
Metrology Product Development for Industry
and Science

Software Project Management Best Practices From a Multiple
Case-Study Analysis

Catarina Raquel Jesus Lopes

Master’s Dissertation

Advisor at FEUP: Prof. Xavier Andrade
Work Advisor: Eng. Pedro Besteiro from LSI

Master in Engineering and Industrial Management

2023-06-16

Abstract

This dissertation was developed within the context of the completion of the master’s degree in
Engineering and Industrial Management at the Faculty of Engineering of the University of Porto.
The main goal of this thesis is to present several case studies of projects developed in a metrology
product development company, analyze them from a software project management view, and reach
conclusions about the biggest conflicts and impediments that can influence the final outcome.

The host company is interested in learning about the unique difficulties that project manage-
ment and software development face, their causes, and solutions. These are the goals of this
dissertation—to arrive at findings and give a best practices manual to aid in the battle against the
most common problems found in complex software development projects that delay or impact the
final outcome.

The methodology used in developing this dissertation comprises understanding how project
management functions in software development projects, outlining each project’s flow, coming to
individual conclusions about each one, and finally comparing all of them to reach a final conclusion
and synthesize the best practices manual.

It was concluded that the main problems with project management and software development
are related to a lack of defined leadership, communication issues between different teams inside
the project, and inaccurate requirements gathering. Other disputes are caused by a shortage of
project goals, a dearth of market research and proofs of concept, and expectation management
problems.

Some of these conflicts proved to be so critical that caused projects to fail and whole applica-
tions to be put on hold.

As a result, suggestions on how to prevent and stop these disputes from harming the project
were developed. The most important lessons learned were the importance of a defined leadership
with a strong product owner, capable to communicate and lead the project, the significance of
a thorough communication strategy that encourages and engages employees to form connections
with one another, the necessity of regular meetings to foster the co-creation of goals, requirements,
and application progress, the importance of using SMART goals, and the matter of taking time
before the execution to conduct thorough market research.

i

ii

Resumo

Esta dissertação foi desenvolvida no âmbito da conclusão do mestrado em Engenharia e Gestão
Industrial na Faculdade de Engenharia da Universidade do Porto. O principal objetivo desta dis-
sertação é apresentar vários casos de estudo de projectos desenvolvidos numa empresa de desen-
volvimento de produtos de metrologia, analisá-los do ponto de vista da gestão de projectos de
software e chegar a conclusões sobre os maiores conflitos e impedimentos que podem influenciar
o resultado final.

A empresa está interessada em descobrir os problemas mais comuns em gestão de projetos
e desenvolvimento de software, bem como as causas e soluções desses problemas. Os objetivos
desta dissertação são chegar a conclusões e fornecer um manual de melhores práticas para ajudar
na luta contra estes dilemas encontrados em projetos complexos de desenvolvimento de software,
que atrasam ou influenciam o resultado final.

Os principais componentes desta dissertação incluíram a compreensão do funcionamento da
gestão de projectos em desenvolvimento de software, a descrição extensiva de cada projeto, a
obtenção de conclusões individuais sobre cada um deles e, finalmente, a comparação entre todos
para chegar a uma remate final e avançar com o manual de melhores práticas.

Concluiu-se que os principais obstáculos estão relacionados com problemas de liderança, co-
municação entre as diferentes equipas do projeto e com uma definição imprecisa de requisitos.
Outros são causados por excesso ou escassez de objectivos, falta de estudos de mercado e provas
de conceito, ou mesmo problemas de gestão de expectativas.

Alguns destes conflitos foram tão graves que alguns projetos falharam e aplicações foram
canceladas.

Como resultado, foram desenvolvidas sugestões sobre como melhorar e impedir que estas ad-
versidades prejudicassem o projeto. As lições mais importantes foram a importância de haver
um product owner capaz de realmente liderar a equipa e ser transparente quanto a objetivos, a
relevância de uma estratégia de comunicação que encoraje e envolva os funcionários a estabele-
cerem ligações entre si, a necessidade de reuniões regulares para promover a co-criação de objec-
tivos, requisitos e progresso da aplicação, o valor de utilizar objectivos SMART e a importância
de reservar algum tempo antes da execução para realizar um estudo de mercado o mais completo
possível.

iii

iv

Acknowledgements

First of all, I would like to express my sincere gratitude to Eng. Pedro Besteiro, my work
advisor, without whom this dissertation wouldn’t be possible. Thank you for all the guidance,
expert advice, and continuous support. To Prof. Xavier Andrade, my advisor at FEUP, a special
thank you for the incredible support and for always being available to guide, help, and for making
this dissertation what it is today.

A big thank you to the institution, FEUP, whose commitment to research and education has
given me access to a challenging academic setting. My intellectual growth and development have
been greatly influenced by their willingness to share information and resources.

To my mother, Florbela, who made me the woman I am today, always believed in me and
never let me quit. Thank you mom, I hope to make you proud, this is for you.

To my sister, Cátia, my role model, the one I can always look up to and find inspiration. Your
support is forever priceless, thank you.

To my whole family, Carla, and António, thank you for always giving me the love and support
I needed and for accompanying me on this journey.

To Daniel, for always being on my side and listening to me, for always treating me with care
in the most stressful phases, and for loving me every day. And lastly, to all my colleagues and
friends, for the countless work projects, exams and years spent supporting each other on this ride.
I cherish all of you with all my heart.

v

vi

"Limitations live only in our minds. But if we use our imagination, our possibilities become
limitless"

Jamie Paolinetti

vii

viii

Contents

1 Introduction 1
1.1 Project Framework and Motivation . 1
1.2 The Project at LSI, Integração de Serviços e Informática, LDA 2
1.3 Goals . 3
1.4 Methodology . 3
1.5 Work Plan . 4
1.6 Dissertation Structure . 5

2 Background - Options placed in the Development of Software Automatism’s 7
2.1 In-House Development versus Third-Party Solutions 7
2.2 High-Level versus Low-Level Development Languages 9
2.3 Development Strategies: Continuous Integration 10

3 Literature Review in Software Development 13
3.1 Software Development Process . 13

3.1.1 Traditional Methodologies . 16
3.1.2 Agile Methodologies . 17
3.1.3 Comparison Traditional versus Agile 20

3.2 Project Management . 23
3.3 Existing Standards and Products for Process Automation 24

4 Automator Project 25
4.1 Case Study Description . 25
4.2 Case Study Analysis . 27
4.3 Key Takeaways . 28

5 Tomorrowland Project 31
5.1 Case Study Description . 31
5.2 Case Study Analysis . 32
5.3 Key Takeaways . 33

6 Alpha: Scanning Electron Microscope Project 35
6.1 Case Study Description . 35
6.2 Case Study Analysis . 37
6.3 Key Takeaways . 38

7 Beta: Applications of Alpha Microscope in Semiconductor Industry 41
7.1 Case Study Description . 41
7.2 Case Study Analysis . 42
7.3 Key Takeaways . 43

ix

x CONTENTS

8 Conclusions 45
8.1 Overall and Comparative Conclusions between Case Studies 45
8.2 Best Practices Guide . 48

Acronyms and Symbols

CI Continuous Integration
CPM Critical Path Method
IT Information Technology
OM Optical Microscope
PERT Program Evaluation and Review Method
PO Product Owner
PTC PEER Tool Composer
PTO PEER Tool Orchestrator
SDLC Software Development Life Cycle
SEM Scanning Electron Microscope
SRS Software Requirement Specification
TPS Toyota Production System
UI User Interface
XP Extreme Programming

xi

xii Acronyms and Symbols

List of Figures

1.1 Main reasons why software development projects fail (PMI, 2017) 2
1.2 Project Gantt chart . 4

2.1 High and low-level language examples (ProgramizPRO, 2022) 10
2.2 Continuous Integration process . 12

3.1 Main stages of the software development life cycle (Shylesh, 2017) 15
3.2 Main software development methodologies . 15
3.3 Comparison between Traditional and Agile Methodologies Timeline 16
3.4 Sprint Cycle in Scrum Methodology (Rehkopf, 2023b) 18
3.5 Jira Board - Kanban application (Jira, 2023) . 20

4.1 Automator Interface: Design View . 27

5.1 Cross Beam Microscope and it’s Constitution 31

6.1 Alpha Microscope . 35

7.1 Beta Application Interface: Design View . 42

xiii

xiv LIST OF FIGURES

List of Tables

2.2 Comparison between In-House Development and Third-Party Solutions (adapted
from Aitzaz et al., 2016) . 8

3.1 Comparison between Traditional and Agile Methodologies (adapted from Maha-
lakshmi and Sundararajan, 2013 and Islam and Ferworn, 2020) 21

8.1 Problems found in each Project. Comparison between Projects 46
8.2 Best Practices Guide . 48

xv

xvi LIST OF TABLES

Chapter 1

Introduction

This dissertation was conducted within the Master in Engineering and Industrial Management

at the Faculty of Engineering of Porto University in the specific context of Project Management in

Software Development projects. This chapter aims to present the main motivation and goals of the

dissertation, present the company where it was developed, explain in detail how the project was

structured, and give a general overview of this document structure.

1.1 Project Framework and Motivation

Now more than ever, due to the size, complexity, and diversity of software systems, there is a

constant need to interact across organizational, geographical, cultural, and socioeconomic bound-

aries (Mens et al., 2019). Developing software implies having a team capable of communicating

constantly and cooperating closely in all phases of the process. Beyond that, the developers should

also have a line of communication with the stakeholders and business partners to meet exacting

requirements, support different interaction styles, and meet growing demands for functionality,

quality, flexibility, and cost-effectiveness.

Good management is essential for the effectiveness and success of any project because it keeps

the project moving and the channels of communication and knowledge open. This is especially

true for projects like software development where the requirements are constantly changing, the

deadlines are challenging, and the entire process is intricate.

The main causes why software development projects fail are mainly related to management

problems, communication inefficiency, changes in requirements, and lack of global vision of goals

across the team (PMI, 2017). Figure 1.1 shows exactly that.

The rate of project failure in the information technology (IT) industry is still very high (Keil

et al., 2013). A "marked decrease in project success rates" was noted in 2009, with 44% of all

IT projects being delivered late, over budget, or failing to satisfy specifications, and another 24%

being canceled before completion or delivered but never utilized.

1

2 Introduction

According to (Lopez-Martinez et al., 2016), the biggest problems in software development,

specifically in agile methodologies, can be of four scopes: project, process, organization, or peo-

ple. The conclusion was that the block with the biggest impact was People. This occurs due to

the difficulty of the management of the whole process, lack of communication, lack of training,

misunderstanding of client’s requirements, and poor vision of the project scope.

For this dissertation, the management in software development will be deconstructed and an-

alyzed to gain knowledge on the main phases that can make or break a project. For this, four

projects in place at the company where this work was based will be described and a step-by-step

of requirements and conclusions will be produced. Among these, there are examples of good and

bad management and project development, and by analyzing the outcomes and comparing them,

we can understand and learn how to manage projects with these dimensions and overcome the

main difficulties in agile methodologies, namely Scrum.

Figure 1.1: Main reasons why software development projects fail (PMI, 2017)

1.2 The Project at LSI, Integração de Serviços e Informática, LDA

In 2001, four engineering students founded LSI. The business develops hardware and software

products for both businesses and consumers, as well as engineering services for a variety of sec-

tors. The goal of LSI is to offer specialized solutions that span a variety of disciplines, including

software development, microelectronics development, and world-class development skills, as well

as cutting-edge approaches and procedures. For this, they customize Agile approaches, namely

Scrum, with an emphasis on feature delivery and quality maximization.

In this report, I analyze LSI’s four projects on how different management and ways of orga-

nizing process development can impact the outcome. In fact, it’s from them that the company

wants to learn and get information for future projects. With this dissertation, they can assess the

1.3 Goals 3

necessity for improvements when working with different entities and clients and from that, be able

to improve projects outcome, transparency, and communication.

All the projects come from major German companies, LSI being the main development team.

Some of them are already finished and others are still in progress. Their investigation will reveal

details on how LSI manages its team and interacts with the requirements team, the scientists, and

the entire project management team.

1.3 Goals

The main goal of this dissertation is to extract knowledge from four case studies by understand-

ing the critical points when looking at project and product management in software development.

By contrasting them, we will be able to identify the present issues for the company to address.

The report aims to answer the following questions:

1. What specific issues and bottlenecks are affecting the project management and software

development processes at the company?

2. What has been determined to be the true causes of the issues?

3. How can the company overcome the identified problems?

The ultimate objective is to improve the future decision of priorities, requirements, and system

design when confronted with stakeholders and use cases with very different profiles i.e., laboratory

teams, production teams, and factory teams.

Additionally, this dissertation has significant importance for the whole metrology development

sector. Since these projects and scenarios accurately reflect other projects in the industry, we may

extrapolate conclusions from them and offer recommendations in the best practices guide that may

be more beneficial for the market.

1.4 Methodology

The methodology of the project shows how the entire project was organized and designed to

respond to the stated study questions.

By gathering data, hosting informal workshops, observing the process, and taking part in two

of the study’s projects, the first phase of the project sought to understand how the entire company

operated in terms of structure, processes, its surrounding context, and evolution over the previous

few years.

This made it possible to gather qualitative data, specifically, project descriptions, useful for

the practical chapters of the dissertation, and other information for the theoretical part. Above

that, entering the environment of the projects helped in understanding what is Agile, particularly

Scrum, and how it works in practice.

4 Introduction

For the second stage of the project, after the research and understanding of the values of the

company and the industry, the questions above mentioned start to be addressed and answered.

A thorough grasp of projects and their description is essential to address the first and second

questions. Being a member of the team in two of the projects gave access to intimate knowledge

and firsthand experience with the projects and pressing issues. For the other two projects, it was

easy to identify problems and bottlenecks impacting project management choices with training,

research, and interviews in the company.

For the third question, it is necessary to list potential solutions by comparing qualitative

and quantitative data and making suggestions for decision-making processes. To enhance future

projects and avoid problems like those found, a best practices guide was created.

1.5 Work Plan

To achieve the goals and follow the methodology of the dissertation, a Gantt Chart is presented

as a work plan for the flow of the dissertation. It is divided into three main parts: the research work,

the practical work, and the writing of the dissertation. Figure 1.2 is a representation of the tasks

that will help in the success of the report.

Figure 1.2: Project Gantt chart

Due to the intricacy of concepts and procedures that must be completely understood in order

to provide accurate analysis and suggestions on the practical side, the research work makes up the

1.6 Dissertation Structure 5

majority of the plan. The dissertation is being written as the theoretical portion is being completed

to record all the thoughts and ideas that are being looked up and found.

1.6 Dissertation Structure

Along with the introduction, this dissertation is composed of seven other chapters.

Chapter 2, Background - Options placed in the Development of Software Automatism’s, presents

a theoretical overview of the most important concepts and hypotheses in software development

automatism. These will be incorporated into the report as important notions to take into consider-

ation.

Moving to Chapter 3, Literature Review in Software Development, this presents the state of the

art of the dissertation. Key concepts like the software development process, project management,

and existing standards for process automation are presented and described extensively in order to

provide the needed basic knowledge for the whole report.

Chapters 4, 5, 6, and 7 provide the practical information about each of the analyzed case

studies of the dissertation. Each has a full description of the project as well as its main problems

or conflicts in product/software development management. Each of these chapters ends with a full

conclusion and summary of possible ideas that could improve the outcome of the project.

This report ends with Chapter 8, Conclusions, which delivers an overall comparative analysis

of all case studies presented and provides a best-practices guide for future projects developed at

the targetted company.

6 Introduction

Chapter 2

Background - Options placed in the
Development of Software Automatism’s

Beginning with some theoretical information on factors to consider while creating software

automatism, this chapter sets the stage for the dissertation. It then continues by listing the ben-

efits and drawbacks of each of those choices in terms of the project’s overall success. Each of

these options can impact the development along the way and so, it’s important, according to the

requirements and goals of each project and company, to choose with caution and consideration.

2.1 In-House Development versus Third-Party Solutions

When discussing in-house development versus third-party solutions, the controversy is about

the decision to use one or the other. In fact, each comes with a pack of advantages and disadvan-

tages that can influence decision-making depending on several factors.

In-house development refers to building a product from the ground up with the use of only

companies’ resources and developers. Third-party solutions offer licensed ready-made applica-

tions, developed by external vendors or service providers, with multiple integrations and feedback

already in place. Using third-party solutions may appear to be the greatest option at first glance

since it suggests less work for a firm, and the use of up-to-date apps may provide a much faster

process to a company that is just driven by the speed of processes. When a corporation properly

knows the goal and value they want to get from automation, this perspective shifts, and it’s now

vital to weigh the pros and cons of each choice and comprehend the long-term ramifications of

each.

Upon a decision, the main areas to consider are costs, time, functionality, and resources. One

can be a much better option than the other depending on the needs and constraints of the business

and the main goal is to optimize the value of the final product.

7

8 Background - Options placed in the Development of Software Automatism’s

Table 2.2: Comparison between In-House Development and Third-Party Solutions (adapted from
Aitzaz et al., 2016)

Area In-House Development Third-Party Solutions

Costs

• Large initial investment and ex-

penses with building, maintaining,

and upgrading custom software

• Small investment with low short-

term expenses

• In the long term, license fees can be

higher than maintenance costs from

in-house development

Time • Takes time to build • Fast implementation

Functionality

• Allows flexibility and customization

according to needs and requirements

• Can increase visibility

• Innovative application with new ca-

pabilities that can bring a competi-

tive edge to the company by leverag-

ing the most efficient, connected, and

scalable technology

• Limited item functionality with fixed

capabilities

• Hard to customize according to

unique needs and requirements and

difficult to optimize

• Slows down growth and innovation

and can put a company at a competi-

tive disadvantage

Resources

• Requires experienced developers that

have a high acquisition cost

• Finding and hiring skilled develop-

ers can be challenging and time-

consuming

• Requires at least one experienced de-

veloper to manage the tool

Taking a closer look at Table 2.2, in terms of costs, while in-house development implies a

bigger investment in training employees, and building and maintaining the custom software, third-

party solutions come with a lower investment in the short term since the company does not need to

spend employees’ time and use its assets. The only things needed are license fees to use the pre-

build application and training personnel. Although this is true for the short term, these license-fee

costs in the long term can be higher than in-house maintenance costs.

Regarding time, in-house development takes much longer to implement since the company

needs to develop from the ground up a customized and tested application with all the necessary

features. A whole software development process needs to be created and managed inside the

2.2 High-Level versus Low-Level Development Languages 9

company and a team needs to be allocated to that task. In a third-party solution, the most time-

consuming task is choosing the right pre-made application for the organization.

Concerning functionality, the first option allows flexibility and customization according to the

organization’s needs by providing an innovative application. The company can get a competitive

edge, surpassing the competition. On the contrary, the second option brings limited functionality

that may not check every requirement box needed and slows the growth of any company.

Lastly, resources needed in in-house development include a team of experienced and skilled

developers while third-party solutions require only at least one experienced developer to manage

the tool.

Let’s imagine that a software development company XPTO wants a new data viewer software

to be able, at any time, to observe the analytics of the business with graphs and predictions for

the future. Now, XPTO needs to decide whether to develop the application with its developers

or acquire a well-known software already used in the market by many competitors. We have two

possible extreme scenarios:

1. If the company has experienced developers, its values incorporate being an innovative orga-

nization, on the edge of competition, and has enough capital and time to invest, then XPTO

would prefer to develop in-house, due to the opportunity to customize according to needs

and reaffirm themselves as one of the top companies in the market, able to produce more

advanced technologies and leveraging that push to surpass the competition.

2. If the company cares about delivering value through fast time-to-market, and is still in the

start-up phase, so the capital is low, then XPTO would prefer to acquire a third-party solution

that can provide results quicker and cheaper and then in the future can be upgraded to an

owned application.

While the decision is evident for these extreme scenarios, it becomes nuanced when the factors

considered are leveled and combined differently.

2.2 High-Level versus Low-Level Development Languages

High-level programming languages and low-level programming languages are the two broad

categories of programming languages. High-level languages are intended to be easily readable and

closer to human language. In contrast, low-level languages are closer to machine language and

more difficult for humans to read and write (Grant, 2020).

High-level programming languages, such as Python, C# and Java, are intended to abstract

away the underlying hardware and provide developers with powerful tools for quickly and effi-

ciently building complex applications. These languages are well-known for their ease of use, as

they are frequently accompanied by large libraries and frameworks that make the development

process easier. One big advantage of this type of language is that it does not deal with memory

management. Although being the most used languages in the development processes, they have

poor performance compared to low-level languages.

10 Background - Options placed in the Development of Software Automatism’s

Low-level programming languages, such as machine code and assembly language, on the other

hand, are considerably more closely related to the hardware and need programmers to interact di-

rectly with the architecture of the computer. Due to their direct access to the machine’s hardware

resources, these languages are renowned for their quickness and effectiveness. In terms of down-

sides, the bigger disadvantage of this type of language comes from the difficulty of learning and

the poor support that exists around this topic.

Low-level languages provide greater control and flexibility whereas high-level languages in-

crease productivity and ease of use. For example, developers frequently opt for low-level lan-

guages when creating embedded systems or operating systems since speed and memory efficiency

are key considerations. For complex applications, high-level languages make the abstraction and

development processes easier.

Figure 2.1: High and low-level language examples (ProgramizPRO, 2022)

When analyzing Figure 2.1, it is easier to understand the practical difference between these

two types of languages. Both codes are doing the same, providing a function to add two numbers,

still, while the high-level language is readable and understandable by any human, the second, for

those who know nothing about low-level languages, is unreadable. This proves how high-level

can turn out to be so easy to use.

Another visible difference is the number of lines of code. High-level is more succinct, with

functions that can be written in one simple line. Low-level needs more lines of code to do one

simple task like adding two numbers.

2.3 Development Strategies: Continuous Integration

Continuous Integration (CI) is a best practice that should always be taken into consideration

and implemented in these types of projects.

In software development, the paradigm between quality, costs, and time-to-market is crucial

to every project. A company always wants to achieve the best quality, with the lowest costs and as

fast as possible, but sometimes, choices need to be made to reach an optimal point between these

three variables.

2.3 Development Strategies: Continuous Integration 11

A software project is deemed successful if it delivers the product with an agreed-upon quality

level on time without going over-budget (Paulk et al., 1993).

For that, the concept of CI is presented. This is a software development technique focused on

code quality in all phases of development. In CI, developers upload new code to the code base

at least once per day, integrating it more frequently during the development cycle, and providing

100% test coverage at both the high and low levels, that is, in the system as a whole and on each

class/unit of the project.

The technique provides full documentation of the interface written by developers and core

components involved in the project as well as a document with all the style rules and code archi-

tecture to have more transparent scalability maintenance. This documentation is something that

can be built on top of what already exists.

To find integration problems early, when they are simpler to fix, automated testing is performed

against each builded iteration. This helps to prevent errors at the final merging for the release

(IBM, 2020). The build process is generally streamlined by CI, which leads to better software

(quality) and more predictable delivery timelines (time-to-market).

In synthesis, the biggest benefits achieved using continuous integration are (adapted from Pro-

fessional, 2019):

• Reduction of risks - since CI integrates tests and inspections several times a day, there is a

greater chance that errors can be discovered in the early stages of any project. Bugs are still

present, but CI makes detecting and fixing them much easier.

• Generation of deployable software at all times and places - CI enables us to frequently

make minor modifications to the source code and include those modifications with the rest

of the code. Those then go to a reviewer on the team that gives feedback and makes sure

that there aren’t any problems with the new integration. If there are, they can identify and

correct it at the moment.

The modifications only go to the main branch when they are bug-free and ready for de-

ployment. This makes sure that the main source is always ready to be reproduced without

problems and bugs.

• Increase in project transparency and product confidence - provides real-time informa-

tion analytics of build status and quality metrics of the code. With every integration, the

team can see how their changes impact the outcome and understand trends in building suc-

cesses or failures.

Figure 2.2 helps to understand continuous integration as a full process. The developers create

integrations of code for a project and make a pull request to the central code repository. This

triggers a CI process where that parcel of code goes to a server. There, the application build

is performed and numerous unit tests are run through the whole code. In the end, the outcome

(success or failure), is reported to the developer and the project manager.

12 Background - Options placed in the Development of Software Automatism’s

Figure 2.2: Continuous Integration process

In case of failure, the report provides details of why the build or test incurred a failure. Then,

the developer needs to fix the broken builds/tests until they pass. Working with CI is all about

continuously developing on a known stable foundation. All software developers have continu-

ous integration as a fundamental for every project since it enables delivering high-quality results.

Although, this comes at a cost, which includes time and money.

When in need of a faster process, a company may decide to skip steps, and application teams

can test in the laboratory software components that respond to specific and urgent needs without

taking into account the process of continuous integration/quality. It’s up to the organization to

decide which mechanisms they want to involve in the software development process to minimize

risk without creating blocks along the way.

Chapter 3

Literature Review in Software
Development

In this chapter, the literature review for the dissertation starts with a presentation of the soft-

ware development process and existing methodologies, giving an extensive description of the steps

included in a process and the differences between traditional and agile methods. A definition and

comparison of the most used methodologies is presented.

It then continues by presenting project management and important concepts, finalizing by

explaining existing standards and products.

3.1 Software Development Process

The software industry receives high-quality, dependable, cost-effective, and on-time products

thanks to the software development process (Shylesh, 2017). This process can also be designated

as the software development life cycle (SDLC), which contains a complete plan for describing how

to design, develop, maintain, and increase the efficiency of a product. The SDLC process high-

lights the approaches that increase overall software quality and development process and is usually

composed of 6 steps: planning, analysis, design, implementation, testing, and maintenance, which

can vary according to the methodology and type of process the company is looking to achieve.

Figure 3.1 represents the main phases that make a software development process (Saeed et al.,

2019):

1) Planning - What do we want?

This phase includes developing project goals and objectives, determining development terms

and expenses, and analyzing and developing client needs. The planning phase also includes

standards for validity assurance and identifying project hazards. The team must determine

the project’s viability and how to properly implement the project while minimizing risk.

This is the most vital and basic phase of every life cycle and it’s completed by the senior

members after the first meeting with the owner of the software system.

13

14 Literature Review in Software Development

2) Analysis - Let’s define requirements for what we want.

In this phase, the team defines the product requirements to achieve for the project and docu-

ments every detail. Then, this goes to the customer for validation. A business analyst, who is

in charge of researching, structuring, and documenting previously established requirements,

as well as a development specialist and a software testing specialist, examine the approved

requirements documentation for the quality of the provided characteristics and information

of the future product, together with the possibility of its implementation.

This stage provides the software requirement specification (SRS) document, which covers

all of the requirements for the product to be designed and created.

3) Design - How will we get what we want?

The software requirement specification is used as input to define the architecture of the soft-

ware product that is being created and several architectures are developed, for later approval

and delimitation by the stakeholders.

While in the design phase, all stakeholders are involved in the review process of the potential

architectures based on several factors like risk assessment, product reliability, budget, and

time-to-market. The option with the best prospects is chosen and the development stage can

begin.

Failure at this point of the life cycle will very probably lead to cost overruns at best and to

the project’s complete collapse at worst.

4) Implementation - Let’s create what we want.

This is the longest phase of the software development life cycle. The implementation refers

to the creation of the product, according to the designed requirements and architecture.

Tasks are broken down into pieces or modules and given to different developers during the

coding phase and several tools are used to create code, including compilers, interpreters,

and debuggers.

5) Testing - Did we get what we want?

In this stage, developers test the generated product to make sure the entire program functions

in line with the client’s requirements that are listed in the SRS document. Software flaws

are reported, tracked, corrected, and retested to ensure high-quality production.

This procedure is repeated until the program is free of bugs, stable, and meets the system’s

business requirements.

6) Maintenance - Let’s start using what we built.

When a product has undergone testing and is ready for use, it is formally introduced to

the market. In accordance with an organization’s business strategy, a product rollout may

3.1 Software Development Process 15

occasionally be phased in. After that, the product can either be released as is or with pro-

posed changes for the target market niche depending on the feedback. After the product is

introduced to the market, it is supported by the developers for the customer.

Figure 3.1: Main stages of the software development life cycle (Shylesh, 2017)

A software development methodology is a form of project management for software develop-

ment. Selecting a suitable management structure may make a significant difference in producing

a successful result whether cost, meeting deadlines, customer satisfaction, software robustness, or

avoiding expenditures on failed projects are considered (Rozhnova et al., 2022).

It’s possible to divide the software development methodologies into two categories: the tradi-

tional and the agile methodologies. Inside each one, multiple methods can be applied to projects,

and the choice for one on top of another has to do with project requirements, company culture,

and the goals of the organization.

Figure 3.2: Main software development methodologies

16 Literature Review in Software Development

Nowadays, the most common Traditional methods are Waterfall, Iterative, and Spiral. For

Agile, the more used ones are Scrum, Extreme Programming, and Kanban. Taking a closer look

at the strategies that are mostly used nowadays, the following Figure 3.2 can be reproduced.

The biggest difference between traditional methodologies and agile is the timeline of each of

the steps already defined (Figure 3.3).

(a) Traditional Methodologies Timeline
(b) Agile Methodologies Timeline

Figure 3.3: Comparison between Traditional and Agile Methodologies Timeline

In traditional methodologies, a very strict timeline is followed, where each phase occurs in-

dividually, only one phase at a time. These can occur only once or multiple times in different

integrations. On the contrary, in agile methodologies, while the first four phases are strict and

occur individually, testing and maintenance occur at all times throughout the whole process of

development. This gives a better understanding to the company of what is the present state of the

project and provides information on bugs and problems in the development, at all times.

3.1.1 Traditional Methodologies

• Waterfall

This was the first software development model created. Waterfall is a sequential process model

that does not overlap. Each process phase is performed sequentially in cascade and one phase

cannot start until the previous one is completed. It’s the most simple of methods and easy to

implement (Shylesh, 2017).

Waterfall is best suited for small projects where requirements are more constant throughout

the duration of the development. The strategy is strict and plan-driven, with limited room for

modifications, and incurs a lot of risks. Progress is hard to measure in this type of method (Saeed

et al., 2019).

• Iterative

In the iterative model, one-step iterations are built to move along in the development. Each one

starts with the definition of requirements, to add some new functionality, moving to the analysis of

feasibility (Saeed et al., 2019). If everything is approved, the design and development can begin.

3.1 Software Development Process 17

In the end, a software product increment is assembled. These iterations occur until there are no

more requirements needed from the stakeholder and the product is labeled as ready for market.

This type of model fits best when a project has the complete set of requirements clear and

defined since the beginning in order to separate each of the requirements in iterations and there is

a need for a fast time-to-market of the product. Since it’s an iterative process with strict goals and

definitions, it produces results quicker than other models.

• Spiral

Spiral is a combination of Waterfall and Iterative methods (Mathur and Acharya, 2015). This is

a risk-driven strategy, which means the emphasis is on managing risk through numerous software

development rounds. In its visual form, it appears like a spiral with multiple loops. The precise

number of loops of the spiral might vary from project to project. The project manager might alter

the number of phases required to build the product depending on the project’s risks.

This methodology is suited for large projects and companies that have a worried mind about

risk. It’s flexible in its requirements, by enabling changes through the phases. Despite that, it’s a

very complex model that can be expensive and time-consuming since from the start, project man-

agers don’t have a clue about how many phases are going to exist, so it can continue indefinitely

(Mirza and Datta, 2019).

3.1.2 Agile Methodologies

• Scrum

Being the methodology in use at the company where the current dissertation was developed,

Scrum is the most important model to dig deeper into and fully understand because it will be the

main target of study in all the cases in chapters 4, 5, 6, and 7.

Scrum focuses primarily on agile management and efficient development team organization.

It is the most well-known technique for teaching agility since it is adaptable and straightforward

(Altameem, 2015). A lot of concepts come from Scrum and to better understand how it works, an

extensive description of each is needed.

In terms of roles, there are 3 main roles inside this model. The first is the Product Owner, who

represents the customer’s wants and needs, manages the product backlog, prioritizes requirements,

and is responsible for fulfilling deadlines and keeping costs inside the budget (Mahalakshmi and

Sundararajan, 2013). He’s also the main accountable for the final approval of the code.

The second role is the Scrum Master. This member helps the team in any way needed and is

the leader of the development process. The Scrum Master is also responsible for managing the

daily scrum and sprint planning meetings.

Finally, the development team is responsible for the creation of the application and is self-

organizing and self-aware. Each member is liable for the failure or success of the tasks they are

assigned to.

18 Literature Review in Software Development

Sprint-based iterations are what drive the Scrum process. The team decides which backlog

items will be built and tested throughout each sprint as well as how the sprint will be planned

(Salameh, 2014). Each sprint usually lasts for 2/3 weeks, ending with a review meeting with the

whole team, to discuss the tasks that were implemented and their status as well as test functionality

if necessary.

Figure 3.4: Sprint Cycle in Scrum Methodology (Rehkopf, 2023b)

Taking a closer look at Figure 3.4, the sprint cycle is composed of sprint planning, a meeting

that marks the beginning of a new sprint. Sprint planning’s goal is to specify what can be com-

pleted in a sprint and how it will be done. The entire scrum team collaborates on sprint planning.

Every planning starts with the definition of the sprint goals and how the team is going to

reach those goals. After that, the scrum master goes to the product backlog, a list of tasks for the

development team that is prioritized according to the requirements needs, and chooses the ones

that fit the goals and are required to accomplish them (Schwaber, 2004). The team discusses how

they can perform the planned tasks, assign them to each member and give a rough estimation of

time for each portion.

Another important portion of the sprint cycle is the daily scrum, daily meetings with the pur-

pose of keeping track of the team’s work and identifying any obstacles and problems that could

hinder the team’s ability to accomplish the sprint target. Here, the sprint backlog, where the current

tasks for the current sprint are grouped, is updated.

Finally, the sprint review meeting ends the sprint. The scrum master invites the development

team to present what they accomplished in the iteration and show the progress made. Final tasks

are closed if finished, and the ones that could not be performed are moved to the next sprint. A final

assessment of the success or failure of the sprint is given, by the amount of work done (Schwaber,

3.1 Software Development Process 19

2004). It’s also important to see the burndown of the capacity versus estimated work to understand

if the team is being overworked, to prevent burnout.

The biggest strengths of scrum are the effective and efficient communication among team

members, the continuous feedback from customers, the top-quality development provides, and the

facility to measure growth and productivity with the daily meetings. Despite this, scrum needs a

team of experienced developers using and knowing Scrum (Mirza and Datta, 2019).

• Extreme Programming

Extreme Programming (XP) helps software be more responsive to consumer needs and of

higher quality by providing continuous integration with the client. To manage them back into

the actual process, this method divides the software development process into smaller pieces and

focuses on good code-writing principles. Extreme programming places a greater emphasis on the

development process than on the management of software projects (Altameem, 2015).

The success of XP is a result of its emphasis on client satisfaction. This technique gives

the software the client requires when the client requires it, as opposed to offering everything

you could want at some unspecified future period. Even late in the development cycle, Extreme

Programming gives developers the confidence to adapt to changing customer requirements (Wells,

2013). Uppermost, XP is a methodology denoted by fast prototyping and pair programming (Mirza

and Datta, 2019).

Separating specifications saves money by modifying the program to perform all tasks incre-

mentally as the development process progresses rather than planning, designing, and building the

whole software. XP is based on the frequent iteration through which the developers implement

User Stories. Metaphors are suggested by the project team based on user stories (GeeksforGeeks,

2023).

Metaphors are a popular way to imagine how the system would operate. For some features, the

development team could choose to create a Spike. A Spike is a relatively straightforward software

designed to investigate the viability of a proposed solution. It may be compared to a prototype.

This methodology fits best inside small and simple projects that involve new technologies or

for research purposes.

• Kanban

In a ’pull’ manufacturing system, as in the Toyota Production System (TPS), Kanban acts as

a signaling tool that directs the movement of parts. The idea behind it is to visualize the current

process as a series of steps written on a whiteboard (Kirovska and Koceski, 2015).

The main goal of this model is to reduce work-in-progress and ensure work items move quickly

to the next steps and increase business value. Usually, electronic boards are used, like Jira (Jira,

2023) or SwiftKanban (Nimble, 2023), to organize these tickets, so the whole team has access to

the progress of the project.

20 Literature Review in Software Development

Figure 3.5: Jira Board - Kanban application (Jira, 2023)

A software development Kanban board usually has four types of columns, "To Do", "In

Progress", "In Review", and finally "Done" tickets, that make the state of the task visible.

The best scenario to apply this methodology is when requirements are constantly changing

and need a fast release of functionality. Also, when requirements can be separated into tickets for

small improvements or functions for the application.

Each ticket has an estimation of time for development and after the developer logs the time

spent on the task, the project manager can create analytics charts to see which tasks were underes-

timated or overestimated. This improves the flow of the project and can give an idea of how long

the project will take.

The biggest difference between Kanban and Scrum is that they are both project management

frameworks, but the first relies on visual tasks to manage workflows, while the second helps

teams structure and manage their work through a set of values, principles, and practices (Rehkopf,

2023a).

Kanban helps in managing production and increasing communication between the team and

the stakeholders but lacks of details about its implementation (Mirza and Datta, 2019).

3.1.3 Comparison Traditional versus Agile

Taking a look at Table 3.1, agile software development is a method for developing software

incrementally. Contrarily, traditional software development approaches or plan-driven software

might be characterized as a more formal method of software development.

3.1 Software Development Process 21

Table 3.1: Comparison between Traditional and Agile Methodologies (adapted from Mahalakshmi
and Sundararajan, 2013 and Islam and Ferworn, 2020)

Feature Traditional Methodologies Agile Methodologies

Definition
• Sequential and plan-driven ap-

proach

• Iterative and incremental ap-

proach

Development

Process

• Emphasizes upfront planning,

documentation, and requirements

• Emphasizes adaptative planning,

collaboration, and customer in-

volvement

Advantages

• Formal documentation

• Predictable timeline

• Clear milestones

• Flexibility and adaptability

• Customer satisfaction

• Frequent feedback

Disadvantages

• Rigid approach (less responsive

to changes)

• Delayed customer feedback

• May require an experienced team

• Less control and potential for

scope creep

Suitable Projects
• Large-scale projects with stable

requirements

• Projects with evolving require-

ments and dynamic environments

usually in small teams or big

teams divided into sub-teams

Communication
• Formal and structured communi-

cation channels

• Informal and frequent communi-

cation plus face-to-face interac-

tions

Customer

Involvement

• Limited involvement during the

development

• Continuous involvement and

feedback from stakeholders

Risk

Management

• Risk analysis and mitigation dur-

ing the planning phase

• Ongoing risk identification and

mitigation

• Early adaptation

22 Literature Review in Software Development

Project

Documentation

• Extensive documentation

throughout the project

• Minimal documentation for focus

on working software

Time and Cost

estimation

• Detailed planning and estimation

upfront

• Progressive estimation and fre-

quent re-evaluation

While traditional methods emphasize upfront planning, with low to no communication with

clients in the development phase, agile brings total customer involvement in the development, with

constant adaptations according to needs and changes in the requirements.

In traditional approaches, the project scope, time, and cost are determined and closely mon-

itored for any alterations. Traditional project management emphasizes requirements collecting,

analysis, and design up front to produce higher-quality products, to minimize modifications dur-

ing the duration of the project (Reiff and Schlegel, 2022). Agile project management makes an

effort to adapt project execution to changes in the surrounding environment and service scope.

Agile requirements are frequently functional, informal, and subject to change.

Agile techniques are built on a few essential software development procedures, as opposed to

traditional approaches to the field (Akbar, 2019). The success of projects depends on these agile

methodologies’ fundamental procedures, especially when offshore development is involved.

Although the majority of agile approaches are thought to be simple and straightforward to

grasp, adoption can occasionally be challenging. It is challenging to integrate agile approaches

into a company’s culture since they are not immediately apparent (Lopez-Martinez et al. (2016)).

It has been demonstrated that despite the significant expenditure made, the majority of software

development projects have failed because they are unable to adapt to the changing demands of

users (Altameem, 2015). This has prompted software engineers to suggest adaptable and practical

methods, such as agile development approaches, to produce high-quality software.

As the process produces high-quality products, it influences software development. It has a

significant impact on the developers, helping them to dedicate their efforts to attaining the project’s

goals. The team members are inspired by the managers, which improves the creativity and in-

novation that are essential to obtain success. The approach also uses effective communication

techniques to help teams and stakeholders produce high-quality software. The greater level of

stakeholder involvement aids in identifying and fixing project flaws early on, which lowers costs.

With 71% of firms currently stating they employ agile techniques in their projects more fre-

quently than in the past, agile is a topic that is becoming more and more important in project

management (PMI, 2017).

LSI, the company in analysis, incorporates Scrum in almost every project. Analyzing each

case study in its context can help us understand how this model impacts the development and how

it can perform with success or failure, according to the way it is implemented and managed. This

3.2 Project Management 23

study can help the company improve its software development quality and time-to-market and by

doing so, decrease expenditures.

3.2 Project Management

As software development generally is divided into projects, the topic of project management is

extremely important for the study presented. The concepts and methodologies brought by project

management are interconnected with software development management as well.

Project management is the application of certain knowledge, skills, tools, and processes to

create something of value for people (PMI (2023)). This concept comes along with the term

project, which is defined as a transient attempt to add value through distinctive goods, services,

and procedures. Some projects are created to solve issues rapidly and others need time to fully

grow into something valuable. There can be projects for almost everything, and each needs to be

managed according to the requirements and goals of the company behind it.

A procedure for scheduling a group of project activities is known as the critical path method

(CPM) (Khan and Mir, 2021). It frequently works in tandem with the program evaluation and

review method (PERT). Finding the longest stretch of dependent tasks, and calculating the time

needed to accomplish each one from beginning to end, can reveal a key path in project manage-

ment.

This technique is used by project managers to create a project schedule and estimate the total

duration of a project. It helps by visually creating a diagram that represents the sequence of tasks

needed to complete the project. Once these paths are determined, the critical path is calculated,

which determines the duration of the project (Aliyu, 2013).

CPM can be beneficial for a project by identifying task dependencies and risks, accurately

estimating durations, ability to monitor progress, and transparency with the team.

Another powerful tool in project management is Gantt Charts. These illustrate work completed

over some time about the time planned for the work. A Gantt Chart can include the start and end

dates of tasks, milestones, dependencies between tasks, assignees, and more. It’s the perfect tool

when you want to display and monitor the whole progress of a project, by task or iteration, for a

visually comprehensive result. In agile methodologies, Gantt Charts are created for each sprint.

Above all, one of the principles of project management is the Team. The development team is

the one who can make or break a project, so every project manager needs to take into consideration

their motivation and spirit. Managing people can be one of the hardest tasks to perform.

Greater motivation can be fostered via an empowered team atmosphere within the project

group, department, and organization. A fundamental component of creating a self-directed work

team or a high-performing unit is empowerment. Four essential elements make up empowerment:

team member authority, competent resources, accurate information, and accountability for the

finished task (Peterson, 2007). A happy unit brings faster results with better quality.

24 Literature Review in Software Development

3.3 Existing Standards and Products for Process Automation

Industrial automation is the use of control devices, to operate industrial machinery and pro-

cesses with the least amount of human intervention and the automated replacement of hazardous

assembly operations.

In the industrial automation market, more precisely the semiconductor industry, where LSI

operates, fabrication can be difficult. Precision has emerged as a crucial issue in semiconductor

production as chip size reduces and semiconductor demand rises. One response the market was

able to generate with diverse specifications, were standards to ensure high-quality manufacturing.

Standards ensure the compatibility and interoperability of goods and services, improving product

quality and reliability.

The SEMI Standards Program rose to the interchange of data between users and suppliers

leading to the creation of precise and timely specifications and other industry standards that are

economically significant (SEMI, 2023). Guidelines for fundamental semiconductor design and

production processes are established by SEMI standards. Nowadays most clients demand to in-

clude SEMI Standards in projects related to this industry.

By using standards, businesses can save manufacturing costs, improve dependability and ef-

ficiency, and gain access to international markets. Individual participation facilitates personal

growth, gives access to developing technologies, and lessens the amount of design labor.

There are already some automation tools in the market that use SEMI standards for specific

operational scenarios like the PEER® Tool Orchestrator (PTO®) (PeerGroup, 2023a). This Peer-

Group tool automates any type of semiconductor tool to improve productivity throughout the en-

tire equipment delivery chain and increase the speed of development. Above that, it also increases

production reliability and has a control framework with a GUI-based tool designer, PEER Tool

Composer (PTC).

Chapter 4

Automator Project

The Automator Project was one of the projects LSI took part in. It consisted of doing a

software application for a company that produces optical metrology devices that emit light (LEDs,

displays TFT, cameras, sensors, and others).

4.1 Case Study Description

The client organization had a dominant position in the market, but its devices were integrated

into complex systems developed by third-party companies. They sold their cameras or sensors to

other companies that developed the final application for the client. In the typical application, their

device is integrated into a machine for quality inspection and control in an assembly line.

Although the company’s analysis algorithms and features fit the client’s final criteria, it only

sold to third parties, who then put it into their own products (cameras, sensors, or other items) and

sold to the consumer.

Because the integrated equipment had a higher value in industrial applications than their gadget

did, the company was losing extra value with this type of business.

These elements generated a drive within the company to design goods that can be offered

directly to customers and to enter that market. This would imply developing:

• Needed software for fast customization/implementation of clients’ requirements. For ex-

ample, valve or sensor control automation, automation of owned equipment, or even data

acquisition;

• Software for fast implementation of acquisition processes and laboratory analysis to validate

clients’ solutions/requirements.

This motivation led to the Automator Project, where the main goal was to develop a product to

automate numerous sequences of tasks into multiple single commands. For example, if we want

to analyze a piece, we first need to align it, take an image, and then analyze the image. Each

of these steps, when joined together, corresponds to a sequence. The project aimed to create an

application to generate multiple sequences. A good example of a similar product or something

25

26 Automator Project

close to what was envisioned is PeerGroup’s Tool Orchestrator (PTO), an equipment automation

and control framework with a GUI-based tool designer (PeerGroup, 2023b).

Although seeming a very simple and easy-to-understand concept, it proved to be very hard to

convince everyone inside the organization about the applications for the product.

A part of the German team wanted to sell the product, others to utilize it in the laboratory,

others to use it as an internal tool, and there were even those who believed that the company should

not enter this type of business. Different mindsets and opinions, each with its own advantages and

disadvantages.

With all these different views, the target of the project was not defined from the start because

it was impossible to reach a consensus.

The product owner (PO) wanted something that would allow the integrators to develop the

customer’s solutions. The developers would create the first sequences, and then the customer

could create their own or change the ones already implemented.

There were product management problems. One team wanted the development of analysis

algorithms to validate what they already had and not industrial automation. Another wanted some-

thing very complex: having a full drag-and-drop feature inside the application. In fact, some of

the requirements were so intricate, they almost looked like a programming language for itself and

nearly as convoluted as one.

The software team knew that not every requirement could be met. For example, not everything

could be drag-and-drop. Even inside the application team, which often is composed of physics

engineers, who do not have a software development background, some can program something,

and others, nothing at all. Everyone is a stakeholder, but no one is able to understand the other.

At a certain point in the development process, users could program in C# (programming lan-

guage) directly into stages of sequences. These steps could be defined by code or drag-and-drop.

This pointed to an increase in high-complexity features.

Additional conflicts and dilemmas arose when discussing User Interface (UI) requirements

and runtime dashboards.

When attempting to satisfy the standards for laboratory cases of use, where studies have a

declared beginning and conclusion, it is difficult to explain that there are industrial applications,

such as system, line, or environmental monitoring, that function continuously and do not have a

beginning and end.

Small functionalities/features continued to grow too much, even before the first real use case.

The project had two very distinct phases:

1. Fast implementation of mandatory features and demonstration of proof of concept -

no problem in this phase, since every feature was needed for the application. Output was

demonstrated with success.

2. Definition of advanced requirements - instead of defining the more general aspects of the

application, the backlog was built out of details of how to configure sequences. There was a

4.2 Case Study Analysis 27

total dispersion into small features and impossible to explain to the stakeholders. With each

demonstration, stakeholders would be able to understand less of what the application was.

The project reached a point where things were so mixed up, so complex, and so full of little

details that those involved in it could not see the global vision anymore.

The outcome of the project turned out to be a very good application but with no particular

practical use, inside or outside the company. The Automator Project was then terminated and the

application was put on hold for an undetermined time.

Figure 4.1: Automator Interface: Design View

Figure 4.1, shows the design view of the final delivered Automator application. In this view,

sequences could be defined and constructed with the features already discussed. The user may

drag and drop potential pre-defined stages from the toolbox onto their sequence on the left side.

The primary sequence is specified and built in the middle, and then each step’s attributes may be

changed on the right, where the user can even program certain particular features.

4.2 Case Study Analysis

After over two years of execution, the Automator Project was declared a failure.

This is an excellent example of how product management decisions can make or break a

project. In this case, since the beginning, the main target was not defined, and with no clear

vision of what needed to be done and for what purpose, the different teams involved had divergent

ideas and that was where the real problems started to surface.

To try to fight the misunderstanding between teams and their wishes for product requirements,

the PO’s team strategy was to try to satisfy everyone’s demands. This led to high-complexity

features, that grew until the main goal was completely lost in micro features. The requirements did

28 Automator Project

not fit together, and the application seemed somewhat useless for much of the initial requirements

planned.

With each iteration, it seemed that the complexity increased and the notion of the application

decreased. Due to the stakeholders’ lack of understanding of the use cases for which the features

were built, it was becoming more difficult to explain to them why the backlog was so full of

complex features.

Without a clear purpose in sight, the software team simply followed the PO directives while

being free to interpret the goal as they saw fit.

The lack of market research on current applications or comparable solutions was a major issue

with the Automator Project. Without market research, the company was unable to have a correct

perception of the product and customers’ needs.

With market research, teams may develop attainable company objectives, rather than relying

on vague ideals of quick success. It is easy to want to be different when developing new software

for consumers, and to get lured off track by new technical features. However, market research has

proven that what clients value most is their issues solved. Market research assists in generating,

defining, and prioritizing these problems.

In this project, there was also a lack of management of stakeholders’ expectations from the

PO.

Assuming that producing in-house was a good decision, that may not be the case, the company

should have started with extensive market research and then created a pilot application, with a

finished backlog, or at least a very completed one, to have clear goals and requirements.

With the pilot application, a stakeholders meeting would have been the ideal choice to deter-

mine whether the pilot met the client’s expectations and then proceed with the project based on

that initial impression.

4.3 Key Takeaways

The key premise of the project is that the PO must recognize that it is impossible to please

every stakeholder involved in the project. The client’s wants and needs should be the priority and

communication needs to be fostered between teams in order to have clear requirements at all times

and work as a whole.

In brief, the biggest problems found in this project are:

• Lack of defined leadership;

• Misunderstanding between teams involved in the project - communication issues;

• Inaccurate requirements gathering;

• Lack of project goals;

• Lack of market research;

4.3 Key Takeaways 29

• Issues with expectations management inside the company.

What should have been done?

1. Market evaluation and analysis - compare to existing applications and tools;

2. Clear vision and goal from the start of the project;

3. Management of stakeholders’ expectations;

4. Reduced set of primary stakeholders;

5. Prioritize communication between different teams working on the same project.

30 Automator Project

Chapter 5

Tomorrowland Project

The Tomorrowland Project is one of the ongoing initiatives at LSI. The primary objective is to

create metrology equipment for the semiconductor industry, utilizing the existing capabilities of a

standard Cross Beam microscope.

5.1 Case Study Description

A Cross beam consists of a Scanning Electron Microscope (SEM) and a FIB (focused ion

beam) plus one or more GIS (gas injection systems). Picture 5.1 corresponds to the real represen-

tation of the microscope and its constituents.

(a) Cross Beam Microscope (b) Cross Beam Details

Figure 5.1: Cross Beam Microscope and it’s Constitution

The software team’s goal in controlling the microscope is to design an application that would

allow scientists to control all activities from the interface. The program includes functionality such

as the ability to load, unload, vent, and even operate the cameras used to photograph the wafers.

The device is responsible for handling wafers and giving the user the ability to load wafers and

navigate on them.

31

32 Tomorrowland Project

Since it’s a device with lots of different features and components, there are multiple teams

working at the same time on the project, with different requirements and goals in sight.

The software engineers aim to create a foolproof application that can be marketed to clients

while simultaneously being utilized in the lab for proofs of concept and tests. By inventing new

features and parts, scientists working on microscope components want to increase the capacity and

performance of each component. Above all, application engineers aim to develop a marketable

product that will be successful in the semiconductor industry.

From the start, the management team assumed that a functional base with a working platform

already existed in the microscope. They thought that the application already had proof of concept,

and skipped that step.

Another element that was absent at the start was a specification of the features needed for

the final application. Knowing the features that the client needs for the application and for what

purpose allows developers to design in accordance with those objectives, making development

faster, more focused, and with a clear set of goals in mind.

Without a proof of concept and a final user profile, the application engineers were struggling

to create a tool that had any real use. Different teams started to disperse in requirements, and

software was drawn with too many detailed features, without ever proving the real value of the

application.

Requirements started to be harder to reach and with all the teams working on the same code

base, with different styles, issues started to appear. Teams started to disagree with each other, and

none respected the segregation of responsibilities.

Development slowed, and objectives and goals from several teams became lost in the details.

After two years, there was still no proof of concept, and the product was not yet ready for the

market.

A decision was made by the management team. After evaluating different options, a German

third-party solution was integrated into the microscope for automation control to substitute a part

of the application. This allowed teams to focus on proof of concept and gave more security to the

whole operation.

With a diminished workload, features could be defined more clearly and requirements aligned

between teams.

5.2 Case Study Analysis

The Tomorrowland Project is now growing at a slow rate, but things are getting done with

more drive and attention than previously. The management team’s fundamental failing in the early

phases was thinking that the application already had proof of concept and skipping that step. Proof

of concept ensures the product brings value to end users, while it helps developers understand the

limitations of their idea.

If management had begun by focusing all efforts on a proof of concept rather than rushing

into production, a prototype with clear ideas for cures to the key problem that the program is

5.3 Key Takeaways 33

attempting to ease would have been especially valuable. The prototype might be given to the

ultimate user to see whether the initial concept meets expectations and gather feedback to proceed

with development.

This would also help in terms of not having too many project goals at the same time from

different teams.

Management should also evaluate how many teams are operating at the same time with the

same instrument, the microscope. Each has its own set of criteria and objectives. This might

become too complicated to handle since everyone wants to strive towards their goal without con-

sidering the motivation of the other teams. Work becomes slower and some implementations might

affect another’s work without sufficient meetings and communication channels to discuss what is

occurring and who is working on what. For example, if the product development team upgrades

one of the microscope’s components, the tool becomes unavailable, and the software team loses

productivity since they lose test time on the tool to create their application.

It is critical for each team to be aware of what is going on around the product since features

from one team may correlate to the goals of another. When this occurs, people can collaborate and

increase performance by working together.

5.3 Key Takeaways

The project’s core premise is that management should delay production and development until

a very thorough proof of concept has been established. Having specific objectives and specifica-

tions that correspond to the requirements of the customer is essential.

In brief, the biggest problems found in this project are:

• Lack of defined leadership;

• Misunderstanding between teams involved in the project - communication issues;

• Inaccurate requirements gathering;

• No proof of concept before development;

• Focus on the main project goal;

• Poor milestone definition.

What should have been done?

1. Foster co-creation of requirements to balance different teams’ goals;

2. Focus initial effort on proof of concept;

3. Prioritize communication between different teams working on the same project;

4. Create a prioritization chart and concentrate goals into small phases of the project.

34 Tomorrowland Project

Chapter 6

Alpha: Scanning Electron Microscope
Project

Intending to develop an electronic microscope of the finest quality with innovative and com-

plex technology, a German company decided to implement the Alpha Project and integrate LSI as

the main development team.

6.1 Case Study Description

The Alpha microscope is characterized by an electron beam corrected by a magnetic mirror.

Figure 6.1, shows the real tool.

Figure 6.1: Alpha Microscope

There are three main teams involved in this project:

35

36 Alpha: Scanning Electron Microscope Project

• Product Development Team focused on performance (scientists) - responsible for putting

the machine together and adjusting it for optimized results. They are one of the main stake-

holders at this stage of the project and their requirements have top priority. The software

features requested will be focused on the tools needed for the development of the equipment

itself, not for the final application

• Software Development Team - responsible for the development of the software application

• Production Requirements Team - composed by designers and business supporters. Re-

sponsible for designing the product and its specifications and helping the PO maximize

product value

Before any software development, the first stage of the project was the proof of concept (cre-

ating evidence and documentation about the feasibility of the idea), lasting more than 10 years

and applied by a team of scientists/physicists. Here, only the adaptation of old components was

needed to create test applications to prove the value of the project.

Once they knew the product worked and had value, then the team moved its efforts into con-

structing a prototype, and the software development could begin in parallel.

Since the product development team focuses on building the best microscope possible, they

tend to take less into consideration the application and software for the product. The software team

focuses on creating the application for controlling the microscope and exploring the potential for

mass production of the application. Developers want to generate high-quality products as quickly

and affordably as feasible, whereas scientists typically take longer and incur more production

expenses to ensure the quality of their contribution.

The product development team is the one that draws the machine and defines the requirements

at this stage of the project. The software team can speed up development by taking those require-

ments and implementing them precisely as the lab gives them. Still, after the first iteration, there

is no usable product to provide to customers.

The biggest challenge is trying to make the product development team and software developers

work together and fulfill both wants and needs, towards the best outcome possible.

The continuation of the project came from the decision to implement a new software, that

could replace the one already in use, with new features and better functionality. For that, a deal

was made with the laboratory to create an independent interface on the outside to control the

microscope. This interface would integrate the possibility to write MatLab scripts to control the

microscope for laboratory investigations, tests, and proof of concepts. The end goal was to migrate

those scripts into the application since they could not go to the client.

The result? MatLab scripts ended on the client side including everything the scientists did with

the application. There was not enough time to migrate everything from the scripts and even tools

for testing product assembly, calibration, and others, not requested by the client, came along.

The project was rushed and since the application had external MatLab scripts, it was not

thread-safe (code will work even if many environments are executing it simultaneously) and was

not tested to work in parallel with the microscope. Multiple episodes of bugs occurred, many

6.2 Case Study Analysis 37

times impossible to diagnose. The product was delivered but with a high risk in quality policies

(not fully tested, and with ongoing bugs still in detection and treatment).

At this moment, there are six operating Alpha microscopes, spread across the world. The

project is still in the planning phase for mass production which will imply a redesign of the equip-

ment and new software development for the production line. Each microscope is different and

needs specific software configuration, according to its purpose of utilization, for industry or inves-

tigation.

The profile of the user is important at this stage. Knowing the customer and their requirements

makes it easier to plan and develop a trustworthy product. For industry purposes, the results are

the most important, together with the reliability of the equipment, without failures and with an

uptime of 99,5% or more.

A question that remains is if the project should prioritize production tools for the mass pro-

duction of the microscope or not, depending on the decisions made in this phase of planning.

6.2 Case Study Analysis

This case study focuses on the difficulties that occur inside a project’s team, when different

positions have distinct visions of the product, and of how it should evolve and be developed.

The conflict between stakeholders in the definition of requirements for the long term and hav-

ing a clean requirements architecture is the main problem. It is difficult for them to comprehend

each other and come to terms with small increments of functionality that could be beneficial to the

final outcome. This could generate value not only for the scientists, that need the application for

their daily work on improving and developing the machine, but also for possible clients that may

want to buy the microscope.

When both sides have low communication channels and do not fully comprehend the work

being done on the other side, problems surface. The project was rushed and delivered with very

high risk in quality policies. That was something unusual for software developers, who always

have the goal to deliver applications tested and fully working, without quality problems.

With this case, we understand the distinct mindsets of the product development team and soft-

ware developers in the metrology for industry and science. The first is very methodic in presenting

results and observing them but is chaotic in the implementation of solutions, and the second, with

a much more open mind and agile style.

Analyzing the project, it is possible to comprehend the importance of direct contact and com-

munication between all involved in the project. The process of defining requirements, if done only

by the laboratory people, becomes very formal, and rigid, and features come out according to their

goals, not taking into consideration other applications for the microscope or the software devel-

opers’ opinion on the matter. When we look at the goal of each group, the product development

team and developers, they differ, and so do the requirements for the control of the microscope and

the application.

38 Alpha: Scanning Electron Microscope Project

For instance, the product development team has a requirement to have a tool in the software

to perfect the alignment of an electron beam. They want an interface that allows them to have this

tool and experiment with different algorithms. The same tool is needed by the application team

but from the perspective of the client. Thus, it must have a corporate aspect and have configuration

options that are quite different from those used in the lab.

It is key that the software developers understand the application of the microscope as a product

and the vision that the lab has of it, as is the opposite, that the product development team compre-

hends the view of the developers for the control application. When both sides are aligned, both

can negotiate, suggest alternatives, and come up with innovative solutions for the project.

Communication is the base for better final product quality, a successful project, and an increase

in speed of development. The finished application can be used in conjunction with the scripts

created by the product development team in the laboratory and in accordance with the needs of

both parties.

Another relevant conclusion was the lack of leadership and a strong voice of the PO to set

everything in motion and clearly define milestones for feature implementation. The PO should be

able to understand the requirements of the several stakeholders in order to prioritize and redefine

the overall project design. Both the functional and the technical aspects of the requirement have

to be understood. Technical specialists and application specialists will often lack understanding of

one another so the PO role has to be fulfilled by someone overarching the domains.

6.3 Key Takeaways

The main takeaway from this project is, when having distinct profiles inside a project, like the

product developers and software developers, it is key to find common ground between them. If

not, the project can quickly become involved in conflicts. Another important aspect of this project

is how rushed it was, which led to issues with the product’s quality.

This project clearly lacked defined leadership. The team is unable to work with defined goals

and vision because no PO was not prepared for the job. The PO should be the one who could

make sense of the various profiles and persuade them to cooperate in order to achieve a common

objective. These issues could be avoided with clear requirements and direction from someone who

is mindful of all parties involved.

In brief, the biggest problems found in this project are:

• Misunderstanding between teams involved - communication issues;

• Requirements definition not according to stakeholders’ wants and needs;

• Project was rushed to deliver the product to the client;

• Lack of defined leadership.

What should have been done?

6.3 Key Takeaways 39

1. Prioritize communication between different teams working on the same project;

2. Track progress and schedule periodic meetings to share the current status and come up with

solutions to resolve possible problems;

3. Take time in process and requirements definition. A well-defined project increases trans-

parency and helps to better understand the goals.

40 Alpha: Scanning Electron Microscope Project

Chapter 7

Beta: Applications of Alpha Microscope
in Semiconductor Industry

The Beta Project corresponds to the application development of the Alpha microscope that was

designed in Chapter 6. At this stage, a development team continues to exist, but the final product

is not yet fully designed. There is software that appears to be similar to what the client wants but

lacks the tools required for the production level and service.

7.1 Case Study Description

The requirements imposed for this phase include process development for possible industrial

applications. There is a greater concern for optimization and ease of alignment in the microscope,

which is one of the characteristics available with its use.

Here, the PO requires to perform several tests with a precise list of points with different types

of conditions and wants the software to be configurable, with the help of auto functions. This is

transmitted to the rest of the team as the goal of the phase. Software development and microscope

development occur at the same time.

The application goal was to be able to create an automation language inside the software that

would allow the creation of sequences of tasks, something close to the application from the Au-

tomator Project in Chapter 4. In this scenario, we needed something so simple and straightforward

that even someone who isn’t a physicist or developer could utilize and put together their method.

After many iterations of development and evaluation of similar tools in at least three other

company products, the development team concluded that developing something too generic, that

works for every single use-case and system, has unsupportable costs, both monetary, in time, and

in support.

To provide a balanced solution in terms of quality, cost, and speed to delivery, the first option

was to give low-level interfaces to a team of application support developers who worked with

MatLab/Python languages. There was no capacity to look into automation because the focus was

on the reliability and testability of the solution.

41

42 Beta: Applications of Alpha Microscope in Semiconductor Industry

This alternative worked for the first results but soon proved to be insufficient because the

scripts were not configurable or robust. There came the second alternative: implementing the

solution in the final software, without generalization, with a specific user interface.

With a cost reduction of fifty times more than the first option, this turned out to be the best

alternative, the one still in development now.

Figure 7.1: Beta Application Interface: Design View

Figure 7.1, shows the main interface of the Beta Application. The interface in view is the one

that captures images directly from the microscope, including all the features regarding the control

of the microscope camera in order to generate an image with all the settings intended.

The panel to regulate the mode of image capture and every command that makes it possible

to take a picture of the microscope are displayed on the left. The image that was shot is shown in

the middle, and on the right is the view of the microscope chamber. Finally, you may modify the

picture sizes, colors, and other characteristics at the bottom.

7.2 Case Study Analysis

The second phase of the Beta Project presents a different view than the first phase. This is a

good example of how decisions in project management can impact the project for the best outcome.

When the PO saw that the first alternative was taking too long and was not sufficient to meet the

client’s requirements, the decision to change to another alternative proved to be the best judgment.

The key factor is having an Agile methodology that is efficient and a PO that follows the struc-

ture and status of the project at all times. When the PO and the team have a good communication

basis, the project flows and requirements are fulfilled rapidly.

7.3 Key Takeaways 43

When the requirements needed to be changed, according to the results from the first alternative,

Agile proved to be adaptable, and with low effort, the team quickly changed its mindset to meet

the new requirements.

This is a good example of how Agile works well if all parties are invested and motivated.

Above that, constant communication with stakeholders proved to be the decisive factor for success.

7.3 Key Takeaways

The main idea of this project is, contrary to others, to demonstrate an example where product

management was a success. It is from this type of projects that we can learn and collect information

for future ones.

In brief, the biggest triumphs found in this project are:

• Agile works well when the whole team is invested and motivated;

• Communication is the key factor for every project;

• Right from the start, project goals were communicated and PO made sure every team in-

volved understood them;

• Multiple iterations with continuous testing and assessment against other similar tools were

helpful to quickly grasp the project’s flow and come to team-based decisions. This allowed

for an immediate response and alteration in line with the conclusions;

• Strong leadership with a good PO, that guided the team to success and clearly defined project

goals, requirements, and prioritized what needs to be done first.

44 Beta: Applications of Alpha Microscope in Semiconductor Industry

Chapter 8

Conclusions

This chapter presents an overview of all the projects described and analyzed in this dissertation.

From their comparison, conclusions can be drawn and a best practices guide can be produced in

order to help with the decision-making in product management for future projects.

8.1 Overall and Comparative Conclusions between Case Studies

This dissertation’s major objective was to learn more about four case studies and comprehend

the key ideas while examining project and product management in the software development in-

dustry. The business would be able to recognize and handle the current difficulties by contrasting

them.

The ultimate objective was to improve the future decision of priorities, requirements, and

system design when confronted with stakeholders and use cases with very different profiles.

To achieve all of the goals proposed in this dissertation and to answer every question that

prompted this work, thorough theoretical research was conducted and presented, followed by a

very detailed description of each project, as well as an analysis of the main impediments or con-

flicts for each.

This conclusion seeks to answer the main concerns of LSI by giving comparative research on

project disputes. To address question number one, what particular challenges and bottlenecks are

influencing the company’s project management and software development processes, a compari-

son table is created by compiling the major problems identified in previous chapters.

For question number two, what has been discovered to be the genuine reasons for the issue, a

comprehensive investigation of each case study and specific issue is required in order to deduce

what can be the sources of such conflict.

Finally, for question number three, how can the company resolve these concerns, a best prac-

tices guide is created to assist the organization by providing recommendations on how to avoid

those issues from occurring and negatively impacting the project’s conclusion.

The major purpose of the dissertation is successfully accomplished with these measures.

45

46 Conclusions

Given the examination of each case study, it is feasible to analyze the project management

events inside each project and deduce similar issues, choices, and team evolutions. These conclu-

sions will give key insights for future projects at the company and also aid other similar organiza-

tions in the market.

Table 8.1 is provided to help with understanding the main difficulties in each project and to

compare them. It lists the most significant project management issues identified through analysis

in earlier chapters, along with the projects for which they were discovered.

Table 8.1: Problems found in each Project. Comparison between Projects

Problem Automator Project
Tomorrowland

Project
Alpha Project

Lack of a Defined

Leadership
X X X

Communication Issues X X X

Inaccurate Requirements

Gathering
X X X

Lack of Project Goals X

Lack of Market Research X

Issues with Expectations

Management
X

No Proof of Concept

Definition
X

The three main problems, found in every project, were related to the lack of a defined leader-

ship, communication among the teams involved, and issues with the definition and fulfillment of

requirements. This finding is not unexpected given that several studies conducted recently identify

these factors as the most frequent causes of project failure.

Numerous issues with the start of the planning and development process exist in addition to

these. Project goals, market research, and proof of concept issues are connected to choices made

early in the implementation process, sometimes motivated by a desire to complete the process

quickly. These are crucial because if project managers don’t take their time, in the beginning, to

define all of these components and devote time and effort to all of this, additional difficulties will

surface along the way.

The main causes for each of these problems were found to be due to:

• Lack of a Defined Leadership - lack of a strong PO that provides guidance and decisions

when needed, as well as prioritizing the requirements according to goals and due dates

• Communication Issues - insufficient engagement between teams and stakeholders; absence

of communication plan; no project progress track; one team does not understand the vision

of another

8.1 Overall and Comparative Conclusions between Case Studies 47

• Innacurate Requirements Gathering - absence of project goals; no communication plan;

too many requirements from different teams that do not fit together; lack of planning meet-

ings to discuss and reach a consensus about requirements together

• Lack of Project Goals/Market Research - project rushed to bring faster value to the client

• Issues with Expectations Management - Lack of thorough planning; incorrect estimates

of the costs, materials, and time needed; poor communication amongst all parties engaged

in the project

When it comes to team communication, it is critical to first understand the various profiles

inside the projects. Since we are dealing with microscope development with applications, each

project has numerous teams, each with its own set of requirements and goals. Usually, there are

four main profiles coordinated by one Project Leader:

1. Scientists - these have the goal to develop research and investigation regarding the micro-

scope. Their requirements involve improvements and tests on the tool. These usually take

long periods of time and focus only on creating the best microscope possible

2. Software Developers - these create the main application for the microscope. Their require-

ments include creating the key elements, such as the UI, user controls, and microscope

controls, as well as multiple interfaces that link to all equipment inside the microscope.

Their focus is on building a quality application, that can be used by the stakeholders and

sold to customers as part of the microscope’s pack.

3. Application Engineers - these serve as a link between customers and technical teams. They

employ client feedback and sales data to build and solve complicated software challenges

and applications. They give technical help and knowledge to customers by testing apps and

reacting to comments.

4. Product Developers - these work on single components that belong in the microscope. For

example, the microscope has an SEM column and an OM column. Each has a product

development team that focuses on enhancements and the construction of those columns.

Their primary focus is on testing and enhancing the quality of their column as well as data

collection in order to increase the precision of the microscope.

With such different profiles inside the main project, it might be hard to find common ground

and for project managers to understand how to connect all these people. In reality, if one of

these profiles is given too much authority and influence, an imbalance arises and the project loses

track. Too much power in the hands of scientists slows development; too much power in the hands

of application engineers causes requirements to become overly comprehensive and full of minor

details, as seen in the case studies.

It is important for project managers to take the time to understand which requirements fit

together, and which do not but above that, frequent meetings with all the teams are important, not

48 Conclusions

only to keep track of performance and development but also to work on requirements, plan what

needs to be done by which team, and have space for all to talk and resolve problems together.

Project teams that collaborate can achieve a common goal more effectively and efficiently than

people working alone. It is impossible to please every entity, but it is possible to please the project

as a whole.

8.2 Best Practices Guide

A best practices guide can assist project managers grasp the essential points to consider and

suggestions to keep the project moving in order to overcome and prevent challenges like the ones

listed.

Table 8.2: Best Practices Guide

Problem to

Avoid
Guidance Tips

Lack of a

Defined

Leadership

• Select a PO who can be upfront and articulately state what is re-

quired, what is lacking, and the course of action

• The PO should, first of all, clarify the main goal of the project to all

team members and make sure everyone understands

• Choose the right leadership style for each team. In this case, an Agile

PO is required to be involved in the whole development process

• The PO should focus on maximizing the value of the product and

delivering it to the client

• PO should take responsibility for the success of the product and the

project

8.2 Best Practices Guide 49

Communication

Issues

• Have a thorough strategy for communication that includes what

needs to be said, how often, the channels to use, and who is respon-

sible

• Invite stakeholders to regular check-in meetings to learn how the

project is progressing and whether it is meeting the criteria

• Encourage team contact by holding social events and coffee breaks in

addition to regular meetings and scrum reviews to boost participation

• Track progress by keeping an updated backlog and sprint board

• Showcase and modify leadership traits to meet the demands of the

team and the individual

• Be open to feedback and make adjustments along the way

Inaccurate

Requirements

Gathering

• Identify the relevant stakeholders and their requirements, prior to the

execution of the project

• Establish proper project goals

• Document and confirm requirements by holding discussions with all

parties

• Prioritize requirements based on goals, then plan for incremental im-

provements in capability to meet each of those criteria

• Monitor progress and make modifications as needed based on cus-

tomer feedback

50 Conclusions

Problems

regarding

Project Goals

• Before beginning the project, define the objectives, goals, and mile-

stones. This is the only method to ensure project success.

• Understand the project’s core vision and ensure that the team does as

well

• Use SMART Goals: Specific, Measurable, Achievable, Relevant, and

Time-Bound. By defining these criteria in relation to your goal, you

can be sure that your goals can be attained in a set amount of time.

This method removes generalizations and hunches, establishes a pre-

cise time frame, and makes it simpler to monitor progress and spot

missing milestones.

• Set up a planning session with each team engaged to convey the goals

and be open-minded to changes

Lack of Market

Research/Proof

of Concept

• Do not assume that conducting market research or providing proof of

concept is easy and do not skip these procedures

• Perform a proof of concept to demonstrate the project’s worth and

ability to truly alleviate the customer’s problem

• Before any development, perform complex market research to under-

stand the market and take notions of existing products and competi-

tion

Issues with

Expectations

Management

• Do not rush the planning phase. Setting specific and reasonable ex-

pectations based on the team’s skill level, the resources at hand, and

the anticipated results is crucial

• Include team members in the planning process to establish roles and

responsibilities, timetables, metrics, and process estimation

• Have effective communication with the tips above

• Focus on milestones and work towards each increment

8.2 Best Practices Guide 51

In terms of future work, it is crucial for the company to start by reading the guide and, before

anything else, start by implementing an agile methodology where every employee has a voice and

fosters teamwork. Additionally, it is crucial to develop a strategy from the outset and instruct each

team on the project’s values and methods of operation.

The management group should transparently teach its members using this guide. They can

be better taught and prepared to respond when the first indicators of difficulties appear if they are

aware of the primary issues that frequently arise from the beginning.

Most important, the company should always foster good communication between all teams

involved in every project, and work with motivation towards success. The corporation can begin

by setting up daily meetings to monitor the progress of each project inside the organization and

occasionally setting up team-building activities like outdoor games such as football or trekking or,

for instance, escape rooms to promote interpersonal collaboration.

The feedback received from the company regarding the findings and the best practices guide

produced in this report was positive. They intend to implement this guide to improve the outcomes

of future projects and improve their project management.

In what relates to this dissertation, future developments could come from studying a larger

variety of projects and supervising the implementation of these tips and their impact on the future.

By requiring teams to provide fresh advice and jointly produce a unique guide for each organi-

zation, these additional projects might not only validate the best practice guide but also improve

it.

52 Conclusions

Bibliography

Aitzaz, S., Samdani, G., Ali, M., and Kamran, M. (2016). A comparative analysis of in-house and
outsourced development in software industry. International Journal of Computer Applications,
141:18–22.

Akbar, R. (2019). Tailoring agile-based software development processes. IEEE Access, 7:1–1.

Aliyu, A. (2013). Project management using critical path method (CPM): A pragmatic study.
Global Journal of Pure and Applied Sciences, 18:197–206.

Altameem, E. (2015). Impact of agile methodology on software development. Computer and
Information Science, 8:9–14.

GeeksforGeeks (2023). Software development models & architecture. https://www.
geeksforgeeks.org/software-engineering-spiral-model/?ref=lbp. Ac-
cessed: 2023/04/13.

Grant, A. (2020). High-level and low-level programming languages. https://www.
makeuseof.com/tag/high-level-low-level-programming-languages/. Ac-
cessed: 2023/03/24.

IBM (2020). What is continuous integration? https://www.ibm.com/topics/
continuous-integration. Accessed: 2023/04/04.

Islam, A. Z. and Ferworn, D. A. (2020). A comparison between agile and traditional software
development methodologies. Global Journal of Computer Science and Technology, pages 7–
42.

Jira (2023). Jira software. https://www.atlassian.com/software/jira. Accessed:
2023/04/14.

Keil, M., Lee, H. K., and Deng, T. (2013). Understanding the most critical skills for managing it
projects: A delphi study of it project managers. Information Management, 50:398–414.

Khan, A. and Mir, M. (2021). Critical path method (CPM). Research in Medical Engineering
Sciences, 9:1031–1033.

Kirovska, N. and Koceski, S. (2015). Usage of kanban methodology at software development
teams. Journal of Applied Economics and Business, 3:25–34.

Lopez-Martinez, J., Juarez-Ramirez, R., Huertas, C., Jimenez, S., and Guerra-Garcia, C. (2016).
Problems in the adoption of agile-scrum methodologies: A systematic literature review. Pro-
ceedings - 2016 4th International Conference in Software Engineering Research and Innova-
tion, CONISOFT 2016, pages 141–148.

53

https://www.geeksforgeeks.org/software-engineering-spiral-model/?ref=lbp
https://www.geeksforgeeks.org/software-engineering-spiral-model/?ref=lbp
https://www.makeuseof.com/tag/high-level-low-level-programming-languages/
https://www.makeuseof.com/tag/high-level-low-level-programming-languages/
https://www.ibm.com/topics/continuous-integration
https://www.ibm.com/topics/continuous-integration
https://www.atlassian.com/software/jira

54 BIBLIOGRAPHY

Mahalakshmi, M. and Sundararajan, M. (2013). Traditional sdlc vs scrum methodology – a com-
parative study. International Journal of Emerging Technology and Advanced Engineering, 3:2–
6.

Mathur, A. and Acharya, A. (2015). A comparative study on utilization of scrum and spiral
software development methodologies: A review. International Journal of Engineering and
Technical Research, Vol. 4:90–94.

Mens, T., Cataldo, M., and Damian, D. (2019). The social developer: The future of software
development [guest editors’ introduction]. IEEE Software, 36:11–14.

Mirza, M. and Datta, S. (2019). Strengths and weakness of traditional and agile processes - a
systematic review. Journal of Software, 14:209–219.

Nimble (2023). Swiftkanban. https://www.nimblework.com/products/
swiftkanban/. Accessed: 2023/04/28.

Paulk, M., Curtis, B., Chrissis, M., and Weber, C. (1993). Capability maturity model, version 1.1.
Software, IEEE, 10:18–27.

PeerGroup (2023a). Equipment automation. https://www.peergroup.com/
products-services/oems/equipment-automation/. Accessed: 2023/04/19.

PeerGroup (2023b). Peer tool orchestrator (pto). https://www.peergroup.com/
products-services/oems/equipment-automation/pto/. Accessed: 2023/04/25.

Peterson, T. M. (2007). Motivation: How to increase project team performance. Project Manage-
ment Journal, 38:60–69.

PMI (2017). Success rates rise | pulse of the profession 2017. https://www.pmi.org/
learning/thought-leadership/pulse/pulse-of-the-profession-2017. Ac-
cessed: 2023/03/24.

PMI (2023). What is project management? https://www.pmi.org/about/
learn-about-pmi/what-is-project-management. Accessed: 2023/04/17.

Professional, D. (2019). Continuous integration best practices. https://www.devonblog.
com/continuous-delivery/continuous-integration-best-practices/. Ac-
cessed: 2023/04/10.

ProgramizPRO (2022). High-level vs. low-level programming: What’s the difference? https://
programiz.pro/resources/high-level-vs-low-level/. Accessed: 2023/04/20.

Rehkopf, M. (2023a). Kanban vs. scrum: which agile are you? https://www.atlassian.
com/agile/kanban/kanban-vs-scrum. Accessed: 2023/05/16.

Rehkopf, M. (2023b). Scrum sprints. https://www.atlassian.com/agile/scrum/
sprints. Accessed: 2023/04/17.

Reiff, J. and Schlegel, D. (2022). Hybrid project management – a systematic literature review.
International Journal of Information Systems and Project Management, 10:45–63.

Rozhnova, T., Tomachynska, V., and Korsun, D. (2022). Life cycle models, principles and method-
ologies of software development. Scientific Collection «InterConf+», (28(137)):394–401.

https://www.nimblework.com/products/swiftkanban/
https://www.nimblework.com/products/swiftkanban/
https://www.peergroup.com/products-services/oems/equipment-automation/
https://www.peergroup.com/products-services/oems/equipment-automation/
https://www.peergroup.com/products-services/oems/equipment-automation/pto/
https://www.peergroup.com/products-services/oems/equipment-automation/pto/
https://www.pmi.org/learning/thought-leadership/pulse/pulse-of-the-profession-2017
https://www.pmi.org/learning/thought-leadership/pulse/pulse-of-the-profession-2017
https://www.pmi.org/about/learn-about-pmi/what-is-project-management
https://www.pmi.org/about/learn-about-pmi/what-is-project-management
https://www.devonblog.com/continuous-delivery/continuous-integration-best-practices/
https://www.devonblog.com/continuous-delivery/continuous-integration-best-practices/
https://programiz.pro/resources/high-level-vs-low-level/
https://programiz.pro/resources/high-level-vs-low-level/
https://www.atlassian.com/agile/kanban/kanban-vs-scrum
https://www.atlassian.com/agile/kanban/kanban-vs-scrum
https://www.atlassian.com/agile/scrum/sprints
https://www.atlassian.com/agile/scrum/sprints

BIBLIOGRAPHY 55

Saeed, S., Jhanjhi, N. Z., Naqvi, M., and Humayun, M. (2019). Analysis of software development
methodologies. International Journal of Computing and Digital Systems, 8:445–460.

Salameh, H. (2014). What, when, why, and how? A comparison between agile project man-
agement and traditional project management methods. International Journal of Business and
Management Review, 2:52–74.

Schwaber, K. (2004). Agile Project Management with Scrum. Developer Best Practices. Pearson
Education.

SEMI (2023). Semi standards. https://semi.org/en. Accessed: 2023/04/18.

Shylesh, S. (2017). A study of software development life cycle process models. SSRN Electronic
Journal, pages 1–7.

Wells, D. (2013). Extreme programming: A gentle introduction. http://www.
extremeprogramming.org/. Accessed: 2023/04/13.

https://semi.org/en
http://www.extremeprogramming.org/
http://www.extremeprogramming.org/

	Página de Rosto
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Project Framework and Motivation
	1.2 The Project at LSI, Integração de Serviços e Informática, LDA
	1.3 Goals
	1.4 Methodology
	1.5 Work Plan
	1.6 Dissertation Structure
	2 Background - Options placed in the Development of Software Automatism's
	2.1 In-House Development versus Third-Party Solutions
	2.2 High-Level versus Low-Level Development Languages
	2.3 Development Strategies: Continuous Integration
	3 Literature Review in Software Development
	3.1 Software Development Process
	3.1.1 Traditional Methodologies
	3.1.2 Agile Methodologies
	3.1.3 Comparison Traditional versus Agile
	3.2 Project Management
	3.3 Existing Standards and Products for Process Automation
	4 Automator Project
	4.1 Case Study Description
	4.2 Case Study Analysis
	4.3 Key Takeaways
	5 Tomorrowland Project
	5.1 Case Study Description
	5.2 Case Study Analysis
	5.3 Key Takeaways
	6 Alpha: Scanning Electron Microscope Project
	6.1 Case Study Description
	6.2 Case Study Analysis
	6.3 Key Takeaways
	7 Beta: Applications of Alpha Microscope in Semiconductor Industry
	7.1 Case Study Description
	7.2 Case Study Analysis
	7.3 Key Takeaways
	8 Conclusions
	8.1 Overall and Comparative Conclusions between Case Studies
	8.2 Best Practices Guide

