to Dockerfiles.

For example, in some situations, it may be necessary for a container to use software that is

distributed as a tarball5. In order to use this kind of software, a developer must first extract the

contents of the tarball. However, after the extraction, the tarball itself is no longer needed and

should be removed to avoid wasting space. Failing to do so creates an instance of the temporary

file smell [33].

A concept that is related to smells is the concept of good practices, a set of procedures that

should be followed by a developer in order to maximize efficiency and avoid problems. Typi-

cally, following these practices also reduces the number of smells that are created. There are also

good practices that should be followed when writing Dockerfiles. Some are provided directly by

3Docker Engine, https://docs.docker.com/engine/
4Docker Hub, https://hub.docker.com/
5tar(computing), https://en.wikipedia.org/wiki/Tar_(computing)

https://docs.docker.com/engine/
https://hub.docker.com/
https://en.wikipedia.org/wiki/Tar_(computing)

2.2 Goals and methodology 7

Docker’s developers6 while others can be found in the literature [41].

2.1.2 Developer Experience

As the title of this document suggests, we are trying to improve the experience of those that need

to edit Dockerfiles. The previous section explained what a Dockerfile is. Now, we move on to

the concept of Developer Experience. Before proceeding, it should be noted that for our purposes,

"developer" and "programmer" are almost synonymous terms. According to Morales et al., the

programmer experience is "the result of the intrinsic motivations and perceptions of programmers

regarding the use of development artifacts" [38]. In other words, developer experience encapsu-

lates the way a developer feels about the artifacts that are used to aid development tasks. In the

context of our work, the artifact we are concerned with is the configuration file used by Docker,

the Dockerfile.

An alternative definition is proposed by Noda et al., this definition divides developer experi-

ence into "three core dimensions: feedback loops, cognitive load, and flow state" [40]. They also

suggest that developer experience is affected by other elements besides those directly related to

development tasks, broadening the scope of developer experience to include elements like com-

pany protocols and the frequency of meetings. This is the definition that the rest of our work is

based on.

2.1.3 Liveness

The last concept we need to define is liveness. This concept is important because it is through

liveness that we aim to improve the developer experience, which was the focus of the previous

section. Our definition is, again, based on other authors’. Maloney and Smith define a live inter-

face as one that is always being updated and providing the user with information, whether it’s in

response to a user’s actions or not [35]. Furthermore, Aguiar et al. provide a very similar defini-

tion and emphasize the advantages of applying liveness to the different activities of the software

development life cycle as a way to provide a developer with more immediate feedback regarding

what is currently being constructed [2].

2.2 Goals and methodology

Our end goal is to help developers write Dockerfiles. To do this, we first need to know what

challenges they face when writing Dockerfiles and how the quality of the Dockerfiles is affected

by these challenges. Furthermore, we need to analyze current solutions that address these issues in

order to build upon them. Finally, we should try to understand if the features we’re proposing can

actually help address these challenges. With this in mind, we came up with the following research

questions to guide our review of the state of the art:

6Best practices for writing Dockerfiles, https://docs.docker.com/develop/develop-images/
dockerfile_best-practices/

https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/

Dockerfile Development Challenges 8

• RQ1: What are the challenges that developers face in the development of Dockerfiles?

• RQ2: How have these challenges been addressed so far?

• RQ3: To what extent can these challenges be addressed by automatic repair or generation

approaches?

To answer these questions, we tried to find as much information as possible about Docker

and Dockerfiles. Furthermore, we also tried to find works that analyzed a developer’s subjective

experience when performing development tasks. We ended up using the following queries to look

for information in Google Scholar7:

• dockerfile challenges

• dockerfile generation

• distroless

• docker build

• dockerfile

• dockerfile creation

• dockerfile generator

• dockerfile repair

• docker repair

• dockerfile readability

• dockerfile evaluation

• dockerfile analysis

• docker bloat

• docker build time

• dockerfile practices

• programming experience

• developer experience

These queries gave us plenty of results, which had to be filtered to reach an amount that could

be reasonably analyzed in the amount of time that we were given.

First, we decided to focus on recent works. With Docker being a relatively young project, it

made no sense to include any works produced before 2013. At the same time, Docker has changed

considerably over time, making some of the older works outdated. We ended up selecting works

7Google Scholar, https://scholar.google.com/

https://scholar.google.com/

2.3 Challenges in the Development of Dockerfiles 9

from the last six years (it should be noted that our analysis was performed in 2022, although we

managed to add some works released in 2023 while working on subsequent parts of this disserta-

tion).

Secondly, we had to evaluate if Docker was actually the focus (or at least an important part)

of the works we selected or if it was just used as a tool due to its convenience. At this point, we

analyzed the abstracts in order to eliminate a few more works from the set.

Finally, we ended up having to remove a few more works from the set due to them being

inaccessible, even after authenticating with our institutional account.

After all this filtering, we ended up with around 50 works to analyze. Most of these were

analyzed, although some had to be excluded due to time constraints.

2.3 Challenges in the Development of Dockerfiles

After looking at the literature, we identified several aspects of the Dockerfile development experi-

ence that could be considered challenging.

Many projects struggle to follow good practices [17]. This can affect other aspects of the

container, like, for example, security [45]. Furthermore, a large portion of Dockerfiles contains

smells [59]. Another problem is the amount of bloat (this can include packages or tools that

are either unnecessarily installed in a new image or are already part of the base image) present

in images [1]. Additionally, developers report that several parts of the Dockerfile development

experience are time-consuming. For example, debugging often relies on a slow trial-and-error

approach [49], a situation that is further exacerbated by the amount of time required to build an

image [20].

This information is summarized in the following list, containing several challenging aspects

of Dockerfile development:

• The amount of time required to build an image from a Dockerfile (Reis et al. [49] conducted

a survey where participants reported spending a considerable amount of time rebuilding

images and re-running containers)

• The number of vulnerabilities present in Dockerfiles and the corresponding images (Zarei [63]

found that almost half of developers do not know if the images they are using contain vul-

nerabilities, furthermore they found that multiple scanners have detected a large number of

vulnerabilities in popular images)

• The amount of bloat present in Docker images (Agadakos et al. [1] found that almost a

quarter of the code present in popular images is bloat)

• The reliance on trial-and-error to test Dockerfiles (Reis et al. [49] found that trial-and-error

is a common approach when writing Docker artifacts)

• The number of smells contained in Dockerfiles (Wu et al. [59] found that more than four-

fifths of the Dockerfiles in their dataset had a smell)

Dockerfile Development Challenges 10

• The amount of Dockerfiles that do not follow best practices (Henkel et al. [17] found that

Dockerfiles on GitHub often violate practices mined from Dockerfiles written by experts)

With these issues in mind, this chapter contains sections that address each of these problems.

Additionally, there are also sections dedicated to repairing and generating Dockerfiles since those

are features that our tool will provide and could improve the Dockerfile development experience.

2.4 Speeding up Docker builds

Building Docker images can take a considerable amount of time, especially when a large number

of files have to be fetched from the internet [15]. Therefore, we looked for approaches to reduce

the amount of time consumed by this activity. Our findings are summarized in Tables 2.1 and 2.2.

Name Speedup Limitations Language used
Code Injection [58] Up to 100000x

faster

Limited to interpreted

languages and modifi-

cations in the source

code

Unknown

FastBuild [20] Up to 10x faster Limited to network

activity

Go

Slacker [15] Up to 20x faster Limited to network

activity

Unknown

Docker Buildx8 Unknown Unknown Go
Table 2.1: Approaches that aim to speedup Docker builds along with their speedups, limitations
and languages

Name [58] [20] [15] Buildx

Overrides Docker? ✓ ✓ ✓ X

Integrated in development environment? X X X ✓

Available source code? X X X ✓

Table 2.2: Approaches that aim to speedup Docker builds along with their need to override
Docker’s behavior, IDE integration and source code availability

Wang and Bao [58] propose a technique that bypasses typical building procedures by injecting

the code modifications directly into an image. The results are very promising. However, due to

the nature of the approach, it can only be used with interpreted languages and will not accelerate

builds related to modifications in development artifacts that are not source code. Furthermore,

in order to inject the modifications in an image without having to rebuild it, the authors need to

8Docker Buildx, https://docs.docker.com/engine/reference/commandline/buildx/

https://docs.docker.com/engine/reference/commandline/buildx/

2.5 Dockerfile Generation 11

update the associated hashes and prevent Docker from performing integrity checks. Lastly, this

work is a few years old, which could suggest some level of maturity, but the proposed tool has not

been made available to the public, making it difficult to evaluate.

Huang et al. [20] and Harter et al. [15] address the network bottleneck in different ways. The

former caches files locally and intercepts Docker’s network requests in order to serve files that

have been stored locally. The latter proposes a new storage driver that lazily fetches files from

the network. Both show promising results and do not address other inefficiencies in the Docker

building process. These tools are also a few years old, but, as we mentioned for the code injection

approach, it’s hard to make assumptions about their maturity or usability since the authors did not

make them available to the public. Lastly, FastBuild was implemented using around 2600 lines of

Go code.

The works described so far override the normal Docker build procedures (this means they

interfere with the build process in ways that are not officially supported by the Docker development

team) and do not have public source code for their tools. This makes them harder to implement

or include as part of a development environment. Another solution is offered by the Docker

development team, Buildx. Buildx is a different way to build images that makes use of a newer

backend, BuildKit9, which brings many features that can potentially accelerate docker builds.

Furthermore, this new backend has been in development for a few years, has been shipped with

Docker Engine for a similar amount of time, and is even used by other projects10, cementing it

as a mature project. However, to our knowledge, an apples-to-apples time comparison has not

been made. Implementing this in Dockerlive wouldn’t be very hard, but because the output of the

buildx command is different, some modifications would still be required. From a normal user’s

perspective, it is also not hard to use, merely requiring a change in Docker’s configuration in order

to be used as part of the typical Docker development environment.

2.5 Dockerfile Generation

Many developers report some tasks involved in Dockerfile development as being time-consuming,

especially for those with less experience [49]. Therefore, having a way to automatically generate

a functional Dockerfile for a given project could be very useful as it would reduce the amount of

time spent on these tasks, leading to higher productivity. In this section, we looked for works that

showcased ways to accomplish this. Our findings are summarized in Tables 2.3 and 2.4.

Zhong et al. [64], Ye et al. [62], and Horton and Parnin [19] present solutions that require

pre-existing knowledge bases in order to generate the files. Similarly, Rosa et al. [51] propose a

solution that makes use of Deep Learning and requires large amounts of data to train the model.

This makes them harder to implement in a project due to the amount of data required to build these

knowledge bases. This is especially problematic for DockerGen and Burner because their source

code is not publicly available. DockerizeMe is also limited to Python environments, while Burner

9Docker BuildKit, https://docs.docker.com/build/buildkit/
10BuildKit - Used by, https://github.com/moby/buildkit#used-by

https://docs.docker.com/build/buildkit/
https://github.com/moby/buildkit#used-by

Dockerfile Development Challenges 12

Name Successful gener-
ation rate

Limitations

Applying Model-Driven Engineering
to Stimulate the Adoption of DevOps
Processes in Small and Medium-Sized
Development Organizations [54]

Unknown An Open API Spec is re-
quired

Burner: Recipe Automatic Generation
for HPC Container Based on Domain
Knowledge Graph [64]

Up to 80% A vast knowledge graph
(2832 nodes and 62614
edges) is required, focused
on Singularity

Container-Based Module Isolation for
Cloud Services [26]

Unknown Requires the use of templates
to generate the files

DockerGen: A Knowledge Graph
based Approach for Software Con-
tainerization [62]

Up to 73% A vast knowledge graph
(900000 nodes and 2900000
edges) is required

DockerizeMe: Automatic Inference of
Environment Dependencies for Python
Code Snippets [19]

Up to 30% Limited to Python snippets,
requires a knowledge base

ExploitWP2Docker: a Platform for
Automating the Generation of Vulnera-
ble WordPress Environments for Cyber
Ranges [9]

Up to 39% Limited to security testing
scenarios, requires an exploit
description

MAKING CONTAINERS EAS-
IER WITH HPC CONTAINER
MAKER [37]

Unknown Requires Python code to gen-
erate the files

Automatic service containerization
with Docker [34]

Up to 69.5% Limited to Python and
Javascript projects

Automatically Generating Dockerfiles
via Deep Learning: Challenges and
Promises [51]

34% Large amounts of data are re-
quired for training

Table 2.3: Works about generating Dockerfiles along with their successful generation rates and
limitation

Name [54] [64] [26] [62] [19] [9] [37] [34] [51]
Available source code? ✓ X ✓ X ✓ ✓ ✓ ✓ ✓

Integrated in IDE? X X X X X X X X X
Uses source code as input? X X X X ✓ X X ✓ X

Table 2.4: Works about generating Dockerfiles along with their source code availability, IDE
integration and ability to use source code as input

2.6 Dockerfile Smells 13

is more focused on Singularity11, a containerization tool similar to Docker but focused on HPC

(High-Performance Computing).

Caturano et al. [9] propose a tool that uses Docker to generate security testing environments

from exploit descriptions. Sorgalla et al. [54]’s work can generate Dockerfiles from models, which

are generated from Open API Specifications (like Swagger12). Kehrer et al. [26] use Apache

FreeMarker13 to generate Dockerfiles from templates. McMillan [37] offers a tool that allows

developers to use Python code to define the information required to generate Dockerfiles. Lastly,

Maduro [34] proposes Hermit, a tool that can generate Dockerfiles for Javascript and Python

projects by performing dynamic and static analysis using the project’s source code.

With the exception of Burner and DockerGen, most of the tools’ source code is publicly avail-

able. However, none of them have been integrated into an IDE. Additionally, only two of the tools

can generate Dockerfiles by analyzing a project’s source code, with the others requiring additional

input to perform this generation.

As we can see by looking at Table 2.3, these works show varying degrees of success. Some

have a successful generation rate as high as 80%, while others don’t even mention the success rate.

In general, a successful generation means that an image can be built from the generation’s output

but the numbers provided have slightly different meanings depending on the work they belong to.

Furthermore, given the different capabilities of each tool and the different ways in which these

figures were calculated, it is hard to draw comparisons based on these numbers alone.

For our purposes, since we are trying to improve a developer’s experience, we would like to

minimize the amount of input that is required from the user making Hermit and DockerizeMe more

appealing since they can analyze a project’s code to perform the generation. Since DockerizeMe

is limited to Python snippets, Hermit becomes the most desirable option.

Unfortunately, only Maduro provided some data regarding the characteristics of the generated

files and reported that, for some metrics, the generated images were worse than those created

by human developers [34]. This suggests that automatic generation may not be as helpful as we

thought. However, we believe that, when combined with automatic modifications, the resulting

tool could still be useful to developers.

2.6 Dockerfile Smells

Smells are commonly found in Dockerfiles [59], making it important to create ways of detecting

and, if possible, removing them. This section covers works related to this. Table 2.5 contains a list

of smells found in the literature.

Lu et al. [33] and Xu et al. [61] have focused on the temporary file smell and propose ways

to detect this smell. A repair to deal with this smell could be implemented using the information

provided by these works.

11Singularity, https://apptainer.org/
12Swagger, https://swagger.io/
13Apache FreeMarker, https://freemarker.apache.org/

https://apptainer.org/
https://swagger.io/
https://freemarker.apache.org/

Dockerfile Development Challenges 14

Azuma et al. [5] focus on a variation of smells they call SATD (self-admitted technical debt)

which can be detected in comments written in the Dockerfiles. Due to the nature of these SATDs,

implementing repairs to eliminate them could be very complicated.

Wu et al. [59] analyzed a large number of open-source projects and found that Dockerfile

smells are very common, and their frequency changes according to several factors like the pro-

gramming language used by the project or the project’s age. The authors used Hadolint14 for the

detection, allowing them to cover a large number of smells15. Due to the number of smells cov-

ered by this tool, implementing repairs to deal with all of them would be difficult. For the same

reasons, only some of the analyzed smells were listed here.

Smell Related works Related findings
Temporary File [33] and [61] The smell is quite common and can be divided

into four different types; can be detected through

static and dynamic analysis

SATD [5] This type of smell appears in Dockerfiles and can

be divided into several classes and subclasses

Lack of version

tagging/pinning

[59] N/A

Use of the MAIN-

TAINER instruc-

tion

[59] N/A

Use of cd to switch

directories instead

of WORKDIR

[59] N/A

The parameter

–no-install-

recommends is

not used when

installing packages

with APT

[59] N/A

Table 2.5: Dockerfile smells

2.7 Dockerfile Good Practices

To prevent the creation of smells like the ones mentioned in Section 2.6, a developer should follow

good practices. This section goes over works that cover these practices. Table 2.6 contains a list

of good practices found in the literature.

14Hadolint, https://github.com/hadolint/hadolint
15Hadolint - Rules, https://github.com/hadolint/hadolint#rules

https://github.com/hadolint/hadolint
https://github.com/hadolint/hadolint#rules

2.7 Dockerfile Good Practices 15

Henkel et al. [17] mined rules from Dockerfiles created by experts, allowing them to create

a set of "gold rules", a set of patterns that often appear in Dockerfiles written by these experts.

Some of these "gold rules" are not listed above because it’s not clear what they refer to. It should

be possible to implement the listed ones as repairs.

Giorgi [45] looked for flaws in Dockerfiles that could lead to vulnerabilities in a system. As

part of that work they list a set of practices developers should follow to improve a Docker image’s

security. Most of the practices listed could be implemented as repairs, although some of them

would be too complex to implement.

Nust et al. [41] propose a list of 10 rules developers should follow when writing Dockerfiles

for data science environments. Some of these rules are applicable to other scenarios and 2 of those

could be implemented as repairs.

Practice Related works
Format for clarity [41]

Document within the Dockerfile [41]

Specify software versions [41]

Order the instructions [41]

Run the container in rootless mode [45]

Use tagged minimal images and multistage builds [45]

Use COPY with specific parameters [45]

Update and install packages in the same RUN instruction [45]

Use COPY instead of ADD [45]

Do not leak sensitive information to an image [45]

Remove unnecessary dependencies [45]

Only expose ports that are needed [45]

Use official images when possible [45]

Remove temporary directories [17]

Use flag -f with curl [17]

Remove tarballs after extraction [17]

Do not use APK’s cache [17]

Do not install dependencies recommended by APT [17]

Use HTTPS urls with curl [17]

Use batch flag with gpg [17]

Use HTTPS urls with wget [17]

Use flag -y with apt-get install [17]

Remove APT lists after package installation [17]

Run apt-get update before apt-get install [17]
Table 2.6: Dockerfile good practices

Dockerfile Development Challenges 16

2.8 Dockerfile Security

Nowadays, security is a topic that is heavily discussed and deserves a great amount of attention

from developers. However, security problems are still commonly found in Dockerfiles [11] and

many developers do not have the knowledge required to evaluate how vulnerable their containers

are [63]. For these reasons, it’s important to study Docker containers from a security perspective,

which is what this section focuses on. Our findings are summarized in Table 2.7.

Name Findings Implementation notes
DAVS: Dockerfile Anal-

ysis for Container Im-

age Vulnerability Scan-

ning [11]

DAVS can detect more vul-

nerabilities than competing

scanners

It should be possible to re-

pair some of the mentioned

vulnerabilities, although it

would be easier to use exist-

ing scanners

Investigating the inner

workings of container

image vulnerability scan-

ners [63]

Many scanners use the same

methods to detect vulnerabil-

ities, which have limitations

Using one of these scanners

could be useful

Outdated software in con-

tainer images [31]

Having outdated software

in containers brings security

problems and there are

limitations to what current

scanners can detect, new

detection method is proposed

It should be possible to im-

plement some repairs to try to

address this situation

Security Analysis of Code

Bloat in Machine Learn-

ing Systems [3]

Removing bloat from con-

tainers used in machine

learning environments can

considerably improve secu-

rity

It should be possible to im-

plement some repairs that re-

duce bloat

Security Misconfigu-

rations Detection and

Repair in Dockerfile [45]

Security problems are com-

mon in containers, a way to

repair them is proposed

It might be possible to imple-

ment the proposed technique

to repair the problems
Table 2.7: Works about Dockerfile security

Doan and Jung [11] propose DAVS (Dockerfile analysis-based vulnerability scanning), a tool

that can detect potentially vulnerable files in containers. This approach allows them to detect more

vulnerabilities than current scanners, which, according to Zarei [63], rely on information provided

by distributions’ package managers. This information can be manipulated and, in some cases, may

not even be available, which prevents scanners from detecting vulnerabilities.

2.9 Dockerfile Repair 17

Ahmed and Fatih [3] used Cimplifier [46] to debloat containers used in machine learning envi-

ronments and found that the number of vulnerabilities present in those containers was significantly

reduced.

Linnalampi [31] found that having outdated software introduces vulnerabilities in containers

and proposed a new method to detect vulnerabilities by analyzing the binaries present in containers

to detect the software versions that are in use. This approach would address some of the limitations

of current scanning techniques.

Giorgi [45] found that security problems are common and proposed a way to repair them by

processing the Dockerfile to obtain the abstract syntax tree, find the vulnerabilities and modify the

tree before reconverting into a file that is no longer vulnerable.

Implementing repairs that address most of the problems and vulnerabilities found by these

works should be possible. It may even be possible to use some of the proposed approaches.

2.9 Dockerfile Repair

As the previous sections have shown, the average Dockerfile has several problems and it can be

difficult for a developer to figure out how to deal with those issues in an optimal way. This makes

it important to create tools that can assist developers in the repair process. This section goes over

works that do that (although other sections also discuss works that perform repairs that are related

to more specific scenarios). Table 2.8 contains a list of repairs found in the literature.

Dockerfile Development Challenges 18

Repair Related works
Base image update [27]

Gold rule enforcement (rules listed in Section 2.7) [17]

Update portions of the Dockerfile which are tied to values in source

code

[16]

Combine consecutive RUN instructions into one [6]

Fix Ruby version error by pinning Ruby base image version [18]

Fix RPM installation error by installing a plugin first [18]

Update to the latest base image release [18]

Install libpng-dev instead of libpng12-dev [18]

Fix "Unable to locate package" by downgrading Ubuntu base image

version

[18]

Fix Gemfile version error by pinning Ruby base image version [18]

Fix Ruby encoding error by setting environment variable [18]

Install missing packages using APK or APT without using cached

data

[18]

Do not install the bzr package with APK [18]

Add the -L flag when using curl to install conda [18]
Table 2.8: Dockerfile repairs

Kitajima and Sekiguchi [27] focused on updating a container’s base image by analyzing the

available tags, while Hassan et al. [16] focused on portions of the Dockerfile which are tied to

values in the source code.

Henkel et al. [17] offer a way to detect violations of the gold rules they obtained but don’t

automate the repair of said violations. Henkel et al. [18] also propose a different approach for

automating repairs, although most of the repairs listed here are specific to certain programming

languages or package managers.

Benni et al. [6] describe a way to reduce the number of layers in Dockerfiles in order to take

advantage of layer caching.

Implementing the repairs mentioned in this section should be possible, although these imple-

mentations would have varying degrees of complexity.

2.10 Dockerfile Bloat

Many Docker images contain bloat [46] and their removal has benefits beyond the space savings.

For example, a debloated image can be much more secure [3]. Because of this, we looked for

works that described ways to address this problem. Our findings are summarized in Table 2.9.

2.11 Dockerfile Testing 19

Name Removal rate Limitations
Cimplifier: automatically debloating

containers [46]

Up to 95% of im-

age size

Relies on good test

coverage

Large-scale Debloating of Binary

Shared Libraries [1]

20-25% of code in

the image

Debloating hap-

pens at the binary

level and does

not perform any

Docker-specific

changes

New Directions for Container Debloat-

ing [47]

N/A The suggested

approaches are not

actually imple-

mented

Wale: A Dockerfile-Based Approach

to Deduplicate Shared Libraries in

Docker Containers [52]

Around 40% of

disk space

Only saves space

when multiple con-

tainers are used
Table 2.9: Works about Dockerfile Bloat

Cimplifier [46] is a tool that removes bloat from containers by having the developer specify

how the contents of an image should be divided and creating several images accordingly. However,

single container environments can also be generated if specified by the developer. This tool can

drastically reduce the size of an image. However, it relies on dynamic analysis and good test

coverage to perform its functions. The same authors also wrote a second article describing other

approaches that could be used to perform debloating on containers [47], although these alternative

approaches were not actually implemented.

Nibbler [1] is a tool that performs debloating at the binary level and can remove a decent

amount of bloat from an image. However, because it does not make use of any Docker-specific

mechanisms, it could be difficult to implement in our tool.

Wale [52] is a tool that can debloat containers by placing packages used by multiple containers

in a core container that is used by the others. This means it can not debloat systems that use a single

container. Despite this, it can save a decent amount of disk space in the scenarios where it can be

used.

2.11 Dockerfile Testing

One of the activities developers consider time-consuming is testing their containers to make sure

they work as intended [49]. This makes sense considering problems like build failures are quite

common [60]. Therefore, having tools to help them perform this task could have a positive impact

Dockerfile Development Challenges 20

on their development experience. We looked for tools like this in the literature, and our findings

are summarized in Table 2.10.

Name Coverage Limitations
DockerMock: Pre-Build Detection of

Dockerfile Faults through Mocking In-

struction Execution [29]

68% Can not find prob-

lems in the envi-

ronment surround-

ing the Dockerfile

Dgoss16 N/A The developer

must write the tests

themselves

Container Structure Tests17 N/A The developer

must write the tests

themselves
Table 2.10: Works about Dockerfile Testing

DockerMock [29] mocks common Dockerfile instructions in order to find problems before an

image is even built. The results are promising, although issues outside the Dockerfile can not be

detected.

Dgoss and Container Structure Tests make it easier to create and execute tests meant for con-

tainers but do not automate the creation of the tests.

2.12 Liveness

Since the coinage of the term Live Software Development by Aguiar et al. [2], other works have

studied how the increase of liveness can impact different activities of the software development

lifecycle [7, 12, 39, 13, 4], but very few of these works have approached infrastructure-related

artifacts and tools [32, 48, 50].

We believe that liveness could be useful to address the challenges we have been discussing

in the previous sections and improve the Dockerfile development experience. As mentioned pre-

viously, Dockerfile development usually makes use of a trial-and-error approach [49]. In this

approach, a developer makes some modifications to the Dockerfile, builds a new image, and ex-

ecutes it to evaluate the behavior of the container and get feedback. If the container is behaving

correctly, the process ends here. Otherwise, we go back to modifying the Dockerfile, and the loop

restarts. This is the feedback loop (illustrated in Figure 2.2), which, as proposed by Aguiar et

al. [2], can be improved through the use of liveness by giving more information to the developer

in each iteration, reducing the number of times they need to go through this loop. Reis and Cor-

reia [48, 50] proposed a tool called Dockerlive, which offers an environment with a high level of
16Dgoss, https://github.com/goss-org/goss/tree/master/extras/dgoss
17Container Structure Tests, https://github.com/GoogleContainerTools/container-structure-

test

https://github.com/goss-org/goss/tree/master/extras/dgoss
https://github.com/GoogleContainerTools/container-structure-test
https://github.com/GoogleContainerTools/container-structure-test

2.13 General Discussion 21

Figure 2.2: Feedback loop in Docker development
Source: [49]

liveness to those that need to edit Dockerfiles. Furthermore, Reis conducted an experiment with

students to analyze the impact of this tool on Dockerfile developers. However, while our work is

more focused on the developer experience, theirs was more concerned with the relationship be-

tween a developer and the IDE, as well as the effects of liveness on the actions that developers

take while working on Dockerfiles. Additionally, the tool they created contains features that make

it easier, for example, to detect instances of the temporary file smell, suggesting it could be use-

ful to deal with the challenges covered in this chapter. As a result, we think that Dockerlive is a

good starting point to use when creating a tool that aims to improve the Dockerfile development

experience.

Unfortunately, due to time constraints, we were unable to analyze more works about liveness.

2.13 General Discussion

A few more works address additional aspects of Dockerfile development that are relevant to us but

that do not fit into the categories that we covered so far.

Ksontini et al. [28] focused on refactorings and found that developers’ main motivations for

performing refactorings were tied to maintainability and image size, among others. Implementing

some of these refactorings as repairs would be useful, although implementing all of them would

be challenging.

Furthermore, Morales et al. [38] performed a systematic literature review regarding the pro-

grammer experience and provide a definition of this concept (which we covered in Section 2.1.2).

Additionally, they provide several statistics about the studies that have been conducted regarding

this topic. Noda et al. [40] provide a different definition of developer experience (also covered in

Section 2.1.2). They also listed several examples of metrics that can be used to evaluate developer

experience in an organization.

Some other works delved into making docker-related tools and artifacts easier to use [42, 43,

44], but do not focus specifically on Dockerfiles.

After all the works we analyzed, we are ready to answer the Research Questions that we listed

at the start of this chapter:

• RQ1: What are the challenges that developers face in the development of Dockerfiles?

Dockerfile Development Challenges 22

• RQ2: How have these challenges been addressed so far?

• RQ3: To what extent can these challenges be addressed by automatic repair or generation

approaches?

Starting with RQ1, we found several challenges that are associated with Dockerfile devel-

opment. Building images can take a considerable amount of time [20], which, when combined

with the reliance on a trial-and-error approach, means that developing Dockerfiles can be very

time-consuming [49]. Additionally, many popular images that are used as base images contain

a considerable amount of bloat [1]. The bloat can also lead to security problems [3], with the

number of vulnerabilities present in Dockerfiles being another challenging aspect [45]. Lastly,

developers commonly violate good practices [17], leading to the prevalence of smells [59].

Moving on to RQ2, we found many approaches to deal with the challenges we mentioned.

Regarding build speeds, we found approaches to accelerate them either by addressing the network

bottleneck [20, 15] or skipping the need to rebuild an image [58]. Furthermore, the trial-and-error

approaches can be improved through the use of liveness [50, 2] and different testing tools [29].

Additionally, it’s possible to debloat containers by, for example, dividing a single container into

different ones [46]. Moreover, security problems can be detected using scanners [11, 63]. Lastly,

we couldn’t find many approaches that address smells and good practices beyond using tools like

Hadolint to detect smells [59].

With RQ3, we found some works that generate and repair Dockerfiles. However, most of the

repairs we saw focused on dealing with functional problems instead of the previously mentioned

challenges. As for the generation, most of the approaches had limitations that inhibited their

adoption. The only data we have [34] suggests that automatic generation could actually worsen

the quality of a Dockerfile. Despite this, we still believe that if we combine automatic generation

with repair features targeting these challenges and offer them in an environment that provides high

liveness, the development experience and the quality of the resulting Dockerfiles can improve.

Chapter 3

Designing a new version of Dockerlive

We will now describe the tool we have created in more detail. Because we used Dockerlive [50]

as a starting point when building this tool, we decided to call the tool "Dockerlive V2". Like its

predecessor, Dockerlive V2 is a Visual Studio Code extension. It should also be mentioned that

Dockerlive’s source code is available in a GitHub repository1.

3.1 Goals

To understand the tool we have created, we must first explain the purpose behind the changes we

made. We wanted to create a tool that offered the following features:

• Repair - the tool should be able to identify problems in a Dockerfile that the user is currently

editing and suggest modifications

• Generation - if the user does not currently have a Dockerfile that they can work with, the

tool should be able to provide a file that they can, at least, use as a starting point

We believe these features are useful to developers working with Dockerfiles and that a tool

with these features can help us achieve our main goal of improving the development experience of

those that need to work with Dockerfiles.

3.2 Approach

Now that we have explained what our goals are, we will describe how we will accomplish them

by describing the general approach that we implemented in our tool.

Regarding the repair feature, we believe that a tool that aims to help Dockerfile developers

should continuously scan the file being edited. If a problem is detected during one of these scans,

then the section of the file where the problem has been detected should be highlighted using

some kind of visual indicator (for example, underlining that part of the file). Furthermore, a

1Dockerlive, https://github.com/SoftwareForHumans/Dockerlive

23

https://github.com/SoftwareForHumans/Dockerlive

Designing a new version of Dockerlive 24

user should be able to interact with the highlighted region (by using their mouse or keyboard, for

example) and obtain more information about it (this information should explain what the problem

is). Additionally, the tool should be able to identify a way of fixing that problem (by modifying

the file) and should give the user an option to apply that fix for the user.

If a user does not have a Dockerfile, the tool should be capable of analyzing the project the

user is currently working on and extracting as much information as possible from this analysis to

generate a Dockerfile. Although generating an entire file requires the tool to make some choices

for the user (for example, the directories where files should be placed), the user should not be

bombarded with prompts asking for more information. The tool should make these decisions for

the user and only ask for information when it is absolutely necessary.

3.3 Internal Design

We used Dockerlive [50] as a starting point and extended it to offer more features. The origi-

nal architecture can be seen in Figure 3.1. As this figure shows, Dockerlive uses a client-server

architecture2 where the client and the server communicate using LSP (Language Server Proto-

col)3. The client interacts directly with the editor and makes requests to the server. The server

can be decomposed into three main components: dockerlive-language-server-nodejs, dockerlive-

language-service, and dockerfile-utils. This last component can be decomposed into two other

sub-components: Validator and DynamicAnalysis. When the client has a file that needs to be an-

alyzed, it sends it to the dockerlive-language-server-nodejs component, which then sends it to the

dockerlive-language-service component. The file is ultimately analyzed by the sub-components

of dockerfile-utils (Validator and DynamicAnalysis). The DynamicAnalysis component communi-

cates with the Docker API4 to be able to build images and create containers. After creating the

containers and extracting data from them, it creates diagnostic information, which gets added to

the Validator component’s output. This output is sent to the client, which presents the diagnostic

information to the user.

The new architecture of Dockerlive can be seen in Figure 3.2. As the figure shows, we have

added new components to Dockerlive.

We have added a new RepairScanner component on the server side. This component scans a

Dockerfile for any problems that can be repaired. If any problems are detected, they get added to

the list of diagnostics produced by the Validator.

On the client side, a new RepairProvider component was added. This component analyzes

each diagnostic produced by the server side and generates a corresponding repair that can be

applied to the file that is currently being edited. Additionally, the client side of Dockerlive V2 can

also communicate with Hermit, which can create more repair opportunities or provide the user

with a Dockerfile for their project if they do not have one yet. Since the client is the component

2Client-server model, https://en.wikipedia.org/wiki/Client-server_model
3Language Server Protocol, https://en.wikipedia.org/wiki/Language_Server_Protocol
4Docker API, https://docs.docker.com/engine/api/

https://en.wikipedia.org/wiki/Client-server_model
https://en.wikipedia.org/wiki/Language_Server_Protocol
https://docs.docker.com/engine/api/

3.3 Internal Design 25

Figure 3.1: Architecture of Dockerlive V1
Source: [50]

Figure 3.2: Architecture of Dockerlive V2

Designing a new version of Dockerlive 26

that a user directly interacts with and some of the functionality that Hermit provides is tied to user-

facing features (which will be described in more detail in Section 3.3.2), it made sense to integrate

Hermit by connecting these components instead of, for example, connecting Hermit to the server

component.

More information about the repair functionality can be found in Section 3.3.1.

3.3.1 Repairs

Now that we have provided a rough overview of Dockerlive V2’s architecture, we will describe

each of the new components in more detail.

Starting with the RepairScanner, this component uses the NPM package dockerfile-ast5 (which

was already used by the dockerfile-utils component in the previous version of Dockerlive) to scan

the Dockerfile and find problems that can be fixed. Depending on the problem, this component

may simply check for the absence of a certain instruction, or it may need to check for the usage of

specific combinations of arguments with an instruction. When a problem is detected, this compo-

nent creates a diagnostic that contains a range (an object that contains data regarding the position

of the file where the problem is present), a message that gives a user information about the prob-

lem that was detected, and a code that identifies the problem (for example, a diagnostic with the

code R:CONFIRMINSTALL means the user forgot to add the -y option when installing packages

with APT). In Section 3.4, there is a list of all the repairable problems and the conditions that lead

to the detection of each one of them.

As for the RepairProvider, this component receives the list of diagnostics produced by Re-

pairScanner and generates the corresponding repair for each diagnostic. The most important com-

ponents of a repair are the range where the modification should be performed (a range may span

one or more instructions, or even a part of an instruction, depending on the diagnostic) and the

text that should replace the one currently contained in that range. For example, if the user forgot

to add the -y option when installing packages with APT, the range will contain the apt-get install

keywords, and the replacement text will be apt-get install -y. Additionally, repairs have a small

message that describes what they do.

These components may also use the information provided by Hermit. Section 3.3.2 will pro-

vide more details regarding Hermit’s usage.

3.3.2 Hermit

One of the improvements that Dockerlive V2 includes is integration with Hermit. Dockerlive and

Hermit are still independent but, when Dockerlive needs to use Hermit, it calls it using Hermit’s

CLI (Command-line Interface). We found this to be the simplest and most stable way of connect-

ing Hermit and Dockerlive.

Hermit is useful to Dockerlive in two different ways:

5dockerfile-ast, https://www.npmjs.com/package/dockerfile-ast

https://www.npmjs.com/package/dockerfile-ast

3.4 Repair Implementation Details 27

• When a project does not have a Dockerfile, Hermit can provide one

• If the project already has a Dockerfile, Hermit can still use information from this file to

generate an alternative Dockerfile, which is then compared with the original one to find

more repair opportunities (as described in the previous section)

Regarding the first scenario, we first need to mention that Hermit has two modes: one where

the Dockerfile is generated from scratch and another where it uses information from an existing

file to generate an alternative one. Both modes perform dynamic analysis to gather the information

required to generate a file. However, while the first mode performs dynamic analysis while running

the service natively, the second one does it while running the service inside a container (this

container is generated using the information from the existing file). For these reasons, we will

refer to the first mode as "native mode" and the second one as "container mode".

With this in mind, when no Dockerfile is present, Dockerlive actually executes Hermit twice.

The first execution generates a new file (using the native mode), and the second one generates an

alternative file using the first one as a reference (this is the container mode). This is done because

we found that the output of the container mode is often better and results in a Dockerfile that

contains less bloat. For example, when generating a Dockerfile for a simple JavaScript project

that just prints the text "Hello World!", the native mode would generate a Dockerfile that installs

many dependencies which are not actually needed. This did not happen with the container mode,

leading us to believe that the detection of dependencies is more accurate when using the container

mode.

As for the repairs enabled by Hermit, they will be described in more detail in Section 3.4.

They revolve around port exposure and the installation of dependencies (both using distributions’

package managers and languages’ package managers). When the ports or dependencies detected

in the current file do not match the ones in the file generated by Hermit, Dockerlive will suggest

repairs that update the current file to make it more similar to the one generated by Hermit.

3.4 Repair Implementation Details

This section contains a list of all the repairs that have been implemented:

• Add image tag - If the base image of the Dockerfile does not contain a tag, then Dockerlive

will provide one (either 18-slim for Node.js projects or 3.11-slim for Python projects, other

types of projects are not supported). Using an image tag can improve the speed, stability,

and security of a container [41, 59].

• Use the WORKDIR instruction - If the WORKDIR instruction is not used in the file,

then Dockerlive will suggest adding the line WORKDIR /app at the start of the file after

the FROM instruction. This keeps the directory tree more organized by having a dedicated

place for a project’s files [53].

Designing a new version of Dockerlive 28

• Change the exposed ports - If the current Dockerfile does not expose any ports (or exposes

the wrong ones), Dockerlive will offer a repair that changes the ports being exposed. Hermit

is used to detect the ports that should be exposed. Having the correct set of ports exposed in

the file improves the project’s maintainability.

• Use the -y option with apt-get install - If the current file attempts to install packages with

APT without using the -y option, Dockerlive will suggest adding this option. Without this

option, the apt-get install command will fail [17].

• Use the apt-get update command before apt-get install - If the current file attempts to

install packages with APT without running apt-get update before, Dockerlive will suggest

adding this command before. If the update command is not executed before, the package

manager’s cache will be outdated, which can cause problems [17, 18].

• Use the –no-install-recommends option with apt-get install - If the current file attempts

to install packages with APT without using the –no-install-recommends option, Dockerlive

will suggest adding this option. Without this option, APT may install packages that are not

needed and waste space [17, 59].

• Change the packages being installed - If the packages being installed in the current file

using the system’s package manager do not match the ones detected by Hermit (this also

includes situations where Hermit detects some dependencies but the current file does not

install any or vice versa), Dockerlive will offer a repair that changes the packages being

installed. This can fix functional problems if some of the required packages are missing or

reduce the amount of wasted space if unnecessary packages are being installed.

• Add command to remove APT lists - If the current file installs packages using APT but

does not remove the list of packages afterward, Dockerlive will suggest adding a command

to remove them. After installing packages, APT’s cache (the list of packages and their

versions) becomes useless; removing it reduces the amount of space that is wasted [17].

• Use the –no-cache option with apk add - If the current file attempts to install packages

with APK without using the –no-cache option, Dockerlive will suggest adding this option.

This option keeps the package manager from caching information on the disk, reducing the

amount of space that is wasted [17, 18].

• Merge consecutive RUN instructions - If two consecutive RUN instructions are detected

in the current file, Dockerlive will offer a repair that merges them into one (connecting the

commands using &&). Having fewer instructions in a Dockerfile reduces the number of

layers that Docker needs to process and can shorten build times [6, 45].

• Replace an isolated cd with WORKDIR - If a RUN instruction that only contains a cd

command is detected, Dockerlive will suggest replacing it with a WORKDIR instruction.

The working directory is not preserved between instructions, making an isolated cd use-

less [59].

3.4 Repair Implementation Details 29

• Use the -f option with curl - If a RUN instruction containing a usage of the curl command

without the -f option is detected, Dockerlive will suggest adding this option. When curl

commands fail, they generate some output that can cause problems. Adding this option

keeps the output from being generated [17].

• Update URLs to use HTTPS - If Dockerlive detects that HTTP URLs are used with curl

or wget commands, it will offer a repair that changes the URLs to use HTTPS instead.

HTTP is less secure than HTTPS. Therefore, updating the URLs to use HTTPS can improve

security [17]. However, Dockerlive does not check if the updated URL is valid or a response

is returned from it, which can cause errors in some situations.

• Replace ADD with COPY - If ADD instructions are detected, Dockerlive will suggest

replacing them with COPY instructions. ADD instructions can have some unwanted side

effects, making COPY instructions safer to use [45].

• Remove MAINTAINER instructions - If MAINTAINER instructions are detected in the

current file, Dockerlive will suggest removing them. MAINTAINER instructions have been

deprecated, which means they should no longer be used [59].

• Use multiple COPY instructions - If a single COPY instruction is detected in the current

file, Dockerlive will suggest adding a second one and dividing the files being copied into

two groups; the first group will only contain the files required to install packages using a

language’s package manager (package.json and package-lock.json for Node.js projects and

requirements.txt for Python projects, other types of projects are not supported) while the

second group will contain the rest of the files that are used by the project. This promotes

layer caching by avoiding the need to rebuild layers that are only used to install dependen-

cies [53, 41, 45].

• Use the USER instruction - If the USER instruction is not used in the current file, then

Dockerlive will suggest adding it near the end of the file, before the last instruction (for

Node.js projects, the recommended user will be node while for Python projects it will be

python, with an execution of the useradd command being added before to create this user,

other types of projects are not supported). Running applications as the root user can be

dangerous if the application contains unknown vulnerabilities; changing users addresses

this problem [53, 45].

• Install dependencies with the language’s package manager - If the current Dockerfile

does not contain a RUN instruction that uses the language’s package manager to install

dependencies, Dockerlive will offer a repair that adds this command. For Node.js projects,

the command will be npm install; for Python projects, it will be pip install; other types

of projects are not supported. Hermit provides the information used for this repair. These

commands are important to ensure that the required dependencies are installed.

Designing a new version of Dockerlive 30

Figure 3.3: Generation progress notification

3.5 Hermit Contributions

Besides establishing a connection to Dockerlive, we also made some small improvements to Her-

mit. Firstly, we updated the versions of the images that were used in the generation process to

more recent ones. Secondly, the generated files would often use the ADD instruction; we replaced

them with COPY instructions (this matches one of the repairs mentioned in the previous section).

Finally, Hermit will execute a dpkg6 command while detecting dependencies; this command can

only be used in Debian-based7 Linux distributions. We added the ability to execute this command

inside a container, increasing the number of systems where Hermit can be used. Hermit’s source

code is also available in a GitHub repository8.

3.6 User Interface

Now that we have taken a look at Dockerlive V2 from an internal perspective, we will describe it

from a user’s perspective.

The new features that a user will see in Dockerlive V2 are the repairs and the ability to generate

a Dockerfile that does not have one yet.

All the screenshots shown in this Section were taken using Visual Studio Code with a high-

contrast theme to make it easier to distinguish UI (User Interface) elements.

3.6.1 Repairs

Starting with the repairs, when the user opens a new Dockerfile, because some of the repairs rely

on the alternative file generated by Hermit, the user will have to wait for Hermit’s generation

to finish before gaining access to the diagnostic information. A notification that monitors the

generation’s progress will be shown in the bottom right corner of the application. Figure 3.3

shows this notification while the generation is in progress, while Figure 3.4 shows the notification

after the generation is complete.

Once the generation is complete, if Dockerlive detects a problem that can be repaired, it creates

a warning in the region of the file that corresponds to that problem (file regions are internally

referred to as "ranges", as mentioned in previous sections). Figure 3.5 shows an example of a

6dpkg, https://en.wikipedia.org/wiki/Dpkg
7Debian, https://www.debian.org/
8Hermit, https://github.com/SoftwareForHumans/Dockerlive

https://en.wikipedia.org/wiki/Dpkg
https://www.debian.org/
https://github.com/SoftwareForHumans/Dockerlive

3.6 User Interface 31

Figure 3.4: Notification showing the generation is finished

Dockerfile with repairable problems, while Figure 3.6 shows an example of a warning for one

particular repairable problem.

As the image shows, a section containing a warning has a yellow underline. If the user then

hovers over that part of the file, some information is shown about the problem. At the bottom of

this information box, there is also a button related to quick fixes. Clicking this button shows quick

fixes related to this part of the file. Figure 3.7 shows the quick fix menu.

After choosing the desired fix, a user simply has to click it to apply the fix. Figure 3.8 shows

the state of the Dockerfile after applying a particular fix.

Some warnings that are associated with repairs that insert new instructions in the file may

underline sections of the file that do not have any text. This is because the problem is the absence of

an instruction, and the warning is placed in a common location for that instruction as a suggestion

for the user. Figure 3.9 shows an example of one of these warnings.

3.6.2 Dockerfile Generation

Moving on to the Dockerfile generation, this can be done by opening Visual Studio Code’s com-

mand palette and selecting the Dockerfile generation command. Figure 3.10 shows this command

in the palette.

After selecting this command, the user will be prompted for the command that runs the service

(this is one of Hermit’s limitations, Hermit can not deduce the command that is used to start

Figure 3.5: Dockerfile with repairable problems

Designing a new version of Dockerlive 32

Figure 3.6: Repairable warning in Dockerlive V2

Figure 3.7: Quick fix in Dockerlive V2

Figure 3.8: State of the example file after applying a fix in Dockerlive V2

Figure 3.9: Empty line containing a warning in Dockerlive V2

3.7 General Discussion 33

Figure 3.10: Generation command in Visual Studio Code’s command palette

the service and requests it from the user). It should be noted that despite also being called a

"command", this command is not the same as one of the commands present in Visual Studio

Code’s palette. This command is the text that would have to be inserted in a terminal to run

the service (for example, node index.js to run a JavaScript file called index.js). After typing the

command and pressing Enter, the generation will begin and a notification similar to the one in

Figure 3.3 will be shown in the bottom right corner of the application. Once the generation has

been completed, a notification similar to the one shown in Figure 3.4 will be displayed.

3.7 General Discussion

Overall, we would have liked to improve Dockerlive more. In its current state, there are a few

aspects that could be improved:

• Potentially undesirable repairs - some of the repairs suggested by Dockerlive may not

be desirable due to unintended effects despite being capable of fixing the issues that are

detected

• Reliance on components used by the official Docker extension9 - besides the fact that

these components are meant to be used with a different extension, the versions of these

components that Dockerlive uses are also quite old, which could cause problems in the

future

• Suboptimal integration with Hermit - having Hermit as an external dependency not only

makes the projects harder to maintain but also makes the extension’s installation and initial

setup more difficult for end users

• Poor implementation - internally, the new repair components rely heavily on basic string

manipulations to perform their tasks, which affected their stability during development

9VS Code Docker Extension, https://marketplace.visualstudio.com/items?itemName=ms-
azuretools.vscode-docker

Figure 3.11: Service command prompt

https://marketplace.visualstudio.com/items?itemName=ms-azuretools.vscode-docker
https://marketplace.visualstudio.com/items?itemName=ms-azuretools.vscode-docker

Designing a new version of Dockerlive 34

• Poor user experience - some of the new features could be considered unintuitive (for ex-

ample, the warnings that show up in empty lines)

With this in mind, we came up with the following list of potential improvements and problems

associated with them:

• Use data from public pull requests10 to suggest repairs - To make sure the repairs the

Dockerlive recommends are desirable, we could look at data from public pull requests

(found on GitHub) to see how developers fix certain issues and use this data to provide

recommendations in Dockerlive. This would require a substantial amount of time, but we

believe it could improve the quality of Dockerlive’s suggestions.

• Reduce the reliance on the official extension’s components - This would likely require

most of the server component’s code to be rewritten and restructured, which would require

a significant amount of time. Unfortunately, we do not believe any alternatives allow us to

circumvent this problem.

• Improve the integration with Hermit - Initially, we tried to merge Hermit and Dockerlive

into a single codebase and perform refactorings to reduce the amount of duplicated code.

However, the end result was unstable and Hermit behaved abnormally. If someone were

to attempt to do this again in the future, we believe they could run into similar issues.

Perhaps, with more time, they could fix all the problems we found and create a more robust

integration.

• Make the repairs’ implementation more robust - As mentioned, the current implementa-

tion of the repairs uses very rudimentary string manipulation and parsing techniques. This

could be alleviated by using packages that aid with string parsing, such as mvdan-sh11 to

parse Bash12 code contained in the Dockerfiles. Using a package to parse the Dockerfiles

on the client component would also be helpful. Unfortunately, using dockerfile-ast on the

client side creates problems because the types used by this package are only compatible

with the server side. The type declarations used by the server13 and client components are

incompatible with each other despite sometimes sharing names. After finding packages that

can be used for parsing, it may still take some time to refactor the code to make use of them.

• Improve the user experience - Perhaps, instead of using empty lines to tell the user they

should add something to the file, a notification could be used to provide this information.

Furthermore, an option could be provided to allow a user to apply all the repairs at once

instead of having to apply them one by one. With enough time, these improvements should

be relatively easy to implement.

10Pull requests, https://docs.github.com/en/pull-requests/collaborating-with-pull-
requests/proposing-changes-to-your-work-with-pull-requests/about-pull-requests

11mvdan-sh, https://www.npmjs.com/package/mvdan-sh
12Bash, https://www.gnu.org/software/bash/
13vscode-languageserver-types, https://www.npmjs.com/package/vscode-languageserver-types

https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/about-pull-requests
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/about-pull-requests
https://www.npmjs.com/package/mvdan-sh
https://www.gnu.org/software/bash/
https://www.npmjs.com/package/vscode-languageserver-types

3.7 General Discussion 35

Despite everything that has been said, we still believe the new features are effective and help

users create better Dockerfiles. The usefulness of the new features is discussed in more detail in

Chapter 4.

Chapter 4

Empirical Study

Now that we have described the tool we created, we will describe the empirical study that was

performed to evaluate its impact on the Dockerfile development experience.

4.1 Goals

As we have stated multiple times, our main goal is to improve the developer experience of devel-

opers working with Dockerfiles. As we documented in Chapter 2 there are many issues that affect

Dockerfile developers and that need to be addressed.

The data presented in Chapter 2 also explains our secondary goal: to improve the quality of

the Dockerfiles written by developers. It is important to address the multitude of problems that

can be found in Dockerfiles as the consequences of their existence can be detrimental.

4.2 Research Questions

To understand our research questions, it should again be noted that this is our hypothesis:

The Dockerfile developer experience and the quality of the resulting images can improve if the

environment provides a high level of liveness regarding the most challenging aspects of Dockerfile

development

We believe that an environment with high liveness can help us achieve our goals and we im-

plemented features in our tool that promote this kind of environment. With this in mind, as well

as the information presented in the previous section, these are the research questions that we will

try to answer with our study:

• RQ1: To what extent does Dockerlive decrease cognitive load?

• RQ2: To what extent does Dockerlive promote a flow state?

• RQ3: To what extent does Dockerlive shorten feedback loops?

36

4.3 Methodology 37

• RQ4: To what extent does Dockerlive enable developers to create higher-quality Docker-

files?

The first three questions will help us determine if Dockerlive can actually improve the de-

veloper experience of those working with Dockerfiles. The last research question focuses on our

secondary goal: improving the quality of the Dockerfiles created by developers.

4.3 Methodology

To answer the research questions outlined in the previous section, an experiment was conducted.

The experiment followed a methodology that is an evolution of the one used by Reis [50] to eval-

uate Dockerlive when it was first created. Like Reis, our study gathers data from participants

that perform tasks involving Dockerfiles. However, while Reis gathered all their data while the

participants were performing the tasks, we gathered ours from recordings of the participants’ per-

formances, allowing us to be more accurate. Additionally, while Reis only collected data about

context switching and time, we also collected data regarding the Dockerfiles’ quality. Further-

more, Reis’ study was conducted with students, while ours was conducted with professionals. We

chose to use an experiment (instead of other types of studies) as it allowed us to have more control

over the environment the participants were exposed to and better analyze the effects of our tool.

The rest of this section describes our experiment in more detail.

The experiment has two groups: a control group and an experimental group. Both groups

have to carry out the same tasks. The control group does not have access to any special tools (this

includes other editor extensions or external tools like ChatGPT1) while performing the tasks while

the experimental group has access to Dockerlive. The control group is not given access to any

tools since most developers do not seem to use any tools when working with Dockerfiles [49]. The

participants carry out the tasks while on a call with an observer, a person that provides instructions,

clears up doubts, sets up the environment, and monitors their progress.

The data from both groups is then compared and analyzed (Section 4.7 covers this in more

detail).

Several of the tools mentioned in this section can be found on a GitHub repository2. The PDF

files found on that repository are created using Markdown3 and an extension4 that generates PDF

files from Markdown. PDF files are also merged using pdfunite5.

4.3.1 Data Collection

While performing the tasks, the participants are timed, not only to measure the amount of time that

is spent but also to make sure the time limit is not exceeded. Furthermore, the participants’ actions
1ChatGPT, https://openai.com/chatgpt
2dockerlive-study, https://github.com/matosjoaops/dockerlive-study
3Markdown, https://en.wikipedia.org/wiki/Markdown
4Markdown PDF, https://marketplace.visualstudio.com/items?itemName=yzane.markdown-

pdf
5pdfunite, https://manpages.ubuntu.com/manpages/jammy/man1/pdfunite.1.html

https://openai.com/chatgpt
https://github.com/matosjoaops/dockerlive-study
https://en.wikipedia.org/wiki/Markdown
https://marketplace.visualstudio.com/items?itemName=yzane.markdown-pdf
https://marketplace.visualstudio.com/items?itemName=yzane.markdown-pdf
https://manpages.ubuntu.com/manpages/jammy/man1/pdfunite.1.html

Empirical Study 38

are recorded. This recording is used to analyze the amount of context switching that is performed.

The recordings are also used to obtain more accurate time measurements (regarding task duration

as well as the amount of time spent in each context). Data is also gathered from questionnaires

that aim to capture a participant’s perception of their performance.

We will now explain how this data helps us answer our first three research questions. As

stated in Section 4.2, our first three questions address the dimensions mentioned by Noda et al.:

cognitive load, flow state, and feedback loops [40]. Since these concepts are quite complex and

hard to measure directly, we are using proxy metrics. The proxy metrics we have chosen are time

and the amount of context switching that is performed.

Cognitive load is "the amount of mental processing required for a developer to perform a

task" [40]. The lower the cognitive load the better. One of the ways to reduce the cognitive load

suggested by Noda et al. is "to reduce the amount of context or task switching required" [40]. Fur-

thermore, Mark et al. mention that interruptions (getting interrupted involves context switching)

force a person to put in more effort to finish a task [36] (this would increase the cognitive load).

For these reasons, we believe that the number of context switches is a useful proxy metric when

trying to assess the cognitive load of a task. Additionally, some of the questions in the question-

naires also measure how much a user struggled with a particular task. This is also useful given

that more difficult tasks are associated with higher cognitive loads [40].

Regarding the flow state, this is a state where a person can be more productive. However, being

interrupted multiple times while trying to perform a task makes it more difficult for an individual

to enter or remain in this state [40]. When someone is interrupted they have to perform context

switching. Therefore performing less context switching should help an individual who seeks to

enter or remain in this state. By measuring the amount of context switching that is performed we

can judge how easy or difficult it would be to make use of the flow state when carrying out a task.

In previous sections, we have already discussed how tightening feedback loops can improve a

developer’s experience. A tighter feedback loop means that it takes less time for the developer to

get feedback and act based on the information they receive. As a result, we believe that measuring

the time it takes to carry out a task allows us to verify if feedback loops are being tightened.

Finally, the Dockerfiles produced by the participants are also stored and analyzed to obtain

some data regarding their quality. This addresses the fourth research question that was listed.

4.3.2 Tasks

Both groups have to perform three tasks (described in Section 4.4). In these tasks, the participants

have to edit a Dockerfile according to the instructions that are provided. Each task has a different

objective that corresponds to a different Dockerfile quality metric (for example, image size) and

showcases some of Dockerlive’s repairs (some of the repairs that are showcased also use the gen-

eration features). The tasks are also designed to have enough complexity to be able to showcase

differences in the metrics described in the previous section (although they are still relatively simple

to avoid requiring too much time from the participants).

4.3 Methodology 39

4.3.3 Environment

The study is conducted remotely using AnyDesk6 (with the exception of one participant where we

were forced to use TeamViewer7 instead). The remote machine is running an operating system

based on Ubuntu8.

The environment is different for both groups. While both groups have access to Visual Studio

Code, only the experimental group has access to Dockerlive. In addition to this extension, the

official Python extension9 for Visual Studio Code is also preinstalled for both groups since some

of the tasks include Python files (although the participants are not allowed to edit them).

4.3.4 Procedure

Each participant begins by joining a Google Meet10 meeting held by the observer. After a short

introduction, the participant connects to the remote machine using AnyDesk (or TeamViewer).

They then start reading the instructions stored in a file called "instructions.pdf" (generated using

a script11) that is stored on the remote machine’s desktop. This file contains several pieces of

information:

• A link to a questionnaire the participant has to fill out throughout the study

• For the experimental group, instructions regarding Dockerlive’s usage12; the control group

is given access to a cheat sheet13 with information about Docker’s CLI (Command-line

Interface)

• Some general rules and instructions14

The general rules are listed below:

• In each task you will be asked to edit a Dockerfile according to the instructions that are

provided.

• Once you think you have accomplished what was requested for that task, notify the observer.

• You should only edit the Dockerfile.

• Feel free to consult this document at any time.

6AnyDesk, https://anydesk.com
7TeamViewer, https://www.teamviewer.com
8Ubuntu, https://ubuntu.com/
9Python - Visual Studio Marketplace, https://marketplace.visualstudio.com/items?itemName=

ms-python.python
10Google Meet, https://apps.google.com/meet/
11setup.sh, https://github.com/matosjoaops/dockerlive-study/blob/main/setup.sh
12Dockerlive instructions, https://github.com/matosjoaops/dockerlive-study/blob/main/

dockerlive-instructions/instructions.pdf
13CLI Cheat Sheet, https://docs.docker.com/get-started/docker_cheatsheet.pdf
14General instructions, https://github.com/matosjoaops/dockerlive-study/tree/main/

general-instructions

https://anydesk.com
https://www.teamviewer.com
https://ubuntu.com/
https://marketplace.visualstudio.com/items?itemName=ms-python.python
https://marketplace.visualstudio.com/items?itemName=ms-python.python
https://apps.google.com/meet/
https://github.com/matosjoaops/dockerlive-study/blob/main/setup.sh
https://github.com/matosjoaops/dockerlive-study/blob/main/dockerlive-instructions/instructions.pdf
https://github.com/matosjoaops/dockerlive-study/blob/main/dockerlive-instructions/instructions.pdf
https://docs.docker.com/get-started/docker_cheatsheet.pdf
https://github.com/matosjoaops/dockerlive-study/tree/main/general-instructions
https://github.com/matosjoaops/dockerlive-study/tree/main/general-instructions

Empirical Study 40

• You have a maximum of 20 minutes to complete each task.

• You are allowed to inspect the source code of the scripts in each task.

• You are allowed to use a web browser to look for information while performing the tasks.

However, you are not allowed to use tools and applications besides those present on the
remote machine, do not use tools present on your computer unless explicitly stated, for
example, if you need to use a web browser, use the one that is installed on this machine
instead of using one that is installed on yours.

• You are not allowed to modify the source code of the scripts in each task.

• You must use Visual Studio Code to edit the Dockerfile.

• You may not install other Visual Studio Code extensions or modify the editor’s configura-
tion.

• You may not install other programs on this computer.

• All the information you need to solve the tasks is present in this document.

• If there is something you do not understand while reading this document, notify the observer

immediately.

The general instructions tell users where the folders for each task can be found (the folders are

placed on the desktop) and to alert the observer when starting or finishing a task. Additionally, the

general instructions tell the participants to fill out the corresponding section of the questionnaire

after each task and to read the instructions for each task carefully.

While the participants are performing the tasks, the observer is keeping track of the time to

make sure they do not go over the limit (and also because time is one of the pieces of data that we

want to collect). The observer can also answer questions to clear up any doubts the participants

may have. The observer’s answers are as neutral as possible to avoid influencing the participants’

behavior. In between tasks, the observer also runs a script15 to reset the development environment

by clearing any Docker-related data, as well as Visual Studio Code’s history. Additionally, Fire-

fox is configured to never store any history. This is done to make sure a participant can not be

influenced by another participant’s performance or their own performance in a different task.

4.4 Tasks

In this experiment, users had to perform three tasks where they edited Dockerfiles according to the

instructions that they were given.

4.4.1 Task 1

In this task, participants were given the following files:

15reset.sh, https://github.com/matosjoaops/dockerlive-study/blob/main/reset.sh

https://github.com/matosjoaops/dockerlive-study/blob/main/reset.sh

4.4 Tasks 41

• Dockerfile (shown in Listing B.1) - The Dockerfile for this project and the file that must be

edited. It copies the Python file into the container and uses pip to install the dependencies

that are required. It also installs HTTPie16 and uses it to download an HTML file from

http://example.com. Finally, it runs the Python script.

• main.py - A simple script that parses the HTML file using Beautiful Soup17 and prints some

text.

• requirements.txt - A file containing the text "beautifulsoup4".

Furthermore, the task had some restrictions:

• HTTPie can not be replaced with a different utility (such as curl or wget).

• The HTML file that is downloaded can not be replaced with a different file.

• Only the Dockerfile can be edited.

The Dockerfile that is provided is already functional. The objective of this task is to make

the resulting image smaller. The task ends when the participant thinks they cannot shrink the

image anymore. There are multiple ways to reduce the size of a Docker image, such as using a

smaller base image, making sure the system’s package manager does not store a cache, and also

avoiding the installation of packages that are not strictly necessary. The methods listed are part

of the repairs that Dockerlive can offer but there are other ways of reducing an image size that a

participant could choose to implement.

The files for this task can be found on the repository, in the directory "task-1"18.

4.4.2 Task 2

In this task, participants were given the following files:

• Dockerfile (shown in Listing B.2) - The Dockerfile for this project and the file that must be

edited. It copies the JavaScript file and the text files into the container. One of the files is

copied into the current working directory while the other one is copied specifically into the

root of the filesystem.

• file.js - A JavaScript file containing code that attempts to read and print the contents of the

text files stored in the root of the filesystem. If it is unable to open a file, it will instead print

the text "Could not get the data."

• important_info.txt - A text file containing the text "The password is: OPEN_SESAME".

The file’s permissions were set to 070019.

16HTTPie, https://httpie.io/
17Beautiful Soup, https://pypi.org/project/beautifulsoup4/
18task-1, https://github.com/matosjoaops/dockerlive-study/tree/main/task-1
19Filesystem permissions - Numeric notation, https://en.wikipedia.org/wiki/File-system_

permissions#Numeric_notation

http://example.com
https://httpie.io/
https://pypi.org/project/beautifulsoup4/
https://github.com/matosjoaops/dockerlive-study/tree/main/task-1
https://en.wikipedia.org/wiki/File-system_permissions#Numeric_notation
https://en.wikipedia.org/wiki/File-system_permissions#Numeric_notation

Empirical Study 42

• important_info2.txt - A text file identical to the previous one but with a different name. The

permissions are also the same.

• package.json - A JSON (JavaScript Object Notation) file containing data about the project.

Furthermore, the task had some restrictions:

• The COPY instructions could not be removed and their arguments could not be changed.

• The content of the text files could not be changed and they could not be replaced with other

files.

• The files’ permissions cannot be changed.

• Only the Dockerfile can be edited.

The Dockerfile that is provided is already functional. However, the JavaScript file is capable

of accessing the data in the text files. The objective is to make it unable to access the data in those

files. Using the WORKDIR instruction would change the working directory making the code

unable to access one of the files. The USER instruction could also be used to change the current

user to one that does not have the permissions required to open the files. Both of these practices

are included in the repairs that Dockerlive can recommend.

The files for this task can be found on the repository, in the directory "task-2"20.

4.4.3 Task 3

In this task, participants were given the following files:

• Dockerfile (shown in Listing B.3) - The Dockerfile for this project and the file that must be

edited. It installs Node.js, copies the JavaScript file into the container and tries to run it.

• index.js - A JavaScript file that starts an Express21 server on port 3000 and prints the text

"Listening on port 3000...".

• package.json and package-lock.json - JSON files containing data about the project.

Furthermore, the task had some restrictions:

• Only the Dockerfile can be edited.

The Dockerfile that is provided is not functional. This is because the npm install command

is missing and the Express NPM package22 is not being installed. The objective of the task is to

make sure the correct set of dependencies is being installed. This means the npm install command

should be added. The participant should also remove the command that installs Node.js using the

20task-2, https://github.com/matosjoaops/dockerlive-study/tree/main/task-2
21Express, http://expressjs.com/
22express - npm, https://www.npmjs.com/package/express

https://github.com/matosjoaops/dockerlive-study/tree/main/task-2
http://expressjs.com/
https://www.npmjs.com/package/express

4.5 Data Collection 43

system’s package manager given its redundancy (the base image already includes Node.js), but

this second change is optional. Both of the changes can be implemented using repairs suggested

by Dockerlive. Some of these repairs can use information provided by Hermit.

The files for this task can be found on the repository, in the directory "task-3"23.

4.5 Data Collection

Throughout the study, data was collected from several sources. Data was collected from the tasks

the participant carried out and from the Dockerfiles they produced as a result of those tasks. Fur-

thermore, participants had to fill out two questionnaires, one during the recruitment process and

another while performing the tasks.

The data we obtained and the tools we used to obtain and process this data can be found on a

GitHub repository24. It should be noted that some of the participants’ replies to the questionnaires

were written in Portuguese. We decided not to translate the answers to avoid misinterpretations

and the introduction of any bias.

4.5.1 Tasks

During each task, a simple timer25 was used to keep track of the amount of time participants

spent on a task. Furthermore, the actions performed by participants on the remote machine

were recorded (for most participants AnyDesk’s built-in recording feature26 was used; when

TeamViewer had to be used, OBS (Open Broadcaster Software)27 was used to record the partici-

pant’s actions) and later analyzed to measure the amount of context switching that was performed.

This also allowed us to calculate the amount of time spent in each context. While watching a

recording, a timestamp was written down every time the participant switched from one context to

another. Figure 4.1 shows the timestamps written down using a note-taking application28.

These notes were manually converted into a CSV (Comma-separated values) file, containing

the same information (Figure 4.2 shows an example of one of these files). One CSV file was used

per task per participant.

After having the information in a CSV file, a script29 was used to parse the timestamps. This

script receives as a command-line argument the ID (Identification) of a participant and adds a

line to a different CSV file30. The line added contains all the information about that participant’s

performance.

23task-3, https://github.com/matosjoaops/dockerlive-study/tree/main/task-3
24dockerlive-study-data, https://github.com/matosjoaops/dockerlive-study-data
25Timer, https://flathub.org/apps/com.github.vikdevelop.timer
26Session Recording, https://support.anydesk.com/knowledge/session-recording
27OBS, https://obsproject.com/
28Obsidian, https://obsidian.md/
29parse_timestamps.py, https://github.com/matosjoaops/dockerlive-study-data/blob/main/

scripts/parse_timestamps.py
30participants.csv, https://github.com/matosjoaops/dockerlive-study-data/blob/main/anon-

data/participants.csv

https://github.com/matosjoaops/dockerlive-study/tree/main/task-3
https://github.com/matosjoaops/dockerlive-study-data
https://flathub.org/apps/com.github.vikdevelop.timer
https://support.anydesk.com/knowledge/session-recording
https://obsproject.com/
https://obsidian.md/
https://github.com/matosjoaops/dockerlive-study-data/blob/main/scripts/parse_timestamps.py
https://github.com/matosjoaops/dockerlive-study-data/blob/main/scripts/parse_timestamps.py
https://github.com/matosjoaops/dockerlive-study-data/blob/main/anon-data/participants.csv
https://github.com/matosjoaops/dockerlive-study-data/blob/main/anon-data/participants.csv

Empirical Study 44

Figure 4.1: Timestamps written in a note-taking application

Figure 4.2: Timestamps written in a CSV file

4.5 Data Collection 45

Several contexts were taken into consideration when analyzing the footage:

• Reading Instructions - includes time spent reading the tasks’ (or Dockerlive’s) instructions,

also includes time spent reading the cheat sheet

• Firefox - includes time spent in the Firefox browser

• Terminal - includes time spent in a terminal (also includes Visual Studio Code’s built-in

terminal)

• VSCode - includes time spent in Visual Studio Code, does not include time spent in the

built-in terminal

• File Manager - includes time spent in a file manager (this was used to, for example, navigate

to a task’s directory and open Visual Studio Code there)

• File Editor - includes time spent in a file editor (by default, if a user double-clicks a text

file, the operating system will open it with gedit31, some participants accidentally opened a

file this way before switching to Visual Studio Code)

• Excluded - not a real context; due to some technical issues that occurred while performing

the study with some of the participants, time had to be subtracted from the total; this context

was used to tell the script that time had to be subtracted

All the timestamps recorded can be found on the "anon-data/individual-tasks" directory32 on

the GitHub repository related to this section.

4.5.2 Dockerfiles

After performing the tasks, a participant’s Dockerfiles were copied to a separate directory using a

script33. For each Dockerfile, we checked if an image could be built successfully. Additionally, the

image was executed. However, depending on the task, the definition of a "successful" execution

was different. For Task 1, this meant that the printed text was identical to the one being printed

when using the original Dockerfile that was given to the participants. For Task 2, this meant that

the data in the text files could not be accessed. For Task 3, this meant that the text "Listening on

port 3000..." was printed.

Moreover, for Task 1, we measured the size of the image. For Tasks 2 and 3, simple notes

were taken regarding the changes performed to the files (for example, in Task 3, one of the notes

could say "Added npm install"). We chose this approach because it allowed us to focus on specific

aspects of the Dockerfile. Other tools (for example, a linter) would have provided too much

information.
31gedit, https://wiki.gnome.org/Apps/Gedit
32anon-data/individual-tasks, https://github.com/matosjoaops/dockerlive-study-data/tree/

main/anon-data/individual-tasks
33grab_dockerfiles.sh, https://github.com/matosjoaops/dockerlive-study/blob/main/grab_

dockerfiles.sh

https://wiki.gnome.org/Apps/Gedit
https://github.com/matosjoaops/dockerlive-study-data/tree/main/anon-data/individual-tasks
https://github.com/matosjoaops/dockerlive-study-data/tree/main/anon-data/individual-tasks
https://github.com/matosjoaops/dockerlive-study/blob/main/grab_dockerfiles.sh
https://github.com/matosjoaops/dockerlive-study/blob/main/grab_dockerfiles.sh

Empirical Study 46

All this data was manually added to a file34 that can be found on the repository related to this

section. The Dockerfiles can be found in the "anon-data/Dockerfiles" directory35.

4.5.3 Recruitment Questionnaire

During recruitment, we asked people who might be interested in participating in the study to fill

out a questionnaire (shown in Section A.1).

This questionnaire begins by providing a brief explanation of the study’s purpose and the

conditions in which it will take place. Afterward, it asks the user if they are willing to participate

in the study.

If the user answers positively, they are then asked to fill out another section where they have

to provide their name, email address, and current job title.

The final section of this questionnaire aims to measure the amount of experience a user has

in the field of software development and, more specifically, how much experience they have de-

veloping Dockerfiles. This section also asks the user if they have ever used a Visual Studio Code

extension to edit Dockerfiles. This was done to make sure none of the participants had experience

with a previous version of Dockerlive.

4.5.4 Task Questionnaire

Besides the recruitment questionnaire, those who actually participated in the study had to fill out

an additional questionnaire. Both groups had to fill out the questionnaire but the versions used

for each one were slightly different (the control group’s version is shown in Section A.2 while the

experimental group’s version is shown in Section A.3).

The first section simply asks for the participant’s email address and name.

The second section aims to figure out how much experience the participant has with the tools

and technologies they will use during the study. This is done to verify if their performance is

affected by their lack of experience with the tools they had to use.

While the first two sections could be filled out before the participant had started to carry out the

tasks, the next three sections asked questions about each task and, therefore, could only be filled

out after completing the corresponding task. These sections asked the participant if they were

able to understand the instructions and if they were able to finish the task without any problems.

For the experimental group, there was also a question regarding Dockerlive’s helpfulness while

solving the task.

The following sections were filled out after the participant completed the tasks.

The sixth section simply asked the user how comfortable they were with the remote environ-

ment.
34dockerfiles.csv, https://github.com/matosjoaops/dockerlive-study-data/blob/main/anon-

data/dockerfiles.csv
35anon-data/Dockerfiles, https://github.com/matosjoaops/dockerlive-study-data/tree/main/

anon-data/Dockerfiles

https://github.com/matosjoaops/dockerlive-study-data/blob/main/anon-data/dockerfiles.csv
https://github.com/matosjoaops/dockerlive-study-data/blob/main/anon-data/dockerfiles.csv
https://github.com/matosjoaops/dockerlive-study-data/tree/main/anon-data/Dockerfiles
https://github.com/matosjoaops/dockerlive-study-data/tree/main/anon-data/Dockerfiles

4.6 Recruitment, Demographics and Group Assignment 47

The seventh section asked the user if they felt the tasks took a long time to carry out and if

they felt they could have done a better job if they had access to other tools (they were also asked

to list any tools that could have helped them).

The experimental version of the questionnaire had an additional section asking for feedback

regarding Dockerlive.

The questions in these questionnaires used a Likert scale36 [30, 25] with five options ranging

from "Strongly Disagree" to "Strongly Agree".

4.6 Recruitment, Demographics and Group Assignment

Using our social networks, we were able to gather seven participants from the industry. Originally,

we wanted to have more participants, but unfortunately, we were unable to find more people who

were willing to participate. Four of the participants were in the control group and the other three

were in the experimental group. Initially, the participants were randomly assigned to a group using

a script37 but since some of the participants showed up very late in the recruitment process, they

were manually assigned to a group in an effort to balance the number of participants in each group.

The study was performed during the months of May and June, in 2023.

4.7 Data Analysis

As previously mentioned, we conducted a study with seven participants. Three were in the experi-

mental group, while the other four were in the control group. Data was gathered from both groups

and compared. The result of this comparison is presented in this section. Mann-Whitney U tests38

were used to analyze the differences between both groups. Although we did not expect these

test results to be ideal given the small sample size, we found that they provided some interesting

insights.

4.7.1 Anonymizing Data

To be able to publish the data that was collected, we started by anonymizing the data. We replaced

any information that could be directly tied to the participants (such as names and email addresses)

with numerical IDs. This was done using a script39 to assign IDs to the participant and another

one40 was used to convert the data into an anonymized state.

36Likert scale, https://en.wikipedia.org/wiki/Likert_scale
37generate_groups.py, https://github.com/matosjoaops/dockerlive-study-data/blob/main/

scripts/generate_groups.py
38Mann-Whitney U test, https://en.wikipedia.org/wiki/Mann-Whitney_U_test
39assign_ids.py, https://github.com/matosjoaops/dockerlive-study-data/blob/main/

scripts/assign_ids.py
40anonymize_data.py, https://github.com/matosjoaops/dockerlive-study-data/blob/main/

scripts/anonymize_data.py

https://en.wikipedia.org/wiki/Likert_scale
https://github.com/matosjoaops/dockerlive-study-data/blob/main/scripts/generate_groups.py
https://github.com/matosjoaops/dockerlive-study-data/blob/main/scripts/generate_groups.py
https://en.wikipedia.org/wiki/Mann-Whitney_U_test
https://github.com/matosjoaops/dockerlive-study-data/blob/main/scripts/assign_ids.py
https://github.com/matosjoaops/dockerlive-study-data/blob/main/scripts/assign_ids.py
https://github.com/matosjoaops/dockerlive-study-data/blob/main/scripts/anonymize_data.py
https://github.com/matosjoaops/dockerlive-study-data/blob/main/scripts/anonymize_data.py

Empirical Study 48

4.7.2 Recruitment Questionnaire

This questionnaire had the following questions:

• Q1: What is your current role?

• Q2: Approximately how many years of professional experience do you have in software

development and related tasks?

• Q3: Approximately how many years of professional experience do you have developing

Dockerfiles?

• Q4: Approximately how many Dockerfiles have you written from scratch into a working

first version?

• Q5: Approximately how many Dockerfiles have you edited?

• Q6: Have you ever used a Visual Studio Code extension to edit Dockerfiles?

The purpose of this questionnaire was to measure the amount of experience the participants

had with Docker. The first question simply aims to determine a participant’s role to see if their

functions are related to Dockerfile development. With the second and third questions, we aim to

measure the experience the participants have in the field, and, more specifically, with Dockerfiles.

The fourth and fifth questions aim to, more accurately, evaluate each participant’s experience

by first ascertaining how many Dockerfiles they wrote (does not count files that the person only

edited) and then, how many files the person edited (but did not create). The purpose of the last

question was to figure out if any of the participants had ever used Dockerlive before, as this could

have an impact on their performance.

Looking at the answers, for Q1 (shown in Figure 4.3), we can see that both groups had people

whose roles were "Operations" and "Developer". If we look at roles that were only present in one

of the groups, we see that the control group had two architects, while the experimental group had

a person with the role "Head of Innovation". It is difficult to draw conclusions from these roles,

given that some of them may have overlapping functions despite having different names, and job

titles are usually not comparable between companies. Overall, we do not believe these differences

had a big impact on our results.

For Q2, when looking at the answers (shown in Figure 4.4) that were given, we see that

both groups had participants with a medium amount of experience (between 6 and 15 years of

experience). However, we also see that the control group had two participants with at most 5

years of experience, while the experimental group had a participant with more than 20 years of

experience. This suggests that the experimental group’s participants had more experience, which

could have affected their performance in the tasks.

Moving on to Q3 (answers shown in Figure 4.5), we see that the experimental group is un-

balanced. Two participants have 2 or fewer years of experience with Dockerfiles, while the other

one has 5 or more. In the control group, we see two participants with 3 years of experience, one

4.7 Data Analysis 49

Figure 4.3: Distribution of participants’ roles across groups

Figure 4.4: Distribution of years of experience across groups

Empirical Study 50

Figure 4.5: Distribution of years of experience with Dockerfiles across groups

with 2 years of experience, and the last one has 4 years of experience. Overall, we can not say

that one group is clearly more experienced than the other, given the lack of balance seen in the

experimental group.

When looking at Q4 (whose answers can be seen in Figure 4.6), we see that the experimental

group is less experienced than the control group, with two of the participants from the experimental

group having only created up to 3 Dockerfiles. On the other hand, every participant in the control

group has created at least 4 Dockerfiles.

With Q5 (whose answers can be seen in Figure 4.7), the situation is similar to the one we

saw in the previous question. Overall, the experimental group seems to be less experienced with

Docker than the control group.

Finally, with Q6, we determined that most participants had used a Visual Studio Code exten-

sion to edit Dockerfiles in the past. However, none of them had used Dockerlive (although one of

them had heard of it previously). This means their performances could not have been influenced

by previous experiences with Dockerlive.

4.7.3 Task Data

Starting with the Mann-Whitney U tests, the results do not allow us to make many claims with

high levels of confidence.

Due to the small number of participants, our ρ values are quite high, especially when looking

at the total duration of the tasks (shown by Table 4.1). When looking at the duration of Task 3,

the mean and the standard deviation are very similar, which is reflected in the ρ value of 0.86.

4.7 Data Analysis 51

Figure 4.6: Distribution of Dockerfiles written by participants across groups

Figure 4.7: Distribution of Dockerfiles edited by participants across groups

Empirical Study 52

We believe the cause may be the task’s low complexity, which made it easy to complete for both

groups, irrespectively. Tasks 1 and 2 show much bigger differences, despite still having relatively

high ρ values.

Task x (Control) σ (Control) x (Experimental) σ (Experimental) U ρ

1 16:02 07:46 10:53 03:52 9.0 0.4
2 11:03 06:03 06:13 01:51 11.0 0.11
3 05:47 03:06 05:29 02:56 7.0 0.86

Table 4.1: Mean, Standard Deviation and two-sided Mann-Whitney U test results for total task
duration (time data is presented in minutes and seconds rounded to the nearest integer) in both
groups

When it comes to context switching, the test results can be seen in Table 4.2. There are sig-

nificant differences between both groups across the three tasks. For Task 2, we can even say, with

a confidence level of 90%, that the numbers we obtained belong to different distributions. Even

for Task 3, where the task duration was similar in both groups, the number of context switches in

the experimental group was much lower. This suggests the tool we created reduces the amount of

context switching that is performed.

Task x (Control) σ (Control) x (Experimental) σ (Experimental) U ρ

1 44.0 25.1 9.0 6.0 11.0 0.11
2 26.0 10.98 7.33 3.21 12.0 0.06
3 18.5 10.25 4.0 2.0 11.0 0.11

Table 4.2: Mean, Standard Deviation and two-sided Mann-Whitney U test results for context
switching (number of context switches) in both groups

It should be noted that the numbers presented in Tables 4.1 and 4.2 were rounded to the second

decimal place (excluding time-related data).

Despite the underwhelming results of the Mann-Whitney U tests, if we look at the distribution

of the total time spent on each task (shown in Figure 4.8), we see that for Tasks 1 and 2, the control

group tended to need more time to carry out the tasks than the experimental group (there was a

participant in the control group that finished very quickly but it should be noted that the resulting

Dockerfile did not reduce the image size). The total time spent on Task 3 was similar in both

groups. As a side note, the box plot shows someone going over the time limit on Task 1 because

one of the participants in the control group was accidentally given extra time.

4.7 Data Analysis 53

Figure 4.8: Time spent per task

When looking at the distribution of the number of context switches performed per task (shown

in Figure 4.9) in both groups, we also see that the experimental group performed less context

switching than the control group.

Figure 4.9: Number of context switches per task

Another data point we analyzed was the amount of time spent in each context per task. This

Empirical Study 54

analysis was performed for the most relevant contexts ("VSCode", "Terminal", "Firefox", and

"Reading Instructions", other contexts were not analyzed due to having very low values). Figure

4.10 shows the box plots corresponding to the amount of time spent in the contexts "VSCode",

"Terminal", "Firefox" and "Reading Instructions".

Starting with Visual Studio Code, we can see that, in general, the experimental group spent

more time in the editor than the control group. If we take into account the lower number of context

switches performed by the control group, these two data points suggest the additional information

Dockerlive provided to the experimental group reduced their need to use other apps while carrying

out the tasks.

Looking at the data from the "Terminal" context, we see the inverse situation. The control

group spent more time in this context than the experimental group. Again, this can be explained

by the additional information provided by Dockerlive. This information made it easier for the

experimental group to obtain feedback about the container being developed without having to

manually build an image and execute it.

Moving on to "Firefox", the differences are even more extreme. The experimental group

did not spend a single second using Firefox. This suggests the new repair features helped the

participants from the experimental group carry out the tasks. On the other hand, the control group

had to use Firefox to figure out ways to change the file that would allow them to accomplish the

tasks’ objectives.

Regarding the time spent reading instructions, it seems that both groups took a similar amount

of time. Having access to Dockerlive should not make the instructions easier or harder to under-

stand and the data seems to support that.

4.7.4 Dockerfile Data

In addition to the data gathered from the participants’ performance itself, we also gathered data

from the Dockerfiles they produced. As a reminder, we verified if the Dockerfiles could be used to

build images and if those images could be executed "successfully". The meaning of "successful"

depends on the task (this is explained in Section 4.5.2).

For Task 1, all the participants from both groups were able to produce a Dockerfile that could

be used to successfully build an image that could then be executed to obtain the expected output.

For this task, we also measured the size of the image (as the image size was the focus of Task 1).

The distribution of the image sizes can be seen in Figure 4.11. As the image shows, the control

group’s amplitude is quite high, with one of the images being as small as 56 MB, while others were

as large as 962 MB (the size of the image that is used in the Dockerfile’s original state). For the

experimental group, two of the images had a size of 178 MB, while the other one had a size of 177

MB (there was a small optimization that was performed here, making this image slightly smaller).

The image recommended by Dockerlive for this task’s project has a size of 178 MB, meaning

the participants from the experimental group just used Dockerlive’s recommendation. Overall, it

is difficult to say how useful Dockerlive was at reducing the size of the image, given that some

of the participants in the control group had smaller images than what Dockerlive was capable of

4.7 Data Analysis 55

Figure 4.10: Time (in seconds) spent in each context for both groups

Empirical Study 56

Figure 4.11: Distribution of image size for Task 1 in both groups

recommending. It is possible that the experimental group’s images would have been smaller if

Dockerlive’s recommendations were different (for example, if Dockerlive recommended images

based on Alpine Linux41).

For Task 2, all the participants produced a Dockerfile that could be used to build an image.

However, one of the Dockerfiles from the control group could not be executed "successfully"

since one of the files could still be accessed by the script. This was due to this Dockerfile not

changing users. Every other Dockerfile could be executed successfully. The participants from

the experimental group just followed Dockerlive’s suggestions (changing users and changing the

working directory). The participants from the control group employed similar techniques but one

of them moved the files without changing the COPY instructions, which despite being unintended,

does not violate the restrictions that were provided. With this in mind, it seems that Dockerlive

was not as helpful as we would have liked in this task.

For Task 3, all the participants produced Dockerfiles that could be built and executed "success-

fully". This means everyone added the npm install command. Additionally, all the participants

from the experimental group also removed the redundant Node.js installation. In the control group,

half of the participants removed this installation, while the other half did not. One of the partici-

pants that removed it also used a multi-stage build. One of the participants that did not remove the

installation was aware that it was redundant. This could mean the instructions for the task and the

feedback provided by the observer should have been clearer. Overall, it seems this task was too

simple for Dockerlive’s suggestions to have a substantial impact on the quality of the Dockerfiles.

41Alpine Linux, https://www.alpinelinux.org/

https://www.alpinelinux.org/

4.7 Data Analysis 57

4.7.5 Task Questionnaire

This questionnaire had two versions: one for the control group (which did not have access to

Dockerlive) and another for the experimental group (which had access to Dockerlive). The differ-

ences between the two versions of the questionnaire will be pointed out throughout this portion of

the document. Most of the questions used a Likert scale. The questions that did not use a Likert

scale will be listed in the part of the document that precedes their analysis.

The first section of the questionnaire (Section A) had the following questions (this section was

identical for both groups):

• A1: I am confident in my English skills.

• A2: I feel comfortable programming in Python.

• A3: I feel comfortable programming in JavaScript and Node.js.

• A4: I feel comfortable working with Firefox.

• A5: I feel comfortable working with Visual Studio Code.

• A6: I feel comfortable working with Linux-based desktop-focused operating systems.

• A7: I feel comfortable using Visual Studio Code to edit Dockerfiles.

• A8: I feel comfortable interacting with Docker through a terminal.

Starting with the data from Section A (Figure 4.12 shows the results for the control and ex-

perimental groups), we see that both groups are comfortable with their English. However, some

participants were not comfortable with Javascript and Python (in either group). Regarding A4 and

A5, we see that the control group is more comfortable with Firefox and Visual Studio Code than

the experimental group. For the last three questions of this section, we again see the control group

showing higher levels of comfort with Linux operating systems and Docker.

The task-related sections (B, C and D) had the following questions (questions B3, C3 and D3
were only present on the experimental version of the questionnaire):

• B1: I was able to understand what to do in Task 1.

• B2: I was able to finish Task 1 without any problems.

• B3: Dockerlive helped me do Task 1.

• C1: I was able to understand what to do in Task 2.

• C2: I was able to finish Task 2 without any problems.

• C3: Dockerlive helped me do Task 2.

• D1: I was able to understand what to do in Task 3.

• D2: I was able to finish Task 3 without any problems.

Empirical Study 58

Figure 4.12: Distribution of the answers to section A in both groups

• D3: Dockerlive helped me do Task 3.

For Task 1, both groups understood what they needed to do. However, the control group

struggled to finish the task a bit more than the experimental group did (as the answers to B2
show). Regarding Task 2, we see that it was more difficult for the control group to understand and

finish this task than it was for the experimental group. This suggests that Dockerlive helped the

experimental group determine what they needed to do. In Task 3, we see that the experimental

group actually struggled more than the control group. A possible explanation would be that the

task was so simple that Dockerlive’s numerous suggestions confused the participants from the

experimental group. Finally, when looking at questions B3, C3, and D3, we can say that, overall,

the experimental group found Dockerlive to be helpful when carrying out these tasks. Figure 4.13

shows the results for the control and experimental groups.

The final sections (E, F and G) had the following questions (section G was only present on

the experimental version of the questionnaire; questions F3, G5, G6 and G7 did not use a Likert

scale):

• E1: I felt comfortable with the remote environment.

• F1: I felt like the tasks took a long time to carry out.

• F2: I felt like the tasks would have been easier to carry out if I had access to other tools.

• F3: Please write the name of any tool(s) that you believe would have helped you carry out

the tasks.

• G1: Dockerlive made the tasks easy to carry out.

• G2: Dockerlive was easy to use.

• G3: Dockerlive’s suggestions were useful in carrying out the tasks.

• G4: I would like to use Dockerlive in the future.

4.7 Data Analysis 59

Figure 4.13: Distribution of the answers to sections B, C and D in both groups

• G5: Which of Dockerlive’s features helped you the most? And why?

• G6: What problems did you run into while using Dockerlive to do the tasks?

• G7: If you could, how would you improve Dockerlive?

When looking at section E, we see that neither group felt uncomfortable with the remote

environment. When looking at section F, the experimental group did not feel that tasks took a

long time to complete, and they also did not feel they needed other tools to help them out. In

the control group, while the overall sentiment is still of disagreement some participants felt more

inclined to agree with this section’s statements. This suggests that Dockerlive was helpful to the

experimental group. This viewpoint is reinforced by the experimental group’s answers to section

G, with everyone agreeing that Dockerlive was helpful, easy to use and that they would like to use

it in the future. Figure 4.14 shows the results for the control and experimental groups.

Finally, we are looking at the answers to the questions that did not use a Likert scale. Regarding

F3, the control group said they would have liked to use the official Docker extension42 for Visual

Studio Code or IntelliJ IDEA43 (which, apparently has some features that help developers edit

Dockerfiles). The experimental group did not list any tools but one participant said that it felt

like Dockerlive was only used with "happy paths"44 while carrying out the tasks. Moving on to

G5, users from the experimental group considered the detection of dependencies and the "user

related operations" to be useful. In G6, users reported that the user experience related to hovering

over warnings could be improved and that the problems tab in the editor’s bottom panel should be

highlighted. Lastly, in G7, users suggested making it clearer that a file’s processing takes place

right after the file is opened. Furthermore, a user proposed adding more context information for

each suggestion, relying less on quick fixes, and providing templates with scaffolding options.

42Docker, https://marketplace.visualstudio.com/items?itemName=ms-azuretools.vscode-
docker

43IntelliJ IDEA, https://www.jetbrains.com/idea/
44Happy path, https://en.wikipedia.org/wiki/Happy_path

https://marketplace.visualstudio.com/items?itemName=ms-azuretools.vscode-docker
https://marketplace.visualstudio.com/items?itemName=ms-azuretools.vscode-docker
https://www.jetbrains.com/idea/
https://en.wikipedia.org/wiki/Happy_path

Empirical Study 60

Figure 4.14: Distribution of the answers to sections E, F and G in both groups

4.8 Threats to Validity

Now that we have presented all the data we have, we will now analyze elements that can threaten

the validity of this study. We have identified the following problems.

4.8.1 Internal Validity

This section addresses threats to internal validity.

Usage of one proxy metric to represent two dimensions. To determine if our tool was

capable of improving the developer experience, we tried to measure the dimensions listed by Noda

et al. [40] using proxy metrics. However, we used one proxy metric to represent two of the three

dimensions. A possible solution would have been to use NASA’s task load index45 to measure the

cognitive load. Other solutions could require a collaboration with researchers from the medical

field to analyze data points like a person’s heartbeat to be able to more accurately measure the

cognitive load. Regardless, we still believe context switching is an appropriate metric to address

the flow state dimension.

Unbalanced groups. When looking at the answers to the recruitment questionnaire (presented

in Section 4.7.2), we saw that, overall, the experimental group had less experience with Docker

than the control group. On the other hand, the experimental group had more general experience in

the field of software development. Given the small sample size, we should have manually assigned

the participants to the groups, instead of using random assignment. Having more participants could

also lead to more balanced groups when using random assignment. These two elements should be

taken into account if similar studies are conducted in the future.

Poor task instructions. Some of the data presented in Section 4.7.5 could suggest that the

tasks’ instructions were not as clear as they could have been. Perhaps asking an impartial third

party to read the instructions beforehand could have helped mitigate this. However, since both

45Task Load Index, https://humansystems.arc.nasa.gov/groups/TLX/

https://humansystems.arc.nasa.gov/groups/TLX/

4.9 Findings 61

groups were given the same instructions, we do not believe this had a major impact on the results

that have been presented.

Task complexity. One could argue the tasks the participants had to perform were very simple.

This was done on purpose, given that more complex tasks would have required us to give the par-

ticipants more time, which, in turn, would have made the study harder to schedule and would have

reduced the number of participants even further. Additionally, if the tasks were more complex, it

would have been harder to measure differences between groups. For example, if the participants

were given a task where Dockerlive could only help the participants accomplish 5% of the objec-

tives, the differences between the groups would have been negligible regardless of Dockerlive’s

helpfulness. As future work, we believe that a study with more complex tasks could provide a

better representation of real-world scenarios (this is discussed in more detail in Section 4.11).

4.8.2 External Validity

This section addresses threats to external validity.

Small amount of data. It is undeniable that the number of participants is very small and

that we can not make any claims with high levels of confidence. However, even with such a

limited amount of data, we can already identify some data points that suggest Dockerlive has a

positive impact on the Dockerlive development experience. We believe these data points would

still be present if the study had been conducted with a larger group of participants, but we would

need to carry out empirical studies with more participants before we can confidently assert the

generalizability of our results.

Technical problems. Some technical problems occurred while performing the study with

some of the participants, which could have affected the results that we presented. However, be-

cause the data was extracted from recordings we were able to exclude the time spent dealing with

the technical problems (the scripts we used even take this into account, as mentioned in Section

4.5.1). Therefore, we do not believe the problems had a big impact on the results.

4.9 Findings

With all the data presented and any possible concerns addressed, we can now answer the questions

listed in Section 4.2.

Starting with RQ1, we can say that Dockerlive can decrease the cognitive load associated

with Dockerfile development tasks as the results from Section 4.7.3 show the participants from the

experimental group performed less context switching than those in the control group. This is also

reinforced by the shorter periods of time that the experimental group spent in contexts that were

not Visual Studio Code. Looking at the results of the Mann-Whitney U tests, we saw lower ρ

values when comparing context switches between both groups, although they are still a bit higher

than we would have liked. Furthermore, the answers to the questionnaire filled out while the tasks

were carried out (presented in Section 4.7.5) show the participants from the experimental group

struggled less with the tasks than those in the control group.

Empirical Study 62

Regarding RQ2, we can also say that Dockerlive promotes a flow state. As our answer to RQ1
pointed out, Dockerlive reduces the amount of context switching a user needs to perform.

RQ3 can also be answered positively. The data presented in Section 4.7.3 shows the partici-

pants from the experimental group took less time to complete Tasks 1 and 2, although we can not

make any claims with high levels of confidence given the results of the Mann-Whitney U tests.

However, with RQ4, we can not say that Dockerlive improved the quality of the Dockerfiles.

When looking at the results presented in Section 4.7.4, we see that, in Task 1, some participants

from the control group were able to create Dockerfiles with smaller image sizes than those seen in

the experimental group. In Tasks 2 and 3, we can not say that the experimental group’s Dockerfiles

were clearly better than the control group’s. Actually, in some cases, the reverse was true, with a

participant from the control group implementing a multi-stage build in Task 3.

To conclude, we can answer RQ1, RQ2 and RQ3 positively. The data shows that Dockerlive

can reduce, not only, the amount of time spent, but also, the number of context switches performed

while developing Dockerfiles. Since we used these metrics as proxies to measure the developer

experience (as mentioned in Section 4.3.1), we can say that we have achieved our primary goal of

improving the developer experience of Dockerfile developers. However, we can not say the same

thing for our secondary goal of improving the quality of Dockerfiles, as the data did not show

higher-quality Dockerfiles being produced by the participants who had access to Dockerlive.

4.10 General Discussion

The results we presented show that the features we chose to implement as a way of achieving a

higher level of liveness are useful and can improve the developer experience of developers working

with Dockerfiles. This corroborates Reis’ findings. They were also able to improve the developer

experience through the use of liveness, although the version of Dockerlive that was used at that

time offered a lower level of liveness than the one we used [50].

As we have been mentioning throughout this chapter, all the resources used to perform the

study and analyze the data that was gathered can be found, respectively, in the dockerlive-study46

and dockerlive-study-data47 repositories. This combination of repositories can be considered to

be this study’s replication package.

4.11 Future Work

Now that the study has been presented, we will list some elements that should be taken into

consideration if someone wishes to conduct a similar study in the future.

• Larger scale - As previously mentioned, this study did not have many participants. A future

version of this study should be conducted with more participants to be able to obtain data

46dockerlive-study, https://github.com/matosjoaops/dockerlive-study
47dockerlive-study-data, https://github.com/matosjoaops/dockerlive-study-data

https://github.com/matosjoaops/dockerlive-study
https://github.com/matosjoaops/dockerlive-study-data

4.11 Future Work 63

that is a better representation of reality. Furthermore, we believe the tasks’ complexity could

also be increased to more closely resemble the kind of tasks that Dockerfile developers deal

with in the real world. Finally, with more participants, it should also be possible to randomly

assign them to groups, without making the groups unbalanced. Overall, we believe that

increasing the scale of the study could provide a better representation of reality, along with

more balanced groups. Although, this would require a substantial time investment.

• Case study - A different approach would be to conduct a case study48 instead of an ex-

periment. The participants would be given access to the tool and they would use it while

performing real-world tasks in an uncontrolled environment for an extended period of time.

Because the tool is being used in the real world instead of a controlled environment, the

data that would result from such a study would provide a very accurate representation of the

tool’s performance. However, this would also require a substantial time investment and the

tool would also have to be very robust.

48Case Study, https://acmsigsoft.github.io/EmpiricalStandards/docs/?standard=
CaseStudy

https://acmsigsoft.github.io/EmpiricalStandards/docs/?standard=CaseStudy
https://acmsigsoft.github.io/EmpiricalStandards/docs/?standard=CaseStudy

Chapter 5

Conclusion

Now that everything has been presented, this chapter summarizes the contents of this dissertation

and concludes it.

5.1 Overview

Over the past few years, we have seen developers build highly complex systems. As the complexity

of those systems has increased, it has become more difficult to maintain them. In response to

this, developers have started to adopt the microservices architecture, which allows them to build

larger systems using small components. One of the technologies that enable this architecture is

Docker [23].

When using Docker, developers create a Dockerfile, a configuration file that is used to create

a container. Creating a Dockerfile can be a difficult task, and the developers creating them face a

few challenges (as described by Chapter 2). Overall, the Dockerfile development experience can

be improved.

This brings us to our hypothesis (mentioned in Section 1.2). We believe that a development

environment with a high level of liveness can address the problems that developers face when

writing Dockerfiles. We also believe that the level of liveness can be increased by offering features

like automatic modification and generation of Dockerfiles.

With this in mind, we created a tool that offers these features. The automatic generation

feature allows a user to generate a Dockerfile using information gathered from the project the user

is working on. The automatic modification feature scans the file a user is currently editing and, if

problems are found, the tool suggests modifications to the user. The tool is called Dockerlive V2,

and its design has been described in Chapter 3.

To verify Dockerlive V2’s helpfulness and ability to improve the development experience, we

conducted an experiment with two groups of professionals (a control group and an experimental

group). These groups were asked to complete a set of tasks where they had to edit Dockerfiles. One

of the groups had access to Dockerlive V2, while the other did not. Data was gathered from both

64

5.2 Contributions 65

groups and then compared. The results were analyzed in Chapter 4 and suggest that Dockerlive

V2 may be capable of improving the Dockerfile development experience.

This shows that the higher level of liveness that was achieved with the implementation of

the automatic generation and modification features can have a positive impact on the Dockerfile

developer experience, validating our hypothesis.

In the future, we believe Dockerlive could be improved by making the new features more

intuitive and using a different method to connect with Hermit. Furthermore, we believe a study

with more participants and more complex tasks would provide a better representation of the real

world. Sections 3.7 and 4.11 describe future work in more detail.

5.2 Contributions

As part of the work required to validate our hypothesis, we made a few contributions that we

believe can be useful to the scientific community. These contributions are described in this section.

• Literature review of works covering Dockerfile development challenges - We performed

a literature review involving several works to learn more about the challenges affecting

Dockerfile developers. These works were split into different categories depending on the

challenge they covered and compared with others from the same category. Many works also

contained approaches designed to deal with the challenge they covered. These approaches

were also compared. Overall, we gathered a substantial amount of data regarding the issues

surrounding Dockerfile development. This analysis is covered in more detail in Chapter 2.

• Implementation of an approach that improves the Dockerfile developer experience -

We designed an approach that would provide additional features to developers working with

Dockerfiles. One of the features would require a tool to continuously scan a file for prob-

lems that could be automatically repaired and suggest the corresponding modifications to a

user. The other feature would give users the option to generate a Dockerfile by analyzing

the project the user is currently working on. We have created an implementation of this

approach and called it Dockerlive V2. This is covered in more detail in Chapter 3.

• Empirical study with industry participants - To evaluate the impact of the created tool

on the Dockerfile development experience, we conducted a study where we analyzed the

performance of users (recruited from the industry) who were asked to perform three tasks

that required them to edit Dockerfiles. The study had two groups: an experimental group and

a control group. Data was gathered from both groups and then compared. The results have

shown that the created tool can improve the developer experience of developers working

with Dockerfiles by reducing the amount of time required to complete tasks, as well as the

amount of context switching that users need to perform. Although the study did not have

many participants, we believe that all the information we provided (the methodology we

followed along with a replication package) allows someone to easily replicate the study

with more participants. The study is covered in more detail in Chapter 4.

References

[1] Ioannis Agadakos, Nicholas Demarinis, Di Jin, Kent Williams-King, Jearson Alfajardo, Ben-
jamin Shteinfeld, David Williams-King, Vasileios P. Kemerlis, and Georgios Portokalidis.
Large-scale Debloating of Binary Shared Libraries. Digital Threats: Research and Practice,
1(4):19:1–19:28, 2020.

[2] Ademar Aguiar, André Restivo, Filipe Figueiredo Correia, Hugo Sereno Ferreira, and
João Pedro Dias. Live software development: Tightening the feedback loops. In Companion
Proceedings of the 3rd International Conference on the Art, Science, and Engineering of
Programming, Programming ’19, pages 1–6. Association for Computing Machinery, 2019.

[3] Fahmi Abdulqadir Ahmed and Dyako Fatih. Security Analysis of Code Bloat in Machine
Learning Systems. Master’s thesis, University of Gothenburg, 2022.

[4] Diogo Amaral, Gil Domingues, João Pedro Dias, Hugo Sereno Ferreira, Ademar Aguiar,
Rui Nóbrega, and Filipe Figueiredo Correia. Live software development environment using
virtual reality: A prototype and experiment. In Evaluation of Novel Approaches to Software
Engineering: 14th International Conference, ENASE 2019, Heraklion, Crete, Greece, May
4–5, 2019, Revised Selected Papers 14, pages 83–107. Springer, 2020.

[5] Hideaki Azuma, Shinsuke Matsumoto, Yasutaka Kamei, and Shinji Kusumoto. An empir-
ical study on self-admitted technical debt in Dockerfiles. Empirical Software Engineering,
27(2):49, 2022.

[6] Benjamin Benni, Sébastien Mosser, Philippe Collet, and Michel Riveill. Supporting micro-
services deployment in a safer way: A static analysis and automated rewriting approach. In
Proceedings of the 33rd Annual ACM Symposium on Applied Computing, SAC ’18, pages
1706–1715. Association for Computing Machinery, 2018.

[7] Diogo Campos. Tests as specifications towards better code completion. Master’s thesis,
Universidade do Porto (Portugal), 2019.

[8] Marcelo Cataldo, Audris Mockus, Jeffrey A. Roberts, and James D. Herbsleb. Software
Dependencies, Work Dependencies, and Their Impact on Failures. IEEE Transactions on
Software Engineering, 35(6):864–878, 2009.

[9] Francesco Caturano, Nicola d’ Ambrosio, Gaetano Perrone, Luigi Previdente, and Si-
mon Pietro Romano. ExploitWP2Docker: A Platform for Automating the Generation of
Vulnerable WordPress Environments for Cyber Ranges. In 2022 International Conference
on Electrical, Computer and Energy Technologies (ICECET), pages 1–7, 2022.

[10] Admin’s Choice. Containers Vs VMs : Top 5 Differences you must know. https:
//www.adminschoice.com/containers-vs-vms-top-5-differences-you-
must-know, 2021. Accessed: 2023-02-02.

66

https://www.adminschoice.com/containers-vs-vms-top-5-differences-you-must-know
https://www.adminschoice.com/containers-vs-vms-top-5-differences-you-must-know
https://www.adminschoice.com/containers-vs-vms-top-5-differences-you-must-know

REFERENCES 67

[11] Thien-Phuc Doan and Souhwan Jung. DAVS: Dockerfile Analysis for Container Image Vul-
nerability Scanning. Computers, Materials & Continua, 72(1):1699–1711, 2022.

[12] José Pedro da Silva e Sousa et al. Live acceptance testing using behavior driven development.
Master’s thesis, Universidade do Porto (Portugal), 2020.

[13] Sara Fernandes. A live environment for inspection and refactoring of software systems. In
Proceedings of the 29th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, pages 1655–1659, 2021.

[14] Martin Fowler. CodeSmell. https://martinfowler.com/bliki/CodeSmell.
html. Accessed: 2023-01-28.

[15] Tyler Harter, Brandon Salmon, Rose Liu, Andrea C Arpaci-Dusseau, and Remzi H Arpaci-
Dusseau. Slacker: Fast Distribution with Lazy Docker Containers. In Proceedings of the
14th USENIX Conference on File and Storage Technologies (FAST ’16), 2016.

[16] Foyzul Hassan, Rodney Rodriguez, and Xiaoyin Wang. RUDSEA: Recommending updates
of Dockerfiles via software environment analysis. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering, ASE 2018, pages 796–801.
Association for Computing Machinery, 2018.

[17] Jordan Henkel, Christian Bird, Shuvendu K. Lahiri, and Thomas Reps. Learning from,
Understanding, and Supporting DevOps Artifacts for Docker. In 2020 IEEE/ACM 42nd
International Conference on Software Engineering (ICSE), pages 38–49, 2020.

[18] Jordan Henkel, Denini Silva, Leopoldo Teixeira, Marcelo d’ Amorim, and Thomas Reps.
Shipwright: A Human-in-the-Loop System for Dockerfile Repair. In 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE), pages 1148–1160, 2021.

[19] Eric Horton and Chris Parnin. DockerizeMe: Automatic Inference of Environment Depen-
dencies for Python Code Snippets. In 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE), pages 328–338, 2019.

[20] Zhuo Huang, Song Wu, Song Jiang, and Hai Jin. FastBuild: Accelerating Docker Image
Building for Efficient Development and Deployment of Container. In 2019 35th Symposium
on Mass Storage Systems and Technologies (MSST), pages 28–37, 2019.

[21] IBM. Infrastructure as Code | IBM. https://www.ibm.com/topics/
infrastructure-as-code. Accessed: 2023-02-02.

[22] IBM. What are containers? https://www.ibm.com/topics/containers. Accessed:
2023-01-24.

[23] IBM. What are Microservices? | IBM. https://www.ibm.com/topics/
microservices. Accessed: 2023-01-30.

[24] IBM. What is DevOps? | IBM. https://www.ibm.com/topics/devops. Accessed:
2023-02-02.

[25] Susan Jamieson. Likert scales: How to (ab)use them. Medical Education, 38(12):1217–1218,
2004.

https://martinfowler.com/bliki/CodeSmell.html
https://martinfowler.com/bliki/CodeSmell.html
https://www.ibm.com/topics/infrastructure-as-code
https://www.ibm.com/topics/infrastructure-as-code
https://www.ibm.com/topics/containers
https://www.ibm.com/topics/microservices
https://www.ibm.com/topics/microservices
https://www.ibm.com/topics/devops

REFERENCES 68

[26] Stefan Kehrer, Florian Riebandt, and Wolfgang Blochinger. Container-Based Module Isola-
tion for Cloud Services. In 2019 IEEE International Conference on Service-Oriented System
Engineering (SOSE), pages 177–17709, 2019.

[27] Shinya Kitajima and Atsuji Sekiguchi. Latest Image Recommendation Method for Auto-
matic Base Image Update in Dockerfile. In Eleanna Kafeza, Boualem Benatallah, Fabio Mar-
tinelli, Hakim Hacid, Athman Bouguettaya, and Hamid Motahari, editors, Service-Oriented
Computing, Lecture Notes in Computer Science, pages 547–562. Springer International Pub-
lishing, 2020.

[28] Emna Ksontini and Marouane Kessentini. Refactorings and Technical Debt for Docker
Projects. In 2021 36th IEEE/ACM International Conference on Automated Software En-
gineering (ASE), 2021.

[29] Mingjie Li, Xiaoying Bai, Minghua Ma, and Dan Pei. DockerMock: Pre-Build Detection of
Dockerfile Faults through Mocking Instruction Execution, 2021.

[30] R. Likert. A technique for the measurement of attitudes. Archives of Psychology, 22 140:55–
55, 1932.

[31] Markus Linnalampi. Outdated software in container images. Master’s thesis, Aalto Univer-
sity, 2021.

[32] Pedro Lourenço, João Pedro Dias, Ademar Aguiar, and Hugo Sereno Ferreira. Cloudcity:
A live environment for the management of cloud infrastructures. In Proceedings of the 14th
International Conference on Evaluation of Novel Approaches to Software Engineering, 2019.

[33] Zhigang Lu, Jiwei Xu, Yuewen Wu, Tao Wang, and Tao Huang. An Empirical Case Study
on the Temporary File Smell in Dockerfiles. IEEE Access, 7:63650–63659, 2019.

[34] João Carlos Cardoso Maduro. Automatic Service Containerization with Docker. Master’s
thesis, Faculdade de Engenharia da Universidade do Porto, 2021.

[35] John H. Maloney and Randall B. Smith. Directness and liveness in the morphic user inter-
face construction environment. In Proceedings of the 8th Annual ACM Symposium on User
Interface and Software Technology - UIST ’95, pages 21–28. ACM Press, 1995.

[36] Gloria Mark, Daniela Gudith, and Ulrich Klocke. The cost of interrupted work: More speed
and stress. In Proceedings of the 2008 Conference on Human Factors in Computing Systems,
pages 107–110, 2008.

[37] Scott McMillan. MAKING CONTAINERS EASIER WITH HPC CONTAINER MAKER.

[38] Jenny Morales, Cristian Rusu, Federico Botella, and Daniela Quiñones. Programmer eXpe-
rience: A Systematic Literature Review. IEEE Access, 7:71079–71094, 2019.

[39] Emanuel Moreira, Filipe F Correia, and João Bispo. Overviewing the liveness of refactoring
for energy efficiency. In Companion Proceedings of the 4th International Conference on Art,
Science, and Engineering of Programming, pages 211–212, 2020.

[40] Abi Noda, Margaret-Anne Storey, Nicole Forsgren, and Michaela Greiler. DevEx: What
Actually Drives Productivity: The developer-centric approach to measuring and improving
productivity. Queue, 21(2):Pages 20:35–Pages 20:53, 2023.

REFERENCES 69

[41] Daniel Nüst, Vanessa Sochat, Ben Marwick, Stephen J. Eglen, Tim Head, Tony Hirst, and
Benjamin D. Evans. Ten simple rules for writing Dockerfiles for reproducible data science.
PLOS Computational Biology, 16(11):e1008316, 2020.

[42] Fawaz Paraiso, Stéphanie Challita, Yahya Al-Dhuraibi, and Philippe Merle. Model-driven
management of docker containers. In 2016 IEEE 9th International Conference on Cloud
Computing (CLOUD), pages 718–725, 2016.

[43] Bruno Piedade, João Pedro Dias, and Filipe F Correia. An empirical study on visual program-
ming docker compose configurations. In Proceedings of the 23rd ACM/IEEE International
Conference on Model Driven Engineering Languages and Systems: Companion Proceed-
ings, pages 1–10, 2020.

[44] Bruno Piedade, João Pedro Dias, and Filipe F Correia. Visual notations in container or-
chestrations: an empirical study with docker compose. Software and Systems Modeling,
21(5):1983–2005, 2022.

[45] Paolo Ernesto Prinetto, Dott Riccardo Bortolameotti, and Giuseppe Massaro. Security Mis-
configurations Detection and Repair in Dockerfile. Master’s thesis, Politecnico di Torino,
2022.

[46] Vaibhav Rastogi, Drew Davidson, Lorenzo De Carli, Somesh Jha, and Patrick McDaniel.
Cimplifier: Automatically debloating containers. In Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering, ESEC/FSE 2017, pages 476–486. Associ-
ation for Computing Machinery, 2017.

[47] Vaibhav Rastogi, Chaitra Niddodi, Sibin Mohan, and Somesh Jha. New Directions for Con-
tainer Debloating. In Proceedings of the 2017 Workshop on Forming an Ecosystem Around
Software Transformation, FEAST ’17, pages 51–56. Association for Computing Machinery,
2017.

[48] David Reis and Filipe F. Correia. Dockerlive : A live development environment for Dock-
erfiles. In 2022 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC), pages 1–4. IEEE, 2022.

[49] David Reis, Bruno Piedade, Filipe F. Correia, João Pedro Dias, and Ademar Aguiar. De-
veloping Docker and Docker-Compose Specifications: A Developers’ Survey. IEEE Access,
10:2318–2329, 2022.

[50] David Alexandre Gomes Reis. Live Docker Containers. Master’s thesis, Faculdade de En-
genharia da Universidade do Porto, 2020.

[51] Giovanni Rosa, Antonio Mastropaolo, Simone Scalabrino, Gabriele Bavota, and Rocco
Oliveto. Automatically Generating Dockerfiles via Deep Learning: Challenges and
Promises. Technical report, STAKE Lab - University of Molise, Pesche, Italy and Software
Institute - Universit‘ a della Svizzera Italiana (USI), Switzerland, 2023.

[52] Corrado Santoro, Fabrizio Messina, Fabio D’Urso, and Federico Fausto Santoro. Wale: A
Dockerfile-Based Approach to Deduplicate Shared Libraries in Docker Containers. In 2018
IEEE 16th Intl Conf on Dependable, Autonomic and Secure Computing, 16th Intl Conf on
Pervasive Intelligence and Computing, 4th Intl Conf on Big Data Intelligence and Computing
and Cyber Science and Technology Congress(DASC/PiCom/DataCom/CyberSciTech), pages
785–791, 2018.

REFERENCES 70

[53] Sid Palas. This is a valid Dockerfile for a NodeJS application. https://twitter.com/
sidpalas/status/1634194026500096000, 2023. Accessed: 2023-06-01.

[54] Jonas Sorgalla, Philip Wizenty, Florian Rademacher, Sabine Sachweh, and Albert Zündorf.
Applying Model-Driven Engineering to Stimulate the Adoption of DevOps Processes in
Small and Medium-Sized Development Organizations: The Case for Microservice Archi-
tecture. SN Computer Science, 2(6):459, 2021.

[55] Tiago Boldt Sousa, Ademar Aguiar, Hugo Sereno Ferreira, and Filipe Figueiredo Correia.
Engineering software for the cloud: patterns and sequences. In Proceedings of the 11th
Latin-American Conference on Pattern Languages of Programming, pages 1–8, 2016.

[56] Tiago Boldt Sousa, Filipe Figueiredo Correia, and Hugo Sereno Ferreira. Patterns for soft-
ware orchestration on the cloud. In Proceedings of the 22nd Conference on Pattern Lan-
guages of Programs, pages 1–12, 2015.

[57] Steven L. Tanimoto. A perspective on the evolution of live programming. In 2013 1st
International Workshop on Live Programming (LIVE), pages 31–34, 2013.

[58] Yujing Wang and Qinyang Bao. A Code Injection Method for Rapid Docker Image Building,
2019.

[59] Yiwen Wu, Yang Zhang, Tao Wang, and Huaimin Wang. Characterizing the Occurrence of
Dockerfile Smells in Open-Source Software: An Empirical Study. IEEE Access, 8:34127–
34139, 2020.

[60] Yiwen Wu, Yang Zhang, Tao Wang, and Huaimin Wang. An Empirical Study of Build
Failures in the Docker Context. In Proceedings of the 17th International Conference on
Mining Software Repositories, pages 76–80. ACM, 2020.

[61] Jiwei Xu, Yuewen Wu, Zhigang Lu, and Tao Wang. Dockerfile TF Smell Detection Based
on Dynamic and Static Analysis Methods. In 2019 IEEE 43rd Annual Computer Software
and Applications Conference (COMPSAC), volume 1, pages 185–190, 2019.

[62] Hongjie Ye, Jiahong Zhou, Wei Chen, Jiaxin Zhu, Guoquan Wu, and Jun Wei. DockerGen:
A Knowledge Graph based Approach for Software Containerization. In 2021 IEEE 45th
Annual Computers, Software, and Applications Conference (COMPSAC), pages 986–991,
2021.

[63] Mehdi Zarei. Investigating the inner workings of container image vulnerability scanners.
Master’s thesis, Oslo Metropolitan University, 2022.

[64] Shuaihao Zhong, Duoqiang Wang, Wei Li, Feng Lu, and Hai Jin. Burner: Recipe Automatic
Generation for HPC Container Based on Domain Knowledge Graph. Wireless Communica-
tions and Mobile Computing, 2022:e4592428, 2022.

https://twitter.com/sidpalas/status/1634194026500096000
https://twitter.com/sidpalas/status/1634194026500096000

Appendix A

Questionnaires

This appendix contains the questionnaires mentioned in Sections 4.5.3 and 4.5.4. Section A.1

contains the recruitment questionnaires, Section A.2 contains the questionnaire given to the control

group, and Section A.3 contains the questionnaire given to the experimental group.

71

1.

Marcar apenas uma oval.

Yes

No

2.

3.

Personal Information

Research on Dockerfile

Development
We invite you to participate in our study evaluating a novel Dockerfile

development environment. To qualify you should have some experience

developing Dockerfiles, and participate in an online session where you may

be asked to try out innovative tools for working with Dockerfiles (max. 1h

duration).

The results will be used exclusively to support our research, and not for

any commercial purpose. We shall publish any collected data in

anonymized and aggregated forms only. By participating you will be

contributing to the latest research in this topic, and will have first-hand

access to the results of this study.

If you have any questions, feel free to get in touch with the researchers:

João Matos <up201703884@edu.fe.up.pt>

Filipe Correia <filipe.correia@fe.up.pt>

* Indica uma pergunta obrigatória

Are you willing and interested to participate in this study? *

What is your name? *

What is your email address? *

Questionnaires 72

A.1 Recruitment Questionnaire

4.

Marcar apenas uma oval.

Outra:

Developer

Architect

Operations

QA

5.

Marcar apenas uma oval.

5 or less

6-10

11-15

16-20

21 or more

6.

Marcar apenas uma oval.

1 or less

2

3

4

5 or more

Experience

What is your current role? *

Approximately how many years of professional experience do you

have in software development and related tasks?

*

Approximately how many years of professional experience do you

have developing Dockerfiles?

*

7.

Marcar apenas uma oval.

1-3

4-6

7-9

10 or more

8.

Marcar apenas uma oval.

1-3

4-6

7-9

10 or more

9.

Marcar apenas uma oval.

Yes

No

10.

Approximately how many Dockerfiles have you written from

scratch into a working first version?

*

This means you created the Dockerfile and worked on it until it became

functional.

Approximately how many Dockerfiles have you edited? *

This means you were not responsible for the creation of the Dockerfile but

you made some modifications to it.

Have you ever used a Visual Studio Code extension to edit

Dockerfiles?

*

If your answer to the previous question was "Yes", please write the

name of the extension(s) that you used.

Este conteúdo não foi criado nem aprovado pela Google.

Formulários

1.

2.

3.

Marcar apenas uma oval.

Strongly Disagree

1 2 3 4 5

Strongly Agree

4.

Marcar apenas uma oval.

Strongly Disagree

1 2 3 4 5

Strongly Agree

Skills

Improving the Developer

Experience of Dockerfiles
This questionnaire aims to evaluate your experience regarding aspects

that are relevant to the study that you are participating in. Please fill the

questionnaire according to the instructions that are provided.

* Indica uma pergunta obrigatória

What is your name? *

Please include your first and last names.

What is your email address? *

I am confident in my English skills. *

Mark one of the circles.

I feel comfortable programming in Python. *

Mark one of the circles.

Questionnaires 76

A.2 Control Questionnaire

5.

Marcar apenas uma oval.

Strongly Disagree

1 2 3 4 5

Strongly Agree

6.

Marcar apenas uma oval.

Strongly Disagree

1 2 3 4 5

Strongly Agree

7.

Marcar apenas uma oval.

Strongly Disagree

1 2 3 4 5

Strongly Agree

8.

Marcar apenas uma oval.

Strongly Disagree

1 2 3 4 5

Strongly Agree

I feel comfortable programming in JavaScript and Node.js. *

Mark one of the circles.

I feel comfortable working with Firefox. *

Mark one of the circles.

I feel comfortable working with Visual Studio Code. *

Mark one of the circles.

I feel comfortable working with Linux-based desktop-focused

operating systems.

*

Mark one of the circles.

9.

Marcar apenas uma oval.

Strongly Disagree

1 2 3 4 5

Strongly Agree

10.

Marcar apenas uma oval.

Strongly Disagree

1 2 3 4 5

Strongly Agree

11.

Marcar apenas uma oval.

Strongly Disagree

1 2 3 4 5

Strongly Agree

12.

Marcar apenas uma oval.

Strongly Disagree

1 2 3 4 5

Strongly Agree

Task 1 Experience

I feel comfortable using Visual Studio Code to edit Dockerfiles. *

Mark one of the circles.

I feel comfortable interacting with Docker through a terminal. *

Mark one of the circles.

I was able to understand what to do in Task 1. *

Mark one of the circles.

I was able to finish Task 1 without any problems. *

Mark one of the circles.

13.

Marcar apenas uma oval.

Strongly Disagree

1 2 3 4 5

Strongly Agree

14.

Marcar apenas uma oval.

Strongly Disagree

1 2 3 4 5

Strongly Agree

15.

Marcar apenas uma oval.

Strongly Disagree

1 2 3 4 5

Strongly Agree

Task 2 Experience

Task 3 Experience

I was able to understand what to do in Task 2. *

Mark one of the circles.

I was able to finish Task 2 without any problems. *

Mark one of the circles.

I was able to understand what to do in Task 3. *

Mark one of the circles.

16.

Marcar apenas uma oval.

Strongly Disagree

1 2 3 4 5

Strongly Agree

17.

Marcar apenas uma oval.

Strongly Disagree

1 2 3 4 5

Strongly Agree

18.

Marcar apenas uma oval.

Strongly Disagree

1 2 3 4 5

Strongly Agree

Environment Considerations

Additional Feedback

I was able to finish Task 3 without any problems. *

Mark one of the circles.

I felt comfortable with the remote environment. *

Mark one of the circles.

I felt like the tasks took a long time to carry out. *

Mark one of the circles.

19.

Marcar apenas uma oval.

Strongly Disagree

1 2 3 4 5

Strongly Agree

20.

Este conteúdo não foi criado nem aprovado pela Google.

I felt like the tasks would have been easier to carry out if I had

access to other tools.

*

Mark one of the circles.

Please write the name of any tool(s) that you believe would have

helped you carry out the tasks.

Formulários

1.

2.

3.

Marcar apenas uma oval.

Strongly Disagree

1 2 3 4 5

Strongly Agree

4.

Marcar apenas uma oval.

Strongly Disagree

1 2 3 4 5

Strongly Agree

Skills

Improving the Developer

Experience of Dockerfiles
This questionnaire aims to evaluate your experience regarding aspects

that are relevant to the study that you are participating in. Please fill the

questionnaire according to the instructions that are provided.

* Indica uma pergunta obrigatória

What is your name? *

Please include your first and last names.

What is your email address? *

I am confident in my English skills. *

Mark one of the circles.

I feel comfortable programming in Python. *

Mark one of the circles.

Questionnaires 82

A.3 Experimental Questionnaire

5.

Marcar apenas uma oval.

Strongly Disagree

1 2 3 4 5

Strongly Agree

6.

Marcar apenas uma oval.

Strongly Disagree

1 2 3 4 5

Strongly Agree

7.

Marcar apenas uma oval.

Strongly Disagree

1 2 3 4 5

Strongly Agree

8.

Marcar apenas uma oval.

Strongly Disagree

1 2 3 4 5

Strongly Agree

I feel comfortable programming in JavaScript and Node.js. *

Mark one of the circles.

I feel comfortable working with Firefox. *

Mark one of the circles.

I feel comfortable working with Visual Studio Code. *

Mark one of the circles.

I feel comfortable working with Linux-based desktop-focused

operating systems.

*

Mark one of the circles.

9.

Marcar apenas uma oval.

Strongly Disagree

1 2 3 4 5

Strongly Agree

10.

Marcar apenas uma oval.

Strongly Disagree

1 2 3 4 5

Strongly Agree

11.

Marcar apenas uma oval.

Strongly Disagree

1 2 3 4 5

Strongly Agree

12.

Marcar apenas uma oval.

Strongly Disagree

1 2 3 4 5

Strongly Agree

Task 1 Experience

I feel comfortable using Visual Studio Code to edit Dockerfiles. *

Mark one of the circles.

I feel comfortable interacting with Docker through a terminal. *

Mark one of the circles.

I was able to understand what to do in Task 1. *

Mark one of the circles.

I was able to finish Task 1 without any problems. *

Mark one of the circles.

13.

Marcar apenas uma oval.

Strongly Disagree

1 2 3 4 5

Strongly Agree

14.

Marcar apenas uma oval.

Strongly Disagree

1 2 3 4 5

Strongly Agree

15.

Marcar apenas uma oval.

Strongly Disagree

1 2 3 4 5

Strongly Agree

16.

Marcar apenas uma oval.

Strongly Disagree

1 2 3 4 5

Strongly Agree

Task 2 Experience

Dockerlive helped me do Task 1. *

Mark one of the circles.

I was able to understand what to do in Task 2. *

Mark one of the circles.

I was able to finish Task 2 without any problems. *

Mark one of the circles.

Dockerlive helped me do Task 2. *

Mark one of the circles.

17.

Marcar apenas uma oval.

Strongly Disagree

1 2 3 4 5

Strongly Agree

18.

Marcar apenas uma oval.

Strongly Disagree

1 2 3 4 5

Strongly Agree

19.

Marcar apenas uma oval.

Strongly Disagree

1 2 3 4 5

Strongly Agree

Task 3 Experience

Environment Considerations

I was able to understand what to do in Task 3. *

Mark one of the circles.

I was able to finish Task 3 without any problems. *

Mark one of the circles.

Dockerlive helped me do Task 3. *

Mark one of the circles.

20.

Marcar apenas uma oval.

Strongly Disagree

1 2 3 4 5

Strongly Agree

21.

Marcar apenas uma oval.

Strongly Disagree

1 2 3 4 5

Strongly Agree

22.

Marcar apenas uma oval.

Strongly Disagree

1 2 3 4 5

Strongly Agree

23.

Additional Feedback

Additional Feedback about Dockerlive

I felt comfortable with the remote environment. *

Mark one of the circles.

I felt like the tasks took a long time to carry out. *

Mark one of the circles.

I felt like the tasks would have been easier to carry out if I had

access to other tools.

*

Mark one of the circles.

Please write the name of any tool(s) that you believe would have

helped you carry out the tasks.

24.

Marcar apenas uma oval.

Strongly Disagree

1 2 3 4 5

Strongly Agree

25.

Marcar apenas uma oval.

Strongly Disagree

1 2 3 4 5

Strongly Agree

26.

Marcar apenas uma oval.

Strongly Disagree

1 2 3 4 5

Strongly Agree

27.

Marcar apenas uma oval.

Strongly Disagree

1 2 3 4 5

Strongly Agree

Dockerlive made the tasks easy to carry out. *

Mark one of the circles.

Dockerlive was easy to use. *

Mark one of the circles.

Dockerlive's suggestions were useful in carrying out the tasks. *

Mark one of the circles.

I would like to use Dockerlive in the future. *

Mark one of the circles.

28.

29.

30.

Este conteúdo não foi criado nem aprovado pela Google.

Which of Dockerlive's features helped you the most? And why?

You can check the instructions we provided in the beginning, if you need

to.

What problems did you run into while using Dockerlive to do the

tasks?

If you could, how would you improve Dockerlive?

Formulários

Appendix B

Dockerfiles

This appendix contains the Dockerfiles mentioned in Section 4.4.

1FROM python

2

3COPY . .

4

5RUN pip install -r requirements.txt

6

7RUN apt-get update && apt-get install -y httpie

8

9RUN http http://example.com -o file.html

10

11CMD python3 main.py

Listing B.1: Dockerfile for Task 1

1FROM node

2

3COPY package*.json .

4

5COPY important_info.txt .

6

7COPY important_info2.txt /

8

9COPY file.js .

10

11CMD node file.js

Listing B.2: Dockerfile for Task 2

90

Dockerfiles 91

1 FROM node

2

3 RUN apt-get update && apt-get install -y nodejs

4

5 COPY . .

6

7 CMD node index.js

Listing B.3: Dockerfile for Task 3

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	List of Listings
	1 Introduction
	1.1 Context
	1.2 Objectives
	1.3 Methodology
	1.3.1 Dockerlive V2
	1.3.2 Study

	1.4 Contributions
	1.5 Document Structure

	2 Dockerfile Development Challenges
	2.1 Background
	2.1.1 Docker
	2.1.2 Developer Experience
	2.1.3 Liveness

	2.2 Goals and methodology
	2.3 Challenges in the Development of Dockerfiles
	2.4 Speeding up Docker builds
	2.5 Dockerfile Generation
	2.6 Dockerfile Smells
	2.7 Dockerfile Good Practices
	2.8 Dockerfile Security
	2.9 Dockerfile Repair
	2.10 Dockerfile Bloat
	2.11 Dockerfile Testing
	2.12 Liveness
	2.13 General Discussion

	3 Designing a new version of Dockerlive
	3.1 Goals
	3.2 Approach
	3.3 Internal Design
	3.3.1 Repairs
	3.3.2 Hermit

	3.4 Repair Implementation Details
	3.5 Hermit Contributions
	3.6 User Interface
	3.6.1 Repairs
	3.6.2 Dockerfile Generation

	3.7 General Discussion

	4 Empirical Study
	4.1 Goals
	4.2 Research Questions
	4.3 Methodology
	4.3.1 Data Collection
	4.3.2 Tasks
	4.3.3 Environment
	4.3.4 Procedure

	4.4 Tasks
	4.4.1 Task 1
	4.4.2 Task 2
	4.4.3 Task 3

	4.5 Data Collection
	4.5.1 Tasks
	4.5.2 Dockerfiles
	4.5.3 Recruitment Questionnaire
	4.5.4 Task Questionnaire

	4.6 Recruitment, Demographics and Group Assignment
	4.7 Data Analysis
	4.7.1 Anonymizing Data
	4.7.2 Recruitment Questionnaire
	4.7.3 Task Data
	4.7.4 Dockerfile Data
	4.7.5 Task Questionnaire

	4.8 Threats to Validity
	4.8.1 Internal Validity
	4.8.2 External Validity

	4.9 Findings
	4.10 General Discussion
	4.11 Future Work

	5 Conclusion
	5.1 Overview
	5.2 Contributions

	References
	A Questionnaires
	A.1 Recruitment Questionnaire
	A.2 Control Questionnaire
	A.3 Experimental Questionnaire

	B Dockerfiles

