
Vol.:(0123456789)1 3

European Radiology 
https://doi.org/10.1007/s00330-023-09920-6

IMAGING INFORMATICS AND ARTIFICIAL INTELLIGENCE 

Development and multicenter validation of a multiparametric imaging 
model to predict treatment response in rectal cancer

Niels W. Schurink1,2 · Simon R. van Kranen3 · Joost J. M. van Griethuysen1,2 · Sander Roberti4 · Petur Snaebjornsson5 · 
Frans C. H. Bakers6 · Shira H. de Bie7 · Gerlof P. T. Bosma8 · Vincent C. Cappendijk9 · Remy W. F. Geenen10 · 
Peter A. Neijenhuis11 · Gerald M. Peterson12 · Cornelis J. Veeken13 · Roy F. A. Vliegen14 · Femke P. Peters3 · 
Nino Bogveradze1,2,15 · Najim el Khababi1,2 · Max J. Lahaye1,2 · Monique Maas1,2 · Geerard L. Beets2,16 · 
Regina G. H. Beets‑Tan1,2,17 · Doenja M. J. Lambregts1,2 

 
© The Author(s) 2023

Abstract
Objectives To develop and validate a multiparametric model to predict neoadjuvant treatment response in rectal cancer at 
baseline using a heterogeneous multicenter MRI dataset.
Methods Baseline staging MRIs (T2W (T2-weighted)-MRI, diffusion-weighted imaging (DWI) / apparent diffusion coef-
ficient (ADC)) of 509 patients (9 centres) treated with neoadjuvant chemoradiotherapy (CRT) were collected. Response was 
defined as (1) complete versus incomplete response, or (2) good (Mandard tumor regression grade (TRG) 1–2) versus poor 
response (TRG3-5). Prediction models were developed using combinations of the following variable groups:
(1) Non-imaging: age/sex/tumor-location/tumor-morphology/CRT-surgery interval
(2) Basic staging: cT-stage/cN-stage/mesorectal fascia involvement, derived from (2a) original staging reports, or (2b) expert 
re-evaluation
(3) Advanced staging: variables from 2b combined with cTN-substaging/invasion depth/extramural vascular invasion/tumor length
(4) Quantitative imaging: tumour volume + first-order histogram features (from T2W-MRI and DWI/ADC)
Models were developed with data from 6 centers (n = 412) using logistic regression with the Least Absolute Shrinkage and 
Selector Operator (LASSO) feature selection, internally validated using repeated (n = 100) random hold-out validation, and 
externally validated using data from 3 centers (n = 97).
Results After external validation, the best model (including non-imaging and advanced staging variables) achieved an area 
under the curve of 0.60 (95%CI = 0.48–0.72) to predict complete response and 0.65 (95%CI = 0.53–0.76) to predict a good 
response. Quantitative variables did not improve model performance. Basic staging variables consistently achieved lower 
performance compared to advanced staging variables.
Conclusions Overall model performance was moderate. Best results were obtained using advanced staging variables, high-
lighting the importance of good-quality staging according to current guidelines. Quantitative imaging features had no added 
value (in this heterogeneous dataset).
Clinical relevance statement Predicting tumour response at baseline could aid in tailoring neoadjuvant therapies for rectal 
cancer. This study shows that image-based prediction models are promising, though are negatively affected by variations in 
staging quality and MRI acquisition, urging the need for harmonization.
Key Points 
•  This multicenter study combining clinical information and features derived from MRI rendered disappointing performance 

to predict response to neoadjuvant treatment in rectal cancer.
•  Best results were obtained with the combination of clinical baseline information and state-of-the-art image-based staging 

variables, highlighting the importance of good quality staging according to current guidelines and staging templates.
•  No added value was found for quantitative imaging features in this multicenter retrospective study. This is likely related to 

acquisition variations, which is a major problem for feature reproducibility and thus model generalizability.
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Abbreviations
ADC  Apparent diffusion coefficient
AUC   Area under the receiver operator characteristic 

curve
cCR  Clinical complete response
CR  Complete response
CRT   Chemoradiotherapy
DCE  Dynamic contrast-enhanced
DWI  Diffusion-weighted imaging
EMVI  Extramural vascular invasion
GR  Good response
LARC   Locally advanced rectal cancer
LASSO  Least Absolute Shrinkage and Selector Operator
MRF  Mesorectal fascia
MRI  Magnetic resonance imaging
pCR  Pathological complete response
T2W  T2-weighted
TRG   Tumor regression grade

Introduction

Locally advanced rectal cancer (LARC) is typically treated with 
neoadjuvant chemoradiotherapy (CRT) followed by surgery [1]. 
In up to 15–27% of the cases a complete tumor remission is 
achieved as a result of CRT [2]. This has contributed to the 
recent paradigm shift in rectal cancer treatment towards organ 
preservation (e.g., “watch-and-wait” or local treatment of small 
tumor remnants) for selected patients with clinical evidence 
of a very good or complete tumour response after CRT. For 
these organ-preservation approaches, the morbidity and mortal-
ity risks associated with major surgery are avoided, with good 
reported clinical outcomes regarding quality of life and overall 
survival [3, 4]. Predicting the response to CRT and thus the 
chance of achieving organ preservation before the start of treat-
ment, i.e., at baseline, may open up new possibilities to further 
personalize neoadjuvant treatment strategies depending on the 
anticipated treatment benefit, particularly for smaller tumors 
that do not necessarily require CRT for oncological reasons.

Recent studies have suggested a possible role for imaging 
in this setting [5–9]. Promising results have been reported for 
clinical staging variables (MRI-based TN-stage) [6, 7], tumor 
volume [10–12], and functional parameters derived from dif-
fusion-weighted imaging (DWI) [8, 9] or dynamic contrast-
enhanced MRI (DCE) [13] to predict rectal tumor response 
on baseline MRI, and more recently also for more advanced 
quantitative variables derived using modern post-processing 
tools such as radiomics [5]. However, the available evidence 
mainly comes from single-center studies and comprehensive 
multicenter studies incorporating clinical, functional as well 
as advanced quantitative imaging data are scarce [14, 15]. 

Moreover, the effects of multicenter data variations and diag-
nostic staging differences between observers so far remain 
largely uninvestigated. Prediction studies on larger multicenter 
patient cohorts with imaging data acquired and analyzed as 
part of everyday clinical routine are therefore urgently needed 
to develop a more realistic view of the potential role of image-
based treatment prediction models in general clinical practice.

In this retrospective multicenter study, we therefore set 
out to develop and validate a model to predict response to 
neoadjuvant treatment in rectal cancer using rectal MRIs 
acquired for baseline staging in 9 different centers in the 
Netherlands, intended to be a representative sample of rectal 
imaging performed in everyday clinical practice.

Materials and methods

Patients

As part of an institutional review board-approved multicenter 
study project, the clinical and imaging data of 670 LARC 
patients undergoing standard-of-care neoadjuvant chemora-
diotherapy between February 2008 and March 2018 were ret-
rospectively collected from 9 study centers (1 university hos-
pital, 7 large teaching hospitals, and 1 comprehensive cancer 
center). Patients were identified based on the following inclu-
sion criteria: (a) biopsy-proven rectal adenocarcinoma, (b) 
non-metastasized disease, (c) availability of a pre-treatment 
MRI (including at least T2-weighted (T2W) sequences in 
multiple planes and an axial DWI sequence) with correspond-
ing radiological staging report (d) long-course neoadjuvant 
treatment consisting of radiotherapy (total dose 50.0–50.4 
Gray) with concurrent capecitabine-based chemotherapy, 
(e) final treatment consisting of surgery or watch-and-wait 
with > 2 years clinical follow-up to establish a reliable final 
response to CRT. From this initial cohort, 161 patients were 
excluded for reasons detailed in Fig. 1, leaving a total study 
population of n = 509. Due to the retrospective nature of this 
study, informed consent was waived.

Imaging and image pre‑processing

MRIs were acquired according to routine practice in the par-
ticipating centers with substantial variations in scan protocols 
and corresponding image quality between and within centers 
(Fig. 2); images were acquired using 25 different scanners (19 
1.5T; 6 3.0T) and a total of 112 unique T2W and 94 unique 
DWI protocols. Further parameters are summarized in Sup-
plementary Materials A. From the source DW images we 
calculated the Apparent Diffusion Coefficient (ADC) maps 
using all available b-values (varying from 2–7 b values per 
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sequence; b values ranging between b0 and b2000) using a 
mono-exponential fit. ADC values < 0 or > 3 standard devia-
tions from the tumor mean were marked as invalid. Since 
T2W pixel values are represented on an arbitrary scale, these 
images were normalized to mean = 0 and standard deviation 
= 100 [16]. All images were resampled to a common iso-
tropic pixel spacing of 2 mm × 2 mm × 2 mm using a Linear 
interpolator for the DWI and ADC maps (linear was chosen 
to prevent out-of-range intensities which may occur due to 
overshoot with higher order interpolations) and a B-Spline 
interpolator for T2W images.

Image evaluation

Baseline staging variables (cT-stage (cT1-2, cT3, cT4), cN-
stage (cN0, cN1, cN2), and involvement of the mesorec-
tal fascia (MRF)) were derived from the original staging 
reports that were performed by a multitude of readers. In 
addition, all MRIs were retrospectively re-evaluated for the 
purpose of this study by a dedicated radiologist (DMJL, 
with >10 years’ experience in reading rectal MRI) who 
staged all cases in line with the latest staging guidelines 
and reporting template from the European Society of Gas-
trointestinal and Abdominal Radiology [17]. For quanti-
tative analysis, tumors were segmented using a 3D slicer 

(version-4.10.2). Segmentations were acquired semi-auto-
matically using a level-tracing algorithm applied to the high 
b value DWI, which were then manually adjusted by an 
expert radiologist (DMJL, the same reader who also staged 
the cases) taking into account the anatomical informa-
tion from the corresponding T2W-MRI. Care was taken to 
include only tumor tissue, excluding the rectal lumen and 
any non-tumoural perirectal tissues. Segmentations were 
then copied to the ADC-map and T2W-MRI, after which 
tumor volume and other quantitative features were extracted 
with PyRadiomics (version-3.0) using a bin-width of 5 
(T2W-MRI) and  5 × 10-5 (ADC). This bin width was cho-
sen such that the number of histogram bins was between 30 
and 130 [16]. Quantitative features were limited to simpler 
volume, and first-order features as these have previously 
been reported to be most reproducible [19–23] and least 
dependent on acquisition differences between centers [18].

Variable definitions

Five distinct variable categories were defined:

(1) Non-imaging variables; including age, sex, basic tumor 
descriptors from clinical examination and endoscopy 
(tumor location and basic tumor morphology, e.g., 
polyp/circular), and the time interval between neoad-
juvant CRT and surgery.

(2) Basic image-based staging variables:

(2a) derived from the original reports, including cT-
stage (cT1-2, cT3, cT4), cN-stage (cN0, cN1, cN2), 
and MRF involvement, that were routinely available 
from the original staging reports.
(2b) derived from expert re-evaluation, including the 
same descriptors from 2a, but now derived from the 
expert re-evaluations.

(3) Advanced image-based staging variables; includ-
ing advanced staging descriptors (tumor length, cT-
substage (cT1-2; cT3a,b,c,d; cT4a,b), depth of extra-
mural invasion, and extramural vascular invasion 
(EMVI)) that were not routinely available from the 
original staging reports but derived from the expert 
re-evaluations.

(4) Quantitative imaging features; including tumor volume 
(extracted directly from the whole-tumor segmenta-
tions), and the following first-order features (derived 
from the pixel values within the tumor on both T2W-
MRI and ADC): mean, median, minimum, maximum, 
variance, mean absolute deviation, range, robust mean 
absolute deviation, root mean squared,  10th percentile, 
 90th percentile, energy, entropy, interquartile range, 
kurtosis, skewness, total energy, and uniformity.

Fig. 1  In- and exclusion flowchart. Note, mucinous tumors were 
excluded because these are known to exhibit distinctly different signal 
characteristics on both T2W-MRI and DWI
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These five variable categories were combined into eight 
combinations of variable sets for the statistical analysis as 
detailed in Table 1.

Response outcome

The final treatment response was defined in twofold [8, 24, 
25]:

• Complete response (CR) versus incomplete response: CR 
was defined as a pathological complete response after 
surgery (pCR; ypT0N0) or a sustained clinical complete 
response (cCR) without evidence of recurrence on repeated 
follow-up MRI and endoscopy for > 2 years in patients 
undergoing watch-and-wait. Patients with ypT1-4 disease 
after surgery were classified as incomplete responses.

• Good response (GR) versus poor response: GR 
included all patients with Mandard’s tumor regres-
sion grade (TRG) of 1–2 (total and subtotal regres-
sion); patients with TRG of 3–5 (moderate, limited 
and no regression) were classified as poor responders. 
Patients with a sustained cCR for > 2 years were con-
sidered TRG1. If the pathology report did not explic-
itly mention a TRG score, the complete pathology 
reports were reviewed with a dedicated gastrointestinal  
pathologist (P.S. with > 8 years of experience) to assign  
a TRG score retrospectively.

Statistical analysis

The 9 centers were divided into development including 6 
centers (n = 412) and (external) validation set including 
3 centers (n = 97). Differences between development and 
validation sets were assessed using Chi-squared tests for 
categorical (sex and response) and Kruskal-Wallis tests 
for continuous/ordinal variables (age, cTN-stage). The 
model development and validation process are summa-
rized in Fig. 3. For the eight variable sets (see Table 1) 
the ability to predict the two respective response out-
comes (complete vs incomplete response; good vs poor 
response) was assessed in the development cohort by 
calculating the average area under the receiver opera-
tor characteristic curve (AUC) after repeated (n = 100) 
random hold-out validation. During each iteration, the 
development cohort was randomly split into a 70% train-
ing / 30% test dataset. All training variables were then 
scaled (mean = 0, standard deviation = 1), with the 
same scaling (i.e., using the mean and standard devia-
tion derived from the training set) applied to the test 
set. When two or more features in a variable set were 
correlated (with Pearson’s ρ > 0.8 in the training data), 
only the feature with the lowest mean absolute corre-
lation was retained for further analysis. The remaining 
variables were used to train a logistic regression model 
with the Least Absolute Shrinkage and Selector Operator 

Fig. 2  Examples illustrating differences in image quality and acqui-
sition for T2W-MRI (a–d) and DWI (e–h) between centers, related 
to for example field-of-view, tissue contrast (e.g., TR/TE settings), 

image resolution, and noise. For the DWI scans, the highest acquired 
b-values shown in these examples were b1000 (e), b600 (f), b800 (g), 
and b1000 (h)
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(LASSO) regularization [26]. The LASSO regulariza-
tion parameter (λ) was tuned to select only the most 
relevant variables by minimizing the negative binomial 
log-likelihood loss using internal repeated (n = 100) 
10-fold cross-validation. Each model’s performance was 

measured on the test dataset, and the model achieving the 
best average test AUC was trained on the whole devel-
opment cohort. As a final step, the performance of this 
best-performing model (N.B. one model for CR and one 
for GR) was tested on the external validation cohort. 95% 

Table 1  Variable category definition and variable sets

* Tumor volume was derived directly from the whole-tumor segmentations

Variable categories Features

1. Non-imaging Age, sex, time between CRT and surgery, tumor morphology (polyp, semicircular, 
or circular) and tumor height (distal-mid versus proximal-rectosigmoid)

2a. Basic imaging staging (original reports) cT-stage (cT12, cT3, cT4), cN-stage (cN0, cN1, cN2), involvement of the meso-
rectal fascia (MRF-, MRF+)

2b. Basic imaging staging (expert re-evaluation) cT-stage (cT12, cT3, cT4), cN-stage (cN0, cN1, cN2), involvement of the meso-
rectal fascia (MRF-, MRF+)

3. Advanced imaging staging (expert re-evaluation) All variables included in 2b (basic imaging staging—expert re-evaluation) + 
cT-substage (cT12, cT3abcd, cT4ab), extramural invasion depth, EMVI, tumor 
length

4. Quantitative imaging  (derived from T2W-MRI and ADC) Tumor volume*, mean, median, minimum, maximum, variance, mean absolute 
deviation, range, robust mean absolute deviation, root mean squared,  10th per-
centile,  90th percentile, energy, entropy, interquartile range, kurtosis, skewness, 
total energy, uniformity

Variable sets
1. Non-imaging only
2. Non-imaging + basic imaging staging (original reports)
3. Non-imaging + basic imaging staging (expert re-evaluation)
4. Non-imaging + advanced imaging staging (expert re-evaluation)
5. Non-imaging + quantitative imaging
6. Non-imaging + basic imaging staging (original reports) + quantitative imaging
7. Non-imaging + basic imaging staging (expert re-evaluation) + quantitative imaging
8. Non-imaging + advanced imaging staging (expert re-evaluation) + quantitative imaging

Fig. 3  Schematic overview of the study workflow and statisti-
cal analysis. From a total cohort of 509 patients from 9 centers, 
412 patients (from 6 centers) were used to develop a prediction 
model to predict two respective outcomes (complete response, 

good response) using repeated hold-out validation. For both out-
comes, the best-performing model was tested on an external and 
independent validation cohort consisting of 97 patients (from 3 
different centers)
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confidence intervals for averaged AUCs in the develop-
ment data were estimated through bootstrapping (200 
samples). Confidence intervals for the validation cohort 
were obtained using DeLong’s method [27].

Supplementary Materials B describes two additional 
analyses: (1) testing the effects of 3 different previously 
described methods for multicenter data normalization 
(using a reference organ [28], statistical correction of imag-
ing features using the ComBat algorithm [29], and statisti-
cal correction using mixed-effects models [30]), and (2) 
comparing model performance in the multicenter dataset to 
a single-center data subset from the cohort acquired with a 
harmonized MRI acquisition protocol. The latter was done 
to mimic the comparison of our results with a single-center 
study design.

Results

Patients

Baseline patient information is presented in Table 2; 332 
(65%) patients were male; the median age was 65 years. 
For the outcome complete (versus incomplete) response, 
141 patients (28%) were classified as complete respond-
ers. For the outcome good (versus poor) response, 225 
patients (44%) were classified as good responders. The 
development and validation cohort showed no significant 
differences in sex, age, cT-stage, cN-stage, and tumor 
response (p = 0.37–0.98).

Model performance and predictive variables

Results for model development and performance are detailed 
in Table 3. The best-performing model included non-imag-
ing and advanced imaging staging variables and achieved 
an average AUC of 0.60 (95%CI 0.48–0.72) to predict a 
complete response and an AUC of 0.65 (95% CI 0.53–0.76) 
to predict a good response in the external validation cohort, 
results very similar to those obtained during testing in the 
development cohort. The addition of quantitative imaging 
features did not improve predictive performance in any of 
the model combinations. Basic staging variables consist-
ently achieved lower predictive performance compared to 
the advanced staging variables, especially (though 95% 
confidence intervals showed some overlap) when the basic 
staging variables were derived from the original reports. 
Based on the model coefficients, a more proximal tumor 
location, shorter tumor length, longer waiting interval after 
CRT, lower cT-substage and cN-stage, negative MRF, lower 
extramural invasion depth, and negative EMVI status were 
associated with a favorable response outcome (full model 
coefficients are provided in Supplementary Materials C).

The results of Supplementary Materials B show that none 
of the normalization methods applied to retrospectively har-
monize the data led to improved predictive performance. 
When mimicking a single-center study design (i.e., when 
performing the same analysis on a single-center subset 
within our cohort with homogeneous imaging protocols), 
results were highly variable but showed a trend towards 
better single-center model performance for most variable 

Table 2  Baseline patient 
characteristics and variations 
between centers

*Calculated using chi-squared test
** Calculated using the Kruskal-Wallis test

Total Development cohort Validation cohort p value

Total, n (%) n = 509
(100%)

n = 412
(81%)

n = 97 (19%)

Sex, n (%) Female 177 (35%) 139 (34%) 38 (39%) 0.37*
Male 332 (65%) 273 (66%) 59 (61%)

Age, median (range) 65 (25-87) 66 (25-87) 65 (33-81) 0.37**
cT, n (%) 1-2 35 (7%) 30 (7%) 5 (5%) 0.57**

3 441 (81%) 334 (81%) 80 (83%)
4 60 (12%) 48 (12%) 12 (12%)

cN, n (%) 0 68 (13%) 52 (13%) 16 (17%) 0.98**
1 122 (24%) 103 (25%) 19 (20%)
2 319 (63%) 257 (62%) 62 (64%)

Complete response, n (%) CR 141(28%) 111 (27%) 30 (31%) 0.51*
Not-CR 368 (72%) 301 (73%) 67 (69%)

Good response, n (%) Good 225 (44%) 184 (45%) 41 (42%) 0.75*
Poor 284 (56%) 228 (55%) 56 (58%)
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subsets to predict a complete response. The best-performing 
single-center model (including non-imaging and advanced 
staging variables) achieved an AUC of 0.79, compared to an 
AUC of 0.69 in the total multicenter development cohort.

Discussion

This multicenter study shows that when combining clini-
cal baseline variables with image-based staging quantitative 
variables, overall model performance to predict neoadju-
vant treatment response in rectal cancer is disappointing, 
with externally validated AUCs ranging between 0.60 and 
0.65 to predict either a complete response (ypT0) or a good 
response (TRG1-2). Best model performance was achieved 
when combining clinical baseline information (e.g., time 
to surgery) and image-based staging variables (e.g., cT-
stage). Quantitative imaging features had no added value. 
Notably, model performance was considerably better when 
including modern staging parameters such as cT-substage, 
extramural invasion depth, and EMVI, compared to more 
traditional staging including only simplified cTN-stage and 
MRF involvement. Moreover, model performance seemed to 
be affected by staging variations between observers with bet-
ter performance when staging was performed by a dedicated 
expert compared to the original staging reports acquired by 
a multitude of readers.

Previous studies typically included staging variables such 
as cTN-stage as part of the “baseline patient variables,” which 

implies that these are “objective” variables with little varia-
tion between readers [31, 32]. While measurement variations 
are commonly considered when analyzing quantitative imag-
ing data, our results demonstrate that interobserver variation is 
also an important issue to take into account for the more basic 
staging variables. The improved model performance when 
including also modern staging variables such as cT-substage 
and EMVI in the expert re-evaluations further highlights the 
importance of high-quality diagnostic staging using up-to-date 
guidelines. The clinical impact of ‘state-of-the-art’ staging 
was also demonstrated by Bogveradze et al, who showed in a 
retrospective analysis of 712 patients that compared to “tradi-
tional” staging methods, advanced staging according to recent 
guideline updates would have led to a change in risk classi-
fication (and therefore potentially in treatment stratification) 
up 18% of patients [33]. The fact that our cohort dates back 
as far as 2008 and covers a 10-year inclusion period explains 
why many of these advanced staging variables could not be 
derived from the original reports. The use of older data will 
likely also have impacted the quality of the images and thus the 
quantitative imaging features derived from the data. Following 
developments in acquisition guidelines and software and hard-
ware updates, the image quality will have evolved over time. 
This is also reflected by the large number of different imag-
ing protocols including 112 unique T2W and 94 unique DWI 
protocols. The question, therefore, remains if and how model 
performance would have improved using only state-of-the-art 
and/or more harmonized (prospectively acquired) MRI data. 
In our current dataset, quantitative imaging features showed 

Table 3  Model performance

The best-performing models are depicted in bold
95% CI, 95% confidence interval; CR, complete response (pCR and cCR); GR, good response (TRG1-2); NB, confidence intervals on the devel-
opment cohort AUC are based on the non-studentized pivotal bootstrap  method31 using 200 bootstrap samples. For the external validation 
cohort, DeLong’s  method27 was used

Variable groups and combinations Outcome

CR (95% CI) GR (95% CI)

Average AUC on the development cohort
 Non-imaging 0.58 (0.49–0.66) 0.53 (0.42–0.58)
 Non-imaging + basic imaging staging (original reports) 0.63 (0.55–0.70) 0.52 (0.39–0.54)
 Non-imaging + basic imaging staging (expert re-evaluation) 0.66 (0.58–0.70) 0.62 (0.56–0.68)
 Non-imaging + advanced imaging staging (expert re-evaluation) 0.69 (0.62–0.74) 0.67 (0.62–0.73)
 Non-imaging + quantitative imaging 0.59 (0.46–0.61) 0.58 (0.47–0.61)
 Non-imaging + basic imaging staging (original reports) + quantitative imaging 0.59 (0.44–0.60) 0.57 (0.44–0.59)
 Non-imaging + basic imaging staging (expert re-evaluation) + quantitative imaging 0.63 (0.51–0.68) 0.62 (0.53–0.68)
 Non-imaging + advanced imaging staging (expert re-evaluation) + quantitative imaging 0.68 (0.59–0.71) 0.67 (0.61–0.72)

Performance of best-performing model on the external validation cohort
 Non imaging + advanced imaging staging (expert re-evaluation) 0.60 (0.48–0.72) 0.65 (0.53–0.76)

Features selected in CR model: [Intercept], tumor height, weeks to surgery, cTsub-stage, cN-stage, invasion depth (mm), tumor length (mm)
Features selected in GR model: Tumor height, weeks to surgery, cTsub-stage, MRF-status, invasion depth (mm), EMVI status
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no added benefit to predict response. This contradicts previ-
ous single-center and smaller bi- and tri-institutional studies 
that achieved more encouraging AUCs ranging from 0.63 to 
as high as 0.97 [5, 14, 15]. These previous results are likely at 
least in part an overestimation of how such models would per-
form in everyday practice, as especially earlier pilot studies are 
hampered by limitations in methodological design (e.g., small 
patient cohorts, re-using of training data for testing, and multi-
ple testing) as also outlined in several review papers reporting 
on the quality and/or reproducibility of image biomarker studies 
[5, 19, 34–38]. The fact that most previous studies have been 
single-center reports will likely have also played an important 
role. Though reflective of data acquired in everyday practice, 
our results confirm the known difficulties of building generally 
applicable prediction models using heterogeneous retrospec-
tively collected multicenter data. While some data variations 
are necessary to identify robust features to vendor and acqui-
sition differences, too much variation will negatively impact 
model generalizability. Attempting to directly compare and 
investigate the effects of multicenter (heterogeneous) versus 
single-center (homogeneous) modelling using our own data, 
we mimicked a single-center comparison by repeating our 
study analyses on a homogeneous single-center subset within 
our cohort. Though results have to be interpreted with caution 
considering the wider confidence intervals and lack of external 
validation in the single-center arm, this comparison suggests 
that the best-performing model indeed appeared to be better for 
the homogeneous single-center subset (AUC 0.79) than for the 
multicenter (AUC 0.69) cohort. Though full data harmoniza-
tion will likely never be achieved in daily clinical practice, these 
findings do support a need for further protocol guidelines and 
standardization to benefit future multicenter research.

There are some limitations to our study design. As 
mentioned above, data was acquired over the time span of 
a decade including scans acquired using outdated proto-
cols dating back as far as 2008. A detailed analysis of the 
impact of these spectrum effects was outside the scope of 
this study, but a preliminary analysis (results not reported) 
showed that the impact of temporal changes was negligi-
ble. All segmentations were performed on high b-value 
DWI and then copied to T2W-MRI and ADC maps. 
Although care was taken to include anatomical informa-
tion from T2W-MRI during segmentation, ideally a sepa-
rate segmentation would have been performed. Finally, the 
comparison between the original basic staging reports and 
the advanced staging performed as part of this study was 
influenced by the fact that all re-evaluations were done by 
a single reader. In contrast, original staging reports were 
performed by a multitude of readers with varying levels 
of expertise. Due to the time-consuming nature of the 
expert re-evaluations (and segmentations), it was unfor-
tunately not deemed feasible to include an independent 
extra reader.

In conclusion, this multicenter study combining clinical 
information and MRIs acquired as part of everyday clinical 
practice over the time span of a decade rendered disap-
pointing performance to predict response to neoadjuvant 
treatment in rectal cancer. The best results were obtained 
when combining clinical baseline information with state-
of-the-art image-based staging variables, highlighting the 
importance of good quality staging according to current 
guidelines and staging templates. No added value was 
found for quantitative imaging features in this multicenter 
retrospective study setting. This is likely at least in part the 
result of acquisition variations, which is a major problem 
for feature reproducibility and thus model generalizability. 
To benefit from quantitative imaging features—assuming 
a predictive potential—further optimization and harmoni-
zation of acquisition protocols will be essential to reduce 
feature variation across centers. For future research, it 
would also be interesting to see how model performance 
may improve when combining the information that can be 
derived from imaging with other clinical biomarkers such 
as molecular markers (e.g., DNA mutations, gene expres-
sion, microRNA) [39, 40], blood biomarkers (e.g., CEA, 
circulating tumor DNA) [39, 41], metabolomics (e.g., 
metabolites, hormones, and other signaling molecules) 
[42], organoids [43], and immune profiling [44].
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