
Chapman University Chapman University 

Chapman University Digital Commons Chapman University Digital Commons 

Computational and Data Sciences (MS) Theses Dissertations and Theses 

Spring 5-2023 

Analyzing the Overturning of Roe vs Wade on Twitter using Analyzing the Overturning of Roe vs Wade on Twitter using 

Natural Language Processing Techniques Natural Language Processing Techniques 

Gabriela Pinto 
Chapman University, pinto@chapman.edu 

Follow this and additional works at: https://digitalcommons.chapman.edu/cads_theses 

Recommended Citation Recommended Citation 
G. Pinto, "Analyzing the overturning of Roe vs Wade on Twitter using natural language processing 
techniques," M. S. thesis, Chapman University, Orange, CA, 2023. https://doi.org/10.36837/
chapman.000485 

This Thesis is brought to you for free and open access by the Dissertations and Theses at Chapman University 
Digital Commons. It has been accepted for inclusion in Computational and Data Sciences (MS) Theses by an 
authorized administrator of Chapman University Digital Commons. For more information, please contact 
laughtin@chapman.edu. 

https://digitalcommons.chapman.edu/
https://digitalcommons.chapman.edu/cads_theses
https://digitalcommons.chapman.edu/etd
https://digitalcommons.chapman.edu/cads_theses?utm_source=digitalcommons.chapman.edu%2Fcads_theses%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.36837/chapman.000485
https://doi.org/10.36837/chapman.000485
mailto:laughtin@chapman.edu


Analyzing the Overturning of Roe vs Wade on Twitter using Natural Language Processing Techniques

A Thesis by

Gabriela Pinto

Chapman University

Orange, CA

Schmid College of Science and Technology

Submitted in partial fulfillment of the requirements for the degree of

Masters of Science in Computational and Data Sciences

May 2023

Committee in charge:

Dr. Erik Linstead

Dr. Elizabeth Stevens

Dr. Elia Eiroa Lledo



 



Analyzing the Overturning of Roe vs Wade on Twitter using Natural Language Processing Techniques

Copyright ©2023

by Gabriela Pinto

III



ACKNOWLEDGMENTS

I want to thank my family, friends, and colleagues for their support during my studies and research career

thus far. I would also like to especially thank Dr. Erik Linstead for the opportunity to join the Machine

Learning and Affiliated Technologies (MLAT) lab, where I felt inspired to pursue a career in research. I

will always be grateful for the mentorship and experiences I gained during the past five years. With their

support, I will pursue my Ph.D. in Computer Science at the University of Southern California.

IV



VITA

EDUCATION

Master of Science in Computational and Data Science 2023

Chapman University Orange, CA

Bachelor of Science in Computer Science 2021

Chapman University Orange, CA

INDUSTRY EXPERIENCE

Masters Intern March 2023 -August 2018

Research Computing Team

Pacific Northwest National Laboratory Richland, WA

Product Development Engineer Intern August 2021- January 2022

NAND Team

Intel Folsom, CA

Technology Analyst Intern June 2021-August 2021

Barclays Whippany, NJ

RESEARCH EXPERIENCE

Graduate Research Assistant February 2022–May 2023

Chapman University Orange, CA

REU Program Participant March 2021–September 2021

Worcester Polytechnic Institute Worcester, MA

Undergraduate Research Assistant March 2020–February 2022

Chapman University Orange, CA

TEACHING EXPERIENCE

Graduate Teaching Assistant August 2022–May 2023

Chapman University Orange, CA

V



LIST OF PUBLICATIONS

Lledo-Eiroa, E., Ali Hamza, R., Pinto, G., Anderson, J., Linstead, E.

Large-Scale Identification and Analysis of Factors Impacting Sim-

ple Bug Resolution Times in Open Source Software Repositories

February 2023

Applied Sciences

Atchison, A., Pinto, G., Woodward A., Stevens E., Dixon D., Linstead, E.

An Application of Document Embeddings to Indentifying Chal-

lenging Behaviors in Autism Spectrum Disorder from Clinical

2022

2022 21st IEEE International Conference on Machine Learning and Applications

Ali Hamza A., Pinto, G., Lawrie, E., Linstead, E. A Large-Scale Senti-

ment Analysis of Tweets Pertaining to the 2020 US Presidential

Election

June 2022

Journal of Big Data

Atchison, A., Pinto, G., Woodward A., Stevens E., Dixon D., Linstead, E.

Classifying Challenging Behaviors in Autism Spectrum Disorder

with Word Embeddings

2021

20th IEEE International Conferences on Machine Learning and Applications

VI



ABSTRACT

Analyzing the Overturning of Roe vs Wade on Twitter using Natural Language Processing Techniques

by Gabriela Pinto

In 1973, the historic U.S. Supreme Court (SCOTUS) case of Roe vs. Wade provided the constitutional right

to abortion. However, on May 2, 2022, Politico magazine leaked the draft opinion on the Dobbs v. Jackson

Women’s Health Organization. The leak generated a surge of users to post their opinion on the case that

would eliminate abortion as a constitutional right. Then, on June 24, 2022, SCOTUS overturned Roe vs.

Wade. In this thesis, we aim to investigate the public opinion and reaction towards the overturning of Roe

vs. Wade. We collected 20,640,166 tweets using Twitter API for Academic Research and an open-sourced

dataset published during two periods. The first period was a week before Politico magazine leaked the

SCOTUS decision and the week after. The second period was a week before and over a week after the

overturning of Roe vs. Wade. Using natural language processing techniques, including sentiment analysis,

emotion recognition, topic modeling, and bi-grams, we could develop insight into public opinion based on

the posted tweets. Our research investigates if there is a change in sentiment over time, a change in the

emotion expressed within the text over time, and which topics are most common within the collection of

tweets. The results demonstrate a significant increase on the day of the Politico leak, which showed that

most of the tweets published on that day expressed a positive sentiment. However, in the weeks before and

after the overturning of Roe v. Wade, we witness a decrease from the beginning of the period up to the day

of the overturn. Regarding emotion recognition, there is a significant decrease in the proportion of tweets

classified as expressing optimism. There’s also an increase in the proportion of tweets expressing anger when

comparing the day of the Politico leak and the day of the overturn. The topic model we applied to the

tweets published on the day of the Politico leak revealed that states’ rights and children were discussed.

Using bigram of the most negative tweets, we witnessed gun control and healthcare as words that frequently

occurred within the collection.
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1 Introduction

In 1973, the Supreme Court ruled in the case of Roe v. Wade that the U.S. Constitution protected women

the right to have an abortion. The ruling from this monumental court case became the legal precedent that

upheld the constitutional right to abortion for almost 50 years. On May 2, 2022, Politico published a leaked

draft of the U.S. Supreme Court majority decision in Dobbs v. Jackson Women’s Health Organization that

would overturn the decision made in Roe v. Wade [17]. As the news of the Politico leak reached millions

of Americans, many users voiced their opinions on Twitter. Then on June 24, 2022, the U.S. Supreme

Court overturned Roe v. Wade which revoked the federal right to abortion. The consequence of the decision

caused people to voice their opinions on Twitter, either in favor or against. A policy change as significant

as the overturning of Roe v. Wade has caused an emergence of topics such as birth control and women’s

rights within these tweets. Thus, it is imperative to analyze these conversations as they are essential in

understanding the experiences and perceptions of the public, as they would aid in future policymaking and

decision-making.

The abundance of data from tweets could provide insight into the discourse related to Roe v Wade and

the topics that submerge from these conversations. In this thesis, we utilize natural language processing

techniques to analyze social media data. Previous research has investigated the sentiment on tweets related

to political events such as the U.S. Presidential Election, the government interference during the COVID-19

pandemic, and government elections in other countries [30, 49, 11, 13, 4]. Similarly in [1], has demonstrated

that policy change affects political opinion towards issues that expand beyond the core issue. It holds even

greater importance as a previous study has proven that hate speech, cyberbullying, and online harassment

campaigns have significantly increased [14, 25, 23]. Moreover, a recent study has quantitatively proven that

the since the purchase of Twitter by Elon Musk, there has been a significant increase in the occurrence of

hate speech and in the prevalence of bots on the social media platform [22]. A topic such as abortion that

ignites heated political debate would cause an emergence of hate speech. The approach outlined in this thesis

could be used in analyzing future Supreme Court decisions that have an equal effect or are even greater.

In this novel application of natural language processing, we collected 20,640,166 tweets and examined how

users linguistically communicated their opinion on Twitter. We look to determine in this thesis public

opinion through the application of natural language processing techniques, including sentiment analysis,

emotion detection, and topic modeling. We analyzed how the sentiment had changed over time, what topics

were heavily discussed and how they changed over time, and how the emotion had changed over time. We

sought to investigate an existing or lack of change a week before the Supreme Court decision leaked on
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Politico and a week after. In addition, investigate a shift a week before the official overturning of Roe

vs. Wade and a week later. The techniques, as mentioned earlier, would quantitatively demonstrate the

opinion of Twitter users and any existing change. We demonstrated this by answering the following research

questions:

RQ1. Is there a significant change in sentiment from the time the decision leaked in Politico and when Roe

vs. Wade was officially overturned?

RQ2. Is there a significant change in emotion from the time the decision leaked in Politico and when Roe vs.

Wade was officially overturned?

RQ3. What topics were commonly mentioned within these conversation related to Roe vs. Wade?

The application of sentiment analysis, emotion recognition, and topic modeling has given a deeper insight

into the conversation on abortion from both sides of the political spectrum. In the following pages, we will

detail the data used in our study in Chapter 2, the application of natural language processing techniques in

Chapter 3, the results obtained in Chapter 4, and their practical significance in Chapter 5. We then outline

related work in Chapter 6, future work in Chapter 7 and conclusions in Chapter 8.
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2 Data

In this thesis, we collected the 20,640,166 tweets from two sources, the Twitter API and a dataset published

by Chang et al. [9]. The tweets were published between two time periods: April 25, 2022, to May 10, 2022,

and the second period from June 17, 2022, to July 5, 2022. The data we scraped using the Full-Archive

Search provided by the Twitter API for Academic Research allowed us to collect more tweets faster and grab

historical or real-time data. To gain a complete analysis of the public opinion on the overturning of Roe v

Wade, we included keywords that we used by individuals that indicate a neutral stance, an anti-abortion

stance, and a pro-abortion stance. The keywords were categorized respectively as ”neutral,” ”pro-choice,”

and ”pro-life,” and their associated keywords are listed in Table 1.

Category Keywords

Neutral roe v wade, roevswade, Roeverturned, abortion
Pro-choice prochoice, abortionrights, abortionishealthcare, my-

bodymychoice, reclaimroe, EndRoeVWade, repro-
ductiverights, plannedparenthood, AbortionRight-
sAreHumanRights

Pro-life prolife, AbortionIsMurder, LifeIsAHumanRight,
EndAbortion, chooselife

Table 1: Keywords used in the query and their corresponding category

As shown in the Listing 1, we implemented the keywords in our query. The data retrieved from the API

call were the author’s id, the geo object, the tweet’s id, the time stamp of when the tweet was created,

the time stamp of when the user started their account, the author’s location published in their profile, if

the author is verified, the number of tweets the author published, the author’s number of followers, the

author’s description published on their profile, the author’s username, the language the tweet was written

in, the number of times the tweet has been retweeted, the number of replies to the tweet, the number of likes

the tweet received, the number of times the tweet has been quoted, and which device was used to publish

the tweet. The geo object corresponds to the location of where the Tweet was posted. Within the tweets

retrieved from the Twitter API, most didn’t return a geo object and, thus, were omitted in our analysis.
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query params = { ’ query ’ : keyword ,

’ s t a r t t ime ’ : s t a r t da t e ,

’ end time ’ : end date ,

’ max resu l t s ’ : max resu l t s ,

’ expansions ’ : ’ author id , i n r e p l y t o u s e r i d , geo . p l a c e i d ’ ,

’ tweet . f i e l d s ’ : ’ id , text , author id , i n r e p l y t o u s e r i d , geo , conve r sa t i on id ,\

c r ea t ed at , lang , pub l i c me t r i c s , r e f e r enc ed twee t s , r e p l y s e t t i n g s ,\

source ’ ,

’ use r . f i e l d s ’ : ’ id , name , username , c r ea t ed at , d e s c r i p t i on , pub l i c me t r i c s , v e r i f i e d ,\

l o ca t i on ’ ,

’ p l ace . f i e l d s ’ : ’ fu l l name , id , country , country code , geo , name , p lace type ’ ,

’ next token ’ : {}}

Listing 1: Query used to scrape tweets from the Twitter API

Keyword Count

roe v wade 481461
roevswade 367445
Roeverturned 77
prochoice 52734
abortionrights 52993
abortionishealthcare 55409
mybodymychoice 50198
abortion 3453951
reclaimroe 33
EndRoeVWade 215
ChooseLife 2226
reproductiverights 11726
plannedparenthood 10044
AbortionRightsAreHumanRights 53906
prolife 98867
AbortionIsMurder 5682
LifeIsAHumanRight 506
EndAbortion 599

Table 2: Keywords used in the query and their corresponding count

After gathering the data from the API, we removed duplicate tweets. The number of tweets and their

corresponding keyword as shown in Table 2, giving a total of 4,697,965 tweets. In addition to grabbing the

4,697,965 from the Twitter API, we utilized the tweet IDs provided in the dataset from [9]. The tweets were

gathered similarly to ours, using the Full-Archive Search provided by the Twitter Academic API. In their

data collection, they used an extensive set of keywords that extend to different stances on abortion. The

keywords detailed were implemented in their search query and collected tweets published from January 1,

4



2022, to January 6, 2023. Using the Tweet lookup endpoint and with the Twitter IDs from the files as input,

we collected 15,982,314 tweets published from April 25, 2022, to May 10, 2022, and from June 17, 2022, to

July 5, 2022. Combined with the data we scraped and the data we grabbed using the data from [9], we

obtained 20,640,166 after removing tweets without a creation time and tweets that didn’t contain a sufficient

amount of data for analysis. It is worth noting that while collecting the data from [9], the response from

the Tweet Lookup endpoint returned errors for a fraction of the tweet IDs published. When grabbing the

information for the tweet, two errors were returned: ”Not Found Error” and ”Authorization Error.” When

the tweet was unavailable or deleted, it would return ”Not Found Error.” If the tweet was protected and

we could view it using the API, it produced an ”Authorization Error.” While grabbing a user’s information,

the response would return a ”Forbidden” error when the user has been suspended and a ”Not Found Error”

if the API could not find the user’s data. In Table 3, we listed the number of tweets that returned errors

categorized by the error type. This is particularly noteworthy as it is shown that there were many tweets

related to abortion were deleted on the listed dates.

The distributions for the number of tweets and the corresponding date they were published on Twitter are

shown in Figures 1 and 2. While the leak occurred on May 2, 2022, Politico published the article leaking

the Supreme Court decision in the evening; Politico published an edit in the morning on May 3, 2022. News

outlets published the decision by the time the correction was published, causing a surge of tweet publications.
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Date TweetNotFound UnauthorizedTweet UserNotFound ForbiddenUser Total Errors Total

04-25 7708 718 125 206 8757 15752
04-26 26037 1711 200 272 28220 30816
04-27 26124 1636 319 304 28383 31431
04-28 12191 1264 135 156 13746 23589
04-29 41235 4462 331 391 46419 46247
04-30 35353 3204 253 403 39213 44053
05-01 22972 2315 227 321 25835 32157
05-02 7463 919 123 144 8649 15324
05-03 2334136 188501 9094 9309 2541040 2326676
05-04 48766 3074 337 343 52520 86244
05-05 761317 55368 3639 3576 823900 627008
05-06 836114 62398 5659 5598 909769 733511
05-07 365858 33625 2514 2675 404682 420589
05-08 202395 27191 2036 2239 233861 302868
05-09 220893 33798 513 440 255644 333499
05-10 70864 6817 510 554 78745 131983
06-17 10695 1354 140 234 12423 20936
06-18 10132 1284 134 190 11740 20569
06-19 12386 1714 127 182 14409 26258
06-20 36881 2645 317 570 40413 48259
06-21 17990 1720 154 234 20098 34484
06-22 12743 1718 145 239 14845 27955
06-23 91339 5268 570 694 97871 97678
06-24 2805225 288285 6808 5983 3106301 2883872
06-25 2699385 314446 8179 7293 3029303 2806603
06-26 1453895 170186 7655 7421 1639157 1316685
06-27 1260965 131549 8577 9904 1410995 1098659
06-28 98065 10585 885 963 110498 191595
06-29 130319 58409 4297 5302 198327 508043
06-30 227809 82532 6089 6962 323392 789867
07-01 410996 41521 2679 3206 458402 352040
07-02 48395 9209 442 495 58541 92831
07-03 414556 45012 2987 3555 466110 297943
07-04 31405 3679 368 463 35915 59204
07-05 39466 4627 390 453 44936 67316

Table 3: Number of errors when retrieving tweet from [9]
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Figure 1: The Number of Tweets published a Week
Before and After the Supreme Court Decision on Roe
v Wade leaked on Politico

Figure 2: The Number of Tweets published a Week
Before and After the Supreme Court Overturned Roe
v Wade
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3 Methods

To analyze the public opinion on the overturning of Roe v. Wade, we employed natural language processing

techniques, including sentiment analysis using Valence Aware Dictionary for sEntiment Reasoner (VADER)

and TweetEval’s sentiment classification, TweetEval’s emotion detection, and topic modeling using Gensim.

In this paper, we implemented these techniques to obtain a quantitative representation of the public’s reaction

to the Supreme Court’s decision on overturning Roe v. Wade and the topics arising from those conversations.

VADER is more efficient than other sentiment calculation approaches, such as the Textblob and Lexicon

approach, because of its ability to handle various sentiment expressions. In addition to its sensibility of

the plethora of sentiment expressions within a tweet that takes in the form of excessive use of exclamation

marks, emoticons, and capitalization, it manages much of the processing in the backend so that it doesn’t

exclude any crucial characteristics. Other sentiment analysis approaches exclude vital data, such as excessive

capitalization and punctuation, which typically indicates emotion. The quantitative representation of the

sentiment expressed by the user could provide a general insight into how a large group of people reacted to

a topical event. To gain a more in-depth analysis, we also implemented TweetEval’s emotion recognition

task on the collection of tweets. Emotion recognition provides a more detailed classification than sentiment

analysis, which outputs either positive, negative, or neutral.

Emotion recognition through the TweetEval framework classifies each tweet as Anger, Joy, Sadness, or

Optimism. In this study, we applied this classification as it aims to identify the complex emotions on an

event that caused a plethora of responses to the overturning of Roe v. Wade. Unlike sentiment analysis, it

ignores the complexity of emotions expressed in text as it only outputs negative, positive, and neutral. For

instance, in a tweet that returns a negative sentiment, the emotion expressed could be fear or anger. While

these emotions are technically ’negative,’ they are significantly different in describing the user’s emotional

state. Emotion recognition provides a more in-depth classification that allows us to explore more complex

emotions.

In addition to the sentiment and emotion classification, we implemented topic modeling through linear

discriminant analysis (LDA) to extract the most prominent topics within online conversations. In this

paper, we applied extensive data preprocessing and entered the cleaned data into an LDA model using

Gensim. The topics outputted from the model will provide insight into other topics discussed in addition to

the overturning of Roe v Wade.

Once these techniques were applied, we investigated whether there was an existing correlation between the

sentiment and the time it was published, a correlation between the emotion detected and the time it was
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published, and the most prominent topics when the Supreme Court decision leaked versus when Roe v Wade

was officially overturned. The following subsections provide a brief overview of Sentiment Analysis with

VADER, Emotion Detection with TweetEval, and Topic Modeling.

3.1 Sentiment Analysis with VADER

Previous research integrated sentiment analysis to understand the public’s perspective on a variety of topics,

including COVID-19 booster vaccine shots [48], the stigma associated with monkeypox among LGBTQ+

community [15], and supplemental nutrition assistance program [10]. In this thesis, we apply sentiment

analysis on the collected tweet using Valence Aware Dictionary for sEntiment Reasoning (VADER) [26].

While analyzing the sentiment on social media data, there are a series of challenges to consider. Social

media text typically requires URLs, non-alphabetical characters, excessive punctuation, excessive application

of capitalized letters, emoticons, slang, a limited amount of characters, degree modifiers (e.g., very, rather,

sort of, kind of), and abbreviated language (e.g., LOL, FOMO). To account for the characteristics explicitly

presented in a social media text, we utilized VADER to gain insight into the public’s response to the Politico

leak and the overturning of Roe vs. Wade.

A lexicon that has been applied to calculate the sentiment of social media data is the Linguistic Inquiry and

Word Count (LIWC) [41]. LIWC, like VADER, is a dictionary-based approach to calculating the sentiment

of a given text. It contains a set of words that express positive and negative sentiments. However, LIWC

doesn’t regard the challenges in calculating the sentiment expressed in social media text. Meanwhile, VADER

considers the unique properties of social media data in its lexicon.

While there is a lexicon-based approach to calculating the sentiment of a given text, machine learning

approaches have been developed to mitigate the intensive work of creating lexicons such as LIWC or VADER.

Some machine learning approaches include Naive Bayes (NB) classifiers, Maximum Entropy, Support Vector

Machines Classification models, and Support Vector Machine Regression models. However, machine learning

approaches have their own set of challenges to consider. They typically require excessive amounts of validated

training data, which are difficult to acquire. In addition, applying machine learning models to large amounts

of social media data is computationally expensive. Meanwhile, VADER doesn’t require any training data

and doesn’t require an extensive amount of computational power.

The features, consisting of words or emoticons, were applied a rating on a scale from -4 to 4. Where -

4 indicates ”extremely negative,” 4 is ”extremely positive,” and 0 indicates neutral. For example, their

lexicon contained a sad emoticon, ”:(,” which had a valence of -2.2, and the word ”good” with the associated
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valence of 1.9. Because VADER is validated by humans, making its results more accurate than other lexicons,

including Linguistic Inquiry Word Count (LIWC), General Inquirer (GI), Affective Norms for English Words

(ANEW), and Hu-Lui04 lexicon.

For every tweet in our dataset, we applied the lexicon provided by VADER and its tools for computing the

sentiment score using the vaderSentiment module [26]. The engine outputs four scores: compound, pos, neu,

and neg. The pos (positive), neu (neutral), and neg (negative) scores represent the proportion of the text

that expresses its respective sentiment, which all add up to 1. These metrics provide a method for analyzing

how sentiment is conveyed in a given text. While this metric is helpful, it wasn’t applied for this thesis as

the compound score was deemed most appropriate for analyzing the overall sentiment of a given tweet as it

considered the linguistic components seen in a social media text.

The compound score is computed with the tweet as input, and for each word in the tweet, the module

grabs its associated valence scores. Once all the valence scores of each word in the input were obtained, the

summed of the scores were calculated and adjusted according to a set of rules. The rules, which account for

the sentiment intensity of the text, include the amount of punctuation (e.g., The view from here is amazing!!),

use of ALL-CAPS (e.g., The view here is AMAZING!), degree modifiers (e.g., The view here is absolutely

amazing), contrastive conjunction (e.g., The view here is great but there was so much traffic), and the tri-

gram preceding a sentiment-laden lexical feature (e.g., The view here isn’t really that amazing). Afterward,

the score was normalized between -1 and 1, the most extreme negative and extreme positive, respectively.

The compound score is the most helpful metric within this subfield of natural language processing, as previous

literature uses the following thresholds for classifying texts as positive, neutral, and negative [39, 6]. A text

is classified as expressing positive sentiment if the compound score is greater than or equal to 0.05; negative

sentiment if the compound score is less than or equal to -0.05; neutral sentiment if the compound score is

greater than -0.05 and less than 0.05. In Listing 2, I’ve provided a visual representation of the output for a

given body of text that can also be found in [26].

Input :

VADER i s VERY SMART, handsome , and FUNNY! ! !

Output :

{ ’ pos ’ : 0 . 767 , ’ compound ’ : 0 . 9342 , ’ neu ’ : 0 . 233 , ’ neg ’ : 0 .0}

Listing 2: The Pos, Neg, Neu, and Compound Scores from a given body of text using VADER
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3.2 Emotion Recognition

In addition to the sentiment analysis, we applied emotion recognition to our tweets collection to gain a

deeper insight into the public’s reaction to the Politico leak and the overturning of Roe v Wade. We used

the TweetEval benchmark, which consists of seven tasks designed explicitly for English tweets [2]. The seven

tasks were the following: emotion recognition, emoji prediction, irony detection, hate speech detection,

offensive language identification, sentiment analysis, and stance detection. For this thesis, we applied the

emotion recognition task [36] for our collection of tweets. The emotion recognition task takes in a tweet as

input and outputs four emotions: Anger, Joy, Sadness, and Optimism. The task utilizes a dataset from [36],

which included 11 emotions. In the integration into TweetEval, the four emotions were selected. Before

inputting their own data set, the data preprocessing consisted of anonymizing user mentions, removing line

breaks, and removing URL links. The language model chosen for constructing the TweetEval benchmark,

which includes the emotion task, was RoBERTa [31] considering that its training data of 38GB of Reddit

data exposed it to the language typically written on social media.

When inputting our dataset to TweetEval’s emotion recognition task, we preprocessed each tweet by remov-

ing user mentions and URLs. Afterward, we downloaded the RoBERTa model and created an instance of the

model. We applied the AutoTokenizer from Huggingface’s Transformers to tokenize the text. The tokenized,

or encoded text, contained two fields: input ids and attention mask. The input ids represented the tweets as

numbers, and the attention mask defined which tokens provided a value. Once the text was tokenized, it was

entered into our model. The model’s output would generate the four scores for each emotion, which add up

to one. The highest score indicated the emotion that was most expressed in the given text. An example is

shown in Listing 3, where the highest ranking score is joy, indicating that the text is most likely expressing

that emotion.

Input :

” Ce l ebra t ing my promotion : ) ”

Output :

1) joy 0 .9382

2) optimism 0.0362

3) anger 0 .0145

4) sadness 0 .0112

Listing 3: The Joy, Optimism, Anger, and Sadness scores from a given body of text using TweetEval
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3.3 Topic Modeling

3.3.1 Dirichlet Distribution

The Dirichlet distribution is a multivariate generalization of beta distribution that is parameterized by a

vector α of positive real numbers [29]. The application of this distribution is used in text mining techniques,

which expands to the developmet of the Latent Dirichlet Allocation model and the Dirichlet process. The

probability density function of the Dirichlet distribution is most conveniently written in the following way:

p(q|α) = Γ(α1+...+αJ )
Γ(α1)...Γ(αJ )

∏J
j=1 q

αj−1
j (qj ≥ 0;

∑
j qj = 1)

The application of this distributions is vital for the computations that occur when applying the Latent

Dirichlet Allocation (LDA) model.

3.3.2 Poisson distribution

The Poisson distribution used in LDA models is a discrete distribution that measures the probability of a

given number of events happening in a fixed period of time [21]. The probability density function is defined

as the following: f(x;u) = µxe−µ

x! x = 0, 1, ... , where x represents the discrete random variable.

3.3.3 Multinomial Distribution

Within the context of LDA, the Multinomial distribution serves as it conjugate prior. The Multinomial

distribution provides the probability of any particular combination of numbers of success for the various

categories possible [38]. The probability mass function is defined as the following:

f(x1, ..., xk;n, p1, ..., pk) =
Γ(

∑
i xi+1)

ΠiΓ(xi+1) Π
k
i=1p

xi
i .

3.3.4 Latent Dirichlet Allocation Model

To gain a more in-depth analysis of the tweets related to Roe vs. Wade, we applied topic modeling as a

method of gathering hidden themes or topics from our large collection of tweets. A brief overview of the

process is to extract each word in each document, or tweet, and assign it into one of K possible topics. K

is a number of topics that we can decide to produce. In previous research that implements topic modeling

on tweets [28], the standard that we know today was introduced by Blei et al. is Latent Dirichlet Allocation

(LDA) [3]. In its essence, LDA clusters the words in a given collection into topics, which are distributions

over words, while simultaneously classifying the texts as mixtures of topics. For the remainder of this section

we will described the process of LDA described in [3].
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A word is defined, within this thesis, as an item from a vocabulary indexed by {1,....,V }. A document is a

sequence of N words denoted by w = (w1, w2, ....., wN ). Meanwhile, a corpus is a collection of M documents

denoted by D = {w1, w2, ...., wM}.

The LDA is founded on the idea that documents are represented as a random mixture over latent topics–a

collection of words–where each topic is a distribution over words. For each document,w, in a corpus D, LDA

assumes a process that consists of three components. The first being choose N ∼ Poisson(ξ), second being

choose θ ∼ Dir(α), and for each of the N word wn it chooses a topic zn ∼ Mulitnomial(θ) and chooses

a word wn from p(wn|zn, β), which is a multinomial probability conditioned on the topic zn. The model

makes two assumptions, the first assumption being the dimensionality k of the Dirichlet distribution and

the dimensionality of the topic variable z is assumed known and fixed. And, the second being is the word

probabilities are parameterized by a k × V matrix β where βi,j = p(wj = 1|zi = 1), which are treated as a

fixed quantity, which will be estimates. N is independent of all other data generating variables (θ and z).

With these assumptions in mind, the making of LDA model considers a k-dimensional Dirichlet random

variable θ takes in the values in the (k-1)-simplex and has the probability density on this simplex defined as

p(θ|α) = Γ(Σk
i=1αi)

Πk
i=1Γ(αi

)θα1−1
1 ...θαk−1

k ,

where α represents a k-vector with component αi is greater than 0 , where Γ(x) is the Gamma function.

The Dirichlet is a convenient distribution on the simplex. With the given α and β parameters, the joint

distribution of a topic mixture θ, a set of N topic z, and a set of N words w is given by the following

equation:

p(θ, z, w|α, β) = p(θ|α)ΠN
n=1p(zn|θ)p(wn|zn, β),

where p(zn|θ) is θi for the unique i such that zin = 1. When the integration over θ is performed and summing

over z, the marginal distribution of a document resulted in:

p(w|α, β) =
∫
p(θ|α)(ΠN

n=1

∑
zn

p(zn|θ)p(wn|zn, β))dθ.

The product of the marginal probabilities of single documents results in the following probability of a corpus:

p(D|α, β) = ΠM
d=1

∫
p(θd|α)(ΠNd

n=1

∑
zdn

p(zdn|θd)p(wdn|zdn, β))dθd.

Thus, we can consider LDA into three levels, where first the parameters α and β are corpus-level parameters,

assumed to be sampled once in the process of generating a corpus. The variables θd are document-level

variables, sampled once per document. And, the variables zdn and wdn are word-level variables and are

sampled once for each word in each document. With the application of this model, documents can be
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associated with multiple topics. We applied the LDA model using the model provided by Gensim, a free

open-source Python library, to our dataset [43].

3.3.5 Preprocessing

Before inputting our tweets into our model, we performed a series of text-cleaning procedures. First, we

removed emojis in each tweet, removed the user mentions, and removed URLs. This was accomplished using

the regex, re,emoji, string. Afterward, we tokenized each tweet using the spaCy module, which split the

tweets into words. All words were then lowercase, and punctuation was removed. We also removed any

words that were less than three characters long. Numbers and stop words were also extracted. Stop words

are words that have little or no meaning within a sentence. The set of stop words were generated from the

spaCy, wordcloud, and gensim modules.

Once tokenization was completed, the text was lemmatized, aiding the LDA model to produce better topics.

The text was also stemmed, and any existing punctuation was removed. The lemmatized text was used to

create a dictionary, where the words are mapped to their integer ids. Thus, any words in the third person are

then changed to the first person; verbs in past and future tenses are changed into the present and reduced

to their root form. Essentially, each word in our collection of tweets is now associated with its unique id.

3.3.6 Constructing the LDA Model

With the lemmatized text, we constructed a dictionary object representing the amount of how many times

a word token occurs within the tweet. The bag of words was implemented with the dictionary as input

on Gensim’s doc2bow method. Once implemented, the doc2bow method outputted a vector for each tweet

where the id of the token and the frequency of words in the document were included. The dictionary was

then filtered so that any token that appeared less than three times and any token that contained more than

99 percent of the corpus was removed. In our LDA model, we initialized the number of topics we wanted

to extract and the number of passes we wanted to iterate through the corpus during training. We set five

topics and five passes as a starting point. We plan to perform hyper parameterization on these parameters

to investigate if there is an optimal number of topics and passes for our LDA model. Considering the size

of our corpus, we applied the LdaMulticore model with 12 workers. The LdaMultiCore model uses all CPU

cores to perform parallelization to decrease the execution time of the model. Training is the same as applying

Gensim’s LdaModel, but LdaMulticore performs multiprocessing.
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3.3.7 Coherence Model

To evaluate the LDA models we constructed, we utilized Gensim’s Coherence Model, which calculates the

coherence score. The coherence score allows us to judge the quality of the topics outputted from our

model. As described in [44], the topic coherence is applied through segmentation, probability estimation,

confirmation measure, and aggregation. We obtained our coherence scores based on the LDA model we

constructed, the lemmatized tokens, and our dictionary containing the token and its unique identifier. There

are currently several coherence scores available through the Gensim Python package; in this thesis, we applied

the Cross Validated score, which is ranged between 0 and 1, inclusively. A score closer to 1 indicates that

the topics outputted from the model are of high quality.

3.3.8 Perplexity Score

In this thesis, we applied the perplexity score through Gensim’s log preplexity method as another method of

evaluating the performance of our model. The perplexity score represents how well the model predicts new

data [52]. In contrast to the coherence score, the lower the perplexity score, the more confident and accurate

its predictions are. In contrast, a higher perplexity score means the model produces inaccurate predictions.

However, we decided to evaluate the model’s accuracy using the outputted coherence scores, which have a

standard range.
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4 Results

Previous research has shown methods to analyze public opinion on various topics within online conversations

can be done through computational linguistic approaches such as sentiment analysis and topic modeling [34,

12]. However, emotion recognition has not been applied, which can provide a deeper insight than classifying

a text as positive, negative, or neutral. Regarding topic extraction in tweets, the sparse text and lack of

content within tweets have presented a challenge in accurately extracting topics hidden within a collection of

tweets. Previous work has proven that aggregating similar tweets and applying the LDA model provides the

most feasible way to obtain topics [45]. Below we discuss the results of applying the three main components

discussed in Chapter 3: sentiment analysis, emotion recognition, and topic modeling. We hope these findings

will identify if there is a correlation with the opinion expressed regarding abortion and identify any prejudice

against marginalized communities.

4.1 Sentiment Analysis with VADER

To analyze the sentiment expressed in our dataset of tweets, we applied VADER’s SentimentIntensityAn-

alyzer to obtain the sentiment score for each tweet. The implementation of VADER was done using the

programming language Python. Using the compound score described in Chapter 3, we investigated if there

was an existing correlation between the tweet publication date and the average compound sentiment score.

The application of the SentimentIntensityAnalyzer outputted four scores for each tweet: positive, negative,

neutral, and compound. The results were analyzed utilizing the compound score as it provided the best

quantitative representation of the sentiment expressed in the text. In Figure 3 and 4, we illustrated the

average compound scores for all the tweets for their corresponding publication date. Figure 3 shows how the

average compound score for each day a week before the Politico leak and a week after the Politico leak. In

Figure ??, there’s a significant decrease in the average compound sentiment score from May 2, 2022, to May

3, 2022. While Politico leaked the Supreme Court’s decision on May 2, 2022, it was published at 8:32 PM

EDT; hence by the next day, on May 3, 2022, more people were aware of the leak and posted their opinions

online. Therefore, we see a decrease from approximately 0.100 to 0.05. We can deduce that on May 2, 2022,

most tweets expressed a positive sentiment. Still, it does not show if the tweets were expressing in favor of

the possibility of abortion rights no longer being a constitutional right. Since the day of the Politico, we

can observe a trend of the average compound sentiment score decreasing, with the lowest average compound

score below -0.050 on May 8, 2022. Figure 4 demonstrates the average of the compound score for each day a

week before the overturning and a week after the overturning of Roe vs. Wade. Within the specific period,

there is a trend of the average compound score for tweets published from June 17, 2022, to June 24, 2022,
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indicating that most tweets expressed positive sentiment. An interesting observation is the lowest average

compound score throughout the respective period. On July 3, 2022, a day before the U.S.’s national holiday

Fourth of July, the average compound score was -0.075.

Figure 3: Average Sentiment Score per Day during the Politico Leak
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Figure 4: Average Sentiment Score per Day during the Overturning of Roe v Wade

Figure 5 demonstrated the proportion of tweets published each day during the week leading up to the Politico

leak and a week after the Politic leak that was classified as positive, negative, and neutral. As mentioned

in Chapter 3, a compound score generated from a given text greater than or equal to 0.05 is classified as

positive, and less than or equal to -0.05 is classified as negative or neutral. The proportion of approximately

0.5 tweets published on May 2, 2022, classified as positive corresponds to the average compound score on

the same date in Figure 3. Similarly, on May 8, 2022, we see that approximately 0.5 of the tweets published

on that date were classified as negative, corresponding to the average compound score for May 8, 2022, in

Figure ?? as it falls below -0.05. Figure 6 illustrates the proportion of tweets published each day during

the week leading up to the overturning of Roe vs. Wade and a week after the overturning of Roe vs. Wade

classified as positive, negative, and neutral. The proportion of the tweets published on July 3, 2022, classified

as negative, approximately 0.50, outweighs those classified as positive. On the day of Roe v Wade being

overturned, there is an average compound score that leans towards a neutral sentiment being expressed, as

shown in Figure 4. In 6, we observed an almost equal proportion of the tweets published that day expressing

positive and negative sentiments regarding being in favor or not in favor of the SCOTUS decision.
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Figure 5: Sentiment classification of Tweets during the Politico leak

Figure 6: Sentiment Classification of Tweets during the Overturning of Roe v Wade
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4.2 Emotion Recognition with TweetEval

Given the computational cost of efficiency in large language models (LMs) such as the one described in

Chapter 3, we couldn’t compute the emotion expressed for every tweet in our dataset. To increase the speed

of execution for the roberta-based-emotion model, we applied Huggingface’s BetterTransformers using fused

kernels. For the 25,758 tweets published on the day of the Politico leak, the computation took approximately

72 hours to complete. The tweets posted on the day of the overturn, throughout the Politico leak, and then

throughout the overturning of Roe vs. Wade period were 4,022,267, 6,300,676, and 14,339,490 tweets,

respectively. We applied random sampling to gain preliminary insight into the emotions expressed on those

dates. In this analysis, we compared the emotions expressed during the day of the Politico leak with those

depicted on the day of the overturning of Roe v Wade, where each set had 25,758 tweets. We applied

Panda’s random sample method to grab 25,758 tweets at random. While comparing the two time periods,

we randomly sampled 10,000 tweets from their respective datasets.

The results of applying emotion recognition are shown in Figure 7. For the tweets published during the day

of the Politico leak, the chart is shown on the left, and for the tweets posted on the day of the overturning

of Roe vs. Wade is shown on the right. We can observe that the vast majority of tweets published on the

day of the Politico leak expressed a positive emotion. More specifically, 42%, 29%, 17%, ad 12% expressed

anger, optimism, joy, and sadness, respectively. Out of the 25,758 tweets published that day, 3,148 expressed

joy, 3,531 expressed optimism, 15,888 expressed anger, and 3,189 expressed sadness.

Meanwhile, on the day of the overturning of Roe vs. Wade, we witnessed a significant proportion of tweets

that expressed anger. For tweets published on the day of the overturning of Roe vs. Wade, we can observe

that 62%, 14%, 12%, and 12% expressed anger, optimism, joy, and sadness, respectively. Of the randomly

sampled 25,758 tweets published on the day of the overturn, 4,420 expressed joy, 7,373 expressed optimism,

10,758 expressed anger, and 32,07 expressed sadness. The classification results showed a significant increase

in tweets expressing anger between the two days, indicating a negative response to the overturn. The

decreased proportion of tweets expressing optimism is also noteworthy, as that reduces from 29% to 14%.

We can deduce that many users were either optimistic that the leak was not legitimate or agreed with the

SCOTUS decision in the Dobbs v. Jackson’s Women’s Health Organization case.
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Figure 7: Proportion of Tweets Expressing a Specific Emotion during the Day of Politico magazine Leaking
the SCOTUS decision on Dobbs v. Jackson’s Women’s Health Organization and durinng the Day of the
Overturning of Roe vs. Wade, respectively

In Figure 8, we compared the proportion of tweets classified as expressing a specific emotion between the two

time periods, where each collection contains 10,000 randomly sampled tweets. On the left, we demonstrated

the proportion of tweets published throughout the Politico leak period. On the right, we observed the

proportion of tweets posted during the overturning of the Roe v Wade period, classified as expressing anger,

optimism, joy, or sadness. In contrast to Figure 7, we don’t see a significant difference. During the Politico

leak period, 6,255, 1,742, 1,077, and 926 tweets were classified as expressing anger, optimism, sadness, and

joy, respectively. The tweets published during the overturning of Roe vs. Wade period, 6,370, 1,618, 1,257,

and 755, were classified as expressing anger, optimism, sadness, and joy, respectively. It is possible that due

to the limited amount of tweets, we cannot observe a difference. We plan to classify the rest of our data

collection in future research.
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Figure 8: Proportion of Tweets Expressing a Specific Emotion during the Time Period of Politico magazine
Leaking the SCOTUS decision on Dobbs v. Jackson’s Women’s Health Organization and the Overturning
of Roe vs. Wade, respectively

4.3 Topic Modeling with Gensim

We used Gensim’s LdaMultiCore topic model to implement topic modeling on our tweets collection. In

Figures 9 and 10, we present the tweet length distribution of the tweets and the 30 most common words in

the dataset where tweets were published on the day of the Politico leak. Similarly, we present Figures 11 and

12, we show the tweet length distribution of the tweets and the 30 most common words in the dataset where

tweets were published on the day of the overturning of Roe v Wade. The tweet distribution shows that most

of the tweets posted on that day were 17 words long, which juxtaposes the distribution of the tweets for the

tweets published on the day of the overturn, which were mainly 11 words long. Given the large scale of the

dataset for the tweets posted during the periods of the Politico leak ad the overturning of Roe vs. Wade and

the memory constraints when constructing the necessary preprocessing for the LDA model, we perform our

LDA on those sets of tweets. For this thesis, we applied the Topic Modeling with Gensim’s LDA model on

the tweets published on the day of the Politico leak and the overturning of Roe vs. Wade.
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Figure 9: Tweet Length Distribution of the Tweets Published during the Day of Politico magazine Leaking
the SCOTUS decision on Dobbs v. Jackson’s Women’s Health Organization

Figure 10: Word Cloud of the 30 Most Frequent Words within the Tweets Published during the Day of
Politico magazine Leaking the SCOTUS decision on Dobbs v. Jackson’s Women’s Health Organization
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The topics generated from the LDA model are shown in 4. The results demonstrated five underlying topics

within this specific collection of tweets. We can see that ideas such as ”women”, ”choose”,”life”,”state”,”right”,

are mentioned within our collection. Allowing us to assume that the tweets are referring to states rights, the

right to choose, women, women’s rights, children, and life. Because our corpus only contained a word total

of 374011 and a vocabulary size of 34164, the topics outputted don’t seem to output cohesive topics. The

coherence score resulted in 0.307 in Table 4, and while this isn’t a high score, there is room for improvement

through hyper-parameterization. With hyper-parameterization, we still observe some repeated words that

include numbers, abortion, life, and woman in Tables 5,6,7; thus indicating that we need to modify how

tokens are filtered before entering them into the model. At execution, tokens that occurred less than three

times were removed, and tokens contained in more than 99 percent of the corpus were removed. In future

work, we would modify filtering so that tokens in 50 percent or more of the corpus are removed.

Topic # Terms

Topic 1 abortion,life,right,state,choose,ban,kill,woman,say,day
Topic 2 life,abortion,choose,matter,woman,value,right,choice,pro,people
Topic 3 mplaza,news,million,yahoo,audit,value,2,4,rate,airdrop
Topic 4 abortion,people,life,value,woman,right,know,time,think,ban
Topic 5 abortion,law,life,woman,roe,people,wade,birth,issue,today

Table 4: Topics generated from LDA model with the Tweets published on the day of the Politico Leak as
the Input

Topic # Terms

Topic 1 life,abortion,choose,matter,roe,wade,value,woman,right,ban
Topic 2 abortion,life,right,choose,woman,people,state,live,value,ban
Topic 3 abortion,woman,right,birth,control,life,roe,choose,baby,wade
Topic 4 mplaza,million,life,news,yahoo,audit,value,abortion,2,4
Topic 5 mplaza,news,yahoo,million,audit,value,2,4,rate,airdrop
Topic 6 mplaza,news,million,audit,yahoo,abortion,value,2,rate,4
Topic 7 abortion,life,pro,choice,people,go,right,let,pass,end
Topic 8 abortion,life,choose,right,woman,mplaza,say,roe,people,value
Topic 9 abortion,life,people,choose,matter,woman,right,value,law,say
Topic 10 abortion, life,choose,right,woman,people,child,go,roe,value

Table 5: Topics from Hyperparameterized LDA Model for Tweets published on the day of the Politico Leak
with Coherence Score 0.302
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Topic # Terms

Topic 1 abortion,ban,life,woman,mplaza,news,pregnancy,right,million,birth
Topic 2 mplaza,abortion,news,million,audit,yahoo,2,right,value,4
Topic 3 life,mplaza,million,news,audit,yahoo,choose,abortion,value,2
Topic 4 life,matter,choose,human,mplaza,value,million,news,yahoo,choice
Topic 5 abortion,life,people,choose,matter,human,right,think,value,law
Topic 6 life,u,value,abortion,child,people,woman,need,think,year
Topic 7 mplaza,news,audit,million,yahoo,abortion,value,2,cryptotowneu,referral
Topic 8 mplaza,yahoo,million,news,audit,value,4,cryptotowneu,rate,airdrop
Topic 9 abortion,life,right,woman,wade,roe,choose,help,people,human
Topic 10 abortion,mplaza,life,news,audit,million,yahoo,love,right,rate

Table 6: Topics from Hyperparameterized LDA Model for Tweets published on the day of the Politico Leak
with Coherence Score of 0.304

Topic # Terms

Topic 1 abortion,life,woman,right,risk,let,choose,state,grow,day
Topic 2 mplaza,news,million,audit,yahoo,abortionn,value,2,4,life
Topic 3 mplaza,news,audit,yahoo,million,value,2,referral,rate,airdrop
Topic 4 abortion,life,woman,murder,right,child,people,law,choose,help
Topic 5 mplaza,million,yahoo,audit,news,2,value,referral,airdrop,4
Topic 6 abortion,choose,life,today,roe,wade,health,right,help,day
Topic 7 abortion,right,life,woman,choose,time,control,value,human,child
Topic 8 abortion,mplaza,million,news,yahoo,audit,right,value,2,cryptotowneu
Topic 9 life,abortion,change,value,kid,margin,support,feel,today,woman
Topic 10 abortion,life,woman,right,anti,pro,mplaza,value,million,people

Table 7: Topics from Hyperparameterized LDA Model for Tweets published on the day of the Politico Leak
with Coherence Score of 0.30659
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Figure 11: Tweet Length Distribution of the Tweets Published during the Day of the Overturning of Roe
vs. Wade

Figure 12: Word Cloud of the 30 Most Frequent Words within the Tweets Published during the Day of the
Overturning of Roe vs. Wade
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5 Discussion

Analyzing the tweets published during a historic moment in American history can provide a deeper insight

into public opinion on abortion rights. However, there are some challenges in analyzing social media data,

such as the character limit on tweets, which provides limited context to the tweet. Other challenges presented

in social media data are non-alphabetical characters, excessive punctuation, misspellings, slang, and excessive

capitalization [27, 47, 35]. Despite these challenges, we could determine the sentiment throughout the

presented periods of when the Politico leak occurred and when SCOTUS overturned Roe vs. Wade. We

determined dates where the average compound sentiment score differs significantly from the other dates.

Still, we have not analyzed what words are used to convey highly negative tweets. In Figure 13, we can

observe the 30 most frequent terms that outputted a compound score less than or equal to -0.9. The

most frequent words included: ”rape,” ”guns,” ”children,” ”women,” and ”murder.” Thus, indicating words

related to guns, women, and murder contributed to producing a negative compound score for the tweet. We

also present Figure 14, which analyzes the bigrams in tweets that output a compound sentiment less than

or equal to -0.9. The most notable bigrams included: ”gun violence,” ”ban guns,” ”stops abortions,” and

”forced to.” The bigrams present that the topic of guns or the mention of guns is significant within our

entire corpus. Reviewing the linguistic components of these tweets holds value as it provides a method to

understand other prevalent concerns from the general public during a conversation related to Roe vs. Wade.

In addition to the sentiment, we obtained insight into what specific emotions were expressed within the

social media data and which topics were mentioned within the tweets about Roe vs. Wade. Using emotion

recognition, we deduced that during the day of the Politico leak, most tweets expressed anger, presumably

regarding the possibility of abortion being revoked as a constitutional right. On the day of the overturning

of Roe vs. Wade, we witnessed a decrease in tweets expressing optimism, as anger dramatically outweighs

the other emotions. Therefore, the comparison between the emotions expressed in the tweets posted on the

day of the Politico versus the day of the overturning of Roe vs. Wade provides great motivation towards

classifying all of the tweets in our larger datasets that comprise tweets published during the weeks before

and after the overturning of Roe vs. Wade and the Politico leak. To our best knowledge, this is the first

study of its kind to implement a multiclass classification of the emotion expressed by a given tweet.

In the LDA model implementation, we demonstrated the challenges of analyzing social media data. The

results indicate that more preprocessing is needed to obtain more coherent topics. It is worth noting that in

Chapter 2, a significant portion of the dataset provided by [9] was unavailable. Given the results from this

study, there is value in investigating the linguistic nature of these tweets for a larger-scale analysis. Overall the

27



importance of this work is to provide a deeper insight into the conversations published during historically

significant events that had ensued emotional responses from both sides of the political spectrum. The

application of natural language processing methods has illustrated varied public reactions to the overturning

of Roe vs. Wade.

Figure 13: 30 Most Frequent Words in Tweets Less than or Equal to -0.9 Compound Sentiment Score
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Figure 14: 30 Most Frequent Bigrams in Tweets Less than or Equal to -0.9 Compound Sentiment Score
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6 Related Work

Unsupervised machine learning has been applied broadly across multiple domains, including content analysis

of textbooks, social media analysis, and Autism research [32, 40, 24]. Natural language processing, a sub-field

of unsupervised machine learning, has been used to analyze large volumes of social media data to understand

public opinion on specific topics. Recent research has shown how social media data can be used to analyze

online conversations to gain better insight into public perception on various topics. In [5], 107,990 tweets

related to the COVID-19 pandemic were collected to analyze the themes and trends in the conversations.

Frequency of keywords, sentiment analysis with emotion quotients, and topic modeling were used to conduct

the study. In this thesis, we used state-of-the-art approaches for performing sentiment analysis using VADER,

designed explicitly for analyzing Twitter data. Other studies focused on study conversations in social media

focus analyzed conversations such as mental health during the COVID-19 pandemic, eating disorders, and

online education during the pandemic [51, 7, 37]. While [51, 37] provided unique and more profound insight

for their respective field, it does not demonstrate the specific emotion expressed as they classified their tweets

as positive, negative, or neutral. Using TweetEval, we applied emotion recognition to our collection of tweets

to calculate the emotions expressed.

A related study examined the public opinion on the overturning of Roe v Wade using 227,161 tweets published

between May 1, 2021, and July 15, 2022 [33]. While the study scales to almost a year-long span of tweets, our

large dataset will provide the ability to use Language Model to perform more advanced and accurate analysis.

[1] used 5,996,741 tweets and apply sentiment analysis on tweets related to Obergefell v. Hodges decision.

Similarly, we applied sentiment analysis on a collection of 20,640,166 tweets regarding a Supreme Court case

of significant and immediate impact, Dobbs v. Jackson’s Women’s Health Organization. However, in this

thesis, we did not consider the existence of bots within our dataset, as bot detection is significant in social

media and one of the many challenges social media data inherits [46].
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7 Future Work

Chang et al. describe how the abundance of manipulation caused by social media bots causes unhealthy

discourse, thus affecting how the public perceives important political issues [8]. In future work, we would like

to detect bots and analyze how bots manipulate the conversation regarding abortion and women’s rights.

To detect bots within our dataset, we will utilize the Botometer dataset and investigate what content is

typically published by these bots as a preliminary step [18].

In this thesis, we only analyzed tweets written in English, but in [20], they address the concern for online

manipulation in low-resource languages, such as Tagalog. We would like accurately analyze how users

writing in low-resource languages perceived trending events online and how these conversations are prone

to manipulation. [42] investigated the conversation on Twitter and Facebook on the lack of regulation on

removing Russian propaganda. The growing presence of propaganda affects how users communicate with

each other online, as misinformation can cause a ripple effect of distorted perspectives. Thus, we will aim to

explore how propaganda and misinformation affect how the public perceives events online within the context

of women’s rights and abortion rights.

Concerning improving the methodology in this study, we plan to continue investigating n-gram in tweets

with a compound sentiment score greater than or equal to 0.9 and less than or equal to 0.9. In addition, we

plan to obtain the resources to implement TweetEval’s emotion recognition to our sets of tweets within the

two larger periods: a week before and after the overturning of Roe vs. Wade and the Politico leak. Using

TweetEval, we aim to implement their stance detection, sentiment analysis, and hate speech detection tasks.

To improve our topic modeling application on the tweets, we would want to continue hyper parameterizing

our models for the dataset containing tweets published on the day of the Politico leak and the day Roe

vs. Wade was overturned. While we could not apply the topic models to our large datasets, we plan to do

so with the same methodology. Compared to other topic modeling approaches–LDA, Top2Vec, NMF, and

BertTopic–NMF and BertTopic have proven to be most efficient in analyzing Twitter data [16]. Thus, in

addition to Gensim’s LDAMultiCore model, we hope to apply NMF and BertTopic modeling to improve the

accuracy of the topics obtained from our corpus [19].

To gain a more expansive view of the public response to the overturning of Roe v Wade, we hope to develop a

new and novel methodology that can perform sentiment analysis, emotion recognition, and topic modeling on

tweets written in Spanish. The primary motivation is the known prevalence of Spanish-speaking individuals

in the United States and online and its lack of attention within the research community. While a previous

study has investigated classifying the labels of pro-choice and pro-life on social media, there is still room
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for improvement [50]. With the implementation of methods utilized in this thesis, we can obtain a cultural

analysis of how people from different cultures perceive these events.
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8 Conclusion

We analyzed public opinion through sentiment analysis, emotion recognition, and topic modeling. Despite

the challenges with social media data, we were able to apply state-of-the-art techniques to tweets related

to issues that pose a significant effect on marginalized communities. Using VADER, we applied sentiment

analysis and observed that the strongly negative tweets with a sentiment score less than or equal to -0.9

frequently mentioned gun control and healthcare. An insight that has not been investigated in previous

research. In addition, we looked at the average compound sentiment score for each day during two distinct

periods: a week before and after the Politico leak and the overturning of Roe vs. Wade. We demonstrated

that the sentiment of the tweets was largely positive on the day of the Politico leak.

Meanwhile, on the days leading to the overturning of Roe vs. Wade, we demonstrate that there has been an

overall decrease in the sentiment score to a neutral one, indicating the strong presence of tweets expressing

both positive and negative sentiment. We can see how the sentiment on the day of the overturning of Roe

vs. Wade corresponds to the emotion recognition results, as the vast majority of tweets published on the

day of the overturning of Roe vs. Wade expressed anger. Applying natural language processing on social

media has demonstrated insight into the public’s reaction regarding abortion.
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[44] Michael Röder, Andreas Both, and Alexander Hinneburg. “Exploring the space of topic coherence

measures”. In: Proceedings of the eighth ACM international conference on Web search and data mining.

2015, pp. 399–408.

[45] Asbjørn Steinskog, Jonas Therkelsen, and Björn Gambäck. “Twitter topic modeling by tweet aggre-
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10 Appendices

Appendix A: Scraping data from the Twitter API

import requests

import os

import csv

import dateutil.parser

import time

#insert your bearer token here

def setTokens():

bearer_token = "INSERT BEARER TOKEN HERE"

os.environ[’TOKEN’] = ’INSERT BEARER TOKEN HERE’

#set the bearer token here - necessary for authorization

def auth():

return os.getenv(’TOKEN’)

def create_headers(bearer_token):

headers = {"Authorization": "Bearer {}".format(bearer_token)}

return headers

#create the call to grab data from the API

def create_url(keyword, start_date, end_date, max_results = 20):

search_url = "https://api.twitter.com/2/tweets/search/all"

#change params based on the endpoint you are using

query_params = {’query’: keyword,

’start_time’: start_date,

’end_time’: end_date,

’max_results’: max_results,

’expansions’: ’author_id,in_reply_to_user_id,geo.place_id’,

’tweet.fields’: ’id,text,author_id,in_reply_to_user_id,geo,conversation_id,\

created_at,lang,public_metrics,referenced_tweets,reply_settings,\

source’,

’user.fields’: ’id,name,username,created_at,description,public_metrics,verified,\

location’,

’place.fields’: ’full_name,id,country,country_code,geo,name,place_type’,

’next_token’: {}}

return (search_url, query_params)

Figure 15: Applying Authorization and Creating the Header
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#response is retrieved here

def connect_to_endpoint(url, headers, params, next_token = None):

params[’next_token’] = next_token #params object received from create_url function

response = requests.request("GET", url, headers = headers, params = params)

print("Endpoint Response Code: " + str(response.status_code))

if response.status_code == 503:

print("Status Code 503: \n HyperText Transfer Protocol (HTTP) 503 Service Unavailable Error")

raise Exception(response.status_code, response.text)

if response.status_code == 429:

print("Status Code 429")

raise Exception(response.status_code, response.text)

if response.status_code != 200:

raise Exception(response.status_code, response.text)

return response.json()

Figure 16: Generating a response

def append_to_csv(json_response, fileName):

#dictionary of all the user and user information

user_dict= {}

#A counter variable for counting the number of tweets the response

counter = 0

#create/open the csv file containing the information grabbed from the response

csvFile = open(fileName, "a", newline="", encoding=’utf-8’)

csvWriter = csv.writer(csvFile)

#grabbinng user’s information from the response

#each key is the user, the value is the user’s information

for user in json_response[’includes’][’users’]:

user_dict[user[’id’]] = {’username’: user[’username’],

’followers’: user[’public_metrics’][’followers_count’],

’tweets’: user[’public_metrics’][’tweet_count’],

’description’: user.get("description",""),

’location’: user.get("location",""),

’verified’:user.get("verified",""),

’created_at’:user.get("created_at","")

}
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#iterate through each tweet

for tweet in json_response[’data’]:

#grab the author id

author_id = tweet[’author_id’]

#for each tweet we grab the author’s information

authorInfo = user_dict[author_id]

#author’s username

username = authorInfo["username"]

#author’s number of followers

author_followers = authorInfo["followers"]

#author’s number of published tweets

author_tweets = authorInfo["tweets"]

#author’s bio description

author_description = authorInfo["description"]

#author’s location published on his/her/their profile

author_location = authorInfo["location"]

#a boolean value that indicates if the user is verified

verified = authorInfo["verified"]

#the time stamp when the author created his/her/their account

author_created_at = authorInfo["created_at"]

#when the tweet was created

created_at = dateutil.parser.parse(tweet[’created_at’])

#grabbing the geo object and its associated attributes

geoObj = None

geo_placeid = ""

geo_url = ""

geo_placeType=""

geo_name=""

geo_fullName=""

geo_countryCode=""

geo_country=""

geo_boundingBox=None

if (’geo’ in tweet):

geoObj = tweet[’geo’]

geo_placeid = "" if ’place_id’ not in geoObj else geoObj[’place_id’]

geo_url = "" if ’url’ not in geoObj else geoObj[’url’]

geo_placeType = "" if ’place_type’ not in geoObj else geoObj[’place_type’]

geo_name = "" if ’name’ not in geoObj else geoObj[’name’]

geo_fullName = "" if ’full_name’ not in geoObj else geoObj[’full_name’]

geo_countryCode = "" if ’country_code’ not in geoObj else geoObj[’country_code’]

geo_country = "" if ’country’ not in geoObj else geoObj[’country’]

geo_boundingBox = None if ’bounding_box’ not in geoObj else geoObj[’bounding_box’]

else:

geoObj = ""
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#grabbing the tweet id

tweet_id = tweet[’id’]

#indicates the language the user used to write the tweet

lang = tweet[’lang’]

#the number of times the tweet was retweeted

retweet_count = tweet[’public_metrics’][’retweet_count’]

#the number of replies

reply_count = tweet[’public_metrics’][’reply_count’]

#the number of likes

like_count = tweet[’public_metrics’][’like_count’]

#the number of times someone quoted the tweet

quote_count = tweet[’public_metrics’][’quote_count’]

#the source of the tweet (example: Mobile Phone)

source = tweet[’source’] if ’source’ in tweet else ’’

#the text of the tweet

text = tweet[’text’]

#all the values we collected from the response

res = [author_id, username, author_created_at, verified, author_followers, author_tweets, \

author_description,author_location, tweet_id, text, created_at,lang, source, like_count, \

quote_count, reply_count, retweet_count,geoObj,geo_placeid,geo_url,geo_placeType, geo_name,\

geo_fullName,geo_countryCode,geo_country,geo_boundingBox]

#appendinng the information to the csv file

csvWriter.writerow(res)

counter += 1

#close the csv file once we went through the entire response

csvFile.close()

#Print the number of tweets for this iteration

print("Number of Tweets added from this response: ", counter)

Figure 17: Saving scraped data to a file
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if __name__ == ’__main__’:

setTokens()

bearer_token = auth()

headers = create_headers(bearer_token)

KEYWORD_Q = "insert the keyword you want to include in your query"

keyword = "KEYWORD_Q lang:en -is:retweet"

#list of the start dates for the query

start_list = [’YEAR-MONTH-DAYT00:00:00.000Z’]

#list of the end dates for the query

end_list = [’YEAR-MONTH-DAYT0:00:00.000Z’]

#list of the start and end dates for the file name, in string format

datesStart = []

datesEnd = []

#while running this script we included the following dates

#04/25/2022-05/10/2022

#06/17/2022-07/05/2022

max_results = 500 #the max amount of tweets we want from the response

total_tweets = 0 #Total number of tweets we collected from the loop

for i in range(0,len(start_list)):

startDate = datesStart[i]

endDate = datesEnd[i]

fileName = "KEYWORD_Q"+startDate+"_"+endDate+".csv"

# Create file

csvFile = open(fileName, "a", newline="", encoding=’utf-8’)

csvWriter = csv.writer(csvFile)

#Creating the columns in the dataset

csvWriter.writerow([’author_id’, ’username’, ’author_created_at’, ’verified’,\

’author_followers’, ’author_tweets’,’author_description’, ’author_location’, ’tweet_id’,\

’text’, ’created_at’, ’lang’, ’source’, ’like_count’, ’quote_count’, ’reply_count’,\

’retweet_count’,’geoObj’,’geo_placeid’,’geo_url’,’geo_placeType’, ’geo_name’,’geo_fullName’,\

’geo_countryCode’,’geo_country’,’geo_boundingBox’])

csvFile.close()

count = 0 # Counting tweets per time period

max_count = 500000 # Max tweets per time period

scrape = True

next_token = None
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while scrape:

# Check if the number of tweets collected is greater than

# the max_count of tweets for that time period

if count >= max_count:

#move on to the next time period

break

print("Token: ", next_token)

url = create_url(keyword, start_list[i],end_list[i], max_results)

json_response = connect_to_endpoint(url[0], headers, url[1], next_token)

result_count = json_response[’meta’][’result_count’]

if ’next_token’ in json_response[’meta’]:

# Save the token to use for next call

next_token = json_response[’meta’][’next_token’]

print("NEXT_TOKEN: ", next_token)

if result_count is not None and result_count > 0 and next_token is not None:

print("Start Date: ", start_list[i])

append_to_csv(json_response, fileName)

count += result_count

total_tweets += result_count

print("Total # of Tweets added: ", total_tweets)

print("-------------------")

time.sleep(5)

# If no next token exists

else:

if result_count is not None and result_count > 0:

print("NO NEXT_TOKEN")

print("Start Date: ", start_list[i])

append_to_csv(json_response, fileName)

count += result_count

total_tweets += result_count

print("Total # of Tweets added: ", total_tweets)

print("-------------------")

time.sleep(5)

#Turn the scrape variable

#to false to move to the next time period.

scrape = False

next_token = None

time.sleep(5)

print("Total number of results: ", total_tweets)

Figure 18: Main function to gather data
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Appendix B: Collecting tweets from an open-sourced dataset

def read_data(dataFile):

allIds = pd.read_csv(dataFile)

allIds = [ str(id) for id in allIds[’id’]]

return allIds

Figure 19: Collecting all tweet IDs from the file

def create_url(curIds):

#adding tweet fields

tweet_fields = "tweet.fields=lang,author_id,id,text,in_reply_to_user_id,geo, \

created_at,withheld,source,possibly_sensitive,public_metrics,referenced_tweets,\

conversation_id,reply_settings"

#adding user fields

user_fields = "user.fields=id,name,username,created_at,description,public_metrics,\

verified,location"

#adding expansions

expansions = "expansions=author_id,in_reply_to_user_id,geo.place_id"

#adding place fields

place_fields = "place.fields=full_name,id,country,country_code,geo,\

name,place_type"

#valid twitter ids from our data

ids = "ids="+curIds

# You can adjust ids to include a single Tweets.

# Or you can add to up to 100 comma-separated IDs

url = "https://api.twitter.com/2/tweets?{}&{}&{}&{}&{}".format \

(ids, tweet_fields,user_fields,place_fields,expansions)

return url

def bearer_oauth(r):

"""

Method required by bearer token authentication.

"""

r.headers["Authorization"] = f"INSERT BEARER TOKEN HERE"

r.headers["User-Agent"] = "v2TweetLookupPython"

return r

def connect_to_endpoint(url):

response = requests.request("GET", url, auth=bearer_oauth)

if response.status_code != 200:

raise Exception(

"Request returned an error: {} {}".format(

response.status_code, response.text

)

)

return response.json()

Figure 20: Authentication and Generating a Response
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def append_to_csv(json_response,fileName):

#dictionary of users grabbed

user_dict= {}

#A counter variable for keeping track the number of responses

counter = 0

csvFile = open(fileName, "a", newline="", encoding=’utf-8’)

csvWriter = csv.writer(csvFile)

if ’errors’ in json_response:

for errorRes in json_response[’errors’]:

isError = True

error_detail = errorRes[’detail’]

error_parameter = errorRes[’parameter’]

tweet_id = errorRes[’resource_id’]

error_resource_type = errorRes[’resource_type’]

error_title = errorRes[’title’]

error_type = errorRes[’type’]

error_value = errorRes[’value’]

author_id = ""

username = ""

author_created_at = ""

verified = ""

author_created_at = ""

author_followers = ""

author_tweets = ""

author_description = ""

author_location = ""

text = ""

created_at = ""

lang = ""

source = ""

like_count = ""

quote_count = ""

reply_count = ""

retweet_count = ""

geoObj = None

geo_boundingBox = ""

geo_placeid = ""

geo_url = ""

geo_placeType=""

geo_name = ""

geo_fullName = ""

geo_country=""

geo_countryCode=""
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res = [author_id, username, author_created_at, verified, author_followers,\

author_tweets,author_description,author_location, tweet_id, text, \

created_at,lang, source, like_count, quote_count, reply_count, retweet_count,\

geoObj,geo_placeid,geo_url,geo_placeType, geo_name,geo_fullName,geo_countryCode,\

geo_country,geo_boundingBox,isError,error_detail, error_parameter, error_resource_type,\

error_title, error_type, error_value ]

csvWriter.writerow(res)

Figure 21: Dealing with error objects from the open-sourced dataset

#grab each user’s information

if ’includes’ in json_response:

for user in json_response[’includes’][’users’]:

user_dict[user[’id’]] = {’username’: user[’username’],

’followers’: user[’public_metrics’][’followers_count’],

’tweets’: user[’public_metrics’][’tweet_count’],

’description’: user.get("description",""),

’location’: user.get("location",""),

’verified’:user.get("verified",""),

’created_at’:user.get("created_at","")

}

Figure 22: Collecting the user objects returned
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#Loop through each tweet

if ’data’ in json_response:

for tweet in json_response[’data’]:

#grabbing the tweets’ associated information

#author information

author_id = tweet[’author_id’]

authorInfo = user_dict[author_id]

username = authorInfo["username"]

author_followers = authorInfo["followers"]

author_tweets = authorInfo["tweets"]

author_description = authorInfo["description"]

author_location = authorInfo["location"]

verified = authorInfo["verified"]

author_created_at = authorInfo["created_at"]

#time the tweet was created

created_at = dateutil.parser.parse(tweet[’created_at’])

# geo location object and attributes

geoObj = None

geo_placeid = ""

geo_url = ""

geo_placeType=""

geo_name=""

geo_fullName=""

geo_countryCode=""

geo_country=""

geo_boundingBox=None

if (’geo’ in tweet):

geoObj = tweet[’geo’]

geo_placeid = "" if ’place_id’ not in geoObj else geoObj[’place_id’]

geo_url = "" if ’url’ not in geoObj else geoObj[’url’]

geo_placeType = "" if ’place_type’ not in geoObj else geoObj[’place_type’]

geo_name = "" if ’name’ not in geoObj else geoObj[’name’]

geo_fullName = "" if ’full_name’ not in geoObj else geoObj[’full_name’]

geo_countryCode = "" if ’country_code’ not in geoObj else geoObj[’country_code’]

geo_country = "" if ’country’ not in geoObj else geoObj[’country’]

geo_boundingBox = None if ’bounding_box’ not in geoObj else geoObj[’bounding_box’]

else:

geoObj = ""

#id of the tweet

tweet_id = tweet[’id’]

#the language the user wrote the tweet

lang = tweet[’lang’]

#tweet’s public metrics

retweet_count = tweet[’public_metrics’][’retweet_count’]

reply_count = tweet[’public_metrics’][’reply_count’]

like_count = tweet[’public_metrics’][’like_count’]

quote_count = tweet[’public_metrics’][’quote_count’]

48



#how the tweet was published

source = tweet[’source’] if ’source’ in tweet else ’’

#text of the tweet

text = tweet[’text’]

#the error object and associated attributes

isError = False

error_detail = ""

error_parameter = ""

error_resource_type = ""

error_title = ""

error_type = ""

error_value =""

#add data to the csv file

res = [author_id, username, author_created_at, verified, author_followers,\

author_tweets,author_description,author_location, tweet_id, text, created_at,lang,\

source, like_count, quote_count, reply_count, retweet_count,geoObj,geo_placeid,\

geo_url,geo_placeType, geo_name,geo_fullName,geo_countryCode,geo_country,\

geo_boundingBox,isError,error_detail, error_parameter, error_resource_type,\

error_title,error_type, error_value ]

csvWriter.writerow(res)

counter += 1

csvFile.close()

Figure 23: Grabbing tweet information
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def main():

for filename in os.listdir(r"FILEPATH"):

if filename.endswith(".csv"):

#create the data file

resultsFile = filename.split(’.’)[0]+"_data.csv"

dataFile = filename

allTweets = read_data(dataFile)

#create the csv file and its columns

csvFile = open(resultsFile, "a", newline="", encoding=’utf-8’)

csvWriter = csv.writer(csvFile)

csvWriter.writerow([’author_id’, ’username’, ’author_created_at’, ’verified’,\

’author_followers’, ’author_tweets’,’author_description’,’author_location’,\

’tweet_id’,’text’, ’created_at’,’lang’, ’source’, ’like_count’, ’quote_count’,\

’reply_count’, ’retweet_count’,’geoObj’,’geo_placeid’,’geo_url’,’geo_placeType’,\

’geo_name’,’geo_fullName’,’geo_countryCode’,’geo_country’,’geo_boundingBox’,\

’isError’,’error_detail’, ’error_parameter’, ’error_resource_type’, ’error_title’,\

’error_type’, ’error_value’ ])

csvFile.close()

responseCount=0 #the number of responses

i = 0

while i < len(allTweets):

tweet = allTweets[i:i+100] #we incremented by 100 before

i+=100 #grab every 100 tweets in the file

responseCount +=1

if responseCount % 250 == 0:

time.sleep(900) #sleep to prevent 429 Error

tweet = ’,’.join(tweet)

url = create_url(tweet)

json_response = connect_to_endpoint(url)

append_to_csv(json_response,resultsFile) #add response to data file

time.sleep(5)

if __name__ == "__main__":

main()

Figure 24: Main function to commence data collection
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Appendix C: VADER implementation

import regex as re

import pandas as pd

import os

import csv

from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer

#preprocess text here, remove urls

def preprocess(text):

#removing urls

text = re.sub(r’http\S+’, ’’, text)

return text

#apply sentiment classification based on the compound score

def sentimentLabel(compound):

#positive sentiment, compound >= 0.05

#neutral sentiment, compound > -0.05 and compound <0.05

#negative sentimennt, compound <= -0.05

classifiedSentiment = ""

if compound >= 0.05:

classifiedSentiment = "positive"

elif compound <= -0.05:

classifiedSentiment = "negative"

elif compound > -0.05 and compound < 0.05:

classifiedSentiment = "neutral"

return classifiedSentiment

#read file as a pandas data frame

df=pd.read_csv("FILEPATH",index_col=0)

analyzer = SentimentIntensityAnalyzer()

#preprocess each tweet

df[’vader_preprocessed_text’] = df[’text’].apply(preprocess)

#grab the positive, neutral, negative, and compound scores

df[’vader_compound’] = [analyzer.polarity_scores(x)[’compound’] \

for x in df[’vader_preprocessed_text’]]

df[’vader_neg’] = [analyzer.polarity_scores(x)[’neg’] for x in df[’vader_preprocessed_text’]]

df[’vader_neu’] = [analyzer.polarity_scores(x)[’neu’] for x in df[’vader_preprocessed_text’]]

df[’vader_pos’] = [analyzer.polarity_scores(x)[’pos’] for x in df[’vader_preprocessed_text’]]

#grab the sentiment label

df[’sentiment’] = df[’vader_compound’].apply(sentimentLabel)

#save results into a csv file

df.to_csv("FILENAME.csv")

Figure 25: Generating the Sentiment Scores for each Tweet in our Data Collection
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Appendix D: Emotion Recognition

from transformers import AutoModelForSequenceClassification

from optimum.bettertransformer import BetterTransformer

from transformers import AutoTokenizer

import numpy as np

from scipy.special import softmax

import csv

import urllib.request

import pandas as pd

import os

# Preprocess text (username and link placeholders)

def preprocess(text):

new_text = []

if text is np.nan:

return None

for t in text.split(" "):

t = ’@user’ if t.startswith(’@’) and len(t) > 1 else t

t = ’http’ if t.startswith(’http’) else t

new_text.append(t)

return " ".join(new_text)

def grabOutputs(text):

if text is np.nan:

return None,None,None,None,None,None,None,None

else:

encoded_input = tokenizer(text, return_tensors=’pt’)

output = model(**encoded_input)

scores = output[0][0].detach().numpy()

scores = softmax(scores)

ranking = np.argsort(scores)

ranking = ranking[::-1]

emotionLabel1 = labels[ranking[0]]

emotionScore1 = scores[ranking[0]]

emotionLabel2 = labels[ranking[1]]

emotionScore2 = scores[ranking[1]]

emotionLabel3 = labels[ranking[2]]

emotionScore3 = scores[ranking[2]]

emotionLabel4 = labels[ranking[3]]

emotionScore4 = scores[ranking[3]]

return emotionLabel1,emotionScore1,emotionLabel2,emotionScore2,emotionLabel3,\

emotionScore3,emotionLabel4,emotionScore4

Figure 26: Generating the Emotion label and score for each Tweet in our Data Collection
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task=’emotion’

#name of our model

MODEL = f"cardiffnlp/twitter-roberta-base-{task}"

tokenizer = AutoTokenizer.from_pretrained(MODEL)

# download label mapping

mapping_link = \

f"https://raw.githubusercontent.com/cardiffnlp/tweeteval/main/datasets/{task}/mapping.txt"

with urllib.request.urlopen(mapping_link) as f:

html = f.read().decode(’utf-8’).split("\n")

csvreader = csv.reader(html, delimiter=’\t’)

labels = [row[1] for row in csvreader if len(row) > 1]

#creating the model for the first time

model = AutoModelForSequenceClassification.from_pretrained(MODEL)

#applying BetterTransformer for faster execution

model = BetterTransformer.transform(model, keep_original_model=True)

#saving tokenizer

tokenizer.save_pretrained(MODEL)

#read data file

df = pd.read_csv("FILENAME.csv",index_col=0)

df = df.sample(n=25758) #random sample

#inserting columnns

df.insert(0,"preprocessed_roberta_emotion"," ")

df.insert(1,"emotion_label1"," ")

df.insert(2,"emotion_score1"," ")

df.insert(3,"emotion_label2"," ")

df.insert(4,"emotion_score2"," ")

df.insert(5,"emotion_label3"," ")

df.insert(6,"emotion_score3"," ")

df.insert(7,"emotion_label4"," ")

df.insert(8,"emotion_score4"," ")

#preprocess text

df[’preprocessed_roberta_emotion’] = df[’text’].map(preprocess)

#generate emotion labels and score

df[’emotion_label1’], df[’emotion_score1’],df[’emotion_label2’],df[’emotion_score2’],\

df[’emotion_label3’],df[’emotion_score3’],df[’emotion_label4’],df[’emotion_score4’] = \

zip(*df[’preprocessed_roberta_emotion’].map(grabOutputs))

df.to_csv("FILENAME.csv")

model = BetterTransformer.reverse(model)

model.save_pretrained(MODEL)

Figure 27: Continuation of the Code used for Emotion Recognition Python Implementation
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Appendix E: LDA Topic Modeling

import gensim

import pandas as pd

from nltk.probability import FreqDist

from gensim.corpora import Dictionary

from gensim.models.ldamodel import LdaModel

from gensim.models.ldamulticore import LdaMulticore

from sklearn.decomposition import LatentDirichletAllocation, TruncatedSVD

from gensim.models.coherencemodel import CoherenceModel

import spacy

from spacy.tokenizer import Tokenizer

from gensim.parsing.preprocessing import STOPWORDS as SW

from wordcloud import STOPWORDS

from sklearn.model_selection import GridSearchCV

from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer

import pickle

#data cleaning modules

import emoji

import regex

import re

import string

#importing graph and visualization modules

import matplotlib.pyplot as plt

import seaborn as sns

from wordcloud import WordCloud

#generating stop words

stopwords = set(STOPWORDS)

#loading en_codeweb_lg

nlp = spacy.load(’en_core_web_lg’)

Figure 28: Loading the Necessary Modules for Topic Modeling
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def removeURLs(text):

text = re.sub(r"http\S+","",text)

return text

def removeEmojis(text):

#UNICODE_EMOJI to EMOJI_DATA

if not(pd.isnull(text)):

emojiList = [char for char in text if char in emoji.EMOJI_DATA]

cleanText = ’ ’.join([str for str in text.split() if not any(i in str for i in emojiList)])

else:

cleanText = ’’

return cleanText

def removeAt(text):

newText = " ".join(filter(lambda x:x[0]!=’@’, text.split()))

return newText

def tokenizeText(df):

tokenizer = Tokenizer(nlp.vocab)

stopWordsList = [’hi’,’\n’,’\n\n’, ’&amp;’, ’ ’, ’.’, ’-’, ’got’, "it’s", ’it’s’, "i’m", ’i’m’, ’im’, ’want’, ’like’, ’$’, ’@’]

STOP_WORDS = nlp.Defaults.stop_words.union(stopWordsList)

stop_words_punc = list(string.punctuation)

# ALL_STOP_WORDS = spacy + gensim + wordcloud

ALL_STOP_WORDS = STOP_WORDS.union(SW).union(stopwords).union(stop_words_punc)

ALL_STOP_WORDS.union([’0’,’1’,’2’,’3’,’4’,’5’,’6’,’7’,’8’,’9’])

tokens = []

for doc in tokenizer.pipe(df[’noURLTweets’],batch_size = 500):

doc_tokens = []

for token in doc:

if token.text.lower() not in ALL_STOP_WORDS:

doc_tokens.append(token.text.lower())

tokens.append(doc_tokens)

df[’tokens’] = tokens

return df

Figure 29: Functions for Preprocessing our Tweets for our LDA Model
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def lemmatize(text):

lemmas = []

doc = nlp(text)

for token in doc:

if ((token.is_stop == False) and (token.is_punct == False)):

lemmas.append(token.lemma_)

return lemmas

def lemmaTokenize(text):

#remove urls

pattern = r"http\S+"

tokens = re.sub(pattern,"",text) #remove url

tokens = re.sub(’[^a-zA-Z 0-9]’, ’’, text)

tokens = re.sub(’[%s]’ % re.escape(string.punctuation), ’’, text) # Remove punctuation

tokens = re.sub(’\w*\d\w*’, ’’, text) # Remove words containing numbers

tokens = re.sub(’@*!*\$*’, ’’, text) # Remove @ ! $

tokens = tokens.lower().split() #make the text lowercase and create a list of tokens

return tokens

Figure 30: Lemmatization of our Data
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def preprocessText(df):

#remove emojis - apply the funnction and remove emojis for all tweets

# x is all tweets

emojiFreeText = lambda x: removeEmojis(x)

df[’noEmojiTweets’] = df[’text’].apply(emojiFreeText)

#remove @ from tweets

noAtTweet =lambda x: removeAt(x)

df[’noAt’] = df[’noEmojiTweets’].apply(noAtTweet)

#remove urls

urlFreeText = lambda x: removeURLs(x)

df[’noURLTweets’] = df[’noAt’].apply(urlFreeText)

# df[’noURLTweest’] = df[’noEMojiTweets’].apply(removeURLs)

#tokenize each tweet

df = tokenizeText(df)

#make tokens a string again

df[’tokens_back_to_text’] = [’ ’.join(map(str,l)) for l in df[’tokens’]]

#lemmatize text

# lemmaText = lambda x: lemmatize(x)

df[’lemmas’] = df[’tokens_back_to_text’].apply(lemmatize)

# #make the lemmas a string again

df[’lemma_back_to_text’] = [’ ’.join(map(str,l)) for l in df[’lemmas’]]

# #remove stop words, punctuation and lowercase annd any special characters

df[’lemma_tokens’] = df[’lemma_back_to_text’].apply(lemmaTokenize)

return df

Figure 31: Application of the Preprocessing Functions
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def examineCorpus(df):

allWords= [word for tokens in df[’lemma_tokens’] for word in tokens]

tweetLengths = [len(tokens) for tokens in df[’lemma_tokens’]]

vocabList = sorted(list(set(allWords)))

df[’lemma_tokens_length’] = tweetLengths

print(len(allWords),’words total, with a vocabulary size of’,len(vocabList)))

print(’Max tweet length is’,max(tweetLengths))

return df

def plotTweetLength(df):

plt.figure(figsize = (15,8))

sns.countplot(data=df,x=’lemma_tokens_length’)

plt.title(’Tweet Length Distribution’,fontsize = 18)

plt.xlabel(’Words per Tweet’,fontsize = 12)

plt.ylabel(’Number of Tweets’,fontsize=12)

plt.xticks(rotation=90, ha=’right’)

#save the plot

plt.savefig("TweetLengthDistribution.png")

def freqTweets(df):

flatWords = [item for sublist in df[’lemma_tokens’] for item in sublist]

wordFreq = FreqDist(flatWords)

#grab the most commonn words

wordFreq.most_common(30)

#grab the word/count pairs from wordFreq

mostCommonCount = [x[1] for x in wordFreq.most_common(30)]

mostCommonWord = [x[0] for x in wordFreq.most_common(30)]

#create the dictionary for word/count

top30WordsDict = dict(zip(mostCommonWord,mostCommonCount))

#generate a word cloud

wordcloudVis = WordCloud(colormap = ’Accent’,background_color = ’black’)\

.generate_from_frequencies(top30WordsDict)

#plot with matplotlib

plt.figure(figsize=(12,8))

plt.imshow(wordcloudVis,interpolation=’bilinear’)

plt.axis("off")

plt.tight_layout(pad=0)

plt.savefig(’top20WordsCloudv2.png’)

plt.show()

Figure 32: Examining the Number of Tokens, Tweet Length Distribution, and the Most Frequent Words in
our Data Collection
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def bagOfWords(df):

#create dictionary

corpus=df[’lemma_tokens’]

textDict = Dictionary(corpus)

#filter out extremes

textDict.filter_extremes(no_below=3,no_above=0.99)

#tweetsBOW contains a vector for each tweet =

# (word id, frequency of word occurrence in document)

tweetsBOW = [textDict.doc2bow(tweet) for tweet in corpus]

return tweetsBOW,textDict

def ldaModelBuild(df,tweetsBOW,textDict,k):

tweetsLDA = LdaMulticore(corpus=tweetsBOW,num_topics=k,id2word=textDict,workers=12,passes=5)

#print the topics

print(tweetsLDA.show_topics(),file=sourceFile)

#compute coherence score

coherence_model= CoherenceModel(model=tweetsLDA,texts=df[’lemma_tokens’],

dictionary=textDict,coherence=’c_v’)

coherence_lda_model_base = coherence_model.get_coherence()

print(’\nCoherence Score: ’,coherence_lda_model_base,file=sourceFile)

return tweetsLDA

Figure 33: Generating Bag of Words and LDA Model Implementation
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def hyperparameterTuning(df):

vectorizer = CountVectorizer()

data_vectorized = vectorizer.fit_transform(df[’lemma_back_to_text’])

#define search param

searchParams = {’n_components’: [10,15,20,25,30], ’learning_decay’: [.5,.7,.9]}

#init the model

lda = LatentDirichletAllocation()

#init grid search class

model = GridSearchCV(lda,param_grid=searchParams)

#do the grid search

model.fit(data_vectorized)

GridSearchCV(cv=None,error_score=’raise’,

estimator=LatentDirichletAllocation(batch_size=128,

doc_topic_prior=None,

evaluate_every=-1,

learning_decay=0.7,

learning_method=None,

learning_offset=10.0,

max_doc_update_iter=100,

max_iter=10,

mean_change_tol=0.001,

n_components=10,

n_jobs=1,

perp_tol=0.1,

random_state=None,

topic_word_prior=None,

total_samples=1000000.0,

verbose=0),

n_jobs=1,

param_grid={’n_topics’:[10,15,20,30],

’learning_decay’:[0.5,0.7,0.9]},

pre_dispatch=’2*n_jobs’,refit=True,return_train_score=’warn’,

scoring=None,verbose=0)

#best model

bestLDAModel = model.best_estimator_

#model Parameters

print("Best Model’s Params: ",model.best_params_,file=sourceFile)

#log likelihood score

print("Best Log Likelihood Score: ",model.best_score_,file=sourceFile)

#perplexity

print("Model Perplexity: ",bestLDAModel.perplexity(data_vectorized),file=sourceFile)

return model

Figure 34: Hyperparameterization of the LDA Model
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def compute_coherence_values(dictionary, corpus, texts, limit, start=2, step=3):

coherence_values_topic = []

model_list_topic = []

for num_topics in range(start, limit, step):

model = LdaMulticore(corpus=corpus, num_topics=num_topics, id2word=dictionary)

model_list_topic.append(model)

coherencemodel = CoherenceModel(model=model, texts=texts, dictionary=dictionary, coherence=’c_v’)

coherence_values_topic.append(coherencemodel.get_coherence())

return model_list_topic, coherence_values_topic

Figure 35: Computing the Coherence Values of our Models Generated from the Hyperparameterization
Process
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#print results

sourceFile = open(’results.txt’, ’w’)

#read the file

df = pd.read_csv("FILENAME.csv",index_col=0)

#call preprocess text

df = preprocessText(df)

#examine the corpus

df = examineCorpus(df)

#convert df to a pickle file

df.to_pickle("FILENAME.pkl")

df = pd.read_pickle("FILENAME.pkl")

#generate a plot of the tweet length distribution

plotTweetLength(df)

#generate a word cloud of the most frequent tweets

freqTweets(df)

#generate bags of words

bow,textDict = bagOfWords(df)

#save bag of words to pickle file

bowOut = open("bowFile.pickle","wb")

pickle.dump(bow,bowOut)

#save id2wordcount to pickle file

textDictOut = open("textDictFile.pickle","wb")

pickle.dump(textDict,textDictOut)

#open corresponding pickle files

bowObj = open("bowFile.pickle","rb")

bow = pickle.load(bowObj)

textDictObj = open("textDictFile.pickle","rb")

textDict = pickle.load(textDictObj)

Figure 36: Data Preprocessing for the LDA model on Tweets
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k=5

tweetsLDA = ldaModelBuild(df,bow,textDict,k) #this will print the topics

orgModelFile = open(’baseModel.pickle’,’wb’)

pickle.dump(tweetsLDA,orgModelFile,protocol=pickle.HIGHEST_PROTOCOL)

#hyperparameter tuning

bestMod = hyperparameterTuning(df)

bestModFile = open(’bestMod.pickle’,’wb’)

pickle.dump(bestMod,bestModFile,protocol=pickle.HIGHEST_PROTOCOL)

# Can take a long time to run.

model_list_topic, coherence_values_topic = compute_coherence_values(dictionary=textDict,

corpus=bow,

texts=df[’lemma_tokens’],

start=2, limit=200, step=6)

count = 1

for model in model_list_topic:

tempModFile = open("model{}.pickle".format(count),’wb’)

pickle.dump(model,tempModFile,protocol=pickle.HIGHEST_PROTOCOL)

print(model.show_topics(),file=sourceFile)

count+=1

print("-----------------------------------",file=sourceFile)

print("",file=sourceFile)

print("coherence_values_topic",coherence_values_topic,file=sourceFile)

sourceFile.close()

Figure 37: Constructing and Evaluating our LDA
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Appendix F: Bigram Generation

import nltk

import re

import pandas as pd

import string

nltk.download(’punkt’)

#remove urls and user mentions

def removeUrl(text):

#remove url

text = re.sub(r"http\S+","",text)

#replace At sign

new_text = []

for t in text.split(" "):

t = ’@user’ if t.startswith(’@’) and len(t) > 1 else t

new_text.append(t)

text = " ".join(new_text)

#remove punctuation

text = re.sub(r’[^\w\s]’, ’’, text)

return text

#calculate bigrams using nltk

def grabBigrams(text):

#return bigrams for the tweet

nltk_tokens = nltk.word_tokenize(text)

return list(nltk.bigrams(nltk_tokens))

df = pd.read_csv("negativePointNine.csv",index_col=0)

df[’clean_pre_bigrams’] = df[’text’].apply(removeUrl)

df[’bigrams’] = df[’clean_pre_bigrams’].apply(grabBigrams)

df.to_csv("mostNegBigrams.csv")

Figure 38: Generating the Bigrams of Tweets that had a Compound Sentiment Score Less than or Equal to
-0.9
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