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A B S T R A C T   

Over large areas, land cover classification has conventionally been undertaken using satellite time series. 
Typically temporal metric percentiles derived from single pixel location time series have been used to take 
advantage of spectral differences among land cover classes over time and to minimize the impact of missing 
observations. Deep convolutional neural networks (CNNs) have demonstrated potential for land cover classifi-
cation of single date images. However, over large areas and using time series their application is complicated 
because they are sensitive to missing observations and they may misclassify small and spatially fragmented 
surface features due to their spatial patch-based implementation. This study demonstrates, for the first time, a 
one-dimensional (1D) CNN single pixel time series land classification approach that uses temporal percentile 
metrics and that does not have these issues. This is demonstrated for all the Conterminous United States (CONUS) 
considering two different 1D CNN structures with 5 and 8 layers, respectively. CONUS 30 m land cover classi-
fications were derived using all the available Landsat-5 and -7 imagery over a seven-month growing season in 
2011 with 3.3 million 30 m land cover class labelled samples extracted from the contemporaneous CONUS 
National Land Cover Database (NLCD) 16 class land cover product. The 1D CNNs and, a conventional random 
forest model, were trained using 10%, 50% and 90% samples, and the classification accuracies were evaluated 
with an independent 10% proportion. Temporal metrics were classified using 5, 7 and 9 percentiles for each of 
five Landsat reflective wavelength bands and their eight band ratios. The CONUS and detailed 150 × 150 km 
classification results demonstrate that the approach is effective at scale and locally. The 1D CNN classification 
land cover class boundaries were preserved for small axis dimension features, such as roads and rivers, with no 
stripes or anomalous spatial patterns. The 8-layer 1D CNN provided the highest overall classification accuracies 
and both the 5-layer and 8-layer 1D CNN architectures provided higher accuracies than the random forest by 
1.9% - 2.8% which as all the accuracies were > 83% is a meaningful increase. The CONUS overall classification 
accuracies increased marginally with the number of percentiles (86.21%, 86.40%, and 86.43% for 5, 7 and 9 
percentiles, respectively) using the 8-layer 1D-CNN. Class specific producer and user accuracies were quantified, 
with lower accuracies for the developed land, crop and pasture/hay classes, but no systematic pattern among 
classes with respect to the number of temporal percentiles used. Application of the trained model to a different 
year of CONUS Landsat ARD showed moderately decreased accuracy (80.79% for 7 percentiles) that we illustrate 
is likely due to different intra-annual surface variations between years. These encouraging results are discussed 
with recommended research for deep learning using temporal metric percentiles.   

1. Introduction 

Land cover is a critical descriptor of the Earth’s terrestrial surface, 

and regional to global coverage medium spatial resolution land cover 
maps are needed to monitor human activity and the state of the land 
surface (Townshend, 1992). The current state-of-the-practice satellite 
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land cover mapping approach is to apply a non-parametric supervised 
classifier, such as random forest, to image time series to take advantage 
of spectral differences among land cover classes over time (Wulder et al., 
2018). Convolutional neural networks (CNN) were first applied to single 
digital images to classify if they contained a particular class and pre-
dominantly used information based on the spatial relationships among 
pixels (LeCun et al., 1989; Sahiner et al., 1996). Deep convolutional 
neural networks (hereafter referred to for brevity as CNN) refined the 
CNN structure with a series of deep learning techniques (Krizhevsky 
et al., 2012; Simonyan and Zisserman, 2014) and in the last several years 
have been applied to classify land cover in single date satellite images 
(Huang et al., 2018; Kellenberger et al., 2018; Mahdianpari et al., 2018; 
Srivastava et al., 2019; Tong et al., 2020; Yuan et al., 2020; Karra et al., 
2021; Brown et al., 2022). In these approaches the CNN is convention-
ally applied to image patches extracted from single images composed of 
n × n pixels and one to several spectral bands. The patch supports the 
extraction of spatial features that are used to help classify the central 
patch pixel, and an image is classified by classifying patches extracted 
systematically across it. Integrating temporal information for CNN based 
land cover classification is challenging. Patch-based algorithms have 
been relatively under-explored in this respect and typically have been 
implemented by application to images acquired over the same location 
on different dates stacked into a single multi-band image (Karakizi et al., 
2018; Kwak et al., 2021; Fazzini et al., 2021) or composited into a single 
temporal composite (Rosentreter et al., 2020; Chen et al., 2020; Hos-
seiny et al., 2021). Other architectures such as recurrent neural net-
works (RNN) that were developed to accommodate multi-temporal 
information found in one dimensional time series (Rumelhart et al., 
1986; Pascanu et al., 2013) have been applied to image patch time se-
ries. In this approach a CNN is applied to patches in each image and then 
the CNN patch results across the time series are combined using an RNN 
to derive the land cover class of the patch center pixel (Interdonato et al., 
2019; Turkoglu et al., 2021; Masolele et al., 2021; Thorp and Drajat, 
2021; Wang et al., 2022). Fully attention based networks (also known as 
Transformer networks), that perform better than RNN (Vaswani et al., 
2017), are starting to be used with CNN and image patch time-series to 
classify land cover (Liu et al., 2022a; Yang et al., 2022). However, with 
all patch-based approaches, small and spatially fragmented land cover 
areas may be blurred because their pixels may be confused with 
neighboring pixels that have different land cover that occupy the ma-
jority of the patch, and certain land cover class boundaries may be 
overly generalized (Kussul et al., 2017; Stoian et al., 2019; Derksen 
et al., 2019; Zhang et al., 2020). 

Rather than use patches, single pixel time series based land cover 
classification approaches have been developed by application of a one 
dimensional (1D) CNN to single pixel time series defined by a t × s array, 
where t is the number of observations in the time series and s is the 
number of spectral bands. Single pixel time series 1D CNN land cover 
classification has been demonstrated recently over relatively small 
geographic areas. For example, Pelletier et al. (2019) used a 5-layer 1D 
CNN to classify Formosat-2 image time series acquired on 46 dates for a 
24 × 24 km area in France. Zhong et al. (2019) used a 5-layer 1D CNN to 
classify Landsat 7 and 8 image time series acquired on 37 dates in 2014 
for a county in California. Wang et al. (2020) used a 5-layer 1D CNN to 
classify Sentinel-2 and Sentinel-1 image time series acquired in years 
2017 to 2019 for two states in India. Rußwurm and Körner (2020) used a 
5-layer 1D CNN to classify Sentinel-2 image time series for three 100 ×
100 km areas in Germany. Debella-Gilo and Gjertsen (2021) used a 5- 
layer 1D CNN to classify Sentinel-2 image time series acquired across 
Norway that were temporally composited into 27 7-day, 14 14-day, 9 
21-day and 7 28-day intervals. Lobert et al. (2021) used a 4-layer 1D 
CNN to classify Landsat-8, Sentinel-2, and Sentinel-1 time series at three 
study sites in Germany; the Sentinel-2 and Landsat-8 data were 
composited into 44 6-day intervals so that they were consistent with the 
Sentinel-1 revisit interval. Zhao et al. (2021) used a 5-layer 1D CNN to 
classify Sentinel-2 image time series acquired on 37 dates across 4 

Sentinel-2 110 × 110 km tiles in Hebei, China. Lange et al. (2022) used a 
4-layer 1D CNN to classify Sentinel-2 time series for grassland areas in 
Germany. 

The 1D CNN single pixel time series land cover classification 
approach explicitly supports the extraction of features that capture 
spectral differences among land cover classes over time, for example, 
associated with phenological variations in vegetation greenness and 
growth stage, and does not have the small object misclassification and 
land cover boundary generalization drawbacks that can occur with the 
patch-based CNN approach. However, for reliable application, it re-
quires that there are no missing observations in the single pixel time 
series. Missing satellite observations, often with irregular observation 
temporal cadence and large temporal gaps, are common in medium 
resolution time series provided by Landsat or Sentinel-2 (Egorov et al., 
2019; Li and Roy, 2017; Yan and Roy, 2020) and by high temporal and 
spatial resolution commercial satellite data (Roy et al., 2021). One so-
lution, adopted by single pixel 1D CNN land cover classification re-
searchers, is to fill missing and cloud obscured observations by 
interpolation between consecutive valid observations (Zhong et al., 
2019; Pelletier et al., 2019; Wang et al., 2020; Rußwurm and Körner, 
2020; Debella-Gilo and Gjertsen, 2021; Lobert et al., 2021; Lange et al., 
2022). Interpolation is unreliable however when gaps occur in periods of 
rapid surface change, for example, in the growing season, or when the 
gaps have long duration, or when there are residual clouds, shadows, 
and poorly atmospherically corrected observations that are not reliably 
flagged and so are used incorrectly in the interpolation (Yan and Roy, 
2020). 

In this study, we present a large area, conterminous United States 
(CONUS) assessment of the single pixel time series 1D CNN approach 
applied to temporal metric percentiles. Temporal metric percentiles 
decompose irregular distributed time series into a reduced fixed number 
of features that can be conveniently used for classification purposes. 
There is a long heritage in their use for large area land cover classifi-
cation from a variety of sensors including AVHRR (DeFries et al., 1995; 
De Fries et al., 1998), Landsat (Hansen et al., 2014; Zhang and Roy, 
2017) and Sentinel-2 (Schug et al., 2020; Grabska et al., 2020) and, for 
example, to generate systematically the global NASA MODIS land cover 
product (Sulla-Menashe et al., 2019). Temporal metric percentiles are 
extracted at gridded pixel locations by ranking spectral reflectance and/ 
or spectral band ratio values over the image time series, and then 
selecting percentiles, for example, the 25th, 50th, and 75th percentiles 
of a spectral band ratio over the time series. The number of percentiles 
used is discussed in Section 2 but in principle a larger number of per-
centiles will better capture seasonal surface variations but require a 
larger number of observations and there must be at least as many ob-
servations as there are percentiles. Importantly, temporal metric per-
centiles are insensitive to phenological differences, as the metrics do not 
capture the timing but rather the amplitude of the reflectance variation, 
and are generally insensitive to missing observations in the time series. 
Despite these advantages, temporal metric percentiles have not been 
demonstrated for large area CNN land cover classification. 

The objectives of this study were to (i) demonstrate, for the first time, 
large area single pixel time series 1D CNN land cover classification of 
temporal metric percentiles extracted from 30 m Landsat data, (ii) 
investigate the sensitivity of the classification results to using different 
numbers of temporal metric percentiles, 1D CNN architecture 
complexity, and training data amount, (iii) evaluate the single pixel time 
series 1D CNN land cover classification accuracy results and compare 
with the classification results derived using a conventional Random 
Forest classifier as a benchmark. The land cover classifications were 
developed for the CONUS at 30 m resolution using 2011 growing season 
of Landsat-5 Thematic Mapper (TM) and Landsat-7 Enhanced Thematic 
Mapper Plus (ETM+) surface reflectance provided by the United States 
Geological Survey (USGS) Landsat analysis ready data (ARD) (Dwyer 
et al., 2018). Training data land cover class labels were defined using the 
16 classes 30 m CONUS 2011 USGS National Land Cover Database 

H.K. Zhang et al.                                                                                                                                                                                                                                



Remote Sensing of Environment 295 (2023) 113653

3

(NLCD) product (Homer et al., 2015). More than 3.31 million 30 m pixel 
locations sampled across the CONUS, subject to stringent Landsat ARD 
quality filtering, were used to define a NLCD land cover class labelled 
pool that was split into 30 m training and evaluation proportions. Two 
CNN structures designed with different complexity, i.e., a 5-layer CNN 
with 0.2 million learnable coefficients, and an 8-layer CNN with 2.1 
million learnable coefficients, were used to examine the classification 
accuracy sensitivity to CNN structure complexity. The classification re-
sults were quality assessed by visual comparison with the NLCD land 
cover product at CONUS scale, and also in detail over 150 × 150 km 
ARD tiles. The classification accuracy was quantified by per-pixel 
comparison with the evaluation data sample class values and summa-
rized by overall and class-specific producer’s and user’s land cover 
classification accuracies. To further demonstrate the approach, the 
classification accuracies found by application of the trained model to a 
different year (2006) of growing season Landsat-5 TM and Landsat-7 
ETM+ surface reflectance ARD were quantified. The paper concludes 
with a discussion of the potential of other deep learning (non-CNN 
structures) for large area and single pixel land cover classification and 
the training data and codes in this study are publicly available to facil-
itate future comparison studies. 

2. Data and processing undertaken to derive Landsat temporal 
metrics and land cover training and evaluation data 

2.1. Landsat data 

Two years of CONUS growing season 30 m Landsat-5 TM and 
Landsat-7 ETM+ analysis ready data (ARD) for 2011 and 2006, 
respectively were used. The CONUS growing season was defined as 
seven months from April 1st to October 31st 2011 following Hansen 
et al. (2014) and Zhang and Roy (2017). This seven month definition 
also mitigates the impacts of winter snow and unreliable Landsat 
discrimination of cloud and snow (Skakun et al., 2022). The Landsat 
data for 2011 and 2006 were used because of the availability of the 30 m 
National Land Cover Database (NLCD) CONUS land cover product for 
these two years that were used as a source of training and evaluation 
data (Section 2.3). All the Landsat-5 TM and Landsat-7 ETM+ 30 m 
bands, except the blue band (0.45–0.52 μm) that is highly sensitive to 
atmospheric scattering and is less reliably atmospherically corrected (Ju 
et al., 2012; Roy et al., 2014), were used. Specifically, the green 
0.52–0.60 μm, red 0.63–0.69 μm, near infrared (NIR) 0.76–0.90 μm, first 
shortwave infrared (SWIR1) 1.55–1.75 μm, and second shortwave 
infrared (SWIR2) 2.09–2.35 μm bands were used. 

The Landsat ARD are generated by the USGS in fixed non- 
overlapping 5000 × 5000 30 m pixel (150 × 150 km) tiles in the Alb-
ers Equal Area Conic projection (Dwyer et al., 2018). Each individual 
orbit of Landsat data overlapping an ARD tile is stored independently. 
There are 512 CONUS ARD land tiles referenced by horizontal (h) and 
vertical (v) tile coordinates varying from 0 to 32 and from 0 to 21, 
respectively, and the coordinated are referred to later in this paper (e.g., 
tile h07v13). The Landsat ARD are available as both top of atmosphere 
(TOA) and atmospherically corrected (i.e., surface) reflectance and in 
this study the surface reflectance were used with the associated per-pixel 
saturation status, cloud, cloud shadow, cirrus cloud, and snow masks. 
The Landsat ARD have consistent geometric accuracy and are processed 
to ensure image-to-image tolerances of ≤12 m radial root mean square 
error (Dwyer et al., 2018). The Landsat ARD are not corrected for 
bidirectional reflectance distribution function (BRDF) effects, although 
these effects are non-negligible in Landsat data (Gao et al., 2014; Roy 
et al., 2016). Therefore, in this study the Landsat ARD surface reflec-
tance for each sensor band and each ARD pixel location was adjusted to a 
nadir view to provide Landsat nadir BRDF-adjusted reflectance (NBAR). 
The published c-factor approach was used to generate NBAR and is 
based on multiplying the Landsat surface reflectance with the ratio of 
the reflectances modeled using fixed global average MODIS BRDF 

spectral model parameters for the observed Landsat and for a nadir view 
and a specified solar zenith (Roy et al., 2016). The solar zenith was 
defined with a model developed for this purpose that provides modelled 
solar zenith angles close to (<0.5◦ difference) the observed Landsat solar 
zenith at the time of overpass and that varies smoothly over the year and 
latitudinally (Zhang et al., 2016). 

A total of 14,785 Landsat-5 and 14,680 Landsat-7 ARD tile granules 
covering the CONUS over the seven month growing season from April 
1st to October 31st 2011 were used. In addition, a total of 14,531 
Landsat-5 and 14,351 Landsat-7 ARD tile granules in 2006 were used. 
The ARD data were quality filtered to remove all ARD pixel observations 
flagged as cloud, cirrus cloud, or as saturated. Fig. 1 illustrates the 
irregular spatial and temporal availability of Landsat observations, for a 
512 × 512 30 m pixel subset of an ARD tile in 2011. Figs. 1(a)-(c) show 
example daily ARD tile surface reflectance NBAR for different dates and 
sensors selected in the seven month growing season, illustrating (a) 
Landsat-5 imagery containing clouds, (b) Landsat-7 imagery with 
missing stripes caused by the ETM+ scan line corrector (SLC) anomaly 
that caused a 22% pixel loss (Maxwell et al., 2007), and (c) the edge of a 
Landsat-5 image that is jagged because of the staggered spectral band 
readout at the swath edge, with a region of no data where Landsat-5 did 
not overpass that day. Notably, the temporal cadence of the Landsat 
observations is irregular, i.e., not only are there spatial gaps, but the 
cloud-free observations are not available on a regular temporal basis and 
this is well documented (Brooks et al., 2012; Egorov et al., 2019; Roy 
and Yan, 2020). Thus, the total number of quality filtered Landsat-5 and 
Landsat-7 observations over the seven month growing season shown in 
Fig. 1(d) varies geographically, and, for example, 14.5% of the illus-
trated ARD pixel locations had ≤5 quality filtered observations (red) and 
only 23.5% had ≥11 quality filtered observations (purple). 

The number of quality filtered Landsat-5 TM and Landsat-7 ETM+

observations at each CONUS ARD pixel location over the seven month 
growing season varied from a minimum of zero to a maximum of 54. 
Fig. 2 shows the percentage of the CONUS ARD 30 m land pixel locations 
that had at least nvalid (1, 2, …, 54) quality filtered observations over the 
2011 growing season, with 99.96%, 99.90%, 99.81%, 99.43%, 97.88%, 
and 93.56% of locations having at least 1, 3, 5, 7, 9 and 11 observations, 
respectively. This information is used to justify the selection of temporal 
metric percentiles for the classification experiments described below. 
The year 2006 growing season data had similar distributions (not 
illustrated) with 99.99%, 99.98%, 99.87%, 99.27%, 97.32%, and 
93.03% of locations having at least 1, 3, 5, 7, 9 and 11 observations, 
respectively. 

2.2. Landsat temporal metric percentile generation 

Temporal metric percentiles were derived at each CONUS ARD 30 m 
pixel location from the quality filtered ARD surface NBAR time series 
acquired over the seven month growing season. They were derived for 
the five Landsat bands (green, red, NIR, SWIR1 and SWIR2), and for the 
eight possible two band normalized ratios of these bands, i.e., (NIR-red)/ 
(NIR + red), (SWIR1-green)/(SWIR1 + green), (SWIR1-red)/(SWIR1 +
red), (SWIR1-NIR)/(SWIR1 + NIR), (SWIR2-green)/(SWIR2 + green), 
(SWIR2-red)/(SWIR2 + red), (SWIR2-NIR)/(SWIR2 + NIR), and 
(SWIR2-SWIR1)/(SWIR2 + SWIR1). The temporal metric percentiles 
were extracted at each ARD gridded pixel location by ranking these 
values over the growing season and then selecting percentile values in 
the conventional way. For example, given n growing season quality 
filtered observations at an ARD pixel location, the kth NIR band 
percentile is the NIR growing season value with (k/100 × n) observa-
tions that have smaller or equal NIR value. Following convention, an 
odd number of percentiles selected with a symmetrical distribution 
around the 50th percentile (i.e., the median) were used. Typically, 
Landsat classification studies have been undertaken using five or more 
percentiles. For example, five percentiles were derived over the growing 
season from one year of Landsat-7 data (Yan and Roy, 2015), from three 
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years of Landsat-8 data (Pflugmacher et al., 2019), and from four years 
of Landsat-7 and -8 data (Azzari and Lobell, 2017). Landsat studies to 
map surface change typically use a greater number of percentiles, for 
example, seven percentiles were extracted from six years of Landsat-7 
data (Potapov et al., 2012) and from six years of Landsat-5 and 
Landsat-7 data (Margono et al., 2012). In principle using a larger 
number of percentiles will better capture seasonal surface variations and 
as a minimum there must be at least as many Landsat observations as 
there are percentiles. Therefore, in this study, CONUS land cover clas-
sification experiments using np = 5, 7 and 9 percentiles were considered. 
They were defined specifically by the 10th, 25th, 50th, 75th, and 90th 
percentiles (np = 5), 10th, 20th, 35th, 50th, 65th, 80th, and 90th per-
centiles (np = 7), and 10th, 20th, 30th, 40th, 50th, 60th, 70th, 80th, and 

90th percentiles (np = 9) of the quality filtered NBAR for the five Landsat 
bands and for the eight normalized NBAR band ratios. In this way a total 
of np × 13 temporal metrics were derived for each set of np = 5, 7 or 9 
percentiles. 

Land cover classification experiments were not undertaken with np 
= 11 percentiles because only 93.56% of the CONUS ARD 30 m pixel 
locations had ≥11 quality filtered growing season observations (Fig. 2). 
Therefore, 6.44% of the CONUS ARD pixels would be unclassified with 
np = 11 due to the requirement that there must be at least as many 
Landsat observations as there are percentiles. This is also evident in 
Fig. 3 that shows the proportion of CONUS ARD pixels in 3 × 3 km grid 
cells with ≥5, ≥7, ≥9, and ≥ 11 Landsat-5 and Landsat-7 quality filtered 
growing season observations in 2011. Fewer quality filtered growing 

Fig. 1. Illustration of the irregular spatial and temporal availability of Landsat observations for a 512 × 512 30 m pixel subset of ARD tile h27v06 over the West Hill 
State Forest in New York state (close to Corning, NY). (a) Landsat-5 TM acquired May 9th 2011, (b) Landsat-7 ETM+ acquired June 2nd, 2011, (c) Landsat-5 TM 
acquired June 3rd 2011, and (d) the number of quality filtered Landsat-5 TM and Landsat-7 ETM+ observations over the April 1st to October 31st 2011 growing 
season. (a)-(c) show Landsat true color (red, green and blue) surface NBAR. (For interpretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.) 
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season observations occur in localized regions, predominantly where the 
CONUS is cloudy at the time of Landsat overpass, i.e., in the north-east 
and north-west (Kovalskyy and Roy, 2015). In addition, there are fewer 
observations in the approximately north-south strips where adjacent 
Landsat orbit swaths do not overlap - the number of observations in the 
swath overlapping regions is generally twice that in the non-overlapping 
swath regions (Egorov et al., 2019). Land cover classification experi-
ments were not undertaken using np = 3 percentiles because so few 
percentiles are not expected to capture seasonal surface variations and 
previous Landsat studies have used np ≥ 5 percentiles. 

2.3. National Land Cover Database (NLCD) and land cover training and 
evaluation data generation 

An existing 30 m CONUS land cover map was used as a source of land 
cover class labels needed to train the classifiers and to evaluate the re-
sults, which is a common approach (Zhang and Roy, 2017; Johnson and 
Mueller, 2021; Zhai et al., 2022). The USGS 2011 National Land Cover 
Database (NLCD), reprocessed in 2014, was used and has 16 land cover 
classes (Homer et al., 2015) and a reported 86.8% overall land cover 
classification accuracy (Wickham et al., 2021). The NLCD is stored in a 
single CONUS image file in the Albers Equal Area Conic projection and 
was clipped spatially into the 5000 × 5000 30 m pixel ARD tile grid. 

Fig. 2. Percentage of the CONUS ARD 30 m pixel locations that had at least nvalid quality filtered Landsat-5 and Landsat-7 observations over the April 1st to October 
31st 2011 growing season, (a) shows percentages for 1 ≤ nvalid ≤ 54, (b) shows percentages for 1 ≤ nvalid ≤ 11. There were > 8977 million 30 m CONUS ARD pixel 
locations with ≥1 quality filtered growing season observations. 
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Each tile was systematically sampled every 40 pixels (i.e., every 1.2 km) 
in the column and row directions to reduce land cover spatial autocor-
relation effects (Yang et al., 2003; Zhang and Roy, 2017) and then the 
NLCD land cover class label and quality filtered Landsat 5 and Landsat 7 
observations at that pixel location over the 2011 growing season were 
extracted. The following filtering criteria were applied in the extraction 
process. Only (i) ARD pixel locations with ≥5 quality filtered year 2011 
growing season observations were considered (as land cover classifica-
tions based on temporal metrics with np = 5 and also 7 and 9 percentiles 
were generated), (ii) ARD pixel locations with the same NLCD land cover 
class in the surrounding eight 30 m pixels were considered to reduce the 
impact of Landsat sub-pixel misregistration errors and isolated single 
pixel NLCD misclassification errors (Colditz et al., 2012; Zhang and Roy, 
2017), (iii) NLCD land cover classes with ≥1000 samples were consid-
ered to ensure sufficiently representative class samples were used; 
consequently, the NLCD perennial ice/snow class was not included 
because of its geographic rarity across the CONUS. A total of 3,314,439 
CONUS 30 m pixel locations each with a NLCD land cover class label 
response variable (Table 1) and predictor variables defined by np × 13 
temporal metrics derived from the quality filtered Landsat growing 
season observations at the pixel location, were extracted. 

The 3.3 million CONUS samples (Table 1) were divided into pro-
portions used to train the classifiers and to evaluate the accuracy of the 
classification results, respectively. CONUS land cover classifications 
were generated independently (Section 3) using 10%, 50%, and 90% of 
the 3.3 million CONUS samples as training and using predictor variables 
defined by temporal metrics derived with np = 5, 7 and 9 percentiles. 
The different classifications were evaluated with a 10% evaluation 
proportion so that they could be compared meaningfully. Each set of 
training and evaluation data was selected randomly from the 3.3 million 
CONUS samples (Table 1) but ensuring that they were selected at ARD 

30 m pixel locations where there were at least as many growing Landsat 
season observations as the number of percentiles (np) used to generate 
the classification. The numbers of samples for the different proportions 
are summarized in Table 2. The random selection was undertaken 
starting for np = 5, selecting only samples at CONUS ARD pixel locations 

Fig. 3. Proportion of 3 × 3 km (100 × 100 30 m pixel) CONUS grid cells that have (a) ≥5, (b) ≥7, (c) ≥ 9, and (d) ≥11 quality filtered Landsat-5 and Landsat-7 seven 
month April 1st to October 31st 2011 growing season observations. 

Table 1 
Number of CONUS ARD 30 m pixel sample locations used to generate the land 
cover training and evaluation data (Table 2). The numbers in each of the 15 
NLCD land cover classes are summarized, with the NLCD legend class ID (Homer 
et al., 2004) for reference. A total of 3,314,439 locations were used, corre-
sponding to about 0.04% of the number of 30 m CONUS ARD land pixels.  

ID Land cover 
class 

Number of 
CONUS 
sample 
locations 

ID Land cover 
class 

Number of 
CONUS 
sample 
locations 

11 Open water 255,725 43 Mixed forest 18,391 

21 
Developed 
open-space 11,288 52 Shrub/scrub 823,707 

22 
Developed 
low-intensity 3427 71 

Grassland/ 
herbaceous 493,638 

23 

Developed 
medium- 
intensity 2003 81 Pasture/hay 187,039 

24 
Developed 
high-intensity 2135 82 

Cultivated 
crops 644,661 

31 Barren land 36,562 90 
Woody 
wetlands 103,608 

41 
Deciduous 
forest 321,740 95 

Emergent 
herbaceous 
wetlands 30,714 

42 
Evergreen 
forest 379,801     
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with ≥5 quality filtered growing season observations. The np = 7 sam-
ples were selected from the np = 5 samples, removing samples where 
there were fewer than 7 quality filtered growing season observations. 
Similarly, the np = 9 samples were selected from the np = 7 samples, 
removing samples where there were fewer than 9 quality filtered 
growing season observations. This meant that there were a marginally 
smaller number of np = 9 samples than np = 7 samples (up to 1.33% less 
for the three proportions), and a marginally smaller number of np = 7 
samples than np = 5 samples (up to 0.26% less) (Table 2). These random 
selections were constrained so that the CONUS NLCD land cover class 
proportions evident in Table 1 were approximately maintained in the 
resulting training and evaluation samples. This follows conventional 
non-parametric classification approaches (Weiss and Provost, 2003; 
Colditz, 2015; Zhang and Roy, 2017) as the naturally occurring class 
distribution, i.e., a proportional distribution among land cover classes 
related to the proportion that they occur in reality, will provide training 
and evaluation data that are representative of CONUS conditions. 

In addition, to further demonstrate the applicability of the approach, 
the NLCD 2006 product was used to derive samples for evaluation of the 
year 2011 trained classification model applied to year 2006 Landsat 
ARD (Section 3.4). The NLCD 2006 has the same land cover class and 
definitions as the NLCD 2011 and was generated with a reported 83.6% 
overall classification accuracy (Wickham et al., 2021). The NLCD 2006 
and corresponding year 2006 seven month growing season Landsat 5 TM 
and Landsat 7 ETM+ ARD were processed as described above. Only the 
quality filtered 2006 CONUS pixel samples that had the same locations 
as the NLCD 2011 evaluation samples were used for the experiment. 
There were slightly fewer year 2006 evaluation samples than in 2011 
primarily because of the constraint that the 2006 NLCD land cover class 
in the surrounding eight 30 m pixels be the same and because of land 
cover change between 2006 and 2011. For example, there were 325,736 
evaluation samples extracted with ≥7 year 2006 growing season quality 
filtered observations. 

3. Deep convolutional neural network (CNN) classification 

3.1. Overview of conventional CNN single image patch based land cover 
classification 

To provide context for the single pixel time series CNN land cover 
classification approach we first overview the conventional patch-based 
CNN approach that is applied to image patches composed of n × n 
pixels and one to several image bands spatially subset from a single 
image (Huang et al., 2018; Srivastava et al., 2019; Tong et al., 2020; 
Belenguer-Plomer et al., 2021; Mäyrä et al., 2021; Lu et al., 2022). The 
CNN structure consists of many sequential convolutional layers followed 
by several fully connected layers (Fig. 4 black boxes). Each convolu-
tional layer consists of a set of kernels, also known as convolution filters, 
that are defined by i × j × r matrices storing values, termed kernel 
weights, where i and j are the kernel spatial dimensions and usually the i 
and j dimensions are the same. Each kernel has an associated single 
value, termed the bias. The fully connected layers consist of a set of one- 
dimensional 1 × l vectors storing values, termed vector weights, and 
each vector has an associated bias term. The number of kernels and 
vectors in each layer must be pre-defined, although the last fully con-
nected layer must have as many vectors as there are land cover classes. 
The kernels are three dimensional and r is set as the number of spectral 
bands in the input image patch for the first convolutional layer and for 
subsequent layers is equal to the number of kernels in the previous layer. 
The CNN structure, i.e., the number of layers, the number of kernels per 
convolutional layer, the kernel spatial dimensions in each convolutional 
layer, and the number of vectors in the fully connected layers, must be 
pre-defined before training the CNN. The CNN structure largely dictates 
the complexity and performance of the classification. Generally, more 
layers capture different aspects of the training data and aid among-class 
discrimination but require more training data (Shin et al., 2016; Zhang 
et al., 2021). The optimal CNN structure is data specific and is hard to 
derive, and sensitivity analysis approaches, for example, changing the 
number and spatial dimensions of the kernels in predefined intervals 
with cross-validation until the best classification accuracy is obtained 
(Yang et al., 2017; Tan and Le, 2019), are computationally expensive. 

The CNN is trained using a large number of patch samples. The 
training defines the kernel weights and the bias and vector values that 
collectively are termed the network coefficients. The network co-
efficients are first initialized randomly. A gradient descent method is 
used to iteratively update the network coefficients by minimizing a loss 
function. With each iteration the network coefficients are updated by 
adding the coefficient gradient values of a loss function perturbed by a 
small amount (also known as learning rate). The loss function is defined 
by examination of the difference between the training data land cover 
labels and the CNN predicted class labels. The gradient values can 
become explosively large or vanishingly small because of the complexity 
and inter-dependence of the CNN layers, leading to over-fitting issues 
(Ruder, 2016) or precluding reliable network coefficient estimation 
(Glorot and Bengio, 2010). Approaches have been developed to avoid 
extreme gradient values. He et al. (2015) proposed a network co-
efficients initialization method by setting the layer kernel and vector 
weights with random values drawn from a normal distribution with 
standard deviations related to the number weights in each kernel or the 
number of values in each vector. Ioffe and Szegedy (2015) proposed a 
batch normalization process to normalize the feature map and feature 
vectors using the mean and standard deviation of the feature map and 
feature vectors derived from the mini-batch of training samples (2015). 
Regularization of the convolutional layer kernel weights and fully con-
nected layer vector values is required to prevent overfitting (Nowlan and 
Hinton, 1992). The L2 regularization approach (Neumaier, 1998) is 
often used where the square root of the sum of all the layer kernel and 
vector weights is minimized and a single scalar parameter is set to define 
the relative contribution of L2 regularization minimization with respect 
to the loss function minimization. 

Table 2 
The number of training and evaluation samples used in the different classifica-
tion experiments. Each sample is composed of the 30 m NLCD land cover class 
label (i.e., the response variable), and np × 13 temporal metrics derived from the 
quality filtered Landsat-5 and Landsat-7 observations quality filtered Landsat 
ARD (i.e., the predictor variables).  

Proportion 
(%) selected 
from Table 1 

Number of 30 m CONUS training samples  

≥5 quality filtered 
observations, used 
to train classifiers 
using np = 5 
percentiles 

≥7 quality filtered 
observations, used 
to train classifiers 
using np = 5 and 7 
percentiles 

≥9 quality filtered 
observations, used 
to train classifiers 
using np = 5, 7 and 9 
percentiles 

~90% 2,982,996 2,975,184 2,935,602 
~50% 1,657,220 1,652,880 1,630,890 
~10% 331,444 330,576 326,178 
Proportion 

(%) 
selected 
from  
Table 1 

Number of 30 m CONUS evaluation samples  

≥5 quality filtered 
observations, used 
to evaluate the 
above 
classifications 

≥7 quality filtered 
observations, used 
to evaluate the 
above 2 
classifications 

≥9 quality filtered 
observations, used 
to evaluate the 
above 3 
classifications 

~10% 331,443 330,571 326,170  
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Land cover classification of an individual patch is undertaken as 
follows. First, each kernel in the first convolutional layer is convolved 
with the patch n × n pixel values to generate a two-dimensional feature 
map. Specifically, for each kernel, a two dimensional spatial convolution 
is undertaken, whereby the i × j × r = k kernel matrix weights are 
convolved with patch spectral band k, and then the convolution results 
for each of the r bands are summed together, and the kernel bias term is 
added. If there are c1 kernels and associated bias terms in the first 
convolutional layer then c1 feature maps are generated. Next, each 
kernel in the second convolutional layer is convolved with all the c1 
feature maps to generate a two-dimensional n × n feature map. For each 
kernel, the i × j × r = c1 kernel matrix weights are convolved with the 
first layer feature map c1, and then the convolution results for each of the 
r feature maps are summed together, and the kernel bias term is added to 
generate a feature map in the second layer. If there are c2 kernels in the 
second convolutional layer then c2 feature maps are generated. This 
process is cascaded through all the convolution layers. Before the fully 
connected layers are used, a feature vector with length fv0 equal to the 
product of the number and the two side dimensions of the feature maps 
generated by the last convolution layer is generated. This feature vector 
is defined by flattening (sometimes termed vectorizing) the two- 
dimensional feature maps generated by the last convolution layer and 
concatenating the results together into a single vector. The first fully 
connected layer is composed of a set of fc1 vectors that each are length 
fv0 (sometime termed the fully connected layer weight matrix (fc1) ×
(fv0)) and have an associated bias term (the fully connected layer bias 
vector (fc1) × 1). The first fully connected layer is used to generate a 
feature vector, length fc1, (the vector elements are often called neurons) 
and each value in the future vector is derived as the dot product of the 
flattened feature vector values (length fv0) and one of the fc1 vectors 
(length fv0) with the bias terms added. In CNN this is usually imple-
mented using matrix calculation to derive all the neuron values in par-
allel. The second fully connected layer is composed of fc2 vectors that 
each have length fc1 and have an associated bias term and is used to 
generate the second layer feature vector with length fc2. This process is 
cascaded through all the fully connected layers. The last fully connected 
layer is composed of as many vectors, with associated bias terms, as 
there are land cover classes, and the last derived feature vector has a 
length equal to the number of classes. Each feature map and vector value 

is nonlinearly transformed before fed into next layer and the rectified 
linear unit (ReLU) function is a commonly used transform by setting 
negative values to zero and leaving positive values unchanged (Glorot 
et al., 2011). The classified land cover class is derived by application of a 
different nonlinear function, i.e., the normalized exponential function, 
termed softmax function, to the last feature vector. The land cover class 
is assigned to the patch center pixel. Consequently, for satellite image 
CNN classification, the input patch usually has odd side dimensions, e.g., 
255 × 255 as in Fig. 4. In order to classify an image that has spatial 
dimensions greater than a patch, the above process is undertaken sliding 
the patch spatially one pixel at a time across the image and indepen-
dently classifying each patch. 

3.2. The single pixel time series based CNN land cover classification 
methodology 

Rather than classify patches extracted from single images, as 
described above, single pixel temporal metrics are classified. Specif-
ically, at each CONUS 30 m ARD pixel location, a 1D CNN is applied to 
an s × np array where s = 13 is composed of the five Landsat surface 
NBAR bands and the eight NBAR ratios (Section 2.2), and np (=5, 7 or 9) 
is the number of percentiles of each of the five NBAR and eight NBAR 
ratio values. Fig. 5 shows a hypothetical example CNN structure (black 
boxes) and the feature maps and vectors (blue boxes) for np = 7. For 
illustrative purposes Fig. 5 shows only 2 convolutional layers and 3 fully 
connected layers. The input s = 13 × np = 7 predictor array is read by the 
first convolution layer composed of m1 3 × 7 kernels and m1 biases to 
generate m1 feature maps. The 3 × 7 kernels are applied to the 13 × 7 
array of predictor variables and not to a spatial patch. In this way a 
single kernel can capture information from the 7 percentile variables 
derived over the growing season. The m1 feature maps generated by the 
first convolutional layer are read by the second convolution layer 
composed of m2 3 × m1 kernels and m2 biases to generate m2 feature 
maps. This process is cascaded through all the convolution layers. The 
last convolutional layer feature maps are flattened and concatenated 
into a single feature vector with length fv0. The dot product of the length 
fv0 vector and each of the fc1 vectors (length fv0) in the first fully con-
nected layer are summed with each of the fc1 biases in the first fully 
connected layer to derive the first fully connected layer feature vector 

Fig. 4. Example simple CNN structure defined by two convolutional layers followed by three fully connected layers (black boxes) and the generated feature maps 
(FM) and feature vectors (FV) (blue boxes) used to classify an image patch composed of 255 × 255 pixels and 4 spectral bands into one of three land cover classes. 
The black and blue arrows show the inputs (i.e., previous layer FM or FV) and outputs (i.e., current layer FM or FV), respectively, of each convolution kernel or 
vector. The bold and colored numbers indicate the number of feature maps for the convolutional layer and the length of the feature vector for the fully connected 
layer. Note the structure is simplified for illustrative purposes only, typically the number of convolutional kernels and layers are greater, and in this study far more 
than four input bands were used. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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with length fc1. This process is cascaded through all the fully connected 
layers. As for conventional CNN the last fully connected layer is 
composed of as many vectors, with associated bias terms, as there are 
land cover classes. Although a single kernel cannot capture the re-
lationships between the 13 different NBAR and NBAR ratio values, these 
relationships can be extracted by the kernels in the other convolutional 
layers and by the first fully connected layer. For example, in Fig. 5 it is 
evident that the first layer of 3 × 7 kernels can only capture relationships 
among 3 local neighbor values of all the 13 different NBAR and NBAR 
ratio predictors. However, the second layer of 3 × 5 kernels can capture 
relationships among 5 local neighbor values. 

The CNN structure dictates the complexity and performance of the 
classification; however, definition of the optimal structure is data spe-
cific and hard to optimize. In this study, two different structures were 
examined with 5 and 8 layers, and approximately 0.2 and 2.1 million 
learnable network coefficients, respectively. The 5-layer model is based 
on the one reported by Pelletier et al. (2019), with 3 convolutional 
layers each composed of 64 kernels, and 2 fully connected layers 
composed of 256 vectors and 15 vectors (i.e., the number of NLCD 
classes). The 8-layer model is a more complex variant, with 6 convolu-
tional layers composed of 64, 128, 256, 256, 512, and 512 kernels, and 2 
fully connected layers composed of 1024 vectors and 15 vectors. For 
both models the kernels with 3 spatial dimensions were used. A total of 6 
convolutional layers is used because it is the maximum meaningful 
number given 13 input predictors (13 different NBAR and NBAR ratio 
values). Note that the feature map length is reduced by 2 after a three 
dimensional kernel convolution (e.g., 13 is reduced to 11 after the first 
convolution in Fig. 5). The feature map length will become 1 after 
cascading through 6 convolutional layers and so no further convolutions 
are warranted. For deeper CNN, it is conventional to increase the 
number of the convolutional kernels for deeper layers (Simonyan and 
Zisserman, 2014; Tan and Le, 2019). 

CNN deep learning has several implementation parameterizations. It 
is beyond the scope of this paper to describe them in detail but notable 
ones are overviewed here. The feature maps generated by each kernel 
convolution with patch-based CNN have undefined values along their 
boundaries (the undefined boundary width is half the kernel spatial 
dimension) that can be filled with zero values so that the feature maps 
have the same spatial dimensions as the input patch, this is usually 
termed “zero padding” (Sideris and Li, 1993). Zero padding of the s × np 
arrays was not used as we found no classification improvement. Another 

strategy is max pooling (Boureau et al., 2010). In this approach the side 
dimensions of the feature maps are reduced by a factor of p = 2 with a 
filter that calculates the maximum value of each p × p adjacent region of 
the feature map to create a downsampled (pooled) feature map. The 
pooled feature maps are then read by the next convolution layer. Max 
pooling was not used however because the low dimensionality of the 
input s × np array imposes limitations on the reduction of the feature 
map dimensions across the network layers. Skip connection is a strategy 
developed by He et al. (2016) and implemented by feeding the output of 
one convolutional layer not only to the following convolution layer 
(Figs. 4 and 5) but also to deeper convolutional layers. The strategy can 
make deep CNN easier to train (Radosavovic et al., 2020; Liu et al., 
2022b). We found, however, no classification improvement when using 
skip connections, presumably because the 8- and 5-layer 1D CNNs have 
sufficient complexity to capture land cover class differences in the s × np 
arrays. 

CNN training requires considerable processing and memory re-
quirements and several strategies have been developed to reduce 
computational constraints. Notably, the mini-batch gradient descent 
method (Bottou, 2010) divides the training data randomly without 
replacement into smaller subsets (each is termed a mini-batch). The 
CNN is trained with each mini-batch sequentially, i.e., the samples in a 
single mini-batch are used for each iteration of the network coefficient 
updates. In this study, the mini-batch gradient descent method was used 
with 256 training samples per batch; we found that using fewer (128) or 
more (512) training samples per batch provided negligible classification 
differences. The stochastic gradient descent (SGD) optimizer, parame-
terized with a commonly used 0.9 momentum value, was used to reduce 
gradient oscillations among successive mini-batches due to training 
sample differences among mini-batches (Qian, 1999). The learning rate, 
i.e., a scalar value from 0 to 1 to perturb the coefficient gradient values 
calculated for each mini-batch is an important parameter in gradient 
descent training (Ruder, 2016). In general, a large learning rate will 
provide fast convergence of the loss function value to the global mini-
mum. However, this can make the loss function value oscillate, or 
diverge, rather than converge, with subsequent iterations. In contrast, a 
small learning rate could make the training process unnecessarily time- 
consuming. Consequently, in this study, a dynamic learning rate was 
used, whereby initial iterations used a relatively large learning rate that 
was reduced, e.g., by a factor of ten, whenever the loss function value 
stopped converging. The dynamic learning rate was used with initial 

Fig. 5. Example simple 1D CNN structure defined by two convolutional layers followed by three fully connected layers (black boxes) and the generated feature maps 
(FM) and feature vectors (FV) (blue boxes) used to classify a pixel time series composed of 13 × 7 predictor array into one of three land cover classes. Note that in this 
example, zero padding is not used and the first layer feature map dimensions (11) are smaller than the input array (13). (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.) 
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learning rate 0.01. Other initial learning rates (0.1, 0.001 and 0.0001) 
and alternative learning rate adjustment methods, such as the 
commonly used Adam optimizer (Kingma and Ba, 2014), provided 
negligible classification differences. An epoch of iterations is completed 
when all the training samples are used. Typically, tens of epochs are 
needed, i.e., each sample is used to update the network coefficients tens 
of times. The epoch number was set to 70 in this study similar to other 
studies (Simonyan and Zisserman, 2014; Martins et al., 2022) and 
because we observed negligible accuracy improvement using more 
epochs. 

In order to reduce imprecise storage of very large or very small nu-
merical values in the gradient descent training process the training data 
predictor variables are conventionally normalized so that each variable 
has zero mean and one standard deviation after normalization (LeCun 
et al., 2012). This was undertaken for each predictor of the s × np arrays 
by subtracting the training sample mean from the predictor values and 
then divided by the training sample standard deviation. Similarly, batch 
normalization (see Section 3.1) to normalize the feature map/vector 
values was used as it can mitigate the vanishing gradient issue (Ioffe and 
Szegedy, 2015). The L2 regularization (see Section 3.1) was used to 
prevent overfitting. The relative contribution of the L2 regularization 
minimization with respect to the loss function minimization, defined by 
the single scalar parameter (λ), can also be very influential on classifi-
cation accuracy (Bilgic et al., 2014). Therefore, the λ parameter value 
was set to 0.001 after examining four different values, specifically 0 (i.e., 
no L2 regularization), 0.01, 0.001, and 0.0001. The optimal training and 
structure parameters and the iterations to change the learning rate were 
determined based on randomly selecting 4% of the training samples 
(sometimes termed validation samples) following the procedure 
described in He et al. (2016). 

3.3. Land cover classification experiments 

Different CONUS land cover 30 m classifications were undertaken for 
2011 using the 10%, 50% and 90% training proportions, the temporal 
metrics derived with np = 5, 7 and 9 percentiles, and with the 5-layer 
and 8-layer 1D CNN architectures. Given that there should be as least 
as many quality filtered observations as np, a classification with np = 9 
was generated and evaluated only at CONUS ARD pixel locations with 
≥9 quality filtered growing season observations. Two classifications 
with np = 7 were generated and evaluated i.e., considering CONUS ARD 
pixel locations with ≥7 and, then considering locations with ≥9, quality 
filtered growing season observations. Similarly, three classifications 
with np = 5 were generated and evaluated, i.e., considering only CONUS 
ARD pixel locations with ≥5, ≥7 and ≥ 9 quality filtered growing season 
observations. Our expectation was that the 90% training proportion and 
8-layer 1D CNN architecture would provide the greatest overall classi-
fication accuracy. However, although using a greater number of per-
centiles (i.e., np = 9) should better capture seasonal reflectance 
variations and provide higher classification accuracy, this may not be 
the case for certain land covers. For example, the “cultivated crop” and 
“developed” classes have complex temporal signatures and significant 
within class variation across the CONUS (Zhang and Roy, 2017; Roy and 
Yan, 2020; Sun et al., 2021; Zhou et al., 2020) and so may be better 
classified using fewer percentiles. To help examine this, classifications 
were also undertaken with temporal metrics derived with just np = 1 
percentiles defined by the 50th percentile. The 50th percentile is the 
median value over the growing season and so does not capture temporal 
surface variations. Despite this, median value composites, derived by 
taking the median of the growing season reflectance band and band 
ratios values at each pixel location, have been used for land cover 
classification (Maxwell and Sylvester, 2012; Hermosilla et al., 2018). We 
note that researchers have also used monthly composites for land cover 
classification (Griffiths et al., 2019; Tran et al., 2022) although gaps due 
to unobserved locations and cloud obscuration become more frequent 
over smaller time periods (Lindquist et al., 2008; Roy et al., 2010). 

Therefore, 1D CNN classifications were also undertaken using seven 
monthly growing season composites. Each composite was derived by 
selecting the median of the quality filtered observations acquired over 
the month for each of the five Landsat bands and for each of the eight 
normalized ratios, and linearly interpolating between months to fill any 
gaps. 

To provide a benchmark, the 1D CNN land cover classifications were 
compared with CONUS classifications derived by random forest classi-
fication of the same predictor variables and using the same training and 
evaluation data. The random forest classifier is a non-parametric 
ensemble form of decision tree classifier with each tree grown using a 
random subset of training data and randomly selected predictor vari-
ables to avoid over-fitting (Breiman, 2001). Random forest has been 
extensively used for large area land cover classification (Zhang and Roy, 
2017; Hermosilla et al., 2022; Liu et al., 2021). In this study the random 
forest was run with default parameter settings (Liaw and Wiener, 2002), 
specifically, with a total of 500 trees and with each tree considering 
63.2% of the training data selected randomly with replacement and with 
9 predictor variables selected randomly from the 13 × np predictor 
variables. 

3.4. Land cover classification accuracy and quality assessment 

The CONUS 2011 land cover classification accuracies were quanti-
fied by comparison with the 2011 evaluation data. Recall that the 
evaluation data were selected considering 10% of the 3.3 million 
CONUS samples (Table 1) not used in the training and were selected 
randomly from those ARD 30 m pixel locations where there were at least 
as many growing Landsat season observations as the number of per-
centiles (np) used to generate the classification. This provided an eval-
uation data set defined at >325,000 CONUS 30 m pixel locations 
(Table 2). The CONUS land cover classification accuracies were quan-
tified in the conventional manner by counting the correspondence of the 
NLCD class values at the evaluation 30 m pixel locations with the clas-
sified class values to populate a two-dimensional confusion matrix 
composed of 15 land cover classes. Land cover class specific producer’s 
and user’s accuracies, sometimes referred to as the precision and recall, 
respectively, and the F1-score that is the harmonic mean of the user’s 
and producer’s accuracies were then derived from the confusion matrix 
(Congalton and Green, 2019). The overall accuracy was also extracted 
from the confusion matrix and was used as a diagnostic accuracy metric 
to compare the different classification results. The overall accuracy was 
derived 7 times for each classification to check for the undue influence of 
randomness in the training steps. Notably, the CNN has randomness in 
the network coefficient initialization and mini-batch gradient descent 
training (Scardapane and Wang, 2017) and the random forest has 
randomness in the tree sample selection and predictor selection for each 
tree branch (Breiman, 2001). To examine this, the training was under-
taken using different pseudo-random number generation initializations 
and the mean and standard deviation of the 7 overall classification ac-
curacies were examined. As the standard deviations of the 7 overall 
classifications were found to be very small (≤0.03%) this 7-fold exper-
iment was not undertaken for the class specific accuracy analysis. 

It is well established that large area land cover classifications may 
contain quality issues, such as stripes at input image boundaries or 
anomalous spatial patterns, that may not be revealed by the accuracy 
assessment results that necessarily rely on a limited sample of evaluation 
data (Boschetti et al., 2019). Therefore, the 30 m CONUS land cover 
classifications were quality assessed by visual comparison with the 
NLCD 2011 CONUS land cover map. In addition, the percentage of 
CONUS ARD land pixels that were classified as each class by the NLCD 
and the 1D CNN were compared to provide a synoptic assessment of 
their consistency. Detailed visual comparisons were undertaken at three 
Landsat ARD 5000 × 5000 30 m tiles that were examined to ascertain if 
the land cover of spatially fragmented and isolated pixels were pre-
served, which, as mentioned earlier, can be an issue for conventional 
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patch-based CNN classifiers and should not be an issue for single pixel 
time series based 1D CNN classification. The three ARD tiles were 
selected at location that we have examined in other papers (Yan and 
Roy, 2020; Zhai et al., 2022) and that encompass a mix of land cover 
types, predominantly, agriculture in South Dakota, shrubland and urban 
in Arizona, and wetland, water and urban in Florida. 

3.5. Signature extension demonstration - application of the 2011 trained 
model to generate CONUS year 2006 land cover classification results 

To further demonstrate the approach, the 1D CNN trained with the 
2011 Landsat ARD was applied to the seven month growing season of 
year 2006 Landsat 5 TM and Landsat 7 ETM+ ARD. In the remote 
sensing literature, the application of a trained model to classify different 
geographic regions or time periods not used for the training is known as 
signature extension (Woodcock et al., 2001; Gray and Song, 2013). In 
general, signature extension becomes less appropriate with greater 
space and/or time separation (Zhang and Roy, 2017). However, the 
relatively short period between 2006 and 2011, the use of the same 
Landsat sensors for these two years, and the same CONUS geographic 
area, means that this is a meaningful demonstration of the 1D CNN 
capability, although satellite data acquisition and surface differences 
between the two years will reduce the 2006 classification accuracy. The 
percentage of CONUS ARD land pixels that were classified as each class 
by the 2006 classification and by NLCD 2006 were compared to provide 
a synoptic assessment of their consistency. The 2006 land cover classi-
fication accuracy was quantified by comparison with the 2006 evalua-
tion samples (described at the end of Section 2.2). 

4. Results 

4.1. CONUS land cover classification model inter-comparison experiment 
results 

Fig. 6 shows the CONUS overall land cover classification accuracies 
derived with np = 9 percentiles (i.e., 13 × 9 predictor variables) for the 
8-layer 1D CNN (open dots), 5-layer 1D CNN (open diamonds) and 
random forest (stars), trained with the 10%, 50% and 90% training 
proportions (about 0.3, 1.6 and 2.9 million CONUS samples, Table 2). As 
there should be as least as many quality filtered observations as np, the 
classifications were generated and evaluated considering only CONUS 
ARD pixel locations with ≥9 quality filtered growing season observa-
tions. As expected, the overall classification accuracies increased with 
the training sample size with the highest accuracies for the 90% training 
proportion. The random forest provided consistently the lowest overall 
classification accuracy, and, for example, with the 90% training pro-
portion provided an 83.6% accuracy. The two 1D CNN structures trained 
with the 90% proportion provided 86.1% and 86.4% accuracies for the 
5-layer and 8-layer structures, respectively. Notably, the 1D CNN 
improvement over random forest was larger than the accuracy differ-
ences between the two CNN structures. The 8-layer CNN had 0.7% and 
0.6% higher overall classification accuracy than the 5-layer CNN for the 
90% and 50% training proportions, respectively, whereas the 5-layer 
CNN had 0.1% higher accuracy for the 10% training proportion. 

Fig. 7 shows the CONUS overall land cover classification accuracies 
derived as Fig. 6 but using one growing season median value composite 
defined by the 50th percentile (median value) (black) and using seven 
monthly median value composites derived over the growing season 
(magenta). Similar results as Fig. 6 are apparent, i.e., the overall clas-
sification accuracies increase with the training sample size, the highest 
accuracies are for the 90% training proportion, and the random forest 
provides systematically lower accuracies than the 1D CNN. Notably, 
however, the np = 1 (Fig. 7, black) classification accuracies are 

Fig. 6. Overall CONUS land cover classification accuracies derived with np = 9 percentiles (i.e., 13 × 9 predictor variables) for the 8-layer and 5-layer 1D CNN 
structures and random forest, each trained with the same 10%, 50% and 90% training proportions (about 0.3, 1.6 and 2.9 million CONUS samples), respectively, and 
evaluated using an independent 10% evaluation proportion (about 0.3 million CONUS samples) (Table 2). The classifications were derived and evaluated considering 
only CONUS ARD pixel locations with ≥9 quality filtered observations. The overall accuracy was derived 7 times for each classification to check for the undue 
influence of randomness in the training, and the symbols show the mean overall accuracy values (the standard deviation of each set of 7 results was negligible and 
less than the plotted symbol dimensions). 
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significantly and systematically lower than the np = 9 (Fig. 6) accuracies 
by at least 5.35% (8-layer CNN using 10% training samples) and up to 
6.53% (8-layer CNN using 90% training samples). Similarly, the 
monthly composite (Fig. 7, magenta) classification accuracies are sys-
tematically lower than the np = 9 (Fig. 6) classification accuracies by at 
least 0.18% (8-layer CNN using 90% training samples) and up to 1.17% 

(8-layer CNN using 10% training samples). These differences illustrate 
the utility of using many percentiles to better capture seasonal reflec-
tance variations. 

In both Figs. 6 and 7 the overall accuracies were derived 7 times for 
each classification to check for the undue influence of randomness in the 
training, and the plotted symbols show the mean overall accuracy values 

Fig. 7. As Fig. 6 but generated using one growing season median value composite defined by the 50th percentile (np = 1) (black) and using seven monthly median 
value composites, i.e., April, May …, October (magenta). The classifications were derived and evaluated considering only CONUS ARD pixel locations with ≥9 
quality filtered observations. The overall accuracy was derived 7 times for each classification to check for the undue influence of randomness in the training, and the 
symbols show the mean overall accuracy values (the standard deviation of each set of 7 results was negligible and less than the plotted symbol dimensions). (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 8. Overall CONUS land cover classification accuracies derived with the 8-layer 1D CNN structure and generated using temporal metrics derived with np = 5, 7, 
or 9 percentiles and considering CONUS ARD pixel locations with ≥n quality filtered growing season observations. The classifications were trained using 10%, 50% 
and 90% training proportions (about 0.3, 1.6 and 2.9 million CONUS samples), and evaluated using an independent 10% evaluation proportion (about 0.3 million 
CONUS samples) (Table 2). The overall accuracy was derived 7 times for each classification to check for the undue influence of randomness in the training, and the 
symbols show the mean overall accuracy values. 
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derived from the 7 sets of overall accuracy results. The standard de-
viations of the 7 overall accuracies are not shown as their values are too 
small to be meaningfully plotted. The 50% and 90% training samples 
experiments had standard deviations ≤0.02%. The 10% training sample 
experiments had slightly greater standard deviations (≤0.03%) and this 
is likely due to the smaller number of training samples used (Table 2). 
Given these findings, the randomness standard derivation results are not 
discussed in the following figures. 

On the basis of the Fig. 6 and 7 results, the 8-layer 1D CNN with np >

1 was used for the remainder of this study. Fig. 8 shows the overall 
CONUS land cover classification accuracies provided by the 8-layer 1D 
CNN trained using 10%, 50% and 90% training proportions (about 0.3, 
1.6 and 2.9 million CONUS samples, Table 2) and derived using tem-
poral metrics with np = 5, 7 and 9 percentiles (shown by red, green, blue 
colors). Given that there should be as least as many quality filtered 
observations as np, the classification with np = 9 was undertaken and 
evaluated at CONUS ARD pixel locations with n ≥ 9 quality filtered 
growing season observations. The classification with np = 7 were un-
dertaken and evaluated twice – first at CONUS ARD pixel locations with 
n ≥ 7 and, then again at locations with n ≥ 9, quality filtered growing 
season observations. Similarly, the classifications with np = 5 were 
generated and evaluated three times i.e., considering only CONUS ARD 
pixel locations with n ≥ 5, ≥7, and ≥ 9 quality filtered growing season 
observations. In all cases, the overall classification accuracies increased 
with the training sample size, and the 9 and 5 percentile classifications 
had the highest and lowest overall accuracies, respectively. Considering 

the 90% training proportion results, the highest accuracies were ob-
tained for np = 9 (86.43%, n ≥ 9), with marginally lower accuracies for 
np = 7 (86.38% for n ≥ 9, and 86.40%, for n ≥ 7) and the np = 5 results 
always had the lowest accuracies and were lower accuracy than np = 9 
by 0.17% to 0.29%. The greatest accuracy differences among the clas-
sifications occurred for the 10% training proportion results, likely 
reflecting that too few training data were used. On the basis of these 
results, the 8-layer 1D CNN with np = 7 and np = 9 were used for the 
remainder of this study. 

4.2. Mapped CONUS land cover classification results 

Fig. 9 shows the CONUS 8-layer 1D CNN land cover classification 
derived using the 90% training proportion and np = 7 percentiles (i.e., 
13 × 7 predictor variables). The CONUS ARD encompasses more than 
150 thousand and 88 thousand 30 m pixels east-west and north-south 
respectively. Therefore, to visualize the results, Fig. 9 shows the ma-
jority land cover class in adjacent non-overlapping 50 × 50 30 m pixel (i. 
e., 1.5 × 1.5 km) regions. Consequently, the small minority of CONUS 
pixels with ≤7 growing season quality filtered observations (0.57%, 
Fig. 2) are not apparent. At this synoptic scale the 8-layer 1D CNN land 
cover classification derived with np = 9 percentiles appears the same, 
and so is not shown. The classification shows no stripes or anomalous 
spatial patterns and appears quite plausible. The spatial variation in land 
cover across the CONUS exhibits generally expected geographic differ-
ences with, for example, shrub/scrub in the dry south-west; cultivated 

Fig. 9. The 15-class CONUS 2011 land cover map derived with the 8-layer 1D CNN structure and np = 7 percentiles (i.e., 13 × 7 predictor variables) trained with the 
90% training proportion (about 2.9 million CONUS samples, Table 2). The classification was derived at CONUS 30 m pixel locations with ≥7 growing season quality 
filtered observations (i.e., covering 99.43% of the CONUS, Fig. 2). For visualization purposes, the majority land cover class in adjacent non-overlapping 50 × 50 30 m 
pixel regions is shown. 
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crops in the Great Plains and the Mississippi watershed and California 
interior; open water over the Great Lakes near the Canadian border; 
evergreen forest dominating in the north-west and deciduous forest in 
the eastern states; and developed medium-intensity and developed high- 
intensity classes evident in major urban areas such a Los Angeles on the 
south-west coast and New York on the north-east coast. 

Fig. 10 shows for comparison the CONUS NLCD 2011 illustrated at 
the same scale as Fig. 9. The spatial variation in the land cover classes is 
similar between the two land cover classifications. However, two 
apparent differences are evident: (i) more cultivated crops but less 
pasture/hay in the agricultural heartland between the Missouri and 
Mississippi rivers is apparent in the 8-layer 1D CNN classification 
(Fig. 9) compared to the NLCD (Fig. 10); and (ii) less developed open- 
space around cities including Houston, Phoenix, Chicago, and Detroit, 
is apparent in the 8-layer 1D CNN classification compared to the NLCD. 
Note that only 0.0178% of the CONUS land pixels were classified as 
“perennial ice/snow” in the 2011 NLCD and this class, although present, 
is not apparent in Fig. 10. 

Fig. 11 shows a scatterplot comparing the CONUS land cover class 
percentages extracted from the 7 percentile 8-layer 1D CNN classifica-
tion (y-axis) and from the NLCD (x-axis). The 0.0178% of CONUS 30 m 
pixel locations that were classified as “perennial ice/snow” in the 2011 
NLCD classification were discarded from this comparison, thus Fig. 11 
shows results for 15 of the 16 NLCD classes (Table 1). The class per-
centages between the two classifications are similar and have a 0.99 
correlation. The scatterplot comparing the CONUS land cover class 
percentages for the 9 percentile 8-layer 1D CNN land cover classification 
and the NLCD is not shown but was similar with a 0.98 correlation. The 

greatest relative class percentage difference was for the developed open 
space class (3.3% in the NLCD and 0.4% in the 1D CNN) and is quite 
evident, as noted above, when comparing Figs. 9 and 10 (light red 
colors) around cities, such as Houston, Phoenix, Chicago, and Detroit. 
The mixed forest class percentages were also quite different (2.0% in the 
NLCD and 0.6% in the 1D CNN) but this is hard to visually assess due to 
the spatial arrangement of the mixed forest classified pixels and the 
Figs. 9 and 10 synoptic image scale. The greatest absolute class per-
centage was for the cultivated crop class that was 15.5% in the NLCD 
and 19.2% in the 1D CNN. These differences are particularly apparent in 
the detailed ARD tile results and in CONUS class specific user’s and 
producer’s accuracies that are presented below. 

Figs. 12-14 show the NLCD and 8-layer 1D CNN land cover classifi-
cations for the three 5000 × 5000 30 m ARD tiles that are located over 
an agricultural area in central South Dakota (Fig. 12), a shrub, forest and 
urban mixed area around Phoenix, Arizona (Fig. 13), and a wetland and 
urban mixed area around Miami, Florida (Fig. 14). True color images are 
also shown to provide geographic context. Both the 7-percentile and 9- 
percentile 1D CNN classification results are illustrated with little dif-
ference between them except that the 9-percentile classifications have 
fewer classified pixels. This is particularly apparent for the Florida tile 
(Fig. 14) with fewer available growing season observations that is also 
clearly apparent in Fig. 3 relative to the rest of the CONUS. Notably, the 
1D CNN classification land cover class boundaries are not smoothed and 
the boundary detail is preserved for features with small axis dimensions 
greater than a 30 m pixel, including roads and buildings (Figs. 13 and 
14), and lakes and rivers (Figs. 12 and 13). This is because, as discussed 
earlier, the 1D CNN is applied to single ARD pixel temporal metrics 

Fig. 10. The NLCD 16-class 2011 land cover map (Homer et al., 2015). For visualization purposes, the majority land cover class in adjacent non-overlapping 50 × 50 
30 m pixel regions is shown in the same way as for Fig. 9. 
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rather than to spatial patches. There is a high level of agreement be-
tween the NLCD and 1D CNN land cover classifications apparent in 
Figs. 12-14 except over certain urban/suburban and agricultural areas. 
The discrepancies between the NLCD and 1D CNN land cover classifi-
cations for the developed open-space class evident at CONUS scale 
(Figs. 9-11) are particularly apparent and about half of the developed 
open-space pixels in the NLCD are classified by the 1D CNN as shrub/ 
scrub around Phoenix (Fig. 13) or as cultivated crops to the south and 
north of Miami (Fig. 14). There are also pronounced NLCD and 1D CNN 
classification differences between the distribution of pasture/hay and 
cultivated crops in the South Dakota tile (Fig. 12) that was also evident 
as noted above at CONUS scale. 

4.3. Quantification of class-specific CONUS land cover classification 
accuracy 

Fig. 15 shows the producer’s (red shades) and user’s (blue shades) 
accuracies of the 8-layer 1D CNN that was trained using the 90% 
training proportion. The accuracies are shown for the CONUS classifi-
cations derived using np = 7 percentiles at locations with n ≥ 7 and n ≥ 9 
quality filtered growing season observations and for the classification 
derived using np = 9 percentiles at locations with n ≥ 9 quality filtered 
growing season observations. The results for these three classifications 
are shown as they had the highest overall classification accuracies 
(Fig. 8). For all three classifications, the open water (11), barren land 
(31), deciduous forest (41), evergreen forest (42), shrub/scrub (52), 
grassland/herbaceous (71) and cultivated crops (82) had high (>80%) 
user’s and producer’s accuracies. This is likely because these classes 
have distinct growing season reflectance variations. For example, the 
open water class (11) had the highest producer’s and user’s accuracies 
(>98%) likely due to the characteristically low and relatively temporally 
unchanging reflectance of open water relative to land surfaces (Pahlevan 
et al., 2019; Zhai et al., 2022). The developed open-space (21) class had 
the lowest accuracy with 14.18% - 15.55% producer’s and 46.27% - 
47.89% user’s accuracies, indicating that this class occurred more rarely 

in the CONUS 1D CNN land cover classifications than it should. This is 
consistent with the findings commented on above concerning Figs. 9, 13, 
and 14. The three other developed land classes (22–24) had interme-
diate producer’s and user’s accuracies that increase with development 
intensity in the range 51.24% - 58.99% (developed low-intensity, class 
22), to 61.50–66.49% (developed medium-intensity, class 23), to 
61.92% - 71.05% (developed high-intensity, class 24). This is likely 
because impermeable surfaces (concrete, asphalt etc.) have temporally 
more consistent reflectance than vegetated surfaces (Small, 2002; Schug 
et al., 2020) and a spatially greater proportion of impermeable surfaces 
is present with increasing development intensity as defined by the NLCD 
classification scheme (Yang et al., 2003). Notably, the mixed forest class 
(43) producer’s accuracies were about half the user’s accuracies, indi-
cating that this class occurred more rarely in the CONUS 1D CNN land 
cover classifications than it should. 

There was no systematic pattern in the class specific accuracy results 
with respect to the number (n) of quality filtered growing season ob-
servations for the two np = 7 classifications (Fig. 15). For the 11 non- 
developed classes, the difference in the producer’s accuracies 
comparing n ≥ 7 and n ≥ 9 was <2.5% and the difference in the user’s 
accuracies was <2.0%. For the four developed classes the difference in 
the producer’s accuracies was <2.5% and the difference in the user’s 
accuracies was <3.0%. The only large difference between the n ≥ 7 and 
n ≥ 9 results was for the developed high-intensity class (class 24) that 
had a 6.3% higher user’s accuracy for n ≥ 9 than n ≥ 7. This indicates 
that fewer of the other classes are misclassified as developed high- 
intensity class for n ≥ 9 than for n ≥ 7; this is discussed in the next 
paragraph. 

There was also no systematic pattern in the class specific accuracy 
results with respect to the number of percentiles (np = 7 or np = 9) that 
were classified (Fig. 15). The only class specific accuracy differences 
between the np = 7 and np = 9 classifications that were not small were for 
the developed classes. The developed open-space (21) and developed 
low-intensity (22) classes had np = 9 producer’s and user’s accuracies 
that were up to 3.6% lower than the np = 7 classifications. This is likely 
because these classes have a multitude of land cover and land uses, with 
significant within class variation across the CONUS, and so geographi-
cally variable and complex temporal signatures that are better gener-
alized in the 1D CNN using fewer percentiles. Conversely, the developed 
high-intensity class (24) had 0.0% - 0.6% and 2.9% - 9.2% higher pro-
ducer’s and user’s accuracies, respectively, than the two np = 7 classi-
fications. This is likely because the developed high-density class had less 
within class spatial variation across the CONUS and more stable tem-
poral reflectance due to the predominance of impermeable surfaces as 
noted earlier. Nominally we expected greater class specific accuracies 
with np = 9 reflecting the greater overall classification accuracy ob-
tained with np = 9 than np = 7 (Fig. 8). However, the np = 9 producer’s 
accuracies were marginally smaller (within 1.5%) than the np = 7 class 
producer’s accuracies for the woody wetlands (90) and emergent her-
baceous wetlands (95) classes, and the np = 9 user’s accuracies were 
marginally smaller than the np = 7 user’s accuracy for the barren land 
class (31). This is likely for the reasons described above with respect to 
the developed open-space and developed low-intensity classes, as wet-
lands and barren land can exhibit considerable spatial and seasonal 
variability due to, for example, precipitation and soil moisture changes. 

Fig. 16 shows the class specific F1-scores derived as the harmonic 
mean of the user’s and producer’s accuracies shown in Fig. 15. The F1- 
score is low (close to 0) if either the user’s or producer’s accuracy is low 
and so the Fig. 16 has a similar class specific accuracies as Fig. 15. For all 
classifications, the open water (11), deciduous forest (41), evergreen 
forest (42), shrub/scrub (52), grassland/herbaceous (71) and cultivated 
crop (82) classes had high (>0.8) F1-scores, and the developed open- 
space and the mixed forest class had the lowest F1-scores (<0.5). 
There was no systemic pattern in the F1-scores with respect to the 
number of quality filtered growing season observations (n ≥ 7 or n ≥ 9) 
or to the number of percentiles (np = 7 or np = 9) used. 

Fig. 11. Scatterplot comparing the percentage of CONUS year 2011 30 m ARD 
land pixels classified into each of 15 classes (Table 1) by the 8-layer 1D CNN 
(Fig. 9) and by the 2011 NLCD (Fig. 10). The percentages were derived 
considering only the CONUS 30 m pixel locations that were not classified as 
“perennial ice/snow” in the 2011 NLCD classification, as this class was not 
classified in the 8-layer 1D CNN model. The 1:1 line is shown for reference. 
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4.4. Signature extension demonstration - application of the 2011 trained 
1D CCN model to generate CONUS year 2006 land cover classification 
results 

The 8-layer 1D CNN used to generate the 2011 CONUS land cover 

classification (shown in Fig. 9, derived with np = 7 percentiles and a 90% 
training proportion derived from the NCLD 2011 and 2011 growing 
season Landsat ARD) was applied to the year 2006 growing season 
Landsat ARD. Fig. 17 shows a scatterplot comparing the resulting 2006 
CONUS land cover class percentages (y-axis) with the 2006 NLCD 

Fig. 12. South Dakota 5000 × 5000 30 m ARD tile results: (a) true color reflectance derived from the median surface NBAR of the 7 months of quality filtered 
growing season Landsat 5 and 7 observations in the red, green and blue bands, (b) 2011 NLCD classification (spatially subset from Fig. 10), (c) 8-layer 1D CNN 
classification derived with np = 7 percentiles (spatially subset from Fig. 9), (d) 8-layer 1D CNN classification derived with np = 9 percentiles. Only the land cover 
classes present in (b-d) are included in the figure legend; pixel locations that could not be classified due to insufficient growing season observations are colored black 
in (c) and (d). Illustrated 150 × 150 km area is Landsat ARD tile h15v06 (centered on 99.0209◦W, 44.0124◦N). (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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percentages (x-axis). The class percentages between the two classifica-
tions have a high 0.99 correlation and similar pattern as the 2011 
CONUS scatterplot results illustrated in Fig. 11. However, several classes 
deviate more from the 1:1 line for the 2006 results, including the mixed 
forest, emergent herbaceous wetlands, and barren land classes. 

The CONUS 2006 overall classification accuracy was quantified by 
comparison with 3,257,362,006 evaluation samples derived from the 
NLCD 2006. The CONUS 2006 overall classification accuracy was 
80.79% which is less than the 86.40% overall classification accuracy for 
2011. This 5.61% accuracy decrease is likely to be influenced not just by 

Fig. 13. Arizona 5000 × 5000 30 m ARD tile results: (a) true color reflectance derived from the median surface NBAR of the 7 months of quality filtered growing 
season Landsat 5 and 7 observations in the red, green and blue bands, (b) 2011 NLCD classification (spatially subset from Fig. 10), (c) 8-layer 1D CNN classification 
derived with np = 7 percentiles (spatially subset from Fig. 9), (d) 8-layer 1D CNN classification derived with np = 9 percentiles. Only the land cover classes present in 
(b-d) are included in the figure legend; pixel locations that could not be classified due to insufficient growing season observations are colored black in (c) and (d). 
Illustrated 150 × 150 km area is Landsat ARD tile h07v13 (centered on 111.7090◦W, 35.5997◦N). (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 
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the classification methodology but also by satellite data acquisition and 
surface differences between the two years. These include different intra- 
annual variations in surface conditions (e.g., vegetation productivity 
and phenology, soil moisture) in 2006 and 2011, land cover and land use 
change from 2006 to 2011, changes in agricultural crop types between 

2006 and 2011, differences in the cloud cover at the time of overpass 
between 2006 and 2011, and Landsat orbit drift (and so reflectance 
differences caused by differences in the solar position at Landsat over-
pass time) (Roy et al., 2020). 

To examine the potential influence of differences in the satellite data 

Fig. 14. Florida 5000 × 5000 30 m ARD tile results: (a) true color reflectance derived from the median surface NBAR of the 7 months of quality filtered growing 
season Landsat 5 and 7 observations in the red, green and blue bands, (b) 2011 NLCD classification (spatially subset from Fig. 10), (c) 8-layer 1D CNN classification 
derived with np = 7 percentiles (spatially subset from Fig. 9), (d) 8-layer 1D CNN classification derived with np = 9 percentiles. Only the land cover classes present in 
(b-d) are included in the figure legend; pixel locations that could not be classified due to insufficient growing season observations are colored black in (c) and (d). 
Illustrated 150 × 150 km area is Landsat ARD tile h27v19 (centered on 80.5952◦W, 25.4087◦N). (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 
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and the surface between years, the same signature extension experiment 
was undertaken but using np = 1 percentile (the 50th percentile) rather 
than np = 7 percentiles. Notably, the overall CONUS classification ac-
curacy for np = 1 was 77.27% for 2006, and 79.75% for 2011. This 

2.48% decrease is relatively smaller than the 5.61% decrease reported 
above for np = 7 percentiles. Recall that the Figs. 6 and 7 results showed 
that, regardless of the model used, the CONUS overall classification 
accuracies with np = 1 were consistently lower than with np = 9. This is 

Fig. 15. CONUS class specific producer’s accu-
racies (red shades) and user’s accuracies (blue 
shades) for the 15 NLCD land cover classes (see 
Table 1). Results for the 8-layer 1D CNN clas-
sification derived using np = 7 percentiles 
considering CONUS ARD pixel locations with 
≥7 and ≥ 9 quality filtered growing season 
observations, and derived using np = 9 percen-
tiles considering CONUS ARD pixel locations 
with ≥9 quality filtered growing season obser-
vations. The classifications were trained using 
the 90% training proportions (about 2.9 million 
CONUS samples) and evaluated using an inde-
pendent 10% evaluation proportion (about 0.3 
million CONUS samples) (Table 2). (For inter-
pretation of the references to colour in this 
figure legend, the reader is referred to the web 
version of this article.)   

Fig. 16. CONUS class specific F1-score results derived from the Fig. 15 8-layer 1D CNN classification producer’s accuracies and user’s accuracies.  
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because using a greater number of percentiles better captured seasonal 
reflectance variations. This is evident in Fig. 18 that shows class specific 
F1-scores comparing the 2011 (y-axis) and 2006 (x-axis) results derived 
for np = 7 percentiles (the start of each arrow) and np = 1 (the end of 
each arrow, i.e., the arrow tips). The majority of the arrows (starts and 
ends) are located above the 1:1 line indicating that, as expected, the year 
2011 classification F1-scores are greater than the 2006 classification F1- 
scores. Notably, most of the arrows in Fig. 18 point toward the origin (i. 
e., the slope of the arrow is greater than one) indicating that the F1-score 
decrease from 2011 to 2006 is greater (signature extension issue is more 
serious) with np = 7 than np = 1. This is likely because using np = 1 is less 
sensitive to differences in the satellite data and the surface between 
years. Notably, the classes with arrows further from the 1:1 line are 
mixed forest, emergent herbaceous wetlands, woody wetlands, grass-
land/herbaceous, and shrub/scrub, that all typically exhibit significant 
seasonal reflectance variation. Conversely, the open water class F1- 
scores are located almost on the 1:1 line indicating that signature 
extension is not an issue for this class which is likely because of the 
characteristically low and relatively temporally unchanging reflectance 
of open water relative to land surfaces. 

5. Discussion and conclusion 

Medium spatial resolution multi-spectral satellite data acquired by 
sensors, such as Landsat for more than 50 years (Wulder et al., 2022), 
and in the last decade by Sentinel-2 (Drusch et al., 2012), have been used 
to derive national to global scale land cover maps, predominantly using 
supervised decision tree classifiers. Over large areas, land cover classi-
fication has conventionally been undertaken using satellite time series, 

typically using temporal metric percentiles derived from annual 
growing season time series (Wulder et al., 2018). Deep convolutional 
neural networks (CNNs) were first demonstrated for application to sin-
gle date high spatial resolution images (Zhang et al., 2018; Kellenberger 
et al., 2018; Mahdianpari et al., 2018; Srivastava et al., 2019; Tong et al., 
2020; Yuan et al., 2020) and their considerable potential makes them 
attractive for large area land cover classification. For example, recently, 
the Environmental Systems Research Institute (ESRI) (Karra et al., 2021) 
and the Google Dynamic World (Brown et al., 2022) initiatives have 
derived global coverage land cover maps by patch-based CNN classifi-
cation of single date predominantly cloud-free and non-hazy Sentinel-2 
10 m images using fully convolution networks that normally classify the 
entire patch rather than the center patch pixel (Ronneberger et al., 
2015). The application of CNNs to satellite image time series, to take 
advantage of spectral differences among land cover classes over time, is 
complicated because of missing observations due to clouds and irregular 
surface observation temporal cadence. These issues commonly occur in 
medium spatial resolution multi-spectral satellite data (Egorov et al., 
2019). For example, the percentage of the CONUS ARD 30 m pixel lo-
cations that had at least n good quality cloud-free Landsat 5 TM and 
Landsat 7 ETM+ observations over the seven month growing season of 
2011 examined in this study declined rapidly with n from 99.90% for n 
= 3, 97.88% for n = 9, 93.56% for n = 11, to 50.29% for n = 20 (Fig. 2). 
It is well established that spatial and temporal differences in land cover 
class spectral signatures increase with geographic coverage and so the 
incidence of missing observations can be particularly problematic when 
a single classification model is applied. Recent studies have applied 1D 
CNN architectures to classify single pixel reflectance time series and 
have interpolated missing or cloud-flagged observations using preceding 

Fig. 17. Scatterplot, as Fig. 11, but comparing the CONUS class percentages defined by the 8-layer 1D CNN trained with 2011 Landsat ARD (with np = 7 percentiles 
and the 90% training proportion derived from the NLCD 2011) used to classify the 2006 Landsat ARD (y-axis), with the 2006 NLCD class percentages (x axis). 
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and subsequent cloud-free observation values. Interpolation is unreli-
able, however, when gaps occur in periods of rapid surface change, 
when the gaps have long duration, and when there are undetected 
clouds or shadows that are used incorrectly in the interpolation (Yan and 
Roy, 2020). 

This study demonstrates, for the first time, 1D CNN single pixel time 
series land classification derived using temporal percentile metrics and 
demonstrates this at scale for all the CONUS. Temporal metric percen-
tiles decompose irregular distributed satellite time series into a reduced 
fixed number of features that can be conveniently used for classification 
purposes and were developed for national to global scale land cover 
classification as they are robust to missing data and reduce the impact of 
spatial and temporal differences in land cover spectral signatures 
(DeFries et al., 1995; Friedl et al., 2010; Hansen et al., 2014; Zhang and 
Roy, 2017). The temporal metric percentiles used in this study were 
derived at each CONUS ARD 30 m pixel location from quality filtered 

Landsat 5 TM and Landsat 7 ETM+ ARD surface NBAR time series ac-
quired over the seven month growing season of 2011. Percentiles of the 
five Landsat bands and of the eight possible two band normalized NBAR 
ratios were derived to provide np × 13 temporal metrics where np is the 
number of percentiles and in this study was set as 5, 7 or 9. The temporal 
metric percentiles were derived at each CONUS ARD pixel and used as 
classification predictor variables. A pool of >3.3 million CONUS 30 m 
pixels was used to derive independent training and evaluation data. The 
pool was derived by systematic sampling the year 2011 (reprocessed in 
2014) National Land Cover Database (NLCD) 16 classes land cover 
product. The NLCD is a widely applied CONUS land cover product that is 
generated on a systematic basis by the USGS and has been robustly 
validated with a reported 86.8% overall land cover classification accu-
racy (Wickham et al., 2021). The pool was derived carefully to minimize 
NLCD classification errors by selecting only 30 m pixel locations with 
the same NLCD land cover class in the surrounding eight 30 m pixels (to 

Fig. 18. F1-scores for each land cover class for the year 2011 (y-axis) and 2006 (x-axis) classifications using np = 7 (arrow start) and np = 1 (arrow end) percentiles. 
The 1:1 line is shown for reference. 
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reduce the impact of Landsat misregistration and isolated single pixel 
NLCD misclassification errors). Further, only locations with ≥np quality 
filtered year 2011 growing season observations needed to undertake the 
classification were selected. 

The sensitivity of the CONUS 1D CNN classification results to using 
different numbers of temporal metric percentiles (np), CNN architecture 
complexity, and training data amount was investigated. A 5-layer 1D 
CNN based on the structure used by Pelletier et al. (2019) and an 8-layer 
1D CNN model that extended the 5-layer model to include 3 more 
convolutional layers, with 0.2 and 2.1 million learnable coefficients, 
respectively, were assessed. The influence of using different training 
sample sizes (10%, 50% and 90% of the 3.3 million sample pool) was 
also examined. As expected, the overall classification accuracies 
increased with the training sample size for the two 1D CNN architec-
tures, and also for the random forest classifier that was included as a 
benchmark. Notably, both 1D CNN architectures provided higher 
CONUS overall classification accuracies than random forest by 1.9% - 
2.8% which, given the high overall CONUS classification accuracies 
(>83%) is a meaningful increase. The 8-layer 1D CNN provided the 
highest overall classification accuracies for the 50% and 90% training 
proportion experiments and the overall classification accuracies be-
tween the two CNN models differed by <0.73%. Thus, on the basis of 
these results, the 8-layer 1D CNN is recommended rather than the 5- 
layer 1D CNN model, and either 1D CNN model is recommended over 
random forest. 

In principle, using a larger number of temporal percentiles (np) 
should better capture seasonal surface variations and so provide higher 
CONUS classification accuracy. This was illustrated by an experiment 
using only one (np = 1) percentile (defined by the median growing 
season value for each of the five Landsat bands and of the eight possible 
two band normalized NBAR ratios) that provided consistently lower 
classification accuracies than found using np = 9 percentiles regardless 
of the model (random forest or 1D CNN). Similarly, using seven monthly 
median composites, provided systematically lower accuracies than the 
np = 9 classification accuracies. Previously, researchers have used 
Landsat temporal metrics defined by five or seven percentiles for large 
area land cover classification using random forest and decision tree 
classifiers (Potapov et al., 2012; Margono et al., 2012; Yan and Roy, 
2015; Azzari and Lobell, 2017; Pflugmacher et al., 2019). In this study 
nine percentiles were considered, even though 2.12% of the CONUS 
pixels had <9 quality filtered growing season observations and so could 
not be classified with np = 9. The CONUS overall classification accuracy 
with np = 9 was 86.43% and was marginally (to the second decimal 
place) greater than the np = 7 overall accuracy (86.40%), greater than 
the np = 5 overall accuracy (86.21%) and significantly higher than the 
np = 1 overall accuracy (79.90%). Class specific producer and user ac-
curacies were also quantified with respect to the number of temporal 
percentiles (np = 7 and 9). There was no systematic pattern in the class 
specific accuracy results with respect to np. A total of 99.43% and 
97.88% of CONUS ARD pixels had sufficient quality filtered time series 
observations to support np = 7 or np = 9 land clover classification, 
respectively. On the basis of these results, the 8-layer 1D CNN with np =

7 or np = 9 is recommended. We note that the temporal observation 
coverage of the CONUS Landsat 5 TM and Landsat 7 ETM+ data may be 
different in other regions of the world, such as the tropics that are 
typically cloudy at the time of Landsat overpass, and also that two 
Landsat sensor coverage is not always available even over the CONUS 
(Kovalskyy and Roy, 2013; Wulder et al., 2016). Consequently, using a 
1D CNN with five percentiles may be more appropriate in these in-
stances to increase the number of pixel locations that can be classified. 
Conversely, land cover classifications undertaken with data sensed by 
both Sentinel-2 sensors or in combination with Landsat may have higher 
accuracy with np = 9 due to the greater temporal observation coverage 
provided by these sensors (Li and Roy, 2017). 

The 30 m CONUS and detailed 30 m ARD tile mapped classification 
results presented in this study demonstrate that the 1D CNN single pixel 

temporal metric land classification approach is effective at scale and 
locally. The CONUS 8-layer 1D CNN and NLCD classification maps 
illustrated at 1.5 × 1.5 km resolution were qualitatively similar (Figs. 9 
and 10). However, the developed open-space class was less apparent 
around certain cities in the 8-layer 1D CNN map relative to the NLCD, 
and more cultivated crops but less pasture/hay in the U.S. agricultural 
heartland was apparent in the 8-layer 1D CNN classification than the 
NLCD. These differences were quantified in a scatterplot comparing the 
percentage of CONUS 30 m ARD land pixels classified into each of 15 
classes by the 8-layer 1D CNN and NLCD classifications (Fig. 11). The 
developed open-space class covered 3.3% of the CONUS 30 m NLCD 
pixels and only 0.4% in the 1D CNN classification, and the cultivated 
crop class covered of 15.5% of NLCD and 19.2% of the 1D CNN CONUS 
30 m pixels. These discrepancies can be explained. It is well established 
that urban/suburban areas can be composed of different land cover 
types and land uses (e.g., impervious surfaces, grass lawns, swimming 
pools, bare soil) that can be mixed spatially within 30 m pixels and so are 
easily confused with other land cover classes (Small, 2005; Griffiths 
et al., 2010; Zhang and Roy, 2017). In addition, the four developed land 
classes had the smallest number of training samples across all the classes 
(Table 1) and so may be less accurately classified due to class imbalance 
issues (Chawla, 2003; Mellor et al., 2015). Indeed, due to this 
complexity, the four NLCD developed classes were derived using addi-
tional road vector, night-time light, and digital elevation data (Yang 
et al., 2003; Homer et al., 2015), that were not used in the 1D CNN 
classifications, and the developed open-space class had the lowest re-
ported classification accuracy of the four NLCD developed classes 
(Wickham et al., 2021). It is also well established that cultivated crops 
and pasture/hay can be hard to differentiate reliably in satellite imagery 
(Hill et al., 1999; Kuchler et al., 2020), and the pasture/hay class also 
had low reported NLCD producer’s and user’s accuracy (Wickham et al., 
2021). Despite these differences, the scatterplot correlations comparing 
the NLCD CONUS class percentages with the 8-layer 1D CNN CONUS 
class percentages for np = 7 and np = 9, were 0.99 and 0.98, respectively 
(Fig. 11). These correlations indicate good overall correspondence, 
particularly as the 1D CNN training data corresponded to 0.037% of the 
>8.5 billion CONUS land 30 m pixels that were classified. Detail results 
for three 5000 × 5000 30 m pixel ARD tiles were also presented and 
demonstrated that at native resolution the 1D CNN classification land 
cover class boundaries were preserved for features with small axis di-
mensions, including roads, buildings, lakes and rivers. In addition, the 
1D CNN tile results had no stripes or anomalous spatial patterns that can 
sometimes be observed in large area single image patch-based CNN land 
cover classifications (Karra et al., 2021; Brown et al., 2022). 

To further demonstrate the 1D CNN approach, the 8-layer 1D CNN np 
= 7 model used to generate the 2011 CONUS land cover classification 
was applied to the seven month growing season of year 2006 Landsat 
ARD. The resulting 2006 land cover classification had similar CONUS 
class percentages documented for 2011. However, an accuracy assess-
ment undertaken by comparison of the 2006 classification with NLCD 
2006 evaluation samples revealed a 5.61% lower overall classification 
accuracy than the 86.40% accuracy found for 2011. This is likely due to 
a number of factors including satellite data acquisition and surface dif-
ferences between 2006 and 2011. This was indicated by examination of 
the class F1-scores for 2011 and 2006 results derived using the 8-layer 
1D CNN np = 7 model and the 8-layer 1D CNN np = 1 model. For most 
classes the F1-score decreased from 2011 to 2006 and the decrease was 
greater with np = 7 than np = 1. Notably, the mixed forest, emergent 
herbaceous wetlands, woody wetlands, grassland/herbaceous, and 
shrub/scrub classes, that all typically exhibit significant seasonal 
reflectance variation, had greater differences. Conversely, the open 
water class F1-scores were similar for 2011 and 2007 and using np = 7 or 
np = 9, which is likely because of the characteristically low and rela-
tively temporally unchanging reflectance of open water compared to the 
other land cover classes. 

Temporal metric percentiles can be used for large area land cover 
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classification with other deep learning models, such as RNN and fully 
attention based networks (as discussed in the introduction with respect 
to patch-based implementations). Notably, these models have been 
applied to classify single pixel time series by using interpolated values 
for cloud contaminated or missing observations, e.g., with RNN (Ienco 
et al., 2017; Campos-Taberner et al., 2020) and with fully attention 
based networks (Rußwurm and Körner, 2020; Yuan and Lin, 2021). We 
note that studies comparing these different models over small areas have 
reported mixed results. For example, Xu et al. (2020) found the RNN 
provided higher accuracy than the fully attention based network for 
classification of Landsat reflectance time series over six US 51× 51 km 
sites into three classes (corn, soybean, other). Rußwurm and Körner 
(2020) found negligible difference among 1D CNN, RNN and fully 
attention based models for classification of Sentinel-2 reflectance time 
series into 23 land cover classes for three <50 × 50 km regions in 
Bavaria, Germany. Yuan and Lin (2021) reported that the fully attention 
based network performed better than 1D CNN and RNN for classification 
of Sentinel-2 reflectance time series over 110 × 110 km areas into 
agricultural and non-agricultural classes in California and Missouri, and 
into 5 land cover classes in Beijing, China. In principle the RNN and fully 
attention models can handle variable length time series data (Cho et al., 
2014; Devlin et al., 2018) without the need to interpolate missing data. 
Indeed, Rußwurm et al. (2023) recently demonstrated this for in-season 
mapping of crop types using a year of Sentinel-2 images over a 27,200 
km2 area in France and a 1400 km2 area in Germany. For each study area 
they trained and applied a single RNN model with reasonable classifi-
cation accuracies given the number of classes (75% overall accuracy for 
14 crop types in the French site and 86% overlap accuracy for 7 crop 
types in Germany). 

Finally, we note that the 1D CNN structure used in this study was 
implemented because it is straightforward to apply to single pixel time 
series. However, a 2D CNN structure, usually applied to image patches, 
could be applied to the np × 13 temporal metrics by treating them as an 
image patch composed of (np × 13) pixels and 1 image band. We un-
dertook experiments to check this and found only slightly poorer clas-
sification accuracy. For example, using an 8-layer 2D CNN with the same 
number of layers and kernels as the 1D implementation provided only 
slightly smaller (<0.5%) overall classification accuracies than the 1D 
CNN using the 90% training proportion. Notably, the 1D CNN algorithm 
is computationally quite efficient. It was implemented in Python on a 
Linux server with 40 Intel Xeon CPU cores, 768 GB RAM and two NVI-
DIA Tesla P100 PCIe 16 GB GPUs. Using this architecture, the 8-layer 1D 
CNN took 8.85 h to train 2.9 million CONUS training samples and 2.5 s 
to classify 0.3 million CONUS evaluation samples. The random forest 
was implemented on the same server but without using the GPUs and 
took 6.59 h and 113.2 s to train and classify the same data, respectively. 

In summary, the 1D CNN single pixel temporal metric land classifi-
cation approach presented in this paper has several potential advantages 
over conventional patch-based CNN land cover classification that can 
have the following issues. First, patch-based CNN may blur small and 
spatially fragmented surface features within the image, and methods to 
reduce this issue, for example, by training multiple CNN models with 
different patch sizes, although useful, do not provide a universal solution 
(Martins et al., 2020; Zhang et al., 2020). Second, discontinuities along 
image boundaries can occur in conventional patch-based CNN classifi-
cations, particularly when adjacent images are acquired on different 
calendar dates and so have different vegetation cover, condition, and 
soil moisture. Third, CNN patch-based classification is less reliable if one 
or more of the patch pixels are missing or contaminated by cloud or 
shadow. These issues do not occur with the developed approach that 
uses single pixel temporal metrics to take advantage of spectral differ-
ences among land cover classes over time and to remove the need to 
interpolate missing observations. As noted above, other deep learning 
architectures can also be used. To facilitate future comparison studies, 
the training and evaluation samples and manipulation code developed 
in this study are publicly available. In addition, the code could be 

adapted for application to other multi-temporal satellite data sets and/ 
or land cover training data. 

Code and training and evaluation data availability 

The training and evaluation samples used in this study are available 
at https://zenodo.org/record/7106054 and python manipulation codes 
are available at https://github.com/hankui/cnn_Landsat_time_series_ 
classification_v2-Python. The CONUS 30 m land cover product derived 
using the 8-layer CNN and 7 percentile model (Fig. 9) is available at 
https://zenodo.org/record/77405#.ZCb5YXaZNaQ. 
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