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ABSTRACT 

EXTENDED CROSS-REFERENCED ANALYSIS USING DATA FROM THE 

LANDSAT 8 AND 9 UNDERFLY EVENT 

GARRISON GROSS 

2023 

     The Landsat 8 and 9 Underfly Event occurred in November 2021, where Landsat 9 flew 

beneath Landsat 8 in the final stages before settling in its final orbiting path. An analysis 

was performed on the images taken during this event, which resulted in a cross-referenced 

with uncertainties estimated to be less than 0.5%. This level of precision was due in part to 

the near-identical sensors aboard each instrument as well as the underfly event itself, which 

allowed the sensors to take nearly the exact same image at nearly the exact same time. This 

initial calibration was applied before the end of the on-orbit initial verification (OIV) 

period, which meant the analysis was performed in less than a month. While it was an 

effective and efficient first look at the data, a longer-term analysis was deemed prudent to 

have the most accurate cross-referenced with the smallest uncertainties. The three forms of 

uncertainty established in the initial analysis, dubbed “Phase 1”, were geometric, spectral, 

and angular. This paper covers Phase 2 of the underfly analysis, and several modifications 

were made to the Phase 1 process to improve the cross-referenced results, including a 

spectral correction in the form of a spectral band adjustment factor (SBAF) and a more 

robust filtering system that used the statistics of the reflectance data to better include 

important data compared to the more aggressive filters used in Phase 1. A proper 

uncertainty analysis was performed to more accurately quantify the uncertainty associated 

with the underfly cross-referenced. The final results of Phase 2 showed that the Phase 1 
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analysis was within its 0.5% uncertainty estimation, and the cross-referenced gain values 

in this paper were used by USGS EROS to update the Landsat 9 calibration at the end of 

2022.  
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INTRODUCTION 

 After launching on 27 September 2021, Landsat 9 was poised to perform an 

operation that would ultimately aid in its sub-1% cross-calibration: the Underfly Maneuver. 

During this maneuver, the spacecraft orbited beneath its virtual twin, Landsat 8, which had 

been launched over eight years prior on 11 February 2013. 90 days after launch, the two 

instruments started the week-long maneuver and collected some of the most important 

images needed for their cross-calibration. The results obtained from analyzing the underfly 

allowed Landsat 8 and 9 to have near identical calibrations, which would result in 

consistent measurements between the two instruments. This level of cross-calibration can 

be accomplished due to the nearly identical sensors aboard each satellite: Operational Land 

Imager (OLI) and Thermal Infrared Scanner (TIRS) on board Landsat 8 and OLI -2 and 

TIRS-2 on board Landsat 9 [1]. With an accurate cross-calibration, the two instruments can 

be considered part of a single system. It takes each satellite 16 days to individually capture 

images of the entire planet, but the calibration obtained from this maneuver would let 

Landsat 9 fly 8 days out of phase with Landsat 8. With the instruments being near clones 

of each other, they can image the planet at different times, combine their image libraries, 

and double their total temporal resolution. 

The design similarities between these two instruments are what contributed most to 

the promising nature of an underfly cross-calibration analysis. Both versions of OLI have 

the same spatial resolution (30 m). Landsat 8 and 9 also have the same attitude controllers, 

onboard radiometric calibrators, and telescope, all of which are discussed more in [2]. The 

similarities between the focal plane modules and the spectral filters will be touched on 

more in the spectral uncertainty portion of the introduction. This paper is a second look at 
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the underfly data following a preliminary analysis that was performed during the initial on-

orbit verification (OIV) period. Following this introduction, the paper will examine how 

the new methodology was improved over the preliminary approach. The results generated 

from that procedure will be presented along with an uncertainty analysis and a discussion 

of the findings. Finally, the conclusions regarding how this paper expands on the original 

study will be presented. 

 

1.1 Underfly Event 

The Underfly event refers to the maneuver in which the new instrument, in this case 

Landsat 9, orbits underneath the reference sensor, Landsat 8, before moving into its final 

orbital path. This allows the sensors to see virtually the same image at approximately the 

same time and location, which reduces many forms of uncertainty. The same operation was 

performed 29–30 March 2013, after Landsat 8 launched, when it flew underneath Landsat 

7 [3], and on 1–4 June 1999 when Landsat 7 orbited beneath Landsat 5 [4]. The data from 

previous underfly maneuvers granted excellent calibration results, so when the possibility 

arose to perform the same operation for Landsat 8 and 9, the teams at USGS EROS and 

NASA immediately took advantage of that opportunity. Since the sensors are virtually 

identical to each other, along with advances in modern computing to process more images 

than ever before, this maneuver was even more advantageous than previous ventures. 

The Landsat 8 and 9 Underfly Maneuver was executed from 11 to 17 November 

2021. As stated, an analysis approach using the data from the underfly was performed 

before the end of the OIV period [5]. The analysis performed on the underfly data during 

OIV will be referred to as Phase 1, while the analysis reported in this paper will be referred 
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to as Phase 2. The initial results from the Phase 1 approach were primarily used in the 

initial calibration of Landsat 9. Since that analysis was performed in less than a month, 

however, this paper improves upon the methodology in several ways and takes a closer 

look at the sources of uncertainty associated with the underfly maneuver. 

 

1.2 Sources of Uncertainty 

A cross-calibration between two sensors can be simply summarized as finding the 

top of atmosphere (TOA) apparent reflectance of a location observed by each sensor and 

calculating the ratio of those reflectances. In this case, the ratio would be that of Landsat 8 

over Landsat 9, the ratio needed to cross-calibrate Landsat 9 to Landsat 8. However, there 

are several forms of uncertainty related to a cross-calibration such as this. The initial cross-

calibration analysis of Landsat 8 and 9 determined that the main three contributors were 

geometric, spectral, and angular uncertainty, with the latter in the form of the bidirectional 

reflectance distribution function (BRDF). The proposed uncertainty budget for the init ial 

analysis was 1%, so individual uncertainty contributions needed to be well under that, with 

target differences of 0.2%. Differences any less than that would be considered insignificant. 

In the Phase 1 analysis, geometric uncertainty was split up into pointing error and 

viewing/illumination geometric error. 

 

1.2.1 Geometric Uncertainty 

The first contributor to geometric uncertainty was pointing error. It was considered 

to be negligible based on discussions with geometry experts from USGS EROS, who stated 

“that image-to-image errors would be on the order of 5-m”, a difference in geometric 
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positioning that is deemed to be minor enough to ignore [5]. The second form of geometric 

uncertainty considered was viewing and illumination geometry. Since the sensors were 

close to each other during the maneuver, solar geometry was similar enough to be 

considered the same, while viewing geometry was the more significant issue. The sensors 

have a maximum view angle of ±7.5°, so the worst possible viewing geometry with image 

overlap could be ±15°. However, with the sun position consistently in the east and Landsat 

9’s descending path east of Landsat 8, L9 was tilted to follow the sun and view west in the 

final days of the underfly maneuver, which increased the difference in view zenith angles 

(VZA). This operation was performed to extend the number of coincident images but 

brought the maximum view zenith angle difference (VZAD) up to 20°. Overlap of the 

sensors varied throughout the week: Landsat 9’s ascending path west of Landsat 8 had 

~10% overlap on 12 November, ~50% on 13 November, and ~100% overlap on 14 

November. The descending path overlap varied further as a result of this tilting maneuver. 

All these viewing geometries needed to be considered for the geometric uncertainty 

analysis. The previous analysis stated that the view azimuth geometry is ideally 98° and 

278° due to Landsat’s orbital position. Since the underfly took place in November, the 

sensors were closer to the same plane as the sun with respect to a ground target when 

imaging the northern hemisphere, while viewing a target closer to the plane orthogonal to 

the sun when in the southern hemisphere. The former example is denoted as the principal 

plane, and it refers to when the sensor and sun are azimuthally along the same plane with 

respect to the target. The plane orthogonal to this is considered the cross-principal plane. 

For this analysis, a cosine correction for the sun angle was not applied to the reflectance, 
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as the main interest of this paper is the difference seen across the dynamic range of the 

sensors. This approach gave a more “raw” comparison between the two. 

 

1.2.2 Spectral Uncertainty 

The spectral differences between the sensors were also determined to be minimal 

in the Phase 1 analysis. OLI and OLI-2 have similar spectral filters, to the point where the 

filters for OLI-2 came from the original batch developed for OLI. These filters are used 

with focal plane modules (FPMs), which are modules comprised of photosensitive 

detectors. OLI and OLI-2 each have fourteen FPMs, which make up a focal plane array 

(FPA). Even though the respective spectral filters on each sensor cover the same 

wavelengths as the other, the spectral band passes, also known as Relative Spectral 

Responses (RSRs), do have small differences, which can result in slightly different 

reflectance measurements. This assumes view and solar angles are the same, so the only 

possible reflectance difference could be spectral. These differences can be quantified by 

looking at hyperspectral reflectance curves of several land cover types and comparing the 

banded reflectances of each sensor. If the results differ from each other, a spectral band 

adjustment factor (SBAF) will need to be applied. For more information on how to use 

SBAF, please look to [6, 7]. 

Since SBAF is a target-dependent function, tests need to be performed with a wide 

variety of hyperspectral target types. Generally, a higher input signal with few variations 

in reflectance results in smaller spectral differences. During Phase 1, early estimates of 

spectral differences between the two sensors determined several land cover types for most 

of OLI and OLI-2’s bands and had less than a 0.2% difference in banded reflectance, which 
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was low enough to be considered negligible for this analysis. However, the green band 

differed between L8 and L9 by about 0.3% in vegetative land covers. The Phase 1 analysis 

determined that soil and sand land cover types would be best used for the green band due 

to its low spectral differences between OLI and OLI-2. TIRS and TIRS-2 (thermal bands 

10 and 11) also have minor differences in RSR. The TIRS bands are calibrated solely based 

on radiance, with water as the primary target for calibration, so tests indicated that the 

average high emissivity of water made TIRS SBAFs unnecessary. Section 2.4 in the 

methodology will dive deeper into implementing SBAF into the cross-calibration analysis, 

and the results section will investigate the uncertainty associated from FPM to FPM 

between sensors. 

The bands in OLI and TIRS with their spatial resolutions and wavelengths are 

shown in Table 1. For those unfamiliar with Landsat 8’s new bands over Landsat 7, the 

coastal aerosol band is used for aerosol detection and measures ocean color along the coast, 

which helps determine chlorophyll levels. The cirrus band helps detect clouds by looking 

at absorption features and measuring energy in the wavelengths where clouds are most 

discernable. Finally, the TIRS bands are used to measure ground temperature by looking 

at the emitted thermal radiation from Earth. OLI and OLI-2, as well as TIRS and TIRS-2, 

have the same bands and bandwidth, with their differences being in the spectral responses. 
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Table 1. Landsat 8 bands. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.2.3 Angular Uncertainty 

The final type of uncertainty was angular, in the form of the BRDF effect. In Phase 

1, it was thought that this was the largest contributor to uncertainty; however, the 

uncertainty analysis in Section 3.3 will discuss why that is not the case. The Ross–Li 

models of several different land cover types were analyzed using the BRDF MODIS 

product MCD43A1, which generates parameters to be used with the Ross–Li model. The 

use and generation of these BRDF kernels and parameters can be found in [8–10]. The 

main point derived from that analysis concluded that sensor viewing zenith angle would 

contribute most to reflectance differences between the instruments. This difference could 

Bands 

Wavelengths 

(Micrometers) 

Resolution 

(Meters) 

Band 1—Coastal Aerosol  0.43–0.45 30 

Band 2—Blue 0.45–0.51 30 

Band 3—Green 0.53–0.59 30 

Band 4—Red 0.64–0.67 30 

Band 5—Near Infrared (NIR) 0.85–0.88 30 

Band 6—Short Wave Infrared 1 (SWIR1) 1.57–1.65 30 

Band 7—SWIR2 2.11–2.29 30 

Band 8—Panchromatic Band 0.50–0.68 15 

Band 9—Cirrus 1.36–1.38 30 

Band 10—Thermal Infrared 1 (TIRS 1) 10.6–11.19 100 

Band 11—TIRS 2 11.5–12.51 100 
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be minimized if the sensors were closer to the cross-principal plane with respect to a ground 

target or if the sensors were directly on top of each other, the latter of which results in them 

having the same view zenith angle. The first suggestion indicated that if the sensors did not 

have the same azimuth (viewing) angle as the sun, reflectance differences would not be 

nearly as great due to avoiding the BRDF “hotspot” along the principal plane (Figure 1). 

The greater the difference in sun to view azimuth angle, or the closer to the cross-principal 

plane, the less effect the hotspot had, resulting in a smaller disparity in reflectance. The 

difference between solar illumination azimuth angle and a sensor’s viewing azimuth angle 

will be referred to as the view azimuth angle difference (VAAD), with each sensor having 

its own VAAD with respect to a single target. 

 

 

Figure 1. (a–e): BRDF models of grass pasture for different SZA and SAA locations. Note how 

hot spot follows solar location as the sun moves lower in the sky. (f): Linearity of BRDF versus 
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VZA for entire range of Landsat viewing angles. Note how the slope is greater as the sensor view 

angle moves closer to the “hot spot”. Image source: [5]. 

 

The second suggestion indicated that the closer the sensors were to each other with 

respect to VZA when looking at the same target, the smaller the difference in reflectance 

would be. This difference in view zenith angles will be referred to as the view zenith angle 

difference (VZAD). The initial cross-calibration analysis determined that plotting VZAD 

against the cross-calibration gain (the reflectance ratio of Landsat 8 to Landsat 9) and 

finding the intercept at VZAD = 0° assumed the sensors were directly on top of each other. 

When the Underfly Event occurred, there were very little data at VZAD = 0°, so a linear 

fit equation was used to estimate the intercept. This intercept essentially interpolated the 

value where the sensors had the same view zenith angle and became the basis for the cross-

calibration gain value estimation. Section 3.1.2 will investigate the effect VAAD has on 

the VZAD intercept, and the results section will have an uncertainty analysis regarding the 

Ross–Li model of BRDF. Using the VZAD intercept value as the cross-calibration estimate 

was one of the strongest advantages when examining the initial Phase 1 underfly approach, 

as will be discussed more in depth in the methodology section; the other benefits from that 

analysis are discussed in the next section. 

 

1.3 Phase 1 Retrospection 

1.3.1 Advantages 

Several key observations and advantages resulted from the Phase 1 analysis: 

understanding the small effect of geometric and spectral uncertainty; the introduction of 

the VZAD intercept as the cross-calibration estimate; the relatively quick turnaround 
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following the underfly event; and the precision and accuracy of the actual estimate. As 

stated in the previous subsection, the geometric differences were deemed to be negligible, 

so that form of uncertainty no longer needed to be considered. Spectral differences were 

heavily studied, so any uncertainty there could be controlled by choosing specific land 

cover types for certain bands if the need arose. This left angular differences as the primary 

contributing factor to uncertainty. As mentioned before, the view zenith angle of each 

sensor was included with each downloaded image. This meant the reflectance and VZA of 

each scene could be plotted against each other. Inherently, this also meant the reflectance 

ratio of Landsat 8 to Landsat 9 could be plotted against the VZA difference, or VZAD, of 

each scene. By fitting a line to the data and finding the intercept when VZAD corresponded 

to 0 degrees, the cross-calibration ratio when the sensors were in line with each other could 

be estimated, effectively interpolating the result as accurately as possible and minimizing 

the uncertainty of BRDF with respect to VZA between the sensors. 

The VZAD intercept also had other advantages when it was chosen for the cross-

calibration estimate, such as its resistance to statistical outliers. The overall mean of the 

cross-calibration ratios was considered for the estimation; however, any outliers in the data 

could skew the estimate. Another reason the VZAD intercept was used was due to the lack 

of actual data when VZAD was 0°. As previously stated, the time when the sensors were 

perfectly in line with each other was brief, and unfortunately this time occurred mostly 

over the ocean, with only a few scenes collected over Australia. This meant that an estimate 

using the median ratio value could not be used, since the value when VZAD was 0° quite 

possibly may never have occurred. This left the VZAD intercept as the best candidate for 

the cross-calibration estimate. 
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The Phase 1 underfly analysis resulted in an uncertainty significantly lower than 

other cross-calibration methods, and the resulting cross-calibration at the end of OIV was 

based primarily on the estimates produced by that effort. This was also, in part, due to the 

quick turnaround of the analysis, all of which was completed before the end of OIV. 

Therefore, it was deemed prudent to perform a detailed analysis of the underfly data to 

validate, or even improve, the initial results. 

 

1.3.2 Shortcomings 

Phase 1 consisted of downloading the real-time images, processing them, and 

analyzing the statistics of each scene as a function of land cover type, band, and VZAD. 

Since all of this was performed in just a few short weeks following the actual underfly 

event, several shortcomings have been noted. The first of these has been stated, which was 

that of spectral correction. Even though extensive research was conducted regarding how 

each sensor’s RSRs behaved with several land cover types, no actual SBAF was applied to 

the final result. As mentioned, the Landsat 9 green band had a 0.3% difference compared 

to Landsat 8 when looking at vegetation. In Phase 1, the sand/soil gains were weighted 

more heavily knowing this difference; however, a proper SBAF correction would provide 

a more accurate result. Spectral correction was not applied due to time constraints, but 

another reason why it was not prioritized in Phase 1 was due to uncertainty regarding how 

pixels were sorted into specific land cover types. Several optimizations needed to be 

applied to the categorization process to have a high enough confidence that each pixel was 

properly classified. 
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To determine the spectral profile of several land cover types, the MODIS Land 

Cover Type product MCD12Q1 was used as reference. This product classified every one 

of its pixels into different land cover types based on the International Geosphere-Biosphere 

Programme’s (IGBP) system. Product MCD12Q1 was cross-referenced with the MODIS 

BRDF product MCD43A1 to determine BRDF properties of each land cover type, which 

was needed when performing the BRDF analysis. Product MCD43A1 was also used to 

determine the reflectance profiles of each IGBP land cover type in Phase 1, but Phase 2 

instead uses MODIS TOA reflectance product MOD02HKM as it is more appropriate for 

a TOA cross-calibration. By better separating pixels into these land cover types, spectral 

correction would be a lot more accurate. 

Another shortcoming of Phase 1 was that the VAAD was not considered to be a 

component of uncertainty, mostly since variation in VAAD did not change the VZAD 

intercept; this will be covered more in the methodology section. The reflectance of 

individual scenes and cover types was also not prominently covered in Phase 1, as the 

cross-calibration ratio between the two sensors was the most important statistic. 

Nevertheless, an analysis regarding reflectance properties would help better understand the 

data. This analysis might include studying the signal to noise ratio and examining the 

reflectance differences in vegetation across the globe, considering that during the underfly, 

the northern hemisphere was in its winter season and the southern hemisphere was in its 

summer season. Finally, the panchromatic band was constrained to image pairs where 

resampling was not required, as resampling often introduced extra pixels that broke the 

image processing workflow. This was not changed in Phase 2 but should be noted as a 
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small limitation of the analysis. By considering the shortcomings of Phase 1, the 

methodology of Phase 2 could be greatly improved. 

 

METHODOLOGY 

 The methodology of Phase 1 was developed in the months leading up to the 

Underfly Event. Spectral, geometric, and BRDF analysis was performed to properly 

understand the uncertainty involved with the cross-calibration before even looking at the 

actual underfly data. The image processing workflow was also constructed in the months 

prior to the maneuver, while the actual processing occurred  in just a few weeks during OIV. 

Several changes that could be used to optimize the procedure were discovered during both 

OIV and in the months after the event; however, these could not be implemented until a 

proper second analysis was performed. This section will look at the modifications made to 

the original procedure, starting with the optimized pixel sorting of land cover types. 

 

2.1. Spectral Characterization of Land Cover Types 

2.1.1. MODIS Land Cover Product 

As stated in the introduction, the MODIS products were used to help characterize 

pixels into different IGBP land cover types. MODIS annually characterizes each of its 

global pixels into land cover groups, which can be found in the IGBP product MCD12Q1. 

By using this product in conjunction with another MODIS product, average properties of 

each IGBP type can be calculated. The BRDF product MCD43A1 was used for a BRDF 

analysis of each IGBP land cover type, as seen in Table 2 [11]. This product consists of 

Ross–Li parameters that can be used to generate BRDF models for each MODIS band; as 
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such, it was of great use in the BRDF analysis during the months leading up to the underfly 

event. Because the product was familiar to the authors, it was also used to help determine 

the average spectral profile of each IGBP land cover by finding the nadir reflectance of the 

BRDF models. However, it was noted after Phase 1 that since this cross-calibration would 

be using TOA reflectance values, another product should be used to determine spectral 

profiles for the land cover types. The TOA reflectance product MOD02HKM was found 

to be more suitable for this analysis. Data from November using this product were utilized 

to find the average TOA reflectance for all the IGBP land cover types, since the underfly 

took place in November 2021. These spectral profiles were needed since a direct pixel 

comparison is difficult between Landsat and MODIS. This is because MODIS has a much 

larger spatial resolution than Landsat, with 250 m resolution for bands 1 and 2 and 500 m 

resolution for bands 3 through 7. 

Because the reflectance values found were from MODIS, an SBAF was needed to 

spectrally correct the values to what Landsat 8 would measure. SCanning Imaging 

Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) has TOA 

hyperspectral profiles which were used to spectrally convert the MODIS TOA IGBP 

reflectance values to Landsat 8, which can be used to sort Landsat pixels more accurately 

[12]. Since the MODIS to Landsat 8 spectral correction was not performed in Phase 1, the 

resulting pixel sorting process should increase in accuracy from this step alone, but this 

was only the first modification to the process. The Landsat 8 average banded TOA 

reflectance values for each IGBP type are shown in Table 3. 
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Table 2. IGBP land cover types. 

Name Value Description 

Evergreen Needleleaf 

Forests 

1 Dominated by evergreen conifer trees (canopy > 2 m). Tree cover 

> 60%. 

Evergreen Broadleaf 

Forests 
2 

Dominated by evergreen broadleaf and palmate trees (canopy > 2 

m). Tree cover > 60%. 

Deciduous Needleleaf 

Forests 
3 

Dominated by deciduous needleleaf (larch) trees (canopy > 

2 m). Tree cover > 60%. 

Deciduous Broadleaf 

Forests 

4 Dominated by deciduous broadleaf trees (canopy > 2 m). Tree 

cover > 60%. 

Mixed Forests 5 
Dominated by neither deciduous nor evergreen (40–60% of each) 

tree type (canopy > 2 m). Tree cover > 60%. 

Closed Shrublands 6 Dominated by woody perennials (1–2 m height) > 60% cover. 

Open Shrublands 7 Dominated by woody perennials (1–2 m height) 10–60% cover. 

Woody Savannas 8 Tree cover 30–60% (canopy > 2 m). 

Savannas 9 Tree cover 10–30% (canopy > 2 m). 

Grasslands 10 Dominated by herbaceous annuals (<2 m). 

Permanent Wetlands 11 
Permanently inundated lands with 30–60% water cover and >10% 

vegetated cover. 

Croplands 12 At least 60% of area is cultivated cropland. 

Urban and Built-up 

Lands 
13 

At least 30% impervious surface area including building materials, 

asphalt, and vehicles. 

Cropland/Natural 

Vegetation Mosaics 
14 

Mosaics of small-scale cultivation 40–60% with natural tree, shrub, 

or herbaceous vegetation. 



16 

Permanent Snow and 

Ice 
15 

At least 60% of area is covered by snow and ice for at least 10 

months of the year. 

Barren 16 
At least 60% of area is non-vegetated barren (sand, rock, soil) areas 

with less than 10% vegetation. 

Water Bodies 17 
At least 60% of area is covered by permanent water bodies. Has 

not received a map label because of missing inputs. 

 

 

Table 3. TOA reflectance profiles for IGBP types. 

IGBP 1 2 3 4 5 6 7 8 9 10 12 14 

Blue    0.103 0.147 0.072 0.129 0.120 0.097 0.127 0.121 0.129 0.120 0.131 0.126 

Green 0.076 0.151 0.053 0.109 0.113 0.086 0.128 0.114 0.129 0.111 0.111 0.131 

Red     0.058 0.181 0.048 0.103 0.121 0.107 0.185 0.124 0.147 0.119 0.101 0.161 

NIR          0.179 0.291 0.075 0.209 0.228 0.195 0.285 0.231 0.242 0.201 0.198 0.264 

SWIR1 0.116 0.339 0.037 0.170 0.216 0.261 0.372 0.233 0.267 0.221 0.167 0.278 

SWIR2 0.055 0.262 0.021 0.117 0.148 0.195 0.306 0.164 0.199 0.157 0.099 0.220 

 

In Phase 1, the Barren IGBP type was split into three separate groups. Since it was 

noted that the IGBP system favors vegetative types, the Barren type was originally left as 

a broad class that encapsulates sand, soil, minerals, rocks, and mountains. By separating 

the Barren class into succinct types, a more accurate sorting procedure could be produced. 

In Phase 1, the groups were split by looking at the spectral histograms of the Barren class, 

specifically the NIR band since it has little atmospheric interference. There were three 
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peaks in the histogram, so it was determined that the Barren class could be split up into 

three groups. The peaks in the histogram were continent dependent, so the three groups 

could be easily sorted into three groups known as Dark Soil, Light Soil, and Sand. In Phase 

2, a more statistical approach was taken, and the Barren class was separated using the k-

means algorithm. Using the TOA MODIS product, nominally three or four different peaks 

in the histogram were observed, as seen in Figure 2. The k-means algorithm was trained to 

four groups, which gave the four distinct Barren reflectance profiles, as seen in Table 4. 

Now all that was needed was a way to properly identify Landsat pixels as each of these 

land cover types during the underfly. 

  

 

Figure 2. Global NIR reflectance distribution of barren land cover. Note that the colored stars are 

the reflectance values for each group calculated by the k-means algorithm. 
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Table 4. Separated barren reflectance profiles. 

IGBP Barren1 Barren2 Barren3 Barren4 

Blue 0.097 0.098 0.169 0.137 

Green 0.095 0.084 0.201 0.124 

Red 0.105 0.067 0.276 0.132 

NIR 0.139 0.213 0.375 0.217 

SWIR1 0.178 0.142 0.457 0.264 

SWIR2 0.153 0.071 0.398 0.201 

 

2.1.2 Global Classification of Pixels during Underfly 

Similar to Phase 1, the Extended Pseudo Invariant Calibration Site (EPICS) project 

at South Dakota State University was used to sort Landsat pixels based on the average 

IGBP profiles. “EPICS was developed to identify every potential Pseudo Invariant 

Calibration Site (PICS) on the planet” [5]. Its high levels of accuracy and stability are 

explored further in [13–15]. The algorithm works by looking at every pixel ever captured 

by Landsat 8. The EPICS project analyzed all the Landsat 8 data in the underfly month of 

November and sorted all the pixels into 500 classes using an unsupervised k-mean 

algorithm; this was the same approach the Barren cover type separation took. The k-means 

algorithm gave each of the 500 groups an average reflectance and standard deviation for 

each band. These, like Phase 1, were used to classify the 500 clusters as vegetation or soil 

using the normalized difference vegetation index (NDVI) and the bare soil index (BSI) [16, 

17]. These two Equations (1) and (2), are ratios that use the banded reflectance values of 

each cluster to determine if they are soil or vegetation. The same minimum values as Phase 
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1 were used, with an NDVI threshold of 0.2 and a BSI threshold of 0.021, indicating the 

smallest values considered to be vegetation or soil, respectively. The total number of 

clusters considered either of vegetation or soil was 358, which, as a subset, would reduce 

processing time compared to all 500. The NDVI formula is shown as 

 

NDVI  =  
RNIR−RRed

RNIR+RRed
     (1) 

 

where R is the reflectance of the red and NIR spectral bands for Landsat 8. This index 

focuses on the reflectance change between the red and NIR bands to determine if the pixel 

is vegetation. The BSI equation is 

 

BSI  =  
(RSWIR2 +RRed)−(RNIR+RBlue )

(RSWIR2 +RRed)+(RNIR+RBlue )
    (2) 

 

where R is the reflectance of the blue, red, NIR, and SWIR2 bands of Landsat 8. 

To determine which of the 358 clusters resembled each of the IGBP spectral 

profiles the best, some analysis needed to be conducted. In Phase 1, the simple average 

banded absolute difference was used to sort the clusters into IGBP types, seen in Equation 

(3). All 358 clusters were sorted into a land cover type, regardless of whether it was a good 

fit or not; however, Phase 2 took a more dynamic approach. The averaging expression in 

Phase 1 was 

 

1

Band
∑ |IGBPBand − ClusterBand|

Band

                                           (3) 
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where IGBP is the banded reflectance of the IGBP type in a particular band and Cluster is 

the reflectance of an EPICS cluster in a particular band. This summation was then divided 

by the number of bands. This approach used a new difference formula, seen in Equation 

(4). This equation is a multi-dimensional distance formula that takes all six bands from the 

IGBP profiles (Blue, Green, Red, NIR, SWIR1, and SWIR2) and finds the difference with 

its corresponding cluster banded profile, which gives a 6-dimensional distance. MODIS 

does not have a CA band equivalent, so it was not used in this comparison. The IGBP land 

cover that returned the smallest 6-dimensional distance was the classification that the 

cluster was identified as. Because Equation (4) squares the differences rather than 

averaging them as in Equation (3), it is more sensitive to changes, which made it a more 

ideal candidate for classifying clusters. This new expression is shown as 

 

√ ∑ (IGBPBand − ClusterBand)2

Band

                                                     (4) 

 

where IGBP and Cluster are the banded reflectances of their respective source. To alleviate 

the concern whether a cluster is a good match for a specific IGBP type, the standard 

deviation associated with each cluster band was employed. If an IGBP banded value was 

outside three standard deviations (sigma) away from its cluster banded value, that cluster 

was removed. Three sigma was used since it statistically covers about 99.7% of the data, 

and any clusters outside that range should not be considered as that classification. With this 

new dynamic sorting process, the total number of clusters retained was reduced to 209. 

This left only the clusters that matched up within three sigma with a land cover type. The 
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clusters filtered out of the process were low-confidence clusters, which can be defended by 

looking at the pixel counts of each group: there were over 93 billion pixels associated with 

all 358 clusters, and over 66 billion pixels in with the filtered 209 clusters. This left 58% 

of the total vegetation and soil clusters, but about 70% of the overall pixels. By filtering 

out the “edge case” clusters, higher confidence in sorting can be attained. In Phase 1, only 

a subset of the IGBP types had cluster matches; in Phase 2, all the IGBP types had at least 

one matching cluster, except Barren4, which alone was removed. For an example that 

presents the effectiveness of the classification process, Figure 3 below shows the clusters 

sorted into Barren3. 

  

Figure 3. Barren3 reflectance profile plotted against matching clusters. Note the clusters 

grouping around the banded IGBP profile. The CA band does not have an IGBP value since 

MODIS does not have a CA band equivalent. 

 

With the clusters sorted into specific IGBP land cover types, the same image 

processing workflow from Phase 1 was implemented [5]. To summarize the procedure, 
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overlapping regions in corresponding Landsat 8 and 9 images were identified. These 

overlapping zones were split up by VZAD into 0.25° slices, so a particular scene could 

have up to six VZAD observations. VZAD itself is a continuous value but, for the underfly 

analysis, has been binned up into 0.25° bins. The digital numbers (DNs) of each scene were 

converted to reflectance and radiance using physical unit conversion formulas found in the 

Landsat 8 Data Users Handbook [18]. The statistics of all the pixels in a specific IGBP type 

in an individual VZAD slice were calculated. These statistics were minimum, maximum, 

mean, and standard deviation of each instrument’s TOA reflectance, as well as the same 

statistics for the reflectance ratio of Landsat 8 to Landsat 9, which was performed for every 

band. Just like Phase 1, band 8 was processed using only scene pairs that did not require 

reprojection. Its higher spatial resolution would require resampling the images for 

reprojection, but the resampling process often introduced extra pixel artifacts. This limited 

VZAD in these scenes to within ±4°. Band 9 was similarly removed from analysis due to 

its high atmospheric absorption which made ground pixel comparison impossible. TIRS 

bands 10 and 11 were cross calibrated in radiance space only. These bands used water for 

calibration; however, there were no pure ocean scenes collected, as the only water pixels 

available were those near land, such as lakes, ocean coasts, and rivers. Other than these 

deviations, the methodology for bands 8, 10, and 11 is identical to the other bands. Instead 

of the Real-Time images from Landsat 9 Collection 2, the data used were the Tier 1 images 

updated with the values from Phase 1 in order to find any differences between Landsat 8 

and Landsat 9 after the initial OIV cross-calibration. Landsat Collection 2 is the second 

significant reprocessing endeavor of the Landsat archive, which improved the data 
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products found in Collection 1. Once all the global data were completely processed, it was 

analyzed. 

 

2.2 Data Analysis 

2.2.1 Seasonality 

As mentioned in the introduction, reflectance investigation was a larger part of 

Phase 2. Reflectance differences in vegetation, especially their seasonality, was a factor 

that helped improve the accuracy of the underfly cross-calibration analysis. With 

vegetation, the NIR band is crucial in determining whether the pixel represents healthy 

vegetation. Healthy vegetation tends to have a high signal in the NIR wavelengths, while 

is the signal is a lot lower when the vegetation is senescent. Since the NIR band is not 

greatly influenced by atmospheric effects, it was also a great candidate for TOA reflectance 

inspection. When investigating the global pixels for vegetation IGBP land cover types, a 

clear bimodal distribution was observed in the NIR band histogram (Figure 4). 

  

Figure 4. Woody Savanna IGBP global NIR band reflectance distribution. Note the two peaks in 

the distribution. 
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By separating the pixels by latitude, the source of this bimodality was determined. 

When the scenes were split at the Tropic of Cancer (23.5°N), the two peaks in the histogram 

were separated, giving two similar distributions (Figure 5). This is likely due to the 

seasonality of vegetation during the underfly: the northern hemisphere was in its winter 

during November while the southern hemisphere was in its summer during that time. The 

vegetation in the north was reaching the end of its summer cycle, so it was either dying or 

dead. This is represented in the histogram where the reflectance in the NIR band is lower 

in the northern latitudes, since the chlorophyll-like shape of vegetation’s spectral curve is 

lowered dramatically in the NIR wavelengths when it is dying. Since the tropical climate 

between the Tropic of Cancer and Capricorn allows vegetation to stay green all year round, 

the bimodal split at the Tropic of Cancer makes physical sense. This discovery was used 

to filter data in the cross-calibration analysis, which will be discussed in the next section. 

   

Figure 5. (a) Woody Savanna global NIR band reflectance distribution. This plot corresponds to 

reflectances above the Tropic of Cancer latitude. (b) This plot corresponds to reflectances below 

Tropic of Cancer. Note the peaks split up after separating by latitude.  
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2.2.2 Signal to Noise Relationship 

During Phase 1, several filters were applied to the underfly data to remove outliers 

and produce a concise cross-calibration gain. These filters included a pixel threshold, 

which filtered out scenes with fewer than 10,000 pixels of a specific IGBP type; a signal 

floor, which removed scenes with a reflectance less than 0.01; a VZAD filter, which 

removed scenes where the sensors were so far apart that the BRDF effect became 

observably nonlinear (this linearity over a short range will be described more in the 

following sections); and a ratio standard deviation filter, which filtered out scenes with a 

ratio standard deviation greater than 0.2, as a linear trend was observed which was thought 

to bias the data (Figure 6). All these filters in conjunction gave a cross-calibration result 

with a small overall standard deviation, but they also removed a lot of scenes with usable 

data, which could have biased the final results. The approach in Phase 2 was to use as much 

data as possible, so a single filter was designed to take the place of all the previous ones. 
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Figure 6. Ratio mean vs. ratio standard deviation. Note the discernable positive linear trend 

above a ratio standard deviation of 0.2 as the data drift to larger values. Since the ratio is derived 

by taking the reflectance of Landsat 8 to 9, this behavior could be a real and observable 

phenomenon. Image source: [5]. 

The signal-to-noise ratio (SNR) of the data was an aspect that was not covered in 

Phase 1, so a greater focus was brought to it in Phase 2. By better understanding this 

relationship, a well-rounded filter could be developed. The average reflectance of an 

observation (which in this case was a scene binned by 0.25° VZAD) was plotted against 

its standard deviation, giving a signal to noise relationship plot (Figure 7). In vegetative 

land covers, especially in the NIR band, two clusters can be visually observed (red ellipses 

in the figure). This behavior comes from the data’s seasonality, as mentioned previously. 

Outliers can also be observed in this plot, which could be filtered out by taking a statistical 

look at these clustering data. 

  

Figure 7. Signal to noise relationship of Woody Savanna NIR band. Note the two clusters of data 

points, which can be discerned by latitude. 
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2.2.3 Data-Driven Filtering 

By plotting the data as a heat map, where hot spots indicate scenes with higher pixel 

counts, it can be seen that scenes with low pixels counts make up most of the outliers. 

Taking this into account, an ellipse filter was developed to encompass the clusters and 

remove outliers. These ellipses have a centroid weighted by n, the number of pixels in the 

scene. All weighted calculations are with respect to n. The seasonality of the data was 

considered by assuming there are two overlapping data distributions: one in the northern 

hemisphere and one in the south. The ellipse itself is constructed by taking the weighted 

covariance of the data, Equation (5), where w is the weight of the observation, µ is the 

weighted centroid, x is the reflectance mean, and y is the reflectance standard deviation. 

Eigenvectors and eigenvalues can then be calculated from that. The eigenvalues determine 

the radius of the ellipse in the x and y directions, as well as the “tilt” of the ellipse if there 

is one. The eigenvalues scaled the size of the ellipse, along with sigma. It was d ecided to 

use three sigma, which encompassed about 99.7% of the weighted data. Anything outside 

of the ellipse was filtered out. There were several scenes filtered out by this algorithm that 

had fairly high pixel counts (over 100,000 pixels). Individual scene investigation 

determined these scenes were too cloudy to be useful for this analysis, so they were 

manually filtered out to reduce their influence in the ellipse filters. Figure 8 shows an 

example for the Barren2 land cover type. This helped the algorithm to incorporate more 

scenes overall. The weighted covariance equation is calculated by 

σ2 =
1

1 − ∑ wi
2N

i=1

∑ wi
2 (xi − μx)(yi − μy)

N

i =1

                                 (5) 
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where w is the weight of the data point, xi and yi are the location of the data point, and μx 

and μy are the location of the weighted centroid. 

 

 

Figure 8. Weighted ellipse filter for Barren2 CA band, with the eigenvectors dictating the shape 

of the ellipse. Note that in this example, the high pixel counts of the outliers “pull” the slope of 

the ellipse up. 

 

The ellipse filter has several advantages over the filters applied in Phase 1. It makes 

several of the previous filters essentially obsolete, especially the pixel threshold. Since the 

ellipse centroid and the eigenvectors were weighted by n, filtering by a minimum number 

of pixels was no longer required. The same conclusion can be reached regarding the noise 

floor, as the ellipse filter is driven by the signal to noise relationship of the data. The scene 

ratio standard deviation filter was dropped for Phase 2. It was thought that the new pixel 

sorting process would remove the linear trend in this relationship; however, the trend was 
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still present in Phase 2. Because of this, it was determined that the behavior might be a 

legitimate phenomenon, so filtering it out might bias the data. Finally, the most important 

advantage of the ellipse filter approach was that it incorporated more scenes overall as 

opposed to the filters used in Phase 1. By choosing to keep three sigma-worth of the data, 

about 99.7% of the data were kept. However, the ellipse filter did not remove the effects 

of BRDF. 

 

2.3 BRDF Observations 

As stated in the uncertainty section, the BRDF effect was the driving source of 

uncertainty in both Phase 1 and Phase 2 analyses. The biggest factor of BRDF was 

alleviated in Phase 1 with the introduction of the VZAD intercept estimator. By plotting 

the ratio between Landsat 8 and 9 against their VZA differences, a linear trend could be 

observed, at least over a restricted scale. In Phase 1, the VZAD was constrained to ±10°, 

because over that short of a range, the behavior in the data was less scattered, resulting in 

a more noticeably linear trend. This response made physical sense when compared to the 

Ross–Li models analyzed during Phase 1, which had a similar linear behavior over such a 

short range. Since a linear equation was later fit to the data to determine the VZAD 

intercept at 0°, this constraint could lead to a higher R2 value, or coefficient of 

determination, for the linear model, and a more accurate VZAD intercept. The same 

constraint was applied to Phase 2; as such, that was the second filter applied in this analysis. 

An improvement brought to Phase 2, however, was to weigh the VZAD linear fit equation 

by n to maintain consistency with the other parts of the methodology. This, in turn, led to 

a more consistent intercept value. 
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The other factor of BRDF examined was the VAAD. As formerly mentioned, the 

VAAD was not a driving factor of analysis in Phase 1, but an investigation in Phase 2 was 

conducted to determine if it had an effect on the cross-calibration gain. As expressed in the 

introduction, the Ross–Li BRDF model shows that if the sensors are viewing targets closer 

to the cross-principal plane, their differences are much smaller than if they were in the “hot 

spot” of the principal plane. If the VZAD intercept drastically changed as VAAD changed, 

then the data would need to be constrained close to the cross-principal plane. For the 

investigation, the VAAD was constrained to 20° “slices” in increments of 10°. These 

parameters were chosen since the sensors were usually within 10° VAA of each other. For 

this analysis, the BRDF model was assumed to be symmetrical on either side of the 

principal plane, reducing the scale from 360° down to 180°. Since the point of the analysis 

was to determine how close the sensors were to the principal plane, the scale was reduced 

further to 90°, since any VAADs over 90° would be closer to the principal plane again. 

This analysis was to be tested regardless of VZA, so if the worst-case range of 0–90° 

VAAD had no effect on the VZAD intercept, then the best case range from 90–180° would 

have the same if not more consistent behavior. The results section will present how much 

of an effect the VAAD of each sensor has on the final results. 

 

2.4 SBAF Correction 

The introduction covered the small differences between the spectral filters of OLI 

and OLI-2, but the Phase 1 analysis never actually corrected for them. The green band was 

the driving factor for spectral discrepancies, especially in vegetative cover types. Because 

of this, soil cover types were weighted more heavily in the green band in the Phase 1 
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analysis. However, measurement differences in the green band seemed to show up in the 

months following the calibration. Users of the Landsat data found small discrepancies in 

this band, which were thought to be calibration errors. It was unknown whether the 

inconsistencies were target-dependent, so a spectral calibration was deemed necessary to 

accurately see what was happening in this band. 

As mentioned in the introduction, spectral analysis of various land cover types was 

performed in the months leading up to the underfly. This was accomplished by taking 

spectroradiometer-measured, surface-level hyperspectral signatures and banding them 

using the OLI and OLI-2 RSRs, shown in Equation (6), calculated as 

 

ρ8 =
∫ ρ(λ)RSR8(λ)dλ

∞

−∞

∫ RSR8(λ)∞

−∞
dλ

                                                                  (6) 

 

where ρ8 is the banded reflectance of Landsat 8, ρ(λ) is the hyperspectral reflectance with 

respect to wavelength, and RSR8 (λ) is the spectral response of Landsat 8 with respect to 

wavelength. These surface-level spectra were compiled into a comprehensive library, 

which included several spectral databases: cropland data came from the GHISA library 

[19], forest materials from the ECOSTRESS database [20, 21], sand and soil information 

was found in the ICRAF-ISRIC Library [22], and snow data were comprised from the 

National Research Council of Italy Institute of Polar Sciences [23]. Most of these surface 

level signatures were measure using an Analytical Spectral Devices (ASD) 

spectroradiometer. However, the underfly cross-calibration is inherently a top of 

atmosphere (TOA) analysis, so an atmospheric correction would need to be applied to the 

spectra to accurately convey what they look like from space. The MODerate resolution 
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atmospheric TRANsmission (MODTRAN) computer code is an algorithm that is often 

used to “remove” atmosphere from data to simulate what the data look like on a surface 

level. However, it can also “add” atmospheric properties to hyperspectral surface data to 

determine how it appears from space, shown in Figure 9. For this analysis, a 1976 

atmospheric model was applied to the surface-level spectra in MODTRAN, due to its 

globally generic properties [24]. By using the same ASD-measured hyperspectral libraries 

as used in the Phase 1 spectral uncertainty analysis, SBAF correction on a TOA level was 

produced: 

 

SBAF =

∫ ρ(λ)RSR8(λ)dλ
∞

−∞

∫ RSR8(λ)∞

−∞
dλ

∫ ρ(λ)RSR9(λ)dλ
∞

−∞

∫ RSR9(λ)dλ
∞

−∞

                                                (7) 

 

where SBAF is the ratio of banded reflectance for Landsat 8 to Landsat 9. 
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Figure 9. Surface level reflectance of a white fir tree vs MODTRAN-simulated TOA 

reflectance. Note the water absorption in the longer wavelengths and the scattering due to 

aerosols in the shorter wavelengths. 

 

The Phase 2 analysis introduced several enhancements over Phase 1: a more 

optimized pixel sorting of land cover types; a deeper look at reflectance behavior including 

seasonality and signal to noise ratio; a more robust BRDF analysis; and finally, a proper 

SBAF correction. Based on the improvements implemented  for data processing as 

described in this section, a more accurate result was anticipated. 

 

RESULTS 

After evaluating the methodology of Phase 1 and finding several ways to improve 

it, the actual calculation to determine the cross-calibration ratio gains remained relatively 

untouched. That is, the same estimator was used as Phase 1: the VZAD intercept at 0°. The 

only adjustment for Phase 2 was using number of pixels (n) to weigh the linear fit equation 

(Figure 10). Each point is an observation that indicates the average ratio of a VZAD slice 

within a scene. The figure shows just how much of the data are actually along the line. 

Using the heat legend as reference, each data point is color coded as a function of how 

many pixel pairs were obtained from that observation. Briefly, dark blue points indicate 

scenes with 10,000 or fewer pixels, while bright yellow points designate observations with 

100,000 or more pixels. The same VZAD constraint of ±10° was used to avoid the 

nonlinearity of the BRDF effect as angles increase out to ±20°. The cross-calibration gain 
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values were found in both reflectance and radiance space, with the TIRS bands only 

calculated in radiance units. 

  

Figure 10. VZAD vs. ratio mean weighted linear fit. Note the colored data points which indicate 

the number of pixels per observation, with yellow points being weighted higher in the linear fit 

equation. 

 

3.1 Cross-Calibration Gains – Reflectance 

3.1.1 Weighted Variance Estimator 

The cross-calibration gain values were found in reflectance space using a ±10° 

VZAD constraint and an ellipse filter covering three sigma of the signal to noise 

relationship of the data. The reflectance ratios of Landsat 8 to Landsat 9 were plotted 

against their VZAD, and a linear fit equation weighted by number of pixels in the 

observation was calculated. The intercept was taken as the cross-calibration gain for that 

IGBP type and band. A 68% confidence interval was calculated for each linear fit, which 
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was used as 1 sigma of the uncertainty measurement. Table 5 presents the values before 

SBAF correction. 

 

Table 5. Reflectance cross-calibration gain estimates for each IGBP type before SBAF 

correction. 

  

In Phase 1, the Barren land cover types were separated from the vegetative types, 

but results were ultimately combined to give one set of values. In Phase 2, the extra step of 

separating them was deemed unnecessary. The process used to combine the values was an 

inverse weighted variance mean, Equation (8), with the standard deviation of the estimate 

being a similar weighted formula, Equation (9). These formulas inversely weigh each value 

by their variances; the higher the variance, the lower the weight. The same process was 

applied to Phase 2 since it is a robust method for combining all the values. The formulas 

are effective in using all the data available by giving the values with lower confidence less 

weight than the higher confidence values. The weighted variance estimator values for 

Cross-Cal 
Gains 

Barren1 Barren2 Barren3 ClosedShrub Crops DecBroad DecNeed EvBroad 

Band Mean ±Sigma Mean ±Sigma Mean ±Sigma Mean ±Sigma Mean ±Sigma Mean ±Sigma Mean ±Sigma Mean ±Sigma 

CA 1.000 0.014 0.999 0.014 0.997 0.021 0.999 0.012 0.998 0.016 0.999 0.013 1.000 0.014 1.000 0.015 

Blue 1.001 0.016 1.000 0.015 0.998 0.026 1.000 0.014 1.000 0.018 1.001 0.016 1.001 0.017 1.002 0.019 

Green 0.996 0.020 0.993 0.021 0.997 0.033 0.995 0.017 0.994 0.028 0.995 0.025 0.992 0.024 0.999 0.024 

Red 1.002 0.029 1.001 0.027 0.997 0.032 0.998 0.019 0.999 0.036 1.001 0.034 1.000 0.038 1.001 0.031 

NIR 1.003 0.031 1.005 0.028 0.998 0.024 0.999 0.023 1.002 0.031 1.001 0.029 1.008 0.054 1.001 0.026 

SWIR1 1.010 0.045 1.014 0.037 0.997 0.026 1.002 0.021 1.008 0.055 1.007 0.040 1.020 0.069 1.002 0.027 

SWIR2 1.009 0.040 1.018 0.054 0.997 0.032 1.000 0.029 1.009 0.060 1.007 0.089 1.028 0.082 1.001 0.035 
Pan 1.002 0.019 0.996 0.021 1.005 0.038 1.000 0.015 0.993 0.022 1.000 0.015 0.968 0.034 1.005 0.023 

 EvNeed Grass MixedFor NatVeg OpenShrub Savanna WoodySav 
  
  

Band Mean ±Sigma Mean ±Sigma Mean ±Sigma Mean ±Sigma Mean ±Sigma Mean ±Sigma Mean ±Sigma   

CA 0.999 0.014 1.000 0.013 1.000 0.015 0.999 0.013 0.999 0.019 0.999 0.012 1.000 0.015   

Blue 1.001 0.014 1.001 0.014 1.002 0.018 1.001 0.015 1.001 0.021 1.000 0.020 1.002 0.018   

Green 0.992 0.021 0.996 0.017 0.996 0.028 0.998 0.020 1.000 0.022 0.996 0.022 0.997 0.024   

Red 0.999 0.031 1.000 0.022 1.003 0.026 1.000 0.030 1.000 0.022 1.000 0.022 1.003 0.032   

NIR 1.004 0.039 1.001 0.024 1.004 0.024 1.001 0.022 1.000 0.017 1.001 0.022 1.004 0.027   

SWIR1 1.011 0.052 1.005 0.027 1.011 0.034 1.002 0.027 0.999 0.019 1.003 0.025 1.009 0.034   

SWIR2 1.016 0.051 1.003 0.032 1.012 0.041 1.001 0.034 0.999 0.024 1.002 0.031 1.010 0.043   

Pan 0.984 0.024 1.001 0.019 1.001 0.019 1.003 0.017 1.006 0.018 1.003 0.016 1.004 0.016   
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reflectance before spectral correction are shown in Table 6. The inverse weighted variance 

mean formula is given by 

ŷ =

∑ yi

σi
2i

∑
1
σi

2i

                                                                       (8) 

where yi is the ratio mean of each IGBP type and σ i is the sigma of each IGBP type. The 

standard deviation of this inverse weighted mean is 

 

Var(ŷ) =
1

∑ 1
σi

2i

                                                                  (9) 

where the same variables are given [25]. 

 

Table 6. Inverse-weighted mean variance estimation before SBAF correction.  

 
Inverse-Weighted 

Variance Estimator 

Band Mean Std Dev 

CA 0.999 0.004 

Blue 1.001 0.004 

Green 0.996 0.006 

Red 1.000 0.007 

NIR 1.001 0.007 

SWIR1 1.004 0.008 

SWIR2 1.004 0.010 

Pan 1.000 0.005 
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These values are within the 0.5% uncertainty budget suggested in Phase 1 of the 

analysis; however, this table shows the results before spectral correction has been applied 

or BRDF effects have been analyzed. 

 

3.1.2 VAAD Influence on Results 

As stated in the previous section, the VAAD of each sensor has an effect on the 

cross-calibration gains. If there was a large difference in ratio means as the sensor views 

moved closer to the cross-principal plane, then the largest VAADs would need to be used 

to reduce the effect of the “hot spot” of the BRDF model. To test this, the same linear fit 

equation was calculated only for data with specific 20° VAAD slices incremented by 10°. 

Figure 11 shows the VZAD intercept as VAAD increases from 0° to 90° for the CA band, 

the wavelength most influenced by atmosphere effects. Figure 12 shows the same trend in 

the NIR, albeit with slightly more spread, likely due to the atmospheric effects being 

lessened at longer wavelengths. The lone outlying IGBP type that appears to be varying 

outside the others is Deciduous Needleleaf. Its behavior is likely caused by its low signal 

value, where all seven bands have average reflectance values of around 0.10. This results 

in a low signal-to-noise ratio (SNR), which was likely the cause of Deciduous Needleleaf’s 

atypical performance. 
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Figure 11. The VZAD intercept for all IGBP types as VAAD increases from 0–90° in the CA 

band. Note how the intercepts are about ±0.5% for all VZAD slices, except at the 70 < VAAD < 

90 range, which is likely driven by number of samples; there are very few underfly scenes at that 

range. 

  

Figure 12. The VZAD intercept for all IGBP types as VAAD increases from 0–90° in the NIR 

band. Note how the intercepts are about ±1% for all VZAD slices, except for the Deciduous 

Needleleaf class, which has a very low SNR, which likely drives its atypical performance. The 
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“tightest” VAAD slice appeared to be the 50 < VAAD < 70 range, which had the greatest number 

of samples during the underfly, so a t-test was performed to test if the other VAAD slices were 

statistically similar to it. 

 

Briefly, the results appear to show each VAAD slice is similar to the next, with 

each IGBP behaving about the same. The most consistent behavior appears in VAAD slices 

40 < VAAD < 60 and 50 < VAAD < 70. This behavior seems to be driven by the number 

of samples, since these VAAD slices have about three or four times the samples of the 

other slices. These VAADs occur when the instruments are between World Reference 

System (WRS) rows 30 and 55, which are all above the equator. There is a larger amount 

of physical land mass in the northern hemisphere versus the southern hemisphere, so these 

VAADs having a larger number of samples makes sense. In contrast, VAAD slices close 

to the principal plane and cross-principal plane have much smaller sample sizes. For 

reference, the instruments consistently have around a 98° viewing azimuth angle with 

respect to a target, so again the more consistent VAADs in the northern hemisphere, where 

the solar azimuth angle with respect to the Earth is further south, can be confirmed when 

discussing the problem geometrically. 

To prove that each of the VAAD slices are statistically unchanging, a t-test was 

performed, which compared all the VAADs to 50 < VAAD < 70 in each IGBP type and 

band using an alpha of 99%, where any VAAD slice with a value greater than one percent 

means it is statistically the same as 50 < VAAD < 70. The results of this t-test are shown 

in Appendix A, with tables for the CA and NIR bands given as examples, showing that the 

worst performing VAAD slice is 0 < VAAD < 20. These results make sense given that 

there are a low number of samples in this slice, and the sensors are in the same azimuth 
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plane as the sun with respect to their target; this increases BRDF uncertainty, as stated in 

the introduction. The t-test also showed that as wavelength increases, the effects of 

atmospheric scattering are decreased, which in turn increases variation as the target 

becomes more visible to the sensor. Solar irradiance also decreases at these longer 

wavelengths, which might play a factor in the increased variation. Other than these few 

aspects, VZAD intercept remains largely unchanged as VAAD increases, so all VAAD 

slices past 0 < VAAD < 20 are practical for this analysis. The consistent VZAD intercept 

behavior as VAAD increases was expected after the Phase 1 Ross–Li model analysis, and 

it was reassuring to observe the same trend in the underfly analysis. 

 

3.1.3 SBAF Correction 

The spectral library compiled at SDSU was used to find the best spectral match for 

each of the IGBP types. After applying a 1976 MODTRAN model with default settings to 

each of the hyperspectral signatures, Equation (4) was used to find the best match. The 

Landsat 8 banded spectra from SDSU were scaled to each of the IGBP types to find the 

best shape that matched, since that mattered more for SBAF than the magnitude. This 

normalization process more accurately matches hyperspectral signatures to multispectral 

profiles since the shape of the profile matters much more than the scale of it with respect 

to SBAF. Figure 13 shows a couple examples indicating the small distance between the 

multispectral profile and its matching hyperspectral counterpart. 
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Figure 13. IGBP to Banded hyperspectral signature matched examples. Note the score in the 

subtitles of the plots, as it is the resulting value from Equation (4). The lower the value,  the closer 

the spectral match of the IGBP profile to the spectral library profile. The results show the spectra 

are about one to two reflectance units different from their corresponding match. The number to 

the left of the score signifies the sample in the spectral library used to match. 

 

After the hyperspectral signature was chosen, it was banded using the Landsat 9 

RSRs. These values were used to calculate the SBAFs for each of the IGBP types, as shown 

in Table 7. 

 

Table 7. SBAFs for each of the IGBP land cover types. 

IGBP CA Blue Green Red NIR SWIR1 SWIR2 Pan 

EvNeed 0.998 0.999 0.998 1.000 1.000 1.001 1.004 1.005 

EvBroad 0.999 1.000 1.000 1.001 1.000 1.001 1.001 0.997 

DecNeed 0.998 0.999 0.998 1.000 1.000 1.001 1.003 1.006 

DecBroad 0.998 0.999 0.998 1.000 1.000 1.001 1.002 1.004 

Mixedfor 0.999 0.999 0.998 1.000 1.000 1.002 1.002 1.005 

ClosedShrub 0.999 1.000 0.999 1.001 1.000 1.001 1.002 1.000 
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OpenShrub 0.999 0.999 1.001 1.001 1.000 1.000 1.000 0.992 

WoodySav 0.998 0.999 0.998 1.000 1.000 1.001 1.002 1.003 

Savanna 0.999 1.000 0.999 1.001 1.000 1.001 1.001 0.999 

Grass 0.998 0.999 0.999 1.001 1.000 1.001 1.001 0.999 

Crops 0.999 0.999 0.999 1.000 1.000 1.002 1.003 1.003 

NatVeg 0.999 1.000 0.999 1.001 1.000 1.001 1.002 1.000 

Barren1 0.998 0.999 0.999 1.001 1.000 1.001 1.001 0.999 

Barren2 0.998 0.999 0.998 0.999 1.000 1.002 1.003 1.009 

Barren3 1.000 1.000 1.002 1.001 1.000 1.000 1.000 0.992 

 

The results of spectral correction show negligible differences in most of the bands 

across IGBP types, with a couple of notable exceptions in the pan band, which has 

differences up to 0.9%. The purpose of the pan band is focused more on spatial accuracy 

than spectral, so this result is not surprising. The NIR band is virtually unaffected by SBAF, 

while the green and SWIR2 bands show differences between soil and vegetative targets. 

Since the green band has some SBAFs above and below unity depending on land cover 

type, the cluster classification step in the methodology was confirmed to be incredibly 

important for spectral correction. These SBAFs were applied to the cross-calibration gains 

to find the SBAF-corrected results (Table 8). 

 

Table 8. SBAF-corrected cross-calibration gains. The inverse-weighted mean variance estimation 

results were the values recommended to USGS EROS for final reflectance cross-calibration. Note 

how the values are within 0.5% of unity, which further supports how effective Phase 1 was.  
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SBAF 

Corrected 
Barren1 Barren2 Barren3 ClosedShrub Crops DecBroad DecNeed EvBroad 

Band Mean ±Sigma Mean ±Sigma Mean ±Sigma Mean ±Sigma Mean ±Sigma Mean ±Sigma Mean ±Sigma Mean ±Sigma 

CA 1.001 0.014 1.001 0.015 0.997 0.021 1.001 0.012 1.000 0.016 1.001 0.013 1.002 0.014 1.001 0.015 
Blue 1.002 0.016 1.002 0.015 0.998 0.026 1.000 0.014 1.001 0.018 1.002 0.016 1.002 0.017 1.003 0.019 

Green 0.997 0.020 0.995 0.021 0.995 0.033 0.996 0.017 0.995 0.028 0.996 0.025 0.993 0.024 0.999 0.024 

Red 1.001 0.029 1.001 0.027 0.996 0.032 0.998 0.019 0.999 0.036 1.001 0.034 1.000 0.038 1.000 0.030 
NIR 1.003 0.031 1.005 0.028 0.998 0.024 0.999 0.023 1.002 0.031 1.001 0.029 1.008 0.054 1.001 0.026 

SWIR1 1.009 0.045 1.011 0.037 0.997 0.026 1.001 0.021 1.006 0.055 1.005 0.040 1.018 0.069 1.001 0.027 
SWIR2 1.008 0.040 1.015 0.054 0.996 0.032 0.999 0.029 1.006 0.060 1.005 0.089 1.026 0.082 1.000 0.035 

Pan 1.003 0.019 0.988 0.021 1.013 0.038 1.000 0.015 0.989 0.022 0.996 0.014 0.962 0.034 1.009 0.023 

 EvNeed Grass MixedFor NatVeg OpenShrub Savanna WoodySav 

Weighted 

Variance 
Estimator 

Band Mean ±Sigma Mean ±Sigma Mean ±Sigma Mean ±Sigma Mean ±Sigma Mean ±Sigma Mean ±Sigma Mean Std Dev 

CA 1.000 0.015 1.001 0.013 1.001 0.015 1.001 0.013 1.000 0.019 1.000 0.012 1.002 0.015 1.001 0.004 
Blue 1.002 0.014 1.001 0.014 1.002 0.018 1.002 0.015 1.002 0.021 1.001 0.020 1.002 0.018 1.002 0.004 

Green 0.994 0.021 0.996 0.017 0.998 0.028 0.998 0.020 0.999 0.022 0.997 0.022 0.998 0.024 0.996 0.006 
Red 0.999 0.031 0.999 0.022 1.003 0.026 1.000 0.030 0.999 0.022 0.999 0.022 1.002 0.032 1.000 0.007 
NIR 1.004 0.039 1.001 0.024 1.004 0.024 1.000 0.022 1.000 0.017 1.000 0.022 1.003 0.027 1.001 0.007 

SWIR1 1.009 0.052 1.004 0.027 1.009 0.034 1.000 0.027 0.999 0.019 1.002 0.025 1.008 0.034 1.003 0.008 

SWIR2 1.013 0.050 1.002 0.032 1.009 0.041 1.000 0.034 0.999 0.024 1.001 0.031 1.008 0.042 1.002 0.010 
Pan 0.978 0.023 1.002 0.019 0.997 0.019 1.004 0.017 1.015 0.018 1.004 0.016 1.001 0.016 0.999 0.005 

 

3.2 Cross-Calibration Gains – Radiance 

The radiance cross-calibration followed the same core steps as the reflectance 

process, with the main difference being the addition of the TIRS bands. These bands were 

calibrated using only water pixels, and these pixels were extracted from the same underf ly 

images as the rest of the IGBP land covers. This meant that the water pixels were not from 

deep-ocean images, but instead coastlines, rivers, and lakes. Because water’s emissivity is 

so high, the TIRS bands did not require a spectral correction, while the other bands did. 

This SBAF correction was calculated by applying the Thuillier irradiance model to the 

same land cover hyperspectral signatures used in the reflectance process to determine the 

radiance of each IGBP type, as shown in Figure 14. The Thuillier model was chosen due 

to its wide use in the remote sensing community [26]. However, the model does have a 

mean uncertainty around 3%. The ratios of these radiances were then taken to calculate the 

radiance SBAFs for each land cover. The SBAF-corrected radiance cross-calibration gain 

estimates are shown in Table 9. 
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Figure 14. Thullier irradiance model. This irradiance was applied to the reflectance curves in the 

SDSU-compiled spectral library to determine the radiance of each sample.  

 

Table 9. Radiance SBAF-corrected cross-calibration gain estimates. These values are further 

from unity than the reflectance values, which was the main focus of Phase 1.  

 
Inverse-Weighted 

Variance Estimator 

Band Mean  Std Dev 

CA 1.001  0.004 

Blue 0.999  0.004 

Green 0.997  0.006 

Red 0.996  0.007 

NIR 0.996  0.007 

SWIR1 0.992  0.008 

SWIR2 0.990  0.010 

Pan 0.996  0.005 
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3.3 Uncertainty Analysis 

The Phase 1 Underfly analysis did not include an exhaustive uncertainty analysis, 

primarily due to time constraints. Instead, it relied on rough estimates from spectral target 

analysis and the use of the VZAD intercept approach to reduce the uncertainty due to 

BRDF effects, which resulted in an estimated uncertainty within 1%. In this effort, a 

comprehensive study of uncertainty due to spectral, geometric, and BRDF effects was 

undertaken and is presented in the following sections. 

 

3.3.1 Spectral Uncertainty 

As stated in the introduction, spectral uncertainty came in the form of band pass 

differences between the sensors as well as the spectral differences between targets. Each 

sensor has 14 focal plane modules (FPM) for each band. The SBAF correction for Phase 2 

was calculated using the band averages of each sensor, so there was not an FPM-to-FPM 

correction, resulting in some uncertainty. The SBAF correction step in Phase 2 corrected 

for several generic land cover types across a single generic atmospheric model; this model 

did not account for different water absorption levels or aerosol profiles, which again 

resulted in some uncertainty. To quantify all these uncertainties, different atmospheric 

profiles were simulated using MODTRAN at three different water levels and using three 

different aerosol profiles. An example including all nine combinations with the land cover 

Band 10 0.998  0.008 

Band 11 1.010  0.008 
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Barren3 is shown in Figure 15. By taking the SBAF of each of Landsat 8’s 14 FPMs and 

L9’s 14 FPMs, the sensors uncertainty can be quantified as well. The total number of 

simulations used in the spectral uncertainty analysis can be calculated by taking 14 L8 

FPMs, 14 L9 FPMs, 15 IGBP land cover types, and nine atmospheric profiles, which 

resulted in 26,460 simulations. The SBAF for each simulation was calculated, with the 

average SBAF and standard deviation being shown for each band in Table 10. The standard 

deviation can be considered the total spectral uncertainty associated with Phase 2 since this 

is an exhaustive SBAF analysis. As can be seen below, the uncertainties were all less than 

a quarter of a percent, with the largest being the pan band, which is the broadest spectral 

band. 

  

 

Figure 15. Barren3 atmospheric profiles for spectral uncertainty analysis. Note there are three 

aerosol profiles and three water absorption profiles, which, combined, give a total of nine 

combinations. This large range of atmospheric profiles gave the spectral uncertainty analysis 

enough simulations to cover all possible scenarios during the underfly.  
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Table 10. Spectral uncertainty table. Uncertainty units are reflectance. 

Band CA Blue Green Red NIR SWIR1 SWIR2 Pan 

Ratio Mean 0.9989 0.9995 0.9992 1.0004 1.0001 1.0011 1.0013 1.0009 

Uncertainty 0.0012 0.0007 0.0010 0.0007 0.0008 0.0017 0.0015 0.0022 

 

3.3.2 BRDF Uncertainty 

Since there was no BRDF correction in the underfly analysis, the BRDF uncertainty 

study focused more on the uncertainty associated with the VZAD intercept estimation 

approach. For the BRDF uncertainty analysis, VZAD was binned up into 1° bins to save 

on processing time that non-integer values would have required. Each VZAD angle had 

several sensor viewing angles that could be observed in it. For example, a VZAD of 1° 

could have Landsat 8 viewing a target at a VZA of 1° and Landsat 9 viewing at 0° where 

the reflectance ratio could be a set value, or L8 could be at 2° VZA and L9 at 1° VZA, with 

a slightly different reflectance ratio. VZAD of 1° has up to 14 different observations, all 

with slightly different reflectance ratios between them, where VZA −6° and −7° exhibited 

a ratio up to several percent different than VZA 7° and 6°. This disparity only increased as 

VZAD increased out to 10°, which was the cutoff for the VZAD intercept estimator. These 

differences were at their greatest when the sensor was in the principal plane, that is, when 

the sensor and sun have the same azimuth angle with respect to a target. All BRDF analysis 

took place in the principal plane to determine the worst possible outcome. 

While this difference could be measured using BRDF models, it changes from 

cover type to cover type, and includes uncertainty within a specific land cover type. This 

means the VZAD uncertainty increases as VZAD increases from 1° to 10°. This effect also 
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appears in negative VZADs on the left side of the intercept, so the effect is an absolute 

function, resulting in a “bowtie” shape of uncertainty. This bowtie effect is most prominent  

when measuring the BRDF uncertainty in the principal plane, which is the worst -case 

scenario. Because most of the underfly data takes place in the VAAD slice 50 < VAAD < 

70, the bowtie effect is not visibly observed in VZAD versus reflectance mean plot; 

however, an uncertainty analysis should look at the worst possible case for study to 

determine how large uncertainty could be. By isolating and assuming the only differences 

between the sensors is viewing angle in this analysis, the BRDF uncertainty can be 

expected to be mirrored across the intercept, meaning all analysis could be performed using 

positive VZAD values. The uncertainty at the VZAD intercept was interpolated by finding 

the uncertainty at every integer VZAD angle and fitting a linear trend to the error bars, 

which can be seen in Figure 16. The resulting intercept from the error bars would be 

considered the BRDF uncertainty at VZAD = 0°. 

The uncertainty within a single VZAD was calculated using the MODIS Ross–Li 

BRDF parameters studied during Phase 1 of the analysis. 100,000 random models of each 

IGBP type were used, along with three different sun angles, to simulate a wide range of 

data. The sun angles chosen were the angles at the northernmost point of the underfly, the 

southernmost point, and a sun position near the equator to cover most scenarios. As 

previously mentioned, VZAD = 1° could have a total of 14 different observations, while 

VZAD = 10° could only have five observations, with a VZA cutoff of 7°. This meant that 

with 100,000 models at three sun positions, VZAD = 1° would have 4.2 million ratio means 

in each band and IGBP type, while VZAD = 10° has 1.5 million of these samples. The 

median and median absolute deviation (MAD) of all the samples in each VZAD were found 
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to create the type of plot found in Figure 16, where the points are the median and the error 

bars are the MAD. Each MODIS band was modelled , which meant the Landsat coastal 

aerosol band and panchromatic band did not have MODIS equivalents. When results were 

simulated, uncertainties for these bands were estimated using linear extrapolation from the 

green and blue bands out to the CA band, while a root mean square (RMS) of red, green, 

and blue was used to determine the pan band results. The intercept uncertainties of each 

IGBP type in each band were found and combined across IGBP types using their RMS 

values; results are shown in Table 11. 

 

  

Figure 16. BRDF uncertainty at the VZAD intercept. Note that the “bowtie” effect is prominent 

when looking at the BRDF uncertainties while exclusively in the principal plane, which gave the 

worst-case scenario for uncertainty. The error bars on the VZAD intercept are the estimated 

BRDF uncertainty at VZAD = 0° based on the uncertainties of VZADs = 1–10°. This value was 
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averaged with the VZAD intercept uncertainties of every IGBP type in each band to find the 

overall BRDF uncertainty for all the bands. 

 

Table 11. BRDF uncertainty table. 

Band CA Blue Green Red NIR SWIR1 SWIR2 Pan 

Uncertainty 0.0007 0.0011 0.0024 0.0015 0.0026 0.0017 0.0009 0.0017 

 

3.3.3 Geometric Uncertainty 

The geometric uncertainty analysis focused on pixel shift error. As stated by USGS, 

the geometric alignment of Landsat products is “expected to be consistent to within 12 m”; 

as such, a sub-pixel geometric analysis was deemed necessary [18]. The analysis was 

performed by taking the original underfly image-overlapping script and shifting the 

Landsat 9 image up by one pixel. The L8 to L9 reflectance ratio of the image pair was 

compared to the original to determine the pixel shift error. This same process was 

conducted for a two pixel shift. The ratio mean consistently increased as pixel shift 

increased, which was due to the way ratio mean was calculated in a scene. Assume in a 

normal distribution that a reflectance ratio is just as common as its inverse. If those two 

values were averaged, their mean would be greater than one. For example, a ratio of 2 and 

1⁄2 are inverses of each other and their average is 1.25. The ratio mean distribution also 

becomes skewed right, with a longer tail on the right. This overpowers the values on the 

left of the distribution and forces the mean greater than 1. As pixel shift increases, the ratio 

mean always increases, which can be seen as a statistical bias. The spatial resolution of 

bands 1 through 7 is 30 m, so the geometric bias at 12 m was estimated. This was 

accomplished by interpolating the ratio mean value at pixel shift 0.5, which is a slight 
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overestimation at 15 m shift, shown in Figure 17. The difference between the interpolated 

value and the value at pixel shift 0 was considered the introduced geometric bias at about 

12 m. Because the pan band spatial resolution is 15 m, the interpolation step was skipped 

and the difference between pixel shift 1 and 0 was the estimated geometric bias. The bias 

across IGBP types and bands were combined using their RMS values; results are shown in 

Table 12. 

  

Figure 17. Geometric bias plot. Pixel shift 0 has an uncertainty of ~1/3 pixel, so the bias 

introduced at that value needed to be determined. The ratio value between 0 and 1 at 0.5 was  

interpolated, denoted by *. Since the bias at pixel 0.5 is likely larger or equal to the bias 

introduced at ~1/3, that value was used to overestimate the bias as a worst-case scenario. The 

difference between 1.00984 and 1.00267 was determined to be the geometric bias on the SWIR2 

band, being 0.00717. 
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Table 12. Geometric bias table. 

Band CA Blue Green Red NIR SWIR1 SWIR2 Pan 

Uncertainty 0.0001 0.0002 0.0006 0.0020 0.0055 0.0080 0.0081 0.0007 

 

3.3.4 Total Uncertainty 

Once all three main aspects of uncertainty were quantified in each band, Equation 

(10) was used to combine them into a total uncertainty: 

 

𝜎𝑡𝑜𝑡𝑎𝑙 = 𝜎𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 + √𝜎𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙
2 + 𝜎𝐵𝑅𝐷𝐹

2                                    (10) 

 

where σ is the corresponding uncertainty contributions for spectral, BRDF, and geometric, 

respectively. The spectral and BRDF contributions are random uncertainties, so they could 

use the root sum of squares (RSS) formula. The geometric contribution was a bias due to 

it always being a positive additive value, so it had to be added directly into the total. The 

total uncertainty for each band is shown in Table 13. When compared to the inverse-

weighted estimator standard deviations in Table 8, the total uncertainty values follow a 

similar trend, with the shorter wavelengths having the highest precision and the SWIR 

bands having the lowest precision. The largest contribution to total uncertainty is the 

geometric bias, so the main driving factor to the standard deviation on each IGBP type in 

Table 8 may very well be the geometric bias. 
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Table 13. Total uncertainty table. 

Band CA Blue Green Red NIR SWIR1 SWIR2 Pan 

Uncertainty 0.0014 0.0013 0.0027 0.0026 0.0062 0.0084 0.0083 0.0029 

 

DISCUSSION 

The results of the Phase 2 analysis provided insights into the advantages that are 

possible with an underfly maneuver. The main drawback with the Phase 1 analysis was the 

short amount of time available during OIV to process the data, analyze it, and provide an 

accurate set of values for the cross-calibration. The main benefits of the Phase 2 process 

were its more consistent and physics-driven processing and statistical analysis of the data, 

which came from a better understanding of the underfly data set. Since the Phase 2 analysis 

used Collection 2 Tier 1 images that had the Phase 1 cross-calibration results applied to 

them, any deviations from unity would be considered the corrections to the current cross-

calibration gains. 

 

4.1 Results Analysis 

The first point that needed addressing in Phase 1 was the spectral uncertainty. Since 

the analysis period of Phase 1 was so short, a proper spectral correction was not applied. 

The Phase 2 effort attempted to solve this problem by finding hyperspectral matches to 

each of the derived IGBP land cover type profiles. This was accomplished with the use of 

the TOA reflectance MODIS product MOD02HKM to derive the IGBP reflectance 

profiles. These profiles were used to sort the SDSU EPICS clusters to their closest IGBP 

land cover type. Integrating the TOA MODIS product into the methodology instead of the 
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surface level MODIS BRDF product utilized in Phase 1 removed a potentially significant 

source of error of said profiles. The algorithm used to sort the clusters was also improved 

to remove any clusters that were not within three standard deviations of the MODIS profile, 

in order to retain the best pixels for this analysis. 

This spectral matching was designed to group all like pixels, which could then be 

SBAF corrected once the underfly data were processed. In Phase 1, a weighted mean was 

used instead of SBAF correcting Landsat 9 to look like Landsat 8. The soil land cover type 

was weighted more heavily in the combined values due to its low spectral uncertainty in 

the green band. Phase 2, alternatively, found the best hyperspectral match to each of the 

IGBP land cover types in order to SBAF correct Landsat 9. These hyperspectral signatures 

came from surface-level spectroradiometer measurements and were converted to TOA 

reflectance using MODTRAN simulations, which again would improve overall accuracy 

since this was a TOA cross-calibration. The SBAF values shown in Table 7 showed that 

the spectral discrepancies between L8 and L9 were minimal, with the largest differences 

found in the pan band. These small spectral differences were due to the engineering effort 

to make OLI and OLI-2 near clones of each other. 

The next improvements were found in the data analysis and filtering. Looking at 

the reflectance values across the globe, a phenomenon was discovered: the reflectance 

values of vegetation were darker in the northern latitudes compared to the south, especially 

in the NIR band. This was caused by the seasonality effects of vegetation. Since the 

northern hemisphere was in its winter season in November, the month of the underfly, the 

reflectance of vegetation was significantly darker when compared to that of the southern 

hemisphere, which was in its summer season. This observation led to better understanding 
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of the underfly data set, which in turn allowed for more refined filtering when it came to 

removing outliers. The Phase 2 analysis focused on a more data-driven outlier rejection 

approach that, in the end, kept significantly more data when compared to that of Phase 1. 

Phase 1 used aggressive filters such as a noise floor filter and a minimum pixel count 

threshold, which were both made obsolete with the statistic-based ellipse filter. This filter 

weighted each observation by its pixel count and used a 3-sigma ellipse to encompass about 

99.7% of the total data for each IGBP type. This was not conducted to separate the data 

into distinct sets, but rather to retain as much good data as possible by understanding the 

bimodality of the data to remove outliers. This approach led to larger error bars with lower 

precision. However, Phase 2 should have a higher accuracy when compared to Phase 1 

because more data were used in its analysis. The aggressive filters in Phase 1 could have 

introduced biases or artifacts to the results, while Phase 2 gave a more comprehensive look 

at the underfly data. 

After filtering the data, the cross-calibration gain was determined using the same 

VZAD intercept method used in Phase 1, which accounted for the BRDF effect with respect 

to view zenith angle. The uncertainty regarding how the VAADs of each sensor affects the 

cross-calibration gain was determined to be minimal, as the value did not significantly 

change as VAAD increased. Once the cross-calibration gain for each IGBP type in every 

band was determined, an SBAF was applied to each one. Finally, the results were combined 

using an inverse-weighted variance mean formula. The reflectance results after SBAF 

correction showed that the Phase 1 calibration was a good initial calibration, as the values 

in Bands 1 through 7 showed differences of less than 0.5%. SBAF correction did not 

change the final results significantly, so the spectral uncertainty analysis performed during 
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Phase 1 was accurate. The radiance results were slightly less encouraging when compared 

to the reflectance results, but this is likely due to the additional 3% uncertainty introduced 

in the solar irradiance model that reflectance space does not have. 

The final results showed that the Phase 1 cross-calibration was a good first attempt, 

since all of the differences from unity in reflectance space were less than 0.5%. The 

radiance results, however, had a maximum difference of 1% in the SWIR2 band. The 

values given in Tables 8 and 9 were recommended to USGS EROS for a calibration update 

of Landsat 9. Since these values came after the initial calibration and include SBAF 

corrections, they represented the real differences between the sensors following the Phase 

1 calibration. The standard deviations in both radiance and reflectance space were as high 

as 1%, so it is difficult to determine the significance of these changes. Uncertainty analysis 

was performed to determine the actual uncertainty introduced spectrally by looking at 

FPM-to-FPM differences, the BRDF uncertainty by analyzing Ross–Li models of each 

IGBP land cover types, and the geometric pointing uncertainty by performing a pixel shift 

analysis. The combined uncertainties of these analyses were shown in Table 13 and 

demonstrate that the cross-calibration was well within the proposed 1% uncertainty budget. 

 

4.2 Future Underfly Maneuvers 

The methodology constructed in Phase 1 and Phase 2 could easily be used as the 

foundation for the process to cross-calibrate future Landsat missions or any other 

spacecraft pair that is designed to perform an underfly maneuver during orbital insertion. 

The driving factor of uncertainty for the Landsat 8 and 9 underfly was the BRDF effect, 

especially with respect to the view zenith angle differences between the sensors. This was 
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accounted for by taking the reflectance ratio at the VZAD intercept at 0°, and this technique 

can be used in any future mission. Spectral uncertainty was the next biggest factor, thus 

spectral correction would likely need to be considered. OLI and OLI-2 were nearly 

identical sensors spectrally, so an SBAF might have more of an effect in another mission 

depending on how spectrally similar the sensors are. Compared to Landsat 8 and 9, whose 

RSRs were essentially the same, missions like the Landsat 7 and 8 Underfly had a much 

larger spectral disparity between the sensors. The small total uncertainties obtained in the 

Landsat 8 and 9 analysis were due, in large part, to the minimized spectral differences. 

However, if one sensor was a hyperspectral sensor, SBAF would not need to be considered 

at all. The Landsat 8 and 9 underfly used the SDSU EPICS clusters to classify global pixels 

as specific land cover types, which turned almost every part of the world into a region of 

interest (ROI); as such, a similar system is recommended for future endeavors. A dif ferent 

set of global IGBP land cover type profiles would likely need to be derived, specifically in 

the month the subsequent underfly takes place. This would allow for the greatest amount 

of global spectral accuracy. Teams leading similar underfly maneuvers may use this paper 

to help develop their process for cross-calibration. 

 

CONCLUSIONS 

The underfly maneuver for Landsat 9 was performed in mid-November 2021, 

during which the instrument collected images alongside its virtual twin, Landsat 8. These 

instruments were nearly identical, with their sensors designed to be as similar as possible. 

By imaging the same areas at the same time and at nearly identical locations, an optimal 

calibration opportunity was created. By considering three sources of uncertainty (spectral, 
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angular, and pointing), an initial cross-calibration was performed before the end of OIV. 

The results from the Phase 1 analysis of the Landsat 8 and Landsat 9 underfly were a good 

first attempt at calibrating Landsat 9, but several shortcomings were discovered in the 

months following that first analysis, which Phase 2 was designed to improve upon. These 

improvements included more robust land cover type spectral matching, SBAF correction, 

and physics-based, statistically-driven data filtering. 

The underfly data filtering was improved by splitting the data into two groups based 

on latitude, specifically separating the northern and southern hemispheres. The underfly 

calibration effort needed a proper understanding of vegetative seasonality, so that approach 

is recommended for any global analysis. This change over the Phase 1 analysis led to a 

better understanding of the underfly maneuver and allowed for more data to be used. The 

larger amount of data gave a more comprehensive look of the underfly event as a whole. 

The elliptical filtering process was an effective method that let the data drive the filters 

based on physical properties and statistics compared to other ad-hoc filtering approaches 

that might force artifacts and biases into the data. The BRDF analysis proved that almost 

all VAAD slices in the underfly were viable for the cross-calibration analysis. The 

difference in azimuth angle between the sun and a sensor with respect to a target showed 

no significant effect on the cross-calibration gain ratio, except when viewing along the 

principal plane. 

The enhancements in the methodology led to the results in Tables 8 and 9, which 

were recommended to USGS EROS for the cross-calibration update to Landsat 9. The 0.4% 

change to the green band was the most drastic of the changes in reflectance space, while 

the bands in radiance space saw changes up to 1% in SWIR2. The green band’s large 



59 

change was due to the spectral approach in Phase 1, which weighted barren land cover 

types more heavily in the green band based on spectral uncertainty. With a proper SBAF 

correction, the green band’s spectral uncertainty was mostly accounted for when compared 

to Phase 1. The green band is very sensitive to the difference between barren land covers 

and vegetation; this makes it is one of the most important bands, so the accuracy supplied 

by these results is vital for the community. Since the changes in reflectance space were all 

within 0.5%, the Phase 1 analysis can be seen as a success that was only improved upon 

further with Phase 2. 

The uncertainty analysis performed in this paper further proved how robust the 

VZAD intercept was as cross-calibration ratio estimate. With BRDF uncertainties 

estimated within 0.26% for all bands, the VZAD intercept essentially interpolated the ratio 

gain for the case where the sensors were directly on top of each other at the same time to 

near perfect precision, which almost completely accounts for several aspects of BRDF. 

With near identical RSRs between the sensors, the spectral uncertainties added very little 

possible error to the analysis. There was a maximum spectral uncertainty of 0.22%, which 

did not contribute much to the overall uncertainty. The major contribution to the 

uncertainty was the bias introduced to the ratio mean calculation f rom geometric 

uncertainty. Even with that bias, the total uncertainty was well under the 1% budget 

suggested in Phase 1. A calibration with this level of precision has not been accomplished  

before; this is in part due to the similarities between the instruments, but also from the 

approach described in this paper. This process should not be thought of as exclusive to 

Landsat 8 and 9, so anyone planning a future underfly maneuver can look to this paper to 

derive a methodology to cross-calibrate those instruments. 
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APPENDIX 

Table A1. CA band VAAD t-test table, where each of these values are p-values. Note that any 

values less than 0.01, or 1%, are statistically different from the VAAD slice 50<VAAD<70. In 

this case, all slices were viable for analysis. 

CA Barren1 Barren2 Barren3 ClosedShrub Crops DecBroad DecNeed EvBroad 

0-20 0.8716 0.9649 0.8868 0.8026 0.7616 0.9333 0.7833 0.7882 

10-30 0.6414 0.9524 0.9948 0.9676 0.7198 0.8416 0.5831 0.7561 

20-40 0.9746 0.8418 0.7587 0.8336 0.8953 0.7153 0.8502 0.8235 

30-50 0.7601 0.9079 0.9814 0.7747 0.9324 0.8577 0.9910 0.7841 

40-60 0.7594 0.8536 0.9819 0.9045 0.9923 0.9471 0.9684 0.8920 

50-70 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

60-80 0.8184 0.9280 0.9871 0.8269 0.6558 0.7863 0.7117 0.8789 

70-90 0.3640 0.9385 0.9956 0.1166 0.8301 0.7092 0.5255 0.5539 

CA EvNeed Grass MixedFor NatVeg OpenShrub Savanna WoodySav  

0-20 0.8844 0.9605 0.7001 0.7712 0.9993 0.8468 0.9430  

10-30 0.9443 0.8349 0.9932 0.9116 0.9840 0.9934 0.9249  

20-40 0.9003 0.9207 0.8473 0.9623 0.9742 0.8485 0.9760  

30-50 0.9028 0.8395 0.7358 0.8078 0.9788 0.9203 0.8097  

40-60 0.9033 0.9533 0.8518 0.9962 0.9639 0.9811 0.8986  

50-70 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000  

60-80 0.7074 0.9948 0.9832 0.8494 0.7176 0.4844 0.9893  

70-90 0.6281 0.4169 0.7273 0.3087 0.4939 0.3638 0.4562  
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Table A2. NIR band VAAD t-test table, where each of these values are p-values.  Note that any 

values less than 0.01, or 1%, are statistically different from the VAAD slice 50<VAAD<70. In 

this case, most slices were viable for analysis, except for 0<VAAD<20. This slice is closest to the 

principal plane, which results in the highest amount of BRDF uncertainty and does not have a lot 

of samples in the underfly data. 

NIR Barren1 Barren2 Barren3 ClosedShrub Crops DecBroad DecNeed EvBroad 

0-20 0.0052 0.0004 0.0020 0.0423 0.0123 0.6946 0.0458 0.2458 

10-30 0.0393 0.7505 0.1070 0.4638 0.4542 0.4155 0.8374 0.0046 

20-40 0.1207 0.0043 0.9258 0.3504 0.0133 0.0047 0.1800 0.4647 

30-50 0.6059 0.1606 0.4763 0.0838 0.0260 0.5023 0.5692 0.5833 

40-60 0.9068 0.2603 0.9398 0.4909 0.1145 0.7847 0.8391 0.2597 

50-70 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

60-80 0.7786 0.3516 0.7036 0.3136 0.1068 0.0331 0.8417 0.7532 

70-90 0.2552 0.2167 0.8661 0.0037 0.8733 0.6044 0.4770 0.2837 

NIR EvNeed Grass MixedFor NatVeg OpenShrub Savanna WoodySav  

0-20 0.0085 0.0006 0.7018 0.9596 0.0003 0.0837 0.0180  

10-30 0.8709 0.1364 0.0433 0.8758 0.0003 0.8795 0.0010  

20-40 0.8567 0.2009 0.1961 0.1051 0.3255 0.1354 0.0000  

30-50 0.8462 0.1614 0.7879 0.5485 0.3377 0.1343 0.3131  

40-60 0.8743 0.9424 0.2594 0.5539 0.6783 0.5187 0.7324  

50-70 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000  

60-80 0.9102 0.3674 0.3017 0.5841 0.8025 0.2013 0.8368  

70-90 0.7138 0.7657 0.4444 0.0025 0.2192 0.8652 0.7935  
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