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ABSTRACT 

METHOD OF VALIDATING SATELLITE SURFACE REFLECTANCE PRODUCT 

USING EMPIRICAL LINE METHOD 

MEGHRAJ KC 

2023 

    Atmospherically corrected surface reflectance (SR) products are used for reliable 

monitoring of land surfaces and are the standard products of Landsat sensors. Due to 

increased demand for SR products, a need exists to verify that the L2C2 (Level-2 

Collection-2) SR products are precise and accurate. The Level-2 Collection 2 (L2C2) SR 

Product is processed satellite imagery data that corrects for atmospheric effects such as 

absorption and scattering, providing a more accurate representation of Earth's surface. The 

validation of SR products using ground truth measurement is essential. This study aims to 

develop and evaluate a validation methodology for satellite SR products. Thus, the 

Empirical Line Method (ELM) is used here for atmospheric validation of remotely sensed 

data. Validation is performed using the SR derived from ELM tied to ground truth 

measurement. Absolute surface reflectance models of Algodones Dunes and the Salton Sea 

located in North America Sonoran Desert are developed to extend the temporally limited 

ground truth measurements. This model can give ground truth reflectance in any time frame 

independent of time constraints. The result of the absolute surface reflectance model of 

Algodones Dunes indicates that the model predicts the response of Algodones Dunes with 

an average accuracy of 0.0041 and precision of 0.0063 and gives ground measurements 

across all multispectral between 350-2500nm. For the Salton Sea the model predicts the 

response of the Salton Sea with mean absolute error (MAE) of 0.0035 and gives ground 
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measurements across all multispectral between 350-2500nm. The ELM generates 

atmospheric coefficients (gain and bias) which are applied to an image to obtain SR. 

Validation results indicated for L9-OLI-2, L8-OLI, and L5-TM-SR products give the 

RMSE range of 0.0019 to 0.0106, 0.0019 to 0.0148 and 0.0026 to 0.0045 reflectance unit, 

respectively, and accuracy within 0.0038, 0.0022, and 0.0055 reflectance unit across all 

spectral bands of L9, L8, and L5 respectively. On average, the validation result showed a 

strong linear relation between the L2C2 SR products and ELM SR within 0.5 to 1 

reflectance units. These results demonstrate the high accuracy and reliability of the L2C2 

SR product, providing valuable information for a wide range of remote sensing 

applications, including land cover and land use mapping, vegetation monitoring, and 

climate change studies. 
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INTRODUCTION 

1.1 Background 

Satellite remote sensing has been a critical factor in monitoring and quantifying 

changes on Earth's surface and atmosphere at a regional, continental, and global scale. For 

the various applications of remote sensing, such as land cover classification, crop change 

monitoring, water resource monitoring, and global change monitoring, surface reflectance 

(SR) plays an important role [1]. Landsat imagery SR products are provided by U.S. 

Geological Survey (USGS) and Earth Resources Observation and Science (EROS), known 

as a "higher-level" Landsat Level-2 Collection-2 Surface Reflectance (L2C2 SR) product. 

L2C2 SR product is generated by atmospherically correcting Level-1 Top-of-atmosphere 

reflectance (TOA), defined as the ratio of incoming solar radiation reflected from the 

ground to the sensor [(USGS; http://earthexplorer.usgs.gov/] and is used for the 

geographical study of land surfaces [2]. Due to increased demand for SR products, a need 

exists to verify that the USGS-generated L2C2 SR products are precise and accurate. 

However, several techniques for atmospherically correcting Level-1 TOA reflectance and 

validating L2C2 SR products have been developed in recent years using temporally limited 

ground truth measurements that have a finite spatial range [3]. Moreover, direct validation 

of L2 products becomes problematic due to insufficient surface measurements at enough 

sites. Therefore, the primary focus of this work is to develop an atmospheric correction 

technique for the validation of surface reflectance products that consists of temporally 

extended ground truth measurements by absolute surface reflectance model. The model is 

independent of the time constraints and gives the ground truth measurement in all 

multispectral between 350 and 2500 nm wavelength going back and forth in time. 

http://earthexplorer.usgs.gov/
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1.2 Literature Review 

Previously, various techniques were developed, and analyses were performed to 

evaluate the quality and accuracy of L2C2 SR products. The Landsat Ecosystem 

Disturbance Adaptive Processing System (LEDAPS) algorithm was analyzed by different 

studies and compared with MODIS SR products, AERONET site, and a second simulation 

of the satellite signal in the solar spectrum (6S) [2,4,5]. As the LEDAPS works on Dark-

Dense vegetative algorithm [6], the results shown in this paper were consistent over more 

vegetation and no nearby water areas, which is expected. However, a weaker performance 

of LEDAPS was observed in shorter wavelength bands and non-vegetative areas [5]. Moe 

et al. validated the Landsat 8 OLI L2C2 SR products with near-synchronous measurements 

from 13 sites in the United States, Brazil, Chile, and France. Outcomes demonstrated good 

agreement between OLI L2C2 SR products and ground truth measurements, especially on 

the longer wavelengths over the bright and dark targets[7]. At the same time, weak 

performance was observed in shorter wavelength bands and sparsely vegetative areas [7]. 

Eric et al. evaluated the performance of Landsat 8 OLI L2C2 SR products by using an 

appropriate atmospheric correction algorithm which was based on in-situ measurements of 

the atmospheric properties, by comparing with Moderate Resolution Imaging 

Spectroradiometer (MODIS) adjusted Bidirectional Reflectance Distribution Function 

(BRDF) products and by comparing with United States Surface Radiation Budget Network 

(US SURFRAD) measurements. The results demonstrated the higher accuracy of Landsat 

8 OLI SR over Landsat 5/7 LEDAPS product. Pinto et al. evaluated the Landsat 8 OLI and  

Landsat 7 ETM+ L2C2 data using in-situ measurements from Turkey, Brazil, Chile, the 
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United States, France, and Namibia. Results indicated a slightly improved Landsat-8 OLI 

SR in the longer wavelength bands and consistently decreased in the shorter wavelength 

bands. The result showed an OLI surface reflectance product improvement over all spectral 

bands familiar with the Landsat-7 ETM+ [8]. 

Validation techniques explained above are used to check the L2C2 SR product's 

quality and accuracy based on several atmospheric methods, consisting of ground 

measurements and cross-comparison to other sensors SR products. Common approaches 

that have been proposed for atmospheric validation of satellite imagery includes image 

average or flat target normalization [9], dark pixel method [10], radiative transfer model 

such as 6S [11], LOWTRAN [12], MODTRAN [13], FLAASH [14] and ground calibration 

method such as Empirical Line Method [15,16]. Several authors have compared the 

effectiveness of these atmospheric correction techniques [17-19]. Even though the radiative 

transfer models frequently yield better results than other techniques, they require measured 

values of atmospheric parameters at the data acquisition time, which can be quite 

challenging while working with historical datasets. Normalization produces the poorest 

result, which does not require additional information. The dark pixel method does not 

account for spatial variation in the atmosphere (entire scene correction), and true dark 

values rarely exist in an image. The alternative approach is Empirical Line Method 

(ELM)achieved to ground truth, which enables the straightforward calculation of surface 

reflectance if an invariant target exists or measurements of targets are available. Usually, 

the technique uses surfaces with varying albedo (dark and bright) [20]. The ELM needs 

ground truth reflectance measurements of various targets and can produce acceptable 
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results. If the target is spectrally stable over time, the measurement must not be concurrent 

with data acquisitions [19]. 

1.3 Proposed Method of Atmospheric Correction and Validation 

The main objective of this research is to validate L2C2 SR products by developing 

an atmospheric correction model. In this work, the ELM technique was employed for 

atmospheric correction of remotely sensed data from at-sensor digital numbers (DN) to 

ground reflectance. It is widely acknowledged as a precise, practical method for validating 

satellite imaging systems to transform multi-spectral and hyperspectral data from raw DNs 

to a surface reflectance factor [18,21]. The ELM approach has been used on relatively thin 

atmospheric layers primarily because it necessitates the identification of at least two 

homogenous targets with contrasting reflectance that is large enough to be resolved [21]. 

The ELM implies that two or more targets with various reflectance characteristics are 

present in an image, covering a wide range of reflectance values for the spectral bands 

measured by the sensor [22]. Using Landsat sensor measured DN values and ground 

reflectance of two homogenous targets (bright and dark), the ELM method can generate 

atmospheric coefficients (gain and bias) for that specific location.  

Firstly, two targets, Algodones Dunes as a bright target located in path 38/row 37 

(p38r37), path 39/row 37 (p39r37) and the Salton Sea as a dark target located in path 

39/row 37, were selected. The reason for selecting path 38 row 37 and path 39 row37 is 

explained in the site selection section of the methodology. The absolute surface reflectance 

model was developed for both targets using L2C2 SR trends and ground measurements. 

This is an integral part of the methodology, as it is very challenging to have ground 

measurements for every satellite overpass. So, based on a few ground measurements 
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obtained for both targets, the absolute surface reflectance models were developed and 

explained in the methodology section. Then, the ELM method was implemented using 

L1C2 DN and absolute surface reflectance model data to estimate the atmospheric 

coefficients. These atmospheric coefficients (gain and bias) were then applied to an image 

to generate ELM surface reflectance (SR).  

Secondly, SR products were validated to ELM surface reflectance for Landsat 8 

L2C2 SR datasets and illustrated in the result section. For the validation part, a pixel level 

comparison was made between ELM SR and SR products from the region of interest (ROI) 

that included vegetation, water, dunes, and rocks of path 39 row 37. Additionally, Root 

Mean Square Error (RMSE), accuracy, and precision were computed between ELM SR 

and SR products to evaluate the performance of SR products. Further, the developed 

methodology was applied in Landsat 9 and Landsat 5 surface reflectance to check the 

consistency of the ELM SR model. Lastly, pixel level uncertainty analysis was performed 

using Monte Carlo simulation, which is explained in the methodology section.  

The structure of the paper is as follows. the first part provides an introduction to the 

project; the second part describes the data sources used; the third part describes the outline 

of the method and methodology; the fourth part describes the result and validation of 

different sensors and models; and the fifth section describes the discussion and conclusion. 
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DATA SOURCE OVERVIEW 

Data Source overview section explains the data used to train the absolute surface 

reflectance model of Algodones dunes and the Salton Sea. The satellite image data came 

from the Landsat 8 OLI sensor specifying the L2C2 data [23], the ground truth data of the 

Algodones dunes came from the Analytical Spectral Device (ASD), and the hyperspectral 

reflectance image of the Salton Sea came from the Airborne Visible/Infrared Imaging 

Spectrometer (AVIRIS)[24]. Further, the ELM SR model was applied to the data of 

Landsat 5 & 9 [23] to evaluate the SR products. 

2.1 Landsat 9 

Landsat 9 carries two scientific instruments, the Operational Land Imager (OLI-2) and a 

thermal infrared sensor (TIRS-2). The TIRS-2 sensor measures the thermal infrared 

radiation or heats that the Earth's surface emits, and the visible, near-infrared, and short-

wave infrared observations of the Earth's surface are recorded by the OLI-2 sensor. 

Landsat 9 takes the position of Landsat 7 (launched in 1999) in orbit (8 days out of phase 

with Landsat 8). Landsat 9, like Landsat 8, has a higher imaging capacity than previous 

Landsat, enabling the addition of more critical data to the Landsat global land archive—

around 1,400 scenes every day. Landsat 9 collects and archives moderate-resolution 

reflective and emissive multi-spectral picture data for a minimum of five years to provide 

seasonal coverage of the worldwide land mass [25,26]. Landsat 9 L2C2 data was tested in 

this study. Landsat 9 SR product's accuracy and precision were cross-validated with the 

SR from ELM. 
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2.2 Landsat 8 

Landsat 8 carries two scientific instruments, the Operational Land Imager (OLI) and a 

thermal infrared sensor (TIRS). The TIRS sensor measures the thermal infrared radiation 

or heats that the Earth's surface emits, and the visible, near-infrared, and short-wave 

infrared observations of the Earth's surface are recorded by the OLI. Landsat 8 has 15-

meter panchromatic, 100-meter thermal, and 30-meter multi-spectral spatial resolution and 

measures in the visible, near-infrared (NIR), and short-wave infrared (SWIR) sections of 

the electromagnetic spectrum. Landsat 8 traverses one earth orbit in 99 minutes. It repeats 

every 16 days, with an equatorial crossing time of 10:00 a.m. +/- 15 minutes. On the 

Worldwide Reference System-2 (WRS-2) path/row system, about 740 scenes are acquired 

per day, with a swath overlap (or side lap) ranging from 7% at the equator to approximately 

85 percent at extreme latitudes [27]. Landsat 8 OLI sensor was used in this study for 

developing the absolute surface reflectance model of Algodones Dunes and the Salton Sea. 

Further, Landsat 8 L2C2 SR data was validated with SR from ELM. 

2.3 Landsat 5 

Landsat 5 carried two instruments Multi-Spectral Scanner (MSS) and the Thematic Mapper 

(TM). This satellite orbited the Earth in a sun-synchronous at 705 km (438 mi) and near-

polar orbit. Every 99 minutes, Landsat 5 circled the Earth and had 16 days repeat cycle 

with an equatorial crossing time of 9:45 a.m. (+/- 15 minutes). Landsat 5 TM was a 

whiskbroom-based multi-spectral mechanically scanning optical imager. Seven spectral 

bands, including the thermal band in the TM sensor, can be used in various applications 

such as global change, geology, oceanography, forestry, and agriculture. Visible bands 

[Band (1-5 and 7)] with a ground sampling pixel size of 30 meters and thermal band [Band 
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6] with a ground sampling pixel size of 120 meters[5,28]. Since the developed 

methodology is independent on time constraints, Landsat 5 TM sensor was used in this 

study to check this feature of methodology. Thus, the accuracy and precision of Landsat 5 

L2C2 SR products were validated with ELM SR 

2.4 Analytical Spectral Device (ASD) 

Analytical Spectral Device (ASD) is designed to collect faster, more precise spectral data 

for ground truth measurements. ASD can measure radiance, transmittance, reflectance, or 

irradiance in the spectrum region of 350 to 2500 nm wavelength. Before recording 2151 

channels at specified wavelengths (350 to 2500 nm) at a 1 nm interval, ASD instruments 

resample the raw channels using cubic spline interpolation. To imitate nadir remote sensing 

settings, the ASD measurements were taken under direct solar illumination for the spectral 

range of 350 nm to 2500 nm, with the ASD radiometer positioned perpendicular to the 

samples. The designed scheme of ASD concerns acquiring Visible near-infrared (VNIR) 

and Short-wave Infrared (SWIR) spectra across a wide range of the electromagnetic 

spectrum [29]. For precise correlation to sensor data from satellites and aircraft, ASD field 

spectroradiometers produce high-quality field spectra at the necessary illumination and 

viewing geometry. A radiometric calibration of satellite images can be made using ground 

truth measurements produced by ASD devices. In order to generate a preliminary 

description of Algodones Dunes and primarily evaluate its intercalibration potential, a 4-

day field campaign was carried out in March 2015 [30]. Due to its uniform spatial and 

temporal characteristics, the Algodones Dunes location was chosen as a desirable 

intercalibration site. An ASD spectroradiometer was used in this study to measure the 

hyperspectral reflectance from the Algodones Dunes. The reflectance obtained from this 
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instrument was used as ground truth measurement that further helps to calibrate the surface 

reflectance model of Algodones Dunes to obtain absolute surface reflectance model. 

2.5 Airborne Visible/ Infrared Imaging Spectrometer (AVIRIS) 

AVIRIS stands for "Airborne Visible/Infrared Imaging Spectrometer" and debuted on 

January 1, 1993. It is airborne-based equipment. AVIRIS is a one-of-a-kind optical sensor 

that delivers calibrated images of upwelling spectrum radiance in 224 contiguous spectral 

channels (bands) with wavelengths ranging from 380 to 2510 nanometers. The AVIRIS 

instrument has 224 detectors, each having a wavelength sensitivity range (also known as 

spectral bandwidth) of about 10 nanometers (nm), allowing it to cover the whole 

wavelength range between 380 and 2500 nm. In order to have hyperspectral measurements, 

the AVIRIS sensor was flown over the Salton Sea in a specific time of 2017 and 2019 that 

collects the hyperspectral measurements. The readings from the AVIRIS sensor can be 

converted to ground reflectance data, which can subsequently be utilized for quantitative 

assessment of surface features, with suitable calibration and correction for atmospheric 

factors[31]. The ground truth measurement from the AVIRIS sensor was used to calibrate 

the surface model of Salton Sea to obtain absolute surface reflectance model. 
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METHODOLOGY 

3.1. Method of Obtaining ELM Surface Reflectance 

 The main objective of this study was to develop and evaluate the suitable validation 

methodology for the SR product. Figure 1 shows the methodology used for producing SR 

by the ELM model. Initially, two sites were selected for developing the methodology, 

which is explained in site selection section 3.1.1. Surface reflectance was calculated, and 

cloudy pixels were filtered out after selecting sites (see section 3.1.2). Then a surface 

reflectance model was developed for both sites (Algodones Dunes and the Salton Sea), 

which predicts SR (see section 3.1.3). The predicted surface reflectance model were 

tied/calibrated to ground measurements using ASD and AVIRIS data to obtain the absolute 

surface reflectance model (see section 3.1.4). After that, Spectral Band Adjustment Factor 

(SBAF) was applied when validating the satellite other than Landsat 8 (see section 3.1.4). 

The calibrated absolute surface reflectance model of two sites provides two inputs for the 

ELM model, and the remaining two inputs were L1C2 DN from the two sites. Later, the 

ELM technique was implemented based on the four inputs (see section 3.1.5). 

Implementing the ELM model generates the atmospheric coefficients (gain and bias) based 

on the inputs. These gain and bias, when applied to the L1C2 image to give surface 

reflectance, which is termed ELM surface reflectance (ELM SR). 
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Figure 1: Flow chart for obtaining surface reflectance using Empirical Line Method 

(ELM) 
 

3.1.1 Site Selection and Region of Interest (ROI) 

Since Algodones Dunes can be seen in both WRS-2 (World Reference System-2) path 39 

row 37 and path 38 row 37. They were both selected to develop surface reflectance model 

of Algodones Dunes (bright target). The reason for selecting both paths and rows is to 

obtain more angle variation to assists a more robust model for Algodones Dunes. The 

Salton Sea (dark target) is located in Path 39 Row 37 only. So, only path 39 row 37 was 

selected for developing surface reflectance model of Salton Sea. Algodones Dunes and 

Salton Sea ROIs were selected based on previous knowledge of the sites and available 
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ground measurements from ASD [32] and AVIRIS (https://aviris.jpl.nasa.gov/), allowing 

us to use them in an ELM development. The ground truth measurements were carried out 

in field sites that meet several criteria, including clear skies, high geographic homogeneity, 

and a low likelihood of atmospheric fluctuation. Implementing the ELM approach is 

challenging without surface measurements at the appropriate spatial, temporal, and spectral 

resolution for a given site. Ground truth reflectance is necessary at each acquisitions for 

the selected ROI of path 39 Row 37. Therefore, a model must be developed to extend the 

limited ground truth measurements, to predict for dates whose ground truth is unavailable, 

via using a time series analysis of data from Landsat 8. 

 

Figure 2: path 39 row 37/ path 38 row 37 (Landsat 8 L2C2 SR image of Algodones 

Dunes and Salton Sea 2014-10-09) 

3.1.2 Surface reflectance calculation and cloud filtering 

In the development of an absolute surface reflectance model for Algodones Dunes and 

Salton Sea a time series for each site is needed. Since Landsat 8 was chosen for this study, 
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the image needs to be further converted from DN to reflectance using equation 1 provided 

by the USGS.  

𝝆𝑶𝑳𝑰 ,𝒊 = 𝑴𝑼𝑳 ∗ 𝑫𝑵𝒊 + 𝑨𝑫𝑫 (1) 

where 𝝆𝑶𝑳𝑰 ,𝒊, corresponds to surface reflectance values corresponding to band i; 𝑫𝑵𝒊 is the 

digital number (pixel value) of Landsat 8 L2C2 SR product corresponding to a band i; 

MUL is the multiplicative scaling factor, and ADD the additive scaling factor used to 

convert DN to SR at band i. After the conversion of surface reflectance, a filtering process 

to remove clouds/shadows from the analysis was performed using the Quality Assessment 

(QA) Pixel band provided for Landsat 8 SR products. This process helps to remove outliers 

affected by clouds with measurements that do not represent the nature of the target and can 

lead to misleading results. The information in the QA band consists in the Bits that 

represent a combination of Dilated Cloud – Bits 1, Cirrus – Bits 2, Normal Cloud – Bits 3, 

Cloud Shadow – Bits 4, Cloud Confidence – Bits 9, Cloud Shadow Confidence – Bits 11, 

and Cirrus Confidence – Bits 15. To be used successfully, pixel values in the QA band 

must be converted into 16-bit binary form, and a cloud mask was created. Thus, the cloud-

free image of Landsat 8 was obtained after applying a cloud mask. 

3.1.3 Absolute surface reflectance model for Algodones Dunes and Salton Sea 

With Landsat 8 SR data, solar and sensor angles, the surface reflectance model of 

Algodones Dunes was developed (see section 3.1.3.1). Afterward, the surface reflectance 

model of the Salton Sea was developed using the same process as Algodones Dunes with 

the addition of inherent properties of water (see section 3.1.3.2). Lastly, both models were 
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calibrated using ASD and AVIRIS ground measurements to develop an absolute surface 

reflectance model (see section 3.1.3.3). 

3.1.3.1 Development of Surface Reflectance Model for Algodones Dunes 

Since most of the Earth's surface is a non-Lambertian target, the surface reflectance of a 

given target can vary significantly depending on the sun's illumination and the sensor's 

observed geometry. Generally, the Bidirectional Reflectance Distribution Function 

(BRDF) can be used to model this effect. The surface reflectance model for the Algodones 

Dunes was developed using WRS-2, path 39 row 37, and path 38 and row 37 time series 

data since Algodones Dunes lies on both paths and rows. The dataset from two paths and 

rows assists in better model development due to more angle variation. The model was 

developed to predict the response of Algodones Dunes at any time during any acquisitions.  

This section explains usage of a four-angle, site-specific surface reflectance model for each 

band with minimal wavelength dependence [29]. The four angles file, i.e., Solar Azimuth 

Angle (SAA), Solar Zenith Angle (SZA), View Azimuth Angle (VAA), and View Zenith 

Angle (VZA), were read from Landsat Archive. For further analysis, the spherical zenith 

and azimuth angles of the sun and the view zenith and azimuth angles of the sensor were 

converted to Cartesian coordinates. To preserve the nature of the data and MATLAB's 

constraints in operating in a spherical coordinates system, a conversion to Cartesian 

coordinates was required [33]. The data was then mirrored to each quadrant to ensure 

symmetry with the scattering plane and a robust fit to the L8 surface reflectance data. Then, 

Equation 2 which represents a model for surface reflectance of sandy sites was fitted to the 

data 
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𝝆𝑴𝒐𝒅𝒆𝒍 =  𝜷𝟎 +  𝜷𝟏𝑿𝟏 +  𝜷𝟐𝒀𝟏 +   𝜷𝟑𝑿𝟐 +   𝜷𝟒𝒀𝟐 +   𝜷𝟓𝑿𝟏𝒀𝟏 + 𝜷𝟔𝑿𝟏𝑿𝟐 +

 𝜷𝟕𝑿𝟏𝒀𝟐 +  𝜷𝟖𝒀𝟏𝑿𝟐 +  𝜷𝟗𝒀𝟏𝒀𝟐 + 𝜷𝟏𝟎𝑿𝟐𝒀𝟐 +  𝜷𝟏𝟏𝑿𝟏
𝟐 +  𝜷𝟏𝟐𝒀𝟏

𝟐 + 𝜷𝟏𝟑𝑿𝟐
𝟐 +

 𝜷𝟏𝟒𝒀𝟐
𝟐  (2) 

Where 𝜷𝟎 ,𝜷𝟏 ,… … 𝜷𝟏𝟒  Coefficients were fitted to surface reflectance model of Algodones 

Dunes which are least square coefficients of the model and are calculated with the known 

parameters  𝑿𝟏 ,𝑿𝟐 ,𝒀𝟏 ,𝒀𝟐  and reflectance , 𝑿𝟏 ,𝑿𝟐 ,𝒀𝟏 ,𝒀𝟐  represent the plane cartesian 

coordinate system converted from the spherical coordinate values (SAA, SZA, VAA, and 

VZA) using equation 3. These least square coefficients of the model are used to predict the 

surface reflectance of Algodones dunes. 

𝑋1= sin (SZA) * sin (SAA) 

𝑌1= sin (SZA) * cos (SAA)                  (3) 

𝑋2= sin (VZA) * sin (VAA) 

𝑌2= sin (VZA) * cos (VAA) 

 

3.1.3.1.1 Trend Analysis of Algodones Dunes 

During the development of the surface reflectance model for Algodones Dunes a 

decreasing negative trend was observed in the temporal dataset of the L2C2 SR product, 

as shown in Figure 3. For further understanding, this decreasing trend of  surface 

reflectance model of Algodones Dunes must be investigated. The investigation is 

considered using only path 39 row 37. 
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Figure 3: Temporal Plot of L2C2 SR product over Algodones Dunes by Landsat 8 

The application of the ELM using bright and dark targets should be temporally, spectrally, 

and spatially modellable over a period of time; the decreasing trend of Algodones Dunes 

(bright target) must be investigated and corrected if necessary. Another ROI of Algodones 

Dunes (Optimal ROI of Algodones Dunes) was taken to investigate decreasing negative 

trend, and the temporal trend of L2C2 SR data was observed on that ROI. While observing 

the  temporal trend of optimal ROI, the decreasing trend of L2C2 SR was observed of 

Algodones Dunes. Thus, after observing temporal L2C2 SR from two different regions of 

Algodones Dunes, the decreasing negative trend might be due to three reasons (i) there 

might be an issue with the atmospheric correction algorithm in L2C2 SR product by 

Landsat 8 sensor, (ii) the site, Algodones Dunes might be changing over the time (iii) there 

might be an artifact in the sensor used for the analysis which is Landsat 8 OLI. To address 

and determine which one represents the answer to the decreasing trend, the following 

approaches were taken for independently evaluating each option. 

Investigation of atmospheric correction algorithm for L2C2 SR products: To see whether 

the decreasing negative trend was due to an issue with the atmospheric correction 
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algorithm, the temporal trend of TOA L1C2 and Bottom of Atmosphere (BOA) L2C2 

reflectance was observed for Algodones Dunes. To see a clear trend and pattern of both 

products, TOA and BOA reflectance were normalized at the first data point by dividing 

entire time series data with first data point of time series and obtained the normalized trend. 

While observing the normalized trend of TOA and BOA reflectance, as shown in Figure 4, 

both product trends and angular patterns follow each other where green dots represent the 

TOA L1C2 trend and black dots represent the BOA L2C2 trend. Again, decreasing 

negative trend was observed in the temporal trend of BOA and TOA reflectance. This 

investigation shows that the decreasing negative trend was not due to an issue in the 

atmospheric correction algorithm of L2C2 SR products by Landsat 8 OLI sensor. 

 

Figure 4: Normalized trend of Landsat 8 BOA and TOA reflectance over Algodones Dunes 

Investigation for the site might be changing: To see whether the decreasing negative trend 

was due to changing site, another Pseudo Invariant Calibration site (PICS site) called 

Libya-4 from Path 181 Row 40 was taken into consideration. The Libya-4 is the PICS site 

which is temporally, spectrally, and spatially stable over a period of time with relatively 

low uncertainties [29]. Figure 5 shows the normalized trend of Algodones dunes and Libya 

4 by Landsat 8 where green dots represent the Algodones Dunes trend and black dots 
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represent the Libya 4 trend. Decreasing negative trend was observed in the temporal trend 

of Libya-4 PICS, the same as of Algodones Dunes, as shown in figure 5. It is nearly 

impossible for two sites in a different path and row to change at the same period, so this 

investigation shows that the negative decreasing trend was not due to the site. For further 

analysis, this investigation was extended to another satellite, i.e., Landsat 7 ETM+ for the 

Algodones Dunes. 

     

   Figure 5: Normalized Temporal Plot of L2C2 SR product over Libya 4 and Algodones 

Dunes by Landsat 8 

Investigation for artifacts in the Landsat 8 OLI sensor used for analysis: To see whether 

the decreasing negative trend was due to artifacts in the Landsat 8 OLI sensor, another 

satellite was used to analyze Algodones Dunes. Landsat 7 ETM+ sensor was used for 

producing the temporal trend of L2C2 SR products for Algodones Dunes. Figure 6 

demonstrates Landsat 8 & 7 normalized temporal trend of Algodones dunes, where green 

dots represent the L8 trend and black dots represent the L7 trend. While observing trends 

from Landsat 8 & 7, it's uncertain that there is any decreasing negative trend in the Landsat 

7 dataset of Algodones Dunes over Landsat 8. The Algodones Dunes seem to be stable 
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without any trend over time. This investigation suggests that the decreasing negative trend 

might be due to the artifacts in the sensor. 

 

Figure 6: Temporal Plot of L2C2 SR product over Algodones Dunes by Landsat 7 and 8 

For further analysis, this decreasing negative trend of Algodones Dunes was taken into 

consideration, and the surface reflectance model of Algodones Dunes was corrected with 

the same bias with which it was decreasing over time.  

3.1.3.2 Development of surface reflectance Model for the Salton Sea 

Furthermore, after developing the surface reflectance model of Algodones Dunes (Bright 

target), the surface reflectance model of Salton Sea (Dark target) was developed, as shown 

in Figure 7. The model was developed using WRS-2 path 39 row 37, considering the Salton 

Sea as ROI. Figure 7 also shows how the developed model of the Salton Sea was applied 

to the surface reflectance model to predict the response of SR for the entire Landsat 8 

acquisition. Initially, Level-2 SR product from Landsat 8 sensor and Sun-Sensor geometry 

was used for estimating the SR of Salton Sea (ROI). 
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Figure 7: Flow chart for Predicting surface reflectance over water bodies 

According to Lee's 2011[34] it was essential to produce sub-surface remote sensing 

reflectance to compute absorption and backscattering coefficients. The sub-surface remote 

sensing reflectance was calculated using equation 4,  

𝒓𝒓𝒔=
𝑹𝒓𝒔

(𝟎.𝟓𝟐+𝟏.𝟕𝑹𝒓𝒔)
  (4)  

Where, 𝑹𝒓𝒔  is remote sensing reflectance above the surface of water and 𝒓𝒓𝒔 is sub-surface 

remote sensing reflectance. This sub-surface reflectance was used for retrieving the 

inherent optical property (IOP) of water. So, it was essential to convert the above remote 

sensing reflectance of water bodies to sub-surface remote sensing reflectance. According 

to Pope RM et al. [35], pure seawater has known quantities for its inherent optical 

properties (IOPs), which can be calculated using the Quasi- Analytical Algorithm (QAA) 

algorithm [34] [36]. The absorption and backscattering coefficient of water was computed 

using QAA [36]. The above-surface remote sensing reflectance was entered into a series of 

QAA algorithms, which then output the IOPs for the absorption and backscattering 

coefficients. Consequently, QAA Algorithm was used to measure the absorption and 

backscatter indices of the Salton Sea. The surface reflectance of water bodies and IOP of 

water were fitted by the application of least square fit, which gives the free parameter of 

the surface reflectance model.  
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According to Pope RM et al. [35], for the application of least square fitting in this analysis, 

the BRDF model for water must be developed. A planetary surface with a calm body of 

water has a distinctive BRDF pattern. Generally, a natural body of water does not emit 

isotropic spectrum radiation [37]. The angular impacts of the water-leaving radiance must 

be considered for the precise measurement of spectral radiance or reflectance. One uses the 

BRDF model to determine how radiation or reflectance varies depending on direction. It 

relies on the geometry of the solar sensor, the optical characteristics, and the water 

composition. The model was developed to predict the response of the Salton Sea at any 

time during Landsat acquisitions.  

Semi-empirical BRDF modeling was used in this analysis for water bodies based on 

physical models and free parameters. One of the main reasons for carrying semi-empirical 

BRDF modeling was that they could accurately explain the physical factor and predict the 

surface reflectance of water bodies. In this study, Lee's 2011 [34] model was used for 

developing the surface reflectance model of the Salton Sea. Based on Landsat 8 data 

gathered from the Salton Sea, the BRDF model of water-leaving reflectance was examined. 

The L2C2 surface reflectance product from Landsat 8 OLI and the Inherent Optical 

Properties (IOP) of water was used to estimate the predicted surface reflectance of the 

Salton Sea. Equation 5 (𝑹𝒓𝒔(λ, Ω)) was used to characterize predicted surface reflectance 

over Salton Sea. 

𝑹𝒓𝒔(λ, Ω) =(𝑮𝟎
𝒘(Ω)+ 𝑮𝟏

𝒘(Ω)
𝒃𝒃𝒘(𝝀)

𝒌(𝝀)
) 

𝒃𝒃𝒘 (𝝀)

𝒌 (𝝀)
+ (𝑮𝟎

𝒑
(Ω) + 𝑮𝟏

𝒑
(Ω)

𝒃𝒃𝒑 (𝝀)

𝒌(𝝀)
) 

𝒃𝒃𝒑 (𝝀)

𝒌(𝝀)
 (5) 

Where, 𝐺0
𝑤 , 𝐺1

𝑤 , 𝐺0
𝑝

, 𝐺1
𝑝

 were free coefficients of the model, which depend on angular 

geometry and phase function, but independent of absorption and backscattering 
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coefficients or wavelengths. These free parameters of the model were derived by (least 

square fit) using remote-sensing reflectance. Ω is the sun-sensor angular geometry, a 

combination of solar zenith, sensor zenith, and relative azimuth angle above water. And 𝒌 

is the summation of absorption and backscattering coefficients calculated using equation 

6. 

𝒌 = 𝒂 + 𝒃𝒃  (6) 

Where a is the absorption coefficient (m-1
), 𝑏𝑏  (Inherent Optical Property) = backscattering 

coefficient ( 𝑏𝑏𝑤 + 𝑏𝑏𝑝 ), 𝑏𝑏𝑤 , 𝑏𝑏𝑝 are the backscattering coefficient of the water molecule 

and particles, respectively 

The bidirectional water-leaving radiance can be greatly impacted by bottom 

reflectance[38]. Hence this investigation concentrated on optically deep waters where 

bottom reflectance has no significant influence. Free parameters in this model were, 𝐺0
𝑤, 

𝐺1
𝑤, 𝐺0

𝑝
, 𝐺1

𝑝
 which were retrieved for every sun-sensor geometry. Then, SR was predicted 

using these free parameters of the model.  

 

3.1.3.3 Calibrating surface reflectance model of Algodones Dunes and Salton Sea with 

ASD and AVIRIS ground reflectance measurements 

Model calibration was performed after developing the surface reflectance model of 

Algodones dunes and the Salton Sea. Model calibration was done with ground 

measurements taken from ASD and AVIRIS sensors over the sites. The calibration was 

done to make models in the modeling sector grounded to absolute via the ground truth 
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measurements, which helps to develop an absolute surface reflectance model for both sites. 

Between model estimation and model application, model calibration takes place. 

Calibration was performed on the model once it had been estimated until it accurately 

reflected ground truth patterns and behavior. Figure 8 demonstrates the process of 

calibrating surface reflectance models of Algodones Dunes and the Salton Sea using ASD 

and AVIRIS ground measurements. 

 

Figure 8: Flow chart for Absolute surface reflectance model development of Algodones 

Dunes and Salton Sea 

Due to the hyperspectral nature of ground truth observations, ground truth reflectance must 

be integrated to correspond to Landsat 8 multi-spectral bands [39]. By convolving the 

continuous ground truth reflectance with the Landsat 8 RSR function of the relevant OLI 

bands, it is possible to derive the multi-spectral reflectance of the ground truth 

measurements using equation 7. 

𝝆𝑮,𝒊 =
∫ 𝝆𝑮(𝝀).𝑹𝑺𝑹𝒊(𝝀)𝒅𝝀

𝝀𝟐
𝝀𝟏

∫ 𝑹𝑺𝑹𝒊(𝝀)𝒅𝝀
𝝀𝟐

𝝀𝟏

 (7) 

where,𝜌𝐺,𝑖   is the multi-spectral ground truth surface reflectance corresponding to a band 

i; 𝑅𝑆𝑅𝑖 (𝜆) is the OLI spectral response function of the corresponding bands; 𝜌𝐺 (𝜆) is the 
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hyperspectral ground truth reflectance, and 𝜆1 𝜆2 is the spectral range's lower and upper 

wavelength in band i. The near-coincident date from the model and ground truth reflectance 

from ASD and AVIRIS sensors were used to compute the cross-calibration (cross-cal) 

factor using equations 8 & 9. The process of cross-calibration is the transfer of a reference 

sensor's calibration to a less well-calibrated sensor. This was accomplished by employing 

scene pairs obtained by two sensors that have a common ground target (coincident or near 

coincident). 

𝑪𝒓𝒐𝒔𝒔 𝒄𝒂𝒍𝒇𝒂𝒄𝒕𝒐𝒓(𝒊)𝒇𝒐𝒓 𝑺𝒂𝒍𝒕𝒐𝒏 𝑺𝒆𝒂 =
𝑨𝑽𝑰𝑹𝑰𝑺(𝒊)

𝑺𝒖𝒓𝒇𝒂𝒄𝒆 𝒓𝒆𝒇𝒍𝒆𝒄𝒕𝒂𝒏𝒄𝒆 𝒎𝒐𝒅𝒆𝒍_𝒅𝒂𝒕𝒂(𝒊)
 (8) 

𝐶𝒓𝒐𝒔𝒔 𝒄𝒂𝒍𝒇𝒂𝒄𝒕𝒐𝒓(𝒊)𝒇𝒐𝒓 𝑨𝒍𝒈𝒐𝒅𝒐𝒏𝒆𝒔 𝑫𝒖𝒏𝒆𝒔 =
𝑨𝑺𝑫 (𝒊)

𝒔𝒖𝒓𝒇𝒂𝒄𝒆 𝒓𝒆𝒇𝒍𝒆𝒄𝒕𝒂𝒏𝒄𝒆 𝒎𝒐𝒅𝒆𝒍_𝒅𝒂𝒕𝒂 (𝒊)
 (9) 

Where, 𝐶𝑟𝑜𝑠𝑠 𝑐𝑎𝑙𝑓𝑎𝑐𝑡𝑜𝑟(𝑖)  is the cross-cal factor for an ith particular date, 

𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒 𝑚𝑜𝑑𝑒𝑙_𝑑𝑎𝑡𝑎(𝑖)  is the surface reflectance data from surface 

reflectance model for ith date, 𝐴𝑉𝐼𝑅𝐼𝑆(𝑖) is the ground truth reflectance from AVIRIS for 

ith date and 𝐴𝑆𝐷(𝑖) is the ground truth reflectance from ASD for ith date. After taking the 

average of the cross-cal factor and multiplying the model data with the average cross-cal 

factor gives the calibrated absolute surface reflectance model of Algodones Dunes and 

Salton Sea. Thus, the absolute surface reflectance model of Algodones Dunes and Salton 

Sea was developed. The model was not limited to time constraints which give ground 

measurement during Landsat acquisitions going back and forth in time.  

3.1.4 Estimation of Spectral Band Adjustment factor 

The application of the absolute surface reflectance model of Algodones Dunes and the 

Salton Sea to other satellites, Spectral Band Adjustment Factor (SBAF), was implemented. 
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SBAF is a compensating factor for matching the spectral response of two sensors described 

in this section. Even when the satellite sensors used for the validation look at the same 

target through similar spectral regions, they respond differently in terms of spectral 

response. When validation is carried out, a systematic band offset may result from these 

variations in spectral response [40].  

Landsat 5 TM, Landsat 9 OLI-2, and Landsat 8 OLI SR product validation were done in 

this work. As the absolute surface reflectance model was developed using Landsat 8 bands 

(model sensor), for the calculation of SBAF, the model sensor will always be Landsat 8. 

Another sensor was chosen as the reference sensor. To be validated, the spectral response 

should be adjusted using SBAF to match the response of the model sensor. The SBAF 

adjustment is given by equation 10, 

𝑺𝑩𝑨𝑭 =
𝝆𝝀(𝒓𝒆𝒇)

𝝆𝝀(𝒎𝒐𝒅𝒆𝒍)
 =

∫ 𝝆𝝀𝒉𝑹𝑺𝑹𝝀(𝒓𝒆𝒇) 𝒅𝝀
𝜆2

𝜆1

∫ 𝑹𝑺𝑹𝝀(𝒓𝒆𝒇)𝒅𝝀
𝜆2

𝜆1

∫ 𝝆𝝀𝒉𝑹𝑺𝑹𝝀(𝒎𝒐𝒅𝒆𝒍 )𝒅𝝀
𝜆2

𝜆1

∫ 𝑹𝑺𝑹𝝀 (𝒎𝒐𝒅𝒆𝒍)𝒅𝝀
𝜆2

𝜆1

 ………………. (10) 

 

Where 𝜌𝜆(𝑟𝑒𝑓)  and 𝜌𝜆(𝑚𝑜𝑑𝑒𝑙) are the simulated absolute surface reflectance model for the 

reference sensor and the model sensor; 𝜌𝜆ℎ  is the hyperspectral profile of the surface; and 

the 𝑅𝑆𝑅𝜆(𝑚𝑜𝑑𝑒𝑙)  and 𝑅𝑆𝑅𝜆 (𝑟𝑒𝑓) is the relative spectral response of the model sensor and the 

reference sensor.  The 𝜆1  and 𝜆2  are upper and lower wavelength respectively. The 

integration of the RSR of the multi-spectral sensor with the hyperspectral profile of the 

target at each sampled wavelength gives the simulated absolute surface reflectance model 

of the model sensor, as shown in equation 10. The absolute surface reflectance model of 
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the model sensor was converted to the corresponding absolute surface reflectance model 

of the model sensor using equation 11. 

𝝆′
𝝀(𝒗𝒂𝒍)

= 𝝆𝝀 x SBAF………………... (11) 

Where, 𝜌′
𝜆(𝑣𝑎𝑙)

 is the absolute surface reflectance model of the reference sensor to be 

validated, which is equivalent to the absolute surface reflectance model of the model 

sensor, and 𝜌𝜆  is the absolute surface reflectance model of the model sensor. While 

validating SR products of Landsat 9, and Landsat 5, the absolute surface reflectance models 

of the sensor to be validated was SBAF adjusted and were further used as inputs to the 

ELM for computing gain and bias.  

3.1.5 Implementation of Empirical Line Method (ELM) 

ELM was implemented after the development of absolute surface reflectance models or 

SBAF-adjusted absolute surface reflectance models of Algodones Dunes and the Salton 

Sea. The ELM is a technique that converts multi-spectral data from raw digital numbers 

(DNs) to at-surface reflectance factors by estimating atmospheric coefficients (gain and 

bias) [41] [21]. The first target is PICS, a spatially, spectrally, and temporally stable site 

treated as the bright target. The second target is the reflectance observed over the water 

bodies, which usually have a low reflectance profile. The atmospheric coefficients (gain 

and bias) were calculated by the variation in reflectance unit of two targets. Empirically, it 

has been shown that linearity holds for the entire range of targets with low to high 

reflectance factors [42]. Assuming uniform atmospheric conditions around 50 miles radius 

of the ROIs, the atmospheric coefficients (gain and offset) can be applied to the image. 
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There are four inputs for the computation of atmospheric coefficients (gain and bias) by 

ELM, and they are: 

The DN value from the Algodones Dunes as ROI was the first input for the ELM. The DNs 

from Algodones Dunes were the higher value. 

The DN value from the Salton Sea as ROI was the second input for the ELM. The DNs 

from the Salton Sea were the lower value. 

The absolute surface reflectance model of Algodones Dunes gave the ground truth 

reflectance of Algodones Dunes. 

The absolute surface reflectance model of the Salton Sea gave the ground truth reflectance 

of the Salton Sea. 

3.2 Uncertainty Analysis 

Uncertainty analysis was carried out for ELM surface reflectance model using the Monte-

Carlo Simulation method as shown in Figure 9.  In short, Monte Carlo Simulation is a 

statistical method used to model and analyze systems by generating multiple random 

samples of input parameters and simulating scenarios and estimate the probability of the 

outcomes. Monte Carlo simulations for uncertainty propagation take as inputs the 

uncertainty distribution for each input parameter and equation for the estimative of the 

output uncertainty.  
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Figure 9: Flow chart for Estimating Uncertainty of ELM Surface Reflectance 

The rationale for proposing uncertainty analysis was to accurately assess the quality of 

ELM generated surface reflectance. For the application of the ELM method, four input 

parameters are required, as explained in the Method of Obtaining ELM Surface Reflectance 

section. The four parameters are: (1) ASD measurements; (2) AVIRIS measurements; (3) 

a temporal trend associated with L8 SR product; and (4) absolute temporal trend associated 

with L8 SR product impact most for uncertainty calculation. Firstly, the uncertainty 

associated with these four parameters was calculated and obtained through a literature 

search, as presented in Table 1. The ASD uncertainty was estimated using the repeatability.  

The repeatability assesses the reliability of the results and determine the uncertainty 

associated with the measurement. The repeatability is related to standard deviation of the 

measurements (see equation  12). Here, the ASD uncertainty ranges from 3.54% to 4.42% 

for all bands. According to Babu and Green et al. [43,44], the uncertainty associated with 
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AVIRIS measurements was around ~8.6% for all bands. According to Barsi and Helder et 

al. [45,46], the uncertainty associated with the temporal and absolute temporal trend of L8 

was within 2% for all bands.   

ASD uncertainty =
𝜎

𝑋
*100% (12) 

Table 1: Uncertainties associated with input parameters of ELM SR model 

 

After obtaining the uncertainties associated with the input parameters of the ELM SR 

model, the ELM generates atmospheric coefficients (gain and bias) were calculated within 

Input Parameters of Model Bands Uncertainty References 

ASD Measurements Coastal Aerosol 

Blue 

Green 

Red 

NIR 

SWIR1 

SWIR2 

3.54% 

3.85% 

3.82% 

3.99% 

4.22% 

4.42% 

4.08% 

 

 

[equation 12] 

AVIRIS Measurements CA~SWIR2 8.6% [43,44] 

Temporal Trend Uncertainty 

of Landsat 8 Sensor 

CA~SWIR1 

SWIR2 

<1% 

1.8% 

[46] 

Absolute Temporal Trend 

Uncertainty of Landsat 8 

sensor 

CA~SWIR2 2% [45] 
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their uncertainties using Monte-Carlo Simulation Method. In order to find the number of 

iterations for Monte-Carlo Simulation the simulation started with 10 multivariate normal 

random numbers and calculated the pixel level total uncertainty for all bands. Then, 

simulation was continued up to 200 iteration levels by increasing 10 consecutive iterations. 

At 140 iterations, the total uncertainty started to converge. So, by keeping the buffer of 20 

iterations, 160 iteration levels were selected, and 160 gain and bias were calculated for 

further uncertainty analysis. Further, 160 simulated gain and bias were applied to the 

image, and 160 surface reflectance images were produced for all spectral bands. Finally, 

the standard deviation of 160 surface reflectance images gave the overall absolute pixel 

level uncertainty of the ELM SR model.  

3.3 Data Evaluation and Comparison Methodology 

After generating ELM SR products for Landsat 9, 8, and 5, there was a need for evaluation 

and comparison of L2 SR products. For Landsat 8, the L2C2 SR product was validated to 

ELM SR product. For Landsat 9 and 5, their corresponding SR products were cross-

validated with ELM SR products. To compare ELM SR products with SR products, ROI 

was created of about a 50-mile radius near two calibration points. Figure 10 shows path 39 

row 37, where the red color box represents ROI which covers Algodones dunes and Salton 

Sea (two calibration points) along with variety of cover type. The atmospheric effect is 

assumed constant over ROI and used for pixel level comparison between ELM SR products 

and respective SR products. This ROI consists of almost 10 million pixels, so it will be 

challenging to compare pixel level between two products for the entire dataset of any 

sensors. To overcome this problem, a down-sampling process was performed where in each 

scene, pixels were down-sampled by 65 pixels.    
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Figure 10: Red portion represents 50 miles radius around calibrating point for evaluating 

SR products 

After creating ROI, statistical metrics were calculated to evaluate the magnitude of 

agreement between both products.  

Firstly, Root Mean Square Error (RMSE) was computed using equation 13 between the 

ELM SR and respective SR products. The RMSE metric tells us how far apart the ELM 

SR values are on average from the L2 SR values in a dataset. The lower a model's RMSE, 

the better it fits a dataset.  

𝑹𝑴𝑺𝑬 = √∑
(𝒚𝒊

′−𝒚𝒊)
𝟐

𝒏

𝒏
𝒊   (13) 
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Where yi
′ represents the SR products value of each sample point (Pixel); yi is the ELM SR 

of each sample point, and n is the number of observations to be compared. 

Secondly, accuracy and precision were calculated to see the absolute difference and 

variation between both products. Accuracy describes the method of average deviation 

between the ELM SR and SR products, using equation 14. Precision describes the variation 

found in the respective band while measuring the same target repeatedly by the model using 

equation 15. 

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 = ∑ (𝒚𝒊
′−𝒚𝒊)

𝑛

𝑛
𝑖  (14) 

Where yi
′ represents the SR value of each sample point; yi is the ELM SR of each sample 

point and n is the number of observations. 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 = √
∑ (𝒚𝒊

′−𝒚𝒊)
2𝑛

𝑖

𝑛
 (15) 

Where yi
′ represents the SR value of each sample point; yi is the ELM SR of each sample 

point and n is the number of observations. 
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RESULT 

4.1 Evaluation of Absolute Surface reflectance Model - Algodones Dunes 

Figure 11a demonstrates the observed and surface reflectance model predicted SR over 

Algodones Dunes for the green band. The green color represents observed Landsat 8 SR, 

and the black color represent predicted Landsat 8 SR for the entire Landsat 8 data 

acquisition. From Figure 11a, based on temporal variation, the surface reflectance model 

captured seasonal and angular variation of Landsat 8 observed reflectance quite well. The 

accuracy estimated at 0.0029 describes the average deviation between the surface 

reflectance model predicted SR and observed reflectance. The precision estimated at 

0.0063 describes the variation found in the respective band while repeatedly measuring the 

same target by the surface reflectance model. After predicting the SR over Algodones 

Dunes by the surface reflectance model, the ground truth measurements by ASD were 

plotted, represented by red, yellow, and magenta dots. In Figure 11a, the ground truth 

measurements from ASD are lined up with the predicted SR by the surface reflectance 

model, further used for calibrating surface reflectance model of Algodones Dunes. 

Figure 11b shows the histogram of residual error between the surface reflectance model's 

predicted SR and observed reflectance in the green band. The histogram ranged from -

0.015 to +0.03. The histogram plot indicates that the model works well within 0.015 of 

residual error. However, the model is good within ±0.01 as the majority of data intended 

to lie within this range  

After predicting the observed SR by surface reflectance model, the absolute surface 

reflectance model for Algodones Dunes was developed by calibrating with ASD 
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measurements for 3 different dates represented by red, yellow, and magenta dots, as shown 

in Figure 11a. ASD measurements were spectrally integrated for the spectral response of 

all L8 Bands and cross-cal factor were calculated. For the green bands as shown in Figure 

11a, three cross-cal factor are 0.995, 0.988, and 0.996. By taking the average of these 3 

cross-cal factors (0.993) and multiplied the surface reflectance model data which gives the 

calibrated absolute surface reflectance model of Algodones Dunes. 

 Figure 11c represents calibrated surface reflectance model, which leads to the absolute 

surface reflectance model of Algodones dunes. The yellow dots represent the calibrated 

absolute surface reflectance model of Algodones Dunes. The accuracy was estimated to be 

0.0034 describes the average deviation between the calibrated absolute surface reflectance 

model and L8 observed reflectance. The precision estimated to be 0.0063 describes the 

variation found in the respective band while measuring the same target repeatedly by the 

calibrated absolute surface reflectance model. The data from calibrated absolute surface 

reflectance model of Algodones Dunes were considered as ground truth data for the further 

analysis. Therefore, ground truth data from calibrated absolute surface reflectance model 

of Algodones Dunes were first input to the ELM method for obtaining surface reflectance.  

Figure 11d shows the histogram of residual error between calibrated absolute surface 

reflectance model of Algodones Dunes and observed reflectance in the green band. The 

histogram ranged from -0.01 to +0.03. The histogram plot indicates that the calibrated 

absolute surface reflectance of Algodones Dunes works well within 0.01 of residual error. 

However, the model is good within 0 to +0.012 as the majority of data intended to lie 

within this range. 
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(d) 

Figure 11: Evaluation of absolute surface reflectance model - Algodones Dunes. 

(a)Landsat 8 observed reflectance (Green dot) and surface reflectance model predicted SR 

(Black dot); (b) Histogram of Residual Error of the surface reflectance model (Green bar); 

(c)Calibrated Absolute surface reflectance model (yellow dots) for Algodones Dunes;(d) 
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Histogram of Residual Error of the absolute surface reflectance model of Algodones Dunes 

and L8 observed SR (yellow bar) in the green band over Algodones Dunes 

4.2 Evaluation of Absolute Surface reflectance Model – Salton Sea 

Figure 12a demonstrates the observed and surface reflectance model predicted SR over the 

Salton Sea for the red band. The red color represents observed Landsat 8 SR, and the black 

color represent predicted Landsat 8 SR for the entire Landsat 8 data acquisition. From 

Figure 12a,based on temporal variation, the surface reflectance model captured seasonal 

and angular variation of Landsat 8 observed reflectance quite well. The mean absolute 

error, estimated at 0.0015, describes the average deviation between the surface reflectance 

model predicted SR and observed reflectance. After predicting the SR over the Salton Sea 

by the surface reflectance model, the ground truth measurements by AVIRIS were plotted, 

represented by a pentagon shape of blue, green, and yellow dots. In Figure 12a, we can see 

that the ground truth measurements from AVIRIS are lined up with the predicted SR by 

the surface reflectance model, which was further used for calibrating surface reflectance 

model of the Salton Sea. 

Figure 12b shows the histogram of absolute error between the surface reflectance model's 

predicted SR and observed reflectance in the red band of the Salton Sea. The histogram 

ranged from -0.006 to +0.006. The histogram plot indicates that the model works well 

within 0.006 of absolute error. However, the model is good within ±0.004 as the majority 

of data intended to lie within this range. 

Similarly, as absolute surface reflectance model of Algodones Dunes, the absolute surface 

reflectance model of Salton Sea was developed by calibrating Surface reflectance model 
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using AVIRIS measurements of 3 different near-coincident dates. AVIRIS measurements 

of 3 dates are represented by a pentagon shape of blue, green, and yellow dots as shown in 

Figure 12a. AVIRIS measurements were spectrally integrated for the spectral response of 

all Landsat 8 Bands and cross-cal factors were calculated. For the red bands as shown in 

Figure 12a, 3 cross-cal factors are 0.995, 0.988, and 1.004. By taking the average of these 

3 cross-cal factors (0.996) and multiplied the surface reflectance model data which gives 

the calibrated absolute surface reflectance model of Salton Sea. 

Figure 12c represents calibrated surface reflectance model of the Salton Sea with AVIRIS 

measurements which leads to the absolute surface reflectance model of the Salton Sea. The 

green dots represent the calibrated absolute surface reflectance model of the Salton Sea. 

The mean absolute error, estimated at 0.0017, describes the average deviation between the 

calibrated absolute surface reflectance model and observed reflectance. The data from 

calibrated absolute surface reflectance model of the Salton Sea were considered as ground 

truth data for the analysis. Therefore, ground truth data from calibrated absolute surface 

reflectance model of the Salton Sea were second input to the ELM method for obtaining 

surface reflectance.   

Figure 12d shows the histogram of absolute error between calibrated absolute surface 

reflectance model of the Salton Sea and the observed reflectance in the red band. The 

histogram ranged from -0.004 to +0.004. The histogram plot indicates that the calibrated 

absolute surface reflectance of the Salton Sea works well within 0.004 of absolute error. 

However, the model is good within ±0.003 as the majority of data intended to lie within 

this range. 
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(d) 

Figure 12: Evaluation of absolute surface reflectance model – Salton Sea. (a)Landsat 8 

observed reflectance (Red dot) and surface reflectance model predicted SR (Black dot); (b) 

Histogram of Residual Error between surface reflectance model predicted SR of Salton Sea 

and Landsat 8 observed SR(red bar); (c)Calibrated Absolute surface reflectance model 

(green dots) for Salton Sea;(d) Histogram of Residual Error between calibrated absolute 
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surface reflectance model of Salton Sea and Landsat 8 observed SR (black bar) in the red 

band over Salton Sea. 

4.3 Validation & evaluation results of different sensors SR products 

As explained in the methodology section, to produce ELM SR, four input parameters are 

required. After performing all those analyses, we have four parameters: sensor measured 

DN's value of Algodones Dunes and the Salton Sea, absolute surface reflectance model for 

both sites. After obtaining these values, the ELM was applied to calculate gain and bias, 

which were further applied to TOA reflectance products of Landsat 9, 8, & 5. This result 

for surface reflectance generated by the ELM SR model was based on the absolute surface 

reflectance model of Landsat 8. SR products from different sensors were validated and 

cross-validated with SR produced by the ELM SR model. Since the absolute surface 

reflectance model was based on Landsat 8 SR temporal trend, initially, Landsat 8 SR 

products were validated with SR generated by the ELM SR model presented in section 

4.3.1. In addition, the absolute surface reflectance model of Algodones Dunes & Salton 

Sea is independent of time constraints; the ELM SR model was used to validate Landsat 9 

& 5 SR products going back and forth in time. Further, section 4.3.2 shows the cross-

validation results of Landsat 9 SR products, which means going forth in time, and in section 

4.3.3, the Landsat 5 SR product was cross-validated, which means going back in time to 

check the potential of absolute surface reflectance model of Algodones Dunes and Salton 

Sea. 

4.3.1 Landsat 8 OLI SR validation and Evaluation Results 
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Figure 13 demonstrates scatter plots between Landsat 8 SR products with ELM SR for the 

selected ROI. Both products show good agreement with an average accuracy of 0.0104 and 

precision of 0.0115 across all bands of Landsat 8. The visible bands, such as coastal aerosol 

(CA) and blue bands, exhibited a slightly higher difference between Landsat 8 SR and 

ELM SR, where the data points tend to deviate from the 1:1 line in the low reflective region. 

In the CA and blue bands, we can see more scatteredness for low reflective regions or dark 

sites below 10% reflectance in the dynamic reflectance range. This might be due to the 

high atmospheric effect in visible wavelength bands. With a decrease in the reflectance, 

the part of radiation from the observed pixel decreases, and the part of background radiation 

(scattered in the atmosphere and created by adjacency effect) increases. In the CA and blue 

bands, the influence of these factors is greater, which may explain the observed effect. 

Nevertheless, when we go above 10% reflectance, both products show good agreement 

with less scatteredness in CA and blue bands. According to Pinto et al. and Moe et al., both 

authors also demonstrated slight deviation from the 1:1 line in CA and blue bands while 

comparing Landsat 8 SR products with ground measurements [7,8]. Excluding these two 

bands, the other bands show a linear relationship between Landsat 8 SR product and ELM 

SR. The ELM validation of Landsat 8 SR products was more accurate in longer wavelength 

bands than in shorter wavelength bands. All the data points in the longer wavelength bands 

fall closer to the 1:1 line and have similar behavior with the lowest RMSE error.  

Afterward, the difference between both products was calculated to check the magnitude of 

agreement between both products. Figure 14 shows the histogram plot of the difference 

between Landsat 8 SR products with ELM SR. Both products agree within ±0.01 

reflectance unit in all bands except shorter wavelength bands (CA & Blue Bands). The 
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difference in shorter wavelength bands varies within ±0.03 reflectance unit and this might 

be due to the high atmospheric effect. These bands are highly affected by the aerosols and 

scattering components, which contributes to an increase in the path radiance observed by 

the sensor [47,48]. As Landsat 8 SR products were generated by the Landsat surface 

reflectance code (LaSRC) algorithm, this algorithm can underestimates the aerosol 

corrections under some conditions in CA and blue bands when aerosol optical thickness 

(AOT) is higher and aerosol are highly absorbing [47]. However, consistent agreement has 

been shown in all bands within half of reflectance unit except CA and blue bands. The 

reason for better agreement in the longer wavelength bands is due to less path radiance in 

for these bands which minimizes the amount of correction for aerosols [47,48]. 

Table 2 shows the statistical metrics for validation of Landsat 8 SR over ELM SR with 

accuracy, precision, and RMSE. On average, the accuracy between Landsat  8 SR and ELM 

SR lies in the range of ~0.01 reflectance unit. This means the Landsat 8 SR products have 

accuracy within 1 reflectance unit for all bands while validating with ELM SR. Similarly, 

the precision and RMSE results shows same (0.0019 to 0.0148) magnitude of agreements 

between L8 SR over ELM SR. Thus, this result indicates that the Landsat 8 SR products 

consistently agree with ELM SR across all the Landsat 8 OLI bands, especially on longer 

wavelength bands. In general, overall validation results indicate better agreement in all 

bands with one to half reflectance units. 
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  Figure 13: (a) Pixel level scatter plot of Landsat 8 SR product and ELM SR for CA band, 

(b) Pixel level scatter plot of Landsat 8 SR product and ELM SR for blue band, (c) Pixel 

level scatter plot of Landsat 8 SR product and ELM SR for NIR band, (d) Pixel level scatter 

plot of Landsat 8 SR product and ELM SR for SWIR1 band. 
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(d) 

Figure 14: (a) Histogram plot of the difference between Landsat 8 SR and ELM SR for 

CA band, (b) Histogram plot of the difference between Landsat 8 SR and ELM SR for blue 

band, (c) Histogram plot of the difference between Landsat 8 SR and ELM SR for NIR 

band , (d) Histogram plot of the difference between Landsat 8 SR and ELM SR for SWIR1 

band.  

Table 2. Accuracy, Precision, and RMSE between Landsat 8 SR and ELM SR for seven 

bands 

Bands Accuracy Precision  RMSE 

Coastal Aerosol (443nm) 0.0104 0.0105 0.0148 

Blue (482 nm) 0.0078 0.0076 0.0109 
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Green (561.4 nm) 0.0038 0.0036 0.0052 

Red (654.6 nm) 0.0041 0.0057 0.0070 

NIR (864.7 nm) 6.48X10-4 (~0) 0.0036 0.0037 

SWIR1 (1608.9 nm) -2.28 X10-4 (~0) 0.0019 0.0019 

SWIR2 (2200.7 nm) 2.31X10-4 (~0) 0.0019 0.0019 

 

4.3.2 Landsat 9 OLI-2 SR validation and Evaluation Results 

After validating ELM SR using Landsat 8 for selected ROI, the next step was to validate 

Landsat 9 SR products. The absolute surface reflectance model of Algodones Dunes and 

Salton Sea was developed using Landsat 8 temporal trend and ground measurements from 

ASD and AVIRIS; the model was then adjusted for Landsat 9 spectral response. The 

rationale of doing this analysis was to validate Landsat 9 SR products and also to check the 

potential of the absolute surface reflectance model to work going forth in time for 

predicting the ground truth reflectance. Further the SBAF was calculated and applied to 

adjust the spectral response of Landsat 8 with Landsat 9. As a result, the absolute surface 

reflectance model developed from Landsat 8 can be applied to Landsat 9 and, additionally, 

computed gain and bias using the ELM approach, as explained in the methodology section. 

Figure 15 (a, c, e) demonstrates a pixel level scatter plot and linear relationship between 

Landsat 9 SR products and ELM SR. The dashed lines in each scatter plot represent 

reference line for each bands. Both products show good agreement with an average 

accuracy of 0.0049 and precision of 0.0094 across all bands of Landsat 9. Also in CA and 

blue bands, we can see the scatteredness and data points tend to deviate from the 1:1 line 
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in the low reflective region (below 10% reflectance). A similar deviation was observed 

while validating Landsat 8 SR products and ELM SR in section 4.3.1. 

Additionally, in the longer wavelength bands, both products fall closer to the 1:1 line and 

behave similarly, as shown in section 4.3.1. Figure 15 (b, d, f) shows the histogram plot of 

the difference between Landsat 9 SR products with ELM SR. On average, both products 

agree within ±0.015 reflectance unit in all bands except shorter wavelength bands (CA & 

blue bands). 

Moreover, statistical metrics like accuracy, precision, and RMSE between the two products 

were calculated, as shown in Table 3. Both products agrees well within an accuracy of 

0.0049 (half unit of reflectance). Precision between both products ranges from 0.0019 to 

0.0094 reflectance units; this also says that Landsat 9 SR products are consistent agreement 

with ELM SR. Additionally, RMSE also explains the same agreement between both 

products; the RMSE value ranges from 0.0019 to 0.01. Thus, on average, this result 

indicates that the Landsat 9 SR product consistently agrees with ELM SR across all the 

Landsat 9 OLI-2 bands, especially on longer wavelength bands.  
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(f) 

Figure 15: (a) Pixel level scatter plot of Landsat 9 SR product and ELM SR for CA band, 

(b) Histogram plot of the difference between Landsat 9 SR and ELM SR for CA band, (c) 

Pixel level scatter plot of Landsat 9 SR product and ELM SR for red band, (d) Histogram 

plot of the difference between Landsat 9 SR and ELM SR for red band, (e) Pixel level 

scatter plot of Landsat 9 SR product and ELM SR for SWIR2 band, (f) Histogram plot of 

the difference between Landsat 9 SR and ELM SR for SWIR2 band.  

Table 3. Accuracy, Precision, RMSE, and between Landsat 9 SR and ELM SR for seven 

bands 
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Bands Accuracy Precision  RMSE 

Coastal Aerosol (443nm) 0.0049 0.0094 0.0106 

Blue (482 nm) 0.0049 0.0075 0.0089 

Green (561.4 nm) 0.0038 0.0041 0.0056 

Red (654.6 nm) 0.0019 0.0045 0.0049 

NIR (864.7 nm) 1.56X10-4 (~0) 0.0040 0.0040 

SWIR1 (1608.9 nm) 4.80 X10-4 (~0) 0.0024 0.0025 

SWIR2 (2200.7 nm) -4.73X10-4 (~0) 0.0019 0.0019 

 

4.3.3 Landsat 5 TM SR validation and Evaluation Results 

As explained in the methodology section, the absolute surface reflectance model can go 

back in time and predict ground truth reflectance (with the assumption that both Algodones 

and Salton Sea are stable/predictable over the period). Therefore, it can be used for 

validation of any surface reflectance products using the ELM approach. To check this 

potential of the absolute surface reflectance model, an analysis was performed to validate 

Landsat 5 SR product. For that, the absolute surface reflectance model of Algodones Dunes 

and Salton Sea were adjusted using SBAF to match the spectral response of Landsat 5 with 

Landsat 8. As a result, the absolute surface reflectance model can be applied to Landsat 5 

and, additionally, a computed gain and bias using the ELM approach, as explained in the 

methodology section. 

Figure 16 demonstrates a pixel level scatter plot and linear relationship between a measured 

value of Landsat 5 SR products and ELM SR. The dashed lines in Figure 16 represent 
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reference line for each band. The analysis of six different bands of Landsat 5 SR with ELM 

SR products demonstrates the good quality of Landsat 5 SR products. The accuracy of (0 

to 0.0021) and RMSE of (0.0026 to 0.0045) attest to good agreement between the two 

products. Figure 16 also shows a corresponding histogram plot of the difference between 

Landsat 5 SR products with ELM SR. On average, Landsat 5 SR products shows good 

agreement with an accuracy of a half unit of reflectance with ELM SR in all spectral bands. 

The slight deviation was usually seen in blue and which is the shorter wavelength band. 

The deviation in the blue band might be due to the atmospheric effect since shorter 

wavelength bands might be affected by aerosols components. As the wavelength goes on 

increasing, the accuracy and precision go on improving. Observed better agreement in a 

higher wavelength band where the atmospheric effect is minimum [49]. 

Further, the LEDAPS algorithm for obtaining the surface reflectance for Landsat 5 has 

been shown under some criteria to underestimate the aerosol corrections in the blue band 

[49,50]. Similarly, consistent agreement was observed in all bands, which is within half a 

unit of reflectance unit.  
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(f) 

Figure 16: (a) Pixel level scatter plot of Landsat 5 SR product and ELM SR for blue band, 

(b) Histogram plot of the difference between Landsat 5 SR and ELM SR for blue band, (c) 

Pixel level scatter plot of Landsat 5 SR product and ELM SR for NIR band, (d) Histogram 

plot of the difference between Landsat 5 SR and ELM SR for NIR band, (e) Pixel level 

scatter plot of Landsat 5 SR product and ELM SR for SWIR2 band, (f) Histogram plot of 

the difference between Landsat 5 SR and ELM SR for SWIR2 band.  

Table 4. Accuracy, Precision, and RMSE between L5 TM L2 SR and ELM SR for seven 

bands. 



62 

Bands Accuracy Precision  RMSE 

Blue (482 nm) 0.0010 0.0029 0.0031 

Green (561.4 nm) 0.0012 0.0026 0.0028 

Red (654.6 nm) 0.0012 0.0044 0.0045 

NIR (864.7 nm) 0.0021 0.0038 0.0043 

SWIR1 (1608.9 nm) 9.95 X10-4 (~0) 0.0030 0.0032 

SWIR2 (2200.7 nm) 2.23X10-4 (~0) 0.0026 0.0026 

 

UNCERTAINTY RESULTS 

Uncertainty analysis was performed after validation of USGS SR products over ELM SR. 

Pixel level uncertainty was calculated for selected ROI using the Monte-Carlo Simulation 

method (see section 3.2). The uncertainties associated with four input parameters were 

considered for the simulation, and the atmospheric coefficients (gain and bias) were 

calculated within their uncertainties. Monte-Carlo Simulation was performed for 160 

iteration levels, giving 160 gain and bias. Further, 160 simulated coefficients were applied 

to the image, and 160 surface reflectance images were produced for all spectral bands. 

Finally, the standard deviation of 160 surface reflectance images gives the overall absolute 

pixel level uncertainty of the ELM SR model for seven different bands of Landsat 8 sensor.  

Figure 17 demonstrates absolute pixel level uncertainty images for Landsat 8 sensor (CA, 

green, NIR, and SWIR2 bands). In CA and green bands images, Algodones dunes and rock 

uncertainty range from 0.0271 to 0.0305, whereas the vegetative and water uncertainty 

ranges from 0.0186 to 0.0245. Similarly, in NIR and SWIR2 band images, Algodones 
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dunes and rock uncertainty range from 0.0312 to 0.0450, whereas the vegetative and water 

uncertainty ranges from 0.0101 to 0.0271.  

The absolute uncertainty of surface reflectance varies with the target in an image. In the 

visible bands such as CA, blue, and green bands, the uncertainty seems higher in dark 

targets like water and vegetation and seems lower in the bright target like Algodones dunes 

and rock. While in longer wavelengths bands such as NIR, SWIR1, and SWIR2 the 

uncertainty seems lower in water and vegetation and seems higher in the bright target like 

Algodones dunes and rock. Compared to the longer wavelength bands, a slight difference 

was observed in shorter wavelength bands of dark targets. This is primarily due to 

difficulties in aerosol estimation and lower signal levels received by the OLI sensor from 

dark targets [47].  

 

(a) 
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Figure 17: (a) pixel level uncertainty image of CA band, (b) pixel level uncertainty image 

of green band, (c) pixel level uncertainty image of NIR band and (d) pixel level uncertainty 

image of SWIR2 band 
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CONCLUSION 

Due to the increased demand for SR products, a need exists to verify that L2C2 SR products 

are precise and accurate. Several methods for atmospherically correcting level-1 TOA 

reflectance and validating L2C2 SR product are carried out, although they are insufficient. 

This work was developed to validate SR products by developing an atmospheric correction 

model. At first, the ELM technique was employed in this research for atmospheric 

correction of remotely sensed data from at-sensor DN to ground reflectance.  

The theoretical basis for ELM was carried out by selecting the sites based on the knowledge 

of ground truth measurements. So, Algodones Dunes and the Salton Sea were selected for 

developing the overall methodology of the project. Implementing ELM requires ground 

truth measurements at every point of the Landsat acquisitions for given sites. But there 

were limited ground truth measurements, so the absolute surface reflectance model of 

Algodones Dunes and Salton Sea were developed to overcome the limitation of ground 

truth measurements. The absolute surface reflectance of Algodones Dunes was developed 

using L8 SR trend, sun and sensors angle, and ground truth measurements by ASD. 

Similarly absolute surface reflectance model of the Salton Sea was developed using L8 SR 

trend, sun and sensor angles, IOPs of water, and ground truth measurements by AVIRIS. 

The absolute surface models of Algodones dunes and Salton Sea gives ground truth 

measurements during Landsat acquisitions and are not limited to time constraints, and have 

the potential to give ground truth reflectance in any time frame (going back and forth). The 

result of the Absolute surface reflectance model of Algodones Dunes predicts the response 

of Algodones Dunes and gives ground measurements over a time with an average accuracy 

of 0.0041 and average precision of 0.0063 overall bands of the Landsat 8 sensor. Similarly, 
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the Salton Sea's absolute surface reflectance model predicts the Salton Sea's response and 

gives ground measurements over time with a mean absolute error (MAE) of 0.0035 overall 

bands of the Landsat 8 sensor after the ELM technique is applied and generates 

atmospheric coefficients (gain and bias) based on four inputs, when applied to image 

produces the surface reflectance.  

This study has evaluated the accuracy and reliability of level-2 surface reflectance products 

with surface reflectance derived from ELM. Validation of Landsat 8 OLI L2C2 SR, 

Landsat 9 OLI-2 L2C2 SR, and Landsat 5 TM L2C2 SR were carried out in this work. The 

validation of Landsat 5 TM and Landsat 9 OLI requires the SBAF correction since the 

absolute surface reflectance model was generated using the Landsat 8 sensor. Thus, 

compensating factors for matching spectral response of Landsat 5 TM and Landsat 9 OL 

were computed using the hyperspectral measurement taken at Algodones Dunes and Salton 

Sea. 

When considering the surface reflectance data from ELM, the result indicates that the 

Landsat 8 SR products show good agreement within an average accuracy of 0.0038 

reflectance unit in all bands with ELM SR for selected ROI. Precision between both 

products ranges from 0.0019 to 0.0113 reflectance units; this also says that Landsat 8 SR 

products show consistent agreement with ELM SR. Landsat 8 SR products are validated 

within ±0.01 reflectance unit in all bands except shorter wavelength bands (CA & blue 

bands). Data points in shorter wavelength bands tend to deviate from the 1:1 line in the low 

reflective region. In the CA and blue bands, we can see more scatteredness for low 

reflective regions or dark sites, whereas less scatteredness was observed in longer 
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wavelength bands. However, on –average, a consistent agreement was observed in all 

bands within half a unit of reflectance except CA and blue bands.  

After validating Landsat 8 SR over ELM SR for selected ROI, the validation of Landsat 9 

and 5 SR products was carried out, which requires the application of SBAF to adjust the 

spectral response of Landsat 8 with Landsat 9 and Landsat 5. As a result, the absolute 

surface reflectance model from Landsat 8 can be applied to Landsat 9 and 5. Based on the 

SBAF corrected model, gain and bias were calculated using ELM approach, which can be 

applied to Landsat 9 and Landsat 5 images to produce SR. Landsat 9 SR products agree 

well within an accuracy of 0.0049 (half unit of reflectance) in all bands with ELM SR. 

Precision between both products ranges from 0.0019 to 0.0094 reflectance units; this also 

says that Landsat 9 SR products show consistent agreement with ELM SR. Thus, on 

average, this result indicates that the Landsat 9 SR product consistently agrees with ELM 

SR across all the Landsat 9 OLI-2 bands, especially on longer wavelength bands. Here, 

also in CA and blue bands, we can see the scatteredness and data points tend to deviate 

from the 1:1 line in the low reflective region (below 10% reflectance). 

The Landsat 5 SR demonstrates a good agreement with ELM SR products with a low 

accuracy value from 0 to 0.0021 and RMSE from 0.0026 to 0.0045. On-average, Landsat 

5 SR products agree within a half unit of reflectance with ELM SR in all spectral bands. 

The slight deviation was usually seen in blue and which is the shorter wavelength band. 

Similarly, a consistent agreement was observed in all bands. This means that TM SR and 

ELM SR show good agreement within a half unit of reflectance for selected ROI. 
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Finally, pixel level uncertainty of the ELM SR model for seven different bands of Landsat 

8 sensor was done using Monte-Carlo simulation. After that, the standard deviation of 160 

surface reflectance images gives the overall absolute pixel level uncertainty of the ELM 

SR model for seven different bands of the Landsat 8 sensor. In CA and green bands images, 

Algodones dunes and rock uncertainty range from 0.0271 to 0.0305, whereas the vegetative 

and water uncertainty ranges from 0.0186 to 0.0245. Similarly, in NIR and SWIR2 band 

images, Algodones dunes and rock uncertainty range from 0.0312 to 0.0450, whereas the 

vegetative and water uncertainty ranges from 0.0101 to 0.0271. 

The conclusions of this study demonstrate the usefulness of the level-2 surface reflectance 

product for providing accurate information on the reflectance properties of the Earth's 

surface. To guide the advantage of this methodology, (i) the developed method is not 

limited to time constraints, i.e., it is independent of the temporal resolution of the sensor. 

The validation of the L2 SR product can be carried out in any period of satellite image 

acquisition. (ii) The L2 SR product can be validated in any satellite after the SBAF 

correction using the hyperspectral measurement. 
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