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Resumo

Raio-X torácico é um exame de imagem médica comum, usado para analisar a região torácica.
Através de imagens de raio-X é possível distinguir diversas estruturas, permitindo a deteção de
anormalidades. O uso extensivo de raio-X torácico, juntamente com o desenvolvimento tec-
nológico, levou à crescente necessidade de métodos automáticos para análise de imagem e re-
latórios médicos. Múltiplos métodos têm sido desenvolvidos, com diferentes objetivos, nomeada-
mente a deteção de anormalidades numa imagem e correspondente localização. Quando um raio-X
torácico é analisado por um profissional, este é normalmente comparado por imagens adquiridas
previamente. Este processo permite ter uma referência longitudinal, levando a um diagnóstico
mais preciso. A análise automática de raio-X pode beneficiar da utilização de dados longitudinais,
uma vez que estes podem levar à inclusão de informação relevante para a decisão efetuada, con-
tudo, esta é uma área pouco estudada. Neste trabalho, a aplicação de informação longitudinal foi
estudada, para deteção de anormalidades e deteção de mudança em pares de raio-X torácico.

Inicialmente, um método para alinhamento de raio-X torácico foi construído, com o obje-
tivo de alinhar duas imagens. Sistemas automáticos tendem a beneficiar de um processo de alin-
hamento quando múltiplas imagens são usadas, uma vez que permitem efetuar uma melhor cor-
respondência entre as características das imagens. O método de alinhamento desenvolvido utiliza
segmentações de pulmões para alinhar uma imagem de acordo com uma referência, calculando
parâmetros de rotação, translação e escalamento para aplicar transformações rígidas. Esta técnica
permitiu alinhar pares consecutivos de imagens, cujas segmentações atingiram um DSC médio de
0.895±0.080.

Múltiplas experiências foram efetuadas relativamente à deteção de uma patologia e deteção de
mudança num par de imagens de um mesmo paciente. Relativamente aos algoritmos de classifi-
cação, vários modelos foram usados, nos quais informação longitudinal foi incluída a diferentes
níveis. Um modelo treinado sem dados longitudinais foi usado como base para comparação. Nas
restantes experiências, a inclusão de informação longitudinal foi feita ao nível das característi-
cas e ao nível das imagens de entrada no modelo. Nesta última, o processo foi realizado com
pares não alinhados e repetido com pares alinhados através do método desenvolvido. Mapas de
explicabilidade foram gerados para estas configurações experimentais. Nas experiências iniciais
foram usados pares de imagens consecutivas. A utilização de pares alinhados revelou um mel-
horamento das métricas finais, em comparação com pares não alinhados, quer para a deteção de
uma patologia, quer para a deteção de mudança. O modelo que utiliza as características das ima-
gens concatenadas superou o desempenho dos restantes na deteção de mudança, com uma AUC de
0.858, e apresenta uma AUC de 0.897 para a deteção de patologia, mostrando que as características
associadas a patologia podem ser usadas na previsão de comparação entre as imagens.

De modo a melhorar os resultados dos métodos desenvolvidos, técnicas de aumento de dados
foram estudadas. Estas técnicas provaram que aumentar a representação de classes minoritárias
aumenta o ruído no conjunto de dados, levando, consequentemente, a resultados piores. O au-
mento do número de amostras de treino, mantendo a proporção de cada classe, mostrou ser uma
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técnica de aumento de dados vantajosa em estudos longitudinais.
A possibilidade da existência de anotações incorretas no conjunto de dados levou à realiza-

ção de outra experiência, em que um novo conjunto de dados retificado foi gerado, alterando as
anotações do conjunto de dados original usando informações longitudinais. A alteração foi feita
com o objetivo de eliminar os casos em que um mesmo paciente apresenta múltiplas alterações na
presença da patologia num curto espaço de tempo. A retificação do conjunto de dados aumentou
a sua consistência e os resultados mostram que as características aprendidas usando o conjunto
de dados original levam a um alto desempenho no conjunto de dados retificado, provando que a
retificação facilitou a tarefa de teste.

Concluindo, independentemente da escassez de informação temporal e comparativa nos con-
juntos de dados de raio-X torácico mais comuns, o uso de imagens longitudinais provou fornecer
informações relevantes que permitem a previsão de uma patologia e mudança entre duas imagens
num par. O uso de características de patologia mostrou resultados promissores na previsão da
mudança entre duas imagens, sem afetar a deteção de patologia. O uso de imagens alinhadas
comprovou a importância dos métodos de alinhamento quando múltiplas imagens são usadas para
previsão. A utilização de todos os dados, negligenciando a sua ordem temporal, pode ser us-
ada como uma técnica de aumento de dados considerável, cujo estudo deve ser expandido. Da
mesma forma, mais estudos devem ser realizados relativamente à retificação longitudinal. Os da-
dos longitudinais podem ser usados como uma ferramenta poderosa para retificar um conjunto de
dados, uma vez que fornecem informações temporais que podem ser usadas para verificar se uma
anotação é coerente com os aspetos fisiológicos da anormalidade.

Palavras-Chave: Aprendizagem Profunda, Raio-X Torácico, Dados Longitudinais



Abstract

Chest radiography is a common medical imaging exam that is used to analyze the thoracic area.
Through X-ray images, it is possible to distinguish different structures, which allows the detection
of abnormalities. The extensive use of chest radiography, along with the development of tech-
nology, led to an increasing need for automated methods for image and report analysis. Multiple
methods have been developed, with different objectives, namely the detection of abnormalities in a
scan, as well as their localization. When a chest scan is being analyzed by a medical professional,
it is usually compared with previous scans, acquired at different time points. This is done in order
to have a longitudinal reference, and provide a more accurate diagnosis. The automated analysis
of scans might benefit from using longitudinal data, as it might provide relevant information for
the presented decision, however, this field that has not been much studied. In this work, the appli-
cation of longitudinal information for detection of abnormality and detection of change in pairs of
CXR images was studied.

Initially, an alignment method was constructed, with the goal of aligning two images. When
using multiple images, automated systems often benefit from such process, as it allows a better
matching of the image features. The developed alignment method uses lung segmentation fea-
tures to align one image according to a reference, computing rotation, translation, and scaling
parameters for rigid transformation. This technique allowed the generation of aligned consecutive
images pairs, whose segmentations reach an average Dice Similarity Coefficient (DSC) score of
0.895±0.080.

Multiple experiments were performed regarding the detection of a pathology and the detection
of change in an image pair, from the same patient. As for classification algorithms, various models
were used, each integrating longitudinal information at a different level. A model trained without
longitudinal information was used as a baseline. In the remaining experiments, the inclusion of
this information was done at the features level and at the input level. The latter was done with
the original images and also with images aligned with the developed method. Explainability maps
were generated for all these experiments. Initial experiments underwent using consecutive pairs
of images. The usage of aligned images revealed to improve the final metrics, in comparison
with non-aligned pairs, for both the detection of a pathology and detection of change. The model
that uses the concatenated image features outperformed the remaining in the detection of change,
with an Area Under the Receiver Operating Characteristics Curve (AUC) of 0.858, and presenting
an AUC of 0.897 for the detection of pathology, showing that pathology features can be used to
predict comparison between images.

In order to further improve the developed methods, data augmentation techniques were stud-
ied. These techniques proved that increasing the representation of minority classes leads to higher
noise in the dataset and consequently worse results. It also showed that increasing the number of
training samples while maintaining the ratio of each class can be an advantageous augmentation
technique in longitudinal studies.

The possibility of the existence of incorrect labels in the dataset let to another experiment,
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where a new rectified dataset was generated, by altering the original dataset labels using longi-
tudinal information. The alteration was done with the aim of eliminating cases where the same
patient showed multiple changes in pathology presence in a short time span. The rectification of
the dataset increased its consistency and the results show that the features learned from the original
dataset have high performance in the rectified dataset, proving that the rectification facilitated the
testing task.

In conclusion, regardless of the lack of temporal and comparative information in the most
common CXR datasets, the usage of longitudinal scans proved to provide insightful information
that allows the prediction of a pathology and change between two images in a pair. The usage
of pathology features showed promising results for predicting a comparison label between two
images, without affecting the detection of pathology. The usage of aligned CXR scans proved
the importance of registration methods when multiple scans are used for prediction. Using all
information, neglecting its temporal order, can be used as a considerable augmentation technique,
which should be further explored in change studies. Similarly, further studies should be performed
on longitudinal rectification. Longitudinal information can be used as a powerful tool to rectify a
dataset, as it provides temporal information that can be used to verify if an annotation is coherent
with the physiological aspects of the abnormality.

Keywords: Deep Learning, Longitudinal Radiography, Chest Radiography
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Chapter 1

Introduction

1.1 Context

X-rays are a type of ionizing radiation that has been used for medical imaging ever since their dis-

covery. Multiple imaging techniques have been developed based on X-rays, like plain radiography,

Computed Tomography (CT) and fluoroscopy. Chest radiography falls into the category of plain

radiography. Of all X-ray exams performed, 30-40% are Chest X-Ray (CXR) scans, regardless of

the level of health-care delivery. This is because CXR are associated with fast acquisition times,

with low costs and low radiation exposure [6].

CXR images allow the visualization of structures in the chest area, like the lungs and the heart,

which are the main targets for abnormality detection when analyzing a scan. The analysis of such

images is a laborious task, as there is a high volume of exams, displaying complex structures that

may overlapped. This factor led to the development of automated methods for CXR analysis,

which intend to facilitate the job of radiologists and other medical professionals by, for instance,

detecting and localizing abnormalities, or automatically generating reports. With the growth of

such methods came the creation of multiple CXR datasets, which can be used to train automatic

abnormality detection systems.

1.2 Motivation and Objectives

Most of the automated methods for CXR analysis use one image to produce a desired output.

However, when the analysis is performed by human professionals, it is normally done by compar-

ing multiple scans from the same patient, allowing the visualization of the evolution in the scans.

It is important to look at images acquired at different time points simultaneously, so that a diagno-

sis can be done. The study of automated methods that utilize longitudinal information to produce

an output is, consequently, a field of high importance, as it allows a more realistic automation of

the diagnosis process. However, The study of longitudinal information for automated analysis of

CXR is still a developing area. With the rise of the COVID-19 pandemic, more studies that use

sequential scans from the same patient arose. However, there is still much to uncover in this field,

1



2 Introduction

as the most common CXR datasets do not contain information specifically for longitudinal com-

parison, focusing on the abnormalities or findings in each individual image, and providing only

the acquisition date or the age of the patient at the acquisition time, as for temporal information.

Hence, the prediction of not only the presence of an abnormality but also the comparison

with previous scans from the same patient is a relevant matter. The comparison can be done by

predicting if the abnormality remains or if it is no longer present, or by predicting whether the

pathological situation improved or worsened. The usage of longitudinal data may improve the

performance of detection algorithms, by providing additional information. It may also increase

the robustness and transparency of these methods, by providing a prediction with the reference

of previous scans. The automated analysis of more than one image may also benefit from image

registration, which allows the alignment of anatomical structures, in the case of CXR. Thus, image

registration is a topic to be kept in mind in this field of study.

The objectives of this work are:

• The development of a method that uses anatomical lung features for CXR alignment.

• The development and experimentation with different methods for predicting the presence of

an abnormality and change in consecutive scans.

• The exploration of data augmentation techniques to improve the developed methods, and

the exploration of the usage of longitudinal data to rectify CXR datasets.

1.3 Structure

The remainder of this thesis is divided in the following chapters:

• Chapter 2 provides an introduction to radiography and, more specifically, chest radiog-

raphy. A description of state-of-the-art methods for automated analysis of CXR is also

presented.

• Chapter 3 focuses on longitudinal analysis of CXR, including the longitudinal analysis of

datasets and the description of automated methods that use over time information in CXR.

• Chapter 4 describes the developed CXR alignment method and its comparison to a state-

of-the-art solution.

• Chapter 5 presents the created experimental settings for detection of a pathology and

change in a pair of sequential scans.

• Chapter 6 focuses on data augmentation techniques to improve the detection of pathology

and change methods developed in Chapter 5.

• Chapter 7 describes a technique that can be used for dataset rectification using longitudinal

data, as well as a replication of the previous results on the rectified dataset.

• Chapter 8 aggregates the conclusions of this work.



Chapter 2

Radiography Acquisition and Analysis

2.1 Radiography

2.1.1 Fundamental Physical Concepts

When looking at the electromagnetic spectrum, different kinds of electromagnetic radiation can

be seen. This radiation is composed by electric and magnetic waves that travel through space and

time, and it can be categorized into ionizing or non-ionizing radiation. The spectrum is composed

of different kinds of radiations, distinguished by their frequency range.

X-rays consist of ionizing electromagnetic radiation, with wavelength ranging from 0.01 to 10

nanometers. X-rays were discovered by Wilhelm Conrad Röntgen in Germany, in 1895. When

experimenting with Crookes tubes, he realized that a fluorescent screen could pick up on radiation

that was passing through an object between the tube and the screen [7], which initialized his study

on this kind of radiation. In 1896, the medical usefulness of this radiation was demonstrated for the

first time, which granted Röntgen the Nobel Prize in Physics in 1901. Crookes tubes are composed

of two electrodes. When a high voltage is applied between them, the air in the tube is ionized, due

to the acceleration of the electrons in the gas. These electrons hit the anode or the glass in the

tube. The acceleration (or deceleration) of loaded particles results in electromagnetic waves, in

this case, X-rays.

Nowadays, this radiation is generated using X-ray tubes, powered by generators. The generator

provides the source of electrical voltage to energize the tube. In opposition to the Crookes tubes,

in the X-ray tubes the electron beam emitter is a cathode filament. This filament is connected

to a circuit that heats it up (as it works as an electrical resistance). When the filament is heated,

it releases electrons by thermionic emission, which accumulate at the filament’s surface. As a

high voltage is applied to the anode and cathode, the electrodes are accelerated to the anode. The

interaction between the anode (target) and the accelerated electrons leads to the conversion of its

kinetic energy into electromagnetic radiation (X-rays) with equivalent energy. This radiation is

called bremsstrahlung, or “braking radiation”. A scheme is represented in Figure 2.1. Closer

interactions with the anode’s atoms’ nucleus, lead to a greater deceleration and thus a greater

radiation energy. The result of this effect is a continuous spectrum of many X-ray energies, which
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Figure 2.1: Scheme of hot cathode X-ray tube [1].

depend on the applied voltage. The average radiation energy in a typical X-ray spectrum is around

one-third to one-half of the peak energy, depending on the beam filtration [8].

The number of released electrons by the filament can be increased by increasing the current

on the circuit. The tube current is the number of electrons moving between the cathode and the

anode and is expressed in milliampere, where 1 mA= 6.24×1015 electrons/s. The applied voltage

typically ranges from 50 to 150 kV. Targets used in X-ray tubes are usually made of tungsten.

2.1.2 Radiography in Medical Imaging

X-rays are currently used in the medical field in a wide variety of applications, for both diagnostic

and therapy. This radiation is used similarly in all imaging techniques: the X-ray beam is pro-

duced and directed to the patient, then, X-ray-sensitive plates or X-ray films are used to collect the

radiation and produce the image. X-ray films consist of emulsions of silver halite crystals (com-

monly silver bromide or silver chloride), which are sensitive to X-rays. When exposed to light,

some bromide ions are liberated and captured by the silver ions. When exposed to the developer

(chemical solution), a reaction occurs, forming metallic silver. The silver is what generates the

image.

With the development of technology came the digitalization of X-rays as an imaging technique.

This was advantageous since digital radiography allowed a reduction of the radiation the patient

was exposed to, while providing a high quality image, that can be easily processed, in opposition

to a traditional X-ray image. In digital radiography, X-ray-sensitive plates are used to collect

the radiation, after going through the patient’s body. These detectors contain a combination of

amorphous silicon detectors with cesium or gadolinium scintillators that convert X-rays to light,

which is converted into a digital image by thin film transistors [9].

The exposure of the body tissues to X-ray is not risk-free since, as previously mentioned,

it is ionizing radiation. This radiation has enough energy to damage DNA, which can lead to

cancer. The risks of X-ray exposure are highly dependent on the radiation dose, as well as the

patient’s age, gender, and the body region that is exposed, since some body parts are more sensitive

to X-rays than others. The exposure to X-rays should always be minimized, happening only
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Figure 2.2: Plain radiography scheme [2].

when necessary, and applying the “As Low as Reasonably Achievable” (ALARA) principle, when

choosing equipment settings to minimize exposure to the patient. The balance between the risk and

the advantages should always be kept in mind. If the benefits of the radiation exposure overcome

the risks, then the exam must be performed.

There are different applications of X-rays in medical image. In the following paragraphs, some

of these applications are described.

2.1.2.1 Plain Radiography

A plain radiography equipment can acquire X-ray images either vertically or horizontally, depend-

ing on the position of the X-ray emitter and the receptor. Grids for scatter radiation (collimators)

are located immediately in front of the detectors, and protect them from scattered X-rays, which

improves the quality of the final image (since only primary radiation is used to produce it). A

scheme of a vertical radiography equipment is shown in Figure 2.2. The radiation goes through

the body, and different tissues absorb it differently. It can easily go through fat and soft tissues,

leading to a dark appearance in the final image. On the other hand, structures like bones that con-

tain high levels of calcium, absorb the radiation, leading to light regions in the image. It is a useful

technique to evaluate joints and bones, as well as for detecting pathologies in the lung area. Thus,

chest X-ray is one of the imaging techniques included in plain radiography.

Mammography is a type of plain radiography, especially used to scan the breast. Just like a

regular radiography equipment, a mammography unit contains a radiation source and a receptor,

however, it also includes a compression paddle, which compresses the breast, making it less dense

and widening the surface, which results in a better image. Mammography exams are done for

breast cancer detection and diagnosis, as tumors tend to appear as masses that have higher cell

density than the regular breast tissue.
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2.1.2.2 Computed tomography

CT provides many advantages in comparison with plain radiography. The most remarkable differ-

ence is the 3D imaging of the body structures, which overcomes the superimposition of different

organs. It also has greater contrast, allowing for a general better visualization of the structures, at

different angles.

In this technique, multiple projections of the same object are collected, obtaining its internal

structure. Many of these measurements are acquired at different points during the translation

motion of the tube and detector. A set of measured rays is designated a view, which is collected

at many incremental angles in order to obtain all the information at the current translation point.

The incremental translation creates different slices, with thickness corresponding to the thickness

of the narrow beam. Each slice is a cross-sectional image of the structure, and the combination of

all slices creates a three-dimensional X-ray image. Images are usually acquired in the axial plane,

but sagittal and coronal images can be reconstructed.

There are variations of CT equipments, which provide different advantages depending on the

situation where applied. Some of these variations include spiral or helical CT (allows a faster

scanning time with less dosage, as well as few motion artifacts), multislice or multidetector CT

(characterized by the acquisition of multiple slides simultaneously), dual source CT (which gener-

ates sharper images with less dosage and smaller acquisition time) and dual energy CT (permits the

visualization of the same slice at different energies, which can be used to spot different materials

and reduce artifacts).

2.1.2.3 Fluoroscopy

Fluoroscopy is a type of medical imaging that consists in the creation of continuous X-ray images,

forming a video in real time, where the movement of the body structures can be observed. It can be

used for diagnosis, by following the path of a contrast agent inside the body. Following swallowed

barium (esophagogram) and observing the blood with contrast agent flow through arteries and

veins (angiograms) are examples. It can also be used for procedure guidance, for instance, for the

placement of stents and catheter insertion and manipulation with a radiographic contrast agent.

Even though this technique provides high advantages, it also exposes the patient to very high

radiation doses in comparison with the previously mentioned techniques, thus, it should be used

only in particular situations.

2.2 Chest Radiography

2.2.1 Definition and Advantages

Just a few years after the discovery of the X-ray, numerous medical applications emerged. The

thoracic area was used as a target for radiography from early on, allowing the diagnosis of vari-

ous chest diseases, like tuberculosis, pneumonia, and pneumothorax [10]. Despite the existence

of equipment that allows the 3-dimensional visualization of the structures, chest radiography is
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Figure 2.3: Normal PA and LL CXR. The following structures are noted: trachea (Tr), superior
vena cava (SVC), azygos vein (Az), right hilum (RH), right atrium (RA), aortic arch (AA), right
ventricle (RV), left atrium (LA), left hilum (LH), left ventricle (LV), inferior vena cava (IVC),
humeral head (H), descending aorta (DA) and stomach (St) [3].

globally used as a first-line medical imaging technique for chest assessment. This is due to its ad-

vantages, which include fast acquisition and interpretation, low cost and low radiation exposure.

It is estimated that in 2006, 129 million CXR images were acquired in the United States [11]. 30-

40% of all X-ray exams performed are CXR scans, regardless of the level of health-care delivery

[6].

During a chest radiography, the patient should be positioned with an erect posture and slightly

extended chin, so it does not show up in the final image. The chest should be parallel (or per-

pendicular, depending on the view) to the beam source (and detector). In frontal views, the hands

should be placed on the hips with palms facing out, and the shoulders should be rolled forward.

In lateral views, the hands should be raised and crossed above the head. The image should be ac-

quired in complete inspiration. Using both frontal and lateral views in CXR scans can be helpful

in some situations, like localizing foreign bodies in the setting of aspiration or projectile injury

[12]. The comparison of different views can also be useful in assessing hilar anatomy and lower

lobe infiltrates, as well as providing a spatial mapping for intrapulmonary nodes [13]. Thus, since

this imaging technique is bidimentional, the diagnostic value of using multiple views should not

be undermined.

There are three types of views in chest radiography: anteroposterior (AP), posteroanterior (PA)

and latero-lateral (LL). The view type is determined by the trajectory of the X-ray beam through

the body. While in a scan with AP view, the beam passes firstly through the anterior anatomy

and exits posteriorly (posterior structures are closer to the detector), in a scan with PA view, the

opposite process happens (anterior structures are closer to the detector). In a LL view, the X-ray

beam passes from a side of the patient to the other. Note that if the patient is confined to a bed, the

detector is placed behind the back and thus only an AP view is possible (the cardiac magnification
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has to be kept in mind in these cases). The mean radiation dose used in an adult for a CXR scan

is around 0.02 mSv for a frontal view, and 0.08 mSv for a side view [14]. The radiation dosage is

chosen for each patient according to the patient’s size, age, and condition. The radiation dose used

in chest radiography is dependent on the considered view. An AP view requires a higher radiation

dose than a PA view due to the presence of the breasts [15]. In Figure 2.3 examples of normal PA

and LL CXR can be seen.

Acquisition of an image where the patient is not correctly positioned can make it difficult to

detect some subtle anatomical characteristics. Thus, there is a need to be aware of the patient

position required to get a clear view of the structure that is being examined. The structures that

are initially hit by the beam are magnified in comparison to those closer to the detector. Thus,

in order to accurately measure a structure, it has to be placed closer to the detector. This is why

CXR scans are preferably acquired with a PA view, which minimizes the magnification of the

silhouette of the heart. In LL view scans the left side should be positioned against the receptor, for

the same reason. As CXR scans are two-dimensional images, generated by different attenuation

caused by the tissues, overlapping anatomical structures cannot be differentiated. Also, rotation

of the thorax can cause anatomical distortions in the final image, and inadequate inspiration may

lead to misdiagnosis of pulmonary opacity or collapse [3], due to the absence of air.

2.2.2 Diagnostic Value

The chest radiography technique allows the visualization of various anatomical structures in the

thoracic and surrounding area. The trachea, lungs, hilum, scapula, diaphragm, heart, veins, ar-

teries, ribs, clavicles, breasts, liver, and the stomach can all be observed. CXR can be used to

identify a wide variety of abnormalities. This imaging exam is usually performed with the aim of

visualizing the lungs and the heart, as the most common observed radiological findings are related

to pathologies in these organs [3]. In Figure 2.4 a few of these common abnormalities can be

observed, which are described in the following paragraphs.

• Diffuse pulmonary shadowing: One of the common findings in CXR is diffuse pulmonary

shadowing. Radiologically (and anatomically) the lungs can be divided into the alveoli and

the interstitium. Both these regions can be affected by disease, thus, both alveolar opacifi-

cation and interstitial opacification can be present. Opacification refers to the attenuation of

the X-ray beam that leads to a more opaque/ lighter appearance in the final image. It can be

caused by edema, inflammatory fluid, blood, proteins, or cells.

• Pulmonary consolidation: Pulmonary consolidation is characterized by the loss of the

usual boundaries of the lungs and heart in a CXR, and it is caused by the filling of the

pulmonary alveoli with pus, blood, edema, proteins or cells. Consolidation can be observed

in segments or lobes of the lungs, and it is often associated with pneumonia.

Consolidation adjacent to pulmonary fissures, increased density of the lower thoracic spine

on a lateral view and the loss of anatomical structure or border (in the CXR, as mentioned
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previously, which is called silhouette sign) can be used to localize areas of pulmonary con-

solidation. The silhouette sign is visible when a part of the lung becomes non-aerated, and

thus its density changes. In CXR images, there is a differentiation of the structures due to

their contrasting densities. As the lungs are normally aerated structures, the X-ray beam

attenuation is low in comparison with the neighboring structures. However, when an abnor-

mality like lung collapse, consolidation, or mass is present, the lack of air in the lung origi-

nates an X-ray image where the mentioned differentiation is harder to observe. In PA view,

the heart might limit the visualization of small areas of consolidation. In these situations,

the lateral view is helpful at identifying lower lobe pneumonia, by detecting consolidation

in either lower lobe.

• Pulmonary collapse: When air enters the pleural space (space between the visceral and

parietal pleura – tissue that covers the lungs), a pulmonary collapse happens. The collapse

can be focused, but it can also include segments and lobes. One of the causes of pulmonary

lobar or segmental collapse is the passive collapse caused by external pressure on the lung,

like a pneumothorax (total collapse caused by air pressure), pleural effusion (accumulation

of fluid between the layers of the pleura) and diaphragm hernia (protrusion of abdominal

organs into the thoracic cavity). In a CXR, an upper lobe collapse can be identified by

occurring upwards and anteriorly, and a lower lobe collapse by occurring inferior and pos-

teriorly.

• Pleural disorders: Pleural effusions and pneumothoraces are examples of pleural disor-

ders. However, other disorders like pneumomediastinum (air leak into the soft tissues of the

mediastinum) and pleural thickening (denser scar tissue development in the pleura) can be

visible in a CXR.

• Pulmonary nodules: Pulmonary nodules are common findings in a CXR. A pulmonary

nodule is a lung opacity that resembles a sphere with three centimeter diameter or less, and

that is not associated with pulmonary collapse or lymphadenopathy. If the opacity is larger

than a nodule, then it is called a mass. Masses have a higher tendency to be malignant.

Pulmonary nodules are studied for malignancy to allow early diagnosis. Signs of a non-

malignant nodule usually include calcification, a well-defined margin and a small size (with-

out evidence of rapid growing). Opposite signs can mean a malignant nodule. Pulmonary

nodules are usually considered incidental findings when alone (solitary nodule). However,

when multiple nodules are present, the patient is usually symptomatic or with underlying

pathology (malignancy, immunosuppression, etc.). The presence of small calcified granulo-

mas is usually related to previous infections.

• Mediastinal masses: Mediastinal masses are agglomerations of cells that appear in the

mediastinum (space between the lungs). They can be malignant or non-malignant, and can
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(a)
(b)

(c)

(d)
(e) (f)

Figure 2.4: Scans with pathological representations of (a) right upper lobe consolidation, (b) right
lower lung collapse, (c) solitary nodule, (d) pleural plaques, (e) mediastinal mass, (f) emphysema
[3].

be spotted in a CXR due to their higher density. Their classification is based on the local-

ization to the mediastinum: anterior, middle or posterior. Diagnosis includes thymomas,

lymphomas, germ cell tumors and cysts, among others.

• Hilar abnormalities: Hilar abnormalities are also common findings in CXR. They can

be spotted by analyzing the hilar complex components: pulmonary arteries, bronchus, pul-

monary veins and lymph nodes. A change in position, size and/or density may be represen-

tative of these disorders. Hilar enlargement can be bilateral or unilateral.

• Emphysema: The presence of over-expanded lungs is one of the most evident signs of

emphysema in a CXR. Emphysema is a condition characterized by the destruction of the

alveolar walls, which leads to enlargement of air spaces over time. Centrilobular emphy-

sema is the most common form of the disease, frequent in smokers [3].

• Heart assessment: CXR is also used to analyze the heart. Features like the position

and size of the heart, valve calcification, outline of blood vessels, pulmonary edema and

pulmonary vascular pattern can be used to assess cardiac failure.
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The comparison between CXR scans from the same patient over time (longitudinal CXR) is

commonly done in medical practice. Comparison with a previous image is useful to assess the

stage of visible abnormalities. It allows the categorization of a pathology as acute or chronic,

and it displays the possible growth or receding of structures. For instance, as mentioned before,

pulmonary nodules are constantly being analyzed for growth, in order to identify malignancy

promptly. CXR is also used to preclude further examinations in a nodule if no growth is observed

in over two years and there is calcification [3]. The manual analysis and comparison of multiple

scans is a time-consuming task, representing a major burden for radiologists, and it remains chal-

lenging, even for experienced radiologists. It is important to keep in mind that the position of the

patient can differ between images, as well as some image quality parameters (like exposure and

contrast). These factors make the process of comparison difficult, increasing the probability of

incomplete or incorrect diagnoses.

2.3 Automated Chest X-Ray Analysis

The high number of exams, as well as the poor images that result from incorrect patient positioning

or image acquisition, are some of the factors that lead to the difficulties in the manual analysis of

radiographic scans. These characteristics made the automatization of such processes appealing

and highly advantageous. Research in the chest radiography area dates back to the 1960s [16].

One of the first examples of automatization in CXR is the work done in [17], where quantitative

measurements of the heart are automatically detected and extracted from PA scans. These features

are then used to classify the heart projection using linear and quadratic discriminant functions.

More recently, Machine Learning (ML) and, more specifically, Deep Learning (DL) have been

widely employed in this field. These techniques demand high quantities of data, but they provide

superior results in a short time, in comparison with traditional methods. ML techniques are usually

based on initial feature detection and extraction, while DL approaches do this automatically.

Many types of problems can be distinguished in automated CXR analysis. Image-level pre-

dictions, based on the whole scan, are the most common task. Segmentation is also a frequent

target, as well as localization, since both of these allow the identification of a region of interest,

which can be used for further investigation. Other areas include image generation, report genera-

tion and image registration problems [16]. In this section, a small overview of automated methods

for CXR analysis is presented. To do so, a few articles that target the previously mentioned types

of problems were selected.

Image-level prediction

Image prediction tasks can be separated into classification and regression. In [18], convolutional

neural networks (CNN) are used to solve a classification problem, aiming to distinguish between

PA scans and AP scans, which is useful for cleaning hospital data. The CNNs (Visual Geometry

Group (VGG) variant [19] and Residual Neural Network (ResNet) [5]) are trained with the Radi-

ological Society of North America (RSNA) dataset [20] and validated on a self-compiled dataset
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labeled by a human expert, and Gradient-weighted Class Activation Mappings (Grad-CAM) [21]

are generated in order to visualize and understand the model prediction. By ensembling the mod-

els, the F1-score attained was 0.958, and the Grad-CAMs showed that the anatomical structures

used for the prediction were comparable to the ones used by a radiologist.

An example of a regression task is presented in [22]. Here, linear regression was performed

to predict scores for extent of lung involvement and opacity in frontal CXR images, with the ob-

jective of identifying the severity of COVID-19 lung infection. The measurement of severity can

be highly useful in the hospital, allowing for a fast triage of the patients, as well as monitoring of

disease evolution. A public COVID-19 dataset was used, and it was annotated by three experts re-

garding the desired targets. A Densely Connected Convolutional Network (DenseNet) [23] model

was pretrained on multiple non-COVID-19 CXR datasets (BIMCV-PadChest [24], MIMIC-CXR

[25], CheXpert [26], ChestX-ray8 [27] and RSNA pneumonia dataset), and it was used to extract

features from the COVID-19 images. The geographic extent score (range 0-8) and the lung opacity

score (range 0-6) are predicted with a mean absolute error of 1.14 and 0.78 respectively. Saliency

maps [28] were computed in order to better understand the relevant pixels for the prediction and,

for most of the results, the model correctly looks at opaque regions of the lungs.

In [29] an end-to-end DL framework for X-ray image diagnosis is presented. Firstly, the im-

age is classified as X-ray or not (first module), and then it is classified according to the type of

X-ray (second module). The abnormality classification (third module) is then performed, based on

CXR (14 different pathology labels). Multiple datasets were used, including Chest-Xray8, Mus-

culoskeletal Radiographs (MURA) [30], Lower Extremity Radiographs (LERA) [31], Accurate

Automated Spinal Curvature Estimation (AASCE) [32], Panoramic Teeth X-ray [33] and Ima-

geNet [34]. The used classifiers are based on the DenseNet-121 network. The test set accuracy for

the first module, second module, and third module are 0.987, 0.976, and 0.947, respectively.

One of the main disadvantages of DL algorithms is that most of them can be categorized as

black box models, which means that their internal working process is hidden to the user. This is

important because, as human beings, an explanation for certain decisions is needed, in order to

trust, understand and interpret them. This is one of the main motivations for Explainable Artificial

Intelligence (XAI) [35]. XAI methods aim for the construction of transparent artificial intelligence

(AI), without affecting the existing performances. The mentioned Grad-CAMs and saliency maps

are examples of XAI. Different kinds of groups can be used to categorize explainability methods.

They can fit into the pre-model, in-model or post-model category. Pre-model interpretability is

related to data analysis, using techniques for data visualization and description. In contrast, in-

model interpretability concerns methods that have built-in interpretability, by applying constraints

to its complexity. Post-model (post hoc) interpretability regards the analysis of the model after

building it.

The type of explanation created can be used for XAI classification. Feature summary methods

allow the interpretation of the model via summary statistics that can usually be visualized. Model

internals methods are associated with intrinsically interpretable models, using internal character-

istics for interpretability. Thus, these are model-specific methods. There are also methods that
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output data points, which requires them to be interpretable themselves, thus, this is usually used

for images and text. Another possible output for explainability methods is a surrogate intrinsi-

cally interpretable model. In these methods, another model (easily understandable) is used for

interpretation, which is used to approximate local or global features [36].

Segmentation

Segmentation tasks can be focused on the identification of anatomy, foreign objects or abnormal-

ities [16]. As previously mentioned, segmentation masks can be used to improve efficiency, by

limiting the image area used for further analysis. It can also be used to perform feature extraction,

like shapes or area measurements.

In [37] a method for improving lung segmentation performance is proposed. An attention

module was developed (X), as well as a variant (Y). The X-attention module is composed of chan-

nel and spatial attention (extracted from the input feature maps), enabling the effective extraction

of global and local features. The Y-attention module is a variant of the aforementioned, which

accommodates the global context from a deeper layer. The attention module was combined with

a U-Net [38] in many different configurations, using ResNet-101 as the backbone network. Three

public datasets were used, including the Montgomery dataset [39], the Japanese Society of Ra-

diological Technology (JSRT) dataset [40] and the Shenzhen dataset [41]. The DSC score was

used to evaluate the segmentation performance, as well as the sensitivity and Positive Predictive

Value (PPV). The segmentation results were post-processed by keeping only the two objects with

the bigger area, in order to improve segmentation performance. The DSC values attained for each

dataset were 0.982 ± 0.002, 0.968 ± 0.002 and 0.954 ± 0.002, for the most favorable configuration.

It also showed comparable performance to XLSor [42] (state-of-the-art DL model for lung seg-

mentation). Nonetheless, the segmentation performance acquired is low for CXR with deformed

lungs or ambiguous cardiac silhouette.

Localization

Regarding localization algorithms, the objective is obtaining a Bounding Box (BB) or point co-

ordinates that localize a certain structure. The most frequent target are pathologies, but there are

also studies on localization of anatomic structures and objects like support devices [16]. As an

example, in [43] a CNN with 23 convolutional layers was used to detect pneumothorax on CXR

images after Percutaneous Transthoracic Needle Biopsy (PTNB) for pulmonary lesions, which is a

method used for the diagnosis of pulmonary lesions with high diagnostic accuracy. The collected

dataset comprises 1,596 CXR with pneumothorax at different levels of severity and 11,137 normal

CXR. A set of 500 additional images were used for internal validation. Two radiologists manually

drew regions of interest in the cases with pneumothorax. The network used for the inferences was

fine-tuned using the You Only Look Once (YOLO) Darknet-19 [44] pretrained model. A temporal

validation dataset was constructed using follow-up CXR at two different time points after PTNB

(1,379 at 3 hour follow-up and 1,329 at 1 day follow-up). The model’s AUC for pneumothorax
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detection was 0.984. Regarding the 3 hour and 1 day follow-up, the AUC values were 0.898

and 0.905, respectively, meaning a good performance on post-PTNB follow-up CXR. Some struc-

tures or pathologies other than pneumothorax lead to false-positives, due to their similar nature, as

pleural thickening, sclerotic rib margins, medial borders of scapula, and skin folds.

Image Generation

The generation of images using DL technologies has been used in numerous fields. Some of the

most common applications are data augmentation, visualization, abnormality detection through

reconstruction, domain adaptation or image enhancement methods [16].

In [45], a method to classify a CXR as normal or abnormal is developed, using generative

adversarial one-class learning. The proposed architecture is similar to Generative Adversarial

Networks (GANs) [46], and it is composed of three main modules: a U-Net autoencoder, a CNN

discriminator and an encoder. GANs are constituted by a generator and a discriminator. The

generator takes a random noise vector as input and produces a sample in the data space. The

discriminator identifies if a sample comes from the true data distribution or from the generator.

The training process aims at getting the generator to construct samples that are not distinguishable

from the discriminator, and both of them are trained alternately. In this work, the U-Net (autoen-

coder) functions as the generator and the CNN as the discriminator. The generator maps a first

input image, and then a deconvolutional network (decoder) is used to inversely map the image,

generating the reconstructed image. The used dataset was the Chest-Xray8 dataset. In the training

phase, 4,479 normal CXR are used. The amount of normal and abnormal images used is 849 and

857, for validation, and 677 and 677, for testing. An abnormal CXR is considered to have at least

one pathology. A CXR is distinguished as normal or abnormal by using the reconstruction result.

If it is normal, the architecture can reconstruct the content. If it is abnormal, the model performs

poorly in the reconstruction, since it has not seen pathology images during training. An anomaly

score is also computed during testing. The final network achieved an average AUC of 0.841 on the

testing set. The generated abnormal images contain blurry and messy regions, and the geometrical

structures are distorted, proving that the classifier can be used to accurately distinguish the classes.

Automated Report Generation

The automation in the CXR field is not only related to the scans itself, but it can also be related

to the medical reports. In that sense, the automated generation of reports aims for a more efficient

CXR analysis workflow.

In [47] a system called Vispi is proposed for classifying common thoracic diseases, as well as

localization and generating a medical report. The first step in the algorithm is the classification

and localization of pathologies. Then, the sentences that build the report are generated. The model

used for classification has a DenseNet-121 backbone, pretrained with ChestX-ray8. In order to

get the BB for the pathology, Grad-CAMs are used for the classification model. The generated

heatmaps were used in a threshold based BB generation method, which builds a BB around the



2.4 Longitudinal Chest X-ray Analysis 15

regions of the heatmap with highest intensity. If no pathology is detected, a report is directly

generated by an attentive Long Short-Term Memory (LSTM) network [48], using the full CXR.

If a pathology is found, the generated BB is used to crop the image, and the subimage is used to

build the description of abnormalities, while the original CXR is used to get the description of

normality. The LSTM takes the image and the subimage as inputs, and generates a sequence of

sentences for the entire report. For each disease class, a specific pair of LSTMs are trained. The IU

Chest X-ray Collection dataset [49] is used for training, validating and testing. The classification

module acquired an AUC of 0.804, and the report generation system got a CIDEr (metric for

measuring the similarity of a generated sentence against a set of ground-truth sentences) of 0.553,

outperforming all baseline models used for comparison.

Image Registration

Finally, image registration is also a field of focus on automated CXR analysis. Image registration

consists in aligning two images, allowing the comparison of the matching features. It is widely

present in the medical imaging field, as multiple images from the same patient are commonly

collected through time for diagnosis and therapy evolution, for example. Imaging techniques

that acquire sets of images from multiple perspectives or slices, like CT, also benefit from image

registration of the acquired images, allowing a smooth final result. This topic is further discussed

in Section 3.2.2.

2.4 Longitudinal Chest X-ray Analysis

Most systems are designed to receive a single exam as input, whereas radiologists often compare

multiple exams from the same patient in different time points in order to reach a conclusion on the

analysis. Hence, the development of CXR analysis methods that take multiple input images must

be taken into consideration. These methods could allow the analysis of evolution and comparison

between exams, which would be a significant advantage for medical professionals, as it would

make the manual process more efficient.

The majority of the developed automated methods do not perform the comparison between

exams, aiming at the analysis of a single image, as it is the most common form of image input

and datasets are usually not equipped with longitudinal data for comparison. The introduction of

longitudinal comparison and analysis of scans in an automated manner can be highly useful. Using

more information can improve the performance of already existing methods, and the comparison

between scans can increase the transparency of the algorithm and increase its robustness. As

such, the development of longitudinal systems is crucial for the successful integration of automatic

system in the clinical practice.
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Chapter 3

Automated Longitudinal Chest X-ray
Analysis

Longitudinal data consists of information from the same patient throughout time. As previously

mentioned, medical professionals usually compare multiple longitudinal studies from the same

patient, but automated systems normally consider a single input image at the time for analysis,

isolating temporal information, rather than taking advantage of previously collected scans. The

inclusion of longitudinal data in automated CXR analysis is a topic that can improve current meth-

ods and facilitate comparison between scans. Thus, in this chapter, a longitudinal analysis of CXR

datasets is done, as well as an overview of some algorithms that use longitudinal data.

3.1 Public Datasets

The challenges associated with the analysis of CXR led to an increasing development of automated

strategies to facilitate the management of scans and the extraction of information from them. Such

methods are usually dependent on high quantities of data. Thus, this led to the creation of large

and various datasets for CXR. Regarding longitudinal information, some datasets include the date

in which the scan was captured, while others might only contain information such as the age of

the patient at the time of the collection or the follow-up number of the scan, which refers to a

sequential numeration of the images from the same patient.

The original ChestX-ray8 [27] dataset contains 112,120 frontal CXR images (size of 1,024×
1,024 pixels) from 32,717 patients, collected at the (US) National Institute of Health from 1992 to

2015. Eight common disease labels (atelectasis, cardiomegaly, effusion, infiltration, mass, nodule,

pneumonia, pneumothorax and consolidation) are generated from radiological reports using Nat-

ural Language Processing (NLP), and a small set of the images also contain hand labeled BB for

these pathologies. The dataset was posteriorly updated, including six more diseases (edema, em-

physema, fibrosis, pleural thickening and hernia). This update is called ChestX-ray14. Regarding

this dataset, there are 13,302 patients with multiple images. Each image is linked with a patient

17
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age and a follow-up number. In the majority of the cases, the age difference between sequential

images is zero years.

The CheXpert dataset [26] consists of 224,315 CXR scans from 65,240 patients, collected at

the Stanford Hospital between 2002 and 2017. The dataset is labeled for fourteen observations

(which include twelve pathologies, a no findings label and the presence of support devices), de-

cided on based on their prevalence in reports and clinical relevance. An automated rule-based

labeler was used to extract the observations as labels from the medical reports. This dataset con-

tains 37,161 patients with multiple studies. The only potentially useful parameter for sequential

and temporal motives is the patient age. However, in the vast majority of the cases, the age differ-

ence between two studies is zero years.

The BIMCV-PadChest dataset [24] comprises 160,868 CXRs from 67,000 patients, collected

at the San Juan Hospital (Spain) from 2009 to 2017. This dataset covers six different position views

and information on patient demography. 27% of the reports were manually labeled by physicians,

and a recurrent neural network with attention mechanisms was trained and used to label the rest of

the dataset from the reports. The reports were used to extract 174 findings, 19 diagnoses, and 104

anatomic locations. In this dataset, there are 31,314 patients with more than one study (relevant

patients for longitudinal purposes). Each study (might contain multiple images) is associated with

a date, which allows the direct temporal comparison of the scans. Most commonly, the month

difference between two studies is zero, however, there are studies fifty or more months apart.

The MIMIC-CXR dataset [25] is composed of 377,110 CXR of 65,379 patients, from studies

performed at the Beth Israel Deaconess Medical Center in Boston, from 2011 to 2016. The images

of the original version are in a DICOM format, but another version of the dataset with JPG format

was also published (MIMIC-CXR-JPG). The dataset was automatically labeled from radiology

reports using the same method and the same labels as CheXpert. The information about the date

of the image is present in the dataset, however, to ensure anonymity, a date shift was assigned to

each patient. There are 56,320 patients with more than one study. The majority of the studies have

a zero-month time interval. The Chest ImaGenome dataset [50] contains 242,072 frontal MIMIC-

CXRs, and it describes the relationships between images, including pathologies in common, the

anatomical region associated with this comparison, the comparison label and BB information.

The RSNA International COVID-19 Open Annotated Radiology Database (RICORD) [51]

contains not only CXR data, but also CT scans information. Regarding the CXR data, this dataset

contains 998 images from 361 patients, collected by the Radiological Society of North Amer-

ica (RSNA) in four international institutions. Each CXR was classified by three radiologists as

typical, indeterminate, atypical, or negative for findings of COVID-19 pneumonia. The regions

with abnormal opacities were also classified as showing mild, moderate, or severe disease. In this

COVID-19 dataset, there are 165 patients with multiple studies. The only temporal information

available is the patient age.

Asides from the mentioned datasets, others are available. However, not every dataset contains

temporal or sequential information that can be used for longitudinal studies. One example is the

VinBigData dataset [52], which contains 18,000 PA view CXR scans, collected from two hospitals
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Table 3.1: Longitudinal datasets’ analysis.

Dataset
%

longit.
patients

Number
of

longit.
frontal
images

Number
of

longit.
lateral
images

Min./max.
number

of longit.
frontal
images

per patient

Median
number

of longit.
frontal
images

per patient

Time
measure

Abnormalities
/ longit.

abnormalities

BIMCV-
PadChest

46.74 71,064 24,459 2/119 2 Date 191/194

ChestX
-ray14

40.66 94,617 - 2/184 4 Age 15/15

CheXpert 56.96 158,241 15,379 2/91 3 Age 13/13
MIMIC-
CXR

86.14 269,031 53,984 2/172 4 Date 14/14

RICORD 45.71 802 - 2/32 3 Date -

in Vietnam (the Hospital 108 and the Hanoi Medical University Hospital) between 2018 and 2020.

The images are annotated by radiologists for the presence of 6 diagnoses and 22 critical findings.

This dataset also provides the localization of critical findings.

In Table 3.1, an overview of the datasets is presented, where only the patients with more than

one image were considered. Note that for the CheXpert dataset, the analysis is based solely on

the author-defined train and validation sets. In Figure 3.1, histograms that represent the average

time interval between images of the same patient are presented. The used time measurement is

dependent on the dataset, as shown in Table 3.1. For the datasets in which the temporal data is

uniquely the age (ChestX-ray14 and CheXpert), this time interval is defined in years, while in the

other datasets (with a study date associated to the images), this interval is defined in days.

Using exclusively the patient age is not enough to get sequential information for a patient,

since there are images with the same patient age, that could be from 1 day to 12 months apart.

Thus, the usage of datasets where the only temporal clue is the patient age is challenging when

considering longitudinal analysis.

3.2 State of the Art

3.2.1 Longitudinal Analysis

There are some studies regarding the utilization of longitudinal data for automated image analy-

sis. Due to the COVID-19 pandemic, the tendency to study CXR evolved, and so, many studies

addressing the pathology with temporal data appeared. In [53], the mortality and duration on In-

termittent Mandatory Ventilation (IMV) are predicted for COVID-19 patients. A private dataset

with 186 patients is used. Features are extracted from the images using a VGG-16, then, these

are concatenated with longitudinal non-image data. The result is concatenated with non-image

non-longitudinal data, and finally the model predicts the final outcomes. It is shown that using the
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Figure 3.1: Histograms for average time between images from the same patients.
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combination of all these data types outperforms the usage of each one independently. The best

result was AUC of 0.870±0.050 for mortality and a mean absolute error of 2.56±0.20 days, for

the predicted duration in IMV.

In [54], image and non-image data is also used, but to predict the probability of Intensive Care

Unit (ICU) admission, ICU discharge, hospital admission, hospital discharge and death before a

certain moment in time. The used dataset is private, including time dependent and time indepen-

dent information for 1,894 COVID-19 patients. A baseline hazard is computed based solely on

time. It allows the calculation of the hazard function and, consequently, the survival function,

which is used to compute the probability of one of the events happening before a time point. The

risk function is determined by the image and non-image data, which is processed using a convo-

lutional LSTM and a LSTM. The computed concordance error outperformed all methods used for

comparison, for all the time-to-event predictions. It is also shown that the usage of longitudinal

(time-dependent) images significantly improves the predictions.

In [55] the aim is to predict disease severity (no disease, mild, severe or critical) and its out-

come (worse, stable or improved), for COVID-19 patients. The CheXpert dataset is used to pre-

train a DenseNet-121, which is used as a feature extractor. The last convolutional layer of the

model is used to extract features for 10 random crops per image, using images from two COVID-

19 datasets: the open-source MILA COVID-19 dataset [56], and a private COVID-19 ICU dataset.

These are used to test whether the features from a first image can predict the outcome of its lon-

gitudinal pair. The used classifier and parameters were tuned, reaching a final model with a 0.810

AUC for the open-source dataset and 0.660 for the private dataset, regarding the outcome category.

The disease severity prediction reached 52.3% accuracy.

A method for automated measurement of COVID-19 disease severity is proposed in [57],

which is used for longitudinal disease tracking and outcome prediction. A Densenet-121 network

is used. It is pre-trained with ImageNet, initially, and then with CheXpert, using a binary label on

whether a pathology (lung opacity, lung lesion, consolidation, pneumonia, atelectasis, or edema)

is present in the image or not. This model is used for transfer learning with an internal COVID-19

dataset, where the output is the mRALE score (measurement of severity of lung edema). A siamese

structure is constructed using this model, taking as inputs the desired image and a pool of normal

images from CheXpert, for comparison. The euclidean distance between the outputs is calculated

in order to obtain the PXS score, which is a measurement of the severity. In the test set, the

PXS score correlated with the mRALE score assigned (ground-truth) with a Pearson correlation

coefficient (r) of 0.86. One of the used datasets is labeled for disease severity change, thus, the

change in PXS score was evaluated between longitudinal image pairs. This change correlated with

the change label with an r of 0.74. Patients with higher PXS scores were intubated or dead within

3 days of admission.

In [58], a modification of LSTM network [48] is presented, in order to consider different time

intervals. LSTM are networks used for prediction of sequences. They are composed of memory

blocks, which contain input gates, output gates and forget gates (which modulate how much infor-

mation is used from the internal state of the previous time-step). The proposed alteration consists
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in adding the time interval information, and testing whether the classification of sequential images

improves. In order to predict the labels of a scan, the time-modulated LSTM (tLSMT) takes as

an input the label of the previous image, the features of the scan and the time interval between

the two images. In 3.1, the equations for this adaptation are presented. ht defines the internal

state, while ft , it and ot refer to the forget, input and output gates, at time t. X t
i denotes the input

image features at a time step, lt−1
i the labels that describe the images acquired at previous time

points, δ t
i the time difference between the image at time t and the image at time t −1. The image

labels for the last image in the sequence are computed, represented by yt
i . The remaining param-

eters consist of learnable variables. A private dataset was used, containing longitudinal scans for

80,737 patients. Labels were extracted from medical reports using NLP methods. Image features

are extracted using a pre-trained Inception-V3 network [59]. In comparison with a baseline CNN

(predicts the labels from the image directly), the tLSTM showed an improvement of around 7% in

F-measure, and around 8%, in comparison with a standard LSTM (with longitudinal data).

ft = σ(Wf l × lt−1 +Wf x ×X t +Wf j ×δ
t +b f )

it = σ(Wil × lt−1 +Wix ×X t +Wi j ×δ
t +bi)

ot = σ(Wol × lt−1 +Wox ×X t +Wo j ×δ
t +bo)

ct = tanh(Wcl × lt−1 +Wcx ×X t +Wc j ×δ
t +bc)

ht = ft ×ht−1 + it × ct

yt = ot × tanh(ht)

(3.1)

In [60], the focus is the detection of abnormalities on CXR scans and the detection of change

in pathologies over sequential images. The abnormality detection is done through Qure AI, which

consists of a set of CNNs, trained to identify a certain disease on frontal CXR. The used dataset is

ChestX-ray8, where 874 scans were selected from. These images were annotated by two radiol-

ogists for pulmonary opacities, pleural effusions, hilar prominence, enlarged cardiac silhouette or

no findings. The image labels are compared between consecutive images, to assess the pathology

change. The AUC reached by the method to detect change in the different pathologies ranges from

0.735 to 0.925, depending on the class. The results are compared with four test radiologists, which

performed similarly or underperformed.

Another example can be found in [61], where the objective is to detect change in a lesion,

when comparing two longitudinal images. A squeeze and excitation network (SENet) [62] is used

to extract image features, which are used as local descriptors. A correlation score is computed for

every possible local descriptor combination between the two images’ feature maps, originating a

geometric correlation map. Finally, a binary classifier is used to classify the sample as change or

no-change. The used dataset is a private dataset of CXR from 5,472 patients. The image pairs

have at least a 30-day time interval. This method showed an AUC of 0.890, outperforming all the

comparison methods, including the aforementioned tLSTM [58], with an AUC of 0.780.

In [4] a model for tracking longitudinal relations between CXR (CheXRelNet) is proposed.
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Figure 3.2: Graph construction scheme [4].

This model uses global information, but also local information. The used dataset is the Chest

ImaGenome dataset. A pretrained Resnet-101 is used to extract global features, while a Graph

Attention Network (GAT) [63] is used to extract local features, using the anatomical BB. GAT

extracts inter and intra images features, using an adjacency matrix that expresses these relation-

ships. A scheme of this construction is shown in Figure 3.2. The global and local features are

concatenated and classification layers are added to provide the output. The output consists of the

first image pathologies label, and on the second image “improved” or “worsened” label. The final

model outperformed the baseline models, which use only global or local information, presenting

an accuracy of 0.680 (average the pathologies test accuracy).

In Table 3.2 a summary of the mentioned methods is presented.

Along with the longitudinal analysis of images comes the necessity of correct image registra-

tion, as working with multiple images after registration simplifies their comparison. Thus, in the

following chapters, work regarding image alignment is described.

3.2.2 Image Registration

As previously mentioned, image registration is one of the areas of active research in automated

CXR analysis. The alignment of two CXR (which can be a longitudinal pair or not) may improve

the management and analysis of the scans, either manually or by other automated methods.

Different alignment techniques have been explored in this field. Feature-based methods usu-

ally use features such as points, contours, curves, or other geometric references. Intensity-based

methods directly use the image intensities for alignment. Frequency-based methods can also be

used to align two images using their frequency domain. Hybrid methods use a mixture of the

aforementioned techniques.

It is important to note that image registration techniques can be divided into rigid and non-

rigid. Rigid transformations assume that the objects in the images are static, and, on the other

hand, non-rigid transformations assume that the objects can be deformed by biological differences
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Table 3.2: Summary of the described longitudinal studies.

Study Year Used dataset Objective Approach Results
Longitudinal
Detection of
Radiological
Abnor-
malities
with Time-
Modulated
LSTM [58]

2018 Private dataset
with longitu-
dinal scans for
80,737 patients

Testing
whether a
modification
in the LSTM
networks
can improve
prediction of
sequences
with dif-
ferent time
intervals
between
images

Addition of the
time interval be-
tween images
as input infor-
mation to the
LSTM (tLSTM).
Image features
are extracted us-
ing a pre-trained
Inception-V3 net-
work.

In comparison
with a baseline
CNN and a sta-
datd LSTM, the
tLSTM showed
an improvement
of around 7% and
\8%, respectively,
in F-measure

Deep learn-
ing in chest
radiography:
Detection of
findings and
presence of
change [60]

2018 874 manually
annotated scans
selected from
ChestX-ray8

Detection of
abnormali-
ties on CXR
scans and of
change in
pathologies
over sequen-
tial images

The abnormality
detection is done
through Qure AI,
and the change de-
tection is computed
by the comparison
of the pathology
label in the pair.

The detection of
change in the dif-
ferent pathologies
ranges from 0.735
to 0.925. The com-
parison test radiol-
ogists showed sim-
ilar or worse per-
formances.

Longitudinal
Change
Detection
on Chest X-
rays Using
Geometric
Correlation
Maps [61]

2019 Private dataset
of CXR from
5,472 patients.

Detect
change in a
lesion, when
comparing
two longitu-
dinal images

A SENet is used
to extract image
features, which
are used as local
descriptors to orig-
inate a geometric
correlation map.
A binary classifier
uses this map to
classify the sample
regarding change.

AUC of 0.890,
outperforming all
the comparison
methods, including
the aforementioned
tLSTM (AUC of
0.780).

Automated
assess-
ment and
tracking of
COVID-19
pulmonary
disease
severity
on chest
radiographs
using con-
volutional
siamese neu-
ral networks
[57]

2020 ImageNet,
CheXpert,
an internal
COVID-19
dataset

Longitudinal
disease
tracking and
outcome
prediction

A Densenet-121
is pre-trained and
used to predict
the presence of
pathologies or
not. This model is
used in a siamese
structure that re-
cieves the input
image and a pool
of normal images.
The euclidian dis-
tance between the
outputs is used to
compute a severity
score.

The results cor-
related with the
ground truth with
a r of 0.86. The
change in the
severity score was
evaluated between
longitudinal image
pairs and it cor-
related with the
change label with
an r of 0.74.
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Study Year Used dataset Objective Approach Results
Deep sur-
vival anal-
ysis with
longitudinal
X-rays for
COVID-19
[54]

2021 Private dataset,
including time
dependent
and time in-
dependent
information for
1,894 COVID-
19 patients.

Predict the
probability
of ICU
admission,
ICU dis-
charge,
hospital
admission,
hospital dis-
charge and
death before
a certain
moment in
time.

A risk function is
computed by pro-
cessing image data
(using a convolu-
tional LSTM) and
non-image data
(using a LSTM). It
is used to compute
the final probabil-
ity of each output.

The computed
concordance error
outperformed all
methods used
for comparison.
The usage of
longitudinal im-
ages significantly
improved the pre-
dictions.

CheXRelNet:
An
Anatomy-
Aware
Model for
Tracking
Longitudinal
Relation-
ships be-
tween Chest
X-Rays [4]

2022 Chest Im-
aGenome

Predicting
the pathol-
ogy label
of the first
image in
a pair, and
the the "im-
proved" or
"wornsened"
label for
the second
image in a
pair.

A pretrained
Resnet-101 is used
to extract global
features, while a
GAT is used to ex-
tract local features.
These features
are concatenated
and classification
layers are added to
provide the output.

The final model
outperformed the
baseline models,
which use only
global or local
information, pre-
senting an accuracy
of 0.680 (average
the pathologies test
accuracy).

Deep learn-
ing of
longitudinal
chest X-ray
and clinical
variables
predicts
duration
on venti-
lator and
mortality in
COVID-19
patients [53]

2022 Private dataset
with 186 pa-
tients

Mortality
and duration
on IMV pre-
diction for
COVID-19
patients

Image features are
extracted using a
VGG-16. They
are concatenated
with longitinal and
non-longitudinal
non-image data to
predict the final
outcomes

AUC of 0.870 ±
0.050 for mortality;
mean absolute er-
ror of 2.56 ± 0.20
days for the pre-
dicted duration in
IMV

Tracking
and pre-
dicting
COVID-19
radiological
trajectory on
chest X-rays
using deep
learning [55]

2022 CheXpert, the
open-source
MILA COVID-
19 dataset,
and a private
COVID-19 ICU
dataset

Predict dis-
ease severity
and outcome
for COVID-
19 patients

A Densenet-121
is pre-trained and
used as a feature
extractor for image
crops. The final
model is used to
test wheter the fea-
tures from the first
image can predict
the outcome of the
pair.

Outcome category
reached an 0.81
AUC for the open-
source dataset and
0.66 for the pri-
vate dataset. The
disease severity
prediction reached
52.3% accuracy.
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(that lead to changes in shape or position over time), image acquisition and others [64]. Thus,

rigid transformations, also referred to as affine transformations, include rotations, translations,

scaling and shearing operations. These are transformations that preserve collinearity and ratios of

distances. Non-rigid operations include local transformations in an image, modeling a transforma-

tion map that aligns it to its pair. Each type of transformation is associated with different types of

tissues. Rigid transformations are applicable to bones, while non-rigid transformations are more

applicable to soft tissues such as the abdominal organs [64].

In [65], keypoints based on lung features are extracted and used for registration. Intensity dif-

ferences between lung and non-lung regions in a CXR scan are used to identify these keypoints,

and different alignment techniques, like linear and polynomial transformations, are used to align

the images. A small set of images was used for testing and defining the best type of transformation

technique. As this method is quite simple and the acquisition of the feature points is widely depen-

dent on image intensities, it may fail when aligning images with poor contrast or with pathologies

that affect the lungs’ opacity. Similarly, in [66], the intensities of the image columns are used to

identify the limits of the lungs, as well as the spine. Intensity differences and mean density distri-

bution, variance and density difference are used to obtain the upper and lower limits of the lungs,

originating a BB. These features allow the acquisition of 9 control points that are used to align a

pair of images. Thin-plate spline method is used to obtain the non-linear deformation matrix that

aligns the pair. Quantitative results are not presented in this paper.

The application of rigid transformations is often not enough when dealing with CXR registra-

tion. However, the usage of non-rigid transformations can lead to unrealistic anatomical distortions

of the image. In order to solve this problem, in [67] the anatomical information from the lungs

and the heart is used to obtain a more realistic transformation of the image, avoiding harsh defor-

mations of these organs. An encoder-decoder structure (similar to a U-Net) is used to predict the

deformation field between a pair of images, and a differentiable warping module uses it to produce

the deformed image. The lung and heart mask of the pair is also used, producing the warped image

mask in the same manner. The used loss has three different components. The first one is the loss

of the model that originates the deformation field itself. Then, there is the loss associated with the

alignment between the target anatomical segmentation mask and the warped source segmentation

mask, which allows the inclusion of both organs in the alignment, but does not guarantee a good

global correspondence between the deformed image and the input image. In that sense, a final

global loss is used. Denoising autoencoders are used to generate learned representations (contain

information regarding relevant global anatomical features) of the masks. The global loss measures

the euclidean distance between the learned representation of the deformed mask and the learned

representation of the target segmentation mask. This global loss ensures that the deformed image

is anatomically plausible. In this work, the usage of the heart and lung segmentations showed

great advantage, and the presence of the three loss components was valuable at producing better

results.

In [68] a hybrid Linear Support Vector Machine (L-SVM), composed of 6 models, is built

based on Felzenszwalb Histograms of Oriented Gradients (FHOG) features and L-SVM models.
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It is used to detect the lungs, ribs, and clavicles from a CXR scan. Initially, after the detection of

the left and right lungs, the developed Spin Assisted Algorithm (SAA) is used to rotate the image

to the correct orientation, by using the upper line of the lungs. This improved the detection of the

ribs and clavicles by the model. Keypoints are selected from the detected regions. Then, Absolute

Distance Matching Algorithm (ADMA) is used to match the landmarks from the input image and

the landmarks from target image. Two categories of transformations are used to align the image

pair, rigid and non-rigid. The method used for the rigid transformation is called Singular Value

Decomposition (SVD), while the one used for non-rigid transformation is Elastix.

The work in [69] is adapted in [70], introducing image alignment and subtraction. The main

objective of the work is to identify and locate pathologies. To align the input image pair, a ResNet-

18 backbone is used. A target image is generated by averaging 500 images that are labeled as not

containing pathologies. The model is trained to output the transformation parameters (translation,

rotation, and scaling) that align the image to the target image. For this, a feature reconstruction loss

is used, that encourages the image to have a similar feature representation to the target. The model

for pathology detection and location contains two branches. One of them receives as an input a

positive image and generates a feature map. The other one generates attention maps for a positive

and for a negative image and then subtracts them. The resulting map is multiplied element-wise

with the feature map from the first branch. Then, the paradigm used in [69] for the loss calculation

and prediction generation for each class is employed. Images with and without BB information

are used for training, using different losses for each case. The usage of more images with BB

information during training showed to improve the location prediction. Even though this paper

does not report results for alignment specifically and the used pair is not of longitudinal images,

the reported results show that using an alignment method is advantageous.

Different types of metrics can be used to evaluate the performance of registration algorithms.

In [67], the metrics used are the DSC, the Hausdorff Distance (HD) and the Average Symmetric

Surface Distance (ASSD). DSC measures the overlap between objects. It is used to evaluate the

CXR alignment algorithm by being applied to the lung segmentation masks. Thus, a DSC of 1

means complete overlap, while a DSC of 0 means no correspondence at all. HD corresponds to

the maximum distance between the segmentation contours, thus, a lower HD value symbolizes

better performance. ASSD is the average distance between the segmentation contours, so lower

values imply better alignment. The DSC values for the JRST database, Montgomery County X-

ray database and Shenzhen Hospital X-ray database were of 0.943, 0.953 and 0.931. In [68], for

quantitative evaluation of the algorithm, the average registration error distance (MRED) is calcu-

lated for 15 pairs. This was done by manually annotating landmarks in 15 images. Comparison

of this method with current benchmark methods that use only one category of transformations

showed that using a combination of rigid and non-rigid methods the performance improved. The

developed algorithm achieved a MRED of 24 pixels (for a 1,024 width image), while the two

benchmark approaches that are used for comparison have a MRED of 41 and 473 pixels. In [65],

8 pairs of images are used for testing, by manually annotating points in them. The mean square

error was calculated from the differences between the marked and transformed control points and
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the corresponding marked points in the pair image. The best transformation acquired an error of

24 pixels (for an image of 2,000×2,000 pixels).

3.3 Final Considerations

A number of methods have been developed with the aim of utilizing sequential data in CXR anal-

ysis. Some of them focus on obtaining a better pathology detection or outcome prediction method

by using longitudinal information, while others have the objective of predicting the difference

between the images, which can be expressed as the presence of change or the presence of im-

provement or worsening in a pathology. In most of the methods, a DL model is used to extract

features from the images. In general, the inclusion of longitudinal information seems to improve

the performance of the algorithms.

Most of them aim at the prediction of labels that are not present in the most common CXR

datasets, described previously. This might be a potential reason for the fact that a considerable

amount of the methods use private datasets. The most common datasets do not present labels for

comparison between longitudinal exams, thus, this can be considered a significant challenge in

this field. Usually, the only reference to longitudinal information is either the age of the patient at

the moment of acquisition or the date of the exam. The age of the patient is not a good factor to

determine time between exams, thus, this can also be a problem if the time interval is relevant for

the study.

Image registration is an important field regarding CXR analysis. Frequently, the acquired

images show incorrect position of the patient, and deformations caused by the acquisition process

might be present. Thus, the use of registration techniques is useful for introducing uniformity

in the datasets. The analysis of simultaneous images also benefits from their alignment, when

working with automated methods. Thus, alignment methods are closely related to automated

longitudinal studies. The metrics that are used to validate the alignment methods are usually

highly dependent on segmentations of the images, or manually annotated features. This factor

might affect the robustness of method evaluation, as the manual annotation of features only allows

the validation of a small amounts of images, and the usage of automated methods to get other

features (as for segmentations or point coordinates) is always error dependent, leading to imperfect

features.



Chapter 4

Chest X-Ray Image Pair Alignment

CXR scans often display various patient positions, despite the standardization of the image acqui-

sition method. Rotation and tilt of the patient during acquisition, as well as wrong positioning, lead

to images with different characteristics. When analyzing more than one image simultaneously, the

comparison between scans might be difficult because of these factors. Thus, the development of

an alignment algorithm to align pairs of longitudinal images might allow medical professionals or

automated algorithms to pick on comparison features from the images easily.

An alignment algorithm was developed in this work, in order to align two CXR images. The

alignment implies viewing the anatomical structures in the same regions of both images, thus help-

ing to perceive any relevant differences between the pair and identify more easily the presence of

a potential pathology. This developed method is mainly focused on the rigid alignment (explained

in Section 3.2.2) of the lungs.

The features that are used to compute the transformations are lung segmentations and thoracic

BB. These features are used to compute rotation, translation and scaling parameters, that align

the two images. The developed method is described in this chapter, including different scaling

techniques experiments and the comparison with a state-of-the-art solution for image alignment.

4.1 Methods

4.1.1 Datasets

To construct and evaluate this alignment algorithm, two different subsets were considered. These

are constituted of images from the ChestX-ray14 dataset [27]. The first one is a subset generated

by randomly picking 250 longitudinal image pairs from the original (longitudinal subset). The

image pairs were constructed by picking scans with consecutive follow-up numbers, which refers

to the sequential numeration of the images from the same patient, as previously mentioned in

Section 3.1. The other used subset is a collection of 250 images that were randomly selected, to

which a random, but known, rigid transformation was individually applied (deformed subset).
This subset of deformed images allowed the evaluation of the alignment quality of the algorithm

29
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with a ground truth reference (the original images), as it allows to check if the algorithm is able to

reverse the artificially deformed images, making them as similar to the original ones as possible.

The applied deformations in the deformed subset images (rotation, horizontal and vertical

translation and scaling) respect the following rules:

• the chosen angle is in the range [−20,20] degrees;

• the chosen horizontal and vertical translations are in the range [−( image size
100 ),( image size

100 )] pix-

els;

• the chosen horizontal and vertical scaling factors are in the range [0.75,1.25];

• 85% of the lung area (after scaling) must be preserved after the rotation and translations are

applied, otherwise a new random deformation is generated.

These deformations were chosen after experimentation, as they provide a reasonable transfor-

mation that keeps the lung area visible in the image.

4.1.2 Rigid CXR Alignment

In order to align the scans, features had to be extracted from the images, and posteriorly used as

guides for the necessary transformations. In the developed method, the used features were the

segmentations of the lungs, whose acquisition is described in Section 4.1.2.1. The segmentations

provide information regarding the shape, size, and positioning of the lungs, thus, they can be used

to compute alignment differences between two scans. The thoracic bounding boxes were also

extracted from the images, with the aim of aiding the preprocessing and providing information

for scaling, as described in Section 4.1.2.1. In the proposed solution, the segmentations are used

to compute the parameters of the rigid transformations that might align one image with reference

to another. Rigid transformations are used as they provide a simple alignment solution. The

computed parameters take into consideration the presence of rotations, horizontal and vertical

translations and different horizontal and vertical scaling factors.

In this algorithm, the lung masks are preprocessed and prepared for alignment. Then, vertical

and horizontal scaling is performed, according to the reference, followed by the final transforma-

tions (rotation and translations). The final transformations to be applied are computed using Iter-

ative Closest Point (ICP) algorithm [71], which is the main component of the alignment method.

ICP is a classic technique for rigid image registration. This algorithm finds the rotation and trans-

lation parameters that better align two sets of points. It starts by associating the points from the

different sets by the nearest neighbor criteria. Then, alignment parameters are computed based on

a mean square cost function, aiming for the best possible overlap of the associated points. The

points are transformed according to these parameters and a new iteration takes place. The algo-

rithm converges when the alignment parameters stop changing. A convergence threshold is used

for this matter, as well as a maximum number of iterations parameter.

A schematic of the full alignment method is represented in Figure 4.1. Different methods were

experimented for scaling.
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Figure 4.1: Developed method scheme.

4.1.2.1 Anatomical Segmentation and Thorax Localization

In the developed alignment method, the work in [72] was used in order to generate segmentations

for the images. In the mentioned work, a U-Net architecture was used, and different experiments

were performed, including the segmentation of the lungs, heart and clavicles. The model used

to obtain the desired segmentations was trained solely on the JSRT dataset, using one image as

input and outputting three segmentation masks, for the three mentioned anatomical structures.

The performance of the model was evaluated using the DSC metric (described in Section 4.1.4).

The lung, heart, and clavicles segmentations reached a DSC of 0.981±0.008, 0.944±0.029 and

0.927±0.027, respectively.

For the thoracic BB generation, a localization algorithm in [73] was used. This model is based

on a YOLO-V5, which was pre-trained on the COCO dataset [74] and trained with 956 CXR

images. The corresponding ground truth BB were generated by drawing a BB around the manual

lung segmentation masks provided in the JSRT, Montgomery, and Shenzhen datasets. This model

reached an average precision of 99.84% at an Intersection over Union (IoU) superior to 0.5, in the

validation dataset.

4.1.2.2 Preprocessing and initial positioning

After generating the lung segmentations and the thoracic BB for the images, the input scans and

the segmentations are resized to 512×512 pixels (as the usage of a large image size, like such, is

common in CXR registration [67][68][70]). The segmentations are then preprocessed, in order to
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(a) (b)

Figure 4.2: Application of the two possible cleaning methods in the same image. (a) Using the
thoracic BB, and (b) keeping the two biggest objects.

eliminate small blobs and holes. This is done by performing the morphological operations opening

followed by closing, using a circular structuring element of size 5 pixels. After preprocessing, the

segmentations go through a cleaning process. There are two possible paths here, and the one that

is followed depends on the scaling method that is used. The first consists in applying the thoracic

BB as a mask, eliminating possible blobs and segmentation errors that lay outside that area by

setting all pixels outside the BB to zero. The second consists in keeping only the two biggest

objects in the segmentation, which ideally correspond to the lungs. In Figure 4.2 an example of

the application of both processes is shown.

Note that YOLO-V5 can fail to detect any thoracic BB, particularly when the images are sig-

nificantly rotated or contain large support devices. Thus, in these situations, the cleaning process

that keeps only the two biggest objects in the image is used, independently of the scaling method.

As ICP is a gradient descent method, it should be used only when there is a good starting point.

That is, if the original point sets are too different, the algorithm might not be able to converge to

a good solution. If the initial point sets are originally similar, the result will probably be closer

to the ideal. In order to guarantee that condition, an initial positioning was performed in the pair

image. This consisted in getting the centroid of each segmentation, which is the central coordinate

of the segmentation mask, and aligning the centroids of the two segmentations.

Figure 4.3: Two images from the same patient that show scaling deformation.
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4.1.2.3 Scaling

By looking at the scans, it is clear that different horizontal and vertical scaling between images

from the same patient exist. These shape distortions that lead to the elongation or shortening of

the target object can result from improper angulation of the image receptor or axis, from technical

and/or structural errors of the X-ray tube [75], or from post acquisition errors. An example of an

image pair with scale distortions is shown in Figure 4.3. Due to these distortions, and in order to

align the image pair, horizontal and vertical scaling factors must be computed.

The used lung segmentations and BB present different characteristics, as the presence of dif-

ferent pathologies and the image exposure and contrast affect the segmentation and BB algorithms.

Depending on the original image, their quality might vary and thus their utilization for the align-

ment algorithm must be adapted. Consequently, different scaling methods were developed, in

order to experiment with each of them and study the best final scaling approach.

Initially, the comparison of the thoracic BB dimensions was used to scale the image pairs.

However, when the lungs appear in a rotated position, or when the scan has poor contrast between

the lungs and the surroundings, the BB fails to correctly delimit the lungs. Thus, a different

approach was taken, where the dimensions used for scaling correspond to the BB generated by the

limits of the segmentations (segmentation box). This works better for the cases where the thoracic

BB failed, and, in opposition to the aforementioned method, the whole extension of the lungs is

used to compute the scaling factor. An example is presented in Figure 4.4.

Although this method solves the scaling problem in some situations, the rotated lungs’ sce-

nario remains a problem, since they generate a higher or lower segmentation box dimension than

the actual lungs dimension. This led to the necessity of obtaining the lungs dimensions more

cautiously, using a rotation independent method.

The last scaling method that was implemented consists in using Principal Component Analysis

(PCA) [76] to determine the size of the lungs in a segmentation. PCA is a commonly used dimen-

sionality reduction method. It is usually employed in large multidimensional data, transforming

them into a smaller set of variables that represent most of the original information. These new

variables are the principal components, and they are linear combinations of the original variables

that explain the variance in the original data. The generated set of principal components is such

that the first principal component has the maximum variance explained, and the following will

explain sequentially lower variances. Thus, the principal components (can also be called eigen-

vectors) represent the data in a new feature space, with a determined direction and the associated

eigenvalues determine their magnitude, associated with the feature variance.

In the scaling method where PCA is used, the two principal axes of each lung in a segmentation

are computed. After that, the extreme points of each lung are calculated, so that the dimensions of

each lung can be computed. A scheme of this process is presented in Figure 4.5. The average of

the dimensions of both lungs are used to determine the scaling factor in each direction, by doing

the ratio of the lung dimensions for the input image and its pair.
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(a) (b) (c)

(d) (e) (f)

Figure 4.4: (a) Thoracic BB of the input image, (b) input image segmentation and corresponding
segmentation box, (c) segmentation box of the input image, (d) thoracic BB of the image pair, (e)
image pair segmentation and corresponding segmentation box, (f) segmentation box of the image
pair.

To summarize, the used scaling approaches are: no scaling, scaling with the BB dimensions,

scaling with the segmentation box dimensions, and scaling with the lung dimensions.

The diversity of the images and corresponding segmentations and BB makes it difficult to

choose the best global scaling method. Thus, in order to obtain the best possible alignment for

each pair, the images are aligned using all methods, but only the one that generates the best result is

kept. This decision is made based on the DSC metric (explained in further detail in Section 4.1.4)

and originates the results that are called mixed results. Note that if the image before alignment

produces a better DSC metric than after alignment (for all scaling methods), then the image is not

aligned.

As previously mentioned, the generation of the thoracic BB is not possible for all images. In

order to provide an alignment solution for these cases, when one of the images in a pair does not

contain a thoracic BB, all the scaling types are still used to align it, except for the one that uses the

BB dimensions.

4.1.2.4 Rigid Alignment

After scaling the segmentation pair according to the desired scaling method, it is thresholded and

morphological operators (dilation and erosion) are used to obtain the border of the segmentations.
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Figure 4.5: Segmentation border with PCA computed axis and extreme points in each lung.

The borders are used in the ICP algorithm, which returns the optimal rotation angle, horizontal

translation and vertical translation. The convergence thresholds used are of 0.1, for both rotation

and translation.

The final aligned image is generated by applying the initial positioning translations, followed

by scaling, ICP rotation and ICP translations to the original pair image.

4.1.3 Scale-Invariant Feature Transform (SIFT)

In order to establish a comparison to a state-of-the-art solution, SIFT [77, 78] was used. This solu-

tion based on rigid transformations was adopted for feature alignment, using the lung segmentation

borders.

This method obtains robust image feature points, which are invariant to scaling, rotation, lim-

ited affine distortion and changes in luminosity. The keypoints of two different images can be

acquired and matched, and the affine transformation that converts one set of points into the other

can be computed. This transformation can be applied to align an image according to its pair. SIFT

starts by finding local maxima, using the Difference of Gaussian (DoG) algorithm at different im-

age scales. More accurate points are chosen by using the Taylor series expansion of scale space.

The neighborhood of the points is used to count the gradient direction of the neighboring pixels.

Finally, a local coordinate is created with the main direction of each point [79]. After extracting the

keypoints from both images, their descriptors are compared in pairs, using the L1-norm (sum of

absolute value difference). The keypoints are matched by using the shortest L1-distance, and then

used to compute the rigid transformation using singular value decomposition of the over-complete

system of equation.

4.1.4 Evaluation and Metrics

The alignment algorithm was applied to the aforementioned deformed subset. Having the original

image for each pair allows the computation of the distance between correspondent pixels in the

two images. From a pixel’s coordinates in the original image, the deformation applied to generate

the deformed pair can be used to get the equivalent point coordinates in the deformed image and,
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Figure 4.6: Representation of the same pixel after image deformation and alignment. The image
order, from left to right, is: original, deformed, checkerboard (showing alternatively parts of the
original and aligned images) with marked corresponding points (red is original and yellow is after
alignment).

similarly, the final alignment parameters can be used to transform these coordinates into the new

aligned image coordinates system. The average of all the pixel distances is used as a metric to

evaluate the alignment performance – the Pixel Distance (PD). If the alignment is perfect, the

PD should be zero. This distance is given in pixels. In Figure 4.6, the position of a certain

pixel is shown in the original image. The position of the same pixel after the deformation (of the

original image) and alignment (of the deformed image) is also represented. The measured distance

corresponds to the distance between the position in the first image and the position in the aligned

one.

The aforementioned metric can only be computed for the deformed subset, so, different metrics

are necessary to evaluate the alignment performance on longitudinal pairs. If two images are

similar, both in intensities and in orientation/scale, their difference should tend to 0. Thus, in

order to compare longitudinal images before and after alignment, the Mean Squared Error (MSE)

between the input image and its unaligned pair, as well as the MSE between the input image and

its aligned pair were computed as:

MSE =
1
n

n

∑
i=1

(xi − yi)
2, (4.1)

where xi represents the input image pixel intensities and yi represents the unaligned or aligned pair

image pixel intensities.

If the MSE with the aligned image presents a lower value than the MSE with the unaligned

image, then the alignment algorithm likely succeeded in making the longitudinal images pair more

aligned. This metric was computed only in the union of the BB of the images, in order to avoid

high values due to high or low intensity borders in an image, and making sure only the region of

interest is considered. If one of the images in the pair does not contain a BB, then this metric is not

computed. This metric, in opposition with the PD, is fully dependent on intensities. Thus, when

the evaluated images have similar intensity maps, this metric is helpful in telling how aligned

the images are. However, if that is not the case, this metric performs poorly as an objective
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Figure 4.7: Example of two image pairs with different intensity maps. Each row presents a longi-
tudinal pair of a unique patient

measurement of the images’ alignment.

It is important to note that when comparing longitudinal images, pathologies of different na-

tures may be present in the images. Some pathologies appear as darkened or lighter regions in the

scan, due to their abnormal density. This might lead to different intensity maps between the im-

ages in the pair, leading to a higher MSE between images (whether the images are aligned or not).

So, as the MSE metric might be enough to evaluate these type of situations, it requires manual

observation of each case, as there are many factors that influence the image intensity. In Figure

4.7, examples of cases where the presence of pathologies affects the intensity maps are shown.

In order to obtain a more objective measurement of the image alignment, the DSC metric was

employed as:

DSC =
2|X ∩Y |
|X |+ |Y |

, (4.2)

where X and Y are the lung segmentations of a longitudinal pair. If the segmentations are perfectly

overlapped, DSC tends to 1, as mentioned previously. The segmentation of the aligned image

is generated by applying the same alignment transformations to the original pair segmentation.

The segmentations used to compute this metric suffer from an initial preprocessing, including

the application of the thoracic BB and the selection of the two biggest objects in the image. It

is important to note that in spite of the fact that DSC is a more objective measurement of the

segmentation overlap and, consequently, a more robust evaluation method of the alignment, it

is affected by the error of the segmentations, as their generation is not ideal, and masks from
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longitudinal scans are not equal.

4.2 Results and Discussion

The alignment algorithm results were generated individually for each scaling method in the devel-

oped algorithm, and for both subsets (longitudinal sample subset and deformed subset). The same

images were used to generate the results for the SIFT algorithm.

The results for both subsets can be found in Tables 4.1 and 4.2.

Table 4.1: Deformed subset results. The images MSE parameter is the difference between the
MSE of the original pair and the MSE of the aligned pair (aligned images MSE). A larger value
should mean a higher impact in the alignment of the images. The DSC difference parameter
refers to the subtraction of the DSC of the segmentations after alignment (DSC after) and before
alignment.

Scaling
Method

Aligned images
MSE

Images
MSE

PD
DSC
after

DSC
difference

No scaling 0.019 ± 0.020 0.032 ± 0.036 28 ± 18 0.832 ± 0.104 0.278 ± 0.211
Thoracic BB 0.012 ± 0.017 0.039 ± 0.031 22 ± 24 0.880 ± 0.106 0.324 ± 0.186
Segment. box 0.012 ± 0.014 0.039 ± 0.031 27 ± 39 0.876 ± 0.102 0.322 ± 0.195
Lungs dim. 0.011 ± 0.016 0.040 ± 0.034 25 ± 35 0.880 ± 0.123 0.326 ± 0.205
Mixed results 0.007 ± 0.009 0.044 ± 0.032 17 ± 21 0.908 ± 0.082 0.355 ± 0.195
SIFT* 0.006 ± 0.012 0.042 ± 0.036 12 ± 24 0.829 ± 0.149 0.230 ± 0.157

*could not align 4 of the 250 images.

Table 4.2: Longitudinal subset results. The images MSE parameter is the difference between
the MSE of the original pair and the MSE of the aligned pair (aligned images MSE). A larger
value should mean a higher impact in the alignment of the images. The DSC difference parameter
refers to the subtraction of the DSC of the segmentations after alignment (DSC after) and before
alignment.

Scaling
Method

Aligned images
MSE

Images
MSE

DSC
after

DSC
difference

No scaling 0.025 ± 0.025 0.014 ± 0.020 0.859 ± 0.101 0.185 ± 0.167
Thoracic BB 0.021 ± 0.023 0.018 ± 0.020 0.894 ± 0.111 0.221 ± 0.173
Segment. box 0.024 ± 0.025 0.015 ± 0.022 0.884 ± 0.080 0.211 ± 0.166
Lungs dim. 0.024 ± 0.025 0.015 ± 0.021 0.872 ± 0.103 0.198 ± 0.171
Mixed results 0.021 ± 0.023 0.018 ± 0.020 0.910 ± 0.063 0.237 ± 0.161
SIFT* 0.029 ± 0.036 0.006 ± 0.035 0.798 ± 0.205 0.087 ± 0.199

*could not align 62 of the 250 images.

SIFT presents good metrics for both subsets, showing the lowest value for correspondent PD

for the deformed subset (12 ± 24 pixels). However, it could not align all the image pairs. This

is due to the fact that for these images, the algorithm couldn’t find enough matching keypoints

to compute the alignment parameters. In the case of the deformed subset, the detected keypoints
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tend to be similar, as both images in the pair are, originally, the same. On the other hand, in the

longitudinal subset, the images are different despite from being from the same patient. This leads

to the detection of fewer corresponding keypoints, resulting in a higher feasibility of the SIFT

algorithm in the deformed subset than in the longitudinal. An example of a longitudinal pair that

could not be aligned is represented in Figure 4.8. The fact that SIFT performs more weakly in

the longitudinal dataset presents an advantage of the proposed method as, in opposition to SIFT, it

uses anatomical information to align the images.

Figure 4.8: Example where SIFT failed to align the image pair. The first two images correspond
to the computed keypoints, and the last one (right) represents the developed algorithm result, with
a final DSC of 0.763.

In the deformed subset, the scaling method that provided the best results was the one based on

the lungs dimensions. On the other hand, in the longitudinal subset, the best scaling method is the

one based on the thoracic BB. Even though the MSE between images is not an objective metric to

evaluate the alignment in all cases, the results show that it is coherent with the remaining metrics.

The mixed method results outperform the remaining, presenting a DSC of 0.908 ± 0.082 for

the deformed subset and 0.910 ± 0.063 for the longitudinal subset. By looking at the image results,

it is clear there is no ideal scaling method to align all images. Depending on the situation, there will

be different problems. So, these confirm that the combination of the different methods provides a

good solution. Table 4.3 shows the number of times a scaling method was selected as the best one,

in the mixed methods results.

Table 4.3: Method Frequency on Mixed Results

Longitudinal subset Deformed subset
No alignment 0 0
No scaling 38 27
Scaling thoracic BB 124 71
Scaling segmentation box 54 54
Scaling lungs dimensions 34 98

Examples of good and bad DSC results are shown in Figure 4.11 and 4.12, respectively. The

poor results are mostly caused by weak segmentations of the lungs. The DSC metric is computed

based on the segmentations. Thus, it must be kept in mind that when the segmentations are weak,
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this metric might not be indicative of the actual alignment. In Figure 4.10, an example of such a

case is presented. Here, the alignment result seems visually good, but the metric leads to the oppo-

site assumption. Nevertheless, the results show that all metrics are, in general, in agreement (both

in the deformed and longitudinal subsets). Thus, the existence of such cases does not invalidate

the fact that DSC is an adequate metric for the evaluation of this method.

Table 4.4: Alignment results for all consecutive image pairs in the used dataset.

Aligned images MSE Images MSE DSC after DSC difference
Mixed results 0.020 ± 0.021 0.016 ± 0.018 0.895 ± 0.080 0.212 ± 0.145

In Table 4.4 the final alignment results for all consecutive image pairs in the ChestX-ray14

dataset are presented. These results are similar to the ones obtained for the longitudinal subset

(Table 4.2), which means the performance of the method is coherent throughout the data.

4.3 Conclusions

The developed alignment algorithm managed to align 250 longitudinal image pairs from the

ChestX-ray14 dataset with a DSC of 0.910± 0.063. This result is satisfactory, as it means that

there is a high overlap of the lung segmentations of the images in the aligned pair. The results

shown for the deformed subset show that the method is able to realigned deformed images with a

small error (PD of 17±21 pixels for an image size of 512×512 pixels).

The metrics used to evaluate this algorithm (except for the PD, in the deformed subset) are

dependent on the used segmentations or on the scans’ intensity maps, which affects the objective

evaluation of the method. The dependence on the pixel intensities does not allow the comparison

of image pairs regarding structures alignment. That is because the scans might present abnor-

malities that lead to brighter or darker zones in the image, leading to an incorrect comparison

regarding alignment. The dependence on the segmentations leads to lower performance when the

segmentations are incorrect, which does not necessarily means that there is poor alignment of the

structures. The metrics used to evaluate this sort of algorithm are usually dependent on features as

the mentioned. Certain publications have used manually annotated keypoints in order to overcome

this problem, however, this method is still not ideal as very few evaluations get to be performed.

The developed method was compared with a state-of-the-art approach for image alignment

(SIFT). Although it outperforms the developed method in the deformed subset, it often fails at

aligning images from the longitudinal subset. The proposed solution uses anatomical features

extracted from the scans to perform the alignment, so, it manages to align all pairs (with a final

DSC superior to the initial one), which is considered a relevant advantage.

Experiments where not only the lung, but also clavicles and heart segmentations were used

were carried out. These points were integrated by being fed to ICP (adaptation for three point

sets). The experiment showed that the presence of more points does not necessarily help the

alignment, since poor segmentations worsen the ICP results and the presence of more point sets

leads to a higher probability of having a bad segmentation. Thus, a suggestion for future work
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consist in using these three segmentations in a more complex manner, allowing the extraction of

relevant and more consistent features, that can be used to compute parameters for better alignment

(that considers for example the localization of the heart and not only the lungs).

Figure 4.9: Example of a large DSC difference (0.704) between not aligned and aligned images.
The left image is the checkerboard of the original pair (showing alternatively parts of the original
images), and the image on the right is the checkerboard of the aligned pair (showing alternatively
parts of the original and aligned images).

Figure 4.10: Example of an alignment result with a DSC (after alignment) of 0.609 and a more
satisfying visual result. The checkerboard showing alternatively parts of the original image and it’s
longitudinal pair, and the checkerboard of the original and aligned images (showing alternatively
parts of each) are presented, from left to right.
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(a) (b) (c)

(d) (e) (f)

Figure 4.11: Examples of good DSC results. (a) and (b) represent two input image examples, (b)
and (e) correspond to their pairs, and (c) and (f) represent the alignment results by a checkerboard
(showing alternatively parts of the original and aligned images). The DSC value before and after
the alignment is 0.770 and 0.976 (respectively), for the first example, and 0.883 and 0.976 or the
bottom example.
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(a) (b) (c)

(d) (e) (f)

Figure 4.12: Examples of poor DSC results. (a) and (b) represent two input image examples, (b)
and (e) correspond to their pairs (respectively) and (c) and (f) represent the alignment results by
a checkerboard (showing alternatively parts of the original and aligned images). The DSC value
before and after the alignment is 0.433 and 0.673 (respectively), for the first example, and 0.094
and 0.439 or the bottom example.
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Chapter 5

Pathology and Change Detection

As previously mentioned, the usage of longitudinal CXR information in automated analysis is

not common in state-of-the-art publications. However, as medical professionals normally look

at multiple exams from the same patient, in order to compare them, the inclusion of this data in

automated algorithms should be valuable. Thus, in this chapter, longitudinal information is used

for studying the evolution of a pathology through a pair of consecutive scans from the same patient.

With the aim of predicting the pathologic differences between longitudinal images, that is,

identifying the abnormalities in an image and whether these abnormalities remained in the follow-

up image, different experiments were performed.

In these different experiments, various manners of integrating longitudinal information in the

predictions were conducted. Initially, a multilabel model that predicts the presence of all abnor-

malities in ChestX-ray14 in a single scan was used, with the aim of establishing a comparison

reference (model that does not use longitudinal information for training). The following experi-

ments integrated longitudinal data at different levels, including at the image feature level and at the

input level. The developed alignment algorithm (c.f. Chapter 4) was also used in the experiments,

to test if aligned pairs provide an advantage in these methods.

In longitudinal experiments, image pairs were used. Each pair is associated with two labels:

the pathology detection and the change detection.

• The pathology detection is related to the first image in the pair. Thus, an image was consid-

ered positive for a pathology if it has a positive label (1) for it, and negative (0) otherwise.

• The change detection is related to the comparison between the pathology labels in the two

images in the pair. The presence of change is positive (1) if the pathology label is different

between the two and negative (0) otherwise.

45
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5.1 Methods

5.1.1 Datasets

The used dataset is the ChestX-ray14. In this dataset, 14 abnormalities are labeled, including

atelectasis, cardiomegaly, effusion, infiltration, mass, nodule, pneumonia, pneumothorax, consol-

idation, edema, emphysema, fibrosis, pleural thickening and hernia.

A longitudinal dataset, based on the original one, was created. Here, only images of patients

that have at least two scans are included, which are grouped into pairs of longitudinally acquired

images. Each sample of the longitudinal dataset thus corresponds to two images with consec-

utive follow-up numbers, being the first one (input image) the oldest scan, and the second one

(image pair) the most recent one. Thus, the original dataset which contains 112,120 images was

transformed into a longitudinal dataset composed of 81,315 samples.

In all the reported experiments, the images suffered the same pre-processing. The 3-channel

images were resized to 256× 256 pixels and normalized with the mean and standard deviation

values of the ImageNet dataset [34], as it was used to pretrain the used models. Data augmentation

was used during training, by applying random affine transformations, including rotations from -5

to 5 degrees and shear parallel to the x-axis, from -3 to 3 degrees. The used batch size was 8 in all

training routines.

The images were split into five folds, maintaining the original class distribution in each one

and ensuring no patient overlap between folds. This class and patient distribution was preserved

both in the original and longitudinal dataset. Three folds were used for training, while one was

used for validation and one for testing.

In order to facilitate the interpretation of the results, as well as allowing the development of

multiple experiments and compare various methods, the performed experiments were based on an

individual pathology: cardiomegaly. Cardiomegaly is an abnormality that can be found in CXR,

and it refers to the enlargement of the heart.

In Figure 5.1 an example of an image pair is presented. This pair is part of the cardiomegaly

longitudinal dataset.

Figure 5.1: Example of a longitudinal pair. The first image has a positive label for cardiomegaly,
while its pair has a negative label for the abnormality. Thus, the change label is positive.
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To detect cardiomegaly, the Cardiothoracic Ratio (CTR) is measured (or visually assessed).

The CTR is the ratio between the maximum transverse diameter of the heart and the maximum

transverse diameter of the chest. If this value is higher than 0.5, then cardiac enlargement is

present. In Figure 5.2 an example of the CTR measurements is displayed. It should be kept in

mind that CTR alone is not reliable to provide the diagnostic, however, the usage of multiple CXR

might allow the visualization of the evolution and thus help provide a more significant diagnostic

[3].

Figure 5.2: CTR measurements example [3].

For the original dataset, the percentage of images with a positive cardiomegaly label is 2.48%.

When considering the longitudinal dataset, the distribution of the samples through the classes is

presented in Table 5.1.

Table 5.1: Cardiomegaly and change cases numbers in the longitudinal dataset

Positive Cardiomegaly Negative Cardiomegaly Total
Positive Change 1,419 (1.75%) 1,375 (1.69%) 2,043
Negative Change 624 (0.77%) 77,897 (95.80%) 79,272
Total 1,999 79,316 81,315

5.1.2 Pathology and Change Detection

The network that is used as a backbone for all the experiments is the ResNet-50. The ResNet-50

is a CNN, more specifically, a Residual Network. This kind of network includes skip connections,

which consist of adding the original input to the output of the convolutional block. This happens

only if the size of the input is the same as the size of the output, thus, transformations (like padding

or convolutions) can be applied in order to make it possible. A building block example is shown in

Figure 5.3. Here, F (x) represents the residual map to be learned and x represents the input vector.

The skip connections provide a solution to the vanishing gradient problem, that happens when,
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Figure 5.3: ResNet building block [5].

during backpropagation, certain activation functions map the input value into a smaller output

space, leading to a small derivative. When the network has multiple layers, this causes a small

gradient and, consequently, an inefficient update of the weights and poor training.

The ResNet architecture is constructed based on multiple convolutional layers. In the case of

ResNet-50, it contains 48 convolutional layers, one MaxPool layer, and one average pool layer.

The algorithms presented in this work were implemented using the PyTorch framework and an

NVidia GeForce GTX 1080 GPU (8 GB).

In the following paragraphs, the various conducted experiments are summarized:

• Experimental setting 1: A multilabel model was used as a baseline for comparison with

other experiments. This model was used to predict the presence of a single pathology in

an image. These model predictions were used to compute the change class in longitudinal

images;

• Experimental setting 2: The same multilabel model was used as a feature extractor, and

the combination of image features were used to compute the presence of pathology in the

input image, and the change class between the pair;

• Experimental setting 3: A model was trained using longitudinal image pairs. The images

were concatenated and fed into the model, with the objective of predicting the presence

of pathology in the first image, and the change class for the comparison between the two

images;

• Experimental setting 4: The previous experiment was repeated with image pairs that were

aligned, using the proposed alignment method (c.f. Chapter 4).

5.1.2.1 Experimental Setting 1 - Baseline

A baseline model was established for comparisons with further experiments. This model focuses

on a multilabel problem, predicting the 14 labeled pathologies in ChestX-ray14. A multilabel

based model was used as it allows simple expansion of the performed experiment to other CXR

abnormalities. As previously mentioned, a ResNet-50 backbone is used and the model was pre-

trained with ImageNet [34].
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The used loss function is the Binary Cross Entropy (BCE) loss, shown in equation 5.1, where y

(1 or 0) is the ground truth label, p(y) is the predicted probability and N is the number of samples.

This loss function is commonly used in binary classification problems. The Adam optimizer [80]

is used to compute the updated weights and biases. It is an algorithm that is adequate for noisy

gradients, and requiring little tuning of hyperparameters. This optimizer was used with a defined

learning rate of 10−4. A scheduler was used to reduce the learning rate throughout training, which

allows the model to reach the best possible performance. The validation loss is used as the con-

trolling parameter, and the learning rate is reduced by a factor of 0.1 when the validation loss does

not decrease for over 3 epochs. Training was extended for a maximum of 10 epochs, saving the

model weights on the epoch that provided the best validation loss.

BCE = − 1
N

N

∑
i=1

−(yi log(p(yi))+(1− yi) log(1− p(yi))) (5.1)

The described training conditions (including the model architecture, pretraining, loss function,

scheduler, and optimizer) were maintained for all performed experiments, unless stated otherwise.

This baseline model was used to generate the probabilities of presence of each pathology,

in each image of the test set. As in these experiments, individual labels were considered at a

time, only the results relative to cardiomegaly were kept. The change class was also predicted

for the longitudinal test set. This was done by computing the absolute value of the difference of

probability of pathology in a longitudinal pair, as shown in equation 5.2. A scheme is represented

in Figure 5.4

Figure 5.4: Baseline Model Scheme.

pchange = |ppathology input image − ppathology image pair| (5.2)
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Figure 5.5: Features Model Scheme.

5.1.2.2 Experimental setting 2 - Features Model

In this experiment, the encoder portion of the multilabel model previously described was used as a

feature extractor. This was done by freezing all of its layers, and removing the final fully connected

layer. The deeper layers are used to generate the features for each image in a pair. The features

are then concatenated (forming a features vector with the double of the length), before being fed

to a new trainable dense classifier layer, which outputs the presence of the pathology in the input

image and the change class for its pair. In Figure 5.5, a scheme of the model is represented.

Training included 35 epochs, in this experimental setting, saving the model weights on the

epoch that provided the best validation loss. The defined learning rate was 10−6.

5.1.2.3 Experimental setting 3 – Longitudinal Model

In this experiment, both images from a longitudinal pair are used as the input to a model, aiming

at the detection of both the presence of a pathology and the presence of change. The images in the

pair are fed to the model after being concatenated, originating a 6-channel variable.

The used model (ResNet-50 [5] backbone) was adapted to include a 6-channel input image,

and return the two desired outputs. A scheme of this model is represented in Figure 5.6.

Training included 15 epochs, saving the model that provided the best validation loss. The

defined learning rate was 10−6.

5.1.2.4 Experimental setting 4 - Longitudinal Aligned Model

The previously described experiment (longitudinal model) was repeated, but with image pairs that

were aligned using the developed alignment method described in Chapter 4. Each image pair was

aligned according to its reference, which is the first image in the pair. A scheme of this model is

represented in Figure 5.7
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Figure 5.6: Longitudinal Model Scheme.

5.1.3 Explainability

When working with medical images, the most common form of XAI is saliency mapping [81].

Saliency maps are a visual explanation that highlight which parts of the image are important for a

decision. The majority of these visual explanation techniques uses backpropagation, but there are

also methods using perturbation-based or multiple instance learning-based approaches.

The simplest example of backpropagation techniques is image-specific class saliency maps

[28]. In this technique, a forward pass is performed and the gradient values of the loss function

are computed in respect to the input image, generating a final map. Grad-CAM [21] is also a

backpropagation technique, that was introduced as a generalization of Class Activation Mapping

(CAM) [82], which is a commonly used method that can be applied to any CNN.

In order to produce explainability maps for the constructed models, saliency maps were ap-

plied. This method was chosen since it allows the acquisition of maps for all experimental settings,

independently of the input form: concatenated images (6-channel image), two images, or one im-

age. Grad-CAM does not allow the separation of the images for its computation, since it uses the

last convolutional layer of the network. Saliency maps were generated for both classes (pathology

and change) and all experiments. This was done by acquiring the gradients for each image, nor-

malizing them according to the maximum value, and applying a Gaussian filter with a sigma of 5

and a kernel with a quarter of the image size.

5.2 Results and Discussion

The final results for each experiment were computed by applying the corresponding model to the

test fold, containing 16,283 samples in the longitudinal dataset. The explainability maps were

generated for images in the test set. In Table 5.2, the results for the models can be seen.

Regarding the detection of cardiomegaly, the baseline model (experimental setting 1) outper-

forms the remaining, with an AUC of 0.897. This is probably due to the fact that this model was



52 Pathology and Change Detection

Figure 5.7: Longitudinal Model Scheme.

trained with the original dataset, which contains more samples than the longitudinal version, and

might have provided a better cardiomegaly detection. Concerning the detection of change, the

features model outperforms the rest of the experiments, with an AUC of 0.858.

The features model (experimental setting 2) performance in the pathology class is probably

due to the usage of the same features as the baseline model (experimental setting 1) to reach the

predictions. As the features from both images are used to compute the presence of cardiomegaly

(and change), the similarity between these two cases was expected. Regarding the detection of

change, the reached results show that the usage of features for cardiomegaly detection can be

used to model the difference between two scans, predicting the label change when comparing the

images in the pair.

In the longitudinal model, the images are concatenated before feature extraction. The usage of

all longitudinal information as input was thought to be an advantage, since the feature extraction

could capture the difference between the scans from the beginning. However, this factor can be the

main reason for the weaker results shown by this approach, as it might make the feature extraction

process more difficult. It is clear however that the usage of aligned images in the longitudinal

model (experimental setting 4) improved the results. The alignment of the images leads to an

alignment of the relevant structures in the scans and thus, it might facilitate the detection of features

for comparison of the two images.

Table 5.2: Cardiomegaly and change detection results.

1 - Baseline 2 - Features 3 - Longitudinal 4 - Longitudinal Aligned
Card. Change Card. Change Card. Change Card. Change

AUC 0.897 0.824 0.893 0.858 0.833 0.795 0.868 0.820
Precision 0.096 0.102 0.137 0.088 0.079 0.09 0.078 0.076
Recall 0.842 0.716 0.734 0.825 0.734 0.679 0.803 0.818
Accuracy 0.799 0.788 0.879 0.722 0.782 0.769 0.762 0.678

By looking at images from the same patient and corresponding ground truth labels, some
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situations where images appear practically equal, but have a different ground truth label can be

found. In Figure 5.8, an example of such a case is represented. It is important to acknowledge the

existence of these cases, since in this dataset the labels were automatically generated from medical

reports, and so, errors in the annotations can be present. Furthermore, given that the change label

is computed by using the two pathology labels of an image pair, this label is associated with a

higher error. This factor might introduce noise in the longitudinal dataset, that can lead to lower

performance when this data is included for training.

Figure 5.8: Example of a case where similar images from the same patient display different ground
truth labels for cardiomegaly.

In Figure 5.9 and Figure 5.10, examples of cardiomegaly saliency maps are represented. The

selected images are, in the first case, true positive and, in the second case, false positive cases, for

the features model (experimental setting 3). In these figures, the same image pairs are represented,

but overlaid with saliency maps generated by all different experimental settings. For each experi-

mental setting, four pairs of images are presented, except for the baseline model, as it takes only

one scan as input. Even though the cardiomegaly label is relative to the first image in the pair,

saliency maps are shown for both images, as both of them were used as input.

The maps for the baseline model and the features model (experimental settings 1 and 2) are

similar, which was expected since the features model is derived by adapting the baseline model.

The maps for the longitudinal models (experimental settings 3 and 4) seem, in general, more

disperse than the remaining experiments. However, the case that uses aligned pairs seems to

present more focused maps, in comparison with the model that uses non-aligned pairs.
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As the ground truth label is associated only with the first image, the saliency maps were ex-

pected to present low activations for the second image in the pair. However, by looking at the

examples, it is clear that features from both images are used for the cardiomegaly prediction. This

observation can be somewhat related to possible wrong annotations in the dataset, as previously

mentioned, as they could lead the model to catch features from both images during training.

In Figure 5.11 and Figure 5.12, examples of change saliency maps are represented. Similarly

to the pathology examples, the selected images are, in the first case, true positive and, in the second

case, false positive cases, for the features model (experimental setting 3). In this case, four pairs

are presented for each of the experimental settings where the change label is computed (2, 3 and

4).

In this scenario, as the change label concerns both images in the pair, it was expected that

both would show activations that would highlight their differences. Similarly to the cardiomegaly

saliency maps, the maps from the features model (experimental setting 2) are focused mainly in

the heart area. The longitudinal models present saliency maps with more disperse activations, but

still focused mainly on the logical anatomic region. By comparing the longitudinal models, the

activations appear to be more focused on the same structures in the maps where aligned pairs are

used.

In summary, for the baseline and features models (experimental settings 1 and 2), the metrics

are concordant with the saliency maps. The features extracted by the baseline model seem to have

a good performance when used to predict both the presence of cardiomegaly and change. This is

concordant with the shown saliency maps, as, in these cases, they seem to be more focused on the

anatomical logic area. The longitudinal models (experimental settings 3 and 4) show worse results

in comparison, both in terms of metrics and saliency maps, providing more disperse activations. In

the case of both classes, pathology and change, the generated saliency maps are similar in the two

images used as input, which means that the models use mostly the same regions in both images to

provide the predictions.

5.3 Conclusions

Multiple experiments were carried out with the aim of integrating longitudinal data for detection

of pathology and change (comparison between the presence of pathology in two scans). This

integration was performed at different levels. In the baseline model (experimental setting 1), no

longitudinal data was integrated during training. In the features model (experimental setting 2),

longitudinal information was included at the features level, by combining the features extracted

from two images in a pair. In the longitudinal models (experimental settings 3 and 4), it was

included at the input level, by concatenating the images in the pair in a 6-channel input.

It is important to note that, in the performed experiments, only one of the pathology labels

from ChestX-ray14 (cardiomegaly) was used. In future work, it should be a priority to validate the

carried out experiments in the remaining abnormalities.
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Figure 5.9: Comparison of saliency maps for all experimental settings on cardiomegaly detection.
True positive cases.
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Figure 5.10: Comparison of saliency maps for all experimental settings on cardiomegaly detection.
Mainly false positive cases.
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Figure 5.11: Comparison of saliency maps for all experimental settings on change detection. True
positive cases.
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Figure 5.12: Comparison of saliency maps for all experimental settings on change detection.
Mainly false positive cases.
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The best performance obtained for cardiomegaly detection was reached by the baseline model

(experimental setting 1), with an AUC of 0.897, even though the features model (experimental set-

ting 2) reached a similar AUC of 0.893. Regarding the detection of change between the scans pair,

the features model outperformed the remaining experiments, with an AUC of 0.858. The usage

of the baseline model for feature extraction, allowing the computation of the presence of change,

shows that longitudinal pathology data provides an advantage for automatic comparison of exams.

On the other hand, the usage of 6-channel images for training (longitudinal models – experimental

settings 3 and 4) showed that the concatenation of the input images affects the prediction of the

pathology and change. The usage of aligned images improved the performance of the model that

uses the concatenated images. The usage of aligned images improved the cardiomegaly detection

AUC by 3.5%, and the change detection AUC by 2.5%. The alignment of the structures probably

facilitates the extraction of features relative to both images, which shows that it can be advanta-

geous for longitudinal problems. Information from the two images in the pair is usually used to

predict both the presence of pathology in the first image and the change in the pair.

In the longitudinal dataset, there are similar images that contain different ground truth labels.

This is important to note, as these situations might constitute errors in the dataset, that lead to a

higher error. The presence of wrong labels is problematic mainly for the change class, as it is

dependent on two pathology labels, leading to an augmentation of the error.
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Chapter 6

Augmentation Techniques for Pathology
and Change Detection

In the previous chapter, the usage of consecutive longitudinal information was studied, with the

objective of predicting both the presence of cardiomegaly (in the first image of the pair) and the

change class between the two scans of the pair. Here, the combination of the two exercises leads

to four possible class combinations: [0,0], [1,0], [0,1] and [1,1], where the first label is relative to

the presence of pathology, and the second one to the change class.

As previously shown in Table 5.1, the cases that contain positive labels for pathology or change

are far less common than doubly negative pairs. This fact is thought to be one of the factors

preventing the models from obtaining better performance, as the low representation of the minority

cases ([0,1], [1,0] and [1,1]) might be hindering the learning of their representative features.

In order to improve the results established in Chapter 5, potential longitudinal data augmenta-

tion methods were explored. These methods have the objective of increasing the representation of

minoritary classes during training, which might lead to learning more representative features and,

consequently, better final prediction metrics. More specifically, in this chapter, different experi-

ments were performed, in order to study data augmentation techniques for pathology and change

detection. In these experiments, the longitudinal dataset was used in different alternative manners.

These were used to train models, maintaining the same experimental settings presented in Chapter

5.

6.1 Methods

6.1.1 Datasets

Previously, the original dataset and the longitudinal dataset were described. The longitudinal

dataset consists of pairs of consecutive scans from the same patient. However, as 9,189 patients

have more than 2 images, multiple combinations can be done between the available scans. For

instance, aside from combining two consecutive images in a pair, non-consecutive pairs can also

be formed, either with a logical temporal order or an inverse temporal order. The datasets that can
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be formed by creating all possible combinations of images (independently of the time order) are

hereinafter referred to as the pseudolongitudinal datasets. Different versions of pseudolongitudi-

nal datasets were used in the augmentation studies, since they allow the usage of more minoritary

pairs for training.

The fully pseudolongitudinal dataset (all possible pairs for each patient) yields a very high

number of combinations in comparison with the longitudinal dataset (Table 6.1). This fact would

make the training process a lot more computationally expensive, so, it was not used in this chap-

ter’s study. In alternative, other datasets derived from it were explored as lighter options. These

datasets, that also aim at reducing the effect of class imbalance and leading to better final perfor-

mance, are described in the following paragraphs.

• The first formed dataset was called pseudolongitudinal minoritary dataset. It consists of

the longitudinal dataset (consecutive image pairs), to which the pseudolongitudinal combi-

nations are added, but only if the formed sample belongs to minority case ([1,1], [1,0] or

[0,1]);

• Posteriorly, a similar dataset was generated, but where only the pseudolongitudinal sam-

ples with the [1,0] case were added to the longitudinal dataset (pseudolongitudinal [1,0]
dataset). The objective of this experiment was introducing more minority samples in train-

ing, but without increasing the representation of the change class. As this class is by itself

associated with a higher error (by being computed by the comparison between two pathol-

ogy labels), maintaining its representation lower might prove to be advantageous;

• Finally, another dataset was formed by using the longitudinal dataset and adding to it the

pseudolongitudinal combinations formed by the patients with N or fewer images. This

was done in order to get an augmented dataset but without increasing too much number of

samples. As for patients with more images, more combinations are possible, this restriction

leads to the formation of multiple combinations only for patients with fewer images, while

the remaining contribute with consecutive pairs only (longitudinal dataset). This dataset is

called pseudolongitudinal <N dataset. Experiments were performed for N = 5 and N = 10.

Table 6.1: Number of training samples for each class case, for the pseudolongitudinal dataset
versions.

Dataset [1,1] [1,0] [0,1] [0,0]
Longitudinal 883 (1.81%) 363 (0.74%) 842 (1.73%) 46,673 (95.72%)
Pseudolongitudinal 29,685 (2.57%) 6,988 (0.61%) 29,685 (2.57%) 1,087,256 (94.25%)
Pseudolongitudinal
minoritary 29,685 (26.26%) 6,988 (6.18%) 29,685 (26.26%) 46,673 (41.29%)

Pseudolongitudinal
[1,0] 883 (1.59%) 6,988 (12.62%) 842 (1.52%) 46,673 (84.27%)

Pseudolongitudinal
<5 1,024 (1.62%) 455 (0.72%) 1,117 (1.76%) 60,775 (95.9%)

Pseudolongitudinal
<10 2,070 (1.62%) 645 (0.51%) 2,072 (1.62%) 122,895 (96.25%)
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The fold distribution scheme mentioned in Section 5.1.1 was maintained for training, valida-

tion, and test in this new scenario. The pseudolongitudinal combinations were implemented only

for the train and validation datasets. The test dataset remains the same in all experiments, equal

to the test dataset used in Chapter 5 (longitudinal test dataset). In Table 6.1, a comparison of all

datasets generated for these experiments, as well as the longitudinal dataset, can be seen. Here,

the number of samples of each case, in the train dataset, is displayed.

6.1.2 Pathology and Change Detection

In order to perform the initial experiments with the mentioned different datasets, the longitudinal

model (experimental setting 3, explained in Section 5.1.2.3) was trained again to predict the pres-

ence of cardiomegaly in the first image, and the presence of change in the image pair. This model

was chosen since it is trained with longitudinal information from the input level, in opposition to

the baseline and features models (experimental setting 1 and 2), which might be an advantage at

inferring longitudinal features from the images. As the aligned longitudinal model (experimental

setting 4) depends on the previous alignment of the pairs, the longitudinal model was chosen over

it, being used to test the performance obtained with each of the augmented datasets.

After determining the best longitudinal augmentation technique, the augmented dataset that

provided the best final result for the longitudinal model was used for training in the remaining

experimental settings (2, the features model, and 4, the aligned longitudinal model), maintaining

the conditions described in Section 5.1.2. Similarly to the previous experiments, saliency maps

were generated in order to provide explainability information of all models.

6.2 Results and Discussion

The results obtained for the pseudolongitudinal datasets, all applied to the longitudinal model

(experimental setting 3) can be seen in Table 6.2. When comparing the model trained with the

longitudinal dataset and the pseudolongitudinal minoritary dataset, the pathology detection metrics

remain similar, and the change class metrics suffer from a small decrease. This fact is thought to

be related to the noise associated with the change class. As previously explained, this class results

from the combination of two cardiomegaly labels, thus, if one label is incorrect, this error will also

be present in the change class. In the case of the longitudinal dataset, an error in a cardiomegaly

label can impact two change labels (as the pairs are consecutive, so an image can be in a maximum

of two pairs). However, in the pseudolongitudinal dataset, as all possible combinations of images

(from the same patient) are used, the noise associated with the change label is augmented. In this

scenario, an incorrect cardiomegaly label can affect as many change annotations as the number of

pairs the corresponding image is included in.

For the pseudolongitudinal [1,0] dataset, as only the cases with negative change are considered,

the noise associated with it is reduced. Thus, in this situation, both classes’ metrics improve

slightly, in comparison with both the longitudinal and pseudolongitudinal minoritary datasets.
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Table 6.2: Results for the longitudinal model (experimental setting 3) and the pseudolongitudinal
dataset versions.

Longitudinal
Pseudolongit.

minority
Pseudolongit.

[1,0]
Pseudolongit.

<5
Pseudolongit.

<10
Card. Change Card. Change Card. Change Card. Change Card. Change

AUC 0.833 0.795 0.830 0.775 0.849 0.808 0.855 0.822 0.863 0.827
Precision 0.079 0.090 0.062 0.058 0.082 0.079 0.091 0.090 0.088 0.109
Recall 0.734 0.679 0.801 0.869 0.746 0.777 0.736 0.741 0.781 0.691
Accuracy 0.782 0.769 0.695 0.547 0.789 0.701 0.811 0.752 0.796 0.810

Regarding the pseudolongitudinal <N datasets (for N = 5 and N = 10), both of them display

a higher performance than the remaining experiments, with the pseudolongitudinal <10 dataset

presenting the best AUC (0.863 for cardiomegaly and 0.827 for change). In these experiments,

the representation of each case ([0,0], [0,1], [1,0] and [1,1]) is similar to the longitudinal dataset,

however, more samples are used for training. This fact, combined with the lack of noise caused by

the augmentation of the errors in the cardiomegaly presence class, is probably the reason why these

experiments provide the best results. The fact that the pseudolongitudinal <10 overperformed the

pseudolongitudinal <5 dataset means that the usage of more combinations is probably beneficial

for predicting both the presence of cardiomegaly and change.

As previously mentioned, the augmented pseudolongitudinal dataset experiments were also

replicated on the remaining experimental settings (explained in Chapter 5). The chosen dataset

was the pseudolongitudinal <5. This dataset was chosen over the pseudolongitudinal <10 dataset

because there is only a slight performance improvement shown by the latter, and the longitudinal

aligned model (experimental setting 4) requires the previous alignment of each pair (with the first

image is used as a reference). Thus, by using the pseudolongitudinal <5 dataset there is no need

for aligning as many pairs as if the pseudolongitudinal <10 was used.

In Table 6.3 the results using the pseudolongitudinal <5 dataset for all experimental settings

are shown. The features model (experimental setting 2) outperformed the remaining approaches,

with an AUC of 0.896 for cardiomegaly and 0.863 for change. These results are similar to the ones

presented for longitudinal dataset and this experimental setting. Regarding the longitudinal model

(experimental setting 3), the results for the pseudolongitudinal dataset are better than the ones

presented for the longitudinal dataset, with an increase of 2.2% for cardiomegaly and of 2.7% for

change AUC. In the case of the longitudinal aligned model (experimental setting 4), a very slight

Table 6.3: Results for all experimental settings, using the pseudolongitudinal <5 dataset.

2 – Features 3 - Longitudinal 4 – Longitudinal Aligned
Card. Change Card. Change Card. Change

AUC 0.896 0.863 0.855 0.822 0.876 0.829
Precision 0.120 0.091 0.091 0.090 0.105 0.087
Recall 0.766 0.825 0.736 0.741 0.746 0.772
Accuracy 0.856 0.730 0.811 0.752 0.837 0.735
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improvement is present, when comparing the pseudolongitudinal dataset with the longitudinal one.

One possible hypothesis for explaining these results, is the fact that training the models with

more data (pseudolongitudinal augmentation) might facilitate the extraction of relevant features

from the image pair. Also, as this augmentation leads to the combination of more temporally

distant images, it is possible that the change between them is more noticeable. The usage of

these relevant features might lead to a better classifier. Thus, as the features model (experimental

setting 2) already seemed to be extracting relevant features (for cardiomegaly, when using the

longitudinal dataset), it is possible that the addition of new pairs did not result in improvement.

As in this case the change label is being predicted from the cardiomegaly features of both images,

it is also possible that longitudinal features are not being further learned in this scenario.

In the case of the longitudinal model (experimental setting 3), the results using the longitudi-

nal dataset suggest a weaker feature extraction. Thus, it is possible that the usage of more data

(pseudolongitudal dataset) would leads to a more significant improvement in the final metrics.

Regarding the longitudinal aligned model (experimental setting 4), the usage of more information

only lead to a very slight improvement, thus, it is possible that the increase in information was

overshadowed by the improvement provided by the alignment.

Examples of saliency maps, both for cardiomegaly and change, for all experimental settings

are presented in Figure 6.1. It is clear that the features model (experimental setting 2) produces

maps with more focused activations than the remaining models, for both cardiomegaly and change

detection. Regarding the longitudinal models (experimental settings 3 and 4) saliency maps, when

comparing them to the results from Chapter 5 (using the longitudinal dataset), they seem some-

what more focused. The maps produced for cardiomegaly and change, in an image pair, have the

tendency to be similar, which means the models tend to use the same region in both input images

to produce the predictions. The maps are, in general, focused on the heart region.

6.3 Conclusions

In this chapter, the use of non-consecutive longitudinal information as a data augmentation tech-

nique for the prediction of cardiomegaly and change in an image pair was explored. The integra-

tion of non-sequential longitudinal data was done by performing different combinations of images

from the same patient, forming four versions of pseudolongitudinal datasets. These versions differ

in the amount of class cases ([0,0], [0,1], [1,0] and [1,1]) that form each one.

These datasets were used to train the longitudinal model. The noise associated with the change

class (due to the accumulation of error in the cardiomegaly label) proved to affect the performance

of the model. When the used dataset contains a higher portion of samples with positive change,

this error manifests itself, providing worse final results for change detection, in comparison with

the model trained without augmentation. Experiments where the number of training samples was

increased without affecting the ratio of each class seemed to improve the performance of the

trained models. This shows that the usage of more image combinations during training can be used
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Figure 6.1: Comparison of saliency maps for all experimental settings using the pseudolongitudi-
nal <5 dataset. True positive cases.
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as an advantageous data augmentation technique, and it leads to the hypothesis that the higher the

numbers of combinations used, the more notable the results will be.

The most favorable pseudolongitudinal dataset was used to train the remaining experimen-

tal settings (features and aligned longitudinal models). The features model (experimental setting

2) outperformed the remaining, with an AUC of 0.896 for cardiomegaly detection and 0.863 for

change detection. The results show that the most notable improvement is present in the lon-

gitudinal model (experimental setting 3), while the features model (experimental setting 2) and

the longitudinal aligned model (experimental setting 4) present similar results to the longitudinal

dataset (no augmentation). As the features model seems to be using relevant cardiomegaly features

from the scans, the augmentation was not as notable. Similarly, the effect of the alignment in the

longitudinal aligned model probably overshadowed the augmentation advantage.

A possible suggestion for future work on data augmentation would be to use image combina-

tions from different patients. This option could increase the differences between the images and

possibly facilitate the extraction of features that compare the two images.
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Chapter 7

Longitudinal Label Rectification

The experiments carried out in the previous chapters led to the conclusion that it is possible to

predict change between two images, regarding the cardiomegaly findings. In these experiments,

the change ground truth label was computed using the original cardiomegaly labels of both images,

and both temporally sequential and non-sequential pairs of images were formed for training and

testing.

As previously discussed in Section 5.2, the visual analysis of multiple images from the same

patient, allowed the detection of cases where very similar looking images present different ground

truth labels for cardiomegaly. Examples of such cases can be seen in Figure 5.8. As the original

ChestX-ray14 dataset was labeled using NLP to automatically extracted annotations from medical

reports, the possibility that errors exist in the dataset has to be kept in mind.

During the multiple pseudolongitudinal dataset experiments, the presence of more positive

change labels proved to negatively affect the performance of the model, especially for the detection

of change. On the other hand, datasets that preserved the distribution of the classes (similar to

the longitudinal dataset) exhibited a performance improvement, when more samples were used

for training. These results show that using a higher representation of positive change labels for

training introduces noise to the training process, which results in poor final results.

With the aim of reducing the noise associated with the change class, the original dataset labels

were altered using longitudinal data. This alteration led to the creation of a new dataset – referred

to as the rectified dataset – which is described and studied in this chapter, being used to train the

models for pathology and change detection and for pseudolongitudinal experiments.

7.1 Methods

7.1.1 Datasets

The created rectified dataset consists in an alteration of the original ChestX-ray14 labels. As

cardiomegaly is related with heart enlargement, it is assumed that it cannot develop and fade

rapidly, thus, in this alteration, it is presumed that the presence of two changes in the cardiomegaly

label in a small period of time should be treated as an error in the dataset. For instance, if a patient

69
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Figure 7.1: Examples of images whose cardiomegaly labels changed. In the top row, the label was
rectified to positive, and in the bottom row to negative.

has 5 images acquired in less than 2 years with a ground truth label sequence of 0-0-0-1-0 (or

1-1-1-0-1), then it should be altered to 0-0-0-0-0 (or, similarly, 1-1-1-1-1).

In order to perform such alteration, the patients with multiple images were selected. For each

patient, the scans were grouped by patient age, creating collections of images less than 2 years

apart. The number of positive and negative labeled images were counted. If the negative images

consist of more than 80% of the images in the group, then the labels of the remaining should be

changed to negative. Similarly, if more than 80% of the images in the group are positive, then the

remaining are changed to a positive label. It should be noted that, due to this condition, groups

with less than five images remained unchanged.

This alteration led to a change of 949 cardiomegaly labels in the original dataset, and only 15

of these were changes from a negative label to positive. In Figure 7.1, examples of images whose

labels were rectified can be seen.

The fold distribution mentioned in Section 5.1.1 was maintained, and the same folds were

used for the train, validation and test datasets. After the creation of the rectified dataset, the lon-

gitudinal version of this dataset was also formed (longitudinal rectified dataset). The following

versions of the rectified dataset were also generated, in order to conduct pseudolongitudinal ex-

periments: pseudolongotudinal minoritary, pseudolongotudinal [1,0] and pseudolongotudinal <5.

These rectified versions were considered for all train, validation and test datasets. Similar to the

previous pseudolongitudinal experiments, the augmentation was performed solely on the train and

validation datasets.

7.1.2 Pathology and Change Detection

The longitudinal rectified dataset was used to train the features model and the longitudinal models

(experimental settings 2, 3 and 4), maintaining all training conditions previously described in
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Section 5.1.2. Results were generated for the test set, for all experimental settings. The baseline

model (experimental setting 1) results were obtained by inference on the rectified test dataset.

The rectified versions of the augmented pseudolongtitudinal datasets were used for experi-

ments with the longitudinal model (experimental setting 3), similarly to the study done in Chapter

6. After that, the rectified pseudolongitudinal <5 dataset was used to train and generate results for

all models (experimental settings 2, 3 and 4).

7.2 Results and Discussion

A rectified version of the ChestX-ray14 dataset was generated. It is important to note that the

altered annotations were not verified, and thus it cannot be guaranteed that the alterations were

beneficial, in terms of dataset accuracy. An example of a rectification that might not be correct

is the last scan in Figure 7.1 (bottom right). In this case, the CTR measurement (and visual

assessment) seem to identify this scan as positive for cardiomegaly, while the rectification altered

the label to negative.

It also must be kept in mind that the method used for rectification is simple, and it might fail at

identifying suspicious cases. This might happen principally in the cases that at the extremes of the

formed collections (initial and final images), as they might indicate a real change that is postponed

or advanced by the rectification. As an example, a ground truth full sequence of 1-0-0-0-0, or

0-0-0-0-1, will be rectified to 0-0-0-0-0. This alteration might not be improving the noise in the

dataset, and it is weakly supported by the fundaments used for rectification, in comparison with

alterations in samples in the middle of the sequence. Thus, the existence of such situations must

be kept in mind.

7.2.1 Longitudinal Scans Experiments

In Table 7.1, the results for the longitudinal rectified dataset, in all experimental settings, can be

seen. As this dataset consists in an alteration of ChestX-ray14, its results cannot be compared with

the ones generated by the longitudinal and pseudolongitudinal datasets, as these are derivations of

the original data.

Regarding the detection of cardiomegaly, the baseline model (experimental setting 1) outper-

forms the remaining, with an AUC of 0.914. However, the features model (experimental setting 2)

and the aligned longitudinal model (experimental setting 4) present a similar performance. As the

features model uses the same image features as the baseline model to provide the predictions, sim-

ilar results regarding cardiomegaly detection were expected. Concerning the detection of change,

the features model (experimental setting 2) present an AUC of 0.867, outperforming the remaining

approaches.

These results should not be used to directly compare the models with the ones from Chapter

5 (longitudinal dataset). However, a comparative analysis to validate whether the performed rec-

tifications helped the training and testing can be done. The fact that the baseline model inference
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Table 7.1: Results for all experimental settings, using the longitudinal rectified dataset.

1 - Baseline 2 - Features 3 - Longitudinal 4 - Longitudinal Aligned
Card. Change Card. Change Card. Change Card. Change

AUC 0.914 0.849 0.898 0.867 0.875 0.832 0.899 0.847
Precision 0.093 0.054 0.090 0.069 0.060 0.048 0.073 0.055
Recall 0.801 0.768 0.761 0.712 0.78 0.744 0.830 0.744
Accuracy 0.868 0.791 0.875 0.847 0.804 0.772 0.830 0.801

on the rectified longitudinal dataset outperformed the longitudinal results means that the param-

eters that were learned during training with the original dataset are more consistent at predicting

cardiomegaly and change in the rectified longitudinal dataset than on the longitudinal dataset.

Furthermore, the fact that the performance of all experimental settings improved for both car-

diomegaly and change, means that the testing task became easier. Another hypothesis is that using

the rectified version of the longitudinal dataset lead to a more efficient training, due to the usage

of a more dependable dataset.

In Figure 7.2 some examples of images with rectified labels are presented. The ground truth

label, as well as the predictions from the different experimental settings, are also displayed, for

both the longitudinal dataset and the rectified longitudinal dataset.

7.2.2 Pseudolongitudinal Scans Experiments

In Table 7.2, the results for all versions of the rectified pseudolongitudinal datasets, used to train

the longitudinal model, are shown. The results for the rectified longitudinal dataset are also dis-

played, for comparison.

The best performance for cardiomegaly detection was obtained when training with the rectified

pseudolongitudonal minoritary dataset, reaching an AUC of 0.902. This value is similar to the ones

obtained by the remaining pseudolongitudinal variants. Regarding the change class, the usage of

the rectified pseudolongitudinal <5 dataset reached the highest AUC, with a value of 0.853. This

value represents an increase of 2.1% in comparison with the rectified longitudinal dataset. The

Figure 7.2: Examples of images whose cardiomegaly labels were rectified.
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remaining pseudolongitudinal datasets also outperformed the longitudinal dataset results. As the

usage of pseudolongitudinal information led to an improvement in the results in all cases, which

show that, for both classes, the usage of non-consecutive combinations is helpful at bettering the

model performance.

As previously mentioned, these results cannot be directly compared with the original labels

pseudolongitudinal experiments, in terms of model performance, as different datasets were used.

However, the effect of this different should be analyzed. Recalling the results shown in Section

6.2, the usage of the pseudolongitudinal minority augmentation led to a decrease in AUC in the

change detection. In the original labels’ scenario, the alteration of the ratio of the minority classes

seemed to affect the performance of the models. Looking at the results generated by the rectified

versions of the datasets, the usage of pseudolongitudinal augmentation proved to be an advantage

in all situations, increasing the AUC. In this case, changing the ratio of minority classes did not

provoke notable differences between the performances of the trained models. This shows that the

rectification of the dataset succeeded at creating more consistent data.

Table 7.2: Results for the longitudinal model (experimental setting 3) and the pseudolongitudinal
dataset versions.

Longitudinal
Pseudolongitudinal

minority
Pseudolongitudinal

[1,0]
Pseudolongitudinal

<5
Card. Change Card. Change Card. Change Card. Change

AUC 0.875 0.832 0.902 0.845 0.893 0.843 0.893 0.853
Precision 0.060 0.048 0.078 0.068 0.082 0.059 0.073 0.062
Recall 0.780 0.744 0.819 0.700 0.768 0.748 0.799 0.728
Accuracy 0.804 0.772 0.844 0.847 0.860 0.815 0.835 0.825

Table 7.3: Results for all experimental settings, using the pseudolongitudinal rectified dataset.

2 - Features 3 - Longitudinal 4 – Longitudinal Aligned
Card. Change Card. Change Card. Change

AUC 0.933 0.895 0.893 0.853 0.911 0.867
Precision 0.145 0.072 0.073 0.062 0.089 0.059
Recall 0.792 0.772 0.799 0.728 0.826 0.772
Accuracy 0.923 0.844 0.835 0.825 0.863 0.809

In Table 7.3 the results for the rectified pseudolongitudinal <5 dataset, for all experimental

settings, are displayed. The model presenting the best performance on cardiomegaly detection

is the features model (experimental setting 2), with an AUC of 0.933, meaning an increase of

3.5%, in comparison with the rectified longitudinal dataset. This model was the one presenting

the highest improvement, however, both longitudinal models (experimental settings 3 and 4) also

show an improvement when trained with pseudolongitudinal data. Regarding change prediction,

the features model (experimental setting 2) outperformed the remaining, with an AUC of 0.895

(increase of 2.8% in comparison with the rectified longitudinal dataset). The longitudinal models

(experimental settings 3 and 4) also present an increase in AUC. These results also show that
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using the pseudolongitudinal augmentation is valuable, both for the detection of cardiomegaly and

change between scans, and for all experimental settings.

7.3 Conclusions

The visualization of examples where the cardiomegaly labels seem to be possibly incorrect led to

the exploration of a technique for dataset rectification. The creation of the rectified dataset aimed

at the utilization of a more consistent data, with less noise associated with the change class. There

was no manual verification to these alterations, so, the defined ground truth labels should not be

trusted for comparisons with the original dataset.

The rectified dataset was used to train models in the experimental settings 2, 3 and 4, and

inference results were produced for the baseline model (experimental setting 1). The best AUC for

cardiomegaly detection (0.914) was achieved by the baseline model. Regarding change detection,

the best performance was reached by the features model (experimental setting 3), presenting an

AUC of 0.867. The results from these experiments cannot be used to compare the models with

the previous ones, as a different dataset (with different labels) was used for training. However,

the fact that the baseline model presents higher metrics for the rectified longitudinal dataset means

that the features learned while training with the longitudinal dataset are more concordant with the

rectifications.

The creation of rectified versions of the pseudolongitudinal datasets showed that the usage of

data augmentation techniques can improve the results for all experimental settings. In this case,

augmentations in the ratio of the minority classes did not affect the performance of the model, and

all rectified pseudolongitudinal dataset versions improved the performance of the model. This also

proves that the rectification of the dataset improved its consistency.

The usage of longitudinal data to clean-up noise in datasets with automatically generated an-

notations can be a powerful technique. To do so, it is important to keep in mind the time intervals

which are considered reasonable for the evolution of a CXR abnormality, so that suspect anno-

tations can be spotted. Despite the fact that it can not be used for all abnormalities, due to their

spontaneous character, this rectification technique should be further studied, as it could provide

an efficient solution for dataset correction. A deeper study should also be done as the developed

technique is simple, and it is based on an arbitrary abnormality evolution time period, which is

likely not ideal.
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Conclusion

The comparison of multiple CXR exams is a common practice by radiologists and medical profes-

sionals to analyze the most relevant differences and conclude on the represented findings. How-

ever, automated systems developed to aid this process and published as state-of-the-art are usually

based on a single scan. The implementation of longitudinal data in automated CXR analysis is a

field in development, but of high importance, as it provides solutions that take into consideration

a more realistic problem.

In this work, an algorithm for alignment of CXR scans is proposed. Alignment methods

usually accompany automatic solutions that use multiple images, as they might establish an im-

provement by facilitating the comparison. The developed method succeeds at aligning a pair of

images, by using anatomical features extracted from lung segmentations. The usage of these fea-

tures is an advantage, as it allows the alignment of all CXR pairs according to relevant marks

common in all scans. The role of alignment methods should not be undermined in longitudinal

problems. The state-of-the-art CXR registration techniques tend to use features as pixel intensity,

anatomical keypoints or segmentations (similarly to the developed method), which cannot be fully

relied on for computation of the transformations and evaluation of the method, when automatically

acquired. The developed method constitutes a simple rigid transformation approach that does not

overcome this general problem, however, it can be helpful especially to align images that are used

in automatic comparisons, however, human professionals may also benefit from analyzing aligned

pairs, instead of unaligned ones.

Experiments were performed with the objective of including longitudinal information in pre-

dictive models. Four experimental settings were designed, receiving a pair of CXR as input and

predicting both the presence of pathology (in the first image) and the change in the pathology label

(when comparing the images in the pair). The experimental settings varied the level at which the

longitudinal data were integrated. The baseline model was trained with no longitudinal informa-

tion, and subsequent models integrated data at the feature level and at the input level. The results

showed that integrating longitudinal data at the features level succeeds at improving the prediction

of change in the pair, while the integration at the input level makes it difficult to extract relevant

features. This proves that pathology features can be used to predict relevant comparison cues be-
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tween two images in a pair. The usage of aligned CXR pairs facilitated the feature extraction at

the image level, exposing the advantage of using registration techniques in this field. Augmenta-

tion techniques were developed, where non-sequential pairs of images were used for training. The

experiments showed the change class is associated with higher noise, and thus, an increase in its

representation leads to poor results. However, this augmentation technique proved to be advanta-

geous when the class ratios are maintained similar to original, and the addition of more training

combinations seems to improve the results, thus, this method should be further explored. These

methods should be replicated in other common CXR abnormalities, in order to assess the validity

of the obtained results in other findings. The inclusion of longitudinal information proved to be

useful at predicting the presence of change in a CXR scans pair, with little effect in the prediction

of pathology, in comparison with a single input image approach. The prediction of change in a

pair of CXR is important, as it can provide relevant information to a radiologist or other medical

professional, mimicking the human analysis of CXR. Predicting this change allows a faster analy-

sis of multiple exams from the same patient, reaching a possible diagnosis with more ease. It also

allows an efficient comparison of a scan with the previous ones from the same patient, encourag-

ing a diagnosis based on comparison with a previous state, instead of a standard reference. The

explainability associated with automated methods is also a matter of high relevance for the human

users. A model that predicts the presence of pathologies for one image can produce explainability

maps to support such predictions. However, a model whose predictions are based on multiple

images could allow the visualization of the changes throughout the scans, which facilitates the

comprehension of the predicted output, for a human observer. Even though this topic was not

further explored in this work, it should be kept in mind, as it is a valuable advantage present in

longitudinal systems.

The presence of possibly wrong annotations in the dataset led to the creation of a technique

to rectify them using longitudinal data. Thus, the dataset ground truth annotations were altered

in order to make it more consistent and perhaps reduce the noise. This dataset was used to train

models in the previously used experimental settings. The results showed that the rectified dataset

seems to be more consistent and include less noise than the original dataset. Consequently, longi-

tudinal rectification techniques should be further explored. Longitudinal information can be used

to develop powerful techniques to rectify CXR datasets. This concept could not be found in state-

of-the-art works, thus, the introduction of this topic is thought to have high relevance and possibly

a high future impact after further studies. The presence of noise in a dataset can be prejudicial

in DL applications, and it is especially common when the annotations are automatically gener-

ated. Thus, a valid correction of the labels could improve the performance of various developed

techniques.

Altogether, different experiments were carried out with the objective of studying the inclusion

of longitudinal data for automated comparison of scans. Asides from inspecting how to integrate

such data in automated algorithms, a CXR pair alignment algorithm was developed, and data

augmentation techniques and possible techniques for dataset rectification were analyzed. These

studies demonstrate the positive impact that the inclusion of longitudinal information can have in
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already existing technologies, as well as the possible benefits of using this type of data for new

applications.
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