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Different Biomechanical Variables Explain Within-
Subjects Versus Between-Subjects Variance in

Step Length Asymmetry Post-Stroke
Natalia Sánchez , Nicolas Schweighofer, and James M. Finley , Member, IEEE

Abstract— Step length asymmetry (SLA) is common
in most stroke survivors. Several studies have shown
that factors such as paretic propulsion can explain
between-subjects differences in SLA. However, whether
the factors that account for between-subjects variance in
SLA are consistent with those that account for within-
subjects, stride-by-stride variance in SLA has not been
determined. SLA direction is heterogeneous, and dif-
ferent impairments likely contribute to differences in
SLA direction. Here, we identified common predictors
between-subjects that explain within-subjects variance in
SLA using sparse partial least squares regression (sPLSR).
We determined whether the SLA predictors differ based
on SLA direction and whether predictors obtained from
within-subjects analyses were the same as those obtained
from between-subjects analyses. We found that for parti-
cipants who walked with longer paretic steps paretic dou-
ble support time, braking impulse, peak vertical ground
reaction force, and peak plantarflexion moment explained
59% of the within-subjects variance in SLA. However the
within-subjects variance accounted for by each individual
predictor was less than 10%. Peak paretic plantarflexion
moment accounted for 4% of the within-subjects variance
and 42% of the between-subjects variance in SLA. In par-
ticipants who walked with shorter paretic steps, paretic
and non-paretic braking impulse explained 18% of the
within-subjects variance in SLA. Conversely,paretic braking
impulse explained 68% of the between-subjects variance in
SLA, but the association between SLA and paretic braking
impulse was in the opposite direction for within-subjects
vs. between-subjects analyses. Thus, the relationships that
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explain between-subjects variance might not account for
within-subjects stride-by-stride variance in SLA.

Index Terms— Gait, stroke, step length asymmetry,
dimensionality reduction, regression.

I. INTRODUCTION

GAIT impairment is common in the majority of sur-
vivors of stroke. A common measure of gait impairment

post-stroke is step length asymmetry (SLA). SLA is associated
with increased cost of transport [1]–[3] and decreased bal-
ance [4], [5], making SLA reduction a common goal of clinical
interventions [6], [7]. Studies assessing factors associated with
SLA post-stroke rely on average measures obtained over multi-
ple strides for each participant, and use techniques such as uni-
variate correlation [8]–[10], analysis of variance [9], [11], [12],
or linear regression [8], [13], [14] to understand factors that
explain between-subjects differences in SLA. These studies
have identified factors related to forward propulsion, such as
paretic propulsion [10], [15], [16], plantarflexion moments [9],
and trailing limb extension [17], as primary correlates of SLA.
However, whether these between-subjects relationships hold at
a within-subjects level remains to be determined.

SLA is highly heterogeneous. Some people walk with
asymmetries characterized by longer paretic steps, others walk
with asymmetries characterized by shorter paretic steps, and
other individuals walk with nearly symmetric steps [1], [16].
Asymmetries characterized by longer paretic steps are thought
to be related to decreased propulsion and limb extension when
the paretic limb is trailing [8]–[11]. In contrast, asymmetries
characterized by shorter paretic steps are thought to be related
to deficits in paretic limb advancement [1]. However, no study
has systematically identified the factors contributing to each
type of step length asymmetry.

Laboratory-based gait analysis can return tens of variables,
which can be difficult to synthesize to understand the con-
tributors to gait asymmetry. For example, one can quantify
spatiotemporal variables such as stance and swing times and
step lengths. Additionally, researchers can measure ground
reaction forces and joint-level kinematics to obtain joint level
kinetics, which are measured continuously throughout the gait
cycle [18], [19]. These continuous measures can be used
to extract features for each step using peak values, ranges,
or impulses. All of these variables are then typically averaged
over several gait cycles, eliminating stride-by-stride variance.
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Researchers will then select a subset of variables to try and
explain between-subjects differences in SLA [8], [9], [13].
Therefore, traditional approaches reduce available information
when attempting to identify the factors that contribute to
SLA by eliminating within-subjects variance using average
metrics and reducing the number of variables included in the
analyses [20].

Many gait variables are correlated due to the inherent
coordination found in the gait pattern. In multivariate linear
regression, predictors need to be independent of each other
to avoid multicollinearity. Multicollinearity occurs when a
predictor is highly correlated with the linear combination
of the other predictors. Therefore, the predictor variables’
individual effects on the response cannot be separated [21],
making variable selection necessary when defining predictor
variables. Variable selection [22] can be based on experimen-
tal hypotheses, which, while well-intentioned, can introduce
biases because potentially meaningful predictors may be over-
looked. Other techniques can reduce researcher bias in variable
selection, using criteria such as the variance inflation factor
(VIF) [23] or methods that shrink the estimated regression
coefficients for a number of variables such as Ridge [24] or
Lasso [25]. However, the resulting models obtained from these
methods provide no insight into relationships between pre-
dictor variables. A combination of dimensionality reduction,
to provide insights into relationships between variables, with
linear regression to identify SLA predictors might inform on
several correlated variables, which could be equally targeted
in an intervention aimed to reduce SLA.

Here, we used sparse partial least square regression
(sPLSR) [26]–[28], a technique that combines dimensionality
reduction and Lasso variable selection, to determine which
factors from a set of 20 variables collected for each lower
extremity during gait analysis, can predict within-subjects
variance in SLA in a sample of individuals with chronic
stroke. Our goal was to determine: 1) if the predictors of
SLA differ for individuals with asymmetries due to taking
shorter paretic steps versus longer paretic steps [1], [8], [29],
and 2) if the factors that predict within-subjects variance in
SLA are consistent with those that predict group-level variance
in SLA [9], [10], [15]–[17]. We hypothesized that for asym-
metries characterized by longer paretic steps, SLA would be
associated with variables that capture paretic support deficits
such as paretic stance time and paretic vertical ground reaction
force [1], [16]. For asymmetries characterized by shorter
paretic steps, we hypothesized that SLA would be associated
with kinematic deficits in paretic limb advancement during
swing such as peak hip, knee, or ankle flexion angles [1], [16].
In agreement with previous literature [3], [9], [10], [15]–[17],
we hypothesized that measures related to paretic propulsion
would predict SLA independent of asymmetry direction. Our
results will demonstrate how dimensionality reduction and
regression to determine factors that explain within-subjects
variance can provide a more complete understanding of within-
subjects relationships between SLA and other biomechanical
variables to inform novel, individualized intervention targets
for rehabilitation of walking after stroke.

II. METHODS

A. Population

Data used in this study were collected from a conve-
nience sample of individuals post-stroke (Table I) as part of
a previous study [1]. We recruited individuals with chronic
hemiparetic stroke from the Registry for Aging and Reha-
bilitation Evaluation (RARE) database at the University of
Southern California. Study inclusion criteria were: (1) chronic
hemiparesis (time since stroke >6 months) caused by a single
stroke, (2) ability to walk on the treadmill continuously for
5 minutes, (3) ability to walk over ground independently or
with use of a cane, (4) no concurrent neurological disorders
or orthopedic conditions that interfered with their ability to
walk, and (5) the ability for them or a guardian to provide
informed consent. Exclusion criteria were inability to walk,
clinical history of more than one stroke, or any orthopedic
or neurological condition that prevented them from walking
in the last year. All procedures conformed to the principles
set forth in the Declaration of Helsinki and were approved by
the University of Southern California’s Institutional Review
Board.

B. Experimental Protocol, Data Acquisition and
Processing

All data collection took place at the Locomotor Control
Lab at the University of Southern California. After obtaining
informed consent, we assessed lower-extremity motor impair-
ment using the lower-extremity portion of the Fugl-Meyer
(FM) assessment [30]. We then assessed walking speed using
the 6-minute walk test (6MWT). After clinical assessments,
participants walked on an instrumented, dual belt treadmill
(Fully Instrumented Treadmill, Bertec Corporation, OH) for
a familiarization trial, where the speed of both belts was
gradually adjusted using the staircase method [31] until par-
ticipants achieved their comfortable walking speed, which
they maintained for 3 minutes. After a break, participants
completed a 5-minute walking trial on the treadmill, where
we measured all gait variables of interest. During all treadmill
trials, participants wore a harness to prevent falls without pro-
viding any body weight support. Participants were instructed to
lightly touch a handrail placed in front of them to aid balance
and prevent drift on the treadmill [1].

We recorded the position of reflective markers located
bilaterally on the metatarsophalangeal joints, lateral malleoli,
tibial lateral condyle, greater trochanters, and iliac crests at
100 Hz (Figure 1A) using a 10-camera Qualisys Oqus sys-
tem (Qualisys AB, Goteborg, Sweden). We recorded ground
reaction forces generated by each leg at 1000 Hz from force
plates embedded in a dual belt treadmill. Since all participants
walked at different speeds, they all took a different number
of strides. Thus, we selected 50 strides collected during the
five-minute walking trial to provide an equal number of strides
for each participant in our analysis. Strides were collected
from the mid-portion of the trial by identifying the halfway
stride and collecting the 25 strides prior to and after this
mid-point.
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TABLE I
DEMOGRAPHIC INFORMATION

We used a fourth-order low-pass digital Butterworth filter
to smooth marker data using a cutoff frequency of 10 Hz.
Step lengths were defined as the fore-aft distance between
the lateral malleoli markers at the time of the respective
limb’s initial contact [32]–[34]. Initial contact and lift-off
were estimated from peak anterior and posterior excursions of
the lateral malleoli, respectively [35]. We characterized step
length asymmetry as the difference in non-paretic (NP) minus
paretic (P) step lengths (SL) in millimeters:

SL A = SL N P − SL P (1)

For each participant, we obtained the 95% confidence
interval of their step length asymmetry. If this interval spanned
zero, we excluded the participant from analyses because we
would not be able to assign these individuals to either the
longer paretic or shorter paretic group. If the 95% CI for
SLA was less than zero, participants were categorized as
walking with longer paretic steps. Otherwise, participants were
categorized as walking with shorter paretic steps. We removed
strides in the opposite direction from each participant if needed
and then used the magnitude of step length asymmetry (|SLA|)
in our subsequent analysis.

To obtain temporal gait variables, we calculated stance,
swing and double support times from marker data [35]. Swing

time corresponds to the time between toe-off, which was
estimated as the most posterior location of the ankle markers,
to heel strike on the same side, which was estimated as
the most anterior location of the ankle marker. Stance time
corresponds to the time between initial contact and foot-off
on the same side. Finally, double support time for a given
limb corresponds to the time from contralateral initial contact
to ipsilateral foot-off. We calculated sagittal plane joint angles
using custom code written in MATLAB R2019b (Mathworks,
Natick, MA). Joint angles and moments were expressed using
the conventions defined in Winter [18]: the foot was defined
as the segment between the 5th metatarsophalangeal joint and
the lateral malleolus, the shank as the segment between the
lateral malleolus and the lateral tibial epicondyle, the thigh
as the segment between the lateral tibial epicondyle and the
greater trochanter, and the pelvis as the segment between the
greater trochanter and iliac crest. Ankle dorsi/plantar flexion
angle was measured as the angle between the foot and shank.
Knee flexion/extension was defined as the angle between the
thigh and shank segments. Finally, the hip angle was defined
as the angle between the thigh segment and the pelvis.

We low-pass filtered ground reaction forces at a cutoff
frequency of 100 Hz and calculated braking and propulsive
impulses for each gait cycle as the area under the curve of
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TABLE II
PREDICTOR VARIABLES

the negative and positive portion of the fore-aft ground reac-
tion force, respectively. We estimated flexion/extension joint
moments from ground reaction forces and joint kinematics
using custom inverse dynamics code written in MATLAB and
obtained the magnitude of peak flexion/extension moments for
each stride and for each joint.

C. Statistical Analyses

1) Within-Subjects Analyses: We used sparse partial least
squares regression (sPLSR) [26]–[28] to identify the factors
that best predict within and between-subjects variance in
|SLA| from the 20 gait variables derived for each lower
extremity (40 total, Table II). sPLSR is a technique commonly
used in “omics” data [26], [28], [36], and chemometrics [27]
and relates one or more response variables with a sparse
set of predictors by regressing the response variables on a
low-dimensional space derived from the full set of correlated
candidate predictors. Similar to sparse principal component
analysis (sPCA) [37], sPLSR derives a set of orthogonal latent
variables whose elements are a sparse subset of the candi-
date predictors [26]. Unlike sPCA, which is an unsupervised
method, the latent variables in sPLSR maximize the variance
explained in a response variable, which we defined as SLA
magnitude (|SLA|). Variable selection to obtain the sparse
latent variables from the full set of candidate predictors is
prescribed using a Lasso approach [25], which shrinks the
regression coefficients of some predictors to zero during the
singular value decomposition that returns the latent variables.
sPLSR can also handle multilevel analysis to identify the
predictors that best explain within-subjects variance in |SLA|
by including a random intercept term in the model to account
for between-subjects differences not captured by the predictor
variables, such as walking speed and impairment.

We ran analyses separately in individuals who walked with
longer paretic steps and shorter paretic steps. All analyses were
run in RStudio with R version 3.6.1. sPLSR analyses used the
MixOmics package [36] version 3.11. Data for all participants
in each group were combined into two N × 42 matrices
with one column consisting of the response variable |SLA|,
another column consisting of the participant identifier and the
remaining 40 columns consisting of the predictor variables
listed in Table II. The number of rows N in each matrix was
determined by the number of participants in each group (P)
and the number of strides for each participant (S), such that
N = P × S. Given that predictor variables include tempo-
ral, kinetic, and kinematic variables, which have different
magnitudes, we scaled and centered all predictors across
participants and expressed them as z-scores. We then used a
multilevel sPLSR on the stride-by-stride dataset collected for
participants who walked with longer paretic steps and shorter
paretic steps separately to identify common fixed-effects that
explained within-subjects variance in |SLA|. The response
variable |SLA| was not z-scored to allow interpretation of
regression coefficients, which should have units of millimeters.

sPLSR requires setting two free parameters: the number of
latent variables to define the low-dimensional space and the
sparsity, defined as the number of non-zero predictors returned
by the Lasso approach in each latent variable. We performed
an exhaustive search of every combination of up to 10 latent
variables with up to 10 non-zero predictors in each latent vari-
able from the full set of 40 candidate predictors to obtain a low
dimensional, sparse model that can be easily interpreted [38].
We used leave-one-out cross-validation (LOOCV) to identify
the minimum mean square prediction error (MSPE) for all pos-
sible combinations of latent variables and non-zero predictors
using custom-written code. We implemented LOOCV, leaving
out one observation at a time and setting this observation as
the test set while the remaining N−1 observations constituted
the training set. Then, we identified the most sparse model
(fewest total predictors) with an MSPE within one standard
error of model with the minimum MSPE [21]. We ran this
analysis separately for each group. Using the resulting latent
variables and predictors in each latent variable from this analy-
sis, we identified the regression coefficients. We identified
the variance accounted for (VAF) by each latent variable as
the proportion of variance explained by each latent variable
divided by the total variance in data.

2) Between-SubjectsAnalyses: We obtained averages across
all strides for |SLA| and all predictor variables for each
participant, as is traditionally done in gait studies. Using the
average |SLA|, we split participants into those that walked
with longer paretic and those that walked with shorter paretic
steps. We z-scored all predictor variables and ran sPLSR
analyses for participants who walked with longer paretic and
participants who walked with shorter paretic steps separately.
We included walking speed as one of the predictors in
between-subjects analyses. We set the free parameters using
the procedure described in section A but only allowing up
to five latent variables with up to five predictors to avoid
overfitting the data. We then compared whether the predictors
of |SLA| obtained in within-subjects analyses were consistent
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with those obtained in between-subjects analyses. We assessed
model performance as in within-subjects analyses.

3) Validation: Some of the sPLSR models we identified had
a single predictor in each latent variable. This is equivalent
to a multivariate linear mixed model. Therefore, we imple-
mented multivariate linear mixed-effects regression to deter-
mine whether we obtain the same results as in sPLSR analyses.
From the linear model, we can calculate the conditional coef-
ficient of determination (R2), which is the variance accounted
for by the linear combination of fixed and random effects.
We also calculated a modified version of the marginal R2

which is the variance explained by the linear combination of
fixed effects [39]. The sPLSR package does not return con-
fidence intervals for the regression coefficients. Due to limi-
tations in computational power, we were not able to perform
bootstrap analyses of the regression coefficients using sPLSR.
Therefore, we derived the 95% confidence intervals for the
estimated regression coefficients from the linear mixed-effects
models.

Our joint-level metrics were obtained from custom inverse
dynamics code. Thus, we validated our results using our cus-
tom code to derive inverse dynamics and using data analyzed
in Visual3D in nine subjects from a previous study [40].
Visual3D validation details are presented in the Appendix.

III. RESULTS

The final sample included in our analyses consisted
of 19 individuals. Data for two participants were excluded
as they walked with both positive and negative SLA, and
their mean SLA did not differ from zero (Figure 1B). Eleven
participants in our sample walked with SLA characterized by
longer paretic steps and shorter non-paretic steps (Figure 1).
In these 11 individuals, we accumulated a total of 542 strides,
and in this sample, the distribution of |SLA| was right-skewed,
with a median of 84 mm and an IQR of 75 mm.

Eight participants in our sample walked with SLA char-
acterized by shorter paretic steps and longer non-paretic
steps (Figure 1). In these individuals, we accumulated a total
of 371 strides, and |SLA| was normally distributed with an
average magnitude of 71 ± 40 mm (mean ± SD).

A. Predictors of Within-Subjects Variance in SLA

1) Predictors of |SLA| for Asymmetries Characterized by
Longer Paretic Steps: A model with five latent variables with
one predictor each and a random effect term minimized the
MSPE of |SLA| for participants who took longer paretic
steps (Figure 2). No other models were within one standard
error of the model with the minimum MSPE. Using the
predictors identified in the sPLSR analyses, we ran a linear
mixed model and obtained the same regression coefficients.
From the linear mixed model, we calculated the marginal
R2, which was 0.59. The variance accounted for both the
fixed and random effects was 0.84, indicating that 25% of
the variance in the model was accounted for by the ran-
dom intercept. From sPLSR, we obtained the VAF by each
individual latent variable composed of a single predictor:
(from latent variable 1 to 5, Figure 2A-E, G and Table III)

Fig. 1. Characterization of SLA. A) Participants in our study walked
with longer steps with their paretic extremity (left) or with shorter steps
with their paretic extremity (right). Location of motion capture markers
are indicated in the figure, as well as conventions for measuring joint
kinematics (q for ankle, knee and hip). P: paretic. NP: non-paretic
Arrowheads indicate direction of positive rotation. B) Distribution of
SLA observed across participants. Participants whose 95% CI for SLA
included zero were excluded from analyses to ease interpretation.

paretic double support time (VAF 7.2%, Figure 2A), paretic
braking impulse (VAF 6.9%, Figure 2B), peak paretic vertical
ground reaction force (VAF 7%, Figure 2C), peak non-paretic
dorsiflexion moment (VAF 8.8%, Figure 2D), and peak paretic
plantarflexion moment (VAF 3.8%, Figure 2E). Paretic double
support time, peak paretic vertical ground reaction force,
peak non-paretic dorsiflexion moment, and peak paretic plan-
tarflexion moment were negatively associated with |SLA| such
that larger values for each variable were associated with less
asymmetry. Paretic braking impulse was positively associated
with |SLA| such that greater braking would be associated with
greater asymmetry.

To determine whether the individual-specific differences
in |SLA| accounted for by the random effect were due to
differences in individual-specific walking speed or impairment
measured via the FM score, we used a linear model with
the random intercept as the response variable and speed
and FM as predictors. The model’s F-statistic was 0.802,
p-value = 0.481.

2) Predictors of |SLA| for Asymmetries Characterized by
Shorter Paretic Steps: A model with three latent variables
and one predictor each was within one standard error of
the model with the minimum MSPE of |SLA| (Figure 3).
The model was also equivalent to a mixed effect model,
with a marginal R2 of 0.19. The variance accounted
for by both the fixed and random effects was 0.77,
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Fig. 2. Predictors of |SLA| for participants who walked with longer
steps with their paretic leg. A-E) Conditional regression plots. These
plots illustrate the relationship between the expected value for |SLA|
when changing the predictor in the x-axis. All other fixed effects are
maintained constant at their median value. Note that the figures show
combined data for all participants. F) Random intercept and 95% CI for
each participant. G) Estimated regression coefficients for each of the
five predictors derived from sPLSR analyses and verified using linear
mixed effects model. Error bars are 95% confidence intervals derived
from linear mixed effects models described in the Appendix. LV: latent
variable. VAF: variance accounted for. DST: double support time.Imp:
impulse. Vert: vertical. GRF: ground reaction force. DF: dorsiflexion.
PF: plantarflexion.

indicating that 58% of the variance in the model was
accounted for by the random intercept. The predictors
that made up each latent variable and the VAF derived
from sPLSR (from latent variable 1 to 3, Figure 3A-C and

Fig. 3. Predictors of |SLA| for participants who walked with shorter steps
with their paretic leg. A-C) Conditional regression plots as in Figure 2.
D) Random intercept and 95% CI for each participant. E) Estimated
regression coefficients for each of the three predictors derived from
sPLSR analyses and verified using linear mixed effects model. Error
bars are 95% confidence intervals. LV: latent variable. VAF: variance
accounted for. Prop: propulsion.

Table III) were: non-paretic propulsive impulse (VAF 16%,
Figure 3A), non-paretic braking impulse (VAF 6.5%,
Figure 3B), and paretic braking impulse (VAF 5%, Figure 3C).
Paretic braking impulse had the largest regression coefficient
magnitude and was negatively associated with |SLA|
(Figure 3C). Non-paretic braking impulse was positively
associated with |SLA|. The regression coefficient for
non-paretic propulsive impulse was not significantly different
from zero.

The linear model to predict the random intercept as a func-
tion of speed and FM was not significant, with an F-statistic
of 0.141, p-value = 0.871.

B. Predictors of Between-Subjects Variance in SLA

1) Predictors of |SLA| for Asymmetries Characterized by
Longer Paretic Steps: Using a sPLSR model on average data
for each participant to explain between-subjects variance in



1194 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 29, 2021

TABLE III
FIXED EFFECTS ESTIMATED COEFFICIENTS

|SLA|, we identified a model with peak paretic plantarflexion
moment as a single predictor to be within one standard error
of the model with the minimum MSPE. This is equivalent
to a univariate linear regression model. When regressing
|SLA| onto peak paretic plantarflexion moment, we obtained
a model with an intercept of 97(95% CI[71, 123], p = 3.09 ×
10−5) and slope of −37.8(95% CI[−64.9,−10.7], p = 0.012)
(Figure 4A). This indicates that participants with larger aver-
age peak paretic plantarflexion moments walked with less
average |SLA|. The linear model had an R2 of 42%, compared
to the VAF for peak paretic plantarflexion in sPLSR of 3.8%
when assessing within-subjects variance (Figure 4B).

The sPLSR algorithm did not identify speed as a predictor
of |SLA|. These results were verified in a linear model, where
the estimated regression coefficient for speed did not differ
from zero (p = 0.850).

2) Predictors of |SLA| for Asymmetries Characterized by
Shorter Paretic Steps: A model with two latent variables
and three predictors each was within one standard error
of the model with the minimum MSPE for predicting
between-subjects differences in |SLA| in the eight participants
who walked with |SLA| characterized by shorter paretic steps
(Figure 4C). Latent variable one was composed of paretic
braking impulse, non-paretic propulsive paretic hip flexion
moment, and peak non-paretic knee flexion. sPLSR did not
identify speed as a predictor of |SLA|.

The sPLSR VAF by all latent variables summed up to 95%
and is likely overfitting the data as this analysis is done with
eight observations. To calculate the confidence intervals of
the sPLSR model parameters, we created 1,0000 new samples
by sampling participants with replacement and ran bootstrap
analyses. The confidence intervals of all predictors, except
for paretic braking, spanned zero, further evidencing that this
model was over-fitting the data (Figure 4C).

To determine whether predictors that account for
between-subjects variance in |SLA| similarly account

Fig. 4. Between-subjects vs. within-subjects relationships between
|SLA| and biomechanical variables. A) Between-subjects relationship
between |SLA| and peak paretic plantarflexion moment in individuals who
walked with longer steps with their paretic extremity. B) Within-subjects
relationship between |SLA| and peak paretic plantarflexion moment in
individuals who walked with longer steps with their paretic extrem-
ity. |SLA| was adjusted using each individual’s random intercept.
C) Regression coefficients for the model with two latent variables
and three predictors that explains between-subjects variance in |SLA|.
D) Between-subjects relationship between |SLA| and paretic braking
impulse in individuals who walked with longer steps with their paretic
extremity. E) Within-subjects relationship between |SLA| and paretic
braking impulse in individuals who walked with shorter steps with their
paretic extremity. |SLA| was adjusted using each individual’s random
intercept.

for within-subjects variance, we used only paretic braking
impulse in univariate regression (Figure 4C). When regressing
|SLA| onto paretic braking impulse in a between-subjects
analysis, we obtained a model with an adjusted R2 of 68%
and a slope and intercept of 32 (95% CI[15, 49], p = 0.004)
and 68 (95% CI[53, 85], p = 4.27 × 10−5), respectively.
However, when regressing within-subjects |SLA| onto paretic
braking impulse, we obtained a model with a slope and
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intercept of −9 (95% CI[−14,−5], p = 2.05 × 10−5)
and 69 (95% CI[50, 88], p = 7.08 × 10−12), respectively.
Since the slopes of the relationships between |SLA| and
paretic braking impulse have opposite signs, this supports our
conclusion that between-subjects associations might not hold
for within-subjects analysis (Figure 4 C-D).

IV. DISCUSSION

Step length asymmetry is a common, simple measure
of gait impairment post-stroke [41], [42]. Researchers have
consistently identified measures related to paretic propul-
sion [9], [10], [15]–[17] as a primary factor explaining
between-subjects differences in |SLA|. Here, we used sPLSR
to identify common factors across participants that account for
within-subjects variance in |SLA| from a set of 40 variables
collected during gait analysis. We found that the factors
that account for within-subjects variance in |SLA| depend on
the direction of asymmetry. In individuals who walked with
asymmetries characterized by longer paretic steps, variance
in |SLA| was explained by paretic double support time,
paretic braking impulse, peak vertical component of the paretic
ground reaction force, peak paretic plantarflexion moment,
and peak non-paretic dorsiflexion moment. In participants
who walked with asymmetries characterized by shorter paretic
steps, the resultant predictors of |SLA| were paretic and
non-paretic braking impulses. Therefore, the direction of
SLA is a factor to consider in the design of rehabilitation
interventions aimed at reducing interlimb asymmetry, given
the influence of differing biomechanical impairments across
asymmetry directions.

Traditionally, researchers will average individual strides
to identify between-subjects associations among biome-
chanical variables. We wanted to determine whether these
between-subjects relationships also hold within-subjects.
Using sPLSR, we identified peak paretic plantarflexion
moment as the single predictor of between-subjects variance
in |SLA| for participants who walked with longer paretic
steps. Peak paretic plantarflexion moment had an R2 = 42%,
comparable to previous studies that reported r = −0.785 [10].
In contrast, peak paretic plantarflexion moment only accounted
for ∼4% of the common within-subjects variance. This low
variance accounted for indicates that the relationship between
plantarflexion and SLA does not hold at a within-subjects
for all participants. Similarly, in participants who walked
with shorter paretic steps, between-subjects analyses showed
that paretic braking impulse was positively associated with
|SLA| with and R2 = 68%. In contrast, in within-subjects
analyses, paretic braking impulse was negatively associated
with |SLA| and accounted for 5% of the within-subjects vari-
ance. Therefore, group level, between-subjects relationships
between |SLA| and biomechanical variables are not consis-
tently observed at an individual, within-subjects level. These
results support the idea that individual characterization of
within-subjects variance might aid identify targets for walking
interventions post-stroke.

We hypothesized that |SLA| would be negatively associated
with paretic support and propulsion in people with |SLA|

characterized by longer paretic steps. Our results partially
support our experimental hypotheses. Specifically, the third
latent variable was composed of peak vertical ground reaction
force on the paretic extremity, a proxy for paretic support,
and accounted for 7% of the common within-subjects vari-
ance in |SLA| with a negative association with |SLA|. This
is consistent with the idea that participants take a shorter
non-paretic step due to decreased loading capacity during
paretic stance. These results contrast previous studies that did
not observe a between-subjects correlation between |SLA| and
vertical ground reaction force asymmetry [29]. Note that in
this previous study, the authors used a force asymmetry index,
which is the ratio of paretic to non-paretic vertical ground
reaction force. A plausible explanation for this discrepancy
might be that the relationship between |SLA| and paretic
support holds on a within-subjects level but not between-
subjects, or that using an asymmetry ratio eliminates some of
the common variance between |SLA| and the paretic ground
reaction force.

We hypothesized that |SLA| would be negatively associated
with paretic propulsion similar to what has been reported
in the literature [9], [10], [15], [16]. However, our results
indicate that paretic plantarflexion moment accounted for only
∼4% of the within-subjects variance in |SLA|. The ques-
tion is then, why have previous studies that targeted paretic
propulsion using fast walking and functional electrical stim-
ulation (FastFES) effectively reduced step length asymmetry
post-stroke [3], [43]? It might be the case that targeting paretic
propulsion is an effective strategy to reduce SLA in some
individuals, while in others, it might lead to secondary effects
in other variables that influence |SLA|, such as those identified
here. It is also worth noting in the FastFES study, only
28/42 individuals reduced |SLA| after FastFES [3]. Analyzing
within-subjects variance for an intervention of this type could
potentially help researchers identify individuals who might
respond most favorably to this type of treatment.

In participants who walked with longer paretic steps,
we identified paretic braking impulse as a predictor of |SLA|,
with a positive association between braking impulse and
|SLA|. This relationship is consistent with our understand-
ing of gait mechanics: bringing the paretic leg further for-
ward results in a longer paretic step and an increase in
the posteriorly directed component of the ground reaction
force [44], [45]. Braking can also be modulated by changing
the center of pressure: if the paretic loading and orientation
of the paretic limb is constant, but initial contact is achieved
with the forefoot, the fore-aft component of the ground
reaction force, and thus, braking would increase [46]. It is
evident how stroke might lead to increased braking: decreased
paretic dorsiflexion leads to initial contact occurring with the
fore-foot or with a flat foot. Modulating how initial contact is
achieved could contribute to reducing paretic braking without
decreasing paretic step lengths. Excessive braking might also
imply that in some post-stroke participants, gait is terminated
at each paretic step [47] and might need to be restarted with
each non-paretic step. Reducing paretic braking would allow
non-paretic propulsion to be used not for gait initiation on each
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step, but to increase forward progression of the non-paretic
limb during swing, further reducing step length asymmetry.

In participants who walked with longer paretic steps, paretic
double support time comprised the first latent variable and was
negatively associated with |SLA|. Here, we defined paretic
double support as the period when the paretic extremity
is trailing [48]. In people post-stroke, double support time
is longer on the paretic extremity because non-paretic heel
strike occurs earlier in the gait cycle [48]. Based on the
negative association between double support time and |SLA|,
an increase in double support time would lead to reductions in
|SLA|. Our interpretation of this association is that increased
double support time on the paretic extremity would result in
an increase in paretic trailing limb angle. Thus, on the next
paretic swing phase, since push-off occurred further behind
the body, if the excursion of the paretic leg is constant, the
paretic leg would land closer to the body, decreasing paretic
step length and subsequently reducing asymmetry.

Finally, in participants who walked with longer paretic steps,
a common predictor of within-subjects variance in |SLA| was
non-paretic dorsiflexion. Peak non-paretic dorsiflexor moment
was negatively associated with |SLA|, and the asymmetry
in this group is not only due to a longer paretic step but
also a shorter non-paretic step. Thus, a short non-paretic step
results in an initial contact closer to the body such that the
tibialis is less stretched and cannot generate the eccentric
contraction that produces the dorsiflexion moment during
loading response. The muscle action of the pretibialis muscles
contributes to shock absorption and the heel rocker responsible
for limb progression [19]. Non-paretic dorsiflexion might not
serve as a direct rehabilitation target, but might instead be a
mechanical consequence of SLA.

In people with asymmetries characterized by shorter paretic
steps, we hypothesized that |SLA| would be associated with
deficits in paretic limb advancement such as paretic ankle,
knee, and hip flexion. Our results contrast our hypothesis as
we identified paretic and non-paretic braking impulse as the
main predictors of |SLA|. Few studies have assessed the role
of braking during locomotion in people post-stroke [45], and
associations between |SLA| and paretic braking have not been
reported in the literature to the best of our knowledge. Here,
for participants who walked with shorter paretic steps, paretic
braking impulse was negatively associated with |SLA|. Since
shorter paretic steps are associated with increased |SLA| in this
group, we would expect paretic braking impulse to increase as
they take longer paretic steps to reduce |SLA|. In contrast, non-
paretic braking was positively associated with |SLA|. Thus,
a potential approach for reducing |SLA| could be to reduce
non-paretic braking using strategies such as biofeedback of
trunk advancement over the non-paretic leg [45], previously
shown to be associated with braking.

Overall, each predictor in the sPLSR models accounted
for less than 10% of |SLA| variance. There are multiple
reasons for the low variance explained by individual predic-
tors. First, sPLSR identifies common predictors that explain
within-subjects variance in SLA, but the model cannot account
for between-individual differences in the associations between

SLA and the candidate predictors. A careful review of Fig. 3
highlights this point: for example, participant 14 shows little
variance in peak paretic plantarflexion moment while span-
ning the entire range of |SLA| values, whereas participant
21 shows a negative association between peak paretic plan-
tarflexion moment and |SLA|. This indicates that the relation-
ships between SLA and biomechanical variables may differ
in a subject specific manner. To quantify subject-specific
relationships between variables, we would require a model
with different predictors for each participant. A final reason
why our models accounted for less variability than previous
studies [3], [9], [10], [15]–[17], is that these studies use
individual averages which remove the noise present in the
within-subject data, resulting in between subjects analyses
with a higher variance explained. Our results suggest that there
are individual-specific correlates of SLA that are not accounted
for in between subject analyses, or even in within-subject
analyses that combine hierarchical, dimensionality-reduction
and regression methods as implemented here.

In participants who walked with longer paretic steps,
the marginal R2 was 59%, whereas in participants who walked
with shorter paretic steps the marginal R2 was only 19%. This
indicates that in individuals who walk with shorter paretic
steps, there are additional within-subjects differences not
accounted for by the biomechanical variables included here,
and could be related to impairments in the underlying neuro-
muscular control, such as muscle weakness or co-contraction.
This might explain why in our previous study, individuals who
took shorter paretic steps had decreased capacity to reduce
asymmetry [1]. Further biomechanical assessment of these
participants could aid in the identification of targets that are
specific to people who walk with shorter paretic steps.

We explored whether differences in the factors that
explained within subject variance in |SLA| were due to
inter-individual differences in walking speed and impairment.
We found no relationship between the random intercept
and walking speed or FM, indicating that |SLA| differences
between participants were not due to individual differences in
walking speed or impairment measured using the FM score.
In the between-subjects analyses, speed was not identified
as a predictor either by the sPLSR algorithm or during
validation via linear models. Therefore, while walking speed
and the degree of impairment can influence the magnitude
of the biomechanical variables used as predictors of SLA,
we found no association between |SLA| and walking speed
or impairment. Whether the predictors of |SLA| would differ
when grouping individuals based on walking speed remains to
be determined.

There are a number of additional considerations that could
guide our future work. First, we used peak values over the
entire gait cycle as the primary features of our joint kinematic
and kinetic data. Previous studies have subdivided the gait
cycle into distinct functional phases [19] and then obtained
peak values in these phases [9], [11]. The peak values obtained
here might have occurred at any point during the gait cycle
and might not occur during the gait phases where specific
kinetics and kinematics are functionally needed to accomplish
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the objectives of each phase of the gait cycle. Thus, the
relationship between |SLA| and peak values during functional
phases remains to be investigated. In some participants such
as participant 15, 16 and 18, there was little variance in
SLA, hindering identification of predictors of SLA. Future
work could include conditions in which individuals modify
their SLA or walk at different speeds to increase variance
in the predictor and response variables. Finally, we did not
include EMG measures as part of data acquisition but this
would be important to consider in future studies interested in
muscle-level contributions to gait deviations post-stroke.

V. CONCLUSION

Using combined dimensionality reduction, sparsity and
regression, we found that the factors that account for
within-subjects variance in |SLA| are not consistent with those
that account for between-subjects variance in SLA and these
predictors depend on the direction of asymmetry. Overall,
these results point to the need for developing approaches
that take advantage of within-subjects variance, to identify
personalized intervention targets for gait retraining.
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