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Abstract

The use of carbon nanotubes on fibre-reinforced composites has been an intense field of study, in the past
decades, due to their promising properties. Small additions of CNTs to these composite materials have
shown significant improvements on the mechanical and vibration characteristics of dynamical systems,
leading to the development of models that could encapsulate the effect carbon nanotubes have on these
properties.

A brief bibliographic review is performed on the equivalent elastic properties ofmultiscale composites
and a suitable model is described and some new features are added. This model is based on a hierarchic
approach to the Halpin-Tsai equations and to an extension of Fu’s model for the transverse Young’s
modulus of fibre-reinforced composites.

The hierarchic model for the equivalent elastic properties of multiscale composites is validated against
experimental and numerical results by many authors. Some in-house tensile tests are analysed in order to
validate further the previous model, for CNT-reinforced epoxy specimens.

The mechanisms of CNT interfacial slippage are discussed and a theoretical model to predict the
loss of energy due to friction is deducted. This model is used to characterize the damping properties of
CNT-reinforced composite beams, subjected to certain vibration modes of pure bending. The damping
model is also validated, using experimental data by many authors.

To study the free vibrations of fibre-reinforced composite plates with carbon nanotubes, a p-version
FEM model, based on the classical laminated plate theory, is employed. This numerical formulation is
implemented on a computer program as to simulate the natural modes of vibration of such plates.

Finally, the damping model is extended to predict the modal damping ratios of multiscale composite
plates, which consisted in a new improvement of the FEM model used previously. The predictions on the
equivalent elastic properties, the natural frequencies and mode shapes of vibration and on modal damping
ratios obtained through the models developed in this dissertation are compared with some experimental
results, on these same properties, of some carbon fibre-reinforced epoxy laminated composite plates with
CNTs.

Keywords: carbon nanotubes, hybrid composites, multiscale modelling, interfacial damping, classical
laminated plate theory, p-FEM
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Resumo

O uso de nanotubos de carbono em compósitos reforçados com fibras tem sido matéria de intenso estudo,
nas últimas décadas, devido às suas promissoras propriedades. Pequenas adições de CNTs a estes
materiais compósitos têm mostrado melhorias significativas nas características mecânicas e de vibração
de sistemas dinâmicos, levando ao desenvolvimento de modelos que pudessem encapsular o efeito que
os nanotubos de carbono têm nestas propriedades.

É realizada uma breve revisão bibliográfica sobre as propriedades elásticas equivalentes de compósitos
multiescala e é descrito um modelo adequado, onde alguns aspetos novos são adicionados. Este modelo
é baseado numa abordagem hierárquica às equações de Halpin-Tsai e a uma extensão do modelo de Fu
para o módulo de Young transversal de compósitos reforçados com fibras.

O modelo hierárquico para as propriedades elásticas equivalentes de compósitos multiescala é
validado em função de resultados experimentais e numéricos por vários autores. Além disso, alguns
ensaios de tração são analisados a fim de validar o modelo anterior, para provetes de epóxi reforçada com
CNTs.

São discutidos os mecanismos de escorregamento interfacial nos CNTs e é deduzido um modelo
teórico para prever a perda de energia por fricção. Este modelo é usado para caracterizar as propriedades
de amortecimento de vigas compósitas reforçadas comCNTs, sujeitas a certos modos de vibração à flexão
pura. O modelo do amortecimento também é validado, usando dados experimentais por vários autores.

Para estudar as vibrações livres de placas compósitas reforçadas com fibras e nanotubos de carbono,
é utilizado um modelo da versão p do método dos elementos finitos, baseada na teoria clássica de placas
laminadas. Esta formulação numérica é implementada num programa de computador para simular os
modos naturais de vibração dessas placas.

Finalmente, o modelo do amortecimento é extendido para prever as razões de amortecimento modais
de placas de compósitosmultiescala, consistindo numa novamelhoria aomodelo dométodo dos elementos
finitos usado previamente. As previsões das propriedades elásticas equivalentes, das frequências naturais
e das formas naturais de vibração e das razões de amortecimento modais obtidas através dos modelos
desenvolvidos nesta dissertação são comparadas com alguns resultados experimentais, destas mesmas
propriedades, nalgumas placas compósitas laminadas de epoxy reforçado com fibras de carbono e CNTs.

Palavras-chave: nanotubos de carbono, compósitos híbridos, modelos multiescala, amortecimento
interfacial, teoria clássica de placas laminadas, p-FEM
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Chapter 1

Introduction

Many civilian and military-oriented dynamical structures are subjected to vibratory motions and
excitations. As it is well known, resonance and aeroelastic instability phenomena on these structural
systems can lead to fatigue problems, aeroelastic flutter and, ultimately, to their failure. To avert these
scenarios, the study of vibrations is of utmost importance in the fields of aerospace, mechanical and civil
engineering [1].

The use of compositematerials for structural components have been steadily rising for the past decades
and, nowadays, investigation is being made in the behaviour of polymer nanocomposites and hybrid or
multiscale composites [1]. Using low concentrations of nano-sized particles, fibres or tubes, the stiffness
and strength of such composites increased substantially, compared to the base properties of the polymer
matrix [1, 2]. Besides this, in recent years, there has been a lot of research on the damping characteristics
of dynamical systems made of these nanocomposites and the mechanical damping capacity has been
proven to also increase significantly, due to the high capacity of these nanoparticles to dissipate energy
[1, 3].

Amongst these nanomaterials, the carbon nanotubes (CNTs), discovered in 1991 by Iĳima [4], have
beenwidely investigated, because of their promisingmechanical and electrical properties. As such, a lot of
effort has been put on the investigation of the advantages and disadvantages of using such CNT-reinforced
composites in dynamical and structural applications, in the field of advanced and high-performance
materials [5].

1.1 CNT-reinforced multiscale composites

Carbon nanotubes are long, slender fullerenes, which consist of a cylindrical wall with the crystal
configuration of hexagonal carbon, the same as sheets of graphite. Many studies affirmed that the
mechanical properties of CNTs have exceed those of any other known material, which could result in a
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new class of advanced composites in the future. The theoretical and experimental data have shown an
extremely high Young’s modulus, greater than 1 TPa, and a tensile strength between 10 and 100 times that
of the strongest steel, at a much lower density [2]. They are also considered an efficient filler, as a very
small load, typically less than 5% weight fraction, result in significant improvements in the mechanical
properties of the composite [5].

In recent years, it has been also determined that for certain dynamical systems, a very small load of
CNTs can increase their damping ratio, when such structures are subjected to vibrations. Due to their
small size, the specific area of the nanotubes is extremely large and coupled with the fact that the main
forces between thewalls of a CNT and the composite’s matrix are van derWaals forces, they are very prone
to suffer from interfacial slippage with the base material [3]. The fraction when CNT debonding occurs
is a very effectivemethod for dissipating energy, so the damping of existing vibrations is encouraged [1, 3].

All these characteristics make the CNTs a prospective material for enhancing the dynamical behaviour
of fibre-reinforced composite structural systems, such as beams or plates. By studying the mechanisms
in which carbon nanotubes affect the properties of multiscale composites, it is possible to come up
with theoretical models that can predict the behaviour of such materials, under different CNT loadings,
with a good degree of accuracy. This in turn may allow the optimization of CNT-reinforced multiscale
composites for certain special applications that require high stiffness and damping characteristics, leading
to the creation of highly functionalized materials [6].

Although these astonishing improvements caused by the addition of little concentrations of CNTs in
fibre-reinforced composites seem very appealing, some difficulties in the manufacturing process of these
materials have been reported by several authors. One of the most difficult requirements that must be
fulfilled for an efficient load transfer is a good dispersion of the nanotubes in the matrix. It is very hard
to prevent the agglomeration of CNTs in bundles, however this condition must be successfully satisfied
for a real improvement in the mechanical characteristics of the composite [2].

Besides this, there is, currently, a lack of techniques for direct propertymeasurements of the properties
of CNTs, being further complicated by the reduced size of nanomaterial. A lot of the available results
have a non neglectable uncertainty, which translate into a large variance in the properties of the multiscale
composites, rendering our current models inaccurate [2, 3].

In spite of these problems, CNTs remain a promising new nanomaterial, with incredible mechanical,
electrical and thermal properties, that may revolutionize the application of composites for structural and
dynamical systems [1].
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1.2 Objectives

The main objective of this thesis is, as the title suggests, to study vibrations of fibre-reinforced composite
beams and plates with carbon nanotubes, both numerically and experimentally. In order to study the
effect of CNT loading on the vibrations of such composite systems, models regarding the stiffness and
damping characteristics are to be developed. So, to achieve this goal, the following tasks were fulfilled:

• Study different theoretical models for the determination of the equivalent elastic properties of
multiscale composites;

• Refine the existing models for the equivalent elastic properties of multiscale composite, based on
a hierarchic approach, and validate it against experimental results by other authors;

• Perform tensile tests on CNT-reinforced epoxy resin to further validate the model for the equivalent
elastic properties of multiscale composites with our own experimental data;

• Study the differentmodels andmechanisms for explaining the interfacial slippage between nanotubes
and matrix on CNT nanocomposites;

• Develop a damping model, based on the mechanism of CNT debonding, for CNT nanocomposites,
apply it to composite cantilever beams and validate it against experimental results by other authors;

• Develop a numerical model for the analysis of VSCL plates, based on the p-version FEM and the
classical laminated plate theory;

• Compare the predictions obtained by the models developed in this dissertation, for many relevant
properties in the vibration of fibre-reinforced composite plates with CNTs, with experimental
results obtained for the same plates.

It should be noted that the tensile tests were performed on specimens manufactured at INEGI, thus
being the fabrication of these materials out of the scope of this thesis. This dissertation is a direct follow
up on the work developed in another MEng. thesis, by Antunes [7], so some of the predictions of the
theoretical models to be developed are compared to experimental data obtained in this previous work, such
as the natural frequencies and mode shapes of vibration and the modal damping ratios of fibre-reinforced
composite plates with CNTs. Also, the same numerical model for the analysis of VSCL plates was used,
as it was already validated and the convergence study was also already performed.

1.3 Layout

This dissertation is divided in nine different chapters, with the following structure:

• Chapter 1 - "Introduction" - This chapter gives a brief introduction to the advantages of using
carbon nanotubes in fibre-reinforced composites and displays the main objectives and layout of the
thesis;
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• Chapter 2 - "Models for equivalent elastic properties of multiscale composites" - In this chapter,
a bibliographic review on the existing models for predicting the equivalent elastic properties of
fibre-reinforced composites is performed, leading to the determination of the hierarchic model for
CNT-reinforced multiscale composites;

• Chapter 3 - "Validation of the hierarchic model" - The hierarchic model is validated against
experimental and numerical results obtained by many authors, for CNT-reinforced composites both
with fibres and without them;

• Chapter 4 - "Tensile tests on CNT-reinforced epoxy resin" - Experimental tensile tests are performed
on CNT-reinforced epoxy resin, with different CNT loadings and different dispersion methods, to
further validate the hierarchic model and to gather experimental data on the elastic properties of
such composites;

• Chapter 5 - "Amodel for damping in CNT nanocomposites" - In this chapter, the interfacial slippage
mechanisms in CNT nanocomposites is discussed and a damping model, based on CNTs debonding
from the matrix, is developed and applied to composite cantilever beams;

• Chapter 6 - "Validation of the damping model" - The damping model is, also, validated against
experimental and numerical data obtained bymany authors, using both FEM simulations andmodal
analysis of beams;

• Chapter 7 - "Classical theory of laminated composite plates" - In this chapter, a p-version FEM
formulation, based on the classical laminated plate theory, for modelling the modes of vibration of
laminated fibre-reinforced composite plates is presented, considering the possibility of curvilinear
fibres;

• Chapter 8 - "Damping in CNT-reinforced composite plates" - All the models developed throughout
this dissertation are used to predict the behaviour of the equivalent elastic properties, the natural
frequencies and mode shapes of vibration and the modal damping ratios of fibre-reinforced
composite plates with CNTs and these results are compared with some experimental values, in
order to validate the extension of the damping model to composite plates;

• Chapter 9 - "Conclusion" - Lastly, the most important conclusions and some suggestions for future
work are presented, in a summary way.



Chapter 2

Models for equivalent elastic properties of
composites

The present chapter focus on the study of the elastic properties of multiscale composites. These so-called
’multiscale’ composites refer to the fact that they are comprised of materials from different scale sizes.
In this particular case, a polymer matrix reinforced with carbon fibres, at the microscale, and CNTs, at
the nanoscale. As such, to predict accurately the bulk elastic properties of the composite, it is necessary
the application of a micromechanics approach, rather than a macromechanics one [8, 9].

To provide a starting point for the elaboration of a micromechanics model, this section will concern
itself with a review of the available analytical models for the equivalent elastic properties of multiscale
composites. In this regard, two of the most widely used models are the Halpin-Tsai equations and the
Mori-Tanaka model [5].

All the models studied can be divided into two main categories. The first one includes those who
can predict the equivalent elastic properties of the composite material with the knowledge of the basic
properties of each of its constituents and their relative quantities, whereas the second pertains to all models
who give the stiffness matrix of the laminate based on the stiffness matrices of each of its constituents
[10]. The focus of this section will be on the first category of models, with just a brief discussion,
at the end, of the Mori-Tanaka model, which belongs to the second type, because of its precision and
importance.

2.1 Micromechanics based models for composites

Many of the following models were first derived for fibre-reinforced composites. Although at a very
smaller scale, where the continuum approach may not be valid, the CNTs can be thought of as an
’effective fibre’ with equivalent properties, defined in such a way that they have the same effect in the

5
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Figure 2.1: Schematic model of a nanotube (a) and an effective fibre (b) used to define the effective elastic
properties of a CNT.

matrix. For low strains, it is reasonable to consider that the CNTs can support the interfacial stresses,
because debonding does not occur [11].

In such conditions, we may derive these effective properties assuming a cylindrical ’effective fibre’
that must behave in the same sense as the original structure. The elastic model of the CNT, modelled as a
hollow cylinder, must give the same deformation as the effective model, if the applied force is the same.
This establishes an iso-strain condition as shown in Figure 2.1 [11],

Y4 5 5 = Y�#) (2.1)

The subscripts CNT and eff refer, respectively, to the carbon nanotube and the effective fibre. Then,
using Hooke’s Law and the fact that the same force is applied to each system, the following relationship
is defined [11],

�4 5 5 =
f4 5 5

f�#)
��#) =

��#)

�4 5 5
��#) (2.2)

For a hollow cylinder, the cross sectional area is given by

��#) =
c

4

(
32− (3 −2C)2

)
= c (3 − C) C (2.3)
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so, using (2.3) in (2.2) the relation between the CNT’s Young’s modulus and the effective fibre’s is defined
in the following way,

�4 5 5 =
4(3 − C)C
32 ��#) (2.4)

If higher order terms in the thickness are neglected, equation (2.4) reduces to the following form,

�4 5 5 =
4C
3
��#) (2.5)

which gives a valid approximation for 3/C < 25 [11]. As described in Figure 2.1, � is the Young’s
modulus along the axis of the fibre or nanotube, C is the thickness of the CNT and 3 is its diameter.
Many values of the geometrical properties of CNTs have been proposed in the literature. As such,
for the thickness, it is normally considered to be equal to the interlayer spacing of graphite, C = 0.34
nm [12]. As for the diameter, it spans a large range of values at the nano scale (from 5 to 50 nm)
[13], even reaching values as low as 0.43 nm [14]. At this extremely low value, although the thickness
must be smaller than that described in [12], the error of the approximation made in (2.5) is very high.
Even for a more reasonable value, 3 = 5 nm, the relative error is 7.3%, so it seems more conservative
to consider the formula given in equation (2.4) rather than the latter, even if it introduces some complexity.

By the same logic, the effective density of the nanotube can be given as,

d4 5 5 =
4(3 − C)C
32 d6 (2.6)

where d6 is the density of fully dense graphite d6 = 2250 kg/m3 [11]. Throughout the rest of the text,
we will just refer to the effective density as the carbon nanotube density d�#) , given that this quantity
depends heavily on the thickness, which has a great uncertainty linked to it.

It should also be mentioned that all micromechanics models considered are based on the
assumption that perfect bonding exists between the fibres, being them ’effective’ CNT fibres or actual
carbon fibres, and the matrix [10]. The fibres are considered well dispersed in the matrix and all of
them share the same elastic properties and aspect ratio. Finally, the matrix must contain no voids and is
considered isotropic [15].

If the fibres are unidirectional, instead of being randomly oriented, the resulting composite can be
considered transversely isotropic, being described by five elastic properties. The compliance matrix for
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such a material is defined as [10],

[(] =



1
�11

− a12
�11

− a12
�11

0 0 0

− a12
�11

1
�22

− a23
�22

0 0 0

− a12
�11

− a23
�22

1
�22

0 0 0

0 0 0
1
�23

0 0

0 0 0 0
1
�12

0

0 0 0 0 0
1
�12



(2.7)

where �11 and �22 are the longitudinal and transverse Young’s modulus, a12 and a23 are the longitudinal
and transverse Poisson’s ratio and�12 and�23 are the longitudinal and transverse shearmodulus. Besides,
because of the isotropy in the transverse direction, the transverse shear modulus, the transverse Poisson’s
ratio and the transverse Young’s modulus are related by [16],

�23 =
�22

2 (1+ a23)
(2.8)

For our analysis we will consider the two Young’s modulus, the major longitudinal Poisson’s ratio and
the two shear modulus as the defining mechanical properties of the composite. The minor longitudinal
Poisson’s ratio can be written as [17],

a21 =
�22
�11

a12 (2.9)

2.1.1 Rule of mixtures

The simplest model for predicting the effective properties of the composite are the Voigt model and
the Reuss’s model, also known, respectively, as the rule of mixtures and the inverse rule of mixtures.
For longitudinal loading, the Voigt model is considered, which leads to a condition of iso-strain in the
composite. In fact, if we assume that the strain on the matrix is equal to that in the fibre and to the
equivalent medium [10],

�11 = E 5 �11 5 +
(
1− E 5

)
�< (2.10)

a12 = E 5 a12 5 +
(
1− E 5

)
a< (2.11)

where the subscript 5 refers to the fibre and < to the matrix and E 5 is the fibre volume fraction. For
transverse loading, the Reuss model is necessary, translating to an iso-stress condition across all the
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sections of the composite. Using the fact that the stress in the matrix must equal the stress in the fibre, it
is possible to determine that the transverse Young’s modulus is [10],

1
�22

=
E 5

�22 5
+

1− E 5
�<

(2.12)

These two models, being quite the opposite of each other, give the upper and lower bounds of the
possible space of mechanical properties the composite can have. As such, we can represent the upper
bound of the shear modulus by considering the Voigt model [10],

�12 = E 5 �12 5 +
(
1− E 5

)
�< (2.13)

and the lower bound if the Reuss model is used [10],

1
�12

=
E 5

�12 5
+

1− E 5
�<

(2.14)

If one desires a better description of the lower bound for the effective shear modulus of the composite,
we need to derive the equations considering shear and bending. For the case of parabolic shear stress
distribution, typical of this situation [10],

1
�12

=
E2
5

(
E 5 +3E<

)
�12 5

+
E2
<

(
3E 5 + E<

)
�<

(2.15)

giving a stricter lower bound on the effective shear modulus and where E< is the matrix volume fraction.

The rule of mixtures works well for the determination of the longitudinal Young’s modulus and
the Poisson’s ratio, but for the transverse Young’s modulus and the shear modulus there are some
discrepancies [10, 18]. The reason for this behaviour lies in the assumptions made while working in
iso-strain or iso-stress conditions, which are not really true. Besides this, it is very difficult to determine
accurately the mechanical properties of the fibres, so, usually, �22 5 and �12 5 are calculated with a great
uncertainty [10].

A deeper analysis on the rule of mixtures led to the discovery of some inconsistencies in the
compatibility of displacements on the fibre/matrix system. In fact, when proceeding to the derivation
of the rule of mixtures, it was assumed that the sides with no forces applied had null stress boundary
conditions. However, due to the difference in Poisson’s ratios of the fibre and the matrix, the deformation
perpendicular to those sides cannot possibly be equal, leading to the existence of a non-zero stress on
them. To resolve this problem, some of the boundary conditions were changed, resulting in a modified
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version of the inverse rule of mixtures for the transversal Young’s modulus of the composite [17],

1
�22

=
E 5

�22 5
+ E<
�<
− E 5 E<

a2
5

�<

�22 5
+ a2

<

�22 5

�<
−2a 5 a<

E 5 �22 5 + E<�<
(2.16)

2.1.2 Hashin-Shtrikman bounds

Using many concepts from variational principles in mechanics, Hashin and Shtrikman came up with
an improved version of the bounds where the equivalent mechanical properties may lie. Applying the
principle of minimum potential energy and the concept of stress polarization tensor, one can calculate
the change in elastic strain energy by the addition of inclusions with different elastic properties [19].

For determination of the lower Hashin-Shtrikman bound, the variation of elastic strain energy must
be maximized with respect to stress polarization tensor, being the matrix the reference material, while
for the upper bound, the reference phase is the fibre. One particular feature of this model is the fact that
it calculates the bounds for the shear modulus �12 and the bulk modulus,  . So, it is necessary to use
the bulk modulus to determine the Young’s modulus afterwards [10, 19].

2.1.3 Cox model

Until now, we have described a rather simplistic situation, where it is considered that the equivalent
properties of the composite do not depend, in any way, on the geometry of placement of the fibres nor
their aspect ratio. Of course this assumption may not be reasonable, as fibres with different sizes will
impact differently the final properties of the material [20].

One of the main problems that emerge from fibre size considerations is the fact that they may not
have the same length as the composite, which means, we need to readjust the equations for discontinuous
fibres. Also, in short fibres, more often than not, the stress transfer between the matrix and the fibre is
not perfect, so in fact, the effective reinforcement caused by the fibre is reduced [20].

To overcome this obstacle, the so-called ’shear lag’ theory represents a very intuitive and reliable
way to change the rule of mixtures into a more useful form when dealing with short fibres [21]. This
important step, introduced by Cox, consists in a new parameter named the length efficiency factor, [;,
which reduces the fibre’s Young’s modulus in order to accommodate the incapacity to transfer perfectly
the interfacial stresses between fibre and matrix [20, 22],

�11 = [;E 5 �11 5 +
(
1− E 5

)
�< (2.17)
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[; = 1−
tanh

(
0
;

3

)
(
0
;

3

) (2.18)

0 =

√
−3�<

2�11 5 lnE 5
(2.19)

where 0 is also a new parameter named the stress transfer coefficient. As it is expected, the length
efficiency factor approaches one with increasing aspect ratio of the fibre ( ;

3
> 10), recovering the basic

rule of mixtures. Although its apparent success, the Cox model suffer from a very discouraging problem:
it can only be computed in the longitudinal direction, so it is only useful in predicting the longitudinal
Young’s modulus [21].

Finally, one more adjustment can be made to include another important factor in this analysis, the
orientation of the fibres. With that in mind, it is possible to add another new factor, called the orientation
efficiency factor, [>, to change the reinforcement of the fibres based on their orientation distribution in
space. We can adapt equation (2.17) to fit this last coefficient [20],

�11 = [>[;E 5 �11 5 +
(
1− E 5

)
�< (2.20)

For aligned unidirectional fibres, [> = 1, for randomly oriented fibres in a plane, [> = 3
8 , and for

randomly oriented fibres in space, [> = 1
5 . The ’shear lag’ theory is also useful to determine the yield

strength of the composite, but this is out of the scope of this work [20].

2.1.4 Chamis model

As the Cox model tries to correct the rule of mixtures by incorporating the effect of fibre aspect ratio on
the properties of the final composite, the Chamis model focus on the dependence of those properties with
fibre-packing geometry. In fact, it was proposed that �22 and �12 might depend on fibre-packing, thus
explaining the disparities observed in the inverse rule of mixtures [10].

This model utilizes the concept of a representative volume element (RVE) to demonstrate the whole
behaviour of the composite, based on a square fibre-packing array. It equates the cross sectional area of
a circular fibre to an equivalent square fibre and divides the RVE into two sub-regions: one composed
only of matrix and another with a mixture of matrix and fibre [10, 23].

Using these concepts with the inverse rule of mixtures, one can derive relationships concerning the
equivalent properties of the final composite. The resulting equations have been simplified by Chamis and
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Hopkins to a simpler form [10, 23],

�22 =
�<

1−√E 5
(
1− �<

�22 5

) (2.21)

�8 9 =
�<

1−√E 5
(
1− �<

�8 9 5

) (2.22)

where �8 9 can be �12 or �23.

In fact, this simpler form give a more accurate description of the transverse properties than the Reuss
model or the original equations obtained in Chamis’s analysis. The prediction of the transverse Young’s
modulus and the longitudinal shear modulus are in good agreement with
experimental values and the Chamis model offers more strict bounds on the values permitted by the
composite. The principal disadvantage of this model is that it assumes square cross sectional fibres,
which is not true, and completely neglects the effect of fibre aspect ratio [10].

2.1.5 Fu model for transverse Young’s modulus

The model developed by Fu et al for the prediction of the transverse Young’s modulus utilizes the same
ideas as the Chamis model but present a better solution to this problem. It also utilizes a RVE in a square
fibre-packing scheme, but considers circular cross sectional fibres, instead of the square ones. In addition
to this, it considers the possibility of short fibres, which means that Fu’s model is capable of predicting
the dependence of the transverse Young’s modulus with fibre-packing geometry and fibre aspect ratio,
resolving both problems with Cox and Chamis models [10, 24].

Again, considering the division of the RVE into sub-regions that are only affected by the matrix or
the matrix and the fibre and applying an approach based on continuum mechanics, rather than using
only geometric parameters and fibre volume fraction, we obtain a more precise solution in very good
agreement with experiment. For a continuous fibre the Fu model gives [10, 24],

1
�22

=

√
4E 5
c√

cE 5

4
�22 5 +

(
1−

√
cE 5

4

)
�<

+
1−

√
4E 5
c

�<
(2.23)
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However, if we now consider an array of discontinuous fibres, characterised by some aspect ratio, the
following correction to equation (2.23) is obtained [24],

1
�22

=

√
4E 5 (1+_)

c√
cE 5

4(1+_) �22 5 +
(
1−

√
cE 5

4(1+_)

)
�<

+
1−

√
4E 5 (1+_)

c

�<
(2.24)

where _ represents the ratio between the interfibre spacing in the longitudinal direction and the fibre
length. As it can easily be seen, for _ = 0, which means that the spacing between fibres is null or that the
fibres are continuous, we recover equation (2.23).

Finally, because of the way the problem is stated in the Fu model, a maximum theoretical limit is
imposed to the value of the fibre volume fraction, lower than 100%. This occurs as a consequence of the
fibre-packing scheme and the fact that it is impossible to fill completely a square cross section with only
objects of circular cross sectional area [24].

This model will be further studied in Section 2.2.2, because of its usefulness and rather good fitting
with the existent experimental data.

2.1.6 Halpin-Tsai model

After some development on the elasticity models for the prediction of equivalent elastic properties of
composites, Halpin and Tsai developed a set of equations that gives a better estimate of those parameters in
comparison to all themodels referred until now [25–27]. Based on the assumptions of theoretical elasticity
theory, the Halpin-Tsai equations also utilizes some empirical parameters, obtained by curve-fitting, to
acquire a better correlation with experimental data [10].

It has been proven to give better estimates for the transverse Young’s modulus and the shear modulus.
In their most generic form, the Halpin-Tsai equations can be written as [10, 25, 26],

%

%<
=

1+ b[E 5
1−[E 5

(2.25)

[ =

(
% 5

%<
−1

) (
% 5

%<
+ b

)−1
(2.26)

where % is a generic elastic property of the composite, %< is a generic elastic property of the matrix, % 5
is a generic elastic property of the fibres, [ is a function defined by equation (2.26), that guarantees that
% = %< if E 5 = 0 and % = % 5 if E 5 = 1, and b is an empirical parameter that varies with the geometry of
the fibre phase and the type of loading applied to the composite [10, 25, 26].
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% %< % 5 b

�11 �< �11 5 2
;

3
�22 �< �22 5 2
�12 �< �12 5 1

Table 2.1: Empirical parameter b for various equivalent elastic properties of the composite.

The empirical parameter b depends on what property % you consider in the Halpin-Tsai model. For
a square array fibre-packing and unidirectional fibres, Table 2.1 indicates what values to use in the case
of the longitudinal and transverse Young’s modulus and longitudinal shear modulus [10, 26].

Although the Halpin-Tsai equations are one of the most widely used models for the equivalent elastic
properties of composite materials, due to its simplicity, it has the major shortcoming of using an empirical
parameter that lacks physical meaning, offering no insights into the physical process involved. It also
relies heavily on the experimental curve fitting of this parameter [10].

All the relations and factors described before are valid for a composite material with a
unidirectional fibre phase. For the case of a random distribution of fibre orientations some
adjustments must be made to account for the varying direction of the fibre’s elastic properties [15, 28].

For a bidimensional random distribution of fibre orientations the material is considered isotropic in
the plane of the fibres, so the in-plane Young’s modulus of the composite is given by [28, 29],

�̃11 =
3
8
�11 +

5
8
�22 (2.27)

where �̃11 represents themean in-plane Young’s modulus of the composite, due to the random distribution
of fibres. Equation (2.27) is known in the literature as Tsai-Pagano equation. In turn, we can write the
Halpin-Tsai and Tsai-Pagano equations in conjunction for the Young’s modulus as [15],

�̃11 =
�<

8

5
(1+2V33E 5

1− V33E 5

)
+3

©«
1+2

;

3
V3;E 5

1− V3;E 5
ª®®¬
 (2.28)

where V33 represents the value a parameter [ for the transversal Young’s modulus �22 and V3; the same
parameter for the case of the longitudinal Young’s modulus �11.

Lavengood et al [28], also establish the relation of the mean Young’s modulus of the composite for
the case of a tridimensional random distribution of fibre orientation. In this case, the final material can
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be thought of as isotropic and the Young’s modulus is [28],

�̃11 =
1
5
�11 +

4
5
�22 (2.29)

2.1.7 Non-dilute correction to Halpin-Tsai model

As discussed in the last Section 2.1.6, the Halpin-Tsai equations agree to a very good degree with
the experimental data available. However, for large fibre volume fractions (E 5 > 70%), the non-linear
behaviour of the mechanical properties tends to disagree with the theoretical model [10, 26].

To answer this problem, it was proposed a change to the value of b for the transverse Young’s modulus
and the shear modulus to better accommodate for the higher predicted values of the elasticity models.
With this in mind, we have the following modifications [26, 30],

b�22 = 2+40E10
5 (2.30)

b�12 = 1+40E10
5 (2.31)

Also for the particular case of CNTs, it was noted that for sufficient high mass concentrations of
the phase, the response curve of the longitudinal Young’s modulus becomes highly non-linear. This
non-linearity is attributed to the aggregation of nanotubes, causing our assumption of a good dispersion
of the phase not valid [21, 31]. To address this problem, Yeh et al [31] introduce a non-linear factor in
the empirical parameter b,

b = 2
;

3
4−0E 5 −1 (2.32)

where 0 and 1 are coefficients that need to be determined by experimental means. This introduces more
complexity in the model, requiring the determination of two additional constants [21].

Besides the correction introduced in equation (2.32), the Halpin-Tsai model benefits from the addition
of another factor, called the orientation factor U, which describes the orientation of CNTs on the matrix.
For CNTs randomly dispersed on a plane, U = 1

3 , and for randomly dispersed in space, U = 1
6 . Considering

this factor, the Halpin-Tsai equation for the longitudinal Young’s modulus can be written as equation
(2.25) but with the adimensional factor [ as [31],

[ =

(
U�11 5

�<
−1

) (
U�11 5

�<
+ b

)−1
(2.33)
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2.1.8 Mori-Tanaka model

The Mori-Tanaka model is able to directly predict the final stiffness matrix of the composite through the
use of a number of physical principles, having a definite physical meaning behind its equations. That is
the reason it is considered a more elegant method than the Halpin-Tsai model, but it uses a rather complex
mathematical formulation of the strain field on an inclusion surrounded by a medium [10, 32].

The original work of Mori and Tanaka concerned the calculation of the average internal stress of a
medium containing inclusions with eigenstrains, which are constant interior strain fields [32, 33]. Using
the idea of Eshelby’s equivalent inclusion in conjunction with the eigenstrain theory, the Mori-Tanaka
model was able to predict the equivalent elastic properties of composites, effects of cracks on a medium
and void growth in viscous metals. Eshelby’s idea is based on the following thought process: if a portion
of an infinite homogeneous medium is replaced with an inclusion that has different elastic properties, a
non-elastic strain will develop within that domain, which can be described as a fictitious eigenstrain. To
relate the eigenstrain to the actual strain felt on the inclusion we use Eshelby’s tensor [10, 32, 34].

Besides this, the Mori-Tanaka model also introduces the concentration tensor, that relates the mean
strain felt on the fibre and the mean strain on the matrix, and the Mori-Tanaka tensor, which relates the
mean stress on the fibre with that on the matrix. All this complex new identities are needed for the full
description of the stiffness matrix of the final composite [10, 32, 35].

A detailed explanation of the Mori-Tanaka model is outside of the scope of this text, because although
it fits well experimental data, we would rather not use methods that involve the direct computation of the
stiffness matrix.

In spite of all the advantages the model has, it shares an assumption most other models also have: a
dilute concentration of fibres. To solve this problem, two other methods were developed, based on this
one, the self-consistent model and the differential scheme based model. The first one is based on the
assumption that the matrix and the inclusion form an effective medium with some effective properties
we want to determine. Many models studied until now share this consideration, but the self-consistent
model was used to correct the Mori-Tanaka model for non-dilute dispersions, by stating that the inclusion
is surrounded by an effective medium with the final properties of the composite. The latter one also tries
to correct the non-dilute approximation of the Mori-Tanaka model by introducing a formulation based
on successive iterations. The main shortcoming of the differential scheme based model is the heavy
reliability on computational power to execute the iterations until meaningful results are achieved [10].
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2.2 Hierarchic model for multiscale composites

In this section we will detail the chosen micromechanics model to represent a multiscale composite based
on the CNT/fibre/polymer matrix mixture. First, it can be seen that most of the available models are only
meant for two-phase mixtures, not being appropriate for our three-phase one. However, we can use an
hierarchic model to represent a three-phase mixture as a sum a two-phase ones and that is the approach
that will be used throughout this text [5, 15].

As mentioned before, the polymer matrix is to be considered as an isotropic material, contrasting
with the CNTs and the carbon fibres which will be assumed as orthotropic. Then, by first "mixing" the
polymer matrix with the nanotubes, an isotropic effective matrix material will be obtained, because of
the random distribution of nanotube orientations. If after that the carbon fibres are finally added, it is
possible to model the last mixture as a two-phase composite, with the effective CNT-reinforced matrix
being one of the phases [5, 15].

Then, this hierarchic model will be subdivided into two steps: the two-phase mixture of the polymer
matrix and the CNTs (resulting in a CNT/polymer matrix composite, which serves as an effective matrix
for the next step) and the two-phase mixture of the CNT/polymer matrix composite and the carbon fibres
(leading to the final CNT/fibre/polymer matrix composite) [5, 15]. The next Sections 2.2.1 and 2.2.3 will
explain each of the steps described above.

2.2.1 Equivalent properties of CNT/polymer matrix composites

For the first step in the hierarchic model, the polymer will serve as the matrix and the CNTs will be the
fibre. As already mentioned, the CNTs are well-dispersed in the isotropic matrix and their orientations
are randomly distributed in space. This is a reasonable assumption, as the final composite will be used in
the construction of a plate, but the plate’s thickness will be orders of magnitude greater than the length
of the nanotubes. It is also assumed a dilute fibre solution, so, as a rule of thumb, the mass concentration
of CNTs should never be above 1% [5, 15].

Using the Halpin-Tsai model, for a tridimensional random distribution of fibre orientations and for a
dilute solution, we have the Young’s modulus of the combined CNT/polymer matrix composite �<�#
as,
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 (2.34)



18 Models for equivalent elastic properties of composites

with V33 and V3; defined as,
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where we used the relation defined in equation (2.4), between the effective fibre of the CNT and the actual
CNT, unlike Rafiee et al that used equation (2.5) [5, 15]. In equations (2.34), (2.35) and (2.36), �< is the
Young’s modulus of the matrix, ��#) is the Young’s modulus of the CNTs, ;�#) is the mean length of
the CNTs, 3�#) is the mean diameter of the CNTs, C�#) is the mean thickness of the CNTs and E�#)
is the volume fraction of CNTs.

Usually, we define the quantity of CNTs in a composite by their mass fraction, so we should convert
from this quantity to their volume fraction to apply the Halpin-Tsai equation above. Then, for the volume
fraction of CNTs we have,

E�#) =
F�#)

F�#) +
d�#)

d<
(1−F�#) )

(2.37)

where F�#) is the mass fraction of CNTs, d�#) is the density of the CNTs and d< is the density of the
matrix [15]. It is also easily shown, based on the weight average of the components’ mass densities, that
the density of the CNT/polymer matrix composite d<�# is [15],

d<�# = E�#) d�#) + (1− E�#) )d< (2.38)

Finally, an isotropic material is defined by two elastic constants, so, in order to properly define the
elastic properties of the CNT/polymer matrix composite, another must be given. Because the Poisson’s
ratio is usually dominated by the matrix in a dilute composite and the mass fraction of CNTs is very
small, we can approximate the Poisson’s ratio of the CNT/polymer matrix composite a<�# as equal to
that of the matrix,

a<�# = a< (2.39)

where a< is the Poisson’s ratio of the matrix [5, 6, 15]. Also based on the assumption of isotropy, it is
possible to calculate the shear modulus of the CNT/polymer matrix composite �<�# by [5, 6],

�<�# =
�<�#

2(1+ a<�# )
(2.40)
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2.2.2 Extended model for elastic moduli based on unit cell

For the modelling of a fibre composite we could use the simple rule of mixtures as Rafiee et al, however
to improve the hierarchic model used, the Fu model was chosen instead of the former [15]. The problem
with the Fu model is that it only predicts the transversal Young’s modulus, lacking the other important
elastic properties needed. So, in this section, an extension of the Fu model for the longitudinal Young’s
modulus, Poisson’s ratio and shear modulus is presented.

According to Fu et al, a fibre composite can be represented as in Figure 2.2, with a RVE with only a
fibre surrounded by matrix present [24]. The fibres are modelled as full cylinders, all equal to each other,
and the matrix around it as a hollow square prism. The stress transfer between the phases is perfect, as
is their bonding. Although not the usual case with carbon fibres, it is going to be assumed that the fibres
are discontinuous. This permits the most general case to be considered, so that the addition of continuity
defects may be added in a latter experimental verification.

In this formulation, 3 5 is the diameter of the fibre, ! 5 is the length of the fibre, X is the interfibre
spacing in the H$I plane and !1 is the gap between two end-to-end fibres in the longitudinal direction [24].

Figure 2.2: Schematic model of a discontinuous fibre composite and a corresponding representative
volume element.



20 Models for equivalent elastic properties of composites

One of the first consequences of this fibre-packing scheme is that the volume fraction of fibres has a
theoretical limit less than 100%. For the RVE shown, the fraction volume fraction is,

E 5 =
c32

5
! 5

4
(
3 5 + X

)2 (
!1 + ! 5

) (2.41)

where by reducing !1 and X to 0, hereby compacting to the fullest the matrix with fibres, it results in a
maximum fibre volume fraction of about E 5 <0G = 78.5%.

For the determination of the longitudinal Young’s modulus of the composite �11, equilibrium of
forces and stresses along the G direction is computed. The method applied is similar to the one used by
Fu in his analysis of the transverse modulus, however the direction of the force applied is changed [24].

This analysis can be divided in two zones: only matrix, A, and a mixture of matrix and fibre, B. For
zone A, we have that the mean deformation is,

ỸG� =
fG

�<
(2.42)

where fG is the applied stress on a RVE in the G direction and �< is the Young’s modulus of the matrix.
However, for zone B, there exists a mixture of phases, so a stress equilibrium equation is necessary to
calculate the effective Young’s modulus of that zone. Then,

c32
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fG< = fG (2.43)

using an iso-strain condition and by the definition of equation (2.41),

E 5 (1+_)�11 5 ỸG� +
[
1− E 5 (1+_)

]
�<ỸG� = fG (2.44)

putting the mean deformation of zone B in evidence,

ỸG� =
fG

E 5 (1+_)�11 5 +
[
1− E 5 (1+_)

]
�<

(2.45)

where �11 5 is the longitudinal Young’s modulus of the fibre and _ is a parameter defined by,

_ =
!1
! 5

(2.46)

as explained in Section 2.1.5.
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Finally, to obtain the equivalent Young’s modulus of the composite, we average the deformation of
the two zones weighted by the corresponding volume fraction of each zone,

YG =
!1

!1 + ! 5
ỸG�+

! 5

!1 + ! 5
ỸG� (2.47)

expanding all the deformations with equations (2.42) and (2.45),
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and by rearrangement of the terms, we finally obtain,

�11 = �<
E 5 �11 5 +

(
1− E 5

)
�< +_E 5
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�< +_E 5

(
�11 5 −�<
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In equation (2.49) there is a lot of useful information that can be extracted about the fundamental
ideas behind the Fu model. First in the limit _→ 0, meaning only continuous fibres, it returns the basic
rule of mixtures, which seems a valid evolution. For _→∞, which means only the matrix is present, it
returns �<. Finally, for E 5 → 0, which means again that there is only matrix, it returns �<.

For all the limiting cases and by its natural evolution, being discrepant with the rule of mixtures only
for high fibre volume fractions, we may assume the validity of the equation. For all the other elastic
properties, an analysis of the type shown above was used to obtain equations (2.50) to (2.52).

As established before, rearranging the result obtain by Fu et al to be in a similar form to that of �11,
the transversal Young’s modulus is given by [24],
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where �22 5 is the transversal Young’s modulus of the fibres.

By a similar formulation as that done for the longitudinal Young’s modulus, it is possible to obtain
the longitudinal Poisson’s ratio,

a12 =
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E 5 a12 5 +
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1− E 5
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where a12 5 is the Poisson’s ratio of the fibres and a< is the Poisson’s ratio of the matrix.
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Finally, using a method similar to the one described in detail throughout this section, but for the
transverse direction, we can find the general expression for the longitudinal shear modulus,
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where �12 5 is the longitudinal shear modulus of the fibres and �< is the longitudinal shear modulus of
the matrix.

2.2.3 Equivalent properties of CNT/fibre/polymer matrix composites

In this section we shall discuss the second step of the hierarchic model for the prediction of the
CNT/fibre/polymer matrix composite. It is assumed that the CNT/polymer matrix composite is isotropic
and that the carbon fibres are orthotropic and unidirectional. The fibres are also considered continuous
throughout the complete length of the composite, rendering the _ parameter in the Fu model null [24].

Then, using the extended Fu model, detailed in Section 2.2.2, to predict the elastic properties of the
multiscale composite, we have,
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where �11 5 and �22 5 are, respectively, the longitudinal and the transversal Young’s modulus of the fibres,
a12 5 is the Poisson’s ratio of the fibres, �12 5 is the shear modulus of the fibres and E 5 is the volume
fraction of fibres. All the equations also admit that there exists no interaction between the fibres and the
CNTs.
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As the final CNT/fibre/polymermatrix composite is amixture of an isotropic phasewith an orthotropic
one, it will also be an orthotropic material. Because the fibres are along a unique direction, it must be a
transversely isotropic material, as described in Section 2.1. Then, using equation (2.9), it is possible to
obtain the minor Poisson’s ratio of the multiscale composite [17].

Finally, for a dynamic problem, another important property is the density of the multiscale composite.
In analogy with Section 2.2.1, by calculating a weight average of the densities of the phases,

d = E 5 d 5 + (1− E 5 )d<�# (2.57)

being d 5 the density of the fibres.

Only four of the necessary elastic constants were determined by the hierarchic model, so the complete
stiffness matrix of the multiscale composite cannot be fully computed (it would need the transversal shear
modulus �23 or the transversal Poisson’s ratio a23). However, as there are not many models capable
of predicting those properties and this work will only use bidimensional plates, the four constants will
suffice to represent the elastic properties of the CNT/fibre/polymer matrix composite in study.
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Chapter 3

Validation of the hierarchic model

Although theoretical models are a powerful method for gaining insights on the mechanics of a physical
phenomenon, experimental facts must assert the validity of those models. With this in mind, this section
aims to validate the hierarchic model of the equivalent elastic properties of multiscale composites,
developed in the previous chapter.

For that purpose, many articles, listed in the references [16, 31, 36–40], were used to compare many
numerical and experimental studies with the values obtain by the model in this text. First, the increase in
Young’s modulus of a resin matrix with the addition of CNTs is studied, as well as the relation between
the CNT aspect ratio and the equivalent elastic properties. Finally, the effect of adding CNTs to a
fibre-reinforced composite is compared, representing the final step in the validation of our model.

In some of the references, specially in Rafiee et al [15], there are experimental and numerical results
on the natural frequencies of plates made of CNT/fibre/polymer matrix composites. However, as the
introduction of the numerical model for the vibration of plates will only be done in a latter part of this
text, these references will not be used in the current section.

3.1 Prediction of elastic properties of CNT/polymer matrix composites

In this section, the effect of adding CNTs to a polymer matrix is studied, to verify if the first step on
the hierarchic model is valid or not. The first two papers concern the use of SWCNTs, while the others
evidence the effect of adding MWCNTs.

Because our model is universal to the two kinds of nanotubes, some simplifying assumptions were
made, for example the use of a constant thickness of 0.34 nm for all CNTs, representing the interlayer
spacing of graphite [12]. However, even if this is a good approximation for SWCNTs of small diameter,
for MWCNTs there is a linear relation between the diameter of a CNT and its thickness, as shown by

25
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Thostenson and Chou [11].

As the thickness of a nanotube is a very difficult quantity to measure and one of the biggest inputs of
error in the hierarchic model, this is the variable that will be most carefully analysed in each reference.
All the quantities related to the thickness, like the effective Young’s modulus and the effective density
of the CNTs will also be taken carefully. In the remainder of this chapter, when the error in some result
is mentioned, it refers to the relative error between our model and the comparison in analysis, being
better described as an error of approximation, instead of a true error between some prediction and an
experimental value.

3.1.1 Formica et al (2010)

In the first comparison model used [36], we are going to evaluate the use of SWCNTs on an epoxy resin.
Almost all the variables used are described in the article. First of all, the nanotubes used had diameters
of 1 to 2 nm and lengths of 5 to 15 µm [36]. With this information, it is reasonable to assume that all
CNTs have the mean value of those intervals, so 3�#) = 1.5 nm and ;�#) = 10 µm.

About the mechanical properties it is known that for the CNTs, ��#) = 970 GPa and d�#) = 1308
kg/m3, and for the epoxy resin, �< = 2.35 GPa and d< = 1200 kg/m3 [36]. Also, for the case at hand, the
weight fraction of SWCNT is 0.5%.

As the diameter of the CNTs is sufficiently small and we are working with single-walled nanotubes, it
seems plausible that all nanotubes have a thickness of about 0.34 nm, as assumed in the original hierarchic
model [11].

Finally, Formica et al [36] mention another article regarding the control of the micro-structure of the
composite. There was a particular attention in achieving a homogeneous dispersion, efficient interfacial
stress transfer and good alignment of the nanotubes inside the matrix [41]. Although all the important
aspects mentioned were well fulfilled, it was possible to see images, using an electron microscope, that
showed imperfectly aligned, but well-dispersed, chains of nanotubes [41].

To account for the imperfections in CNT alignment, we assumed in the hierarchic model a
bidimensional random distribution of CNT orientations inside the epoxy resin. This conservative
assumption showed very good results, even if it does not translate accurately the reality of the situation. In
Table 3.1 it is possible to compare the values of the experimental test presented and the numerical model
used by Formica et al [36] and our own obtained using the hierarchic model. The error in parenthesis is
relative to the experimental value measured in the article.
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� [�>A<820,2010]4G? /GPa � [�>A<820,2010]=D< /GPa �<�# /GPa
3.47 3.27 3.51 (1.15%)

Table 3.1: Comparison between the hierarchic model and the experimental values presented and the
numerical ones obtained by Formica et al [36].

As it is described, the hierarchic model provided a better estimation for the Young’s modulus of
the composite than the value obtained using the numerical model of Formica et al. The fact that we
used a bidimensional random distribution of CNT orientations, rather than a tridimendional one, imply
some degree of alignment of the nanotubes, contributing to the good alignment criteria in obtaining the
compared values.

The coefficients in the Tsai-Pagano equation (2.27) can be adjusted so that a greater preponderance
is given to the longitudinal or the transversal Young’s modulus, caused by the distribution of CNT
orientations. For comparison, the weight that is given to the longitudinal Young’s modulus in a
tridimensional random distribution of orientations is 1

5 , against
4
5 for the transversal one, whilst in

an intermediate case of a bidimensional distribution the values are 3
8 and 5

8 , respectively. Finally,
at the extreme, the coefficients change to 1 and 0 for a fully aligned nanotube distribution, with all of
the contribution to the Young’s modulus from the longitudinal one, achieving an orthotropic material [28].

Following the trend established in the coefficients, we could expect a weight somewhat above 3
8 for

the longitudinal Young’s modulus, due to a better alignment of nanotubes than a bidimensional random
distribution of orientations, as can be seen in [41]. This implies that our model tends to overestimate the
value of the nanocomposite’s Young’s modulus.

3.1.2 Tai et al (2008)

In this section, the improvement in the Young’s modulus by the addition of SWCNTs on a phenolic resin
was studied. The values used in the calculations performed by Tai et al [37] were more difficult to find,
because there wasn’t an extensive description of the computed variables. To that avail, other references
were used in order to find all the missing information to run the hierarchic model for this case.

The mean value of the diameter of the CNTs was expressed as 3�#) = 13.33 nm and the phenolic
resin had a Young’s modulus of �< = 4.6 GPa [37]. Also for the phenolic resin, the density is usually
found in the range between 1200 and 1400 kg/m3 [42], so it was assumed the mean value of the interval
as the density of the matrix, d< = 1300 kg/m3.

According to Thostenson et al [11], there exists a relation between the diameter of a CNT and its
effective density. Then, for a diameter of 13.33 nm the corresponding density is d�#) = 1600 kg/m3,
approximately [11]. Using equation (2.6) we get the thickness of the nanotubes, C�#) = 3.08 nm, knowing
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that d6 = 2250 kg/m3 [11].

Finally, Tai et al [37] mentions that the Young’s modulus of the CNTs used is in the range of 988 and
1600 GPa and by using the mean value, we obtained ��#) = 1294 GPa. As in this work, there is no
mention of the nanotubes’ length, we will assume that their aspect ratio is a very big number, meaning that
;�#) →∞. This is a reasonable approximation due to the long chains of CNTs present in the phenolic
resin [37].

Because an alignment process was not applied to the CNTs, our prediction was computed, considering
a tridimensional random distribution of CNT orientations, resulting in Table 3.2, where the values of Tai
et al [37] were taken from figure 3 in the reference. As it may be readily grasped, the relative error in
some of the CNT weight fractions was noticeable, above 10%.

At first, Tai et al [37] used SWCNT with a fairly big diameter, making its effect on the phenolic resin
much more relevant. Secondly, the weight fraction of CNT used was high enough for non-linear effects
to be dominant at above F�#) = 0.75%. In fact, the reference tries to adjust the modified Halpin-Tsai
equation, using Yeh empirical correction [31], to the experimental results. This implies an exponential
curve-fitting, which our model is incapable of reproducing, giving a greater error for large values of CNT
concentration.

For low values of CNT concentration, the error can be explained by the fact that the CNTs used have
a quickly decaying augmentation factor on the mechanical properties of the composite, caused by the
exponential decay of an initial highly steep linear curve [37]. This adds another layer of non linearity that
our simple hierarchic model cannot capture fully.

The modified Halpin-Tsai equation used in Tai et al [37] suffers from this same problem in the
initial part of the curve. In fact, the value of the Young’s modulus for 0.25% CNT concentration is
underestimated, giving the best results for 0.50% and 0.75%, just like our model.

F�#) /% 0.00 0.25 0.50 0.75 1.00 1.50 2.00
� [) 08,2008]

/GPa 4.60 5.65 5.85 5.90 5.70 5.70 5.50

�<�# /GPa 4.60 4.99 5.39 5.78 6.18 6.97 7.77
(0.00%) (−11.68%) (−7.86%) (−2.03%) (8.42%) (22.28%) (41.27%)

Table 3.2: Comparison between the hierarchic model and the experimental values obtained by Tai et al
[37].
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F�#) /% 0.0 0.5 1.0 1.5 2.0 3.0 4.0
� [.4ℎ,2006]

/GPa 5.13 5.71 6.49 7.08 7.52 7.69 8.21

�<�# /GPa 5.13 5.68 6.24 6.79 7.35 8.47 9.60
(0.00%) (−0.53%) (−3.85%) (−4.10%) (−2.26%) (10.14%) (16.93%)

Table 3.3: Comparison between the hierarchic model and the experimental values obtained for network
MWCNTs by Yeh et al [31].

3.1.3 Yeh et al (2006)

Yeh et al [31] studied the effect of CNT concentration on the mechanical properties of a phenolic resin
imbued with MWCNTs. Although our experiments will use only SWCNTs, the hierarchic model can be
adapted to both types of nanotubes, so the comparison with this reference will help the establishment of
a more general theory.

According to the reference, the mean diameter of the CNTs is 3�#) = 23.63 nm and the mean
length is ;�#) = 17.57 µm. Yeh et al [31] used two different types of MWCNT microstructure in their
experiments, namely a network structure and a dispersed one. The dispersed structure should be the
preferred one in this work, however, as one can see in the microscope images shown in [31], the network
MWCNTs seem a much more homogeneous medium, ideal for the application of the hierarchic model.
As such, the values represented will also be about the network MWCNTs composite.

The paper also refers the mechanical properties used, of both the CNTs, ��#) = 953 GPa and
d�#) = 1300 kg/m3, and the matrix, �< = 5.13 GPa and d< = 1030 kg/m3. The density of the CNTs is
a correction to the real density considered by Yeh et al [31], d�#)A40; = 1650 kg/m3, however because
voids near the crossings of MWCNTs cannot be filled by a nanotube, their effective density drops by a
proportional amount.

This real CNT density will be used by the hierarchic model to calculate the thickness of the nanotubes
used [11]. As such, the thickness of the CNTs is C�#) = 5.71 nm. Table 3.3 represents the results obtain
by the hierarchic model and those by Yeh et al [31].

As can be seen in the data presented, the hierarchic model has a very good agreement with the
experimental results, never having an error greater than 5% for values of CNT weight fraction below
2.0%. For higher values of CNT concentration, as in the last analysis, the exponential behaviour of the
real curve becomes evident.
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F�#) /% 0.0 0.1 0.5 1.0 1.5 2.0 3.0
� [">=C0I4A8,2010]

/GPa 3.430 3.458 3.705 3.951 4.138 4.225 4.365

�<�# /GPa 3.430 3.475 3.655 3.881 4.107 4.335 4.794
(0.00%) (0.49%) (−1.35%) (−1.77%) (−0.75%) (2.60%) (9.83%)

Table 3.4: Comparison between the hierarchic model and the experimental values obtained for untreated
MWCNTs by Montazeri et al [38].

3.1.4 Montazeri et al (2010)

In this last section regarding the study of MWCNTs, the hierarchic model is validated for the case of an
epoxy resin with MWCNTs. Just as in the previous cases, the values of all the variables are discriminated
in the text.

According to Montazeri et al [38], the mean diameter of the CNTs is 3�#) = 20 nm and the mean
length is ;�#) = 8.5 µm. In the reference, two types of MWCNTs were studied, one being the untreated
case, while the other being treated with acid. As the microscope photographs show, the untreated
MWCNTs seem to have a more random distribution of orientations, so this type of nanotubes will be
compared to the hierarchic model for a tridimensional random distribution of CNT orientations [38].

The mechanical properties are also described fully in the reference. For the epoxy matrix we have a
Young’s modulus of �< = 3.430 GPa and a density of d< = 1200 kg/m3, whilst for the CNTs, the modulus
is ��#) = 1000 GPa and the effective density is d�#) = 1680 kg/m3 [38]. The effective density of the
nanotubes can be used to calculate their thickness, knowing their diameter. As such, the thickness of the
CNTs will be C�#) = 1.67 nm [11].

Finally, Table 3.4 represents the results obtained by the hierarchic model and those by Montazeri et
al [38]. Again, the hierarchic model follows the experimental values with great accuracy, having an error
below 2% for all values below 2% of CNT weight fraction. At this value of CNT concentration, the non
linear aspect of the problem becomes more apparent, rendering our model less useful.

3.2 Influence ofCNTaspect ratio on the elastic properties ofCNT/polymer
matrix composites

Another important effect that the CNTs have on the mechanical properties of a nanocomposite is the
relation between their aspect ratio and the resulting elastic moduli. In fact, longer chains of CNT imply
a greater improvement on the Young’s modulus of the composite, rendering the aspect ratio of the CNTs
an important parameter to control.
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;�#)

3�#)
1 2 4 8 16 24 ∞

� [) D2:4A � � � ,1999]
�<

1.60 2.00 3.00 4.20 5.30 5.60 6.80

�<�#

�<
1.66 2.03 2.62 3.45 4.41 4.94 6.80

(3.75%) (1.50%) (−12.67%) (−17.86%) (−16.79%) (−11.79%) (0.00%)
Table 3.5: Comparison between the hierarchic model and the numerical values obtained by Tucker III
and Liang [16].

Tucker III and Liang [16] used a finite element microstructure analysis to study the effect of fibre
aspect ratio on a matrix. Although the reference doesn’t specifically concern CNTs, it may provide some
insights in the evolution of the same properties for the nanotubes, using the concept of an effective CNT
fibre [11].

As such, the hierarchic model must assume unidirectional full cylinders CNTs, with a fibre-packing
arrangement of a regular square array. For dealing with the unidirectionality of the CNTs, the Tsai-Pagano
equation may be used with a coefficient of 1 for the longitudinal Young’s modulus and of 0 for the
transversal. Besides that, for a full CNT, rather than a hollow one, the internal diameter must be null.
With this in mind, it is possible to find a simple relationship between the thickness of such a CNT and its
diameter,

C�#) =
3�#) − 38

2
=

1
2
3�#) (3.1)

where C�#) is the thickness of the CNT, 3�#) is the diameter of the CNT and 38 is the internal diameter
of the CNT, which for the case of a full cylinder is 0.

Finally, the reference also mentions the relation between the mechanical properties of the fibre, which
we are considering a CNT, and the matrix. It is considered that ��#) = 30�< and the volume fraction of
CNTs to be E�#) = 20% [16]. The results are presented in Table 3.5, where the values were taken from
figure 7 of Tucker III and Liang [16], considering the finite element analysis of a regular square array of
representative volume elements.

There is a significant error on intermediate values of the aspect ratio of the CNTs, where the hierarchic
model tends to underestimate the value of the Young’s modulus. However, for low values or for very high
ones, the model seems rather accurate, rendering errors below 5%. This fact was also noted by Tucker
III and Liang [16] when he compared the behaviour of the Halpin-Tsai model to his numerical values.
Because our hierarchic model is heavily based on the Halpin-Tsai model, it is possible to conclude that
our model provides an accurate description for low values of the aspect ratio of the CNTs.
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Besides this, it seems that for high aspect ratios, although more slowly growing, our model gives a
precise description of the physical phenomenon at study, where at infinity the values coincide perfectly.
For example, for a CNT aspect ratio of 1000, the error is only −1.03%, being even smaller for higher
values [16]. As the aspect ratio of a CNT tends to be on the order of thousands, the diameter is usually
on the nano scale, while the length is on the micro scale [13], the hierarchic model will provide almost
for all considered applications a very good approximation of reality, because lower values of aspect ratio
will not occur.

Although the results were not very promising, we must note some problems with the assumptions
considered by Tucker III and Liang [16] in their analysis. First, his work deals mainly with the behaviour
of fibres, not nanotubes, which can affect the outcome of this comparison. In fact, a Young’s modulus of
the fibres greater than that of the matrix by 30 times seems a plausible consideration for microfibres in a
composite, however for CNTs this number tends to be orders of magnitude greater [37].

Also, the reference in question considered the effect of fibre-packing geometry [16], which our own
model ignores completely in the case of the nanotubes. Finally, one of the founding assumptions of the
hierarchic model is the existence of a dilute mixture of CNTs in the composite matrix. With a volume
fraction of CNTs of 20% it seems improbable, if not impossible, to achieve the dispersion required
for a homogeneous distribution of properties along the composite, as well as the validity of the dilute
approximation of the equations involved. As such, another base model, rather than the Halpin-Tsai one,
should be used to approximate better this particular case, also noted by Tucker III and Liang [16].

3.3 Prediction of elastic properties ofCNT/fibre/polymermatrix composites

Until now, we only studied the effect of adding CNTs to a medium on its mechanical properties, namely
the Young’s modulus. However, to fully verify the extent of the validity of the hierarchic model, we
must include in our analysis the combined effect of theCNTs and themicrofibres in amultiscale composite.

To this avail, two references were used to compare the values predicted by our model with other
experimental and numerical results. In the first one, all important mechanical properties will be compared
[39], whilst on the second only the longitudinal Young’s modulus will be verified [40].

As already noted, some references, like Rafiee et al [15], use vibrational analysis to predict the
behaviour of a plate made up of a fibre-reinforced composite with embedded CNTs. Although this paper
could be used to validate the hierarchic model, the dynamical model in effect for vibrational analysis in
this text will only be described in a future section, leaving this comparison out.
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3.3.1 Kulkarni et al (2010)

This reference studies the effect of CNT reinforcement on the mechanical properties of a fibre-reinforced
epoxy resin composite. All properties of the phases are available in the text.

First, for the CNTs we have a Young’s modulus of ��#) = 1000 GPa, a diameter of 3�#) = 10 nm
and a length of ;�#) = 100 nm [39]. Also, the reference considers all the nanotubes has full cylinders,
so the relationship between the thickness and the diameter is presented as in equation (3.1).

For the epoxy resin, the Young’s modulus is �< = 3 GPa and the Poisson’s ratio is a< = 0.3, while
for the carbon fibres we have a longitudinal Young’s modulus of �11 5 = 294 GPa and a transversal of
�22 5 = 18.5GPa, a Poisson’s ratio of a12 5 = 0.27 and a longitudinal shearmodulus of�12 5 = 25GPa [39].

It is possible to verify that Kulkarni et al [39] used a composite where the nanotubes grew outwards
from the carbon fibres. This consists in a complex microstructure format which the hierarchic model
cannot represent. However, because Kulkarni et al [39] assumes that the CNTs are isotropic, we may
consider that the CNTs are unidirectional in every direction. Then, using the hierarchic model for a
unidirectional dispersion of CNTs, we calculate the values represented in Table 3.6.

One important aspect in Table 3.6 is the volume fractions presented, which are respective to the total
volume of material present in the composite. As the hierarchic model utilises a sequential approach to
the mixture of the three phases, the volume fraction of CNTs must be first converted to their value in

E�#) = 11%0=3 E 5 = 11% E�#) = 2%0=3 E 5 = 41%
�11 [ D;:0A=8,2010]

/GPa 42.80 83.60

�11 /�%0 43.58 123.58
(1.82%) (47.82%)

�22 [ D;:0A=8,2010]
/GPa 17.49 13.93

�22 /�%0 13.23 9.03
(−24.36%) (−35.18%)

a12 [ D;:0A=8,2010] 0.16 0.16
a12 0.30 0.29

(87.50%) (81.25%)
�12 [ D;:0A=8,2010]

/GPa 7.88 9.36

�12 /�%0 6.12 5.31
(−22.34%) (−43.27%)

Table 3.6: Comparison between the hierarchic model and the numerical values obtained by Kulkarni et
al [39].
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reference to the volume of epoxy resin, before being inserted in the equations.

Comparing the numerical results attained by Kulkarni et al [39], it is immediately noticed the
enormous errors in all predictions by our model. However, this only happens because the hierarchic
model is not well fitted to accurately represent the case at hand. In addition to that, the authors themselves
make a comment on the unexpected progression of some of the values numerically obtained [39].

First, considering an iso-strain condition in the calculation of the longitudinal Young’s modulus,
instead of the numerical simulation by Kulkarni et al, we obtain a value of �11 = 38.77 GPa [39] for the
first case and �11 = 125.40 GPa [39], which, for the second case, is much closer to the values obtained
by the hierarchic model, with a relative error of just 1.45%.

Then, the Poisson’s ratios obtained by Kulkarni et al [39] give a number much lower than any of the
Poisson’s ratios of the phases of the composite. This is a very strange behaviour mainly because for the
Poisson’s ratio, usually, the iso-strain model gives an accurate result.

Finally, Kulkarni et al [39] simulate the material assuming a cohesive phase between the CNTs and
the epoxy matrix, which has its own properties different from any other material involved. This additional
"material" makes a slight contribute to the overall elastic moduli having a great effect on the transversal
Young’s modulus and the longitudinal shear modulus, leading to very different values than those obtained
by the hierarchic model.

The reference continues the analysis of the numerical model by comparing it to an experiment that
measured the transversal Young’s modulus of a fibre-reinforced composite with CNTs. Using all the
above properties of the CNTs, carbon fibres and epoxy resin and noting that the real composite had
volume fractions of E�#) = 2% and E 5 = 40% [39], the hierarchic model gives the value presented in
Table 3.7.

The error compared to the experimental value is much lower than the errors on the numerical values
of Table 3.6, meaning that our model, although less complex, gives a better estimate for the value of the
transversal Young’s modulus.

�22 [ D;:0A=8,2010]4G?
/GPa �22 /GPa

10.02 8.88 (−11.38%)
Table 3.7: Comparison between the hierarchic model and the experimental value of the transversal
Young’s modulus obtained by Kulkarni et al [39].
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In fact, we may try to adapt the hierarchic model to the particular geometry of this example for a better
agreement between our prediction and the experimental value. First, we note that the CNTs sprouting
around the carbon fibres may be represented as a bidimensional random distribution of CNT orientations
in the transverse plane. As such, we may calculate the final transverse Young’s modulus by considering
the transverse Young’s modulus of the fibre as the new longitudinal Young’s modulus of the fibre, in the
transverse plane. Finally, by utilizing the Young’s modulus of the CNT distribution on the epoxy resin
in the transverse plane and the modulus of the fibre in the transverse plane we obtain �22 = 9.79 GPa as
the new value for the transverse Young’s modulus of the composite. This new value is much closer to the
experimental one, with an error of just−2.30%, because the packing geometry was taken in consideration.

In conclusion, although the reference used resulted in some predictive differences, the considerations
taken in the final analysis of the comparison further assures the validity of the hierarchic model and the
powerful algorithm it supplies.

3.3.2 Gupta and Harsha (2014)

Gupta andHarsha [40] used a finite element microstructuremodel to numerically evaluate the longitudinal
Young’s modulus of a carbon fibre-reinforced composite with CNTs embedded in an epoxy matrix. As
in the last example, all the mechanical and geometrical properties were described in the reference.

The diameter of the CNTs is 3�#) = 5.36 nm, their thickness is C�#) = 0.68 nm and the Young’s
modulus is ��#) = 1000 GPa. For the carbon fibres we have a longitudinal Young’s modulus of
�11 5 = 380 GPa and for the epoxy resin we have �< = 6 GPa. Lastly, it is evident that for the numerical
simulation performed by the reference, a hexagonal RVE was used with the fibres and the CNTs aligned
and spanning the complete length of the element [40]. For this reason, we will assume an unidirectional
distribution of CNTs and that the nanotubes have a high aspect ratio, which means that ;�#) →∞.

Using the values and assumptions discussed, the hierarchic model gives the results presented in Table
3.8. Like in the previous section, because the hierarchic model encapsulates a sequential mixture of the
three phases, the volume fractions indicated in Table 3.8 are relative to the total volume of composite,
leading to a need for converting the volume fraction of CNTs to their correct value with respect to the
volume of epoxy matrix.

Another note onTable 3.8 is the use of an adimensional formof the longitudinalYoung’smodulus, �11.
The symbol �0 represents the longitudinal Young’s modulus for the case when no CNTs are introduced
in the fibre-reinforced composite, for the same fibre volume fraction [40]. Then, the adimensional
expression signifies the increase in longitudinal Young’s modulus due to the addition of nanotubes,
separating the effect from that of the carbon fibres.
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E�#) /% 0.5 1.0 1.5 2.0 2.5 3.0 4.0 5.0
E 5 /% 59.6 59.9 60.3 60.7 61.1 61.4 62.2 63.0

�11 [�D?C0,2014]
�0

1.022 1.052 1.080 1.108 1.137 1.162 1.220 1.277

�11
�0

1.010 1.020 1.029 1.040 1.050 1.061 1.082 1.105

(−1.17%) (−3.04%) (−4.72%) (−6.14%) (−7.65%) (−8.69%) (−11.31%) (−13.47%)
Table 3.8: Comparison between the hierarchic model and the numerical values obtained by Gupta and
Harsha [40].

It can immediately be seen that the hierarchic model gives a fairly good approximation to the values
obtained by Gupta and Harsha [40]. Until a CNT concentration of 2%, the error is less than 5%, which
coincides with the usual threshold for the beginning of a non linear evolution [31, 38]. Even so, for higher
CNT volume fractions the error doesn’t grow much beyond acceptable values, indicating that when fibres
are present the non linear effects introduced by the CNTs are attenuated.

With this last reference, the validation of the hierarchic model is concluded in all its depth. Although
a simple and sometimes crude model, it led to good results in many cases and almost all the errors
were explained by means of some particular detail that the hierarchic model could not represent
faithfully. Besides this, it can also be the case that the references in question also contain some errors or
approximations.



Chapter 4

Tensile tests on CNT-reinforced epoxy
resin

The references used in Chapter 3 provided critical information in order to prove the validity and
applicability of the hierarchic model to real world examples. However, to further provide evidence
for this assertion, some experimental tests were done in order to measure the evolution of the Young’s
modulus and the Poisson’s ratio with the addition of CNTs to an epoxy resin.

As the final nanocomposite will be an isotropic material, this two elastic properties are sufficient to
characterize the elastic response of the material to any solicitation, namely the shear modulus. So, a
simple experiment that can be performed to measure both of this properties is a tensile test.

Also, one of the main problems encountered when manufacturing the specimens used was achieving
a satisfactory dispersion of the nanotubes in the matrix and reducing the number of bubbles in the curing
process. In order to analyse the best methodology to approach an homogeneous distribution of CNTs,
some specimens were made by different processes.

With this inmind, these experimental results have as an objective to determine the best CNTdispersion
method inside the composite and to validate thoroughly the hierarchic model developed in this text. First,
the experimental procedure is discussed, as well as the normalizations used in the tensile tests and a brief
description of the specimens properties. In the last sections of this chapter, the results obtained in the
tests will be presented and discussed. Some of the tensile tests were performed at LEMEC (Laboratório
de Ensaios Mecânicos), INEGI and the rest at LET (Laboratório de Ensaios Tecnológicos), FEUP. All
the specimens were manufactured at INEGI, by colleagues of UMEC involved in this research project.

37
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4.1 Experimental procedure

This section will describe briefly the experimental procedure of the tensile tests executed on the
CNT-reinforced composite specimens. The standard utilized is briefly discussed, mainly its limitations
and its validity conditions, followed by a description of the specimens used.

The tensile tests were divided in two types, according to the measurement devices used and both
utilized the EN ISO 527 standard [43, 44]. The first one used a clip-on extensometer which measures
only the longitudinal displacement, as well as the load applied to the sample material. Although this only
permits the computation of the specimen’s Young’s modulus, the clip-on extensometer can be reused and
corrects many problems linked to misalignment of the specimen in the apparatus.

On the other hand, the second pair of tensile tests use a couple of strain gauges, longitudinally and
transversally, to measure also the transversal displacement of the sample. This permits the calculation of
the Poisson’s ratio. However, this method requires a large supply of strain gauges and a greater assembly
time than the first one.

There were seven types of specimens tested with the tensile tests. One of them is just the epoxy
resin without nanotubes, serving as a reference for the rest of the tests. Four of the other types share the
same weight fraction of CNTs, 0.05%, differing only on the degree of dispersion in the epoxy matrix, as
well as on the process used to achieve such a dispersion. Some of the dispersion methods involve the
use of chemical agents, while others consist of only a physical mechanism for separation of the carbon
nanotubes. Finally, the other two types have, respectively, weight fractions of CNTs of 0.1% and 0.2%
and were produced using only mechanical dispersion of nanotubes.

4.1.1 Standard EN ISO 527

The tensile tests were performed in six different samples of each kind of specimen. The first four tests
used the clip-on extensometer, represented in Figure 4.1a, giving four values for the Young’s modulus.
The last two tests used strain gauges, shown in Figure 4.1b, which translated in two other values for
the Young’s modulus and all the results for the Poisson’s ratio. For the two last types of specimens, all
the tests used the clip-on extensometer, giving only six values for the Young’s modulus, as we did not
consider that the Poisson’s ratio would change significantly.

The standard requires a minimum of five tests for the results to be considered relevant [43], however
there were only executed two tests for the Poisson’s ratio of each specimen. This might result in this value
to not be statistically relevant, due to its variance, however, as we shall see, the value of the Poisson’s
ratio did not vary much, so we opted to consider only two tests.
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(a) Clip-on extensometer. (b) Strain gauges.

Figure 4.1: The two types of extensometers used in the tensile tests.

The specimens fabricated in the laboratory suffered from a cooling problem that resulted in an
exothermal chemical reaction that damaged the material and altered its properties [45]. As such, samples
with lower thickness were produced in an attempt to reduce this problem. All the other dimensions were
fulfilled, with the said exception of the nominal value of the thickness, which was lowered to 2 mm,
instead of the original 4 mm [44]. For the last two types of samples, due to their higher content of CNTs,
the curing process was more stable, so specimens with 4 mm of thickness were possible.

Finally, the ISO standard states that the Young’s modulus is the ratio of the stress difference between
to points, to the corresponding strain difference. These two points are defined by a strain of 0.0005 and
of 0.0025 [43]. For the case of the Poisson’s ratio, the standard defines it as the ratio of the transversal
strain difference between to points, to the corresponding longitudinal strain difference. These points are
the same as those for the computation of the Young’s modulus. However, if for some reason the interval
described is firmly non linear, another interval in the linear region must be used to account for such an
irregularity.

The standards also determine that the place where the fracture occurs can invalidate the test. Fractures
inside the grip or too much close to it should not be considered in the evaluation of the properties [43],
even if no substantial change should be apparent in the elastic moduli, as they are measured in the range
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Figure 4.2: A typical fracture on a tensile test.

of small strains. Only one of the tests had a fracture inside the grip, so almost all of them were considered
valid, even if the fracture didn’t occur on top of the gauge. Figure 4.2 shows a typical fracture on a tensile
test, near the gauge.

All the other conditions imposed by the ISO standard [43, 44] were accomplished with success. The
specimens used were dumb-bell-shaped of type 1B of the ISO 527 standard [44], for all of the tensile
tests.

4.1.2 Test specimens

Before the realization of the tests, the specimens were prepared accordingly and all the necessary
dimensions for the computation of the final properties were measured. All the nanocomposites were
made using the following materials:

• Epoxy resin SiPreg SR 121 / KTA 315 (Sicomin) [46]

• Single-walled carbon nanotubes SA-ML-2 (NANOSHEL) [47]

These technical data sheets can be found in Appendix A. One of the epoxy resin samples and two of
the CNT-reinforced epoxy are presented in Figure 4.3. In the images it is very noticeable the small voids
and bubbles that exist near the outer walls of the specimens. Those defects, caused by the air dissolved
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(a) Epoxy resin specimen. (b) CNT-reinforced specimen.

Figure 4.3: Examples of the samples used in the tensile tests.

in the resin before the curing process, can change considerably the real sectional area of the samples,
therefore inducing an error in the computation of the stresses in the material. Also, the bigger the bubble,
the bigger the probability of occurrence of a fracture due to a stress concentration in the nearby zone,
leading to a premature failure.

As already mentioned, seven types of specimens were tested, based on their material and CNT
dispersion method. The seven samples can be categorized as:

• Epoxy resin

• Epoxy resin + 0.05% CNTs (Normal dispersion)

• Epoxy resin + 0.05% CNTs (Ionic surfactant SDBS)

• Epoxy resin + 0.05% CNTs (Non-ionic surfactant Triton X-100)

• Epoxy resin + 0.05% CNTs (High dispersion)

• Epoxy resin + 0.1% CNTs (High dispersion)

• Epoxy resin + 0.2% CNTs (High dispersion)
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Figure 4.4: Different specimen preparation: specimens 1 and 2 to the left for the clip-on extensometer
and 5 and 6 to the right with the strain gauges already mounted on 5.

The first one shall function as a reference for the values of Young’s modulus and Poisson’s ratio. The
normal dispersion refers to samples that were mixed in 16 passages in the three roller machine [45], used
to prepare the composite before the curing process. The high dispersion specimens were also mixed in
the three roller machine, but with a much greater number of passages, in our case 50. Although the only
difference between these two methods were the number of passages, purely a physical separation, this
tested for the effect on the global dispersion of the sample with increasing mixing.

Finally, there was the possibility of using chemical agents to facilitate the process of CNT dispersion.
These chemicals are called surfactants and they act as to oppose the van der Waals forces that tend to
aggregate CNTs in bundles [48]. As such, two types of surfactants were used, ionic and non-ionic. Both
the specimens that used the surfactants also were subjected to the normal dispersion, isolating the effect
that these chemicals had on the CNT dispersion.

Before executing the preparation of the specimens, all of their relevant dimensions were measured
with a micrometer. The thickness and the width of the samples were measured in three different points
along their length, to account for variability in these variables. The mean value of the measured quantities
are presented in Table 4.1.

After the measurements took place, the specimens were prepared for the tensile tests. Specimens 1
and 2 of all the references were just marked for the evaluation of the place where the failure should happen,
unlike specimens 5 and 6, on which were mounted the strain gauges. Image 4.4 shows the two different
setups needed for each of the standards tensile tests. In the image, one can see a different numbering
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Reference Specimen F /mm C /mm
1 10.21 2.43
2 10.15 2.32

Ref 1 3 10.20 2.17
(Epoxy Resin) 4 10.20 1.90

5 10.20 2.13
6 10.20 2.63
1 10.14 1.92
2 10.13 2.13

Ref 2 3 10.30 2.57
(0.05 CNT Normal) 4 10.23 2.27

5 10.15 2.21
6 10.15 2.11
1 10.18 2.58
2 10.18 2.36

Ref 3 3 10.10 1.30
(0.05 CNT SDBS) 4 10.17 1.73

5 10.20 2.33
6 10.19 2.34
1 10.18 2.35
2 10.20 2.23

Ref 4 3 10.20 2.70
(0.05 CNT Triton) 4 10.20 2.27

5 10.20 2.48
6 10.19 2.21
1 10.20 2.57
2 10.19 2.55

Ref 5 3 10.23 2.67
(0.05 CNT High) 4 10.23 2.57

5 10.21 2.63
6 10.24 2.36
1 10.30 4.00
2 10.40 4.23

Ref 6 3 10.33 3.50
(0.1 CNT High) 4 10.23 4.10

5 10.27 3.80
6 10.33 4.37
1 10.30 4.23
2 10.30 4.10

Ref 7 3 10.23 3.87
(0.2 CNT High) 4 10.30 4.20

5 10.20 4.00
6 10.27 4.40

Table 4.1: Measured dimensions of the specimens.

for specimens 5 and 6, which was a result of a different numbering scheme used in the beginning of the
tensile tests. Due to the confusion that could arise in the analysis of the tensile tests, performed in two
different laboratories, the current numbering for such specimens is 5 and 6. Besides this, specimens 3
and 4 of all the references used the same preparation as specimens 1 and 2.
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Almost all of the specimens had a small curvature on one of the sides, however, because we used
mean values of thickness, the error in considering a rectangular cross section instead of a curved one was
neglected in this analysis.

During the tensile tests at LEMEC, INEGI, some of the specimens fractured in invalid locations, such
as the grips, and a defective extensometer did not record the strain data of the experiment, leading to a
lack of experimental tests for having sufficient statistically valid data. As such, some of the tests, with
and without glued extensometers on the specimens, were performed at LET, FEUP, for completion of the
minimum required number of tests, according to the ISO standard [43].

For future reference, specimens 1 and 2 of reference 1, specimens 1, 5 and 6 of reference 4 and
specimens 1, 2, 5 and 6 of references 2, 3 and 5 were tested at LEMEC, INEGI. All the other tests were
performed at LET, FEUP.

4.2 Data analysis and results

With the analysis of the experimental procedure concluded we can proceed to the discussion of the data
obtained in the tensile tests. For the computation of the Young’s modulus and the Poisson’s ratio the
definitions for those properties by the ISO [43] standard were used. In this section, the tensile strength of
each of the specimens will also be calculated, even if it is not a necessary variable for our analysis. This
will further help to confirm the real effect of the CNTs on the nanocomposite.

We will use the ISO standard to calculate the Young’s modulus. According to it, the Young’s modulus
is computed by the following definition [43],

� =
f2−f1
Y2− Y1

(4.1)

where f8 refers to the stress on point 8 of the stress - strain curve and Y8 to the strain on point 8. For the
ISO standard [43], the points used should be such that they are the closest available to Y1 = 0.0005 and to
Y2 = 0.0025.

On the other hand, for the Poisson’s ratio we must use,

a = −
YC2 − YC1
Y;2 − Y;1

(4.2)

where YC8 is the transversal strain at point 8 in the transverse - longitudinal strain curve and Y;8 is the
longitudinal strain. As in the previous case, the limits discussed in the ISO standard should be applied to
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the longitudinal strain.

Finally, for the tensile strength, according to the ISO standard, it shall be equal to the maximum value
of stress measured in each test. The standard also allow for the computation of such properties to be
achieved with a linear regression, however we will use equations (4.1) and (4.2) for their simplicity. All
the curves representative of the tests can be consulted in the appendixes: the load - displacement curves
in Appendix B, the stress - strain curves in Appendix C and the transversal strain - longitudinal strain
curves in Appendix D.

4.2.1 Young’s modulus

In this section the results obtained in the tensile tests regarding the Young’s modulus will be discussed.
The Young’s modulus calculated in each test, the mean values for each reference and their respective
standard deviation is shown in Table 4.2.

First of all, a brief comment on the results obtained in the two different laboratories. All the specimens
of references 6 and 7 were tested at LET, while for the other references, the results shown are a mixture of
values attained at LEMEC and LET. Besides this, some more tests were performed, but were immediately
discarded due to malfunctions in the extensometers or due to fracturing in the grips, as indicated by the
ISO standard [43].

Before the analysis of the results, it is noted that the tests executed with strain gauges yielded higher
values of the Young’s modulus than those that used the clip-on extensometers, consistently. This is an
experimental bias that needs to be carefully taken in consideration, however in this preliminary comparison
we will not concern ourselves with this question, however, all future tensile tests should use only one
of these methods to avoid this unnecessary problem. Also, this bias could be related to an irregular
calibration of the transducers, so, in the future, additional care should be given to the experimental
preparation.

Also, the tests performed at the LEMEC laboratory yielded higher values for the Young’s modulus,
when compared with the ones performed at LET. This is another systemic bias that should be accounted
for when analysing the results and is, in conjunction with the differences between the extensometers used,
the main factor that influenced the high standard deviation of all the values.

It is apparent that all references had a value of the Young’s modulus higher than that of the epoxy
resin. This fact was expected because the addition of CNTs should increase the stiffness of the material.
Besides that, for the high dispersion references, the sixth one gave a number bigger than the fifth, which
was also expected due to the higher concentration of CNTs. Because of the great variability of all the
results, the decrease in Young’s modulus from 0.1% to 0.2% CTN concentration cannot be fully accepted
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Reference Specimen � /GPa �̄ /GPa f� /GPa
1 3.14

2.97 0.56

2 3.32
Ref 1 3 2.81

(Epoxy Resin) 4 2.60
5 3.01
6 2.94
1 3.20

3.30 0.87

2 3.54
Ref 2 3 2.85

(0.05 CNT Normal) 4 2.85
5 3.73
6 3.62
1 3.32

3.20 0.95

2 3.24
Ref 3 3 2.59

(0.05 CNT SDBS) 4 2.83
5 3.73
6 3.51
1 3.27

3.20 0.56

2 2.91
Ref 4 3 3.28

(0.05 CNT Triton) 4 2.87
5 3.46
6 3.40
1 3.02

3.17 0.83

2 3.17
Ref 5 3 2.89

(0.05 CNT High) 4 2.71
5 3.63
6 3.57
1 3.01

3.25 0.48

2 3.60
Ref 6 3 3.09

(0.1 CNT High) 4 3.34
5 3.31
6 3.12
1 3.00

3.18 0.38

2 3.47
Ref 7 3 3.03

(0.2 CNT High) 4 3.19
5 3.24
6 3.16

Table 4.2: Young’s modulus of the specimens tested.

as true, as the expected behaviour should be an increase in this value, assuming the specimens have a
good dispersion of nanotubes in the resin.

Also interesting to note is the fact that the reference that showed a greater increase in the Young’s
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Reference �4G? /GPa �<�# /GPa
Ref 5 3.17 3.02 (−4.73%)
Ref 6 3.25 3.07 (−5.54%)
Ref 7 3.18 3.18 (0.00%)

Table 4.3: Comparison between the experimental values of the Young’s modulus obtained by the tensile
tests and the prediction of the hierarchic model.

modulus, for the same CNT concentration, is the normal dispersion, followed by the ionic and the
non-ionic surfactant. It was expected that the greater increase should be on the high dispersion reference
or one of the references that received chemical treatment. However, because the standard deviations are
so high, it is impossible to safely declare that one of the values is greater than the other one. For further
evidence of this evolutionmore tensile tests needed to be taken, to lessen the variability in themean values.

Even so, it would be an important discovery to contradict the fact that a greater dispersion of CNTs
lead to a higher stiffness of the nanocomposite [11]. In fact, maybe the bundles of CNTs on a poorly
dispersed distribution in a matrix act as obstacles to the propagation of displacements, as impurities and
different sized atoms do in a crystal lattice, increasing the overall stiffness of the composite.

To verify our experimental results, it is possible to use the hierarchic model developed in subsequent
sections to guess what would be the increase in Young’s modulus, due to the addition of a certain weight
fraction of carbon nanotubes. We will use the experimental Young’s modulus of the epoxy resin, instead
of the value from the technical data sheet, has to approximate better the experimental results, so �< = 2.97
GPa.

Using the data sheet of the epoxy resin [46], we find a density of d< = 1176 kg/m3. Also using the
specification certificate of the CNTs [47], we have a length of the CNTs between 8 and 15 µm and a
diameter between 1 and 2 nm. Considering the mean values of these quantities, ;�#) = 11.5 µm and
3�#) = 1.5 nm. A reasonable value for the Young’s modulus of a CNT is ��#) = 968 GPa [49].

Finally, we may use a thickness of C�#) = 0.34 nm [11] for the CNTs. This gives a density of the
CNTs d�#) = 1578 kg/m3, using the formula elaborated by Thostenson et al [11]. With all the variables
defined, the comparison between the experimental values and the prediction achieved with the hierarchic
model is presented in Table 4.3.

The values used as the experimental comparisons were those of the high dispersion reference. Besides
being the closest value to the theoretical prediction, it also satisfies better the constraints placed by our
model, by having the best CNT dispersion amongst all specimens. The very small error further encourages
the validity of our hierarchicmodel and provides another foundation for the acceptance of the experimental
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results obtained.

4.2.2 Poisson’s ratio

The results of the tensile tests regarding the Poisson’s ratio are presented in Table 4.4. Only specimens 5
and 6 of each reference collected data relative to the transversal strain during the test, so they are the only
tests capable of computing a value for the Poisson’s ratio.

As expected, the variation of the Poisson’s ratio was almost non-existent, confirming the constant
Poisson’s ratio prediction of the hierarchic model. Because this property is heavily dominated by the
matrix’s properties, it should not vary with CNT concentration or dispersion. For the epoxy resin, we
have a value of a< = 0.35. Taking the expected value of the Poisson’s ratio of the epoxy resin to be 0.35
[50], we have the comparison shown in Table 4.5.

It can be noted that it is exactly the same value, meaning that our experimental results are correct.
This also reiterates the validity of the theoretical model used. Because the Poisson’s ratio of references 1
to 5 did not vary much, we assumed that the assumption of constant Poisson’s ratio with increasing CNT
loading was correct and, thus, we did not try to find this value for references 6 and 7.

Reference Specimen a ā fa

Ref 1 5 0.34 0.35 0.02(Epoxy Resin) 6 0.36
Ref 2 5 0.33 0.35 0.03(0.05 CNT Normal) 6 0.36
Ref 3 5 0.37 0.35 0.04(0.05 CNT SDBS) 6 0.32
Ref 4 5 0.34 0.35 0.01(0.05 CNT Triton) 6 0.35
Ref 5 5 0.27 0.31 0.05(0.05 CNT High) 6 0.34

Table 4.4: Poisson’s ratio of the specimens tested.

a [(ℎ0=,1995] a<

0.35 0.35 (0.00%)
Table 4.5: Comparison between the experimental value of the Poisson’s ratio obtained by the tensile tests
and the expected value of the Poisson’s ratio of the epoxy resin [50].
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4.2.3 Tensile strength

In Table 4.6, the values for the tensile strength obtained in the tensile tests are shown. Just like the other
values obtained in the tensile tests, the tensile strength also showed a great variation, due to the fact that

Reference Specimen fA /MPa f̄A /MPa ffA /MPa
1 58.50

53.05 15.08

2 50.18
Ref 1 3 51.71

(Epoxy Resin) 4 41.48
5 58.81
6 57.60
1 53.08

55.63 12.22

2 46.57
Ref 2 3 62.01

(0.05 CNT Normal) 4 55.24
5 59.90
6 56.95
1 68.30

58.85 25.14

2 70.17
Ref 3 3 50.26

(0.05 CNT SDBS) 4 41.99
5 56.40
6 65.96
1 51.41

54.74 12.86

2 57.98
Ref 4 3 60.69

(0.05 CNT Triton) 4 49.00
5 60.83
6 48.54
1 56.95

48.51 22.52

2 49.52
Ref 5 3 44.88

(0.05 CNT High) 4 30.22
5 52.62
6 56.89
1 61.03

63.19 18.08

2 52.81
Ref 6 3 55.97

(0.1 CNT High) 4 74.11
5 66.14
6 69.07
1 64.48

64.60 8.45

2 66.43
Ref 7 3 65.71

(0.2 CNT High) 4 70.05
5 59.28
6 61.64

Table 4.6: Tensile strength of the specimens tested.
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the experiments were performed in different laboratories.

The specimens with higher concentrations of CNTs showed some improvement on the tensile strength
of the nanocomposite. In fact, this was expected, because the CNTs should increase the tensile strength
of the matrix [37]. However, the great variability of the results cannot confirm this fact, as this increase
may be due to random fluctuations, which prevent us from confirming it. More tests should be done to
reaffirm this or a greater CNT load should be implemented in the specimens to increase the effect on the
mechanical properties of the samples.

Although it can also be attributed to random variations, the dispersion method which showed a greater
increase in the tensile strength of the specimens was the one that used the SDBS surfactant, for 0.05%
CNT weight fraction. Maybe the chemical interaction between the composite and this chemical favoured
a microstructure capable of withstanding greater loads, leading to a greater tensile strength.



Chapter 5

A model for damping in CNT
nanocomposites

Besides the use of nanotubes to reinforce composites and increase their stiffness, the greatest advantage
of using CNT nanocomposites may stand on their promising improvement of the damping characteristics
it imparts on a structure. This effect has been studied and it seems to be the greatest claim towards the
use of CNTs on multiscale composites [51].

This chapter will introduce a model, based on the works of Bhattacharya et al [52] and Lin and Lu
[1], which utilizes a micromechanics approach to analyse the vibration response of a RVE to an external
solicitation. The advantage of this theory is that it requires only the elastic moduli of both phases and
their concentrations, which have already been studied in previous sections of this text, the amplitude of
the imposed vibration and a quantity that characterizes the interfacial bonding strength between the CNT
and the resin.

It is also relevant to mention the existence of models that use the stiffness matrices of both phases to
predict the damping caused by CNT debonding [3], that exist almost as an extension of the Mori-Tanaka
model and Eshelby’s equivalent inclusion idea. There are also models that use molecular dynamics [53],
where the individual atoms of the nanotube are represented as separate entities and all the van der Waals
interactions between them and the matrix and also the covalent bonds between the atoms themselves
are included. However, as interesting as they are, we will focus our attention on a model based on a
micromechanics vibration analysis of the CNTs on the resin.

5.1 Micromechanics based vibration analysis ofCNT-reinforced composites

In this first part of the chapter, the theoretical model that will serve as the foundation for the prediction of
the damping ratio of CNT-reinforced composite beams and plates will be discussed in detail. As for the

51
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second part, because many articles use vibrating cantilever beams to experimentally measure the damping
introduced by the nanotubes [3, 52, 54–56], the model will be applied to a practical case of a cantilever
beam.

Even though our experimental materials involve only the use of SWCNTs, the damping model will
be developed for MWCNTs so that it can be as general as possible. As soon as this model is defined,
the hierarchic model will also be introduced to accommodate the elastic model used throughout this work.

There are two main approaches that can be used to attain the damping model described in the next
sections: energetic methods, used by Bhattacharya et al [52], and nonlinear system analysis, contemplated
on the work of Lin and Lu [1]. Because of its simplicity and physical insight provided, the energetic
method was chosen as the final dampingmodel used throughout the rest of the text. The nonlinear analysis
involved the use of the Describing Function method, which is an extension of the concept of transfer
functions for nonlinear systems [1, 57], and resulted in a description of the response of the system that
depended on the assumed waveform of the excitation [57]. This method resulted in a more complex set
of equations and relied heavily on the use of complex numbers, so the energetic method was preferred.

After the exposition of the theory, some corrections regarding the effect of inherent viscous damping
of the matrix and of CNT orientation are presented in Section 5.1.4. Those two factors can account for
the remaining offset between the practical cases shown in Chapter 6 and the predictions made by the
developed damping model.

5.1.1 Concept of "stick-slip" mechanism

When an external force acts upon a CNT-reinforced composite, its effect is transmitted through the resin
to the nanotubes, as it cannot be directly applied to them. As such, there must be a mechanism of load
transfer between the matrix and the CNTs. It is widely accepted that because of their small size and the
fact that they are hollow, the ratio between their surface area to their mass, also called the specific surface
area, is extremely large [3, 53]. This fact implies that the major means of load transfer cannot be by
normal stresses on the extremities of the CNT, but instead by interfacial shear stresses around the outer
wall of the nanotube [54]. Also, its high aspect ratio and cylindrical geometry promote the load transfer
through the outer wall.

It is easy to picture that this type of interfacial load transfer also occurs between successive walls
on the inside of a MWCNT. In fact, it is possible to consider a MWCNT as just a bundle of SWCNTs
concentric to one another, with increasing diameter [1, 11]. The only force that keeps the different
layers of a MWCNT together is the van der Waals force, which is very weak compared to the covalent
bonds between carbon atoms in the cylindrical configuration of carbon nanotubes [1, 11, 53]. Then, it is
possible to conceive that the load transfer worsens as it goes through the inner walls of a MWCNT and,
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in reality, it has been proven that the outer wall of a MWCNT carries almost the entire load transfer of the
nanotube/matrix interface [11, 58]. Because of this experimental fact, we will consider that a MWCNT
can modelled by just two concentric SWCNTs, where the outermost one represent the SWCNT that
supports almost all the load and the innermost one represent the inner SWCNTs, which do not contribute
that much to the overall load transfer capacity of the MWCNT.

As mentioned before, the van der Waals forces are the only effect responsible for the cohesion of a
MWCNT and the bonding between itself and the resin surrounding it [53]. However, because these forces
are relativity weak, if a sufficiently high load is applied to the interface, these bonds may break, resulting
in the debonding between the MWCNT and the matrix or the "sword and sheath" telescoping failure of
the MWCNT, which occurs when the SWCNTs inside of the MWCNT start sliding with respect to one
another, in analogy to the extension of a telescope [2]. The established criteria for the occurrence of the
failures mentioned are called the critical shear stresses. When the shear stress reaches the critical shear
stress for a particular interface, there is no more capacity to accommodate further load transfers, so the
interface fails and sliding between the phases occur [1, 52, 53].

Obviously, because, at the molecular level, the critical shear stress of an interface is a result of the
complex interactions between atoms of both phases, this value will depend heavily on the interface in
question. It has been noticed, that the critical shear stress between SWCNTs inside a MWCNT is lower
than that between the outer wall of a MWCNT and epoxy resin [52]. This infers that as a growing force
is applied to a MWCNT nanocomposite, first the inner SWCNTs of the MWCNTs start sliding with
respect to each other, as a result of not being able to transfer the excessive load amongst themselves,
followed by the debonding of the outer SWCNT of the MWCNT from the matrix [52, 59]. After this
point, the remaining load is supported only by the matrix, reducing the effective stiffness of the composite.

Figure 5.1 shows a step by step evolution of the progressive failure of the bonding between the
different walls of the phases in a nanocomposite. The light grey object represents the inner SWCNTs
of the MWCNT, the dark grey object represents the outer wall of the MWCNT and, finally, the white
rectangle represents the matrix of the composite. As such, g1 refers to the shear stress between the inner
walls of the MWCNT, g2 refers to the shear stress between the outer wall of the MWCNT and the resin,
caused by the external applied force, and g2A 1 and g2A 2 refer to the critical shear stresses of each interface,
respectively. It is possible to express the fact that the critical shear stress for CNT/matrix debonding
is higher than that for failure of the bonding between the internal SWCNTs of a MWCNT by a simple
equation [52],

g2A 1 < g2A 2 (5.1)

Many values have been proposed for both critical shear stresses, however, because it is such a difficult
property to measure, there exists a consensus only on an interval of possible values. Bhattacharya et
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Figure 5.1: Stages of failure of the bonding between the inner layers of a MWCNT and the outer wall and
the matrix of a nanocomposite.

al [52] proposed a value of 0.3 MPa for the critical shear stress between SWCNTs and of 1 MPa for
the critical shear stress between CNTs and epoxy resin. Zhou et al [3] used a value of 0.2 MPa for the
critical shear stress between CNTs and epoxy resin, however it has been reported in pullout simulations
and experiments that the critical shear stress could reach values of 75 MPa [60].

If instead of an increasing static load, an alternating force is applied to the matrix, as in the study
of vibrations, the response of the system will depend on the strength of this solicitation. However, if
the load is high enough, debonding may occur and the phenomenon known as "stick-slip" will take
place. In fact, let us describe briefly what happens to the system as a vibration is induced in the matrix.
First, as the load increases, the steps described in Figure 5.1 will occur in order, hence promoting a
"slip" behaviour on the individual phases of the composite, in reference to one another. Then, after the
force reaches its maximum, it starts to decrease, releasing the accumulated elastic energy present in the
system, as the individual parts stay "stuck" to one another, because the plastic deformation induced by
the previous slippage is not undone. Finally, after the load turns direction and starts increasing in the
opposite orientation, the slippage between different parts is promoted again and so on, hence the name
"stick-slip".

Before describing the model used to analyse the dynamic response of the nanocomposite, we must
determine the system that will be subjected to that analysis. As such, we will use a RVE as described
in Figure 5.2. As usual, the white prism represents the matrix of the composite, the light grey hollow
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Figure 5.2: Representative volume element of the dynamic analysis subjected to an alternating external
load.

cylinder represents the inner SWCNTs of the MWCNT and the dark grey one the outermost SWCNT. The
MWCNT will be studied as an equivalent DWCNT, where the outer tube has the same properties as the
outer SWCNT of the original MWCNT and the inner tube as the rest of the SWCNTs of the MWCNT. In
the representation, 3< is the length of the square cross section of the matrix, 3> and 38 are the diameters
of the outer nanotube and the inner one, respectively, C> and C8 are the thickness of the outer nanotube
and the inner one, respectively, and ; is the length of the RVE, whereas for an aligned distribution of
nanotubes, it is the same as the length of the CNT, ;�#) [1, 52].

Then, it can be easily seen in the RVE that a simple model that simulates the behaviour of such a
system can be the one represented in Figure 5.3. In this micromechanical-basedmodel, the resin, the outer
nanotube and the inner one are represented as separate masses, bonded together by coulombic friction
[59]. This friction force is a representation of the shear stress that transfers the load from the matrix to
the inner SWCNT. As all the components have a stiffness associated, these are represented as springs,
clamped on one of the sides. Throughout the rest of the presentation of the model, we will assume that
the external load on the resin � acts only in the axial direction and that the RVE is fixed on one of its sides.

In analogy to the explanation of the "stick-slip" mechanism in previous paragraphs, let us first study
the evolution of the system to an increasing static force and only then will we analyse a dynamic one.
On a static analysis the masses of the objects involved are unimportant, however we need to establish the
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Figure 5.3: Micromechanical-based dynamical model of the representative volume element of the
nanocomposite.

equivalent axial stiffness of each component. It is known that for a linear material the axial stiffness is
given by [61],

: =
��

;
(5.2)

where : is the axial stiffness, � is the Young’s modulus, � is the cross sectional area and ; is the length.
Then, using equation (5.2) we may derive the stiffness of each component as,

:8 =
��#) �8
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=
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)
(5.3)

which simplifies to a somewhat familiar result,

:8 =
c(38 − C8)C8��#)

;
(5.4)

where ��#) is the Young’s modulus of the carbon nanotube. For the outer nanotube the resulting
equation is completely analogous,

:> =
c(3> − C>)C>��#)

;
(5.5)

For the stiffness of the matrix, the process is a little more complex, as the cross sectional area depends
on the volume concentration of CNTs present in the composite. Let us first relate the volume concentration
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of CNTs with the length of the square cross sectional area of the resin,
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which simplifies to,
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where E�#) is the volume fraction of CNTs in the composite. Finally, we are in a position to derive the
stiffness of the matrix,
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that can be ultimately reduced to,
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(5.9)

where �< is the Young’s modulus of the matrix.

Now that all the components’ stiffnesses are determined, we may advance for the analysis of the static
problem described. As the force increases, all the springs act in opposition to the solicitation, deforming
the system by a certain amount to balance the load. However, if the shear stress in the internal DWCNT
interface reaches the critical value, no more load can be transferred to the inner nanotube, rendering the
sliding of the outer tube and the resin over the inner one. After some time, the same phenomenon happens
to the outer interface, leaving the matrix as the only load supporter. The forces at which the critical shear
stresses are reached shall be called the critical loads. As it is described in [62], the relationship between
a force and the stresses it sustains is given by,

g =
�

�
(5.10)

where g is the shear stress, � is the applied force and � is the surface are where the stresses are applied.
With this in mind, both critical loads can be calculated by [52],

�1 = c38;g1 (5.11)

�2 = c3>;g2 (5.12)

where �1 and �2 are the critical forces of each interface, respectively, and g1 and g2 are the critical shear
stresses (from now onwards, we will drop the subscript 2A).
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The fact that we can determine a critical force for interfacial debonding and that we know the
stiffness of each phase, allow us to compute a critical displacement where debonding occurs. This critical
displacement can be used to separate the deformations before and after interfacial debonding. Before the
internal debonding of the inner layers of the CNT, all the phases contribute to the overall stiffness of the
composite so [52],

X1 =
�1

:< + :> + :8
(5.13)

and because we know the relationship between the inner and outer nanotube diameter,

38 = 3> −2C> (5.14)

this allows us to arrive at the final expression,

X1 =
4E�#) 38;2g1

32
>�<(1− E�#) ) +4E�#) [3> − (C> + C8)] (C> + C8)��#)

(5.15)

where X1 is the critical displacement for the inner interface debonding. As the load continues to increase,
the composite stiffness is only mediated by those of the matrix and the outer SWCNT, so the second
critical displacement is given by,

X2 =
�2−�1
:< + :>

+ X1 (5.16)

where it simplifies to,

X2 =
4E�#) ;2(3>g2− 38g1)

32
>�<(1− E�#) ) +4E�#) (3> − C>)C>��#)

+ X1 (5.17)

and X2 represent the critical displacement for debonding between the matrix and the CNT.

Finally, we must perform the dynamical analysis to study the behaviour of the system when an
alternating axial load is applied to the resin. When analysing vibrating systems, inertial effects should
not be neglected unless the analysis uses very small frequencies of excitation. However, the mass of
the CNTs are very small when compared to the mass of the matrix that contains them and, as our work
utilizes mass fractions of CNTs on the order of 1%, we shall neglect all inertial effects that are caused
by <> or <8 . This consideration implies that the mass of the CNTs will not have an effect on the natural
modes and frequencies of vibration of the nanocomposite, which seems a reasonable approximation.

There are three possible situations that must be accounted separately [52] the amplitude of vibration of
the matrix is smaller than the critical displacement for both types of debonding; the amplitude of vibration
is greater than the critical displacement for the internal debonding of the CNT, but lesser than that for
CNT/matrix debonding; the amplitude of vibration is greater than any of the critical displacements. The
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force-displacement behaviour of the composite in all of these situations is represented in Figure 5.4,
where - represents the amplitude of the imposed vibration.

It is immediately noticed that the system is nonlinear, because it contains hysteresis, although it is
stepwise linear. As such, we must solve a problem that revolves around hysteretic damping, also called
structural damping. So, before we continue to determine the damping model based on the mechanisms
of CNT debonding, we will discuss briefly hysteretic damping in a simple single DOF system.

5.1.2 Hysteretic damping in SDOF systems

When analysing vibrating systems, we usually assume that a viscous damper is in action, as well as a
spring. For a SDOF system, such as a single mass excited by a force, the equation of motion is [61, 63],

< ¥G(C) + 2 ¤G(C) + :G(C) = 5 (C) (5.18)

where < is the mass of the system, 2 is the damping coefficient of the viscous dashpot, : is the stiffness of
the spring, 5 (C) is the external force applied on the system and G(C) and its derivatives are, respectively,
the displacement, velocity and acceleration of the system. Obviously, we can also represent the equation
of motion based on modal parameters, such as the natural frequency of vibration and the damping ratio

Figure 5.4: Force-displacement behaviour of the composite for - ≤ X1 (a), for X1 < - ≤ X2 (b) and for
- > X2 (c).



60 A model for damping in CNT nanocomposites

[61, 63],

l= =

√
:

<
(5.19)

b =
2

2<l=
(5.20)

with l= as the natural frequency of vibration and b as the damping ratio. Using equations (5.19) and
(5.20), we may write the equation of motion of the system in the form [61],

¥G(C) +2bl= ¤G(C) +l2
=G(C) = 5 (C) (5.21)

To solve the previous equation, for a sinusoidal excitation, it is possible to use complex numbers to
represent the solution in a very simple form. The excitation will be considered of the form, 5 (C) = �4 9lC ,
and the response as well, G(C) = -4 9lC . With this solution in mind, we can also determine the velocity
and acceleration as ¤G(C) = 9l-4 9lC and ¥G(C) = −l2-4 9lC , respectively. So, substituting these results
into equation (5.21) and rearranging [61, 63],

1−
(
l

l=

)2
+ 9

(
2bl
l=

)
=
�

-
(5.22)

where � is the amplitude of the excitation load, - is the amplitude of the displacement response and 9 is
the imaginary unit. It can be readily seen, that the imaginary part of the left member of equation (5.22),
pertaining to the damping of the system, has a linear dependence with the frequency of the excitation.
It is evident that the effect of hysteretic damping on the system cannot depend on the frequency of the
excitation, because the same energy is dissipated in each cycle.

Then, to account for this frequency-independence of the energy dissipated by the dampingmechanism,
there exists an elegant and simple way to modify the previous equations. To that avail, let us consider
a viscous dashpot which has a variable damping coefficient, such that it is inversely proportional to the
frequency of excitation [63],

2(l) = 3

l
(5.23)

where 3 is called the hysteretic damping coefficient and is directly proportional to the dissipated energy
per cycle of vibration. Then, substituting this relation on the equation of motion for viscous damping, it
is possible to obtain the equation of motion for structural damping [63],

< ¥G(C) + 3
l
¤G(C) + :G(C) = 5 (C) (5.24)
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and if we assume the same sinusoidal excitation and, consequently, the same sinusoidal response, we
attain an equation akin to (5.22) but for hysteretic damping [63],

1−
(
l

l=

)2
+ 9

(
3

:

)
=
�

-
(5.25)

where the imaginary part of the left member of the previous equation is independent of the frequency, as
desired.

The constant factor that appears on the imaginary factor is called the loss factor [, so it is apparent
that [63],

[ =
3

:
(5.26)

but, as the hysteretic damping factor is proportional to the dissipated energy per cycle and the stiffness is
proportional to the maximum elastic energy stored in the system, the loss factor may be determined by a
more physical meaningful way [52],

[ =
,

2c*
(5.27)

where, is the energy dissipated in each cycle and, for the case of hysteretic damping, can be calculated
by the area inside the force-displacement diagram of the system and * is the maximum elastic energy
stored in the system.

It may be apparent in equations (5.22) and (5.25) that there exists a simple relationship between the
damping ratio and the loss factor, which is [63],

[ =
2bl
l=

(5.28)

and for frequencies close to that of the resonance we may simply assume that [ = 2b. This relationship
will be important in latter parts of this text, because it is much more frequent to measure the damping
ratio than the loss factor in experimental assemblies.

5.1.3 Energy dissipation and loss factor

For the analysis of a hysteretic damping mechanic, it was discussed in the previous section that the
best quantity to describe the grade of damping is the loss factor. For that reason, we will now turn to
the determination of the loss factor for the "stick-slip" mechanism studied before. As the three cases,
mentioned early, have three different force-displacement diagrams, as can be seen in Figure 5.4, they will
have different dissipated energies per cycle and also different maximum elastic energies stored. For that
reason, we will separate this analysis for each of those cases.
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Case 1: ^ ≤ %1

When the amplitude of vibration is sufficiently small, the forces involved are not enough to cause any
debonding effect on any interface [1, 52]. Because of this, the composite will behave according to Hooke’s
Law and hysteresis will not be present (see Figure 5.4a):

OP: � (G) = (:< + :> + :8)G (5.29)

PQ: � (G) = (:< + :> + :8)G (5.30)

Without the presence of hysteresis in the force-displacement diagram, the dissipated energy will be
null and, as a consequence, the system will not manifest any damping, leading to [ = 0.

Case 2: %1 < ^ ≤ %2

Increasing the amplitude of vibration may trigger the interfacial debonding between inner SWCNTs of
the MWCNT and, as such, damping is introduced in the system. Let us first describe analytically the
force-displacement diagram of Figure 5.4b [52]:

OP: � (G) = (:< + :> + :8)G (5.31)

PQ: � (G) = (:< + :>)G + :8X1 (5.32)

QR: � (G) = (:< + :> + :8)G− :8 (- − X1) (5.33)

RS: � (G) = (:< + :>)G− :8X1 (5.34)

ST: � (G) = (:< + :> + :8)G + :8 (- − X1) (5.35)

TQ: � (G) = (:< + :>)G + :8X1 (5.36)

Then, to evaluate the energy dissipated per cycle of oscillation, we need to integrate the area inside the
force-displacement diagram. As the curve displayed is symmetric about the origin O, we may compute
the integral with only two of the piecewise functions and then multiply by two. Let us choose TQ and QR
as half the evolution to calculate the integral. We know that the horizontal coordinates of those points
are,
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T: G = 2X1− - (5.37)

Q: G = - (5.38)

R: G = - −2X1 (5.39)

so, the energy dissipated per cycle is given by,

, = 2
∫ -

2X1−-
(:< + :>)G + :8X13G +2

∫ -−2X1

-

(:< + :> + :8)G− :8 (- − X1)3G (5.40)

which simplifies to,

, = 4:8 (- − X1)X1 (5.41)

We may compute the maximum elastic energy stored using the maximum elongation of the phases
when a static displacement - is applied to the matrix. This formulation does not need the use of integrals
and is much more direct. It can be noted that because of the debonding, the matrix and the outer SWCNT
have a elongation equal to the imposed displacement, however the inner nanotubes only elongated by
the same amount as the critical displacement for their debonding. Because of this, the maximum elastic
energy stored is [52],

* =
1
2
(:< + :>)-2 + 1

2
:8X

2
1 (5.42)

Finally, we can determine the loss factor that is introduced by the debonding of the inner nanotubes,
using equation (5.27), as,

[ =
4:8 (- − X1)X1

c(:< + :>)-2 + c:8X2
1

(5.43)

Case 3: ^ > %2

For amplitudes greater than the required critical displacement for the interfacial debonding between the
CNT and the resin, there is even more damping introduced, as all the individual parts slide past each other
during a cycle of vibration. For the force-displacement diagram presented in Figure 5.4c, the equations
of all the stepwise functions are [52]:
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OP: � (G) = (:< + :> + :8)G (5.44)

PQ: � (G) = (:< + :>)G + :8X1 (5.45)

QR: � (G) = :<G + :8X1 + :>X2 (5.46)

RS: � (G) = (:< + :> + :8)G− :8 (- − X1) − :> (- − X2) (5.47)

ST: � (G) = (:< + :>)G− :8X1− :> (- − X2) (5.48)

TU: � (G) = :<G− :8X1− :>X2 (5.49)

UV: � (G) = (:< + :> + :8)G + :8 (- − X1) + :> (- − X2) (5.50)

VW: � (G) = (:< + :>)G + :8X1 + :> (- − X2) (5.51)

WR: � (G) = :<G + :8X1 + :>X2 (5.52)

Let us perform exactly the same analysis as in the previous case, where we choose, in this case, three
of the piecewise functions to perform the integration and then multiply by two to have the total area of the
hysteresis. We choose the VW, WR and RS to perform the integrals, which means we need to establish
the coordinates of the points,

V: G = 2X1− - (5.53)

W: G = 2X2− - (5.54)

R: G = - (5.55)

S: G = - −2X1 (5.56)

this results in the following integral for the energy dissipated per cycle,

, = 2
∫ 2X2−-

2X1−-
(:< + :>)G + :8X1 + :> (- − X2) +2

∫ -

2X2−-
:<G + :8X1 + :>X23G+

+2
∫ -−2X1

-

(:< + :> + :8)G− :8 (- − X1) − :> (- − X2)3G (5.57)

that, in its simpler form, reduces to,

, = 4:8 (- − X1)X1 +4:> (- − X2)X2 (5.58)

In the same way as before, let us compute the maximum elastic energy stored in the system by noting
how it responds to a static displacement applied on the matrix. Just as before, and noting that the second
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interface as already debonded as well, we have [52],

* =
1
2
:<-

2 + 1
2
:8X

2
1 +

1
2
:>X

2
2 (5.59)

and for the loss factor of this last case, using again equation (5.27), we get,

[ =
4:8 (- − X1)X1 +4:> (- − X2)X2

c:<-
2 + c:8X2

1 + c:>X
2
2

(5.60)

With this last equation, the loss factor associated with the "stick-slip" mechanism for energy
dissipation is completely determined, for any amplitude of vibration. It is interesting to note the
similarities between equations (5.43) and (5.60): there seems to be a term on the numerator of the
type 4: (- − X)X for all of the debonding interfaces present in the system. Also, if we rearrange the
denominator of both equations such that,

[ =
4:8 (- − X1)X1

c(:< + :> + :8)-2− c:8 (-2− X2
1)

(5.61)

[ =
4:8 (- − X1)X1 +4:> (- − X2)X2

c(:< + :> + :8)-2− c:8 (-2− X2
1) − c:> (-2− X2

2)
(5.62)

it is evident that for each debonding that occurred, the maximum elastic energy stored, if debonding had
not happened, is decreased by a factor of 1

2 : (-
2− X2).

Although the loss factor is completely determined by now, it is only defined as a piecewise function
of the amplitude of vibration, which is not a very elegant way to describe the system. Besides this, we
noted in the previous paragraph that the new terms that appear on the expression of the loss factor always
contains a subtraction between the amplitude and the correspondent critical displacement, (- − X) or
(-2 − X2). With this in mind, if a certain interface had been affected by debonding, their correspondent
terms in the equation of the loss factor will be positive, because - must be higher than X for debonding
to occur. On the other hand, if debonding has not occurred, the corresponding terms will be negative,
however they will not appear in the final form of the loss factor, because their physical contribution to the
damping is null.

It is apparent that only positive terms can appear in the loss factor expression, so we will use an
important mathematical property to nullify those terms when they are negative. If we take the square
root of those terms, if they are positive, they stay positive real numbers, but if they are negative, they will
became pure imaginary numbers. Then, by taking the real part of the term and squaring off the result,
we obtain the original number if it was positive, because it was a pure real number and we squared the
square root, or we get zero if it was negative, because the real part of a pure imaginary number is zero.
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To conclude this analysis, it is obvious that an expression for the loss factor of the system that is valid for
any amplitude of vibration is,

[ =

[
<

(√
4:8 (- − X1)X1

)]2
+

[
<

(√
4:> (- − X2)X2

)]2

c(:< + :> + :8)-2−
[
<

(√
c:8 (-2− X2

1)
)]2
−

[
<

(√
c:> (-2− X2

2)
)]2 (5.63)

or if a cleaner equation is desired,

[ =
4:8X1�1 +4:>X2�2

c(:< + :> + :8)-2− c:8 (- + X1)�1− c:> (- + X2)�2
(5.64)

where �1 and �2 represent the length that the parts involved in a debonded interface have slipped past
one another, from 0 to∞, and can be calculated by,

�1 =
[
<

(√
- − X1

)]2
(5.65)

�2 =
[
<

(√
- − X2

)]2
(5.66)

With these last equations the model for CNT debonding induced damping is complete, for the case
of aligned nanotubes excited by an alternating load in the direction of alignment. Of course, to account
for other types of geometry or other types of damping mechanisms, some corrections must be made to
this model.

5.1.4 Effect of the material viscous damping and CNT orientation

Until now, all the work done regarding the establishment of a model for damping in CNT
nanocomposites only focused on the friction between interfaces where debonding has occurred. Although
an important contribution, the damping introduced by the "stick-slip" mechanism cannot account for all
of the damping measured on experiments. The inherent viscous damping of the polymer matrix also
contributes effectively to the overall damping experienced by the composite [1].

It was proposed first by Gu et al [64] that the overall loss factor of a composite, [2><?, has two
components,

[2><? = [<0C +[� (5.67)

a contribution from the interfacial interactions between the phases, [� , and another from the material
damping of each phase, [<0C [3, 52]. The contribution from interfacial interactions is exactly the loss
factor we have determined from the "stick-slip" mechanism, for the case of a CNT nanocomposite. As for
the viscous material damping, it is normally derived through strain energy methods applied to composites
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[3]. However, as a rigorous stress/strain analysis of the composite is not possible, we will assume that the
law of mixtures is valid and so, the material viscous damping is just the weighted average, by the volume
fractions, of the viscous damping of the matrix and the CNTs [3].

Finally, neglecting the viscous contribution to damping inherent to the nanotubes, we may define the
overall loss factor of the composite as [3, 52],

[<�# = [<(1− E�#) ) +[� (5.68)

where [<�# is the loss factor of the CNT nanocomposite and [< is the loss factor of the matrix due to
viscous damping mechanisms.

Another problem that arises from the initial assumptions of our model is the necessity of an aligned
distribution of CNTs inside the resin. This requirement often does not hold true in practical examples, so
there is a need to find a correction that incorporates the dependence on CNT orientation on our model.

During the discussion about models for the equivalent elastic properties of multiscale composites in
Chapter 2, it was noticed that some corrections to the Halpin-Tsai equation, regarding the orientation of
the nanotubes, can be achieved through multiplication by an orientation factor, U [31, 38]. Then, it was
also discussed that, for a tridimensional random distribution of nanotube orientations, the best fit for the
value of the orientation factor was 1

6 [31, 38]. So, to account for the reduced stiffness of the composite,
because of the random orientation of the CNTs it contains, in the damping model we will multiply the
Young’s modulus of the CNTs by 1

6 [31].

Besides this, if the nanotubes are oriented in a random fashion, instead of the considered axially
aligned distribution, the imposed displacements caused by a vibration will not, in general, be aligned with
the direction of the axis of the RVE used in the dynamic analysis. To account for this effect, Bhattacharya
et al [52] proposed the use of the orientation factor on the length of the RVE, giving,

; =
1
6
;�#) (5.69)

and this was proven to be a statistically accepted value [38]. Both of these corrections together let
us describe more complex situations, such as a nanocomposite with a random distribution of CNT
orientations excited by a unidirectional alternating load.

5.1.5 Compatibility with the hierarchic model and the inclusion of fibres

One of the assumptions required when we derived the damping model in previous sections was that the
dynamical model of the RVE was the one depicted in Figure 5.3. In this description of the composite,
all the parts are separate masses that have separate springs attached to them and it is readily seen that the



68 A model for damping in CNT nanocomposites

stiffnesses associated with each one can be summed up to give the global stiffness of the nanocomposite.
This fact collides with the established model for the equivalent elastic properties of a composite, because
it is more akin to the rule of mixtures, than to the Halpin-Tsai equations.

To account for these discrepancies we need to modify the way that the stiffness at each moment is
computed. Instead of summing the contribution from each phase before debonding occurs, let us think
of the stiffness as a global quantity. First, for very low amplitudes, the stiffness of the composite can be
calculated by the hierarchicmodel as we normally would. After debonding has occurred between the inner
nanotubes of the MWCNT, only the outer SWCNT will contribute to the stiffness, so we may calculate
the equivalent stiffness of the composite by the hierarchic model, substituting the initial MWCNT by this
new equivalent SWCNT. Finally, for larger amplitudes of oscillation, all of the nanotube debonds from
the resin, leaving the matrix to act as the only contribution to the nanocomposite’s stiffness.

If we think of the stiffness of the composite as a global quantity, like we just described in the previous
paragraph, the inclusion of the hierarchic model is a natural extension to the established damping model.
Even the addition of fibres, resulting in a multiscale composite, becomes trivial, by the use of the
hierarchic model to calculate the three stiffnesses at each stage of the evolution of debonding.

As noted before, in the first stage, where debonding has not occurred yet, the composite acts as
a MWCNT/fibre/polymer matrix multiscale composite, so the equivalent Young’s modulus, �11, is
calculated normally through the use of equations (2.34) to (2.36) and (2.53). We will admit that the
alternating load acts along the longitudinal direction of the fibres and, if not, we may also compute �22

and �12 and use a transformation of coordinates to account for this factor.

For the second stage, the only contribution the MWCNTs provide to the stiffness is through its
outermost nanotube, so it is possible to model the nanocomposite as a
SWCNT/fibre/polymer matrix mixture, where the SWCNT has the same diameter as the original
MWCNT, but a thickness of only, C(, = 0.34 nm. With this little alteration, we will still calculate
the equivalent Young’s modulus, �11(, , by using exactly the same equations as before, with, however,
the new thickness of the nanotube, C(, .

Finally, in the last stage of the "stick-slip" mechanism, the CNTs are all debonded from the matrix,
so we have an effective fibre/polymer matrix composite and we may calculate the equivalent Young’s
modulus, �11< 5 , as if the nanotubes do not exist. For this, we may consider F�#) = 0% in the hierarchic
model and use only equation (2.53), the rule of mixtures, with the Young’s modulus of the matrix, instead
of the CNT/polymer matrix composite’s.

With the diverse equivalent Young’s modulus computed with the hierarchic model, we may advance
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for the determination of the stiffness of each stage. As the CNTs are always converted to a full cylinder
"effective fibre" by the hierarchic model, both the first and second stiffnesses will act upon the full square
cross section of the RVE, whereas, the third one will only act on the area outside of the CNT. Because of
this, we may define the three stiffnesses as,

:< 5 �# =
c32

�#)
�11

4E�#) ;
(5.70)

:< 5 (, =
c32

�#)
�11(,

4E�#) ;
(5.71)

:< 5 =
c32

�#)
�11< 5

4;

(
1

E�#)
−1

)
(5.72)

:< 5 �# is the equivalent stiffness of the first stage, :< 5 (, is the equivalent stiffness of the second stage
and :< 5 is the equivalent stiffness of the final stage of the "stick-slip" mechanism.

The redefinition of each stiffness is the major modification needed to adapt the existing model to the
already in use, hierarchic stiffness model. However, for the sake of completeness and consistency of
notation, all the other equations of the model will be adapted below, but without their derivation, because
it is very similar to those done in Sections 5.1.1 and 5.1.3.

In this new notation, the critical loads and the critical displacements will be described as,

�1 = c(3�#) −2C(, );g1 (5.73)

�2 = c3�#) ;g2 (5.74)

X1 =
�1

:< 5 �#
(5.75)

X2 =
�2−�1
:< 5 (,

+ X1 (5.76)

and, consequently, the energy dissipated per cycle and the maximum elastic energy stored are,

, = 4(:< 5 �# − :< 5 (, )X1�1 +4(:< 5 (, − :< 5 )X2�2 (5.77)

* =
1
2
:< 5 �# -

2− 1
2
(:< 5 �# − :< 5 (, ) (- + X1)�1−

1
2
(:< 5 (, − :< 5 ) (- + X2)�2 (5.78)
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with �1 and �2 still defined by equations (5.65) and (5.66).

Just as in the previous model, we obtain the loss factor by its definition, equation (5.27), which gives
the final expression,

[ =
4(:< 5 �# − :< 5 (, )X1�1 +4(:< 5 (, − :< 5 )X2�2

c:< 5 �# -
2− c(:< 5 �# − :< 5 (, ) (- + X1)�1− c(:< 5 (, − :< 5 ) (- + X2)�2

(5.79)

and with this last equation, we have a perfectly defined damping model, compatible with the hierarchic
model in use to predict the equivalent elastic properties of the multiscale composite.

It is obvious that one of the corrections made in Section 5.1.4 is not needed any more, as the stiffness
is corrected automatically for random CNT orientation distributions by the hierarchic model. However,
we still need to take into account the reduction of the length of the RVEmade by equation (5.69). Besides
that, the material viscous damping will now include also the effect of the fibres, which we can add to the
loss factor of the viscous damping of the resin to reduce to a simple equation, analogous to (5.68),

[< 5 �# = [< 5 (1− E�#) ) +[� (5.80)

where [< 5 �# is the loss factor of the CNT/fibre/polymer matrix composite, [< 5 is the loss factor due to
viscous damping in the matrix and the fibres and [� is the loss factor due to interfacial interactions, now
given by equation (5.79). Throughout the rest of this text, this last model will be referred as the damping
model for CNT/fibre/polymer matrix multiscale composites.

Although we derived a general model for all types of CNTs, this text focus, specially, on the influence
of SWCNTs on the characteristics of multiscale composites. As such, we may at any time reduce the
general model to a simplified version capable of representing SWCNTs inside a polymer matrix. First,
we notice that the biggest difference between the damping mechanism in MWCNTs against SWCNTs is
that, in the latter, debonding between inner nanotubes does not occur, because there is only one. As such,
to simplify the general model to account for the effect of SWCNTs we need only to nullify the first critical
shear stress g1, as this type of debonding never happens.

5.2 Damping model for a composite cantilever beam

We will continue our discussion of theoretical models for describing the damping behaviour of CNT
nanocomposites by applying the aforementioned model to a practical example. In fact, to validate the
dampingmodal established in previous sections we wish to compare the theoretical predictions it provides
to the experimental data collected in several works. However, usually the damping tests are made on a
CNT composite beam, so, before advancing to the validation, we need a theory capable of predicting the
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damping ratio of an oscillating cantilever beam made of the nanocomposite in question.

Our current model depends heavily on the amplitude of the imposed vibration, so, as the beam
possess a different oscillation at any point, we expect a variation from point to point of the loss factor,
unlike the damping model already derived. This additional complexity requires an understanding of the
dynamics of beams, in particular of the natural modes of vibration when one side is cantilevered and
the other is free. For that reason, wewill discuss briefly themodes of oscillation of Euler-Bernoulli beams.

After the dynamics of the cantilever beam are reviewed, the current damping model will be applied
and the global loss factor of the beamwill be derived, to provide us with ameans to compare the theoretical
predictions to the experimental results. At last, some of the peculiarities of the cantilever beam damping
model are described, to gain a better understanding of the dependences involved in the computation of
the loss factor.

5.2.1 Modes of vibration of Euler-Bernoulli beams

When a beam is vibrating, there is a transversal displacement that varies in time and with its position
along the beam. This displacement causes the appearance of internal normal stresses and strains along the
longitudinal axis of the beam, that, if high enough, start the debonding mechanism extensively studied in
the previous discussion of the dampingmodel. Because of this, the main goal of this analysis of the modes
of vibration of beams is to obtain the maximum deformation field as a function of position along the beam.

Because the loss factor is dependent on the amplitude of vibration, as the beam loses energy by
damping, its amplitude of movement will decrease, hence its global loss factor will also decrease with
time. However, wewill consider only the loss factor at the initial moment when the beam starts to oscillate.

For a Euler-Bernoulli beam, the general equation of motion can be expressed as [61],

m2

mG2

(
�� (G) m

2E(G, C)
mG2

)
+ d((G) m

2E(G, C)
mC2

= 5 (G, C) (5.81)

however, for a free vibration of a constant cross sectional beam, as shown in Figure 5.5, we may write the
equation of motion as [1, 61],

�11�
m4E(G, C)
mG4 + d( m

2E(G, C)
mC2

= 0 (5.82)

where �11 is the Young’s modulus of the composite, � is the second moment of the cross sectional area, d
is the density of the composite, ( is the area of the cross section and E(G, C) is the transversal displacement,
as a function of position and time, caused by the vibration of the beam.
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Figure 5.5: Representation of the geometry of a cantilever beam.

As vibrating beams have been extensively studied in the past, we will not present a rigorous derivation
of the following equations, however for a detailed explanation it is possible to consult the work by
Rodrigues [61]. For a rectangular cross section, the area and the second moment of the area can be
computed by [62],

( = �� (5.83)

� =
�3�

12
(5.84)

where � is the height of the beam in the direction of oscillation and � is the width of the beam in the
direction transverse to the plane of oscillation.

Then, solving the partial differential equation of motion by the method of separable variables, we
obtain the characteristic problem [61],

�11�
34+ (G)
3G4 = l2

=d(+ (G) (5.85)

beingl= the natural frequency of vibration and+ (G) the function representing the variation of amplitudes
of vibration along the beam, because [61],

E(G, C) =+ (G) [� cos(lC) +� sin(lC)] (5.86)

where � and � are constants depending on the initial conditions of the motion.

Finally, we may solve equation (5.85) by determining l= and + (G), which gives [61],
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+ (G) = �1 cosh(_G) + �2 sinh(_G) + �3 cos(_G) + �4 sin(_G) (5.88)

where _ is a parameter that depends on the boundary conditions of the beam and �1, �2, �3 and �4 are
constants that must satisfy the boundary conditions as well. For a clamped-free beam, such as our case,
the parameter _ is defined by the following transcendental equation [1, 61],

cosh(_!) cos(_!) +1 = 0 (5.89)

being ! the length of the beam in the longitudinal direction. Every solution of the equation (5.89) results
in a different value for _, which in turn gives a different natural frequency of oscillation and a different
shape for the amplitude function. Each solution is, thus, called a mode of vibration of the beam [61].

Knowing the equality from the last equation and the specific boundary conditions of the beam,
+ (0) = 0, 3+

3G
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G=0 = 0, + (!) = � and 32+

3G2

���
G=!

= 0, we can simplify equation (5.88) to give [1, 61],
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where we used �, the tip amplitude displacement of the free side of the beam, as the normalization
constant for the shape of the mode and 8 indicates the mode of vibration.

Finally, having attained an expression for the transversal amplitude displacement of vibration as a
function of the position along the beam, we can proceed to the derivation of the normal deformation field
that exists in the beam.

The transversal displacement the beam undertakes when vibrating is caused by a bending moment
that acts along all its length. The bending moment can be related to the transversal displacement by the
following expression [62],

32E(G, C)
3G2 =

" (G, C)
�11�

(5.91)

where " (G, C) represent the bending moment acting on the beam at each point G and for each time C.
It is also possible to use continuum mechanics to relate the normal stress developed in the beam to the
bending moment that produced it by [62],

fGG (G, H, C) = −
" (G, C)H

�
(5.92)

where fGG (G, H, C) is the normal stress along the longitudinal direction developed at a certain point (G, H)
of the beam and at some time C. By using Hooke’s law, we can join equations (5.91) and (5.92) to obtain
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the relation between the deformation field and the transversal displacement so [1, 62],

YGG (G, H, C) = −H
32E(G, C)
3G2 (5.93)

being YGG (G, H, C) the normal deformation field along the direction of the axis of the beam. Obviously, as
this is a dynamic problem, the deformation field is dependent on the time passed from the initial instant.
To simplify this dependence, let us focus on the maximum deformation field, corresponding to the time
where all points are at their maximum displacement. Explicitly for our case, the maximum deformation
field for a certain mode of vibration 8 is [1],
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]

(5.94)

With the maximum deformation field completely described for every mode of vibration, it is possible
to implement the damping model at each point and integrate for the entirety of the volume of the beam
to attain a global loss factor, also for each mode of the system.

5.2.2 "Stick-slip" damping model applied to beams

The application of the damping model to the case of a cantilever beam is very simple, provided the
maximum deformation field at any point. First, we should note that the longitudinal amplitude of
vibration, - , required by the damping model, varies from point to point in a beam and is directly related
to the normal deformation.

As such, noting that we need the longitudinal deformation of the RVE, that amplitude of vibration is
given by,

-8 (G, H) = |Y<0GGG 8 (G, H) |; (5.95)

where -8 (G, H) is the amplitude of vibration for the ith mode of oscillation of the beam and for point (G, H)
and ; is the length of the RVE.

All the coefficients of stiffness, the critical loads and the critical displacements are independent
of the amplitude of vibration, so these variables will not change for a beam, being calculated by the
same equations developed in Section 5.1.5. Therefore, the only parameters that are still missing for the
computation of the loss factor are the dissipated energy per cycle and the maximum elastic energy stored,
however they will vary form point to point, just as the amplitude of oscillation.
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For the energy dissipated per cycle and the maximum elastic energy stored we arrive at the following
fields,

,8 (G, H) = 4(:< 5 �# − :< 5 (, )X1�1 8 (G, H) +4(:< 5 �# − :< 5 (, )X2�2 8 (G, H) (5.96)
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where,8 (G, H) is the dissipated energy per cycle for a certain mode of vibration 8 and a point (G, H) and
*8 (G, H) is defined in the same way, but is the maximum elastic energy stored.

Now, we could compute the loss factor at each point [1], using its definition, however as the energies
can be summed up to account for the global energetic balance of the beam, we will prefer to compute first
the total energy dissipated per cycle and the total maximum elastic energy stored, before calculating the
global loss factor.

Then, let us compute a volume integral of those quantities through all the volume of the beam and
find the total energy quantities,
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where ,̄8 is the total dissipated energy per cycle, *̄8 is the total maximum elastic energy stored and + is
the volume of the beam, + = !��. Finally, the global loss factor of the beam is computed by,

[8 =
,̄8

2c*̄8
(5.102)

with [8 being the global loss factor of the ith mode of vibration. These last couple of equations involve
complicated integrals that may even not have an analytical solution, so all the equations were solved
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numerically for the comparisons made in subsequent chapters.

Often, in vibration analysis, the fundamental mode has a major contribution on the complex motion
of a vibrating system, being the greatest concern in structural design [1]. Besides this, in particular to
the study of vibrating cantilever beams, we have established the previous equations having in mind that
the excitation was achieved by imposing a displacement on the free tip of the beam, which implies a
transversal displacement very similar to that of the fundamental mode of the beam. Therefore, it does not
seem a bad approximation to reduce our study to the loss factor of the fundamental mode, substituting 8 = 1
in all of the equations. Because of this, from now on, unless especially specified, if the variables do not
appear with a subscript it is because they are relative to the fundamental mode of oscillation of the system.

In accordance with the last paragraph, for a clamped-free beam, the parameter _ for the fundamental
mode is given by,

_ =
1.8751
!

(5.103)

being ! the length of the beam. This leaves the model completely defined and functional to be applied
on a numerical software.

In this last section of this chapter we will produce a numerical analysis of the model to gain some
insights on its dependence with some of the most relevant parameters. It is almost certainly not possible
to obtain an analytical form of the loss factor of the beam, so this may be the only way to understand the
mathematical formulation, behind all the equations.

5.2.3 Brief analysis of the cantilever beam damping model

The damping model established in this chapter results in the loss factor being a convoluted
mathematical function of many variables. Amongst them are the initial magnitude of vibration, the
mechanical properties of the composite and, in the case of the cantilever beam, the dimensions of the
beam. Instead of studying, independently, all the possible dependencies of the loss factor in each variable,
let us group them in three separate groups to facilitate the analysis of the function.

First of all, we have the characteristics of the imposed free vibration, which involve some kind of
displacement amplitude at a point. In the case of the beam, we developed the model based on an imposed
amplitude at the free tip. Furthermore, the geometric properties of the beam also fit this group, as the
only influence they have is on the shape of the modes of vibration, resulting in a different distribution of
amplitudes and, consequently, in a different deformation field at any point.
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Then, we have the mechanical properties of the composite, which are directly related to the type and
quantity of fibres and CNTs, as these phases influence heavily the global stiffness and damping of the
composite. Finally, the last group will consist in the defining properties for the occurrence of debonding,
namely the critical shear stresses.

To access the dependence of the loss factor on each of these groups we will choose some of the most
important properties from each and graph their evolution. All the graphics will be representations of the
loss factor as a function of the amplitude of vibration, because it is a property that varies much from case
to case, therefore it profits from being represented as the dependent variable. Besides this, the influence
of the weight fraction of the nanotubes and the volume fraction of fibres must be plotted separately, to see
how the concentration of CNTs and the global stiffness of the multiscale composite affect the damping.
At last, the dependence with the critical shear stresses will also be graphed, to understand the implications
of bonding strength between the phases. All the other properties will be defined beforehand.

For the mechanical properties of the epoxy and the nanotubes we will use the values taken from
Bhattacharya et al [52], so we have for the epoxy resin, �< = 3.3 GPa and d< = 1200 kg/m3, and for
the MWCNTs, ��#) = 650 GPa, ;�#) = 4.5 µm, 3�#) = 12 nm and C�#) = 2 nm, which give an
effective density of, according to equation (2.6), d�#) = 1167 kg/m3. The properties of the carbon
fibres will be given by Khan et al [56], so, �11 5 = 234 GPa and d 5 = 1800 kg/m3. Finally, the geometric
properties of the beamwill be chosen as ! = 100mmand� = 2mm, because those seem reasonable values.

Then, by plotting the loss factor as a function of tip displacement amplitude of the imposed vibration,
for different weight fractions of CNTs, we obtain the graphic from Figure 5.6a, where we considered
E 5 = 0%, g1 = 0.3 MPa and g2 = 1 MPa, based on the debonding properties used by Bhattacharya et al
[52]. It can be noted, that the loss factor starts as zero, before debonding as occurred, and as soon as the
critical threshold is crossed, it has an accentuated increase with increasing amplitude of vibration. Then,
it reaches a maximum and starts to decrease, because the increase in dissipated energy caused by an
increase in the amplitude of vibration is surpassed by the increase in the maximum elastic energy stored,
thus reducing their ratio, which is the loss factor.

As far as the concentration of CNTs is concerned, an increase in its weight fraction results in an
increase of the loss factor, which was easy to predict, because there are more CNTs to debond and
dissipate energy. The weight fraction also increases the critical displacement for debonding, because in
a stiffer material it is more difficult to start the "stick-slip" mechanism, as noted by the later start of the
curve for higher concentrations of nanotubes.

Another feature of the curves shown in Figure 5.6a is that they are smooth with the appearance of
only a single maximum. This contrasts with the functions described in Figure 5.6b, which represent the
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(a) Damping model for the cantilever beam. (b) Damping model for the RVE of the nanocomposite.

Figure 5.6: Loss factor as a function of the amplitude of vibration for different weight fractions of CNT.

loss factor when calculated for the composite excited axially in the direction of the RVEs, using the model
from Section 5.1.5. In fact, it should be expected, since we have two different critical displacements
for debonding, that the loss factor would have two maxima, corresponding to each different type of
debonding, between the inner parts of the MWCNT and between the MWCNT and the matrix. However,
since the loss factor presented in the left figure corresponds to the global loss factor of the beam, even if
each point, throughout the beam, obeys to a function closer to that of the right figure, the volume average
of all points of the beam should make the final relation more smooth, as shown in Figure 5.6a.

In Figure 5.7a and 5.7b we present the loss factor of the beam as a function of the tip displacement
for different volume fractions of fibres and different critical shear stresses, respectively. For both plots,
the concentration of CNTs was F�#) = 0.5%. It is evident, from the left plot, that an increase in the
concentration of fibres, which translates to an increase in the equivalent stiffness of the composite, results
in an overall decrease of the loss factor of the beam and also a decrease of the critical displacement
necessary for the mechanism of debonding to take place.

This behaviour was expected since an increase in stiffness leads to a decrease in the displacement
needed to achieve the same load. Also, because the reaching of the critical load is the reason for debonding
between phases to occur and, since these loads are achieved with smaller amplitudes of vibration, the
length of sliding between the debonded parts is severely reduced, which translates to a reduced loss factor.

It is also evident that even a small concentration of fibres reduces heavily the loss factor of the
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(a) Variation with the volume fraction of fibres. (b) Variation with the critical shear stresses.

Figure 5.7: Loss factor as a function of the amplitude of vibration for different parameters of the cantilever
beam.

material, since it usually increases considerably the stiffness of the composite. As most multiscale
CNT-reinforced composites have a volume fraction of fibres between 40% and 60% [39, 40, 55, 56],
it seems that for most such composites, the loss factor will be very small, in comparison to only
CNT-reinforced polymers.

Finally, on the right graphic, the effect of altering the critical shear stresses, the criteria for debonding,
is apparent. To access the influence from both critical stresses, the same proportion between them was
maintained such that g1

g2
= 0.3. It is visible that they did not influence the maximum loss factor that can

be achieved, however the shape of the curves was strongly modified. For lower critical shear stresses,
debonding occurs earlier and the peak of the loss factor function is more narrow and also appears for
lower amplitudes of vibration.

With this final analysis of the loss factor as a function of many of the relevant variables, we close
off the detailed presentation of the damping model used to predict the loss factor of CNT/fibre/polymer
matrix multiscale composites.
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Chapter 6

Validation of the damping model

After the description of the hierarchic model for the equivalent elastic properties of composites, a
numerical and experimental validationwas performedwith the aid of results frommany articles. Likewise,
to verify the validity of the damping model established in a previous part of this text, some articles with
experimental and numerical results are presented throughout this chapter [3, 52–56].

In the first part of the chapter we will discuss some numerical and experimental results obtained for
CNT nanocomposites, without the inclusion of fibres. As stated previously, almost all of the articles
regard experimental damping ratios of the free vibration of a cantilever beam, so we will focus on the
study of our damping model applied to beams. Besides this, one of the works [53] provide numerical
results for the damping model applied to the usual RVE excited axially, which gives a great opportunity
to test the fundamental model of the "stick-slip" mechanism.

Lastly, we will delve into articles that include the effect of the usage of fibres in the nanocomposite.
We expect a great decrease in the loss factor with this addition, as studied in Section 5.2.3. All these
comparisons will give a base for the acceptance of the theoretical model used to describe the damping
associated with CNT debonding.

6.1 Prediction of damping on CNT/polymer matrix composites

This first section will concern itself with the comparison between our model and experimental assemblies
that measured the damping ratio of systems made of CNT nanocomposites. Whenever the values used
are not defined, we will try to adjust the missing ones to the experimental results or we will use another
source to obtain them.

Instead of plotting the variation of the loss factor with the amplitude of vibration, many works graph it
against a quantity called the structural deformation [3], in cantilever beam systems. So, before advancing

81
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we should define this new variable and show how to compute it. Usually, the structural deformation is
the average maximum surface strain of the beam, when subject to a certain displacement [3]. As such, it
can be given by the integral of the deformation field over one of surfaces,
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where Y8 is the structural deformation for the ith mode of vibration of the beam and ( is the area of the top
surface, ( = !�. This expression can be solved numerically, just as the equations of the damping model,
and then a parametric plot can be used to graph the loss factor as a function of the structural deformation.

Besides this, one of the problems with our theoretical model is its dependence on variables that
are very difficult to measure, such as the critical shear stresses. Wherever it functions well, the values
g1 = 0.3 MPa and g2 = 1 MPa [52] will be preferred, but, as need arises, these should be adjusted to
the experimental values. This will allow us, at least, to take some conclusions on these variables and to
understand better how they should behave. Even if we adjust the values of the critical shear stresses, we
will maintain their ratio for MWCNTs, g1

g2
= 0.3, for the sake of simplicity, because it is easier to adjust

just one value, than two variables.

6.1.1 Bhattacharya et al (2014)

The first article [52] for comparison was the main inspiration for the determination of the damping
model, as it is. As such, we expect a reasonable approximation of our prediction of the loss factor to the
experimental values measured. In this work we are evaluating the loss factor of a cantilever beam made
of a MWCNT nanocomposite.

For the epoxy resin used we know that, �< = 3.3 GPa and d< = 1200 kg/m3, and for the nanotubes
we have, ��#) = 650 GPa, ;�#) = 4.5 µm, 3�#) = 12 nm and C�#) = 2 nm [52]. It also mentions that
the density of the CNTs is 2100 kg/m3, however using the equation that determines the effective density
of the nanotubes and this value as the density of fully dense graphitewe arrive at, d�#) = 1167 kg/m3 [11].

Bhattacharya et al [52] also defines the concentration of nanotubes, F�#) = 0.5%, and the critical
shear stresses used for each type of debonding, g1 = 0.3 MPa and g2 = 1 MPa. The CNTs are assumed to
be uniformly dispersed in the matrix and their orientations randomly distributed in three dimensions.

Finally, the only missing values are the geometrical properties of the beam used for the experiment
and the contribution of the viscous damping of the matrix. However, we know that the experimental
procedure used was the one from the standard ASTM E 756-05 [65], that explains how to measure
damping related properties on vibrating beams. In this standard the geometrical properties of an uniform
beam must be contained in the interval of 180 to 250 mm for its length and of 1 to 3 mm for its height
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(a) Damping model. (b) Experimental analysis [52].

Figure 6.1: Loss factor as a function of initial tip displacement for the experimental results obtained by
Bhattacharya et al [52]. Reprinted with permission from International Journal for Computational Methods
in Engineering Science and Mechanics, 15, Bhattacharya S, Alva A, Raja S, "Modeling and Characterization of
Multiwall Carbon Nanotube Reinforced Polymer Composites for Damping Applications", 258-264, 2014. © Taylor
& Francis. Reproduced with permission. All rights reserved.

[65]. As we do not know the true magnitude of these properties, we will chose the mean value of each
interval to be the used value, so ! = 215 mm and � = 2 mm.

For the viscous damping, we may adjust its value so that the curve predicts a better estimate for the
experimental values. In this case we will consider, [< = 0.007. With all the necessary variables defined,
we obtained the graphic of Figure 6.1a, that is to be compared to the plot of figure 5 on the article [52],
shown in Figure 6.1b.

It can be readily seen that the curve obtained follows exceptionally well the theoretical prediction of
Bhattacharya et al [52], which was expected, and, in turn, they follow the experimental data with a very
reasonable proximity. This first article served as a validation test for the implemented equations, because
if the theoretical predictions differed much, probably it would be because of an error in the calculations,
as the theoretical damping models are not very different.

6.1.2 Zhou et al (2004)

In this article, the effect of SWCNTs on the damping of a nanocomposite beam was studied [3]. As such,
to adapt our model for this situation we defined g1 = 0 and computed the rest of the equations normally.
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The epoxy resin used had �< = 3.3 GPa and d< = 1170 kg/m3 and the nanotubes had ��#) = 1030
GPa, ;�#) = 1 µm, 3�#) = 1.34 nm and C�#) = 0.34 nm [3]. The density of the CNTs was also
mentioned to be 1313 kg/m3, however the sample of SWCNTs was not pure and corrections to the volume
fraction of actual nanotubes on the matrix were needed. Zhou et al [3] performed these corrections and
considered the effective density of the CNTs to be d�#) = 2172 kg/m3.

Also, the CNTs were assumed to be perfectly dispersed in the matrix and their orientations were
randomly distributed in three dimensions. The dimensions of the cantilever beam used by Zhou et al [3]
were ! = 165.1 mm and � = 1.5 mm.

Finally, the critical shear stress for CNT/matrix debonding was g2 = 0.2 MPa and the inherent viscous
damping of the resin was measured to be [< = 0.01 + 30Y, where Y is the structural deformation of
the beam [3]. For these parameters, the damping ratio as a function of the structural deformation is
presented in Figures 6.2a and 6.3a, for F�#) = 0.5% and F�#) = 1%, respectively. These plots should
be compared to figures 9 and 10 of the article [3], shown in Figures 6.2b and 6.3b, respectively.

The first aspect to be noticed is the fact that our model captured very well the shape of the curve,
even showing the slight increase in damping ratio, when the viscous damping starts to dominate over the
"stick-slip" mechanism. Then, it is also apparent that both curves show an almost horizontal plateau and

(a) Damping model.

(b) Experimental analysis [3].

Figure 6.2: Damping ratio as a function of structural deformation, for 0.5% CNT weight fraction, for the
experimental results obtained by Zhou et al [3]. Reprinted from Composites Science and Technology, 64,
Zhou X, Shin E, Wang KW, Bakis CE, "Interfacial damping characteristics of carbon nanotube-based composites",
2425–2437, Copyright (2004), with permission from Elsevier.
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(a) Damping model.

(b) Experimental analysis [3].

Figure 6.3: Damping ratio as a function of structural deformation, for 1% CNT weight fraction, for the
experimental results obtained by Zhou et al [3]. Reprinted from Composites Science and Technology, 64,
Zhou X, Shin E, Wang KW, Bakis CE, "Interfacial damping characteristics of carbon nanotube-based composites",
2425–2437, Copyright (2004), with permission from Elsevier.

these values correlate very well with the ones from the experimental measures. For the specimen with
0.5% CNT concentration, the value stagnated a little above 0.02, while for the higher weight fraction of
1%, it reached a value above 0.03 [3].

One of the worst problems our model have is its poor capability to represent the great increase
in damping associated with the initial part of the curve, near the critical displacement for debonding.
Specially in the case for 1% CNT concentration, some experimental values reached 0.05, for very low
strains, while our model peaked just below 0.04 and for a strain above 0.0002. Even the theoretical model
established by Zhou et al [3] could not capture fully the extent of this initial increase.

We may explain this effect by noting that, the damping model of the cantilever beam smooths greatly
the curve in its initial part, in spite the maxima shown when only an axial load is applied to the composite,
as demonstrated in Section 5.2.3. This is caused by the gradual debonding in different parts of the beam,
starting in the clamped section, where the deformation is higher, and propagating all the way to the
free end of the beam. During this motion, even if some parts have already passed the peak and have a
decreasing damping ratio, the global loss factor will continue to rise, until almost the full volume of beam
as been subjected to displacements higher than the critical displacement for debonding.
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6.1.3 Bórbon et al (2014)

Bórbon et al [54] studied the effect of different types of MWCNTs on the damping behaviour of sandwich
and Oberst beams [65]. Because of its many layers of complexity, added by the kind of experimental
assembly used, we will only use the results that can be adapted, with a minimum rigour, to our model.

First of all, there were used four types of MWCNTs, designated as SM5, MC7, MH7 and aligned,
but some of them were chemically functionalized with hydroxyl or carboxyl groups [54]. Because our
model is not able to predict how these chemical changes will affect the adhesion between the matrix
and nanotubes, we will not consider these CNTs, namely the MC7 and MH7. Then, the beams used
were made of two different materials: the CNT nanocomposite and aluminium. The sandwich beams
consisted of two plates of aluminium with the composite in the middle, while the Oberst beam [65], also
called simple beam, was made of a plate of aluminium with the composite on top [54]. Such beams do
not exactly meet the criteria used in our model, however because the sandwich beam has a symmetric
deformation field, we can think of it as an equivalent beam made only of the nanocomposite layer, but
with the added stiffness of the aluminium plates.

As the thickness of the aluminium plates are half that of the composite, which means ��; = 1
23

2
<, the

stiffness of the aluminium part of the sandwich beam can be computed as,

:�; = 2
��;

1
23

2
<

;
=
c32

�#)
��;

4E�#) ;
(6.2)

where :�; is the stiffness of both aluminium plates and ��; is the Young’s modulus of aluminium. Now,
we just need to correct the stiffnesses in the damping model with this additional factor, which in reality
will have the same effect as the addition of carbon fibres: just an increase in the overall stiffness.

For the epoxy resin we will consider, �< = 3.3 GPa and d< = 1200 kg/m3, and for both MWCNTs,
��#) = 650 GPa [52]. Then, for the SM5 we have, 3�#) = 25 nm, C�#) = 8.75 nm and ;�#) = 1.25
µm, and for the aligned, 3�#) = 15 nm, C�#) = 5.25 nm and ;�#) = 10 µm, where we used the mean
values of each quantity [54]. With these values, the density of both types of nanotubes is d�#) = 2048
kg/m3 [11].

Besides this, we also have the other variables as, F�#) = 5%, ! = 300 mm, � = 2 mm and � = 5.5
mm [54]. It is to be noted that the value for the concentration of CNTs is very high and almost certainly
the hierarchic model and, consequently, the damping model will not give an accurate description, as it is
not recommended to use it beyond 1%. Even though this is true, we will continue this comparison. For
the aluminium, we have ��; = 73.1 GPa [66].
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b [�>́A1>=,2014] b0.6/2MPa b0.15/0.5MPa
SM5 0.0124 0.0107 0.0092

(−13.7%) (−25.8%)
Aligned 0.0123 0.0097 0.0129

(−21.1%) (4.9%)
Table 6.1: Comparison between the damping model and the experimental values for the sandwich beam
obtained by Bórbon et al [54].

Finally, knowing that the damping ratio of the epoxy inside the sandwich beam is b< = 0.0092, the
critical shear stresses were adjusted, within reasonable values, as to achieve the least error in the prediction
of the model, compared to the experimental values measured by Bórbon et al [54]. Using g1 = 0.6 MPa
and g2 = 2 MPa for the SM5 and g1 = 0.15 MPa and g2 = 0.5 MPa for the aligned MWCNTs and noting
that the first type have a random distribution of orientations, whilst the latter are unidirectional, we get
Table 6.1.

It is apparent that the addition of the aluminium will make the stiffness of the beam dominated by
these plates, thus reducing the global damping ratio of the beam, as noted when the effect of adding fibres
was studied in Section 5.2.3. Besides this, the values obtained from our model were not very accurate,
even while using different critical shear stresses, close to what we have been considering.

These results clearly mark another big problem with the damping model: its dependence on the
critical shear stresses, which can vary widely. In fact, the values obtained suggest that these stresses can
vary with CNT type and orientation. For the SM5, a higher critical stress was needed to achieve the
correct damping ratio, which means that, maybe, for SM5 CNTs the debonding energy is higher than
for aligned ones. It could also mean that aligned CNTs debond from the resin more easily than random
oriented ones, as their specific surface areas are comparable and so are their damping potential [54]. The
orientation of the principal stresses should matter to the debonding mechanism, giving an explanation to
the behaviour described.

If the critical shear stresses are not constant, it may be difficult to obtain good results with our model,
as these properties are very hard to measure accurately. We will continue to use the values admitted by
Bhattacharya et al [52] as a good approximation to the real values.

6.1.4 Latibari et al (2013)

Lastly, on the comparison with articles that studied nanocomposites that did not have fibres, we have
Latibari et al [53], which executed a finite element analysis of a SWCNT/matrix RVE system. To perform
the comparison with the numerical results obtained by this work we must use the model for axial excited
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CNT nanocomposites, instead of the damping model for beams.

For this article we will consider, �< = 3.3 GPa for the epoxy resin and ��#) = 1250 GPa for the
nanotube, taking the mean value of the interval considered [53]. Besides this, we also have 3�#) = 10
nm, C�#) = 0.34 nm and g2 = 0.95814 MPa [53]. The other critical shear stress will be null, because we
are considering a SWCNT in this example.

By adjusting the length of the CNT to ;�#) = 0.25 µm, we obtained the plots of Figure 6.5a, for
several volume fractions of CNTs. This graphic should be compared to that of figure 12 in the article
[53], shown in Figure 6.4. Just as in the previous section, the concentration of the nanotubes is too high
for the hierarchic model to be an accurate representation of reality. As such, it was expected that the
stiffness should be overestimated and, likewise, the loss factor. This inaccuracy in the hierarchic model
is, by extension, another of the biggest flaws in the damping model, rendering it imprecise for large
concentrations of CNTs.

Let us try to solve this problem by considering an exponential evolution of the stiffness of the
composite with the volume fraction of CNTs. Using the values, according to the hierarchic model, for
0.5% and 1% of nanotube concentration we obtain the following exponential law,

�4G? = 4.48
(
1− 4−254E�#)

)
(6.3)

Figure 6.4: Influence of increasing the volume fraction in nanocomposites with SWCNTs with critical
shear stress 0.95814 MPa by Latibari et al [53]. Reprinted from Composites: Part B, 50, Latibari ST, Mehrali
M, Mottahedin L, Fereidoon A, Metselaar HSC, "Investigation of interfacial damping nanotube-based composite",
354–361, Copyright (2013), with permission from Elsevier.
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(a) Hierarchic model. (b) Exponential correction.

Figure 6.5: Loss factor as a function of strain for the numerical results obtained by Latibari et al [53].

where �4G? is the correction to the Young’s modulus of the composite, the parameter −254 on the
exponent was taken out of the work from Yeh et al [31] and the rest of the equation was obtained by
adjustment.

Using the exponential law from equation (6.3), it is possible to obtain a better approximation to the
numerical results, in Figure 6.5b. The peaks move to the right as we increase the CNT concentration,
giving a bad estimate for higher volume fractions, however it is possible to see a lot of similarities in the
tendencies of the two graphs. The peak for 1% happens at around 0.08 and for 2% at around 0.1 and 0.12,
which are very close to the ones from Latibari et al [53]. Also, at a strain of 0.004, for the 1% curve we
have 0.02 for both, for 2% we have values around 0.04 and, finally, for 4% we have loss factors around
0.09, which is just a little lower than that obtained in the article.

This correction helped us to understand that the damping model gives reasonable results, for its field
of validity, which is also restricted by the hierarchic model. Although a great part of the curve is close to
that attained in the article, the peaks usually happen too much to the right of the graphic and below the
actual experimental or numerical data.

6.2 Prediction of damping on CNT/fibre/polymer matrix composites

After the references studied until now, it is only logical to advance to the case of multiscale composites
that include fibres and CNTs. We already declared that the inclusion of fibres mainly affects the overall
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stiffness of the composite, which means it will decrease considerably the damping characteristics of the
system, as noted in Section 5.2.3.

For that reason a parallel could be made with the work of Bórbon et al [54], as the aluminium plates
also serve only to increase the global stiffness of the beam. The references in this section both perform
experiments on MWCNT nanocomposite cantilever beams [55, 56] and in both the concentration of
nanotubes never exceeds 2% volume fraction, which seems a value somewhat inside the limits of validity
of the hierarchic model.

When the references alone do not provide enough information about the properties used, we will
consider other sources for those values. For the case of the critical shear stresses, as noted on the section
regarding the work of Bórbon et al [54], the fact that we have a great increase in stiffness, somehow disrupt
the usual values [52]. Therefore, these are the main variables where an adjustment to the experimental
values will be performed.

6.2.1 DeValve and Pitchumani (2013)

DeValve and Pitchumani [55] executed an extensive research on the effect CNT type and concentration
and fibre reinforcement have on the damping characteristics of composite cantilever beams. In this
section we are particularly interested in the addition of fibres to a CNT nanocomposite, so we will restrict
our comparison to the analysis of this specific effect. For that, we will study a system consisting of
MWCNT/fibre/polymer matrix multiscale composites with a varying volume fraction of fibres.

For this article we have, �< = 3.3 GPa and d< = 1200 kg/m3 for the epoxy resin and ��#) = 650
GPa for the nanotubes [52]. It is also defined in the reference that 3�#) = 15 nm, C�#) = 5 nm and
;�#) = 12.5 µm [55], which means that the density can be calculated as d�#) = 2000 kg/m3 [11]. For
the carbon fibres used, we will consider �11 5 = 234 GPa and d 5 = 1800 kg/m3 [67].

Also, it is considered ! = 292 mm and � = 2 mm for the geometric properties of the beam [55].
Finally, the results obtained by the damping model are presented in Figures 6.7 and 6.8, to be compared to
figure 6 in the reference [55], shown in Figure 6.6. We have used different material viscous loss factors for
each volume fraction of fibres: [< = 0.16+20Y, for 0%, [< = 0.025+30Y, for 46% and [< = 0.020+10Y,
for 58% [55]. Also, we have adjusted the critical shear stresses as to approximate better the results, so
g1 = 0.03 MPa and g2 = 0.1 MPa for the case with no fibres and g1 = 0.9 MPa and g2 = 3 MPa for the others.

It can be visualised that the introduction of fibres heavily reduced the loss factor of the beams, as
predicted by our analysis in Section 5.2.3. Although the results from the case with no fibres are mimicked
well by our model, when the fibres are included, our prediction for the loss factor is very underestimated
[55]. Besides that, from this comparison it may be possible to conclude that for composites reinforced
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Figure 6.6: Variation of the material damping loss factor, X, with strain, Y, using (a) no CNTs and
varying the fibre volume fraction of the composite material, as well as using various weight percentages
of MWCNTs (15 nm in diameter, 5–20 µm in length) with constant vf values of (b) 0.00, (c) 0.46, and (d)
0.58 by DeValve and Pitchumani [55]. Reprinted from Carbon, 63, DeValve C, Pitchumani R, "Experimental
investigation of the damping enhancement in fiber-reinforced composites with carbon nanotubes", 71–83, Copyright
(2013), with permission from Elsevier.

Figure 6.7: Loss factor of a nanocomposite without fibres as a function of structural deformation for the
experimental results obtained by DeValve and Pitchumani [55].
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(a) E 5 = 46% (b) E 5 = 58%

Figure 6.8: Loss factor of a nanocomposite with fibres as a function of structural deformation for the
experimental results obtained by DeValve and Pitchumani [55].

with fibres, the critical shear stresses are, usually, higher, which would imply that the fibres help sustain
the bonding between the nanotubes and the matrix.

However, let us plot, in Figure 6.9, the loss factor given by the damping model, for the cases with
fibres, but neglecting their effect on the stiffness of the composite and using the critical shear stresses
when no fibres are present. The results shown have a very solid correspondence to the experimental
graphics attained by DeValve and Pitchumani [55].

Maybe, as the matrix is the only phase that is responsible for the load transfer to the CNTs, the
damping behaviour inherent to the "stick-slip" mechanism is not affected by the existence of fibres. Such
a phenomenon would explain the previous results on why neglecting the stiffness introduced by the fibres
makes a better approximation to the experimental values.

Although it would be important to conclude how the fibres affect the damping characteristics of a
multiscale composite beam, it seems that we still have no definitive proof of any of the aforementioned
behaviour. Therefore, this leads to the last major limitation of the damping model: its limited predictive
power when fibres are present in the composite.
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(a) E 5 = 46% (b) E 5 = 58%

Figure 6.9: Loss factor of a nanocomposite with fibres, neglecting their effect on its stiffness, as a function
of structural deformation for the experimental results obtained by DeValve and Pitchumani [55].

6.2.2 Khan et al (2011)

In this last article, we will study the effect of increasing MWCNT concentration on a neat polymer
composite against the same effect on a fibre-reinforced multiscale composite [56]. Before making any
comparisons, it is easy to predict that the same problem that occurred in the previous reference, will also
happen here, leading to an underestimated value of the damping ratio for the composite with fibres [55].

For the epoxy resin we will use � = 3.3 GPa and d< = 1200 kg/m3, while for the nanotubes we have
��#) = 650 GPa [52]. According to the reference [56], the MWCNTs have 3�#) = 50 nm, using the
mean value of this quantity, and ;�#) = 20 µm, leading to C�#) = 20 nm and d�#) = 2160 kg/m3, by
Thostenson et al [11]. The values for the carbon fibres are taken as the same from the previous reference
[55], �11 5 = 234 GPa, d 5 = 1800 kg/m3 and E 5 = 46%.

Using the following values for all the remaining variables, ! = 185 mm, � = 3 mm, g1 = 0.3 MPa
and g2 = 1 MPa [52, 56] we arrive at the graphs of Figure 6.11, to be compared with those from figure
7 of the article [56], shown in Figure 6.10. The material viscous damping ratio was b< = 0.0085 for the
epoxy nanocomposite and b< = 0.0075 for the CFRP with CNTs [56].

Again, it is obvious that the plot from Figure 6.11b is a very poor picture of the experimental curves
found by Khan et al [56]. The graphic from the epoxy nanocomposite also did not correctly depict
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(a) Epoxy nanocomposite. (b) CFRP with CNTs.

Figure 6.10: Damping ratio of (a) nanocomposites and (b) CFRP composites containing different CNT
contents as a function of initial vibration amplitude by Khan et al [56]. Reprinted from Composites
Science and Technology, 71, Khan SU, Li CY, Siddiqui NA, Kim J-K, "Vibration damping characteristics of
carbon fiber-reinforced composites containing multi-walled carbon nanotubes", 1486–1494, Copyright (2011),
with permission from Elsevier.

(a) Epoxy nanocomposite. (b) CFRP with CNTs.

Figure 6.11: Damping ratio as a function of intial tip displacement for the experimental results obtained
by Khan et al [56].
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Figure 6.12: Damping ratio, for a critical shear stress between CNTs and matrix of 75 MPa, as a function
of intial tip displacement for the experimental results obtained by Khan et al [56].

the increasing evolution of the damping ratio with initial tip displacement apparent in the article [56],
however, for such a representation to be correct, we should have increased and adjusted the critical shear
stresses. However, as we have been using g1 = 0.3 MPa and g2 = 1 MPa [52] for many of the previous
examples, it was chosen not to proceed with a change to these values.

If we correct the values of the critical shear stresses to g1 = 22.5 MPa and g2 = 75 MPa we attain a
somewhat better representation of the experimental results, depicted in Figure 6.12. Although it is still a
heavily underestimated prediction for the damping ratio of the CFRP with CNTs, the decrease is not so
apparent in this case and the evolution is increasing, in accordance with the reference [56].

As in the work by DeValve and Pitchumani [55], this result might imply that either the presence
of fibres influence greatly the bonding strength between the matrix and the nanotubes, resulting in an
enormous increase in the critical shear stresses, or the fibres do not affect at all the damping characteristics
of the composite beams and should not be taken into account when calculating the stiffness used in the
damping model. For all of the above, we believe the latter explains better the behaviour of the model,
when considering the effect of the fibres on a multiscale composite.
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Chapter 7

Classical theory of laminated composite
plates

The increase in stiffness and damping caused by the addition of nanotubes to a composite can improve the
response of the material, in a variety of structural dynamic systems, that can undertake vibratory motions
[1]. In fact, many of those systems, such as machine elements, manufacturing tools, turbo-machinery
and aircraft structures [1], can be modelled as beams or plates subjected to some periodic excitation.

To study the performance of CNT multiscale composites when an oscillating load is applied, we will
use a p-version finite element model to obtain numerical results, predicting their dynamical behaviour.
In this chapter, this model for CNT-reinforced composite plates will be described in detail.

First, the geometrical model used to represent a laminated composite plate and its associated
coordinate system is discussed, followed by the assumptions required by theCLPT. Finally, the constitutive
relations and the equations of motion are determined, using a p-version of the FEM.

7.1 Laminae and VSCL plates

To understand the behaviour of a plate made of a laminated composite it is important to have a clear
notion of how it is constructed. A laminated composite is constituted by several layers of fibre-reinforced
composites, called laminae or plies, and each behave as an orthotropic elastic medium [68]. These layers,
usually with unidirectional fibres [69], are stacked on top of each other, possibly with different fibre angles
between them. This sequence of orientations is termed lamination scheme or stacking scheme [68].

By using a symmetric lamination scheme with many different orientations, it is possible to obtain
almost an isotropic laminated composite, in the plane of the composite [68]. For these kinds of laminae,
which have unidirectional fibres, we call the final product a constant stiffness composite laminated (CSCL)

97
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plate. However, many studies have shown that using curvilinear fibres, thus changing the stiffness of
the ply from point to point, we may optimise the plate for certain applications, improving its structural
response. This type of laminated composites are considered variable stiffness laminated composite
(VSCL) plates, being amongst the methods used to achieve such a non constant behaviour [70, 71]. For
the sake of generality, we will develop our model considering curvilinear fibres in the laminae.

It may be apparent that, because our system is composed of a number of laminae, each of themmay be
represented as individual mechanical systems with their own dynamical responses to an excitation. This
would require three-dimensional elasticity theories or layerwise type approaches, which would make our
model a lot more complex, but much more close to reality. Although it is better to describe the detailed
distribution of stresses and strains in the laminate, we are mainly interested in the natural frequencies and
modes of vibration of VSCL plates, which are given with a fairly good approximation by the so called
equivalent single layer (ESL) theories [71].

The ESL theories can be derived from three-dimensional elasticity by using suitable simplifications
that allow us to reduce the problem to just a bidimensional one. This usually involves the use of stress
averages in the thickness direction of the plate, by comparing the contributions of the many plies to that
of a single layer, with an equivalent behaviour [68].

Before advancing to the description of the actual equations used by the computational model, let us
determine the coordinate system used and the definition of most geometrical quantities.

7.1.1 Coordinate system

To characterise the coordinate system of the laminate, we first need to describe that of each individual
lamina. For simplicity, let us describe the coordinate system for rectilinear fibres and then extend it to
curvilinear ones. Each lamina is taken as an orthotropic material whose principal coordinate axes are
along the direction defined by the fibres. These principal axes, which coincide with the axes of material
symmetry, are called material axes and vary from lamina to lamina [68].

As mentioned before, the stacking sequence of a laminate can be represented by the successive
orientation of the fibres in each ply. From this, it is apparent that a general coordinate system must be
used and the material coordinate system of each lamina should be related to the general one by its fibre
orientation angle [68], as shown in Figure 7.1.

Using the notation from Figure 7.1, (G, H, I) represent the general coordinate system of the composite
laminated plate and (G:1 , G

:
2 , G

:
3 ) is the material coordinate system for the kth lamina. Also, the angle \:

represent the fibre orientation with respect to the general coordinate system of the kth ply [68].
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For the complete laminate, we will use the coordinate system depicted in Figure 7.2, where only
straight fibres are represented. Each ply will be represented by its fibre orientation, as well as its I:
coordinate with respect to the middle plane. The thickness of the composite plate is ℎ and there are
! layers stacked on top of each other. The I axis is represented downwards so that, when we have a
downwards load applied, the displacement field in the I direction is positive [68].

Using this notation, each ply will have a thickness of ℎ: , given by [68],

ℎ: = I:+1− I: (7.1)

where I:+1 and I: are the I coordinates of the upper faces of the kth and the (k+1)th lamina and the
lamination scheme is counted from the top of the plate to the bottom [68].

Finally, for the case of VSCL plates, the orientation of the fibres will vary throughout all points of
the same lamina. In spite of its simplicity, we will assume a linear variation of the fibre orientation along
the G axis, which allows the generation of plates with a large range of properties. The curvilinear fibre
path in analysis is shown in Figure 7.3 [69, 71, 72].

Using the notation of Figure 7.3, the fibre orientation along the G coordinate will be [72],

\: (G) =
2() :1 −)

:
0 )

0
|G | +) :0 (7.2)

Figure 7.1: A representation of a lamina with material and general coordinate systems.
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Figure 7.2: General coordinate system and lamina numbering used for the composite laminated plate.

where ) :0 is the fibre orientation of the kth lamina at the centre, G = 0, and ) :1 is the fibre orientation of
the kth lamina at the edges, G = 0

2 and G = − 02 [72].

Also, the length of the plate in the G direction is 0, while the length along the H direction is 1. These
quantities should be significantly bigger than the thickness ℎ as we shall soon explain [68].

Figure 7.3: Orientation variation of a curvilinear fibre.
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7.2 Assumptions of the CLPT

As stated in the previous section, ESL theories rely on the reduction of the complex multilayered
mechanical system that constitutes a laminate to an equivalent bidimensional plate problem. As such,
ESL theories are developed by assuming that the displacement field is of the form [68],

D8 (G, H, I, C) =
=∑
9=0
(I) 9D 9

8
(G, H, C) (7.3)

where D8 (G, H, I, C) is the ith component of the displacement field, C the time and D 9
8
(G, H, C) a set of

functions that describe the particular problem at hand. These undetermined functions can be explicited
with the aid of the Principle of Virtual Work or another dynamical principle [68].

Because of the form assumed by the displacement field in equation (7.3) and the rectangular cross
sectional geometry of a plate, being symmetric about its midplane, all the integrations performed on
variables directly related to the displacement field can be reduced to [68],∭

+

(·)3+ =
∫ ℎ

2

− ℎ2

∬
Ω

(·)3Ω3I (7.4)

where + is the volume of the plate and Ω is the area of the undeformed midplane. Equation (7.4)
implies that the Euler-Lagrange equations of this model will contain differential equations involving the
displacement field and thickness-average stress resultants [68].

Two of the most used ESL theories are the classical laminated plate theory (CLPT), which is an
extension of theKirchhoff plate theory to laminated composite plates, and the first-order shear deformation
theory (FSDT), which is an extension of the Reissner-Mindlin plate theory to laminates [68, 73]. Both
are first-order theories, meaning that the displacement field is of the form assumed in equation (7.3), for
= = 1 [68].

Although technically, the FSDT is a better representation of a real composite laminated plate, because
the CLPT neglects the existence of transverse shear stresses, for the case of thin plates, the latter gives a
fairly good description of their behaviour. As we will only study thin plates and because the CLPT is a
much simpler theory, this is the one we will consider in the following text [68].

7.2.1 Kirchhoff’s hypotheses

The CLPT is an extension to the classical plate theory, so the Kirchhoff’s hypothesis should also hold in
this case. These assumptions state that [68]:

1. Straight lines perpendicular to the midsurface, also called transverse normals, before deformation
remain straight after deformation;
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2. The transverse normals do not experience elongation, that is, they are inextensible;

3. The transverse normals rotate such that they remain perpendicular to themidsurface after deformation.

Thefirst assumption implies that the transverse displacement is independent of the thickness coordinate,
which means = = 0 in equation (7.3). Also, the transverse normal strain is zero, YII = 0, by the second
assumption of transverse inextensibility. Finally, the last one results in a non existence of transverse shear
strains, YGI = 0 and YHI = 0, which is one of the main differences from the assumptions of the FSDT [68].

Other assumptions and restrictions are also made in order to simplify the resulting model, namely
[68]:

• The layers are perfectly bonded together;

• The material of each layer is linearly elastic and is an orthotropic medium;

• Each layer is of uniform thickness;

• The strains and displacements are small, meaning we are in the linear regime;

• The transverse shear stresses on the top and bottom surfaces of the laminate are zero, which is a
redundant restriction, because we assumed they were zero everywhere.

7.2.2 Displacement field

For the case of a first-order theory, the displacement field will be a sum of only two terms, according to
equation (7.3). The displacements of a point on the plate for the CLPT are assumed to be described by
[68],

D(G, H, I, C) = D0(G, H, C) − I
mF0(G, H, C)

mG
(7.5)

E(G, H, I, C) = E0(G, H, C) − I
mF0(G, H, C)

mH
(7.6)

F(G, H, I, C) = F0(G, H, C) (7.7)

where (D, E,F) is the displacement field along the corresponding axes (G, H, I) and (D0, E0,F0) is the
displacement field of a point on the midplane of the plate, I = 0.

As expected from an ESL theory, the displacements at any point of the plate can be computed once
the displacements at the midplane are determined, reducing the tridimensional problem to, effectively,
a bidimensional one [68]. Also, although our objective is the analysis of linear bending of composite
laminated plates, wewill consider themembrane displacements D0 and E0 just for the sake of completeness
of the mathematical model, as these components will be null for our case.



7.2 Assumptions of the CLPT 103

7.2.3 Strain-displacement relations

Throughout the development of this model, we will assume that the strain components are sufficiently
small and that the rotations and displacements involved are also small, so that our analysis results in a
linear model. With this simplification in mind, the finite Green-Lagrange strain tensor will reduce to the
infinitesimal strain tensor and the second Piola-Kirchhoff stress tensor will be equal to the Cauchy stress
tensor. Then, the strain tensor will simply be [68],

[Y] =

YGG YGH YGI

YGH YHH YHI

YGI YHI YII

 =


mD
mG

1
2

(
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)
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)
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(7.8)

where YGG , YHH and YII are the normal strains and YGH , YGI and YHI are the shear strains. The tensorial
shear strains relate to the engineering shear strains by a multiplication by 2, WGH = 2YGH [62]. To
distinguish both strains, we shall call the latter shear deformation.

Substituting the displacement field of equations (7.5) to (7.7) in the definitions from equation (7.8)
and noting that the transverse shear strains, YGI and YHI , and the normal strain along the thickness of the
plate, YII , are zero, by the Kirchhoff’s hypothesis, we have the following strain-displacement relations
[68],

YGG (G, H, I, C) =
mD0(G, H, C)

mG
− I m

2F0(G, H, C)
mG2 (7.9)

YHH (G, H, I, C) =
mE0(G, H, C)

mH
− I m

2F0(G, H, C)
mH2 (7.10)

WGH (G, H, I, C) =
mD0(G, H, C)

mH
+ mE0(G, H, C)

mG
−2I

m2F0(G, H, C)
mGmH

(7.11)

Finally, it can be noted that we may write the previous equations in a more intuitive form, separating
the strain field into two components. The first one will represent the deformations resulting from the
application of in-plane forces on the plate, called the membrane strains in the midplane, 9m, and the other
the deformations due to bending, I9b [68]. With such a separation, we may define,

9 = 9m + I9b (7.12)

or, clarifying the vector components,


YGG

YHH

WGH

 =


mD0
mG
mE0
mH

mD0
mH
+ mE0
mG

 + I

−m

2F0
mG2

−m
2F0
mH2

−2 m
2F0
mGmH

 (7.13)
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where 9b are commonly called the curvatures [68]. Hence, for a certain displacement field, the strains at
any point of the plane can be calculated, using equation (7.13).

7.3 Constitutive relations

The constitutive relations of a body relate the stresses applied to it to the deformations it will undertake.
These equations allow us to describe mathematically the mechanical behaviour of the material, being
the simplest one the Hooke’s law, for linear elastic media [68]. According to the CLPT, a laminated
composite plate will not have any of the three transverse strain components, YGI , YHI and YII , which is a
result of the assumed displacement field. Identically, the transverse shear stresses, gGI and gHI , will be
zero and, although the transverse normal stress, fII , will not necessarily be null, it will not be considered
in the equations of motion, because there is no deformation in that direction [68].

For these reasons, the transverse normal stress can be neglected and, thus, we are in the presence
of a state of both plane stress and plane strain. However, from practical experience, a plate can be
considered in a state of plane stress, as the thickness is, usually, very small when compared to the in-plane
dimensions. Therefore, in the subsequent analysis, the constitutive relations will be computed with the
assumption of a state of plane stress [68].

7.3.1 Stress-strain relations

The constitutive equations for the kth lamina of a laminate with curvilinear fibres relative to the principal
material axes and assuming a state of plane stress are [68],


f11

f22

g12


(:)

=


&11 &12 0
&12 &22 0

0 0 &66


(:) 

Y11

Y22

W12

 (7.14)

where f8 9 and g8 9 are the normal and shear stresses in the material coordinates, Y8 9 and W8 9 are the normal
and shear strains in the material coordinates and &8 9 are the plane stress reduced stiffnesses, which for
an orthotropic material are given by [68],

&11 =
�11

1− a12a21
(7.15)

&12 =
a12�22

1− a12a21
(7.16)

&22 =
�22

1− a12a21
(7.17)
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&66 = �12 (7.18)

where �11 and �22 are the longitudinal and transverse Young’s modulus, a12 and a21 are the longitudinal
major and minor Poisson’s ratio and �12 is the longitudinal shear modulus. All these quantities should
be calculated for each lamina, in our case, using the hierarchic model developed in previous chapters.

As the laminae can have different orientations with respect to the general coordinate system of the
plate and even between different points in the same ply, because of the variable stiffness introduced by the
curvilinear fibres, a coordinate transformation should be performed in order to transfer these equations to
the general system, as shown in Figure 7.1. This transformation is defined by the fibre orientation angle,
\, and is given by [68],


fGG

fHH

gGH


(:)

=


cos2 \ sin2 \ −sin(2\)
sin2 \ cos2 \ sin(2\)

sin\ cos\ −sin\ cos\ cos2 \ − sin2 \


(:) 

f11

f22

g12


(:)

(7.19)

resulting in the following stress-strain relations [68, 69, 71],


fGG (G, H, I, C)
fHH (G, H, I, C)
gGH (G, H, I, C)


(:)

=


&̄11(\: (G)) &̄12(\: (G)) &̄16(\: (G))
&̄12(\: (G)) &̄22(\: (G)) &̄26(\: (G))
&̄16(\: (G)) &̄26(\: (G)) &̄66(\: (G))


(:) 

YGG (G, H, I, C)
YHH (G, H, I, C)
WGH (G, H, I, C)

 (7.20)

where &̄8 9 are the transformed plane stress reduced stiffnesses, which are, in general, a function of the
fibre orientation \: of the kth lamina, being itself a function of the general coordinate G, as defined in
equation (7.2).

These transformed reduced stiffnesses can be calculated by applying the transformation from equation
(7.19) to the stiffness tensor of equation (7.14), which give [8],

&̄11(\: (G)) =*1 +*2 cos(2\: (G)) +*3 cos(4\: (G)) (7.21)

&̄12(\: (G)) =*4−*3 cos(4\: (G)) (7.22)

&̄22(\: (G)) =*1−*2 cos(2\: (G)) +*3 cos(4\: (G)) (7.23)

&̄16(\: (G)) =
1
2
*2 sin(2\: (G)) +*3 sin(4\: (G)) (7.24)
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&̄26(\: (G)) =
1
2
*2 sin(2\: (G)) −*3 sin(4\: (G)) (7.25)

&̄66(\: (G)) =*5−*3 cos(4\: (G)) (7.26)

with the coefficients*8 defined as [8],

*1 =
1
8
(3&11 +3&22 +2&12 +4&66) (7.27)

*2 =
1
2
(&11−&22) (7.28)

*3 =
1
8
(&11 +&22−2&12−4&66) (7.29)

*4 =
1
8
(&11 +&22 +6&12−4&66) (7.30)

*5 =
1
8
(&11 +&22−2&12 +4&66) (7.31)

7.3.2 Force and moment resultants

By performing an integration of the stresses over the thickness of the plate, we obtain the membrane force
resultants, T, and the bending moment resultants, S, through the following equations [68],


#GG (G, H, C)
#HH (G, H, C)
#GH (G, H, C)

 =
!∑
:=1

∫ I:+1

I:


fGG (G, H, I, C)
fHH (G, H, I, C)
gGH (G, H, I, C)

 3I
=

!∑
:=1

∫ I:+1

I:


&̄11(\: (G)) &̄12(\: (G)) &̄16(\: (G))
&̄12(\: (G)) &̄22(\: (G)) &̄26(\: (G))
&̄16(\: (G)) &̄26(\: (G)) &̄66(\: (G))


(:) 

YGG (G, H, I, C)
YHH (G, H, I, C)
WGH (G, H, I, C)

 3I
(7.32)


"GG (G, H, C)
"HH (G, H, C)
"GH (G, H, C)

 =
!∑
:=1

∫ I:+1

I:


fGG (G, H, I, C)
fHH (G, H, I, C)
gGH (G, H, I, C)

 I3I
=

!∑
:=1

∫ I:+1

I:


&̄11(\: (G)) &̄12(\: (G)) &̄16(\: (G))
&̄12(\: (G)) &̄22(\: (G)) &̄26(\: (G))
&̄16(\: (G)) &̄26(\: (G)) &̄66(\: (G))


(:) 

YGG (G, H, I, C)
YHH (G, H, I, C)
WGH (G, H, I, C)

 I3I
(7.33)
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however, we may represent both these equation in a more elegant format, using the definitions of equation
(7.12). Using the membrane strains, 9m, and the curvatures, 9b, we have [68],{

T(G, H, C)
S (G, H, C)

}
=

[
[�] (G) [�] (G)
[�] (G) [�] (G)

] {
9m (G, H, C)
9b (G, H, C)

}
(7.34)

where the coefficients of the matrices [�] (G), [�] (G) and [�] (G) are, respectively, the membrane
stiffnesses, the membrane-bending coupling stiffnesses and the bending stiffnesses. It is apparent from
equations (7.32) through (7.34) that these stiffnesses are calculated by [68],

(�8 9 , �8 9 , �8 9) =
!∑
:=1

∫ I:+1

I:

&̄8 9 (\: (G)) (1, I, I2)3I , (8, 9) = 1,2,6 (7.35)

For symmetric laminates, that is laminateswith a symmetric stacking sequence, themembrane-bending
coupling matrix, [�], is null, which simplifies equation (7.35) and allow us to consider the membrane
problem as separate from the pure bending one [68]. With all the relations between the strains and stresses
determined we may proceed to the description of the equations of motion of the system.

7.4 Equations of motion

To obtain the equations of motion of the laminated composite plate, using the CLPT model established in
previous sections, a dynamical principle should be used, such as the Principle of Minimum Total Potential
Energy, the Principle of Virtual Work or Hamilton’s Principle [68]. Amongst these, we will apply the
Principle of Virtual Work, which states that [74]:

For all admissible infinitesimal displacement fields that take place, the total work done by all the
forces acting on a body, including inertial ones, is zero.

This principle can be written mathematically as [74],

X,4 + X,8 + X, 9 = 0 (7.36)

where X,4 is the virtual work done by external forces, X,8 is the virtual work done by internal forces,
which in our case represent the stored elastic energy in the deformation field, and X, 9 is the virtual work
done by inertial forces.

To proceed with the application of the Principle of Virtual Work, we first need a displacement field
to compute the virtual work done by all forces through that specific virtual displacement field. Instead of
resorting to a complex mathematical function, describing the exact distribution of displacements for all
points of the plate, a method known as the p-version FEM will be used, which equate the displacement
field to a series of polynomial space and time functions, termed shape functions [69, 71].
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7.4.1 p-version Finite Element Method

There are two main approaches to improve the accuracy of solutions obtained by the FEM: increasing
the number of elements of the mesh, which is usually termed the h-version of the method, or increasing
the order of the polynomials used to approximate the displacement field, which is named the p-version.
The latter allow us to use only one element, for simple structures such as a plate, which can save up
computational power, because an assemblage of the global stiffness and mass matrices is not needed
[75–77]. Also, the p-version FEM performs better in terms of computational efficiency, requiring, in
many problems, the use of less DOFs than the h-version [78].

The partial differential equations that result by the application of the assumptions of the CLPT are
of fourth-order in space and of second-order in time for the bending part and of second-order in space
and time for the membrane part, requiring continuity of the displacement field for both components, but
requiring, as well, the continuity of the first derivative of the displacement for the bending component, at
all points of the plate. As such, to fulfil the previous conditions, we should use at least cubic polynomials
to interpolate the displacement field, where bending effects are concerned. The shape functions used
were derived by Rodrigues’ form of Legendre’s orthogonal polynomials, which guarantee the continuity
of both the displacements and the rotations of the plate, as required [77].

For the in-plane displacements, D0 and E0, the shape function are defined as [76, 79, 80],

6A (b) =
bA/2c∑
==0

(−1)= (2A −2=−5)!!
2==!(A −2=−1)! bA−2=−1 , A > 2 (7.37)

and for the out of plane shape functions, related to the transverse displacement, F0, we have [76, 79, 80],

5A (b) =
bA/2c∑
==0

(−1)= (2A −2=−7)!!
2==!(A −2=−1)! bA−2=−1 , A > 4 (7.38)

where 6A and 5A are the shape functions of order r, respectively for the in-plane displacements and the
transverse one, A!! = A (A −2) · · · (2>A 1) depending on the parity of the integer A , 0!! = (−1)!! = 1 and b·c
denote the integer part of a real number. Also, whenever a factorial of a negative number appears in the
previous expressions, the respective term is ignored.

The geometric boundary conditions must be satisfied by any valid shape function used in the FEM.
The in-plane shape functions have zero values at their limits, b = −1 and b = 1, while the out of plane
ones have zero value at their limits, but also zero slope, being appropriate for clamped edges. For
simply-supported or free edges, the in-plane shape functions should also be used to approximate the
transverse displacement, thus, in general, a specific set of the shape functions described above and other
cubic and linear functions described by Bardell [79] should be used to accurately represent any type of
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boundary condition of the plate [75, 76].

If we represent the entire plate as an unique element, the transformation of coordinates from the
local system to the global will be very straightforward and, as previously stated, there will be no need to
assemble local matrices into a global one. Then, being b and [ the local coordinates, their relation with
the global ones can be depicted as [75, 76],

G =
0

2
b (7.39)

H =
1

2
[ (7.40)

allowing the midplane displacements to be written as functions of these local coordinates [75, 76],

D0(b,[, C) =
?8∑
A=1

?8∑
B=1

6A (b)6B ([)@DAB (C) (7.41)

E0(b,[, C) =
?8∑
A=1

?8∑
B=1

6A (b)6B ([)@EAB (C) (7.42)

F0(b,[, C) =
?>∑
A=1

?>∑
B=1

5A (b) 5B ([)@FAB (C) (7.43)

where ?8 and ?> are the number of in-plane and out of plane shape functions used, respectively, and
@8AB are the generalized coordinates of each displacement 8, which are continuous functions of time. It is
apparent that the displacement field will be a linear combination of bidimensional polynomial functions,
6A6B or 5A 5B, multiplied by time dependent functions, @8A B.

The previous equations (7.41) to (7.43) can also be written in matrix form, for a more compact
presentation [76],


D0(b,[, C)
E0(b,[, C)
F0(b,[, C)

 =

gg) (b,[) 0 0

0 gg) (b,[) 0
0 0 f f) (b,[)



qu (C)
qv (C)
qw (C)

 (7.44)
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where gg(b,[) and f f (b,[) are column vectors that represent the products between unidimensional
shape functions, generating a bidimensional spatial distribution of displacements [76],

gg(b,[) =



6611

6612
...

66AB
...

66?8 ?8


=



61(b)61([)
61(b)62([)

...

6A (b)6B ([)
...

6?8 (b)6?8 ([)


(7.45)

f f (b,[) =



5 511

5 512
...

5 5AB
...

5 5?> ?>


=



51(b) 51([)
51(b) 52([)

...

5A (b) 5B ([)
...

5?> (b) 5?> ([)


(7.46)

and qi (C) are the column vectors that contain the generalized coordinates of each displacement 8 [76],

qu (C) =



@D11(C)
@D12(C)
...

@DAB (C)
...

@D?8 ?8 (C)


, qv (C) =



@E11(C)
@E12(C)
...

@EAB (C)
...

@E?8 ?8 (C)


, qw (C) =



@F11(C)
@F12(C)
...

@FAB (C)
...

@F?> ?> (C)


(7.47)

The approximation used for the displacement field of the composite laminated plate, displayed in
equations (7.41) through (7.43), imply the existence of a finite number of DOFs, represented by each
of the generalized coordinates. As such, there are ?2

8
for the in-plane displacement D, ?2

8
more for the

in-plane displacement E and, finally, ?2
> for the transverse displacement, F. The total number of DOFs of

the model will be 2?2
8
+ ?2

>, however, if the membrane deformations are neglected, such that we consider
only pure bending, the final number of degrees of freedom reduces to ?2

>, resulting in less computations
performed and a lighter numerical problem [7].

7.4.2 Application of the Principle of Virtual Work

Using the displacements described in the previous section and applying the Principle of Virtual Work,
through equation (7.36), we can determine the equations of motion that model the system. The first
term in equation (7.36) refers to the virtual work done by all the external forces that act on the body.
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Considering that both distributed forces, %3 (G, H, C), and punctual ones, %? (C), that act on a single point,
(G%, H%), are acting on the body, we may express their virtual work by [7],

X,4 =

{
Xqu) Xqv) Xqw)

} ©«
∬
Ω


%G
3
gg(G, H)

%
H

3
gg(G, H)

%I
3
f f (G, H)

 3Ω+

%G?gg(G%, H%)
%
H
?gg(G%, H%)

%I? f f (G%, H%)


ª®®¬ (7.48)

where Xqi are the virtual generalized coordinates of each displacement 8 and Ω is the area in which the
distributed forces are acting. Compacting the previous equation to matrix form we have [7],

X,4 = Xq
) V (7.49)

being Xq the vector of virtual generalized coordinates and V the external forces vector.

The second term of the equation of the Principle of Virtual Work is concerned with the virtual work
done by all internal forces, which for our case, as previously stated, is equal to the elastic energy stored
in the deformation field of the body. As such, we may write [7, 68],

X,8 = −
∭

+

f8 9XY8 93+ = −
∬
Ω

X9) (G, H, C)
{
T(G, H, C)
S (G, H, C)

}
3Ω (7.50)

where we must perform a sum for all possible 8 and 9 of f8 9XY8 9 , 9 and X9 are, respectively, the vector of
deformations and of virtual deformations, 9) = {9m) 9b) }, and 3Ω represent the area of the midsurface
of the plate 3G3H.

By including the constitutive relations in the previous equation, we get [7],

X,8 = −
∬
Ω

X9) (G, H, C)
[
[�] (G) [�] (G)
[�] (G) [�] (G)

]
9(G, H, C)3Ω

= −
∬
Ω

X9m
) (G, H, C) [�] (G)9m (G, H, C)3Ω−

∬
Ω

X9b
) (G, H, C) [�] (G)9b (G, H, C)3Ω

(7.51)

where we have considered [�] (G) to be null, restricting our model to symmetric laminates. We can
simplify further by denoting the separate parts concerned with membrane or bending effects and assigning
a specific stiffness matrix to each of them. Therefore, the stiffness matrix associated with the in-plane



112 Classical theory of laminated composite plates

displacements is given by [7],

[ <] =
[
[ <]DD [ <]DE

[ <]ED [ <]EE

]

=

∬
Ω

[
mgg
mG

0 mgg
mH

0 mgg
mH

mgg
mG

] 
�11(G) �12(G) �16(G)
�12(G) �22(G) �26(G)
�16(G) �26(G) �66(G)



mgg
mG

)
0

0 mgg
mH

)

mgg
mH

) mgg
mG

)

 3Ω
(7.52)

whereas the part of the stiffness matrix related to the bending and the transverse displacement is [7],

[ 1] = [ 1]FF =
∬
Ω

[
m2 f f
mG2

m2 f f
mH2 2m

2 f f
mGmH

] 
�11(G) �12(G) �16(G)
�12(G) �22(G) �26(G)
�16(G) �26(G) �66(G)



m2 f f
mG2

)

m2 f f
mH2

)

2m
2 f f
mGmH

)


3Ω (7.53)

These definitions of the stiffnessmatrices allow us to assemble a global stiffnessmatrix for all DOFs of
the system, which gives the virtual work done by all internal forces as a function of the virtual generalized
coordinates and of the generalized coordinates [7],

X,8 = −
{
Xqu) Xqv) Xqw)

} 
[ <]DD [ <]DE [0]
[ <]ED [ <]EE [0]
[0] [0] [ 1]FF



qu

qv

qw

 (7.54)

and compacting in the same way as equation (7.49), we obtain [7],

X,8 = −Xq) [ ]q (7.55)

where q is the vector of generalized coordinates and [ ] the global stiffness matrix.

Finally, the virtual work done by the inertial forces, which is the only term still undetermined, can be
given by [7, 68],

X, 9 = −
∭

+

d

(
m2D

mC2
XD + m

2E

mC2
XE + m

2F

mC2
XF

)
3+

= −
∫ ℎ

2

− ℎ2

∬
Ω

d

[
(Xqu) gg) · (gg) ¥qu) + (Xqv) gg) · (gg) ¥qv) +

+ (Xqw) f f ) · ( f f) ¥qw)
]
3Ω3I

(7.56)
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where ¥qi are the generalized accelerations and where we have neglected the rotational inertia, which does
not translate to a very rough approximation of our problem, since we are dealing with thin plates.

Because we are also assuming geometric and material symmetry about the midplane of the plate, the
global mass matrix, ["], can be determined from the previous equation as [7],

["] =

["]DD [0] [0]
[0] ["]EE [0]
[0] [0] ["]FF

 = dℎ

∬
Ω
gg gg) 3Ω [0] [0]
[0]

∬
Ω
gg gg) 3Ω [0]

[0] [0]
∬
Ω
f f f f) 3Ω

 (7.57)

which allows equation (7.56) to be written in the form of equations (7.49) and (7.55) [7],

X, 9 = −Xq) ["] ¥q (7.58)

where ¥q is the vector of the generalized accelerations.

Substituting each expression of the virtual works on the equation of the Principle of Virtual Work,
we arrive at the following [7, 68],

Xq) V− Xq) [ ]q− Xq) ["] ¥q = 0 (7.59)

which must be a valid expression for any arbitrary admissible virtual displacement, hence the equations
of motion for a thin plate are, according to the CLPT [7, 68],

["] ¥q + [ ]q = V (7.60)

It can be immediately seen that the damping was not taken into consideration in this derivation of
the equations of motion. In fact, the damping introduced through our damping model is assumed to not
have a significant effect on the modes and frequencies of vibration, thus this dynamical model will not
consider it.

7.4.3 Natural frequencies and modes of vibration

To analyse the natural frequencies and modes of vibration, the equations of motion should be solved for
the case of zero external forces applied, since we are considering that free vibrations are being sustained
on the structure. Then, the equations of motion for a free vibrating plate are given by [61, 68],

["] ¥q + [ ]q = 0 (7.61)

The characterization of the oscillatory motion requires a solution of the equations of motion. With
that in mind, let us establish another hypothesis, which states that the free vibration of a plate consists in
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a harmonic synchronous movement with a definite frequency. This implies that the vector of generalized
coordinates will have the following form [61],

q =[ cos(lC −q) (7.62)

where [ is the vector that contains the amplitudes undertaken by each generalized coordinate, l is the
frequency of vibration and q is the phase of the vibration. This definition can be used in the equations of
motion (7.61) to give [61], (

−l2 ["] + [ ]
)
[ cos(lC −q) = 0 (7.63)

For equation (7.63) to be verified for any instant in time, C, being cos(lC − q) in general non zero, a
generalized eigenvalue problem must be solved. Therefore, these equations can be written in the form
[61, 68],

l2 ["][ = [ ][ (7.64)

being l the natural frequencies of vibration, l2 the eigenvalues of the problem and [ the amplitude of
the mode shapes of vibration and the eigenvectors of the problem.

Finally, the natural modes of vibration can be computed for each of the calculated frequencies and
mode shapes [61],

q8 =[8 cos(l8C −q8) (7.65)

where 8 is called the order of the mode of vibration.

A convergence study of this model was performed by Antunes [7] and it was numerically validated,
based on the CLPT. It presented good convergence and the results for the vibration modes of thin plates
were in very good agreement with the ones found in literature and experimentally determined. Since
it was defined that the order of the polynomial used for the out of plane shape functions should be 11
or higher, so that the relative error could be neglected, we will use, throughout the rest of this text
polynomials of the order 12, ?> = 12.

Now that we have implemented a numerical model for the determination of the mode shapes of
vibration of composite laminated plates, we may introduce CNTs to evaluate their effect on the damping
characteristics of the system.



Chapter 8

Damping in CNT-reinforced composite
plates

One of the main goals of this text is the evaluation of the effect the addition of CNTs has on the damping
properties of a fibre-reinforced laminated composite plate. In Chapter 5, a model capable of predicting
the increase in damping ratio due to CNT debonding in a nanocomposite was developed and it was applied
to the case of a cantilever beam. The model required the mode shapes of vibration of the beam in order
to predict the modal damping ratios [1], so, it is evident that to extend the model to the case of plates,
their modes of vibration should also be determined.

For that reason, in the previous Chapter 7, a numerical model based on the classical laminated plate
theory was implemented to establish the mode shapes of vibration of the system being studied. This
dynamical model used a p-version approach of the finite element method to approximate the displacement
field of the plate, using a linear combination of polynomials of higher orders. Because we are interested
in vibrations caused by the bending of the plate, the membrane components will not have an impact on
the final result, for symmetric laminates, with uncoupled equations. Therefore, the only displacement
present will be the transverse one, simplifying a lot of the equations developed in that model [68].

We will start our discussion of the damping caused by CNT debonding in CNT-reinforced composite
plates by depicting briefly how to extend the damping model developed for beams to plates. Then, we
will compare the predictions that our model can produce with experimental results obtained by a modal
analysis of such plates in the work of Antunes [7]. This will allow the validation of the model for
composite plates, which will facilitate the optimization process of such laminates in future works.

Until the date of submission of this dissertation, to the best knowledge of the author, there was no
model developed for predicting the damping properties caused by CNT debonding of CNT-reinforced
composite plates. A successful validation of such a model would be very helpful for a future optimization
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process that better tailors the desired characteristics of CNT-reinforced composite plates for specific
applications and purposes.

8.1 Extension of the damping model to plates

Using the finite element model developed for laminated composite plates, the mode shapes of each DOF
are contained in the vector q8 [61]. These mode shapes are continuous functions, which are to be denoted
by Φ8 (b,[), throughout the rest of this chapter.

The modal shapes will be used to compute the in-plane strains, due to bending of the plate, which
will determine the displacements the RVEs have sustained. By comparing these displacements with the
critical displacements for debonding, the hysteretic "stick-slip" damping model may be applied [1], where
we should calculate the energy loss per cycle and the maximum elastic energy stored in the entire volume
of the plate [52].

As with the other cases, the loss factor relative to a certain mode of vibration is the ratio between the
energy lost and the maximum energy stored, for that same mode shape [52]. These modal loss factors are
twice the modal damping ratios, for frequencies sufficiently close to the respective natural frequencies of
oscillation [63]. At the fundamental level, the theory for plates is just a bidimensional extension of that
for beams.

8.1.1 Modes of vibration and deformation fields

In general, the mode shapes of vibration will be given as the eigenvectors of the eigenvalue problem that
describe free vibrations on the plate. As such, if we multiply the mode shapes by a constant value, we
still have a valid solution to equation (7.64) [61]. This normalization must be performed in order for the
functions describing the mode shapes to have the correct amplitude of vibration at each point of the plate,
because our damping model is dependent on this amplitude.

As such, we should expect that the maximum transverse displacement for each mode of vibration is
given by,

F<0G8 (G, H) = �

#
Φ8

(
2G
0
,
2H
1

)
(8.1)

where F<0G
8
(G, H) is the maximum transverse displacement for each mode of vibration 8 and for every

point of the plate, � is the amplitude of vibration at a certain point (G, H) and # is a normalization
constant, which is the value of the mode shape at that same point of the plate. Also, it is necessary to
perform a change of coordinates from the local to the general ones on the mode shapes.
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Then, using the strain-displacement relations developed for the CLPT, equations (7.9) through (7.11),
we arrive at the maximum deformation field [68],

Y<0GGG 8 (G, H, I) = −I
m2F<0G

8
(G, H)

mG2 (8.2)

Y<0GHH 8 (G, H, I) = −I
m2F<0G

8
(G, H)

mH2 (8.3)

W<0GGH 8 (G, H, I) = −2I
m2F<0G

8
(G, H)

mGmH
(8.4)

where the exponent <0G denotes that these deformations are correspondent to the instant in time when
the transverse displacement is maximum.

As we have a biaxial strain condition in the plate, instead of uniaxial, like in the beam case, we could
use a criteria, analogous to that of Tresca or von Mises for yield failure [62], to consider the different
components of the debonding mechanism. One could exploit the properties of the second invariant of the
deviatoric stresses or strains [62] to develop a debonding failure criteria that could model cases where
the deformation field act on different directions, based on energetic methods. For the sake of simplicity,
this problem will be approached in a different way in this work.

It has been noted that the plate is both in a state of plane stress and of plane strain, so it is possible to
find the in-plane principle strains, using Mohr’s circle. Then, the maximum principal strains of the plate
will be given by [62],

Y<0G1 8 (G, H, I) =
(
Y<0G
GG 8
+ Y<0G

HH 8

2
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+
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where Y<0G1 8 (G, H, I) and Y
<0G
2 8 (G, H, I) are the principal strains for each mode of vibration and for every

point, corresponding to the instant in time where the transverse displacement is maximum.

The principal strains are two normal strains that also contain the effect of the shear deformation, WGH ,
and can be applied directly with the criteria of the critical displacement, used in previous chapters. As the
normal displacements caused by these two principal strains are perpendicular at every point, simply by
the definition of principal strains [62], we can perform a vector addition to obtain a single displacement
for every point of the plate, which is a compound addition of each component from each principal strain.



118 Damping in CNT-reinforced composite plates

The amplitude of the normal displacements caused by each principal strain will be described by,

-1 8 (G, H, I) = |Y<0G1 8 (G, H, I) |; (8.7)

-2 8 (G, H, I) = |Y<0G2 8 (G, H, I) |; (8.8)

being -1 8 (G, H, I) and -2 8 (G, H, I) the amplitude of the displacements caused by the principal strains, for
each mode of vibration 8 and for every point of the plate, and ; is the length of the representative volume
element of the damping model. Then, using vector addition of the previous displacements we obtain,

-8 (G, H, I) =
√
[-1 8 (G, H, I)]2 + [-2 8 (G, H, I)]2 (8.9)

where -8 (G, H, I) is the amplitude of the vector displacement field at each point of the plate. It is evident that
this quantity will have a tridimensional and convoluted distribution of orientations throughout all (G, H, I).

This undetermined distribution of orientations could be regarded as an additional problem, however,
for CNTs homogeneously dispersed in the matrix and with a tridimensional random distribution of
orientations, it is possible to overcome this easily. For this case, the orientation of the displacement field
is irrelevant, as soon as we use the orientation factor considered in equation (5.69).

The approach described above only works for the specified conditions of a good dispersion of CNTs in
the matrix and a random distribution of orientations, however this simplifies immensely the analysis that
we would need to perform, if we considered the biaxial state of strain of the original general coordinate
system.

8.1.2 "Stick-slip" damping model applied to plates

Now that we have the expression for a unique displacement field to compare with the critical displacement
for debonding, we may apply the equations for the energy loss per cycle and the maximum elastic energy
stored to compute the modal loss factors. For those we have,

,8 (G, H, I) = 4(:< 5 �# − :< 5 (, )X1�1 8 (G, H, I) +4(:< 5 �# − :< 5 (, )X2�2 8 (G, H, I) (8.10)

�1 8 (G, H, I) =
[
<

(√
-8 (G, H, I) − X1

)]2
(8.11)

�2 8 (G, H, I) =
[
<

(√
-8 (G, H, I) − X2

)]2
(8.12)
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*8 (G, H, I) =
1
2
:< 5 �# [-8 (G, H, I)]2−

1
2
(:< 5 �# − :< 5 (, ) (-8 (G, H, I) + X1)�1 8 (G, H, I)−

− 1
2
(:< 5 (, − :< 5 ) (-8 (G, H, I) + X2)�2 8 (G, H, I) (8.13)

where,8 (G, H, I) is the dissipated energy per cycle for a certain mode of vibration 8 and a point (G, H, I),
*8 (G, H, I) is defined in the same way, but is the maximum elastic energy stored as determined in Chapter
5, and �1 8 (G, H, I) and �2 8 (G, H, I) are the functions that show if debonding is happening.

The main difference between these equations and those of the model for cantilever beams is the
volume of integration. So, for the case of the plate, the total modal energies are given by,
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where ,̄8 is the total dissipated energy per cycle, *̄8 is the total maximum elastic energy stored and + is
the volume of the plate, + = 01�. Finally, just as in the previous systems, the global loss factor of the
plate is calculated by,

[8 =
,̄8

2c*̄8
(8.16)

with [8 being the global loss factor of the ith mode of vibration. Just as in the case of the beam, these last
equations also need to be programmed and solved numerically by a computer.

Finally, we may use equation (5.68) to compute the loss factor of the entire plate, with the effect of
the inherent material damping of the matrix and the fibres, and equation (5.28) to determine the modal
damping ratio correspondent to each loss factor. For each mode, at resonance, the relation between the
loss factor and the damping ratio simplifies to [8 = 2b8 , which we will use throughout the rest of text.

These last equations mark the end of the determination of the damping model for laminated composite
plates, caused by CNT debonding in a CNT-reinforced composite. In the next section, we will perform
a validation of this model based on the results of an experimental modal analysis of fibre-reinforced
composite plates with carbon nanotubes.
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8.2 Comparison with an experimental modal analysis

In this section, we will compare all the models developed in this dissertation with the experimental
results obtained by Antunes [7] in tensile tests and in an experimental modal analysis of composite plates
performed last year. We will compare the predictions of the hierarchic model with the experimental
values obtained in the tensile tests, of the CLPT model with the natural frequencies of vibration and of
the damping model for plates with the modal damping ratios.

Not all the values for the input variables are described in the work of Antunes [7], since a model for
damping caused by CNT debonding was not established by then. This implies that certain quantities, like
the critical shear stresses for debonding, g1 and g2, and the amplitude of vibration at a certain point of the
plate, �, that influence heavily the outcome of the damping model will be estimated, based on previous
validations in Chapter 6, or simply tuned, until the prediction fits the experimental data with a reasonable
approximation.

First, a discussion of the properties of the plates used is presented, followed by a brief analysis of the
experimental apparatus that measured the dynamical behaviour of the system. In the last sections, we
will compare the three models, respectively, with each of the relevant experimental measurements that
were obtained by Antunes [7].

8.2.1 Plates properties and experimental procedure

The experimental modal analysis was performed in three different composite plates. The first, called the
reference plate, was made up of carbon fibre-reinforced epoxy, with no addition of CNTs, while the other
two, the 0.01% SWCNTs plate and the 0.05% SWCNTs plate, had a reinforcing of carbon nanotubes of,
respectively, 0.01% and 0.05% weight fraction. Although all the plates were fabricated with the aim
that the only different between them was the CNT loading, there was some variability in the geometric
properties and in the concentration of fibres [7].

All the plates were fabricated as laminates with 30 layers, all stacked at an angle of 0º. This is
equivalent to having a single layer with its material coordinates coincident with the global plate coordinate
system, so we will model this system as such, for simplicity of the mathematical formulation. Also, for
every plate, the fibres are considered rectilinear, being CSCL plates [7]. The geometrical properties of
the three plates and their respective concentrations of CNTs and carbon fibres are displayed in Table 8.1.

The mechanical properties of the material that constitutes the plates were determined using tensile
tests performed on specimens of the same material as that of the plates [7], however, as we are interested
in the predictive power of the theoretical models developed in previous chapters, we should use the
properties referenced in the technical reports of the epoxy resin, the fibres and the nanotubes. These
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properties are taken from [46, 47, 49, 81–83] and are compiled in Table 8.2. They can also be found in
the technical data sheets of Appendix A.

In the work of Antunes [7], the density of the nanotubes is described as the density of graphene, so
it is necessary to use the conversion established in a previous part of this text to compute the effective
density of the CNTs [11]. Using equation (2.6), we get the density of the nanotubes as d�#) = 1736.0
kg/m3.

There are also two other elastic properties that are needed to fully define the mechanical properties of
the fibres: the transverse Young’s modulus and the longitudinal shear modulus. As no information was
provided, regarding these values, we will use the experimental results of the tensile tests on the material
of the reference plate to tune these quantities, using the hierarchic model. The value of the transverse
Young’s modulus of the reference plate was �22 = 9.45 GPa and the longitudinal shear modulus was
�12 = 3.56 GPa [7]. Then, using equations (2.54) and (2.56) and noting that the shear modulus for
isotropic media, like the epoxy matrix, is given by an equation analogous to equation (2.40), we have,

�22 5 = 20.9GPa ; �12 5 = 7.88GPa

leading to a complete definition of all the important mechanical and geometric variables of the problem.

The dynamical behaviour of all the plates was studied using the same experimental apparatus, which
consisted in a frame that supported the hanging plate and the electromagnetic shaker. This provided a
FFFF boundary condition, which indicate that the plate was free in all borders. The force transducer was
mounted on the point of the plate of coordinates G = − 010 and H = 1

10 , because it was capable of exciting
all the relevant modes of vibration for this work, namely the first seven modes [7].

For the plate damping model, two other properties, undefined in the work of Antunes [7], because
it lacked a model for predicting CNT induced damping, are needed: the critical shear stresses and the
amplitude of vibration at a point of the plate. As there is not a consensus on the values the critical shear
stresses for debonding should take, we will adopt the ones from the work of Bhattacharya et al [52],
because we have previously used them in some of the validations performed in chapter 6 and they closely
approximated the experimental results. With this in mind, we will consider g1 = 0.3 MPa and g2 = 1 MPa

Plate 0 /mm 1 /mm � /mm F�#) /% E 5 /%
Reference 349.5 247.0 2.60 0.00 55

0.01% SWCNTs 349.3 249.0 2.43 0.01 55
0.05% SWCNTs 349.5 249.0 2.74 0.05 52

Table 8.1: Properties of the plates used by Antunes [7].
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Property Value Units
�< [(82><8=] 3.30 GPa
a< [%8;;8=6] 0.33 -
d< [(82><8=] 1166.9 kg/m3

��#) [!D,1997] 968 GPa
;�#) [# �#$(��! ] 11.5 µm
3�#) [# �#$(��! ] 1.5 nm
C�#) [(0;E4C0C ,1999] 0.3354 nm
d6 [# �#$(��! ] 2500 kg/m3

�11 5 [) 48 98=�0A1>=�DA>?4�<1ℎ] 240 GPa
a12 5 [%8;;8=6] 0.2 -

d 5 [) 48 98=�0A1>=�DA>?4�<1ℎ] 1770 kg/m3

Table 8.2: Properties of the epoxy resin, the carbon fibres and the CNTs [46, 47, 49, 81–83].

[52].

The amplitude of vibration at a point of the plate is much more difficult to define, however, since a
force transducer at a point was used, we may normalize the mode shapes at that same point and try to
determine its amplitude of vibration. By fitting the value of the amplitude of vibration at the excitation
point to the experimental data, we can obtain an estimation of the amplitude of vibration of the force
transducer, which will be equal for any mode of vibration. If the value obtained for the amplitude is
reasonable, we can confirm the validity of the model.

With this last consideration, all the input variables that our models require are discussed, thus we
may now compare the predictions they are able to produce against the experimental results obtained by
Antunes [7]. Although interesting, a detailed presentation of the experimental methods used is out of the
scope of this text.

8.2.2 Equivalent elastic properties

One of the goals of this work was to develop a more accurate model for the equivalent elastic properties of
multiscale composites than the one used by Antunes [7]. For that reason, it may be interesting to compare
both models, before we advance to the more complex model for the vibration of laminated composite
plates. The results obtained by Antunes [7] and the respective predictions by the hierarchic model are
presented in Table 8.3.

It must be noted that Exp and Num stand for, respectively, the experimental and numerical values
obtained by Antunes [7], whilst HM represent the predictions by the present hierarchic model. All the
experimental values of the elastic constants were determined by tensile tests on multiscale composite
specimens, except for the longitudinal shear modulus, �12, which was based in the rule of mixtures.
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The errors shown on the hierarchic model prediction are relative to the experimental values. Also, the
experimental density was obtained by the matrix digestion method. Besides that, all the numerical values
were computed, including the 0.05% SWCNTs plate, for E 5 = 55% by Antunes [7].

Specially for the 0.05% SWCNTs plate, the hierarchicmodel has produced values that approximate the
experiments with accuracy, never having a relative error above 10%. Besides that, the transverse Young’s
modulus, �22, and the longitudinal shear modulus, �12, which was not determined experimentally as
explained before, were predicted with incredible accuracy, as these are, usually, the properties that have
fewer accurate models [10].

The main differences in the 0.01% SWCNTs plate are also present in the numerical model used by
Antunes [7], which could mean that the experimental values contain some systematic error, for example a
lower volume fraction of fibres than the one considered. This would also explain the relatively high error
on the longitudinal Young’s modulus, �11, of the CNT-reinforced plates, as this should be the property
more accurately described.

The value of the Poisson’s ratio, a12, of the reference plate represented the worst approximation of
the hierarchic model, however, as explained in Chapter 2, the CNTs should not have a considerable effect
on the Poisson’s ratio of the multiscale composite, so that value should be almost constant throughout all
of the plates. The great discrepancy between the value of the Poisson’s ratio for the reference plate in
comparison to those of the other two plates could mean an experimental error is at play.

Finally, the density, d, was also better represented by the hierarchic model than the one used by

Plate �11 /GPa �22 /GPa a12 �12 /GPa d /kg m-3

Reference

Exp 132 9.45 0.317 3.56 1501.4
Num 133.49 7.21 0.26 2.72 1498.2
HM 133.49 9.46∗ 0.259 3.56∗ 1498.6

(1.13%) (∗) (−18.3%) (∗) (−0.19%)
Exp 124 8.03 0.259 3.02 1500.2

0.01% Num 133.49 7.24 0.26 2.73 1498.2
SWCNTs HM 133.49 9.47 0.259 3.57 1498.6

(7.65%) (17.9%) (0.00%) (18.2%) (−0.11%)
Exp 137 8.94 0.278 3.37 1484.5

0.05% Num 133.52 7.37 0.26 2.78 1498.3
SWCNTs HM 126.41 8.97 0.262 3.38 1480.6

(−7.73%) (0.34%) (−5.76%) (0.30%) (−0.26%)
∗ These values were adjusted to the experimental data, so the error is meaningless.

Table 8.3: Comparison between the predictions of the hierarchicmodel for the equivalent elastic properties
of the different plates and the experimental and theoretical values obtained by Antunes [7].
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Antunes [7], but we should not forget that a different volume fraction than the one considered in the
experimental analysis was also utilized by Antunes [7]. This analysis may imply the hierarchic model
considered was, indeed, an improvement to the one used by Antunes [7], specially for the transverse
Young’s modulus and for the longitudinal shear modulus. The other properties were also well modelled,
but there was no substantial improvement, because both numerical models use the rule of mixtures for
the longitudinal Young’s modulus, the Poisson’s ratio and the density of the composite.

8.2.3 Natural frequencies of vibration

Following the equivalent elastic properties, an analysis of the numerical natural frequencies of oscillation
and the corresponding mode shapes could validate the CLPT model developed for vibrating composite
plates, besides giving further proof of the greater accuracy of the hierarchic model. In Table 8.4, the
natural frequencies of vibration determined experimentally, Exp, and numerically, Num, by Antunes [7]
and the natural frequencies computed by the dynamical model developed in this text are depicted and
compared. Also, in Appendix E, the mode shapes of vibration are represented.

The natural frequencies of vibration are approximated very well by our model, with only one of
the values having an error greater than 10%. Besides that, both numerical models used have the same
theoretical formulation, so the divergence in results can be attributed only to the differences between the
hierarchic model and the equivalent elastic properties obtained by Antunes [7]. As such, it was expected
that our model, in comparison to the numerical model of Antunes [7], would approximate better the
experimental results for the 0.05% SWCNTs plate, where, in fact, for its higher modes of vibration, there
was a significant improvement in the numerical frequencies.

Plate l1 /Hz l2 /Hz l3 /Hz l4 /Hz l5 /Hz l6 /Hz l7 /Hz

Reference

Exp 54.125 103.000 150.625 185.500 213.625 281.625 306.875
Num 49.81 109.9 149.5 205.8 228.3 304.0 311.4
CLPT 49.86 110.0 149.6 206.9 229.4 304.1 311.9

(−7.88%) (6.80%) (−0.68%) (11.5%) (7.38%) (7.98%) (1.64%)
Exp 49.125 97.125 139.500 180.750 203.875 267.000 287.250

0.01% Num 42.59 93.20 127.2 186.5 204.7 257.5 272.2
SWCNTs CLPT 46.28 101.3 138.2 193.6 214.3 279.9 290.2

(−5.79%) (4.30%) (−0.93%) (7.11%) (5.11%) (4.83%) (1.03%)
Exp 54.250 108.750 154.625 201.125 228.000 298.750 320.000

0.05% Num 50.97 111.5 152.2 222.0 243.9 308.1 325.6
SWCNTs CLPT 51.05 111.8 152.5 213.5 236.4 308.9 320.1

(−5.90%) (2.80%) (−1.37%) (6.15%) (3.68%) (3.40%) (0.03%)
Table 8.4: Comparison between the natural frequencies of vibration predicted by the numerical
model developed for vibrating composite plates (CLPT) and those obtained experimentally (Exp) and
numerically (Num) by Antunes [7].
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Finally, regarding the mode shapes of vibration, they are very similar to the ones obtained by the
experimental modal analysis and the numerical model of Antunes [7]. This was expected, as the values
of the properties of the plates are not very different in our model. Again, this fact helps validate the
implementation of the numerical program and assure us of the results obtained by the damping model, in
the next section.

8.2.4 Modal damping ratios

The last part of this chapter will provide a comparison between the experimental results obtained by
Antunes [7] for the modal damping ratios and the predictions of the damping model for plates, established
in this text. In Table 8.5, these results are presented, where Exp and SD represent the experimental values
obtained by Antunes [7] and their respective standard deviation and DM stands for the predictions of the
damping model.

Before proceeding to the analysis of these results, it must be noted that the experimental values
shown were obtained by the circle-fit method, because it was considered more reliable than the other
experimental method used in the work of Antunes [7]. Besides that, our damping model requires the
introduction of the inherent material damping due to the epoxy matrix and the carbon fibres, as it is only
capable of predicting the component of damping associated with CNT debonding. For this reason, we
used the values of the damping ratio measured experimentally by Antunes [7] for the reference plate to
represent this material damping, as it did not contain nanotubes.

The dampingmodel was able to produce relatively good results, where we have adjusted the amplitude
of vibration of the excitation point to � = 1 mm, because it seemed a reasonable amplitude for the force
transducer’s displacement. Obviously, the fact that we have not used the real amplitude of excitation will
introduce a systematic error that must be accounted for when evaluating this comparison. For a more

Plate b1 /% b2 /% b3 /% b4 /% b5 /% b6 /% b7 /%

Reference Exp 0.612 0.401 0.526 0.209 0.298 0.432 0.361
SD 0.033 0.034 0.029 0.021 0.031 0.024 0.026
Exp 0.677 0.446 0.644 0.120 0.255 0.553 0.414

0.01% SD 0.030 0.007 0.021 0.022 0.004 0.035 0.014
SWCNTs DM 0.626 0.434 0.540 0.247 0.314 0.449 0.384

(−7.53%) (−2.69%) (−16.2%) (106%) (23.1%) (−18.8%) (−7.25%)
Exp 0.763 0.488 0.586 0.380 0.319 0.568 0.446

0.05% SD 0.047 0.018 0.010 0.026 0.017 0.031 0.046
SWCNTs DM 0.805 0.464 0.714 0.209 0.495 0.624 0.540

(5.50%) (−4.92%) (21.8%) (−45.0%) (55.2%) (9.86%) (21.1%)
Table 8.5: Comparison between the modal damping ratios predicted by the damping model developed
for vibrating composite plates and those obtained experimentally by Antunes [7].
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(a) 0.01% SWCNTs plate. (b) 0.05% SWCNTs plate.

Figure 8.1: Graphical representation of the modal damping ratios predicted by the damping model and
of those experimentally determined by Antunes [7].

explicit presentation of the values represented in Table 8.5 we have the same data depicted in Figure
8.1. In these figures we have the experimental and our numerical values represented, as well as the
experimental data of the reference plate, which will serve as the material damping for the damping model.

From Figure 8.1 it is evident that our model produced the correct evolution of the damping ratio
throughout all modes of vibration. Besides this, almost all of the predictions never had a relative error
higher than 20%, with the exception of the 4th and 5th modes. Specially, the first two modes of vibration
were guessed with a good accuracy, which indicate that our model may predict, sufficiently well, the
damping behaviour of CNT-reinforced composite plates for structural applications, as the fundamental
mode can be the most important in many dynamical systems [1].

Although the results shown above are representative of the efficiency of the damping model, it would
be more useful to compare only the contribution of CNT debonding to the damping of the plates. Then,
the evolution of the component of the damping ratio due to interfacial slippage of nanotubes is shown in
Figure 8.2. In these plots, the experimental and numerical values of each respective plate are presented,
as well as the variability of the experimental results by the dashed and dotted lines. These lines are
calculated with the standard deviations of the experimental modal analysis, representing the error to
within one standard deviation away from the mean. The standard deviations shown in the dashed and
dotted lines are the sum of the standard deviations associated with the total modal damping ratios of the
plate and those regarding the reference plate, to cancel the damping effect of the matrix and the fibres.
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(a) 0.01% SWCNTs plate. (b) 0.05% SWCNTs plate.

Figure 8.2: Graphical representation of the component of the modal damping ratios, due to interfacial
slippage, predicted by the damping model and of those calculated by the experimental values obtained by
Antunes [7].

From these graphics, it is evident that modes 4 and 5 may have experimental errors, because the
contribution of CNT debonding to their damping ratios are negative for the 0.01% SWCNTs plate, which
mean that the CNTs decreased the global damping behaviour of the composite. Assuming the mechanics
of debonding are correctly captured by our model, it is not expected to decrease in such manner. In the
0.05% SWCNTs plate, these modes of vibration are the worst approximations as well, further proving
this point. Furthermore, the first two modes are contained in the uncertainty interval of one standard
deviation, while the 3th, 6th and 7th mode have greater divergences.

Although the damping model has successfully captured some of the essential features of the modal
damping ratios, there are significant errors in some of the modes of vibration. These can also be explained
by some rough assumptions we have made in the input variables. First of all, the modes have different
contributions to the final response of the plate, so the amplitude of vibration of each should be proportional
to its importance. Besides that, the amplitude of vibration of 1 mmmay not be the actual amplitude when
the measurements were made, leading to a systematic error, as previously stated. Also, the critical shear
stresses may not be constant or may not have the values described before.

This last analysis of the results obtained in the experiments performed by Antunes [7] provided an
insight on the validity of the damping model applied to laminated composite plates and the expected
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behaviour of the modal damping ratios with the concentration of CNTs. A deeper analysis of the
implications of the equations used in the damping model should be performed in order to understand
where to refine it.



Chapter 9

Conclusion

In this dissertation, a theoretical model regarding the effect of the concentration of CNTs on the stiffness
and damping characteristics of fibre-reinforced laminated composite plates was developed. Particularly,
its effect on the equivalent elastic properties, the natural frequencies and mode shapes of vibration and
the modal damping ratios was studied.

This model, which consists of three separate, although complementary, other models, was validated
against experimental and numerical data provided by many authors and also against the results of tensile
tests performed in this work. It is possible to say, with confidence, that the models described the actual
behaviour of the plates, as well as the other studied systems, sufficiently well to represent, at least, a basis
for a more refined model of the properties being studied.

In the following paragraphs, a brief conclusion on the results of the many chapters of this work is
presented, as well as some suggestions of important future work, regarding this matter. It is in the best
interest of the author that this work will serve as a starting point to a deeper understanding of the many
advantages and disadvantages of the use of CNTs as an additive in fibre-reinforced composites.

9.1 Conclusions

First, the hierarchic model has produced very good results when compared against experimental and
numerical evidence in the bibliography. It is adequate for the linear behaviour of the elastic properties,
when low concentrations of CNTs, below 1%, are added to the matrix. Both the longitudinal Young’s
modulus and the Poisson’s ratio have been accurately described by the model, whereas the transverse
Young’smodulus and the shearmoduluswere not approximatedwith the same degree of precision. In spite
of this, these last two properties, which are commonly known to be worse modelled by micromechanics
models, were very accurately determined in some of the comparisons, this being a point in favour of the
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extended Fu model.

Although the experimental tensile tests produced results with a great degree of variability, even
varying considerably amongst tests of the same laboratory, the apparent behaviour of increasing stiffness
with increasing CNT concentration could be observed. Besides this, the variation in the Poisson’s ratio
was almost non-existent, further proving the validity of the assumption that the CNTs do not contribute
to a change on the Poisson’s ratio of the matrix. It was of little interest for the modelling of the composite
plates, however the evolution of the tensile strength, observed in the tensile tests, also followed the general
trend of increasing with the concentration of CNTs, as defended by many authors, in their works.

The damping model, although not as precise as the hierarchic model for the equivalent elastic
properties, has been compared to several experimental and numerical results, on different mechanical
systems, such as beams or plates, and the general shape and behaviour of the dependence curves of the
loss factor, with the concentration of CNTs and the amplitude of vibration, was observed to be well
captured. Mainly, the fundamental mode of vibration was modelled with a great degree of accuracy,
leading to the conclusion that it is capable of predicting the interfacial interactions between nanotubes
and the matrix of the composite.

However, some problems and inconsistencies appeared as a consequence of some of the assumptions
in this analysis. For example, the linear vibrations model relies on a non-linearity in the damping model to
produce results, which suggest that the FEMmodel should be extended to account for a general non-linear
behaviour of the dynamical system. Also, the damping model is completely dependent on the critical
shear stresses for debonding, which are difficult properties to be measured accurately. Besides this, the
model is only valid, as a rule of thumb, for values of weight fraction of CNTs below 1%, as it relies on
the hierarchic model, leading to a rather short spectre of values for this parameter. The damping model
also encounters some difficulties when applied to fibre-reinforced composites, as it provides better results
when the fibres are neglected in the analysis, which, at first, do not seem a reasonable assumption.

The p-version FEM model of vibrating composite plates also described very well the natural
frequencies and mode shapes of oscillation of fibre-reinforced composite plates with carbon nanotubes.
It was expected that the mode shapes would not change a lot, considering that the nanotubes should
not have a large effect on the stiffness of the plates, however the natural frequencies provided were very
accurately simulated, with very small errors.

Finally, all the experimental, numerical and theoretical data collected and reviewed indicate that,
although the CNTs do not increase considerably the stiffness of multiscale composites, their effect on the
damping behaviour of composite beams and plates is very significant, which could be of importance in
future works. Perhaps, a laminated fibre-reinforced composite plate made by stacking many plies, could
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use some with just resin and CNTs, so that the damping of the overall composite is increased, without
a considerable decrease on its stiffness and with a very little concentration of CNTs per weight of the
global composite.

9.2 Future work

Regarding the continuity of the work done in this dissertation, there are many improvements that would
refine the theoretical models developed and also many other experimental results that would complete
those performed in the limited amount of time, for which this thesis had lasted. Some of the suggested
future work are:

• Further refine the hierarchic model for the equivalent elastic properties of multiscale composites,
so that results closer to the experimental values are obtained, specially for higher concentrations of
CNTs and carbon fibres;

• Develop a stiffness model for multiscale composites based on the Mori-Tanaka model and compare
it with the current hierarchic model to assess if the Mori-Tanaka approach, although more complex,
gives better results than the one from the Halpin-Tsai equations, which provide the foundation of
the current model;

• Carry out a more profound study on the mechanisms for CNT debonding and interfacial slippage in
CNT-reinforced composites, so that a more refined version of the damping model can be developed,
as to predict more accurately the damping characteristics of composite dynamical systems with
carbon nanotubes;

• Study the behaviour of CNT-reinforced composite dynamical systems, such as beams and plates,
when a non-linear analysis of the vibrations is considered, due to the hysteretic model for damping
being proportional to the amplitude of the oscillation, thus introducing non-linearities;

• Manufacture composites reinforced with MWCNTs to evaluate the differences between SWCNTs
and MWCNTs experimentally, through tensile tests on specimens and modal analysis on beams
and plates;

• Study optimal configurations, with different stacking sequences, of CNT-reinforced laminated
composite plates, as to fine tune the damping and stiffness characteristics of such systems, for some
particular practical applications.
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Appendix A

Materials technical data sheets

A.1 Epoxy resin: SiPreg SR 121 / KTA 315 (Sicomin)
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SR 121 KTA 31x 
Page 1 / 6 

Version 24/01/2014 

Sicomin, 31 avenue de la Lardière, 13220 Châteauneuf les Martigues, France 
T: +33 (0)4 42 42 30 20  /  F: +33 (0)4 42 81 29 29  /  E: info@sicomin.com  / www.sicomin.com 

 
SiPreg SR 121 / KTA 31x 

Epoxy systems for "In House" Prepregging 
 
Systems for in house prepregging.  
Low viscosity systems suitable for manual or mecanical impregnation of fabrics, filaments, 
braids, stitched reinforcements.   
Suitable for filament winding. 
90 °C maximum working temperature 
Post curing can be between 80 °C up to 150 °C 
Two component systems without solvent, without reactive diluent, with no toxic nor CMR 
components  
The 2 components are stable in storage for at least one year 
Store the prepregged fabrics away from humidity 

 
Epoxy Resin SR 121 

 
 
 
 
 
 
 
 
 
 
 
 
  
  
 
 
 
 
 

Hardeners KTA 31x 
 

KTA 317 KTA 315 KTA 313 KTA 311 

Aspect / color: Viscous liquid Viscous liquid Viscous liquid Viscous liquid 
Color White White White White 
Reactivity Very fast Fast Slow Very slow 
Dry extract 100 % 
Storage stability Decants, thus mix before use 

Do not leave exposed to air, close container after use  
Viscosity (mPa.s) 
Rheomèter 
CP 50 mm 
Shear  gradient 10 s-1 

 

 
@ 15 °C 
@ 20 °C 
@ 25 °C 
@ 30 °C 
@ 40 °C  

 
16 000 ± 3 000 
12 000 ± 2 000 
9 000 ± 1 500 
7 500 ± 1 500 
5 500 ± 1 000 

 
10 000 ± 2 000 
6 500 ± 1 000 
4 800 ± 1 000 
3 800 ± 800 
2 800 ± 600 

 
11 000 ± 2 000 
7 700 ± 1 500 
5 700 ± 1 000 
4 500 ± 800 
3100 ± 600 

 
14 000 ± 3 000 
9 000 ± 2 000 
6 800 ± 1 500 
6 100 ± 1 000 
5 500 ± 1 000 

Density 
Picnometer 
NF EN ISO 2811-1  

@ 20 °C 
 

1.07 1.13 1.13 1.13 

 

Aspect     Liquid 
Color 
Color Gardner 

 Clear to light yellow 
2 maximum 

   
Viscosity  (mPa.s) 
Rheometer 
CP 50 mm 
Shear gradient  
10 s-1 

@ 15 °C 
@ 20 °C 
@ 25 °C 
@ 30 °C 
@ 40 °C 

24 500 ± 3 000  
  9 800 ± 1 000 

4 500 ± 800 
2 300 ± 400 
   750 ± 200 

Dry Extract  100 % 
Density :  
Picnometer 
NF EN ISO 2811-1  

@ 20 °C 1.176 ± 0.05 

Refraction Index  1.5760 
   
Storage Stability :   24 month, does not cristalize 
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SR 121 KTA 31x 
Page 2 / 6 

Version 24/01/2014 

Sicomin, 31 avenue de la Lardière, 13220 Châteauneuf les Martigues, France 
T: +33 (0)4 42 42 30 20  /  F: +33 (0)4 42 81 29 29  /  E: info@sicomin.com  / www.sicomin.com 

 
Mix SR 121 / KTA 31x  

 SR 121 /  
KTA 317 

SR 121 /  
KTA 315 

SR 121 /  
KTA 313 

SR 121 /  
KTA 311 

 Mixing ratio by weight 100 / 21  

Mixing ratio by volume 100 / 23  100 / 22  100 / 22  100 / 22  

     
Initial Viscosity (mPa.s)      

Rheometer 
PP 50 mm 
Shear gradient  
10 s-1 

 @ 20 °C 
@ 30 °C 
@ 40 °C 

5 600 
1 800 
780 

6 600 
2 200 
1 000 

7 000 
2 300 
1 000 

5 700 
3 400 
1 000 

 
 
Minimum ageing required 
before process 

 
24 hrs @ 23 °C 

 
24 hrs @ 23 °C 

 
24 hrs @ 23 °C 

 
48 hrs @ 23 °C 

or 
16 hrs 40 °C 

 
Storate stability of the 
prepregged fabrics  
            @ -18 °C 
            @ 20°C 
            @ 40 °C 

 
 
 

6 months 
7 
2 
 

 
 
 

6 months 
15 
5 

 
 
 

1 year 
60 days 
10 days 

 
 
 

1 year 
> 60 days 
> 20 days 

 
Flow 

 
None 

 
None 

 
Yes 

 
Important 
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Sicomin, 31 avenue de la Lardière, 13220 Châteauneuf les Martigues, France 
T: +33 (0)4 42 42 30 20  /  F: +33 (0)4 42 81 29 29  /  E: info@sicomin.com  / www.sicomin.com 

 
Mechanical properties of pure epoxy (non reinforced): 

 

 SR 121 /  
KTA 315 

SR 121 /  
KTA 313 

SR 121 /  
KTA 311 

Curing cycle  
12h à 30°C +  
4h à 60°C +  
2h à 120°C 

12h à 30°C + 
4h à 60°C + 
2h à 120°C 

12h à 30°C + 
4h à 60°C + 
2h à 120°C 

Traction 
Modulus 
Maximum Resistance 
Breaking Strength 
Elongation at maximum load 
Elongation at break 

 
N/mm2 

N/mm2 

N/mm2 

% 
% 

 
3300 
75 
72 
3,5 
3,5 

 
3700 

65 
65 
2 
2 

3600 
80 
80 
2,8 
2,8 

Flexion 
Modulus 
Maximum Resistance 
Elongation at maximum load 
Elongation at break 

 
N/mm2 

N/mm2 

% 
% 

 
3300 
129 

5 
5,2 

 
3700 
152 
5,8 
6,5 

3500 
153 
5,9 
7,1 

Choc Charpy 
Résilience 

 
kJ/m2 14 14 17 

Transition vitreuse 
Tg1 / onset 
Tg1 max 

 
°C 
°C 

116 
116 

 
104 
112 

107 
113 

 Essais réalisés sur des éprouvettes de résine pure coulée,  sans dégazage préalable, entre des plaques en acier. 
Mesures effectuées suivant les normes : 
Traction :   NF  T51-034 
Flexion :                   NF  T51-001 
Compression:    NF   T 51-101 
Choc Charpy:   NF   T51-501 
Transition vitreuse:  ISO 11357-2 : 1999   -5°C/180°C sous azote 
 Tg1 ou Onset :  1er  point à 20 °C/mn  
Tg1 maximum ou Onset : deuxième passage  
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A.2 Single-walled carbon nanotube: SA-ML-2 (NANOSHEL)
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A.3 Carbon fibre: Tenax®-E HTS45 12K (Teĳin Carbon Europe Gmbh)
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Tenax®-J HTA40 E15 1K 67tex 15S 4100 240 1,7 7,0 1,77 EP 2,5 

Tenax®-E HTA40 E13 3K 200tex  4100 240 1,7 7,0 1,77 EP 1,3 

Tenax®-E HTA40 E13 3K 200tex 15Z 4100 240 1,7 7,0 1,77 EP 1,3 

Tenax®-J/E HTA40 E13 6K 400tex  4100 240 1,7 7,0 1,77 EP 1,3 

Tenax®-E HTA40 E13 6K 400tex 10Z 4100 240 1,7 7,0 1,77 EP 1,3 
             
Tenax®-J HTS40 E13 3K 200tex  4400 240 1,8 7,0 1,77 EP 1,3 

Tenax®-J HTS40 E13 6K 400tex  4400 240 1,8 7,0 1,77 EP 1,3 

Tenax®-E HTS40 F13 12K 800tex  4400 240 1,8 7,0 1,77 PU 1,0 

Tenax®-E HTS40 F13 12K 800tex 10Z 4400 240 1,8 7,0 1,77 PU 1,0 

Tenax®-E HTS40 F13 24K 1600tex   4400 240 1,8 7,0 1,77 PU 1,0 

Tenax®-E HTS40 F13 24K 1600tex  5Z 4400 240 1,8 7,0 1,77 PU 1,0 

Tenax®-E HTS45 E23 3K 200tex  4500 235 1,9 7,0 1,77 EP 1,3 

Tenax®-E HTS45 E23 3K 200tex 15Z 4500 235 1,9 7,0 1,77 EP 1,3 

Tenax®-E HTS45 E23 12K 800tex  4500 240 1,9 7,0 1,77 EP 1,3 

Tenax®-E HTS45 E23 12K 800tex 10Z 4500 240 1,9 7,0 1,77 EP 1,3 

Tenax®-E HTS45 P12 12K 800tex  4500 240 1,9 7,0 1,77 TP 0,5 
             
Tenax®-E STS40 E23 24K 1600tex   4300 240 1,8 7,0 1,78 EP 1,3 

Tenax®-E STS40 F11 24K 1600tex   4300 240 1,8 7,0 1,78 PU 0,17 

Tenax®-J/E STS40 F13 24K 1600tex   4300 240 1,8 7,0 1,78 PU 1,0 

Tenax®-J/E STS40 F13 48K 3200tex   4300 250 1,7 7,0 1,77 PU 1,0 

Tenax®-J/E STS40 F13 48K 3200tex  CP 4300 250 1,7 7,0 1,77 PU 1,0 

             
Tenax®-J UTS50 F13 12K 800tex  5100 245 2,1 7,0 1,78 PU 1,0 

Tenax®-J UTS50 F22 12K 800tex S 5100 245 2,1 7,0 1,78 PU 0,8 

Tenax®-J/E UTS50 F24 24K 1600tex DCP 5100 245 2,1 7,0 1,78 PU 2,0 

             
Tenax®-E ITS50 F23 24K 1600tex D 5100 265 1,9 7,0 1,80 PU 1,0 

             
Tenax®-J IMS60 E13 24K 830tex  5800 290 2,0 5,0 1,79 EP 1,3 

Tenax®-E IMS65 E23 24K 830tex  6000 290 2,1 5,0 1,78 EP 1,3 

Tenax®-E IMS65 P12 24K 830tex  6000 290 2,1 5,0 1,78 TP 0,8 
Tenax®-J UMS40  F23 24K 800tex S 4700 390 1,2 4,9 1,79 PU 1,0 
             
Tenax®-J UMS45 F22 12K 385tex  4600 425 1,1 4,7 1,83 PU 0,8 

             
Tenax®-J  HTS40  A23 12K 1420tex MC 2900 230 1,3 7,5* 2,70 PU 1,3 

 * inkl. 0,25 µm Nickel 

• Please contact our sales team any time, for choosing the right type. The stated numbers are typical values. For design purposes 
please request a fiber specification. 

• Please note the application (aerospace or industry & sports) on your order.  

• The export or transfer of carbon fibers can be subject to authorization, depending on end-use and final destination. 
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Appendix B

Tensile tests: load - displacement curves

(a) Reference 1 - Specimen 1. (b) Reference 1 - Specimen 2.

(c) Reference 1 - Specimen 3. (d) Reference 1 - Specimen 4.
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148 Tensile tests: load - displacement curves

(e) Reference 1 - Specimen 5. (f) Reference 1 - Specimen 6.

Figure B.1: Load - displacement curves of the specimens of reference 1 (Epoxy Resin).

(a) Reference 2 - Specimen 1. (b) Reference 2 - Specimen 2.

(c) Reference 2 - Specimen 3. (d) Reference 2 - Specimen 4.
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(e) Reference 2 - Specimen 5. (f) Reference 2 - Specimen 6.

Figure B.2: Load - displacement curves of the specimens of reference 2 (0.05 CNT Normal).

(a) Reference 3 - Specimen 1. (b) Reference 3 - Specimen 2.

(c) Reference 3 - Specimen 3. (d) Reference 3 - Specimen 4.
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(e) Reference 3 - Specimen 5. (f) Reference 3 - Specimen 6.

Figure B.3: Load - displacement curves of the specimens of reference 3 (0.05 CNT SDBS).

(a) Reference 4 - Specimen 1. (b) Reference 4 - Specimen 2.

(c) Reference 4 - Specimen 3. (d) Reference 4 - Specimen 4.
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(e) Reference 4 - Specimen 5. (f) Reference 4 - Specimen 6.

Figure B.4: Load - displacement curves of the specimens of reference 4 (0.05 CNT Triton).

(a) Reference 5 - Specimen 1. (b) Reference 5 - Specimen 2.

(c) Reference 5 - Specimen 3. (d) Reference 5 - Specimen 4.



152 Tensile tests: load - displacement curves

(e) Reference 5 - Specimen 5. (f) Reference 5 - Specimen 6.

Figure B.5: Load - displacement curves of the specimens of reference 5 (0.05 CNT High).

(a) Reference 6 - Specimen 1. (b) Reference 6 - Specimen 2.

(c) Reference 6 - Specimen 3. (d) Reference 6 - Specimen 4.
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(e) Reference 6 - Specimen 5. (f) Reference 6 - Specimen 6.

Figure B.6: Load - displacement curves of the specimens of reference 6 (0.1 CNT High).

(a) Reference 7 - Specimen 1. (b) Reference 7 - Specimen 2.

(c) Reference 7 - Specimen 3. (d) Reference 7 - Specimen 4.
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(e) Reference 7 - Specimen 5. (f) Reference 7 - Specimen 6.

Figure B.7: Load - displacement curves of the specimens of reference 7 (0.2 CNT High).



Appendix C

Tensile tests: stress - strain curves

(a) Reference 1 - Specimen 1. (b) Reference 1 - Specimen 2.

(c) Reference 1 - Specimen 3. (d) Reference 1 - Specimen 4.
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156 Tensile tests: stress - strain curves

(e) Reference 1 - Specimen 5. (f) Reference 1 - Specimen 6.

Figure C.1: Stress - strain curves of the specimens of reference 1 (Epoxy resin).

(a) Reference 2 - Specimen 1. (b) Reference 2 - Specimen 2.

(c) Reference 2 - Specimen 3. (d) Reference 2 - Specimen 4.
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(e) Reference 2 - Specimen 5. (f) Reference 2 - Specimen 6.

Figure C.2: Stress - strain curves of the specimens of reference 2 (0.05 CNT Normal).

(a) Reference 3 - Specimen 1. (b) Reference 3 - Specimen 2.

(c) Reference 3 - Specimen 3. (d) Reference 3 - Specimen 4.



158 Tensile tests: stress - strain curves

(e) Reference 3 - Specimen 5. (f) Reference 3 - Specimen 6.

Figure C.3: Stress - strain curves of the specimens of reference 3 (0.05 CNT SDBS).

(a) Reference 4 - Specimen 1. (b) Reference 4 - Specimen 2.

(c) Reference 4 - Specimen 3. (d) Reference 4 - Specimen 4.
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(e) Reference 4 - Specimen 5. (f) Reference 4 - Specimen 6.

Figure C.4: Stress - strain curves of the specimens of reference 4 (0.05 CNT Triton).

(a) Reference 5 - Specimen 1. (b) Reference 5 - Specimen 2.

(c) Reference 5 - Specimen 3. (d) Reference 5 - Specimen 4.



160 Tensile tests: stress - strain curves

(e) Reference 5 - Specimen 5. (f) Reference 5 - Specimen 6.

Figure C.5: Stress - strain curves of the specimens of reference 5 (0.05 CNT High).

(a) Reference 6 - Specimen 1. (b) Reference 6 - Specimen 2.

(c) Reference 6 - Specimen 3. (d) Reference 6 - Specimen 4.
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(e) Reference 6 - Specimen 5. (f) Reference 6 - Specimen 6.

Figure C.6: Stress - strain curves of the specimens of reference 6 (0.1 CNT High).

(a) Reference 7 - Specimen 1. (b) Reference 7 - Specimen 2.

(c) Reference 7 - Specimen 3. (d) Reference 7 - Specimen 4.



162 Tensile tests: stress - strain curves

(e) Reference 7 - Specimen 5. (f) Reference 7 - Specimen 6.

Figure C.7: Stress - strain curves of the specimens of reference 7 (0.2 CNT High).



Appendix D

Tensile tests: transversal - longitudinal
strain curves

(a) Reference 1 - Specimen 5. (b) Reference 1 - Specimen 6.

Figure D.1: Transversal - longitudinal strain curves of the specimens of reference 1 (Epoxy resin).

(a) Reference 2 - Specimen 5. (b) Reference 2 - Specimen 6.

Figure D.2: Transversal - longitudinal strain curves of the specimens of reference 2 (0.05 CNT Normal).
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164 Tensile tests: transversal - longitudinal strain curves

(a) Reference 3 - Specimen 5. (b) Reference 3 - Specimen 6.

Figure D.3: Transversal - longitudinal strain curves of the specimens of reference 3 (0.05 CNT SDBS).

(a) Reference 4 - Specimen 5. (b) Reference 4 - Specimen 6.

Figure D.4: Transversal - longitudinal strain curves of the specimens of reference 4 (0.05 CNT Triton).

(a) Reference 5 - Specimen 5. (b) Reference 5 - Specimen 6.

Figure D.5: Transversal - longitudinal strain curves of the specimens of reference 5 (0.05 CNT High).



Appendix E

Numerical mode shapes

(a) Mode 1. (b) Mode 2.

(c) Mode 3. (d) Mode 4.
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(e) Mode 5. (f) Mode 6.

(g) Mode 7.

Figure E.1: Numerical mode shapes for the 0.01% SWCNTs plate.

(a) Mode 1. (b) Mode 2.
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(c) Mode 3. (d) Mode 4.

(e) Mode 5. (f) Mode 6.

(g) Mode 7.

Figure E.2: Numerical mode shapes for the 0.05% SWCNTs plate.
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