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Multi-scale attention networks for pavement defect
detection

Junde Chen, Yuxin Wen, Yaser Ahangari Nanehkaran, Defu Zhang, Member, IEEE, and Adan Zeb

Abstract—Pavement defects such as cracks, net cracks, and
pit slots can cause potential traffic safety problems. The timely
detection and identification play a key role in reducing the harm
of various pavement defects. Particularly, the recent development
in deep learning-based CNNs has shown competitive performance
in image detection and classification. To detect pavement defects
automatically and improve effects, a multi-scale mobile attention-
based network, which we termed MANet, is proposed to perform
the detection of pavement defects. The architecture of the
encoder-decoder is used in MANet, where the encoder adopts
the MobileNet as the backbone network to extract pavement
defect features. Instead of the original 3×3 convolution, the multi-
scale convolution kernels are utilized in depth-wise separable
convolution layers of the network. Further, the hybrid attention
mechanism is separately incorporated into the encoder and
decoder modules to infer the significance of spatial points and
inter-channel relationship features for the input intermediate
feature maps. The proposed approach achieves state-of-the-art
performance on two publicly-available benchmark datasets, i.e.,
the Crack500 (500 crack images with 2,000×1,500 pixels) and
CFD (118 crack images with 480×320 pixels) datasets. The
mean intersection over union (MIoU ) of the proposed approach
on these two datasets reaches 0.7219 and 0.7788, respectively.
Ablation experiments show that the multi-scale convolution and
hybrid attention modules can effectively help the model extract
high-level feature representations and generate more accurate
pavement crack segmentation results. We further test the model
on locally collected pavement crack images (131 images with
1024×768 pixels) and it achieves a satisfactory result. The pro-
posed approach realizes the MIoU of 0.6514 on the local dataset
and outperforms other compared baseline methods. Experimental
findings demonstrate the validity and feasibility of the proposed
approach and it provides a viable solution for pavement crack
detection in practical application scenarios. Our code is available
at https://github.com/xtu502/pavement-defects.

Index Terms—Pavement defect detection, deep neural network,
multi-scale convolution, attention module, image identification.

I. INTRODUCTION

PAVEMENT defect detection is a challenging task in traffic
transportation maintenance. Defects on the surface of the

Corresponding author: Yuxin Wen
J. Chen and Y. Wen are with the Dale E. and Sarah Ann Fowler

School of Engineering, Chapman University, CA 92866, USA. (e-
mail:jundchen@chapman.edu; yuwen@chapman.edu).

J. Chen is with the School of Informatics, Xiamen University, Xiamen
361005, China, and also with the Department of Electronic Commerce,
Xiangtan University, Xiangtan 411100, China.

Y.A. Nanehkaran is with the School of Information Engineering, Yancheng
Teachers University, Yancheng 224000, China (e-mail: yaser@yctu.edu.cn).

D. Zhange is with the School of Informatics, Xiamen University, Xiamen
361005, China (e-mail: dfzhang@xmu.edu.cn).

A. Zeb is with the southern university of science and Technology, Shenzhen
518000, China. (e-mail: adnanzeb@sustech.edu.cn).

Manuscript received Nov 2, 2022.

road may distress people’s traveling and cause economic loss if
these defects are not properly checked and maintained in time
[1]. Therefore, the detection of pavement defects is one of the
vital tasks in road maintenance operations and has attained
increasing attention in recent years. Nevertheless, the conven-
tional manual approaches relying on visual observations of
experienced specialists or inspectors are dangerous, inefficient,
error-prone, labor-intensive, costly, and cannot be extended in
large areas [2]-[5]. To promote the advancement of pavement
checks and alleviate the workload of experts, it is necessary to
realize the automation of defect detection. Hence, there are a
great demand and important realistic significance to develop an
efficient, fast, and accurate tool to automatically detect various
pavement defects.

The new era of pavement defect detection is being presented
with the rapid advancement of digital cameras and image
processing techniques, which delivers a scientific basis for
the automatic detection of pavement defects using road defect
images. Automatic crack detection based on image processing
techniques can be generally divided into three types: classifi-
cation [1], [4], object detection [6], [23], and pixel-level de-
tection [7], [20]. Pixel-level crack detection is the most critical
task as it can provide more information about cracks, including
the area, shape, and orientation, which is useful for identifying
the severity level of infrastructure defects [20]. In the early
days, threshold-based methods were usually employed to
detect defect regions depending on the assumption that the
real defect pixel is consistently darker than its surroundings.
Kaseko et al. [8] used an auto-thresholding technique to
perform pavement crack detection and their research results
demonstrated the potential and feasibility of the proposed
approach. Using the threshold-based method, Liu et al. [9]
developed an automated pavement distress inspection system
to recognize pavement cracks, and their findings showed that
the pavement crack was identified accurately. Nonetheless, the
thresholding methods can only generate discontinuous defect
fragments because the intensity along the defect may not
always be lower than that of the backgrounds. Additionally,
road shadows usually produce non-uniform illuminance in
pavement images, which can further weaken the effects of
the thresholding methods. Edge detection-based methods have
also been proposed for pavement defect detection [10], [11],
but they are susceptible to low contrast between the defect
regions and the backgrounds, thereby misclassifying some
speckle noises as defect fragments. Apart from that, some
wavelet-transform based approaches have been applied to
detect pavement defects as well [12], [13]. These methods
detect defects efficiently, however, they cannot handle cracks
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with low continuity or high curvature well owing to the
anisotropic characteristic of the wavelet. In the recent decade,
major machine learning (ML) algorithms, such as support
vector machine (SVM) [14], artificial neural networks (ANN)
[8], [16], random forests (RF) [15], and Adaboost [17], have
attained popularity in the field of image recognition and are
commonly employed in pavement defect detect applications.
In [14], Quintana et al. utilized the SVM model to iden-
tify pavement defects by splitting up the image into small
patches as the input. Chen et al. [16] adopted a block-based
ANN method for the detection of road defects and achieved
promising performance. In [17], the AdaBoost method was
used to identify pavement defects from road surface images
based on textural information, etc. Although impressive results
have been reported in the literature, the ML-based methods
are greatly dependent upon hand-crafted features. Due to the
complex pavement conditions, it is hard to exploit effective
characteristics for all pavements.

Most recently, deep learning (DL), particularly convolution
neural networks (CNN), has been developed to address most
computer vision tasks due to its outstanding representation
capability. Some works have also been dedicated to leveraging
the property of DL for the detection of pavement defects
[18]-[27]. For example, Choi and Young-Jin [18] proposed an
original CNN architecture named SDDNet, which consists of
multiple modules, such as standard convolutions and densely
connected separable convolution modules. Although promising
results are obtained, this model has high computational com-
plexity. The dense connections increase the amount of calcu-
lation and consume more memories. Using a deep hierarchical
CNN, Liu et al.[19] built an end-to-end network called Deep-
Crack for pixel-wise crack segmentation. Many downsampling
layers are used in their network, resulting in lost spatial
resolution on the feature maps, which is difficult to recover
in upsampling layers and sacrifices much performance in thin
crack detection. Chen and Huiping [20] recommended a hybrid
atrous CNN named HACNet for crack detection. Despite rea-
sonable good results reported, it is hard to determine various
dilation rate settings and the gridding issue is also a challenge
for atrous convolutions. Based on a Holistically-nested edge
detector, Yang et al. [21] proposed a Feature Pyramid and
Hierarchical Boosting Network (FPHBN) to detect pavement
cracks. Multi-scale feature extraction is performed by their
method, however, it is developed on standard convolutions
with a relatively large number of parameters. Besides, the
edge detection-based method is easily affected by the possible
low contrast between the defect regions and the backgrounds,
as mentioned previously. In another work, reference [22]
introduced a method of splitting the image into different
blocks and CNN to detect whether the block had defects
or not. However, this approach is inconvenient due to image
splitting and it is sensitivity to patch scale. In [23], Schmugge
et al. applied a CNN-based object detection method to im-
plement crack detection from multiple overlapping frames
in a video. But their method neglects the spatial relations
between pixels and also overvalues crack width. Similarly,
using a Faster Region-based Convolutional Neural Network
(Faster R-CNN) architecture, Cha et al. [24] reported a visual

inspection method for detecting multiple damage types. An
impressive performance is obtained by the model, however,
their method relies on more manual annotation information
like the bounding box, key points, and coordinate information
of target objects. In practice, it is time-consuming and labor-
intensive to obtain a large amount of annotation information
for model training. To address these critical challenges, Ali
and Young-Jin [25] developed an attention-based generative
adversarial network (GAN) to generate new synthetic images
for training the damage segmentation model. Nevertheless,
the attention-based GAN is just used for data augmentation
rather than damage segmentation tasks. Moreover, the atten-
tion mechanism presented in their study only considers pixel
relationships regardless of their spatial features. In another
research, Zhang et al. [26] trained a CNN model to identify
the category for each pixel of images, while they still relied on
manually designed feature extractors and just utilized CNN as
a classifier. Besides, the fixed feature extractor also prevented
the popularization of their method.

Despite the limitation, the latest studies have demonstrated
the effectiveness of CNN-based methods. In this study, we
propose an end-to-end network architecture, namely MANet,
to perform the detection of pavement defects. Precisely, the
MobileNet is chosen as the backbone extractor, and to enlarge
the convolutional receptive field, we modify the architecture
of classical MobileNet. The multi-scale convolution kernels
are utilized instead of the existing 3×3 convolution kernels
in depth-wise separable convolution layers. Then, to infer
the significance of spatial points and channel interdependency
features, a hybrid attention mechanism is incorporated into our
network, where the attention modules are embedded into both
the encoder and the decoder modules. Experimental findings
indicate the effectiveness and feasibility of the proposed ap-
proach. To summarize, the major contributions of this paper
can be recapitulated as follows.

• We have collected a pavement defect image dataset from
real-life pavement scenarios. 4 types of pavement defects
including crack, net crack, map crack, and pit slot along
with one normal category were collected in this dataset.
This dataset is expected to facilitate further research on
pavement defect detection.

• The MobileNet is chosen as the backbone extractor,
and the multi-scale depthwise separable convolutions are
substituted for the original ones to enlarge the convolution
receptive fields and improve the richness of modeling
feature information.

• The hybrid attention mechanism which consists of spatial
and channel-wise attention modules is embedded into
the encoder and decoder compositions of the network
to separately learn the significance of spatial points and
achieve the maximum reuse of inter-channel relation
features.

• In addition to detecting whether there are defects in
the pavement, the method proposed in this paper also
identifies the specific types of pavement defects.

The remainder of this paper is structured as follows. Section
II displays the dataset of pavement defect images used and
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primarily discusses the methodology. Section III dedicates to
the algorithm experiments, with a comparative analysis of
the experimental results. Finally, Section IV summarizes the
research and points out the direction of future work.

II. MATERIALS AND METHODS

A. Image Datasets

In this work, two publicly available datasets and one locally
collected dataset are used for our experiments. The first pub-
licly available dataset is the CRACK500 [21], which primarily
includes cracking defect images comprised of 500 pavement
defect samples with a uniform size of 2,000×1,500 pixels
for each image. These crack images have been annotated
by a pixel-level binary map (ground truth), and each sample
image is cropped into 16 non-overlapped patches that each
patch contains more than 1,000 pixels of crack kept. As a
consequence, 1,896 training images, 348 validation images,
and 1,124 test images are included in this dataset, which
is currently the largest open-access pavement crack dataset
with pixel-wise annotation [21]. Another dataset is the CFD
dataset [2], which consists of 118 images collected from urban
pavement conditions in Beijing, China. The size of each image
in the CFD dataset is 480×320 pixels and all the images have
been manually labeled with ground truth contours. The device
applied to acquire the photographs is an iPhone5 with a 4mm
focus, f/2.4 aperture, and 1/135s exposure time. Also, the CFD
dataset is used for evaluating the model. Fig. 1 displays the
partial crack sample images on the publicly available datasets.

Fig. 1: Sample images of CRACK500 and CFD datasets.

To take more crack types into consideration, we have
performed a widespread collection of pavement defect im-
ages photographed under practical pavement scenarios with
heterogeneous background conditions and varied illumination
intensities. Most pavement defect images were captured using
a consumer-level color digital camera with Nikon S3100,
which was used to photograph without digital or optical zoom
and with flash always off. Some other images were obtained
from publicly available sources through popular search engines
like Google, Yahoo, Baidu, and Bing. As a consequence, a
total of 131 pavement defect images with 4 types including
crack, net crack, map crack, and pit slot are captured in our
experiments. All the images are uniformly processed into the
RGB model using Photoshop software, and then the sizes of
images are adjusted to 1024 × 768 pixels. Fig. 2 presents
the sample images and specification information of pavement

defects, including the crack width, average seam width, block
size, and defect area.

Fig. 2: The typical pavement defect types.

B. Related Work

1) MobileNet: MobileNet is a mobile-first convolution
neural network designed to efficiently maximize accuracy
while considering the restriction of computational resources
for deploying deep learning applications [28]. Based on a
streamlined structure, MobileNet adopts depth-wise separable
convolutions (DSConv) to construct lightweight CNNs and
it decomposes a regular convolution into two compositions
including a depth-wise convolution (DConv) and a 1×1 con-
volution named point-wise convolution (PConv). For the input
feature map, the DConv with one filter is first performed on
each channel, and thus the results of DConv are implemented
with the PConv to obtain the final output results of DSConv.
The formulas of DConv and PConv are presented in Eqs. (1,2),
respectively.

DConv(θd, y)(i,j) =
W∑

w=0

H∑
h=0

θd(w,h) ⊙ y(i+w,j+h), (1)

PConv(θp, y)(i,j) =
L∑

l=0

θl × y(i,j,k), (2)

where θ signifies the weights of convolutional kernels, H and
W imply the height and width of the images, respectively. (i,j)
index the position of images, ⊙ symbolizes the dot products of
elements, L denotes the number of channels, and y represents
the input images. Further, the calculation of DSConv can be
written as

DSConv(θp, θd, y)(i,j) = PConv(i,j)(θp, DConv(i,j)(θd, y)).
(3)

MobileNet explicitly incorporates the DSConv as its core
component of network architecture, which consists of a 3×3
DConv layer followed by a Batch Normalization (BN) and
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Rectified Linear Unit (ReLU) layer, 1×1 PConv layer followed
by a BN and ReLU layer, Global Average Pooling (GAP)
layer, Dropout layer, and fully-connected (FC) layer. Fig. 3
portrays the key difference between the MobileNet and other
conventional CNNs.

Fig. 3: Basic blocks of MobileNet.

2) Attention Mechanism: Similar to human visual attention,
the attention mechanism in deep CNNs can make the model
keep attention on useful information while ignoring unwanted
noises. Attention mechanisms [29], [30] have proven helpful in
numerous computer vision tasks including image segmentation
[31]-[33] and classification [34]-[36]. They have also shown
state-of-the-art performance in the internal damage image seg-
mentation [37], [38]. One of the most typical representatives
is SENet [39], which simply squeezes each 2D feature map
to recalibrate the weights between channels. Although it can
efficiently build interdependencies among channels, the SENet
only involves channel attention while ignoring spatial atten-
tion. Woo et al. [36] further advanced this idea by introducing
a spatial attention mechanism, called convolutional block at-
tention module (CBAM). However, it is slightly inferior to the
SE attention module in mobile neural networks compared with
the SE block [29]. For these reasons, the SE block paired with
the spatial attention of CBAM is introduced in our lightweight
network architecture. Combining the merits of channel-wise
attention (CA) and spatial attention (SA), a hybrid attention
mechanism is employed in the networks, where the CA is well
in finding the desired object in multiple feature maps while the
SA is particularly prominent when probing the target regions
in feature maps. The specific details are described as follows.

Suppose an intermediate feature map f ∈ RW×H×C is
input into the CA (SE block) and the SA modules, the CA
module will rescale the original feature f by channel-wise
multiplication, written as

CA(f) = Fc(f) = fc ∗ sc, (4)

where fc ∈ RW×H , c means the c-th channel, ∗ symbolizes
the dot products of elements, and sc (scalar) is the weight
obtained by the Squeeze and Excitation operations of the
SE block. Then, the SA module concatenates the results
output from the CA and performs the convolution operation
using a normal convolution layer, thereby obtaining the spatial
attention map. The formula can be presented as

SA(f) = Fs(f) = σ(c7×7([GMP (f);GAP (f)])), (5)

where σ symbolizes the sigmoid function, c7×7 implies the
7×7 convolution, GMP and GAP signify the global max-
imum pooling (GMP) and global average pooling (GAP)

operations, respectively. Consequently, the overall calculation
result of the hybrid attention module is written as

Fatt = CA(f) + SA(f) = fc ∗ sc + Fs(f). (6)

C. Proposed Approach

1) MANet Model: To achieve effective detection of pave-
ment defects, the MANet model that adopts an encoder-
decoder framework is proposed in the paper. As mentioned
earlier, MobileNet is a type of lightweight CNNs depending
upon DSConv and has shown outstanding capability in dealing
with both large-scale and small-scale problems of image
recognition. Motivated by the competitive performance, the
MobileNet is chosen as the backbone extractor of the proposed
MANet to extract the features of pavement defect images. For
the task of defect region segmentation, we need to preserve
the spatial information of the target images. Thereupon, the
original completely associated layers are removed from the
classical MobileNet, and the convolutional layers coupled with
the downsampling and the upsampling layers are used in the
network architecture, where the former composition is named
as the encoder while the latter one is as the decoder. In other
words, this is an encoder-decoder network structure for the
MANet, where the former layers downsampling the input are
the encoder part and the latter layers which upsample the
feature maps are the decoder part. Furthermore, the hybrid
attention mechanism can make full use of spatial and channel-
wise attention to infer the significance of spatial points and
channel interdependency features for the input intermediate
feature maps. Thence, the hybrid attention module is in-
corporated into our network and it includes two aspects of
characteristics: (1) The hybrid attention module is embedded
into the extractor part of the network to make it focus on
more information related to cracks, and can better extract the
characteristics of pavement defects. (2) The hybrid attention
module is also introduced into the decoder module, which
makes the decoder position more accurate and obtains richer
detail features when recovering cracks or other defect types.
In addition, the size of the convolution kernel is uniformly
adopted as 3×3 in the depthwise separable convolution of the
MobileNet, which makes the extracted information relatively
unitary owing to the limited receptive field of this single-scale
convolution kernel. Therefore, to enlarge the convolutional
receptive field and enhance the richness of the convolutional
feature channels, we adopt the multi-scale convolution by
replacing the original 3×3 convolution kernel with the 1×1,
3×3, and 5×5 multi-scale convolution kernels, respectively. In
brief, the main modules of the MANet model are described
below.

(1) Encoder module. The encoder module of the MANet, or
the feature extractor of the network, is based on the MobileNet
which includes an input convolution layer and other 12 depth-
wise separable convolution blocks DSConv1∼DSConv12.
The dimensions of input images are assigned as the fixed
size of 224×224×3, and the convolutional kernel size of
the input convolution layer is 3×3×32 with a stride of 2.
DSConv1∼DSConv8 use a 3×3 convolution kernel, and the
number of channels is 64, 128, 256, and 512, respectively.
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Fig. 4: The architecture of the proposed MANet model.

TABLE I: The main parameters of the MANet.

Module type Input shape Convolution kernel Output shape Repeated times Stride

Input layer 224×224×3 - (None, 224, 224, 3) 1 -
Conv1 226×226×3 3×3, 32 (None, 112, 112, 32) 1 2
DSConv block 112×112×32 3×3, 64 (None, 112, 112, 64) 2 2
CAM+SAM 112×112×32 - (None, 112, 112, 32) 1 -
DSConv block 114×114×64 3×3, 128 (None, 56, 56, 128) 2 2
CAM+SAM 56×56×128 - (None, 56, 56, 128) 1 -
DSConv block 56×56×128 3×3, 256 (None, 28, 28, 256) 2 2
CAM+SAM 28×28×256 - (None, 28, 28, 256) 1 -
DSConv block 28×28×256 3×3, 1×1, 5×5, 512 (None, 14, 14, 512) 6 2
ZeroPadding (de-
coder) 14×14×512 - (None, 16, 16, 512) 1 -

Conv2 16×16×512 3×3, 512 (None, 14, 14, 512) 1 -
CAM+SAM 14×14×512 - (None, 14, 14, 512) 1 -
Upsampling 14×14×512 - (None, 28, 28, 512) 3 2
Conv block 16×16×512 3×3, 256, 128, 64 (None, 112, 112, 64) 3 -
Conv3 112×112×64 3×3, 2 (None, 112, 112, 2) 1 -
CAM+SAM 112×112×2 - (None, 112, 112, 2) 1 -
Output 112×112×2 - (None, 12544, 2) Reshape -

The multi-scale convolution kernels are conducted in the
DSConv blocks of DSConv8∼DSConv12, and the 1×1, 3×3,
and 5×5 convolution kernels are utilized alternatively. After
each depthwise separable convolution block, the size of the
output feature map is reduced to 1/2 of the input feature map,
and the number of channels is doubled. The size of the feature
map obtained after the encoder is 14×14×512.

(2) Decoder module. The decoder module restores the target
details in the image layer by layer, and the most common
one is the U-Net framework, where the notion is to upsample
the high-level features and merge the corresponding low-
level features for gaining the gradual restoration of the target
details. Nevertheless, the degree of target detail recovery is
limited to the simple fusion of the high-level and low-level
features. Therefore, the hybrid attention is also embedded into
the decoder module to remove redundant information, locate

cracks accurately, and restore defect details, thereby improv-
ing the quality of output. In short, the attention mechanism
is incorporated into both the encoder module and decoder
module to enhance the model performance. The input feature
map is the output of the encoder part, and the 4 convolution
blocks comprised of a 3×3 convolution layer, ReLU activation
function, and batch normalization are separately conducted
with the number of channels as 512, 256, 128, and 64.
In particular, the attention module including the cascaded
channel-wise attention module (CAM) and spatial attention
module (SAM) is embedded after the convolution layers of
each convolution block. In this manner, the features obtained
by CAM and SAM are fused to generate the output of the
decoder part, which merges both the low-level and high-level
features and effectively restores the detailed information of the
pavement defect images. Fig. 4 depicts the architecture of the
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proposed MANet and the main parameters are summarized in
Table I.

2) Model Training: For modeling training, the Cross-
Entropy (CE) Loss Function is the commonly-used loss func-
tion in deep CNNs for pixel-wise image segmentation, and the
formula can be defined by

L=−
K∑

k=1

yk log(pk), (7)

where K denotes the number of classes, yk ∈ {0, 1} (if the
class k is consistent with the type of the sample, yk is equal
to 1; otherwise, it is 0), pk is the predicted distribution of a
specific sample belonging to class k. Due to the demerit that
the prediction loss weights are regarded as the same for the
negative and positive instances in CE Loss Function, Lin et
al. [40] recommended the Focal Loss (FL) function instead of
the classical CE function. The FL function is calculated as

FL(pk) =− ωk(1− pk)
γ log(pk), (8)

In Eq. (8), ω is the weighting factor, and γ is a hyperparameter
of modulating factor. It is essential to emphasize that the Focal
Loss function is primarily developed to solve the problems
of imbalanced and indistinguishable samples for the target
detection tasks that need binary classification. However, multi-
classification tasks are more required in practical applications,
such as multilabel image classification and multiscale segmen-
tation, etc. Thereupon, we enhanced the Focal Loss function
and substituted it for the traditional CE Loss Function. The
formula of the enhanced Focal Loss function is presented using
Eqs. (9-11).

FLmult(pk)=−
K∑

k=1

ωk(1− pk)
γyk log(pk), (9)

ωk=count(xi)/count(xi ∈ k), (10)

yk=

{
1, k = actual class,
0, k ̸= actual class,

(11)

where K signifies the total number of categories, and xi

represents the sample. On the basis of this, the detailed training
procedure of the proposed method is displayed in Algorithm
1.

III. EXPERIMENTS AND ANALYSIS

In this section, the experiments are conducted to investigate
the performance of the proposed approach. Except that some
image pre-processing work was implemented by Photoshop,
we primarily conducted the experiments using Python 3.6,
where Keras, Tensorflow, and OpenCV3 libraries were used
for algorithm running. The hardware configuration to execute
the pavement defect detection algorithm contains the Intel®
Xeon(R) E5-2620V4 processor, RTX 2080 TI graphics card
(GPU), and 64 GB memory.

Algorithm 1: The detailed training procedure of the
model
Input: The training sample T = {x1, x2, ..., xn}

where i = 1, 2, ..., n, x ∈ Rn

1 Begin
2 Randomly initialize the parameters of the models

w ∈ Rd;
3 while not done do
4 The network parameters are trained using the target
5 dataset, where the Adam solver is used to update
6 the weights.
7 wc+1=wc − η ∗ m̂c/(

√
ŝc + ε)

8 where w is the weight matrix, c indexes the classes,
9 η means the learning rate, m̂c and ŝc denote the

10 bias-corrected first and second moments.
11 The optimized Focal Loss function is used instead
12 of the classical Cross-Entropy loss function, and the
13 model is evaluated by ∇wLtrain(w) //Ltrain refers
14 to Eq.(9).
15 Continuously update the weight parameters
16 w ← w − η∇wLtrain(w) using T sample set.
17 End while

Output:
18 Obtain the best model parameter wbest.
19 End

A. Experiments on the Public Datasets

1) Experimental results: A series of experiments were con-
ducted on the publicly available CRACK500 and CFD datasets
to evaluate the performance of the proposed approach. Using
the method proposed in Section II C, we implemented both the
model training and testing on the pavement defect images. The
well-known algorithms including U-Net [41], PSPNet [42],
FCNet [43] and CrackForest [2], were chosen as the baseline
models for comparative analysis. As described in Section II A,
the training and validation sets of CRACK500 were utilized
to train and determine if the models were overfitted, while
the test dataset was used to evaluate the models. In addition,
to ensure a fair comparison, the parameters of all the models
were kept the same, including the hyper-parameters of batch
size, training epochs, optimizer, and others. Each experiment
ran for 5 epochs with the steps per epoch of 512, the batch
size of 2, the true shuffle, and the optimizer of Adam. The
Cross-Entropy loss function was used for the other compared
methods except that the enhanced Focal Loss function was
employed for our proposed approach.

Taking the statistics of accurate and false detections into
account, we measure the model performance using the met-
rics like Precision (Pr), Recall (Re), F1 − Score (F1),
Overlapping Rate (OR), and Mean Intersection over
Union (MIoU ). Where, the higher the values of metrics are,
the better the segmentation performance is. The formulas of
these measurement metrics are defined as follows:

Pr=
TP

TP + FP
, (12)
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TABLE II: Performance on the CRACK500 dataset.

No. Models Pr Re F1 OR MIoU Time (s)
1 U-Net 0.7498 0.7212 0.7352 0.6381 0.4721 00:45
2 PSPNet 0.8098 0.6077 0.6943 0.5792 0.6586 00:33
3 FCNet 0.8011 0.7810 0.7909 0.6942 0.6491 00:32

4 CrackForest
[2] 0.4825 0.6293 0.5462 - - 02:95

(CPU)
5 FPHBN [21] 0.7012 0.6993 0.7002 - 0.5600 00:20
6 DMANet [44] 0.6950 0.8000 0.7440 - 0.5590 -
7 MANet 0.8663 0.8454 0.8557 0.7337 0.7219 00:52

Re=
TP

TP + FN
, (13)

F1=
2Pr ×Re

Pr +Re
, (14)

OR=
|Presult ∩GT |
|Presult ∪GT |

, (15)

MIoU =
1

k + 1

k∑
i=0

TP

FN + FP + TP
(16)

where TP (true positive) means the number of pixels that
belong to the defect regions and are correctly detected. FP
(false positive) denotes the number of pixels that do not belong
to the defect regions but are wrong detected as the defects.
FN (false negative) is the number of pixels that belong to
the defect regions incorrectly detected. Presult denotes the
predicted crack regions and GT means the real crack regions.
k indicates the number of classifications. Fig. 5 displays the
examples of the results detected by the different methods and
relevant metrics measurements are presented in Table II. Also,
some results reported by the latest literature are summarized
in this table for comparative analysis.

Fig. 5: The test results on the CRACK500 dataset.

As can be observed from Fig. 5, when the interferences in
the images are relatively small and the crack is clear, these
comparative models can better detect cracks, e.g., the crack
samples in the first and the last rows have been detected well
by these methods. Conversely, when there are many cracks in
the images or the image definition is not high or there are
other interferences, the test results of each model are quite
different. As seen in the fifth row of Fig. 5, the upper cracks
are even difficult to be distinguished by the naked eye in some
areas, and each model has missed detection to a certain extent.
U-Net, PSPNet, and FCNet missed seriously, while MANet

probed more details of these cracks. From the second, third,
and fourth rows of Fig. 5, it can be seen that the U-Net,
FCNet, and CrackForest have some missed detections, and the
detected cracks are not continuous too. The FPHBN has over-
segmentation issue since the segmented crack area is generally
thicker than the ground truth, as shown in the first, second,
third, and fifth rows. In addition, the missed detection areas
also exist, such as the second row of Fig. 5 (f). Particularly, the
CrackForest misses most details of the cracks and PSPNet has
more false detections. Whilst, U-Net and FCNet have some
under-segmentation areas since some crack images are not
correctly segmented out, as shown in Fig. 5 (c,e). Although
MANet also has some misdetection to a certain extent, the
overall detection effect is the best and the cracks are detected
more accurately. In brief, it can be seen from Fig. 5 that
the MANet detects cracks more correctly and has preserved
more crucial information compared with other state-of-the-
art methods. Qualitative analysis reveals the effectiveness of
the proposed MANet in pavement crack detection. Further,
as seen in Table II, the comprehensive indicators F1, OR,
and MIoU of the proposed MANet reach 0.8557, 0.7337,
and 0.7219, respectively. They are the highest among all the
algorithms, so the MANet has the best crack detection effect,
which is consistent with the results of the quantitative analysis.
Additionally, in terms of time consumption of crack detection,
the MANet takes slightly more time than other compared
methods. The maximum time-consuming difference between
the proposed approach and other comparison methods is not
greater than the 20s, which does not pose a challenge for the
current hardware level.

In like manner, the experiments were further conducted on
the CFD dataset. The ratio of the samples randomly assigned
to the training set to those in the test set was 8:2, except that
10% of the sample images were drawn to verify the validity of
the models. The partial detection samples of different methods
are displayed in Fig. 6. Besides, apart from the metrics
measurements of the detection samples for different methods, a
performance investigation of our approach compared with the
latest methods in existing literature is accomplished, as listed
in Table III. The experimental findings on the CFD dataset also
show the promising performance of the proposed approach
compared with other state-of-the-art methods.

Fig. 6: Detection results on CFD dataset.
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TABLE III: Performance on the CFD dataset.

No. Models Pr Re F1 OR MIoU Time (s)
1 U-Net 0.7833 0.7729 0.7781 0.6892 0.7089 01:48
2 PSPNet 0.7062 0.5269 0.6035 0.5177 0.5188 00:49
3 FCNet 0.7905 0.6755 0.7284 0.6356 0.4915 00:45
4 Canny [45] 0.4337 0.7307 0.4570 - - -

5 CrackForest [2] 0.7466 0.9514 0.8318 - - 03:74
(CPU)

6 TuFF [46] 0.5521 0.4177 0.4465 0.2987 - 59:35
7 DeepCrack [19] 0.6550 0.7600 0.7040 - 0.7660 00:18
8 HACNet [20] 0.6780 0.7510 0.7100 - 0.7700 00:42
9 MANet 0.7634 0.8908 0.8221 0.7153 0.7788 02:11

The following still analyzes the effectiveness of MANet
from two aspects: quantitative and qualitative. When the
crack locations are clear and the interference is less, the U-
Net, FCNet, and MANet can all detect the cracks well, as
shown in rows 1-3 of Fig. 6. The cracks of these samples
are properly segmented by the U-Net, FCNet, and MANet
methods basically. However, PSPNet and CrackForest have
more missed detections on these samples. When the cracks in
the image are more complex or the background interference
is large, each model has different degrees of discontinuity
or error detection of pavement cracks, as shown in rows 4-6
in Fig. 6. PSPNet, DeepCrack, and CrackForest have serious
under-segmentation defects, and FCNet has a similar problem.
Especially, DeepCrack has the problem of mis-segmentation,
which may be caused by the overfitting of this model with its
deep network structure. Besides, the output of multiple side
maps increases the computational complexity and may incur
some possible errors. U-Net has the over-segmentation issue
since some residues are left in the segmented images of Fig.
6 (c), which implies the noise of the segmented results. By
comparison, the MANet model proposed in this paper can
basically maintain the integrity of the cracks and performs
better in detail. Further, Table III presents the quantitative
comparison of the detection results of different methods on
the CFD test dataset. The comprehensive metrics OR and
MIoU of the proposed approach are 0.7153 and 0.7788,
which are the best performance of all the algorithms. For
another comprehensive index F1, it is the best for the proposed
approach except for the CrackForest, while there are many
missed detections for the CrackForest method. Moreover, the
MANet also indicates superior effectiveness compared to the
results of related literature, as shown in Table III. The main
reason behind the solid performance of the proposed approach
is that the MANet adopts the multi-scale convolution kernels
in the DSConv layers instead of the single 3×3 convolution
kernels, which expands the convolutional receptive field and
enhances the richness of the convolutional feature channels.
Besides, the hybrid attention mechanism incorporated in the
network realizes the maximum reuse of inter-channel relations
and infers the significance of spatial point features. As a
consequence, the promising experimental results are obtained
by the proposed approach, which indicates the model has
obtained an increasing performance gain relative to other
influential methods and can be used to detect pavement crack
defects.

2) Ablation study: We perform the ablation experiments

TABLE IV: The performance of ablation experiments.

Ablation approach Pr Re F1 MIoU
Delete multi-scale conv 0.8443 0.7192 0.7767 0.6791
Delete attention 0.8237 0.7997 0.8115 0.7231
Replace EFL with CE 0.8573 0.7047 0.7735 0.6718
This study 0.7634 0.8908 0.8221 0.7788

on our model. Specifically, we analyze the efficacy of multi-
scale convolution and hybrid attention modules on the exper-
imental dataset of the CFD crack images. First, we separately
remove the modules of multi-scale convolutions and hybrid
attention in the network to investigate the performance of the
model training. Then, we evaluate the effect of the optimized
loss function by substituting the enhanced Focal Loss (EFL)
function with the traditional Cross-Entropy (CE) loss function
(see Eq. (7)). Table IV summarizes the comparison results of
ablation experiments. From Table IV we notice a significantly
decreased performance in the results of the ablated models.
The MIoU of removing multi-scale convolution and hybrid
attention modules drop to 0.6791 (decrease by 0.0997) and
0.7231 (decrease by 0.0557), respectively. It is worthy to
note that the ablated models still perform better than some
benchmark methods, as shown in Table III. The ablation
experiment indicates that both the multi-scale convolution and
hybrid attention modules contribute to the performance gain
of the proposed approach. For the effect of the optimized
loss function, we also notice an obvious decrease, where
the MIoU drops to 0.6718 (decrease by 0.107). The key
explanation for this is that the crack region only occupies a
small part of the whole image, and the CE function does not
consider the sample imbalance problem, resulting in decreased
accuracy. This ablation experiment demonstrates that the EFL
function delivers better results than that of the CE loss function
used in our model for pavement crack detection.

B. Experiments on the Local Dataset

1) Image segmentation: Similar to the above experiments
performed on the publicly accessible datasets, the proposed
approach is further tested on our collected local pavement de-
fect images. To improve the detection ability of the system, the
data augmentation scheme is utilized to produce new synthetic
images for enhancing the diversity and variety of samples.
Except for 131 original samples, the 416 synthetic samples
and their corresponding Ground Truth (GT ) are generated by
random scaling and rotation, horizontal or vertical flipping,
and shifting to synthesize new images for enriching the dataset.
Among these sample images, 472 images are used for the
training set, 52 images are for the validation set, and 23 images
are for the test set. The detailed parameter assignments of the
data augmentation methods are presented below: the sample
images were zoomed in or out with a scale transformation
from 0.9 to 1.1, the random rotation was implemented on
the images with the angle of (90°,180°), and the raw images
were flipped 90° along the horizontal or vertical axes. On this
basis, the experiments were conducted on the local pavement
images. Fig. 7 displays the partial sample images detected by
different methods, and the corresponding measurement metrics
are calculated in Table V.
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Fig. 7: Detection results on the local dataset.

TABLE V: Metrics measurements on the local dataset.

No. Models Pr Re F1 OR MIoU Time (s)
1 U-Net 0.5775 0.5379 0.5570 0.5185 0.4928 01:05
2 PSPNet 0.7773 0.5475 0.5425 0.5368 0.5568 00:30
3 FCNet 0.6327 0.5250 0.6288 0.5141 0.4917 01:01
4 MANet 0.8833 0.6268 0.7332 0.6121 0.6514 00:56

As seen in Fig. 7, the test results of the algorithms on the lo-
cal dataset are different, and each algorithm has some missing
detection more or less. Such as columns 3, 4, and 5, the miss-
ing detection of U-Net, PSPNet, and FCNet is relatively seri-
ous, while the performance of the proposed method is superior
to that of the compared methods, as displayed in the column 6
of Fig. 7. Besides, although the performance of all algorithms
on the local dataset is inferior to that on the open-source
datasets because of the more complicated background and
interference conditions, the proposed approach outperforms
the other compared methods in terms of quantitative analysis
metrics like Precision, Recall, F1 − Score, Overlapping
Rate, and MIoU as shown in Table V. Moreover, to further
evaluate the generalization ability of the proposed network,
the leave-one-out-cross-validation approach is implemented to
obtain the model performance evaluation results. A total of 5-
fold cross-validation experiments are performed in our work.
Each time, the 472 images are used as the training set to learn
the model and the other 52 images are used as the validation
set to evaluate the model. The segmentation performance on
the test set excluded at the modeling stage is reported as
the results of each cross-validation experiment. Consequently,
using the leave-one-out-cross-validation approach, the 5 dif-
ferent experimental results are obtained respectively. Table VI
summarizes the cross-validation results on the test dataset. As
seen in Table VI, the average Precision and MIoU reach
0.8464 and 0.6661 in multiple cross-validation experiments,
and the corresponding standard deviations (Std) are 0.0496

TABLE VI: Comparative results of cross-validation experiments.

Cross validation Pr Re F1 MIoU
Fold-1 0.8154 0.7183 0.7637 0.6698
Fold-2 0.8912 0.6288 0.7373 0.6145
Fold-3 0.8696 0.6798 0.7630 0.6549
Fold-4 0.7747 0.8845 0.8259 0.7319
Fold-5 0.8812 0.6824 0.7691 0.6592
Mean 0.8464 0.7187 0.7718 0.6661
Std ±0.0496 ±0.0979 ±0.0326 ±0.0423

and 0.0423, respectively, which demonstrates that the proposed
method is robust and effective across a range of different
data sources and conditions. Thereafter, according to the
experimental results, it can be assumed that the proposed
method has a certain capability to detect pavement structural
defects, and can also be transplanted in other fields.

2) Image classification: In practice, the aim of pavement
defect detection needs to address the problems of whether
there are defects in the pavements and what the pavement
defects are. Thus, in addition to extracting the defect regions
of pavements, we have to know the specific types of pavement
defects too. As illustrated in Section II C, we added the fully
connected layer in the extractor module of MANet and utilized
it to generate a new classification network for the identification
of pavement defect types. That is, the multi-scale attention
mobile network, where the multi-scale convolution kernels
were substituted for the traditional 3×3 convolution kernel in
DSConv layers and the attention module was incorporated into
the network to highlight the useful features while suppressing
the needless information, was used to perform the identifi-
cation of pavement defect types. The ratio of the samples
randomly assigned to the training set to those in the test set
was 3:1, and the data enhancement scheme was also utilized
in model training. Approximately 1,000 sample images were
guaranteed for the augmented samples, in which 10% of the
images were drawn from the training set as the validation
set of the model. The hyper-parameter training optimizer was
Adam, with epochs of 100, a minibatch size of 64, and a
learning rate of 1×10−3. After 100 epochs of training, the
training accuracy of the proposed method achieves 97.08%, the
validation accuracy attains 92.31%, the training loss is 0.0605,
and the validation loss is 0.1182, as depicted in Fig. 8. On the
ground of this, the trained optimum model can be used for
the test of pavement defect detection, and Fig. 9 depicts the
confusion matrix of test results.

Fig. 8: The performance of model training.

It can be visualized from Fig. 8 that the curves of training
and validation accuracy all tend to be stable and achieve
a higher value after around 80 epochs of training, which
demonstrates the effectiveness of the proposed approach.
Thereupon, the obtained model was used for the prediction
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Fig. 9: The prediction result of the proposed approach.

TABLE VII: Identification results compared with literature [16].

ID Pavement images This study EANN [16] Params (m/cm/m2)
width diameter area

1 normal1 normal normal / / /
2 normal2 normal normal / / /
3 normal3 normal normal / / /
4 normal4 normal normal / / /
5 pit slot1 pit slot pit slot / / 0.75
6 pit slot2 pit slot pit slot / / 1.33
7 pit slot3 pit slot pit slot / / 1.36
8 pit slot4 pit slot pit slot / / 1.32
9 slight map crack1 net crack map crack / 35 /
10 slight crack1 crack crack 1.35 / /
11 slight crack2 crack crack 2.20 / /
12 slight crack3 crack crack 1.68 / /
13 slight crack4 crack crack 3.34 / /
14 slight crack5 crack crack 2.75 / /
15 slight crack6 crack crack 3.29 / /
16 slight crack7 crack crack 1.88 / /
17 slight crack8 crack crack 3.42 / /
18 slight net crack1 net crack crack / 123 4.2
19 slight net crack2 map crack crack / 154 5.7
20 slight net crack3 net crack crack / 118 6.4
21 severe map crack map crack map crack / 18 /
22 severe map crack map crack map crack / 15 /
23 severe crack1 crack crack 14.6 / /
24 severe crack2 crack crack 13.8 / /
25 severe net crack1 net crack crack / 55.3 5.2
26 severe net crack2 net crack crack / 60.9 6.7

of pavement defect types. The proposed approach shows a
good ability to identify crack damage images, even if some
oil marks or road marks interfere with images. A promising
performance can be reflected by the confusion matrix of Fig.
9, where most of the sample images in each category have
been successfully identified by the MANet. For example, 10
crack samples have all been accurately recognized by the
proposed approach. Except that 1 instance is misclassified
into the types of map crack, 50 normal samples have been
correctly identified. 15 net-crack samples have been accurately
recognized by the proposed approach except for 2 samples
incorrectly identified as map-crack type. Similarly, the 3 map-
crack defect samples have been properly recognized by the

proposed approach apart from 1 sample mistakenly classified
into the net crack type. The 4 pit slot samples have been
accurately identified by the proposed method too. Furthermore,
a performance investigation of our method compared to the
results of the existing literature has also been implemented,
and Table VII summarizes the representative samples identi-
fied by our method compared with the results in the literature
[16]. From this table, we can see that the number of samples
correctly identified by the proposed method is more than
that of the approach reported in [16]. Thereupon, through
the comparative analysis, it can be known that the proposed
method outperforms the existing state-of-the-art and exhibits
a competitive performance for pavement defect detection.

IV. CONCLUSIONS

With the rapid economic development, great achievements
have been made in road construction, and to improve the
service life of the road, the maintenance of the pavement has
become more and more important along with the advancement
of the road network system. The traditional methods that rely
on manual detection of road damage can no longer meet
the needs of road development. Therefore, the research and
application of automatic pavement defect detection has great
need and realistic significance, which is also a hot and difficult
research topic in the field of intelligent recognition systems.
Aiming at the problem that various defects are difficult to
detect, this paper built a pavement defect detection network, in
which the MobileNet was selected as the backbone extractor,
and a hybrid attention module was separately introduced in
the encoder and decoder modules. Moreover, the multi-scale
convolution kernels were substituted for the original 3×3
convolution kernels in depth-wise separable convolution layers
of the network, which enlarged the convolution receptive
fields and improved the capability of feature extraction. In
the experiments, the publicly available CRACK500 and CFD
datasets along with our collected local pavement defect images
are utilized to verify the relevant performance of the proposed
approach. The experimental results indicate that the proposed
approach is completely better than other reference methods
in terms of metrics like OR and MIoU . The experimental
findings also prove that it is a very effective approach by using
the extractor module of MANet and adding the fully connected
layer to perform the identification of pavement defect types.

In our experiments, the proposed MANet has proven to be
quite promising. However, it does have some limitations: First,
the model has high segmentation performance and identifica-
tion accuracy, but at the expense of a higher computational
complexity. It consumes slightly more computational time.
Model pruning algorithms can be added to simplify the model
in the future work. Besides, since most publicly-available
datasets in pavement crack detection are still static image
datasets, our method has only been performed on image data
so far. In the future, we will test our method on video datasets.
Furthermore, we would like to transplant the model on more
real-world applications.
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