Symbiotic diazotrophic UCYN-A strains co-occurred with El Niño, relaxed 1 upwelling, and varied eukaryotes over 10 years off Southern California Bight 2 Fletcher-Hoppe, C., Yeh, Y.C., Raut, Y., Weissman, J.L., and Fuhrman, J. 3 **Supplementary Information** 4 5 6 Materials and Methods 7 DNA SEQUENCING AND PROCESSING: 15-20L of seawater was filtered sequentially 8 through an 80µm mesh (removing mesoplankton) a 1µm glass AE filter (Pall, Port Washington, 9 NY) (collecting the larger 1-80µm size fraction), and finally a 0.2 µm Durapore filter (ED 10 Millipore, Billerica, MA) (collecting the 0.2-1 µm smaller size fraction). DNA was extracted 11 from Durapore filters using the phenol-chloroform method described by Fuhrman et al. [72]. 12 DNA was extracted from AE filters via bead beating, followed by a phenol-chloroform protocol, 13 as described in Lie et al. [73]. The V4-V5 hypervariable region of the 16S and 18S rRNA gene 14 was amplified from these extracts using the universal primers (515Y/926R) as reported by 15 Parada et al. [30], which amplify sequences from both eukaryotic and prokaryotic ribosomal 16 RNA genes [31, 33]. Samples were sequenced on either a HiSeq 2500 in PE250 mode or MiSeq 17 PE300 platform at the USC and UC Davis Genome Core facilities at a target depth of 100,000 18 sequences/ sample. Per-sample sequence files were submitted to the EMBL database under 19 accession number PRJEB48162 and PRJEB35673. Sequences were processed into Amplicon 20 Sequence Variants (ASVs), which differ by as little as a single base pair, using Divisive 21 Amplicon Denoising Algorithm v2 (DADA2) implemented in Quantitative Insights Into 22 Microbial Ecology v2 (QIIME2) [74] with scripts available at github.com/jcmcnch/eASV-23 pipeline-for-515Y-926R. [31]. Prokaryotic and eukaryotic ASVs were taxonomically classified 24 using SILVA 132 in May and July of 2020, respectively.

Fletcher-Hoppe et al., Supplementary Information

26	PRINCIPLE COMPONENT ANALYSES: Principle component analysis (PCA) was used to
27	visualize differences in environmental parameters on dates UCYN-A ASVs were absent (<0.01%
28	of the 16S community) vs. present in relative abundances higher or lower than average. PCA was
29	conducted on abiotic data, which was centered and scaled, using prcomp() in R. Ordinations
30	were plotted using autoplot() from the "ggfortify" package in conjunction with ggplot2 [41].
31	
32	MODELING EFFECTS OF ENVIRONMENTAL PARAMETERS: Sparse binomial regression
33	was used to resolve which environmental parameters best predicted whether UCYN-A1 and
34	UCYN-A2 would be present at SPOT. Model input data consisted of bacteria production rates,
35	nutrient availability, upwelling indices, and other environmental variables. Data from missing
36	dates were linearly interpolated via na.approx() from the R package zoo [42]. UCYN-A ASVs
37	were considered "present" on dates that they were over 0.01% of the 16S community, and
38	"absent" when their relative abundances were lower than 0.01%. For each ASV, a sparse
39	binomial logistic regression model was constructed via the glmnet package in R [75, 76]. 80% of
40	the data was used as training data for the model, and 20% was used as the test set. Variable
41	selection was performed using lasso regression, and the appropriate lambda was selected using
42	10-fold cross validation on the training set. F1, sensitivity, specificity, and accuracy of each
43	model were calculated on the test set using the caret package [76].
44	
45	DATA NORMALIZATION: Our DADA2 pipeline splits 16S and 18S sequences, generating
46	separate tables of ASVs for prokaryotes and eukaryotes. In order to plot UCYN-A and associated
47	eukaryotes with the same denominator, sequencing data was normalized as follows. Sequences

Fletcher-Hoppe et al., Supplementary Information

48	from chloroplasts and metazoans were removed, leaving only SSU sequences from prokaryotes
49	and single-celled eukaryotes in the dataset. Raw sequencing counts of prokaryotic and eukaryotic
50	ASVs were divided by the percent of sequences passing quality control in DADA2. Because
51	HiSeq and MiSeq platforms have been shown to discriminate against the 18S rRNA sequences,
52	favoring the shorter 16S rRNA sequences with a two-fold bias [77], sequence counts from
53	eukaryotic ASVs were then doubled. Normalized sequencing counts of prokaryotic and
54	eukaryotic ASVs were combined and converted to proportions, representing the relative
55	abundances of taxa out of the entire microbial community (16S+18S sequences). This method
56	was developed and successfully tested on mixed mock communities, which contain 16S and 18S
57	rRNA sequences in equal concentrations [77], that were sequenced via HiSeq or MiSeq.
58	Following normalization, communities contained equal proportions of each of the organisms in
59	the sequenced sample, as expected (Figure S11). Code normalizing the 16S/18S ASV tables of
60	this QIIME-2 pipeline [31] is available at
61	https://github.com/fletchec99/normalizing_16S_18S_tags.
62	
63 64	Results and Discussion
65	PRINCIPLE COMPONENT ANALYSES: Principle component analyses (PCA) indicate that
66	temperature drove variation in the abiotic factors along PC1, which was generally associated

- 67 with UCYN-A1 and host presence. Higher MEI (Multivariate ENSO Index) was also associated
- 68 with UCYN-A1 and host presence in PCA. Upwelling indices, as well as indirect indicators of
- 69 upwelling such as increased nutrient concentration, bacterial production, and chlorophyll
- 70 concentration, drove variation along PC2 and were associated with UCYN-A1 and host absence.
- 71 These trends were not as obvious for UCYN-A2 (Figure S3).

73	MODELING EFFECTS OF ENVIRONMENTAL PARAMETERS: Sparse binomial logistic
74	regression indicated that UCYN-A1 presence was negatively affected by upwelling and no other
75	variables (coefficient= -0.570, sensitivity=0.667, specificity=0.333, accuracy=0.542, F1=0.645).
76	Models were not able to reliably predict the presence of UCYN-A2 (sensitivity=1.00,
77	specificity=0.00, accuracy= 0.5, F1=0.667).

78

79 RELATIONSHIP WITH INORGANIC NUTRIENTS: UCYN-A ASVs were not significantly 80 correlated with inorganic nitrogen and phosphorus concentrations (Table S1, Figure 4). Others 81 have observed UCYN-A abundances and activity have no strong relationships with nitrogen 82 concentrations (e.g. [18, 70, 78]). Due to the well-established link between upwelling and 83 increased inorganic nutrient concentrations (e.g. [35]), the strong influence of upwelling on 84 UCYN-A1 might seem incongruous with the weak influence of inorganic nutrients. It is 85 important to note that upwelling indices are aggregated across latitude on a monthly basis, 86 whereas the inorganic nutrients were measured at SPOT on the day of sampling. Upwelling in 87 Southern California is generally coastal, and it is likely that coastal phytoplankton close to the 88 sites of upwelling consumed the upwelled nitrogen and phosphate, before these compounds 89 could reach our study site, ~ 16 km from the coast (Figure 1).

organisms. Rarefaction curves were generated with the R package vegan version 2.5-6. 98

Supplementary Figure 2–eLSA networks constructed using interpolated, non-CLR transformed
 data from the SPOT surface (5m depth) miss interactions between UCYN-A and other taxa

103 (compare to Figure 5). Networks were generated via eLSA and visualized in Cytoscape 3.5.

107	Supplementary Table 1-Identifiers for UCYN-A and Braarudospharea ASVs analyzed in this
108	study. Hashes were generated by QIIME2 and were named in alphabetical order (e.g. UCYN-A
109	ASV1 is first alphabetically in the list of six UCYN-A ASVs); representative sequences were
110	classified using SILVA132. BLAST identity is given for the sequences that 100% match an
111	established reference sequence for UCYN-A or its host. Full 16S and 18S sequences are publicly
112	available (see Data Availability Statement).

QIIME2 generated hash	ASV name	BLAST Identity (if applicable)
3d852410f44d21c92c9c55fbbb25187e	UCYN-A SPOT ASV1 or UCYN-A1	100% identical to established UCYN-A1 16S sequence
42c9bf8576acc275f3c9281e6b24f5a3	UCYN-A SPOT ASV2	
6115eab19c52bc45c6ba11d72ec88031	UCYN-A SPOT ASV3	
a641110da9fb0da8f68143b5a79ba5d1	UCYN-A SPOT ASV4	
af1bb1f9fb1c3f3d18571e711df407bb	UCYN-A SPOT ASV5 or UCYN-A2	100% identical to established UCYN-A2 16S sequence
e6f42c535cf3849e1f1e12e7575561b7	UCYN-A SPOT ASV6	
04926e2fd1b8706b4866c02650f702dd	Braarudospharea bigelowii SPOT ASV1	100% identical to established UCYN-A1 host 18S sequence
529269deeb5fb7fbf0d0ebda989d9d82	Braarudospharea bigelowii SPOT ASV2	
70a5283da28db501a349c5beb22881e7	Braarudospharea bigelowii SPOT ASV3	
8c144683114fbb1ad2e9425f7dcd1b02	Braarudospharea bigelowii SPOT ASV4	
324627f7f367298bbb5692fc5038e680	Braarudosphaera SPOT ASV5x	
ab5338a49f7e9307027c50b3256a7f59	Braarudospharea SPOT ASV6x	
be3cdecefbceb0d8b25a2e42ed058b50	Braarudospharea SPOT ASV7x	

115	Supplementary	Table 2–Diffe	rences in envir	onmental factors	on dates	UCYN-A1,	UCYN-A2

- 116 hosts, and potential predator Lepidodinium ASVs are present vs. absent. Ekman transport is
- 117 measured on the Cartesian coordinate system, such that movement Northwards and Eastwards is
- 118 recorded as a more positive value. Positive MEI indicates El Niño events, while negative MEI
- 119 represents La Nina conditions. P values were corrected for multiple testing via Benjamini-
- 120 Hochberg correction. Boldface text indicates p<0.05, boldface, underlined text indicates p<0.01.

		UCY	N-A1 (ASV1)		Braarua	osphaera ASV	xL.	UCY	N-A2 (ASV5)		B. b	igelowii ASV3			Lepidodiniun	n ASV	
-		Mean S	tandard Error 1	⁹ -values	Mean	Standard Error P	-values	Mean	Standard Error	P-values	Mean	Standard Error	P-values		Mean	Standard Error	P-values
INO31 NO31 (M)	Present	0.471	0.288	0.000	0.514	0.327	0.057	0.626	0.333	0.000	0.603	0.217	0.746	Present	0.620	0.355	0.754
	Absent	0.562	0.164	600.0	0.531	0.152	1000	0.462	0.135	0.700	0.494	0.260	0+/-0	Absent	0.477	0.144	ţ.
BO41 (M)	Present	0.253	0.042	1000	0.247	0.045	0.417	0.222	0.023	0.000	0.179	0.041	0.107	Present	0.246	0.048	0.754
[r O4] (min)	Absent	0.200	0.014	707.0	0.208	0.017	0.417	0.221	0.028	0.700	0.239	0.011	161.0	Absent	0.209	0.016	ţ.
Bacterial Production	Present	284052.200	27744.452	0.004	305718.400	30237.819	0.050	365066.200	44642.812	0.00.0	329817.400	63965.889	0.107	Present	298758.800	23202.408	0.106
(cells/mL/day)	Absent	481256.900	46408.102		153865.400	44129.048	nenn	422600.000	41673.916	0.700	428844.800	22388.304	161.0	Absent	451901.200	43959.033	001.0
MODIS [Chi] (ma \$ m 3)	Present	0.507	0.070	0.250	0.451	0.046	0.124	0.509	0.051	0.00 0	0.444	0.377	0.107	Present	0.566	0.080	0.754
	Absent	0.901	0.286	0000	0.902	0.266	1.124	0.883	0.277	0.700	0.858	0.030	161.0	Absent	0.827	0.255	5
U. Tas sidom	Present	19.090	0.400	0.004	19.079	0.431	2000	18.878	0.347	0.446	19.242	0.415	0.050	Present	19.197	0.451	0000
	Absent	17.604	0.247	-	17.724	0.247		17.796	0.292	0.110	17.799	0.260	6000	Absent	17.714	0.241	670.0
vabai ITI I	Present	0.326	0.019	0.004	0.345	0.021	2000	0.416	0.026	0.00 0	0.360	0.033	0.107	Present	0.397	0.026	0.600
	Absent	0.458	0.023	-	0.437	0.023		0.396	0.022	0.700	0.421	0.016	161.0	Absent	0.407	0.022	700.0
DELITY index	Present	0.378	0.098	0.004	0.368	0.102	2000	0.680	0.159	0.00 0	0.321	0.186	0.050	Present	0.630	0.163	0.710
DEC 11 IIIdex	Absent	1.021	0.130		0.977	0.124		0.806	0.110	0.700	0.933	0.057	6000	Absent	0.821	0.110	0./19
MEI	Present	-0.024	0.133	2000	-0.027	0.152	0700	-0.204	0.145	0.088	-0.034	0.162	0.107	Present	-0.183	0.160	0.754
MEI	Absent	-0.467	0.118		-0.431	0.110	6+0'0	-0.336	0.116	0.700	-0.386	0.114	161.0	Absent	-0.337	0.110	ţ
Magnitude of Surface Wind	Present	6.850	0.255	100.0	6.881	0.253	2000	7.468	0.314	0.000	7.057	0.354	0.107	Present	7.284	0.297	0.710
(m/s)	Absent	8.094	0.244		7.980	0.243	C70.0	7.657	0.231	002.0	7.796	0.199	161-0	Absent	7.736	0.235	01/10
East-West Component of	Present	-675.851	61.569	0.004	-712.083	58.921	2000	-897.779	83.521	0.088	-774.193	100.728	0.107	Present	-815.777	70.719	0.710
Ekman Transport (kg/m/s)	Absent	-1039.232	71.392		-990.841	71.243	0.40.0	-885.622	65.968	002.0	-937.017	52.125	161.0	Absent	-928.030	68.823	0.117
North-South Component of	Present	-512.139	84.007	0.004	-536.981	80.845	0.025	-767.567	101.137	0.088	-583.699	119.591	0.107	Present	-708.573	92.885	0.754
Ekman Transport (kg/m/s)	Absent	-919.728	82.514		-874.361	83.054	0.040	-743.356	79.260	007.0	-820.665	65.127	16110	Absent	-775.010	81.202	ţ

Fletcher-Hoppe et al., Supplementary Information

A) B) UCYN-A1 Braarudosphaera ASV7x UCYN-A2, B. bigelowii ASV3 0.4 0.4 CUT CUT BEUT BEUT 0.2 0.2 ШC Bacterial Bacteria PC2 (15.21%) .0 Production Productic PC2 (15.21%) SST 0.0 Estimate Estimat Nitrate Nitrate -0.2 -0.2 NOx NO Chia Chi-a PO4 PO4 -0.4 -0.4 UCYN-A Abundance Braarudosphaera Presence Absent 0 Low Absent

-0.2

PC1 (28.08%)

125 Supplementary Figure 3—Principal component analysis of environmental variables at the SPOT 126 surface, overlaid with UCYN-A1 relative abundance and host presence/ absence (A) and UCYN-127 A2 relative abundance and host presence/ absence (B), show that temperature and MEI associate 128 strongly with high relative abundance of UCYN-A1, but less strongly with that of UCYN-A2. 129 UCYN-A ASVs were considered "absent" if they were <0.01% of the 16S community, "low 130 abundance" if they were present in abundances lower than average (0.099% for ASV1, UCYN-A1, and 0.026% for ASV5, UCYN-A2), and "high abundance" if their relative abundance was 131 132 greater than average. This is indicated by white, grey, and black points, respectively; host 133 absence/ presence is indicated by squares vs. circles on both panels. 134

High

0.2

△ Present

0.2

0.0

PC1 (28.08%)

-Ó.2

Supplementary Figure 4–Schematic of a hypothetical food web between UCYN-A ASVs and the
18S taxa with which they co-occur at the SPOT surface (see Figure 5). Arrows indicate
predation/ parasitism; lines indicate symbiosis.

142 generated via QIIME2; representative sequences were classified using SILVA132. Full 16S and

143 18S sequences are publicly available (see Data Availability Statement). Also see Supplementary

144 Table 2 for hashes associated with UCYN-A and *Braarudosphaera* ASVs.

Taxonomy	ASV Hash	Co-occurs with
Alveolata	636f2ad7bbc9624ed6d8bd438d96f7b7	UCYN-A1_0.22-1um
Alveolata	b930d2802540ff419424186646952b7d	UCYN-A1_0.22-1um
Alveolata	3d3aat7802f4db6f8bc887bb9e7774a8	UCYN-A1_1-80um
Alveolata	4b7935t69t43802ce9ea4b65a741845d	UCYN-A1_1-80um
Alveolata	8e0bc96164c6b0ca6e4aead8/4edee2a	UCYN A1 1 80mm
Alveolata	bod8ad4a0a89749e0427b20d028i317d	UCYN A1 1 80mm
Alveolata	825af38b12b3420fabbd783223ad0d1	UCYN-A1_1-80um_UCYN-A1_0.22-1um
	2a77e539d5c3d4878fb0cc41c84a0fa3	UCYN-A1 1-80um UCYN-A1 0.22-1um UCYN-A2
Alveolata	a9666cf5e782f71ad780c73f0f59c119	UCYN-A2
Braarudosphaera sp 7x	be3cdecefbceb0d8b25a2e42ed058b50	UCYN-A1 1-80um, UCYN-A1 0.22-1um
Braarudospharea_bigelowii_3	70a5283da28db501a349c5beb22881e7	UCYN-A1_1-80um, UCYN-A2
Chlorophyta	fd7bca02dc31e29cb36624e39cbcc27a	UCYN-A1_1-80um, UCYN-A1_0.22-1um
Chlorophyta	c3b3a5a8e14ea2c9cdb58028bc55bca0	UCYN-A1_1-80um, UCYN-A1_0.22-1um, UCYN-A2
Chrysochromulina	d55992e6da65321a9b3c0ce3426e73ac	UCYN-A1_1-80um, UCYN-A2
Chrysochromulina	eaaf40a3c970e0ec2167de48c4b001eb	UCYN-A2
Dinoflagellate	26cc4edeb2a1788fc8fdf147923c06b4	UCYN-A1_0.22-1um
Dinoflagellate	997d8cc0ee56b8f185884eb47f7bbbd6	UCYN-A1_0.22-1um
Dinoflagellate	4bb7bd73a0c0f6a55e0c4acecdbfd099	UCYN-A1_1-80um
Dinoflagellate	70241d94140d1eaea54e19bc52b1bdd1	UCYN-A1_1-80um
Dinoflagellate	791b0b5d59992db5031a18510b325ced	UCYN-A1_1-80um
Dinoflagellate	ead0d51affbef/dd1/d1/e483eb0f244	UCYN-A1_1-80um
Dinoflagellate	et4dcdee685b3td3427dtt66b3a9e379	UCYN-A1_1-80um
Dinoflagellate	1383ee229e9cae5c76c76062e8a0f99f	UCYN-A1_1-80um
Dinoflagellate	a2bcca80cacedb46e9e55cd424022684	UCYN A1 1 80mm UCYN A2
Dinoflagellate	dc228126/351D8483626/8810/994c23	UCYN-A1_1-80um, UCYN-A2
Dinoflagellate	23120012ec0ae94d2057c207aa8a0c62	UCYN A2
Dinoflagellate	93678816000031003303180a08241719	UCVN-A2
Dinoflagellate	ec206e5b3180d5c65f0e81e7165e4763	UCVN-A2
Fukarvote	0edea9a57e97085c27800904bc55437d	UCYN-A1 1-80um
Fukaryote	af7721ace95e845243e2b715dbcca683	UCYN-A1 1-80um
Eukaryote	72ad5bae980d6f3a205494139435e4e5	UCYN-A1 1-80um UCYN-A1 0 22-1um
Lepidodinium	c114523e0bef5840b096693e46f441a2	UCYN-A1 1-80um UCYN-A1 0.22-1um UCYN-A2
Prymnesiophyte	23206df8663c546b75a92fadb5de9b33	UCYN-A1 0.22-1um
Prymnesiophyte	79c87d3c4954a1dec1972fc679befcb5	UCYN-A1 1-80um
Prymnesiophyte	98d1369a93242f295deda7ee996b9886	UCYN-A1 1-80um
Prymnesiophyte	803aa95deeb6167672a24a67029f2b82	UCYN-A1 1-80um, UCYN-A1 0.22-1um
Prymnesiophyte	ffa92571884bcbe0193ce4a1e4e843be	UCYN-A1 1-80um, UCYN-A1 0.22-1um
Prymnesiophyte	55bc25d102de6079cc48ba48515e72e2	UCYN-A2
Rhizaria	307e50f0be54fdc6ac0ea8183ff77d0e	UCYN-A1_0.22-1um
Rhizaria	a615f49d7d2fbed5b85069fb94087fa3	UCYN-A1_1-80um
Rhizaria	ded52caa99b40106f449ecc43dbbeee0	UCYN-A1_1-80um
Rhizaria	4f2711ffbb0611ea359dd96680df1c4f	UCYN-A2
Rhizaria	afacfa595bc8d424f2a648990538e0d4	UCYN-A2
Stramenopile	eac29d65650c1a316e01b9fa8a5a9038	UCYN-A1_0.22-1um
Stramenopile	25e0c3351c5b93e80e0f02e6ba23c077	UCYN-A1_1-80um
Stramenopile	3465aaadf57e9cf04c930da3beb3deef	UCYN-A1_1-80um
Stramenopile	5ca13089ea80484bd62871929d00bf95	UCYN-A1_1-80um
Stramenopile	6f39e2bbe0e4c6fa1e2eb082348de7c5	UCYN-A1_1-80um
Stramenopile	8940d219ac059e1421b8910843b4fd82	UCYN-A1_1-80um
Stramenopile	9ec148397bce05c40a8d97a91574a1ef	UCYN-A1_1-80um
Stramenopile	ddaade5c44a6bbd3a74f879c85b5faf3	UCYN-A1_1-80um
Stramenopile	e67e2t1a5016412ct9826b35523352c4	UCYN-A1_1-80um
Stramenopile	e966/40cb469db/493a9b384262bce6/	UCYN-A1_1-80um
Stramenopile	a94291b249e004b9/1399d41c5cc4b82	UCYN A1 1 80mm UCYN A2
Stramenopile	2d02bbd7ab2a06f10d2f277b5ab2afb5	UCYN A2
Stramonopile	200f07001bd22255025bd0a1cac414ca	UCYN A2
Suminiales	00399hcfe64d51dac03b62a40832b514	$UCYN_{A1} = 0.22-1 \mu m$
Syndiniales	10657154c17634d9006a00243a3736b1	UCYN-A1_0.22-1um
Syndiniales	38caa165f588a30638f74c2edb93662c	UCYN-A1 0 22-1um
Syndiniales	69e6b69c7b0addcc5c9c44d08015e45b	UCYN-A1 0 22-1um
Syndiniales	bce9eb5a6281547d9fffcd95d9156913	UCYN-A1 0.22-1um
Syndiniales	1082ec476ee33ebf0800a137e9dd6730	UCYN-A1 1-80um
Syndiniales	12516469ae16dbe47afd1383f1a38d29	UCYN-A1 1-80um
Syndiniales	43d72e28390647a43a479322275ebabc	UCYN-A1 1-80um
Syndiniales	4f0a7afd789e6f14b745c17acad17068	UCYN-A1_1-80um
Syndiniales	6fa9b449505f9b00f18edbedca877d17	UCYN-A1_1-80um
Syndiniales	80d903e0cb7271e69b2ec8bd1f87f45c	UCYN-A1_1-80um
Syndiniales	b22089acf5e02fe3477be0ae8fe10cb5	UCYN-A1_1-80um
Syndiniales	bf238b09c39ad60be96eb93f30ac6915	UCYN-A1_1-80um
Syndiniales	eefc3152825b60051b3f78c504aca2a9	UCYN-A1_1-80um
Syndiniales	f14396a0e7efc97700da47bcb853bfad	UCYN-A1_1-80um
Syndiniales	365026beab40dc3dacd12678ac56cfc2	UCYN-A1_1-80um, UCYN-A1_0.22-1um
Syndiniales	6bbbadb60359057c81abc84e7d0b797a	UCYN-A1_1-80um, UCYN-A1_0.22-1um
Syndiniales	b3a109d089b15d7d926497af27f7fd2c	UCYN-A1_1-80um, UCYN-A1_0.22-1um
Syndiniales	624af6018837349e853bc2e772461e80	UCYN-A1_1-80um, UCYN-A1_0.22-1um, UCYN-A2
Syndiniales	68216c70c4cc7ae340a7f17cb6973f5b	UCYN-A1_1-80um, UCYN-A1_0.22-1um, UCYN-A2
Syndiniales	6a30306b1212b48152ee097506fedad2	UCYN-A2
Syndiniales	6c3205e48cb5c1cc405609e73063607d	UCYN-A2
Syndiniales	6cf6cfba7e7b46309c2fc38b44a28064	UCYN-A2

Fletcher-Hoppe et al., Supplementary Information

148 relative abundances of host 18S sequences. A) Pairwise comparison of all UCYN-A vs. all

149 Braarudospharea ASVs in the SPOT dataset. B) UCYN-A1 (UCYNA_1) and UCYN-A2

- 150 (UCYNA_5) relative abundances correlate with one another, hence these symbionts appear to
- 151 correlate with one another's host organisms. Relative abundances are given out of the whole
- 152 microbial community (16S + 18S) in the 1-80um size fraction at 5m depth. See Supplementary
- 153 Table 2 for hashes associated with UCYN-A and *Braarudosphaera* ASVs.

Supplementary Figure 6–A) UCYN-A2 co-occurs with its most common host at the DCM across the SPOT time series. B) UCYN-A2 relative abundance correlates with its putative host relative abundance at the DCM. C) The ratio of 16S: 18S genes of these organisms is, on average, as expected. Boxplot values indicate the median and IQR values of this ratio; the red line indicates the average (0.703).

Supplementary Figure 7–A) UCYN-A1 co-occurs with its putative host at the DCM across the
SPOT time series. Panel inset indicates the relative abundance of UCYN-A1 in the smaller size
fraction. B) UCYN-A1 relative abundance correlates with its putative host relative abundance.
C) The ratio of 16S: 18S genes of these organisms is, on average, as expected. Boxplot values
indicate the median and IQR values of this ratio; the red line indicates the average (1.674).

Fletcher-Hoppe et al., Supplementary Information

174

175 Supplementary Figure 8-Relative abundance of UCYN-A1 (UCYN-A SPOT ASV1) (A),

- 176 UCYN-A SPOT ASV6 (B), and UCYN-A2 (UCYN-A SPOT ASV5) (C) at the SPOT surface
- 177 (black) and DCM (green) over time. Relative abundances are given out of the 16S community in
- 178 the larger size fraction (AE filters; 1-80um).

181 Supplementary Figure 9–Relative abundance of UCYN-A ASVs in the larger size fraction over

depth in A) July 2008, the date UCYN-A1 reached its maximum relative abundance, and B) July

183 2009, the date UCYN-A1 appeared at 890m.

186 Supplementary Figure 10–UCYN-A ASV6 does not co-occur with any Braarudosphaera ASV

187 across the SPOT dataset at 5m. See Supplementary Table 2 for hashes associated with UCYN-A

¹⁸⁸ and *Braarudosphaera* ASVs.

Supplementary Figure 11–Mixed mock communities contain even proportions of 16S (right) and
18S (middle) sequences. DNA from the small subunit of the rRNA gene of 21 organisms was
pooled and sequenced in equal concentrations on an Illumina HiSeq or MiSeq. Normalized
mixed mock communities match the proportions of sequenced DNA, indicating normalization
was successful (left).

197 Additional References:

```
    Fuhrman JA, Comeau DE, Hagstrom A, Chan AM. Extraction from Natural Planktonic
    Microorganisms of DNA Suitable for Molecular Biological Studies. Applied and
    Environmental Microbiology 1988; 54: 1426.
```

201	73.	Lie A, Kim D, Schnetzer A, Caron D. Small-scale temporal and spatial variations in
202		protistan community composition at the San Pedro Ocean Time-series station off the
203		coast of southern California. Aquatic Microbial Ecology 2013; 70.
204	74.	Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. DADA2:
205		High-resolution sample inference from Illumina amplicon data. <i>Nat Methods</i> 2016; 13 :
206		581–583.
207	75.	Friedman J, Hastie T, Tibshirani R. Regularization Paths for Generalized Linear Models
208		via Coordinate Descent. Journal of Statistical Software 2010; 33: 1-22.
209	76.	Simon N, Friedman J, Hastie T, Tibshirani R. Regularization Paths for Cox's
210		Proportional Hazards Model via Coordinate Descent. Journal of Statistical Software
211		2011; 39 : 1–13.
212	77.	Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7:
213		Improvements in performance and usability. Molecular Biology and Evolution 2013;
214		30 : 772–780.
215	78.	Yeh Y-C, Needham DM, Sieradzki ET, Fuhrman JA. Taxon Disappearance from
216		Microbiome Analysis Reinforces the Value of Mock Communities as a Standard in
217		Every Sequencing Run. mSystems 2018; 3.
218	79.	Turk-Kubo KA, Achilles KM, Serros TR, Ochiai M, Montoya JP, Zehr JP. Nitrogenase
219		(nifH) gene expression in diazotrophic cyanobacteria in the Tropical North Atlantic in
220		response to nutrient amendments. Front Microbiol 2012; 3: 386.
221		