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Past observable dynamics of a continuously monitored qubit
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Monitoring a quantum observable continuously in time produces a stochastic measurement record
that noisily tracks the observable. For a classical process such noise may be reduced to recover
an average signal by minimizing the mean squared error between the noisy record and a smooth
dynamical estimate. We show that for a monitored qubit this usual procedure returns unusual
results. While the record seems centered on the expectation value of the observable during causal
generation, examining the collected past record reveals that it better approximates a moving-mean
Gaussian stochastic process centered at a distinct (smoothed) observable estimate. We show that
this shifted mean converges to the real part of a generalized weak value in the time-continuous limit
without additional postselection. We verify that this smoothed estimate minimizes the mean squared
error even for individual measurement realizations. We go on to show that if a second observable is
weakly monitored concurrently, then that second record is consistent with the smoothed estimate
of the second observable based solely on the information contained in the first observable record.
Moreover, we show that such a smoothed estimate made from incomplete information can still
outperform estimates made using full knowledge of the causal quantum state.

Over the past decade, time-continuous quantum mea-
surements [1–9] of superconducting qubits (such as trans-
mons [10]) have become an important and increasingly
well-controlled component of emerging quantum comput-
ing technology [11–32]. Indeed, the primary method for
extracting information from a superconducting transmon
is to dispersively couple it to a pumped microwave res-
onator, then amplify and mix the leaked microwave field
with a local oscillator to perform a homodyne measure-
ment of the traveling field, which produces a stochastic
time-dependent voltage that encodes information about
the transmon energy basis [33–35]. Understanding what
information is contained in the resulting stochastic read-
out is thus an essential theoretical issue.

In simple terms, a continuous measurement can be un-
derstood as a sequence of weak measurements [36, 37]
on the qubit. In the superconducting case, each tem-
poral segment of the steady-state traveling coherent mi-
crowave field acts as an independent and approximately
Gaussian meter that becomes entangled with the qubit
and later measured [35]. During the measurement of the
field, the finite bandwidth of the circuitry typically dis-
cretizes the field into time bins of size dt. Provided that
dt is longer than the correlation timescale of the travel-
ing field, the statistics of the averaged homodyne volt-
age collected in each independent time bin are approxi-
mately Gaussian, producing a discrete temporal sequence
of Gaussian-distributed measurement results {rj} with a
wide variance that inversely depends upon the time step
size dt. All information about the qubit must be ex-
tracted by processing this stochastic time series.

For convenience, this time series is traditionally inter-
polated to construct a time-continuous stochastic pro-
cess r(t) that preserves the physically correct averages
over the time bins dt. Such an interpolation then has
the structure of a moving-mean stochastic white noise
process. The mean of this process is widely recognized

to be the expectation value of the monitored observ-
able [38, 39], following straightforward arguments about
the increasing width of the Gaussian distributions in
the time-continuous limit. This understanding of the
mean as an expectation value raises the natural ques-
tion whether the white noise may be reduced by classical
signal processing techniques to recover that expectation
value via temporal averaging, rather than ensemble aver-
aging. Indeed, such temporal averaging exposes quantum
jumps between measurement eigenstates in the quantum
Zeno regime [24, 32, 40]. More dramatically, simulta-
neously monitoring multiple orthogonal observables and
processing the collected readouts with simple exponen-
tial filtering has been used to estimate an evolving qubit
state with surprisingly high fidelity [41, 42]. One might
therefore suspect that optimizing the classical signal pro-
cessing of the readout could allow quantum state tomog-
raphy for a single realization of an evolving qubit state to
high accuracy with minimal prior information, and thus
challenge the operational interpretation of the quantum
state as describing only ensemble statistics.

In this paper, we carefully revisit the derivation of the
collected readout as a stochastic process and show the
counter-intuitive result that the moving mean is not in
fact the expectation value of the observable, as is usu-
ally assumed. Instead, the mean is altered by the mea-
surement backaction away from the expectation value.
As such, optimally removing the noise from the read-
out will not recover the causal quantum state, as might
be suspected, which will bound the achievable fidelity
of classical filtering state tomography schemes. Instead,
the moving mean tracks a smoothed estimate that we
show converges to the real part of a generalized quan-
tum weak value [37, 43–45] in the time-continuous limit.
Notably, this weak value naturally appears without ad-
ditional postselection for each individual measurement
realization. We derive this result analytically, then ver-
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ify numerically that for individual trajectories the mean
squared error of this smoothed estimate is consistently
smaller than that of the expectation value. This min-
imization of the mean squared error is consistent with
the usual metric of classical signal processing for deter-
mining the optimal estimate of a time-dependent noisy
signal. We independently verify the result numerically
using a hypothesis testing approach, confirming that the
smoothed estimate is indeed a better fit to the collected
data than the expectation value. We go on to show that
in the presence of a simultaneous second observer, the
smoothed estimate retains its objective character. That
is, a smoothed estimate made from incomplete data taken
only by the first observer can be a better fit to the un-
known data of the second observer than even the pure
causal qubit state that uses all available data. Notably,
this last result improves upon a recent proposal [46] that
constructs a “smoothed quantum state” to estimate the
observations made by an unknown second observer, since
that method can never outperform the most pure causal
state that uses all collected data. The conclusions of
our study are consistent with prior work concerned with
time-symmetric quantum state estimates, such as the
two-state-vector formalism [37, 47, 48], quantum smooth-
ing [49–52], bidirectional quantum states [53], and past
quantum states [54–57]. However, we emphasize here the
practical consequence for ongoing research into continu-
ous quantum measurements: Applying optimal classical
signal processing techniques to a single realization of col-

lected data from a continuous quantum measurement pro-
duces results that do not correspond to the causal quan-

tum state.

The paper is organized as follows. In Section I we
briefly review the derivation of a simple continuous quan-
tum measurement from a quantum information perspec-
tive to recover the usual interpretation of the readout.
In Section II we revisit the structure of the past read-
out given the posterior information about what was col-
lected later in time, showing that the measurement back-
action has fundamentally changed its structure. In Sec-
tion III we consider an explicit example of a Rabi os-
cillating qubit and compare the observable estimates to
the readout in more detail, showing that the smoothed
estimate indeed fits the readout better. In Section IV
we show that smoothed estimates are objective even in
the presence of a second simultaneous observer, thereby
reinforcing their operational relevance. We conclude in
Section V.

I. OBSERVABLE DYNAMICS FROM

ANTERIOR MEASUREMENTS

We focus our discussion on what can be inferred from
a collected measurement record about its associated ob-
servable dynamics. As such, in what follows we consider
a simplified model of time-continuous measurements that
is adequate for isolating the relevant features. To keep

this manuscript self-contained, we briefly review the es-
sential details of how a temporal sequence of indepen-
dent Gaussian measurements models continuous-in-time
measurements from a quantum information perspective.
This model is a slight idealization of those that describe
recent experimental work on quantum state trajectories
well [16, 18, 25–27, 32], but deliberately neglects rel-
evant experimental details—such as measurement inef-
ficiency, environmental decoherence, energy relaxation,
phase-backaction, and non-Markovian effects from finite
detector bandwidth [34, 35]—in order to isolate the es-
sential effect of the measurement backaction. (For an
alternative recent derivation of a simple continuous mea-
surement model that includes some of these nonidealities
in the context of feedback, see also Ref. [58].)

Consider a system, such as a qubit, that is assigned
a quantum state represented by a density operator ρ.
To measure an observable A =

∑

a a |a〉〈a| of the sys-
tem, such as the Pauli operator σz , we couple the sys-
tem to a measurement device, which reports classical
results r ∈ R that are correlated with the distinct val-
ues of A. That is, each distinct value a of A corre-
sponds to a probability measure P (r|a) dr for obtain-
ing r on the detector given that particular a, such that
each measure is normalized over the possible results of
the measurement,

∫

R
P (r|a) dr = 1, and the total prob-

ability for obtaining a measurable subset R ⊂ R of r
is
∫

R P (r|ρ) dr =
∫

R

∑

a P (r|a)P (a|ρ) dr with P (a|ρ) =
〈a| ρ |a〉. As a convenient way to formally encapsulate
these detector properties, the map a → P (r|a) dr from
observable values to probability measures generates a
map A → Er dr = (

∑

a P (r|a) |a〉〈a|) dr from the observ-
able operator A to a probability operator-valued measure
(POVM) Er dr. The positive Hermitian operators Er of
the POVM then partition unity

∫

R
Er dr = 1, and obey

Lüder’s probability rule [59], P (r|ρ) dr = Tr [Er ρ] dr.

Such a generalized measurement of r on the detec-
tor produces measurement backaction on the state ρ de-

scribed by a quantum instrument, ρ
r−→ Er(ρ) dr, which

is a completely positive map-valued measure satisfying
P (r|ρ) dr = Tr [Er(ρ)] dr [53]. In the case of no classical
mixing from information loss, this instrument can be rep-
resented by a single r-dependent Kraus operator Mr ac-
cording to Er(ρ) dr = MrρM

†
r dr, which relatesMr to the

POVM Er according to Er dr = M †
rMr dr. As such, the

Kraus operator factors into a polar form Mr = Ur

√
Er,

with
√
Er =

∑

a

√

P (r|a) |a〉〈a| corresponding to partial
state collapse (informational backaction) and Ur corre-
sponding to additional r-dependent unitary perturbation
(stochastic Hamiltonian backaction). In what follows we
neglect any unitary backaction Ur for simplicity to fo-
cus solely on the effects of the informational backaction.
(See Refs. [19, 34, 35] for discussion about the role of such
unitary phase-backaction in measurements of supercon-
ducting qubits.)

The renormalized state after the observation of a sub-
set R of r values on the detector (e.g., from classically
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coarse-grained resolution) is

ρ
R−→

∫

R
Er(ρ) dr

∫

R P (r|ρ) dr =

∫

R
MrρM

†
r dr

∫

R P (r|ρ) dr . (1)

We will restrict our discussion to a perfect detector with
infinitely sharp resolution of individual points r for sim-
plicity, so that the measure factors in Eq. (1) simply can-
cel to yield the simplified expression

ρ
r−→ Er(ρ)

P (r|ρ) =
MrρM

†
r

P (r|ρ) . (2)

In the following we assume Gaussian measurements
of A = σz = |1〉〈1| − |0〉〈0| describing the computa-
tional basis of a qubit. That is, the detector distri-
butions for the distinct values ±1 of σz are Gaussian,
P (r| ± 1) = G±1(r) ≡ exp(−(r ∓ 1)2dt/2τ)/

√

2πτ/dt,
with equal variances τ/dt but distinct means centered
at their associated values of ±1. This parametrization
is chosen such that dt is a discretization timescale that
specifies the duration of the coupling required to obtain
the result r, and τ is a measurement collapse timescale
that indicates the coupling duration needed to obtain
a unit signal-to-noise ratio for the measurement. This
variance scaling also guarantees that sequences of inde-
pendent such measurements correctly average to coarsen
the discretization timescale, i.e., Var[(r1 + r2)/2] =
(Var[r1]+Var[r2])/4 = (τ/dt+ τ/dt)/4 = τ/(2dt), which
will later permit a sensible continuum limit as dt → 0
to yield a Markovian stochastic process [38]. The sim-
plest Kraus operator for such a Gaussian measurement
is Mr =

√

P (r|1) |1〉〈1| +
√

P (r|−1) |0〉〈0|, which may
be written in a more compact form as a function of the
operator σz ,

Mr =

(

dt

2πτ

)1/4

exp

[

− (r − σz)
2dt

4τ

]

. (3)

Despite its simplicity, this Gaussian model is a reason-
able approximation for a variety of experimental situa-
tions, including double-quantum-dot measurements with
a quantum point contact [9], and superconducting trans-
mon measurements with microwave resonators [34].
Notably, the probability distribution P (r|ρ) for

causally obtaining a future r from the current state ρ
may be conveniently expanded in terms of the single ex-
pectation value z ≡ Tr [ρ σz] as

P (r|ρ) = P (+1|ρ)G1(r) + P (−1|ρ)G−1(r)

=
(1 + z)

2
G1(r) +

(1− z)

2
G−1(r), (4)

which allows all moments of r to be easily calculated. For
example, the first three moments are:

〈r〉 = z, 〈r2〉 = 1 +
τ

dt
, 〈r3〉 =

(

1 + 3
τ

dt

)

z. (5)

All such moments for future r are characterized solely
by the expectation value z of the measured observable in

the qubit state ρ immediately prior to the measurement.
We will see in the next section that this feature will no
longer be true for moments of past r.
Let us now consider a sequence of N such general-

ized measurements Mr, with outcomes rj , with j =
1, . . . , N . Between each measurement, the qubit inde-
pendently evolves for the time step dt with Hamilto-
nian H , which we model by a separate unitary operator
U ≡ exp(−iHdt/~). The state of the qubit at the time
T = N dt, given an initial state ρ at time t = 0 and the
past set of outcomes ~r = (r1, . . . , rN ) is then:

ρ~r =

(

MrNU . . .Mr1U
)

ρ
(

U †M †
r1 . . . U

†M †
rN

)

P (~r|ρ) , (6)

where the joint probability P (~r|ρ) = Tr [E~r ρ] of all mea-
sured results is governed by the positive operator from a
joint POVM

E~r =
(

U †M †
r1 . . . U

†M †
rN

)(

MrNU . . .Mr1U
)

. (7)

This model describes the periodic monitoring of the ob-
servable σz at the times tj = j dt. In the continuum limit
as dt → 0 and N → ∞, keeping T = N dt constant, the
unitary and measurement operators will commute up to
second order in dt such that each pair of operators MrjU
effectively describe the evolution within the same time
step [tj , tj + dt), and the evolution in Eq. (6) becomes
equivalent to a stochastic master equation [33, 38, 39, 58]
that describes truly continuous-in-time observable moni-
toring. In what follows, however, we retain the explicitly
discrete time steps dt for numerical stability and concep-
tual clarity. The discrete model has the added benefit of
also modeling physically discrete sequences of impulsive
Gaussian measurements [56, 60].
When the continuum limit dt → 0 is taken, the widths

of the Gaussian distributions P (r| ± 1) broaden and
mostly overlap, so the distribution P (r|ρ) in (4) approx-
imates a single Gaussian distribution centered at the ex-
pectation value z(t) = Tr [ρ~r σz ]:

P (r(t)|ρ~r) ≈ Gz(t)[r(t)] (8)

=

√

dt

2πτ
exp

(

−
[

r(t) − z(t)
]2
dt

2τ

)

,

where we have replaced the discrete index j with the
continuous time t. It follows that in this limit the fu-
ture (uncollected) readout can itself be approximated as
a moving mean Markovian stochastic process centered at
the evolving expectation value z(t)

r(t) = z(t) +
√
τ ξ(t), (9)

where ξ(t) is zero-mean additive white noise [38, 39],
satisfying 〈ξ(t)ξ(t′)〉 = δ(t′ − t). This understanding
of the readout as an expectation value cloaked by ad-
ditive noise is standard in the literature of continuous
quantum measurements [5, 33, 39, 41], and has been
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applied with tremendous success in a variety of exper-
iments [16, 18, 29].

Note that the white noise expression in Eq. (9) seems
to give a simple prescription for how to learn informa-
tion about the qubit evolution solely from the readout
r(t). For example, classical signal processing methods
can reduce the zero-mean noise ξ(t) and thus approx-
imately recover the dynamics of the observable expec-
tation value z(t). This feature has been demonstrated
for the observation of quantum jumps between z = ±1
[24, 40]. Moreover, by concurrently monitoring the three
qubit Pauli operators σx, σy , and σz and applying expo-
nential filtering to the collected readouts, the dynamics
of all three expectation values x(t), y(t) and z(t) that
determine the evolving qubit state ρ(t) may be recovered
simultaneously with reasonably high fidelity for individ-
ual measurement realizations [41]. This latter result is
particularly startling, since it seems to challenge an in-
terpretation of the quantum state ρ as pertaining solely
to an ensemble of realizations.

The relation in Eq. (9) is misleading, however, since it
pertains only to an as-yet-uncollected future readout, and
does not yet describe the temporal structure of a readout
that was collected in the past. Due to the informational
backaction of the measurement, the readout and state
evolution become temporally correlated, which effectively
refines the distribution in Eq. (8) of the past readout and
shifts the mean of Eq. (9). Strictly speaking, the relation
in Eq. (9) only holds at the final collected time of the
readout, which still has an uncertain future.

II. OBSERVABLE DYNAMICS FROM

ANTERIOR AND POSTERIOR

MEASUREMENTS

The previous section demonstrated that the future
readout r(t) is fully characterized by the expectation
value z(t) of the observable σz with the causal qubit state
ρ(t). In this section we show that the past collected read-
out is not completely characterized by the causal qubit
state, and derive a refined description of the implied dy-
namics of the measured observable that better agrees
with the collected record.

We now focus on what can be inferred about the qubit
observable prior to a collected posterior record, as illus-
trated in Fig. 1. To do this, we partition the measured re-
sults (~rp, r, ~rf ) = (r1, . . . , rj−1, r, rj+1, . . . , rN ) into past
results and future results relative to a particular past
time tj . We then derive the distribution P (r|~rp, ~rf , ρ)
for the r measured at tj , conditioned not only on the
past results ~rp = (r1, . . . , rj−1) and initial state ρ, but
also on the future results ~rf = (rj+1, . . . , rN ) after tj .
As in Eq. (6), the past results are fully encapsulated by

FIG. 1. Partitioning of past collected readout. Given a tem-
poral sequence of N measurement results ~r = (r1, . . . , rN)
collected at times (t1, . . . , tN ) separated by time steps dt, the
best estimate of the monitored observable at an intermediate
time tj depends on the distribution of the readout rj at that
time, which depends on the future results ~rf as well as the
past history ~rp because of the backaction of the measurement.

the past causal state,

ρ~rp =

(

UMrj−1
U . . .Mr1U

)

ρ
(

U †M †
r1 . . . U

†M †
rj−1

U †
)

P (~rp|ρ)
,

(10)
Similarly, as in Eq. (7), the future results are fully rep-
resented by the future POVM element,

E~rf ≡
(

U †M †
rj+1

. . . U †M †
rN

)(

MrNU . . .Mrj+1
U
)

. (11)

For ease of notation, we omit the time index j for r,
E~rf , and ρ~rp . The need for both past and future quan-
tities (ρ~rp , E~rf ) when describing the intermediate mea-
surement result r has been previously highlighted, with
the pair dubbed a “bidirectional quantum state” in [53]
and a “past quantum state” in [54]. These two quanti-
ties generalize the pure “time-symmetric state” (|ψ〉 , 〈φ|)
from the “two-vector formalism” pioneered in [37, 47, 48].

Applying Bayes’ rule to the joint distribution
P (~rp, r, ~rf |ρ) yields the desired distribution:

P (r|~rp, ~rf , ρ) =
P (~rp, r, ~rf |ρ)

∫

R
P (~rp, r, ~rf |ρ) dr

. (12)

From the preceding section, the joint distribution is:

P (~rp, r, ~rf |ρ) = Tr
[

E~rfMrρ~rpM
†
r

]

. (13)

Combining Eqs. (3), (12) and (13) thus permits explicit
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calculation of the desired distribution:

P (r|~rp, ~rf , ρ) =

(

G1(r) −G−1(r)
)

zw
(

1 + e−
dt
2τ

)

+
(

1− e−
dt
2τ

)

zc

+

1
2

(

G1(r) +G−1(r) + 2e−
dt
2τ G0(r)

)

(

1 + e−
dt
2τ

)

+
(

1− e−
dt
2τ

)

zc

+

1
2

(

G1(r) +G−1(r)− 2e−
dt
2τ G0(r)

)

zc
(

1 + e−
dt
2τ

)

+
(

1− e−
dt
2τ

)

zc

, (14)

which depends on only two quantities containing the
monitored observable:

zw ≡ Re
Tr
[

E~rf σz ρ~rp
]

Tr
[

E~rf ρ~rp
] , zc ≡

Tr
[

E~rf σz ρ~rp σz

]

Tr
[

E~rf ρ~rp
] , (15)

neither of which are an expectation value. Instead, zw is
the real part of a (generalized) weak value [37, 43–45] in
its role as a first-order conditioned expectation value [44,
45], and zc is a second-order contribution [61]. Due to the
assumption of Gaussian statistics, these first two orders
are sufficient to fully characterize the distribution.
For comparison with Eq. (5), the first three moments

of the distribution P (r|~rp, ~rf , ρ) are:

〈r〉S = zS, (16a)

〈r2〉S =
τ

dt
+

1
2 (1 + zc)

1
2

(

1 + e−
dt
2τ

)

+ 1
2

(

1− e−
dt
2τ

)

zc

, (16b)

〈r3〉S =
(

1 + 3
τ

dt

)

zS . (16c)

Remarkably, after taking into account subsequent mea-
surement outcomes the mean of the intermediate r shifts
to a refined (smoothed) estimate zS instead of the tra-
ditionally accepted expectation value z that we obtained
in the previous section (compare with Eq. (5)). This
smoothed estimate of σz is the central quantity of this
paper,

zS ≡ zw

1
2

(

1 + e−
dt
2τ

)

+ 1
2

(

1− e−
dt
2τ

)

zc

, (17)

and depends upon both zw and zc.
Note that for weak measurements with large variance,

τ/dt ≫ 1, the second-order contribution zc is suppressed,
and the smoothed estimate converges to the first-order
weak value zw. The smoothed estimate therefore inher-
its the behaviour of the weak value, to a degree that de-
pends on the coarseness of the time steps. For example,
the smoothed estimate can take values outside the range
[−1, 1] of possible observable values for σz [60, 62], as
shown in the next section. Importantly, this convergence
to the weak value becomes exact in the continuum limit
as dt → 0. Moreover, the continuum limit of the full

distribution in Eq. (14) is a single Gaussian distribution
similar to Eq. (8) but centered on the smoothed estimate

zS of σz, which in turn converges to zw:

P (r(t)|~rp, ~rf , ρ) ≈ Gzw(t)[r(t)] (18)

=

√

dt

2πτ
exp

(

−
[

r(t) − zw(t)
]2
dt

2τ

)

.

Therefore, arguments identical to the preceding section
imply that the past (already collected) continuous read-
out still has the structure of a moving mean stochastic
process, but instead following a weak value of σz :

r(t) = zw(t) +
√
τ ξ(t). (19)

This key result implies that using classical signal pro-
cessing techniques to reduce the zero-mean white noise
ξ(t) on a collected readout r(t) will not recover the ex-
pectation value z(t) as might be expected from the pre-
vious section. Instead, such techniques will recover the
smoothed (weak-valued) estimate zS(t) → zw(t) that
properly takes into account the temporal correlations in
the signal caused by the measurement backaction. This
discrepancy explains the limited fidelity of the state re-
construction seen in [41] when exponentially filtering si-
multaneous observable readouts. The reasonably high fi-
delities that were still obtained are explained by the fact
that the smoothed estimate zw(t) can often remain close
to the expectation value, as shown in the next section.

III. A BETTER DESCRIPTION OF PAST

OBSERVABLE DYNAMICS

The previous section established that a smoothed ob-
servable estimate more closely describes the observed
readout than an expectation value. In this section, we
numerically simulate an explicit example of a monitored
qubit Rabi oscillation to demonstrate the practical signif-
icance of this result. Specifically, we define two figures of
merit that contrast an expectation value with a smoothed
estimate and show that the smoothed estimate system-
atically outperforms the expectation value. Importantly,
we consider individual measurement realizations, not en-
semble averages.
Consider the periodic monitoring of σz at time steps

dt for a total duration T , with characteristic collapse
timescale τ , on a qubit driven by a Hamiltonian

H = ~Ω
σy

2
, (20)

where the Pauli matrix σy generates Rabi oscillations in
the x-z plane, and TR ≡ 2π/Ω is the period of these oscil-
lations. Figure 2 illustrates the distinction between the
expectation value z (blue, solid), the smoothed value zS
(black, dotted), and the weak value zw (red, hashed) for
such a monitored oscillation. In both plots dt/TR = 1/20
is held constant, with the upper plot showing a weaker
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FIG. 2. Evolution of observable estimates. Shown are sin-
gle realizations of qubit Rabi oscillations in the x-z plane
with period TR while monitoring σz with collapse timescale
τ at periodic time steps dt. Compared are the expectation
value z (blue, solid), smoothed value zS (black, dotted), and
weak value zw (red, hashed). The upper plot shows a weaker
measurement regime with τ/TR = 2, and with dt/τ = 1/40
so zS ≈ zw. The lower plot shows a stronger measurement
regime with τ/TR = 1/10, and with dt/τ = 1/2, so zS devi-
ates from sufficiently large values of zw.

measurement with τ/TR = 2, and the bottom plot show-
ing a stronger measurement with τ/TR = 1/10. The
weaker measurement in the upper plot exhibits noisy
Rabi oscillations since the dynamics are only weakly per-
turbed by the monitoring. For this upper plot, dt/τ =
(1/20)/2 = 1/40, so the smoothed estimate zS and weak
value zw are essentially indistinguishable. The stronger
measurement in the lower plot exhibits quantum jumps
between measurement eigenstates, to which the qubit is
pinned by the quantum Zeno effect [24, 40]. For this lower
plot, dt/τ = (1/20)/(1/10) = 1/2, so the smoothed esti-
mate zS is visibly distinct from the weak value zw when
the latter becomes sufficiently large. Note that the weak
value zw can exceed the eigenvalue range of [−1, 1] when
the readout r(t) is statistically unlikely.

To answer the question whether the expectation value
z or the smoothed value zS better follows a single readout
realization r quantitatively, we establish two figures of
merit. First, we consider the mean squared error between
the N -dimensional readout vector ~r for all N time steps
dt, and the dynamical estimate vectors ~z and ~zS. The
mean squared error is defined for any two vectors ~v and ~w

of lengthN as MSE(~v, ~w) =
∑N

j=1(vj−wj)
2/N . Notably,

the mean squared error is the primary figure of merit used
in classical filtering and estimation theory [63] to find
optimal estimates for the “true” value of a noise-polluted
signal. We treat the readout ~r as such a noise-polluted

signal, and define the relative mean squared error,

Q(zS , z) ≡
MSE(~r, ~z)−MSE(~r, ~zS)

MSE(~r, ~zS)
, (21)

such that Q(zS , z) > 0 if and only if the smoothed esti-
mate ~zS is a better fit to the measured readout ~r than
the expectation value ~z.
The second figure of merit we adopt is a hypothesis

test. Namely, let us assume prior probabilities P (z) and
P (zS) for models in which the readout ~r fits ~z or ~zS
respectively. Bayes’ rule allows us to express the prob-
ability of the estimate ~z given the observed measure-
ment record ~r as P (~z|~r) = P (~r|~z)P (z)/P (~r). Similarly,
P (~zS |~r) = P (~r|~zS)P (zS)/P (~r). Assuming equal prior
probabilities for both hypotheses, P (z) = P (zS), we can
then define the hypothesis test ratio as

R(zS , z) ≡
P (~zS |~r)
P (~z|~r) =

P (~r|~zS)P (zS)

P (~r|~z)P (z)
=

P (~r|~zS)
P (~r|~z) , (22)

where P (~r|~z) =
∏

j P (rj |ρ~rp) and P (~r|~zS) =
∏

j P (rj |ρ~rp , E~rf ) can be calculated from Eqs. (4)

and (14). The ratio R discriminates the likelihood of
the estimates z or zS , given the observed record ~r. We
use its natural logarithm as a figure of merit to decide
between the two alternatives: that is, lnR > 0 if and
only if the smoothed estimate is more probable than the
expectation value.
Figure 3 shows histograms of both the relative mean

squared error Q(zS , z) (top row) and the hypothesis test
log-ratio ln[R(zS , z)] (bottom row), computed for 105 re-
alizations using fixed time steps of dt/TR = 1/100 to ap-
proximate the continuum limit in two regimes: (left col-
umn) a weaker regime with τ/TR = 2, and (right column)
a stronger regime with τ/TR = 1/10. For longer trajec-
tories with T/TR = 50 (blue circles), the smoothed esti-
mate is better (i.e., has a positive discriminator) 96.8%
of the time in the weaker regime and 99.9% of the time
in the stronger regime. Even for relatively short trajec-
tories with T/TR = 5, the smoothed estimate is better
73.5% of the time in the weaker regime and 97.6% of the
time in the stronger regime. The improvement in the
estimate is approximately linear in the inverse collapse
timescale τ−1, since the T/τ determines the signal-to-
noise ratio of the stochastic readout. The factor of 20 im-
provement in performance expected between the weaker
and stronger regimes is confirmed by the shift in mean of
the histograms in Figure 3—note that the means do not
shift with the duration T , since the plotted discrimina-
tors are effectively normalized per unit T . These results
confirm that one should consider the collected readout to
better follow the smoothed estimate zS(t) ≈ zw(t) given
in Eq. (15), not the expectation value as naively expected
from Eq. (9).
Observe that in Figure 3, we have scaled the hypoth-

esis test log-ratio ln[R(zS , z)] by a factor (2dt/T ) to
make its correspondence to the relative mean squared
error Q(zS, z) evident, and to serve as a consistency
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FIG. 3. Estimate comparisons. Normalized histograms com-
paring the expectation value z to the smoothed value zS, for
105 realizations monitoring σz of a qubit oscillating with Rabi
period TR for a duration T , with time steps dt = TR/100.
(red, hashed) Short duration T/TR = 5. (blue, circle) Long
duration T/TR = 50. (top row) Relative mean squared error
Q(zS, z), see Eq. (21). (bottom row) Hypothesis test log-ratio
ln [R(zS, z)], see Eq. (22), scaled by 2dt/T to show correspon-
dence to Q(zS, z). (left column) Weaker measurement regime
with τ/TR = 2. (right column) Stronger measurement regime
with τ/TR = 1/10. For both figures of merit, positive values
indicate that zS is a better estimate than z. The fraction of
realizations for which Q(zS, z) > 0 (or ln [R(zS, z)] > 0) for
T/TR = {5, 50} is higher than {0.735, 0.968} for weaker mea-
surements, and higher than {0.976, 0.999} for stronger mea-
surements, respectively.

check for the simulations. This correspondence may be
explained by noting that in the time-continuous limit
the probabilities P (~r|~z) =

∏

j P (rj |ρ~rp) and P (~r|~zS) =
∏

j P (rj |ρ~rp , E~rf ) may be approximated by products of

Gaussian distributions, as in Eqs. (8) and (18), respec-
tively. It follows that the hypothesis test simplifies,

2dt

T
ln [R(zS, z)] ≈

dtMSE(~r, ~zS)

τ
Q(zS , z) ≈ Q(zS , z),

(23)

where in the last step we have used that in the continuum
limit MSE(~r, ~zS) =

∑

j(rj − zS,j)
2/N ≈ τ

∑

j(ξj)
2/N =

τ/dt, from Eq. (18) and the fact that the white noise ξ
at any time step has variance 1/dt. This relationship be-
tween Q(zS , z) and ln [R(zS, z)] in the time-continuous
limit is correctly confirmed in Fig. 3. Importantly, this
numerical equivalence between the two a priori distinct
figures of merit confirms the white noise relation in
Eq. (19), and thus that zS ≈ zw is in fact the minimum

mean squared error estimate for individual realizations
of the readout r(t).

IV. SMOOTHED ESTIMATES BY AN

IGNORANT THIRD PARTY

Crucially, the smoothed observable estimate derived in
the preceding sections is not merely an artificial best fit to
a past record, but is also a predictive quantity with opera-
tional meaning that extends beyond the original collected
record. To see this, we now consider a situation where
two observers monitor different observables on the same
system. The task at hand will be for the first observer to
estimate what was measured by the second observer. For
this task, we now show that a smoothed estimate using
partial information is not only operationally better than
an expectation value that uses partial information, but
can even be better than an expectation value that uses
all available information.
For specificity, consider an agent Z who monitors

σz on a qubit, as described in the previous sections,
while a second agent X simultaneously monitors the dis-
tinct observable σx in a similar way (as considered in
Refs. [41, 42, 64, 65]). We assume characteristic collapse
timescales τz and τx for Gaussian Kraus operators Mrz

and Nrx measuring σz and σx, respectively, with τz < τx
so that the agent Z causes the majority of the measure-
ment backaction. After both X and Z monitor for a
duration T = N dt, they each possess one measurement
record, ~rz or ~rx. We now consider two distinct scenarios:
(A) An omniscient third agent O examines both mea-
surement records and estimates both σz and σx using all
information, and (B) The agent Z uses only the record
~rz to estimate σx without knowledge of what agent X
actually measured.
For the omniscient observer O in scenario (A), the

access to both sets of outcomes one allows the deriva-
tion of smoothed estimates zS and xS precisely as
in Section II from the joint probability of obtaining
rx and rz conditioned on both past and future out-
comes P

(

rx, rz |~rz,p, ~rz,f , ~rx,p, ~rx,f , ρ
)

. The form of the
smoothed estimates is as in Eqs. (17) and (15), but with
a modified bidirectional state consisting of

ρ~rz,p,~rx,p
≡
(

UNrx,j−1
Mrz,j−1

U . . .Nrx,1
Mrz,1U

)

ρ . . .
)

P (~rz,p, ~rx,p|ρ)
,

(24)
and

E~rz,f ,~rx,f
≡
(

U †M †
rz,j+1

N †
rx,j+1

. . . U †M †
rz,NN

†
rx,N

)(

. . .
)

.

(25)
Note that our model here interleaves the measurements
of σx and σz for simplicity; in the continuum limit,
dt → 0, the measurements become effectively simulta-
neous [42, 64]. As in the last section, the smoothed esti-
mates obtained in this way fit the measurement output
better than the expectation values x = Tr

[

ρ~rz,p,~rx,p
σx

]

and z = Tr
[

ρ~rz,p,~rx,p
σz

]

obtained from the most infor-
mationally complete causal state of the qubit.
The more interesting case is scenario (B), where agent

Z has incomplete information from which to construct
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FIG. 4. Informationally incomplete estimate comparisons. Agents Z and X monitor σz and σx, respectively, of a qubit
oscillating with Rabi period TR for a duration T/TR = 100, with fixed time steps dt/TR = 1/100, and collapse timescale
τz/TR = 1/10. (a), (b) Normalized histograms with 104 realizations, comparing the mean squared errors Q relative to the
reference expectation value x that uses all information contained in the causal quantum state evolving from both measurement
records rz and rx. The ignorant expectation value xZ (red, solid) and ignorant smoothed estimate xZ

S (black, circles) use
incomplete information contained only in the record rz, while the optimal smoothed estimate xS (blue, starred) also uses the
information in rx. For weaker X monitoring (a), with τx/τz = 25, the ignorant smoothed estimate xZ

S still beats x in more than
72% of the realizations, while the best smoothed estimate xS beats x in more than 98% of the realizations, and the ignorant
expectation value xZ beats x in only 32% of the realizations. For stronger X monitoring (b), with τx/τz = 15, the advantage of
the ignorant smoothed estimate xZ

S is reduced, with only 54% of the realizations beating x. (c) Relative mean square error Q
as a function of the relative monitoring strength τx/τz, showing that for τx/τz ≫ 1 the ignorant smoothed estimate xZ

S reliably
outperforms the expectation value x, despite having restricted information.

an estimate. Let xZ
S be the smoothed estimate of σx

based on the bidirectional state known to Z, which takes
into account only the measurement collapses from the
monitoring of σz :

ρ~rz,p ≡
(

UMrz,j−1
U . . .Mrz,1U

)

ρ
(

. . .
)

P (~rz,p|ρ)
, (26)

E~rz,f ≡
(

U †M †
rz,j+1

. . . U †M †
rz,N

)(

. . .
)

. (27)

Similarly, let xZ be the expectation value of σx based on
the causal state ρ~rz,p known to Z. How good are the two

ignorant estimates xZ and xZ
S compared to those made

by the omniscient observer O?
Using the omniscient expectation value x as a refer-

ence, a fixed long duration T/TR = 100, fixed time steps
dt/TR = 1/100, and fixed collapse timescale τz/TR =
1/10, Figure 4 shows the relative mean squared error
for the ignorant expectation value, Q(xZ , x) (red, solid),
the ignorant smoothed estimate Q(xZ

S , x) (black, circles),
and the omniscient smoothed estimate Q(xS , x) (blue,
starred). This latter quantity shows the maximum im-
provement for reference, with ∼99% of realizations con-
sistently favoring the omniscient smoothed estimate. The
left plot (a) shows the case when the monitoring of X is
substantially weaker than Z, τx/τz = 25, so perturbs the
evolution less in comparison. The middle plot (b) shows
slightly less weak monitoring by X , τx/τz = 15. The right
plot (c) shows the fraction of cases that are better than
the omniscient expectation value x (i.e., where Q > 0)
as the ratio between monitoring strengths τx/τz varies.
Unsurprisingly, the ignorant expectation value xZ is al-
ways worse on average than the omniscient expectation
value x because of the loss of information. Surprisingly,

however, the ignorant smoothed estimate xZ
S can out-

perform the omniscient expectation value for predicting
what the agent X actually measured when τx/τz ≫ 1.
In (a), more than 72% of the realizations favor the ig-
norant smoothed estimate, even though the monitoring
of σx produces backaction that is not negligible, with
T/τx = 40. In (b), more than 54% of the realizations
favor the ignorant smoothed estimate, showing a reduc-
tion in advantage as the sources of backaction become
comparable. In the opposite limit as τx/τz → ∞, the
monitoring by X no longer perturbs the system and the
ignorant estimates converge to the omniscient estimates,
xZ → x and xZ

S → xS .

To emphasize the significance of this result, we note
that a similar situation to scenario (B) has been dis-
cussed by Guevara and Wiseman [46], who conclude that
using an entire collected measurement record allows one
to construct a “smoothed state” ρS that is closer in fi-
delity to the (typically pure) maximally informative state
ρ~rz,p,~rx,p

known to an omniscient observer O than the
(mixed) state ρ~rz,p constructed from the incomplete in-
formation known to Z. The surprising extension to this
result that we show here is that the informationally in-
complete smoothed estimate xZ

S can outperform even the
best expectation value x known to the omniscient ob-
server O. Evidently, the omniscient state ρ~rz,p,~rx,p

is not
informationally complete when it comes to the content of
the collected readout.
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V. DISCUSSION

We have shown that, contrary to traditional wisdom,
the collected readout of a continuous quantum measure-
ment is not centered on the expectation value of the mon-
itored observable. Instead, the readout is centered on
a modified moving mean, which is a smoothed observ-
able estimate that converges to the real part of a gen-
eralized weak value in the time-continuous limit. The
physical reason that the accumulated data follows this
smoothed estimate, as opposed to the expectation value
used to causally generate the same data, is that the par-
tial measurement collapses create nontrivial correlations
between past and future measurements that are only ex-
posed in retrospect. The smoothed observable estimate
provides an objectively better description of the readout
than what can be accounted for solely from knowledge
of the causal state of the qubit. Notably, this correspon-
dence applies to single measurement realizations, without
the need for ensemble averages, and without the need for
additional postselection. Importantly, this result implies
that applying classical signal processing techniques to the
measurement output will not reveal information about
the causal state of the system, but rather information
about the smoothed estimate of the monitored observ-
able, which bounds the fidelity of any state tomography
scheme based on classical signal processing of the read-
out.

We have also shown that the smoothed estimate from
the readout has operational meaning beyond the scope of
a single measured observable. That is, an agent with ac-
cess only to their own measurement record can still con-
struct a meaningful smoothed estimate for a second ob-
servable being concurrently monitored by a second agent.
Provided the second measurement is sufficiently weak
compared to the first measurement, this informationally
incomplete smoothed estimate will still be more consis-
tent with the experimental output of the second agent
than any quantity derived from the informationally com-
plete causal qubit state. This observed improvement over
the best causal quantum state estimate could have inter-
esting applications for experimental parameter estima-
tion and model verification in situations where one only
has partial access or incomplete information about a sys-
tem, which remains to be investigated.
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