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Introduction: There is accumulating evidence that many pathological conditions
a�ecting human balance are consequence of postural control (PC) failure or
overstimulation such as in motion sickness. Our research shows the potential
of using the response to a complex postural control task to assess patients with
early-stage Parkinson’s Disease (PD).

Methods: We developed a unique measurement model, where the PC task
is triggered by a moving platform in a virtual reality environment while
simultaneously recording EEG, EMG and CoP signals. This novel paradigm of
assessment is called BioVRSea. We studied the interplay between biosignals and
their di�erences in healthy subjects and with early-stage PD.

Results: Despite the limited number of subjects (29 healthy and nine PD) the
results of our work show significant di�erences in several biosignals features,
demonstrating that the combined output of posturography, muscle activation and
cortical response is capable of distinguishing healthy from pathological.

Discussion: The di�erences measured following the end of the platform
movement are remarkable, as the induced sway is di�erent between the two
groups and triggers statistically relevant cortical activities in α and θ bands. This
is a first important step to develop a multi-metric signature able to quantify PC
and distinguish healthy from pathological response.

KEYWORDS

postural control, early-stage Parkinson’s disease, quantitative neurophysiology,

BioVRSea, balance control

1. Introduction

Parkinson’s Disease (PD) is a progressive disorder of the nervous system characterized
by muscle tremors, muscle rigidity, decreased mobility (bradykinesia), stooped posture,
slow voluntary movements, and a mask-like facial expression. It may take time to diagnose
because some of its symptoms are associated with the natural process of aging (Tolosa et al.,
2006). Globally, disability and death in PD are increasing faster than any other neurological
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disorder. The World Health Organization (WHO) reports that the
prevalence of PD has doubled in the past 25 years and world
estimates count over 8.5 million individuals with PD in 2019. In
people with early-onset PD, the initial symptoms can arise between
the ages of 21 and 40 years, while the first symptoms in juvenile-
onset disease occur before the age of 20 years. Nowadays, a standard
criterion in the evaluation of PD is still one of the main goals
for clinicians. Finding the right category for the progression of
the disease is necessary to prescribe the best treatment. Specific
signs, symptoms, or test results can help in the classification
of the disease. Over the years, accuracy has been improved by
new diagnostic protocols that consider qualitative and quantitative
aspects (Maffoni et al., 2017;María et al., 2020). Defining early-stage
Parkinson’s subjects when the symptoms are silent or weak remains
a challenge.

PD stages are identified based on clinical observations:
according to the Hoehn-Yahr staging system, stages are based
primarily on motor symptoms (Goetz et al., 2007). Pre-clinical is
characterized by the absence of signs or symptoms - genetic testing
and counseling are available to identify risk factors. Prodromal
corresponds to a stage of neurodegenerative changes. Symptoms
are unspecific but the identification of early changes allows to
intervene with initial therapies. Early-stage symptoms include mild
tremors and some walking difficulty. It can affect only one side
of the body and produce a decrease of facial expressions. These
symptoms do not interfere with daily life much and are not always
obvious (Goetz et al., 2007). Middle-stage balance and coordination
are affected: a moderate-to-severe disability that affects daily life
(Goetz et al., 2007). Later-stage subjects have difficulty standing and
walking even with aids. Patients in this stage have severe disability
(Goetz et al., 2007). Figure 1 reports the general classification of PD
stages according to its main symptoms.

A preliminary analysis can be carried out by clinicians taking
into account qualitative and quantitative aspects of PD, as shown in
Figure 2.

Gait mobility and gait impairment is also seen to evolve
with the progression of the disease are included as parameters of
investigation. Issues with gait initiation, freezing of gait, reduced
balance, and difficulties in postural control (Martignon et al., 2021)
are some of common symptoms. Table 1 summarizes the main tests
used in mobility and gait analyses.

Among the innovative techniques, blood tests show potential to
be used for the detection of early-stage PD. Researchers identified
a molecular profile that defines the disease but it is still under
investigation and not yet available clinically (Agliardi et al., 2021).

In recent years, non-invasive brain imaging techniques have
become more accurate for the detection of differences in brain
morphology and functional activities in Parkinson’s subjects
(Politis, 2014). Brain positron emission tomography (PET) can
estimate the disease progression and can be used to confirm the
clinical diagnosis of PD. With specific radioactive drugs (18F-
DOPA and 18-FDG) absorbed into the bloodstream, PET can
provide very precise brain region and activation in PD subjects (Lu
and Yuan, 2015). Single positron emission tomography (SPECT)
is also used as method to confirm a Parkinson’s diagnosis by
highlighting cerebral blood flow and dopamine transporters in the
brain (Lu and Yuan, 2015). In patients with Parkinson’s disease,

a distinct intensity pattern can be noted in the brain region that
is deeply affected by degeneration, namely the basal ganglia that
controls movement. Magnetic resonance imaging (MRI) is also
used to diagnose PD in early onset subjects. MRIs can show small
changes and damage in the brain tissue that can indicate PD.
Often, these markers are present even before symptoms of PD
begin. Transcranial sonography (TCS) has been established as a
valuable supplementary tool in the diagnosis of PD. Alterations
in the area of the hypoechogenic mesencepahlic brainstem can
be visualized in about 90% of PD patients, which is measured
planimetrically to determine the magnitude of the change (Berg
et al., 2008). Increased iron levels contribute to this sonographic
abnormality and indicate that iron can be responsible for the
change in the echo signal. Iron accumulation can be a very early
indicator in the pathogenesis of PD. Electroencephalography (EEG)
can detect damage in the central nervous system and alterations in
neurophysiological activity associated with PD. In recent studies,
quantitative analysis of EEG data identified significant differences
in PD patients versus healthy subjects. In particular, the anterior
cingulate and temporal lobe are areas with an established pathology
in PD. Changes in cortico-cortical and cortico-thalamic coupling
were observed as excessive EEG beta coherence in PD patients
(Waninger et al., 2020).

Map structure and functions of the brain are obtained
measuring the signals produced by neural activity. Each region
can have a particular influence according to the disease and
the activation of an area can be considered important in the
understanding of the progression of the disease. Although
cortical EEG coherence can serve as a reliable measure
of disease severity, the use of EEG to study PD has not
been fully investigated. Neurophysiological signals provide
instantaneous information and can aid in improving the accuracy
of the diagnosis.

EEG signals have different specific frequency bands. Features
in sub-bands are particularly important to characterize different
brain states. The standard frequency bands of interest are δ-
band (0–4 Hz), θ-band (4–8 Hz), α-band (8–13 Hz), and β-band
(13–30 Hz). Moreover, the quantification of EEG rhythms could
provide an important biomarker for different neuropsychiatric and
neurological disorders, such as schizophrenia, Alzheimer’s disease,
epilepsy, and Parkinson’s disease (Hampel et al., 2010; Gandal et al.,
2012; Kheiri et al., 2012). The combination of new analysis methods
and EEG signal processing can contribute to the detection of early-
stage PD. EEG reveals more important information underlying
brain dysfunctions, which would be lost if analysis were restricted to
traditional methods. Nowadays, many novel methods are suggested
for EEG signal processing.

A recent study analyzed the EEG signals from 15 early-stage PD
patients and 15 age-matched healthy controls during eyes-closed
resting state (Han et al., 2013). Most EEG electrodes showed an
increase in θ-band relative power for PD patients, while several
other electrodes decreased, such as in the frontal and occipital
cortex (Fp1, Fp2, F7, F3, Fz, Oz). Moreover, an increase in δ-
band relative powers were reported, and a decrease in α-band and
β-band relative powers for PD patients compared with healthy
patients. Other studies present higher spectral power in the low
frequency domain of EEG, compared with controls. Also in these
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FIGURE 1

Symptoms and stages before-after Parkinson’s diagnosis.

cases, subjects were in the resting awake condition with the eyes
closed (Moazami-Goudarzi et al., 2008; Serizawa et al., 2008).

Postural control (PC) and adaptation are part of a complex
system to maintain or restore balance from any position or during
motor activity. The central nervous system is fundamental in PC
strategies and electroencephalography can underline the different
cortical brain activities under different postural perturbations
(Mochizuki et al., 2010; Barollo et al., 2020). PD usually interferes
in this regulatory system, as can be clearly demonstrated by most
motor symptoms, but to date, no study has yet been conducted
on the analysis of postural kinematics in movement disorders.
Our aim is to (i) investigate the postural strategy adopted in PD
individuals and in healthy subjects; (ii) describe adaptation and
how the brain adapts to the induced movement of a platform
and visual stimuli using virtual reality (VR). However, postural
control and adaptation have been extensively studied in healthy
and blind subjects. In a recent study (Barollo et al., 2020), postural
kinematics from HD-EEG have been measured during a postural
perturbation applied to calf muscles. The main changes in cortical
activity were found in Absolute Spectral Power (ASP) over four
frequency bands. For postural adaptation, increases in the θ band
in the frontal-central region for closed-eyes trials, and in the θ and
β bands in the parietal region for open-eyes trials were reported.

In habituation of the stance, no significant variations in ASP were
observed during closed-eyes trials, whereas an increase in the θ , α,
and β bands were observed with open eyes (Curtis et al., 2001).
Furthermore, open-eyed trials generally yielded a greater number
of significant differences across all bands during both adaptation
and habituation, suggesting that cortical activity during postural
perturbation may be regulated with visual feedback. This clearly
shows a correspondence in cortical activity and postural kinematics
during postural perturbation, and could also be developed for
pathological postural control.

Other studies show similar results in healthy subjects,
suggesting cortex activity as the main change in the frontal-central
and frontal-parietal cortical regions during balance perturbation,
specifically within α and θ frequencies (Sipp et al., 2013;
Hülsdünker et al., 2015). Moreover, the increase of the ASP
in the central region is demonstrated during high-demand
postural correction, such as balance maintenance without allowing
corrective foot placement (Barollo et al., 2020). In accordance, the
increase in θ activity in the frontal-central regions implies the
processing of postural stability during balance control. Thus, ASP
differences in the θ band signify the planning of corrective steps
and the analysis of the consequences of the subject falling. Instead,
the significant differences in the α band reflect an inhibition of
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FIGURE 2

Quantitative and qualitative aspects in Parkinson’s Disease diagnosis
(Ma�oni et al., 2017).

error detection within the cingulate cortex due to habituation.
Other studies have been carried out with the blind (including
both congenital blindness and acquired blindness). Congenitally
blind subjects had poorer postural control (anterior-posterior and
medio-lateral body swing) compared to sighted subjects. They
use a more efficient mechanism for maintaining balance control
through joint stiffness. These findings demonstrate that motor
coordination, localization, or perception of body segments and
movements in visually impaired individuals can be compensated
by enhancing the proprioceptive and vestibular systems. Blindness
leads to impaired postural balance and imbalance in static and
dynamic tasks (Parreira et al., 2017). An overview of EEG studies
in postural control is provided in Figure 3.

Our novel BioVRSea setup introduces a unique multi-
biometric system that combines virtual reality and a moving
platform to evaluate the postural control response. The system
is designed to imitate the sensation of being at sea on
a small boat, a situation which involves different balancing
strategies. During the experiment, there are six phases (see
Table 2, Figure 4) in which different biosignals are measured
such as electromyography (EMG), center of pressure (CoP),
and electroencephalography (EEG). Some of our recent studies
emphasize the importance of BioVRSea setup allowing cohort
differentiation and pathology assessment (Recenti et al., 2021;
Aubonnet et al., 2022). The advantage of using BioVRSea is that
we are measuring quantitative signals associated with postural
control in a challenging environment. The experiment is a
prototype and the purpose of the current research with BioVRSea
is to gather as much data as possible with many simultaneous
measurements in order to extrapolate the most relevant features
which could then be used in a clinical setting, with a lower-
profile machine that could be accessed easily by those with
mobility problems. Current diagnosis of PD relies primarily

TABLE 1 Gold standard tests for assessing gait ability.

Assessment Test Parameter
investigated

Balance Timed Up and Go Test Functional mobility

Tinetti Balance and Gait
Test

Static and dynamic balance

Retropulsion Test Postural stability

One-leg Stance Static balance

Åstrand-Rhyming
protocol during Graded
Exercise Test

Dynamic balance

Balance Evaluation
System Test

Balance systems

Mini Balance Evaluation
Systems Test

Dynamical balance

Berg Balance Scale Static and dynamic balance

Endurance 2-min Walk Test Functional capacity, walking
ability

6-min Walk Test Physical capacity and gait

Two-minute Step Test Aerobic capacity

Modified Bruce Protocol
during Graded exercise
test

Cardiac functional capacity

Åstrand-Rhyming
protocol during Graded
exercise test

Maximal functional capacity

Borg Ratio Scale Physical capacity

Resistance Handgrip Strength Test Upper limb strength

Isokinetic Strength Test Upper/lower limb strength

Manual Muscle Test Individual or grouped muscle
strength

Arm Curl Test Upper limb strength

Chair Stand Test Lower limb strength

Five Time Sit to Stand
Test

Lower limb strength

One Repetition
Maximum Test

Maximum lower or upper
limb isotonic

Flexibility Goniometer General joint flexibility

Inclinometer Angles of slope measurement

Leighton flexometer Joint flexibility

Sit and Reach Test Lower back and hamstring
muscles tightness

Back Scratch Test Shoulder range of motion

on the presence of motor symptoms in the patient (such as
MDS diagnosis criteria (Postuma et al., 2015) and generally
lacks any quantitative measurement such as we perform in the
BioVRSea experiment.

In this paper, candidates with early-stage Parkinson’s Disease
undergo a postural control task in the BioVRSea environment. We
focus on the differences between the two cohorts in the PRE and
POST phases. Our focus on PRE and POST will allow the study of
early stage PD while they are adapting to a motor stimulus.
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FIGURE 3

ASP bands analysis in di�erent studies (Neufeld et al., 1988; Sinanović et al., 2005; Bosboom et al., 2006; Han et al., 2013; Chu et al., 2021).

TABLE 2 BioVRSea experimental paradigm.

Time (s) Segment VR Scene Position
of Hands

Platform

0-120 Baseline Mountains By side Stationary

120-160 PRE Sea By side Stationary

160-200 25% Sea On bars Moving

200–240 50% Sea On bars Moving

240-280 75% Sea On bars Moving

280-320 POST Sea By side Stationary

2. Materials and methods

2.1. Participants

Nine early-stage (recently diagnosed) PD participants (6 male,
3 female, between 56 and 76 years of age) and 29 healthy subjects
(17 male, 12 female, between 50 and 73 years old) took part in the
BioVRSea experiment. Few of them showed physical evidence of
early stage PD such as weak tremor or onset of postural instability.
All were taking the drug Levodopa as part of their treatment.

2.2. BioVRSea experiment

A 64-channel wet EEG was used record brain response to VR
and motion stimulation. Wireless EMG sensors were placed on
the tibialis anterior (TA), gastrocnemius lateral (GL), and soleus
(S) muscles of both legs. A heart rate sensor strapped around the
chest. For the experiment, the participant were asked to stand
onto the force plates embedded in the platform. Finally, the

participants donned the VR goggles. The experimental protocol
was then explained to the participant. Participants stood quietly on
the platform with their hands by their side observing a mountain
view for the first 2 minutes of the experiment (Baseline). Then,
the scene in the VR goggles changed, beginning the sea simulation
but no platform movement. The participants remained standing
quietly with their hands by their side for the first 35 seconds of
the sea simulation (PRE). After the PRE phase the platform began
synchronized movement with the sea scene in the VR goggles,
increasing from 25% to 75% of maximal wave amplitude. For a total
of 120 seconds the participants held the bars of the platform while
continuing to observe the sea simulation. Finally, the platform
stopped moving while the sea simulation is still showing and the
participant was asked to remove their hands from the bars and
attempt to stand quietly with their hands by their side for the final
40 seconds of the experiment. This is called the POST phase of
the experiment; it is performed identically to the PRE phase but
after the participant has performed movement in the central part
of the procedure. A table of the VR experiment protocol is shown
below in Table 2, shows a schematic of the experimental setup. Each
participant took part in a single trial according to the experimental
protocol.The subject undergoes different stimuli: visual stimulus
(PRE-phase), motor stimulus (movement phase), and balance
control (POST-phase).Measured data was post-processed inMatlab
and analysis was made in the PRE and POST phases of the
experiment. Each analysis pipeline for a particular measurement is
explained below.

2.2.1. Heart rate
Heart rate was measured using a chest heart sensor (Polar

Electro, Kempele, Finland, sampling frequency 1 Hz). The average
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FIGURE 4

BioVRSea experimental setup.

and standard deviation for the HR for each section of the
experiment was calculated.

2.2.2. EMG analysis
Muscle electrical activities from the lower limbs were acquired

using six wireless EMG sensors (sampling frequency of 1600 Hz)
placed on the tibialis anterior (TA), gastrocnemius lateral (GL), and
soleus (S) muscles of each leg (Kiso ehf, Reykjavik, Iceland). EMG
data processing was performed usingMatlab 2021b. EMGdata were
filtered using a 4th-order Butterworth filter. Seven features were
computed in the frequency domain and thirty-six features in the
time domain for each muscle and each phase of the experiment.
These features are listed in Table 5.

2.2.2.1. Statistical analysis

The Shapiro-Wilk test along with visual inspection of the
distribution of each variable were used to test the normality of the
data. Statistical comparisons between the healthy and PD groups
in both the PRE and POST phases were carried out using the t-
test with Welch’s correction for the normally distributed variables

and the Mann-Whitney U-test for the non-normally distributed
variables, with a significance value of p < 0.05. Effect sizes were
calculated through the non-parametric Cliff ’s delta using the R
package “effsize” (Torchiano, 2020). Cliff ’s delta ranges from +1 if
all observations in the first group are larger than all observations
in the second group, to -1 if all observations in the first group are
smaller than all observations in the second group (Cliff, 1993).

2.2.3. CoP analysis
CoP measurements were made using 4 sensors located under

each foot platform. The sensors give information about the center
of mass in the Antero-Posterior and Medio-Lateral axis (Virtualis,
Clapiers, France, sampling frequency 90Hz). The processing of
the CoP data was performed using Matlab 2021b. During the
experiment, the force platform records the movement of the Centre
of Pressure (CoP), a projection of the center of mass of the
subject on the plane of the machine, also called stabilogram. The
CoP data was filtered with a Savitsky-Golay filter with window
size 7. Included in the CoP analysis were a number of multi-
scale entropy measurements, which have been shown to have
great importance in the analysis of CoP data in discriminating
between pathological subjects (Busa and Emmerik, 2016). Multi-
scale entropy measurements include features such as complexity
index (CI), which indicate the complexity of the CoP signal as
calculated using multi-scale entropy methods. We extract several
parameters from the stabilogram for evaluating the postural control
response of the subject during the experiment. The list of features
extracted from the CoP is outlined in Table 3. Statistical analysis
normality was checked through the Shapiro-Wilk test and visual
inspection of the variables, and comparisons were made between
the healthy and PD groups for all features in the PRE and POST
phases using the t-test with Welch’s correction and the Mann-
Whitney U-test with significance level p < 0.05. Effect sizes were
calculated using Cliff ’s delta. Sway profiles were also outlined using
95% confidence ellipses in PRE and POST, as seen in Figure 5.

2.2.4. EEG analysis
The CA-204-64 wet electrode cap, EegoTM mylab with

sampling frequency of 4096 Hz, measured the brain electrical
activity in 64 electrodes. Raw EEG signals were processed
using Matlab 2022b, Brainstorm, EEGlab 2022.1 and Automagic
toolboxes (Pedroni et al., 2019). The signals were divided in
segments for each phase of the experiment, then the signals were
down-sampled from 4,096 to 1,024 Hz. During pre-processing,
different settings were applied to the EEG, such as ICA MARA
artefact removal and high pass and low pass filters respectively set
at 1 Hz and 45 Hz. The data were interpolated finding the locations
of bad channels. The EEG data set can be displayed as electrode
channel plots, allowing a quick overview of data quality. Then, the
absolute power spectral density (PSD) was calculated and compared
between PD and Healthy groups in each phase of the experiment
for each of the delta, theta alpha and delta bands. AMann-Whitney
U-test with significance level (α = 0.05) was used to determine
significance. False detection rate (FDR) correction was applied to
each electrode.
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TABLE 3 CoP features calculated - bold shows the features that were significantly di�erent in the POST phase of the experiment when comparing the

PD and healthy groups.

Feature PRE p-value POST p-value Cli� delta

Consecutive movement samples on the support plane (TOTEX) - - 0.379

Consecutive movement samples on ML plane(TOTEX-ML) - - 0.402

Consecutive movement samples on AP plane(TOTEX-AP) - - 0.371

Square root distance between a point and the plane origin (RD) - 0.0173 0.494

Mean distance in medio-lateral direction (MDIST-ML) - 0.0339 0.494

Mean distance in antero-posterior direction (MDIST-AP) - 0.0173 0.494

Mean velocity on support plane (MVELO) - - 0.379

Mean velocity on ML plane (MVELO-ML) - - 0.402

Mean velocity on AP plane (MVELO-AP) - - 0.371

Root mean square distance respect to origin (RDIST) - 0.0115 0.540

Root mean square distance in medio-lateral direction (RDIST-ML) - 0.0256 0.517

Root mean square distance in antero-posterior direction (RDIST-AP) - 0.0115 0.533

Medio-lateral sample entropy (ML-SampEn) - 0.0002 -0.709

Antero-posterior Sample Entropy (AP-SampEn) - - -0.333

Medio-lateral complexity index (ML-CI) - 0.0009 -0.793

Antero-posterior Complexity Index (AP-CI) - - -0.325

Ellipse area - 0.0083 0.571

Ellipse angle - - 0.057

Ellipse main axis length - 0.0067 0.571

Ellipse minor axis length - 0.0127 0.571

Standard deviation in antero-posterior direction (SD AP) - 0.0115 0.532

Standard deviation in medio-lateral direction (SDML) - 0.0257 0.517

SDmagnitude - 0.0074 0.563

SD direction 0.0128 - -0.256

Magnitude entropy - - -0.510

Direction entropy - - -0.249

Multivariate complexity index (multivariate CI) - 0.0128 -0.639

Antero magnitude - - 0.379

Antero angle - - 0.019

Postero magnitude - 0.0141 0.548

Postero angle - - 0.065

Left magnitude maximum - 0.0406 0.417

Left angle - - -0.065

Right magnitude maximum - 0.0282 0.448

Right angle - - -0.494

3. Results

The following results are reported for the analysis
of the PRE and POST phases of the experiment
with the aim of distinguishing between the PD and
healthy groups based on their biosignal responses. Our

experiment was able to identify changes in many of the
analyzed domains.

The protocol is a visual-motor simulation of being on a boat
and part of the subjects experienced the feeling of seasickness.
Just under half of PD subjects experienced actual discomfort with
various symptoms (reported on questionnaires), and a smaller
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FIGURE 5

Ellipse areas comparison between Parkinson and healthy subjects in PRE-POST phases.

TABLE 4 Average and standard deviation for Heart Rates inside cohorts in

PRE and POST phases.

Beats per minute (BPM) Parkinson’s Controls

PRE-phase 88.76± 18.09 82.48± 14.63

POST-phase 94.19± 20.97 82.54± 14.35

percentage of them reported a self-assessment of motion sickness
in daily life.

3.1. Heart rate

The results of the heart rate analysis are shown in Table 4. An
increase in beats per minute (bpm) was measured in PD subjects,
although not statistically significant. No statistically significant
differences were found between groups.

3.2. EMG

The right TA muscle showed a number of statistically
significant features in the POST phase, with a p value (p < 0.05)
and the corresponding effect sizes for each variable shown in bold
in Table 5. The right side could be considered the dominant leg in
the prevalence of the group. Significant changes were found also in
the left soleus (MN - mean, p = 0.003, cliff delta = -0.64) in the
POST phase and the soleus right which had one significant feature
(MD -median, p= 0.007, cliff delta= -0.586) in the PRE phase.

3.3. CoP

3.3.1. Sway profile
Figure 5 highlights the CoP evolution between PD and healthy

subjects on two of its main characteristics area and axis length of
the sway ellipse. Sway is greater in healthy than PD participants.

The only significant feature (p < 0.05) for CoP in the
PRE phase is the Direction Entropy (Nats), while the statistically
significant ones in the POST are listed below Figure 5 with p-values
and cliff delta values listed.

3.4. EEG

The topological plots were computed for all frequency bands
during the phases of the acquisition. Each of them displays the
difference of power spectral density between PD and healthy
cohorts, only for the statistically significant electrodes (p ≤ 0.05,
represented by a green point in the figure). Theta and alpha
bands presented several significant electrodes in different locations
of the brain. In the theta band, significant electrodes are found
mostly in the temporal lobe (T7, T8, C6, FT7), one in the frontal
lobe (AF3) and one in the occipital (PO6). In the alpha band,
significant electrodes are found mostly in the temporal lobe (FC5,
T7, T8, FT8), one in the parietal lobe (P4) and one in the occipital
(PO6). The p-values of each electrode of the theta and alpha
bands are shown in Tables 6, 7, comparing the two cohorts in
the PRE and POST phases. They highlight the differences in
brain activity in the two phases and underline the significant
difference in the POST phase of the experiment between the PD
and Healthy groups.
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TABLE 5 EMG features—bold shows features that were significantly di�erent between PD and healthy groups in the right tibialis anterior muscle in the

POST phase.

Feature PRE p-value POST p-value cli� delta POST

Total Power (PT) - - 0.425

Maximum Power (Pmax) - 0.0394 0.464

Maximum frequency (Fmax) - - 0.141

Median Frequency (FMD) - - 0.153

Mean frequency(FMN) - - 0.191

Frequency Kurtosis (Fkurt) - - 0.073

Frequency skewness (Fskew) - - 0.080

Average amplitude change (AAC) - 0.0256 0.502

Average energy (AE) - - 0.425

Absolute value of the summation of the exponential root(ASM) - 0.0195 0.524

Absolute value of the summation of the square root (ASS) - 0.0234 0.0509

Coefficient of variation (CV) - - -0.172

Difference absolute mean value (DAMV) - 0.0256 0.502

Difference absolute standard deviation value (DASDV) - 0.0362 0.471

Difference variance value (DVARV) - 0.0362 0.471

Enhanced mean absolute value (EMAV) - 0.0234 0.510

Enhanced wavelength (EWL) - 0.0162 0.0.540

New zero crossing (FZC) - - 0.333

Kurtosis (KURT) - 0.0162 -0.540

Integrated EMG (IEMG) - 0.0214 0.517

Interquartile range (IQR) - 0.0394 0.463

Log CV(LCV) - -

Log Detector (LD) - 0.0428 -0.02

Log DAMV (LDAMV) - 0.0256 0.502

Log DASDV (LDASDV) - 0.0362 0.417

Log Teager Kaiser energy operator (LTKEO) - 0.0394 0.464

Mean absolute deviation (MAD) - 0.0256 0.502

Mean absolute value (MAV) - 0.0256 0.502

Maximum fractal length (MFL) - 0.0362 0.471

Mean (MN) - - 0.210

Median (MD) - - -0.241

Modified mean absolute value (MMAV) - 0.0234 0.510

Modified mean absolute value 2 (MMAV2) - 0.0428 0.455

Mean value of the square root (MSR) - 0.0195 0.524

Root mean square (RMS) - -

Standard deviation (SD) - - 0.425

Skewness (SKEW) - - 0.333

Single square integral (SSI) - - 0.425

Absolute value of temporal moment (TM) - - 0.433

Variance (VAR) - - 0.425

Variance of EMG (VARE) - - 0.425

Variance order (VO) - - 0.425

Waveform length (WL) - 0.0256 0.502
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TABLE 6 Electrodes for theta band with corresponding p-values

comparing the two cohorts in POST and PRE phases-bold shows they

were significantly di�erent in the POST phase of the experiment.

Electrodes PRE phase POST phase

M1 0.124 0.0326

T7 0.0740 0.0169

T8 0.139 0.0215

AF3 0.0947 0.0383

C6 0.0784 0.0247

PO6 0.0983 0.0409

FT7 0.112 0.0476

TABLE 7 Electrodes for alpha band with corresponding p-values

comparing the two cohorts in POST and PRE phases- bold shows they

were significantly di�erent in the POST phase of the experiment.

Electrodes PRE phase POST phase

FC5 0.0597 0.0247

T7 0.122 0.0187

T8 0.0703 0.0247

P4 0.0596 0.0391

PO6 0.276 0.0247

FT8 0.0674 0.0165

4. Discussion

In previous work, we compared the identical PRE and POST
phases in order to characterize different cohorts while they
performed unassisted standing under conditions of sensory conflict
after exposure to the complex postural control task of the moving
platform and VR scene. EEG delta and theta power spectrum
analysis and EMG activity in the soleus muscle proved to be strong
discriminators between groups (Jacob et al., 2022).

In this paper, we use a similar multi-factorial approach to
characterize PD and healthy participants on the basis of their
postural control response during the BioVRSea experiment. In
particular, we compared the balance response after a visual stimulus
only–PRE phase: VR visual sea motion simulation; to the balance
response obtained after a complete immersive sensory experience–
POST phase: VR visual and correspondent motion stimulation.

This study is part of an extensive work in which a larger
population is monitored. We have collected data from 324
volunteers (females 183, males 141, general age 33 ± 14). The
overall population is between the ages of 18 and 29. Recruiting
a larger group of older adults may open a new way to highlight
age-related postural control strategies using the same protocol.

4.1. Heart rate

Although heart rate per minute appears to increase in subjects
with Parkinson’s from PRE to POST phase, there is no significant
result to underscore the difference in the two cohorts.

4.2. Muscle activation

The lower leg muscles are involved in postural and balance
control strategies (Loram et al., 2005). Different muscles are
involved at different times in two cohorts under the same
experiment and this may be pathology dependent. The
most significant activity was found in the tibialis anterior
on the right leg, with some significant activity in the right
soleus and the left tibialis anterior. However, only features
obtained from the right tibialis anterior (TA) statistically
differentiated the two groups. This may be related to the
fact that tibialis anterior is the primary dorsiflexor of
the foot, and is critical in gait to lift the foot during the
swing phase.

We can hypothesize that in the group of subjects considered
in this study (Parkinson’s and healthy) has overall right-handed
prevalence. This is supported in one of the latest reported
studies conducted on the human hand, from which it was
stated that the precise prevalence is the right hand in the world
population. The prevalence of left-handedness is between 10–20%
(Papadatou-Pastou et al., 2020). Thus, we can explain the significant
results obtained for the right side through the dominance of
the legs.

4.3. Center of pressure

A common way to evaluate PD is based on gait analysis with
accelerometer and force sensors inside the shoe. Gait analysis has
revealed higher frequency values for PD compared to healthy
controls. However, until now Parkinson was not assessed by
measuring the force in a standing position (Hsieh and Abbod,
2021).

Our results highlight a reduced sway in PD subjects during
the task ant that may be related to a multitude of factors.
Some diseases, including PD, interfere in the ability to maintain
balance. PD patients have less coordination of agonist and
antagonist muscles, making it challenging to maintaining stability.
They also frequently suffer from limb and axial rigidity that
may reduce mobility (Gandolfi et al., 2018). All of those
linked to a reduced mobility confidence may account for the
reduced sway.

We found significant differences in the POST phase between
the PD and healthy cohorts. This is significant as the POST phase
is the stage after a motor stimulus and it can be a good index
of pathology progression. The most discriminating feature was
found to be the complexity index in the medio-lateral direction
as seen in Figure 6. The effect size for this variable is also large
(-0.793 - the negative value indicating that most of the higher
values for this variable were in the PD group) which is classified
as a large effect as per (Vargha and Delaney, 2000) which ranks
a delta value greater than 0.42 as a large effect. The mediolateral
CI in the PD group is higher than in the healthy cohort, which is
contrary to a number of studies which show that the complexity
of postural dynamics tends to decrease in disease and aging
(Habtemariam et al., 2017; O’Keeffe et al., 2019). It is unclear
why the complexity index is higher in the pathological group for
our study.
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FIGURE 6

Mediolateral Complexity Index of healthy (blue) and Parkinson (orange) groups.

FIGURE 7

Absolute PSD bands analysis in Parkinson’s vs. healthy cohort for theta and alpha frequency band.

4.4. Neural response

The strong involvement of the cerebral cortex in postural
control responses to perturbation is well-known, but the
correlations with pathologies affecting mobility are still poorly
understood (Jacobs and Horak, 2007; Maki and McIlroy, 2007;
Papegaaij et al., 2014). Understanding the network of cortical
structures involved in a disease such as Parkinson’s and how
sensory information are processed can be an important step
in diagnostics.

Each band can be associated with a particular neural function
and in our research, differences in alpha and theta response prove
to be statistically significant when comparing between the two
groups. The result for alpha band shows that the activity in the
healthy subjects is greater than in the Parkinson subjects in both the
PRE and POST phases. On the other hand, the theta band shows
different behavior depending on the brain area and phase. Theta
and alpha bands are involved in the regulation of the posture, in
particular when a visual feedback is altered (Kahya et al., 2022).
Figure 6 shows the topological plots of absolute PSD for theta and

alpha frequency bands. Each row represents the PSD difference
of task (PRE and POST). The PSD differences between Parkinson
and healthy subjects are compared for significant electrodes with
Benjamin-Hochberd FDR procedure.

4.4.1. Theta waves
The theta rhythm is one of the slowest oscillations in the normal

waking state, just above the delta rhythm that dominates slow
wave sleep. Theta waves are involved in attention and memory
processes, especially in memory retrieval episodes (Baars and Gage,
2010). Although the alpha band has been shown to be strongly
correlated within postural task conditions, it currently remains less
known whether the theta band shows an association with increased
postural task difficulty (Kahya et al., 2022). One of the most recent
publications on neurophysiology in healthy subjects showed that
the theta band has important electrodes located mainly in the
parietal scalp, associated with a slight decrease in PSD (Aubonnet
et al., 2022). The parietal lobe is activated to plan and process the
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orientation of the body and sensory information, demonstrating
the remarkable role of the theta band in postural strategies.

In our results, parietal activity of the theta band from PRE
to POST phase shows a decrease of PSD in healthy subjects,
confirming what was found in the work just mentioned. Instead
for the frontal lobe, the theta band shows an increased PSD in the
healthy group in both tasks. Theta brain rhythms are associated
with cognitive and motor functions, and patients with PD would
have irregular theta rhythms during lower-limb activations (Singh
et al., 2020).

4.4.2. Alpha waves
Different studies have shown that the performance of a generic

balance task results in simultaneous changes in the amplitude of
alpha oscillations (Slobounov et al., 2013; Malisova et al., 2017).
Alpha activation is associated with cognitive events and has been
found to increase during intentional tasks such asmental arithmetic
and working memory. Planning actions and their execution also
generate alpha (Pfurtscheller, 2003). Therefore, alpha waves play a
functional role in human cognition and that it does not represent
only an ‘idling rhythm, as many scientists believed until recently.
Maintaining balance is an active process and requires constant
awareness of any external stimuli. The alpha band has shown
interesting results in postural control studies where a decrease in
alpha power was associated with an increased task difficulty during
upright stance in young adults (Percio et al., 2007; Hülsdünker
et al., 2016; Kahya et al., 2022). As the PD group has lower overall
alpha power (as seen in Figure 7), this may indicate higher demand
to cope with the balance task compared to the healthy group. In
another publication on the neurophysiology of healthy subjects
using the BioVRSea experiment (Aubonnet et al., 2022), the alpha
band is important for balance control across the whole scalp. Our
study is consistent with these results.

Both the bands (theta and alpha) can be considered parameters
to discriminate PD subjects during a complex postural control
task and confirm the activation of the frontal, parietal and visual
lobe in healthy subjects, underlining the difficulty the PD group
experiences when making postural adjustments.

5. Conclusions and limitations

Our paper confirms that a comprehensive multi-factorial
approach (our unique BioVRSea paradigm) is useful in
discriminating early PD subjects. In addition, the ability to
look at multiple parameters at once introduces the ability to
further analyse the correlation and timing of our set of specific
features changes. In fact, there are no previous multi-metric
experiments, such as BioVRSea, and there are no experiments
with larger patient cohorts, therefore a larger study is foreseen
to provide more definitive conclusion. Several neural and motor
strategies difference have been highlighted, and are in line with
known literature.

It is also worth providing some elements for consideration,
specifically in the PD diagnosis. Firstly, the ’early stage
classification’ has no absolute value, it is a subjective evaluation
and may suffers from a degree of variability. This influences the

time of the diagnosis, which, in turn, may also present early stage
cohorts with non-homogeneous symptoms and impairment. This
BioVRsea paradigm seems very promising for comprehensive
quantitative assessments and may pave the way for highlighting
the most relevant features in the specific motor diseases analyzed.
This may favor the introduction of less complex quantitative
analyses, specifically for clinical operators, to replicate only the
most poignant aspects of our paradigm. Our results suggest that a
simpler experimental design including concurrent EEG, bilateral
lower limbs EMG and CoP analyses with a balance challenge (not
necessarily VR led) can discriminate early stage PD and has the
potential to stratify further stages of the pathology.

Postural control alteration is one of the major risk factors to
facilitate the occurrence of falls in the elderly. The frailty index,
which is the expression of the health status of older individuals,
is related to falls (Tornero-Quinones et al., 2020; Taguchi et al.,
2022). Higher levels of frailty indicate the presence of chronic
diseases (Vinik et al., 2017), such as diabetes, chronic pain, and
polypharmacy. Taken separately, those clinical conditions have
been established to change the postural control and increase falls
(Efstathiou et al., 2022; Rasmussen et al., 2023). We speculate
that BioVRSea protocol may be added to the routine assessment
of individuals with a high frailty index to identify early postural
control deficit and address early intervention to prevent falls.
Furthermore, individuals with other neurodegenerative disorders
(i.e., multiple sclerosis - Comber et al., 2018; Molhemi et al.,
2021 - or dementia - Nyman et al., 2019; Chepisheva, 2023), or
neurological conditions (i.e., stroke - Chen et al., 2016 - or brain
injury - Perez et al., 2020) may find advantage in the use BioVRSea
protocol to explore the postural control alterations.

BioVRSea is an innovative model to analyze postural control
response that can be used for different clinical applications. It may
also prove useful to classify other related diseases and conditions
of movement disorders, such as Progressive Supranuclear Palsy
(PSP) or Huntington’s disease (Porciuncula et al., 2020) and many
other disorders that involve changes in postural control such as
loss of balance and slow movement, where a similar performance
can be expected. Having new collaborations with different disease
categories will add more value and amplify the research.
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