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Articular Cartilage Tissue Evaluations

Introduction

Osteoarthritis is a prevalent form of arthritis,1 happening 
when protective hyaline cartilage between bones breaks 
down through injury or disease. Osteoarthritis of the knee is 
a main reason for impairment, being a significant burden on 
healthcare systems2 with a greater risk to develop with obe-
sity and aging.3,4 The study of cartilage thickness is essen-
tial to both identify and control the evolution of osteoarthritis. 
Diagnosis relies on a clinical assessment and a radiographic 
exam of the joint.5 Magnetic resonance imaging (MRI) is 
the most advanced imaging technique for the evaluation of 
hyaline cartilage, and presented many improvements in 
acquisition and image modality in the past years.5-8 MRI 
gives a visual evaluation of the cartilage. Extensive exami-
nation of MRI sequences for assessing morphological and 

structural aspects of knee cartilage are reported in previous 
studies.5,6,9 MRI is able of precisely measuring the 
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Abstract
Objective. assessment of human joint cartilage is a crucial tool to detect and diagnose pathological conditions. this 
exploratory study developed a workflow for 3D modeling of cartilage and bone based on multimodal imaging. New 
evaluation metrics were created and, a unique set of data was gathered from healthy controls and patients with clinically 
evaluated degeneration or trauma. Design. We present a novel methodology to evaluate knee bone and cartilage based 
on features extracted from magnetic resonance imaging (Mri) and computed tomography (Ct) data. We developed 
patient specific 3D models of the tibial, femoral, and patellar bones and cartilages. Forty-seven subjects with a history of 
degenerative disease, traumatic events, or no symptoms or trauma (control group) were recruited in this study. Ninety-six 
different measurements were extracted from each knee, 78 2D and 18 3D measurements. We compare the sensitivity of 
different metrics to classify the cartilage condition and evaluate degeneration. Results. Selected features extracted show 
significant difference between the 3 groups. We created a cumulative index of bone properties that demonstrated the 
importance of bone condition to assess cartilage quality, obtaining the greatest sensitivity on femur within medial and 
femoropatellar compartments. We were able to classify degeneration with a maximum recall value of 95.9 where feature 
importance analysis showed a significant contribution of the 3D parameters. Conclusion. the present work demonstrates 
the potential for improving sensitivity in cartilage assessment. indeed, current trends in cartilage research point toward 
improving treatments and therefore our contribution is a first step toward sensitive and personalized evaluation of cartilage 
condition.
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thickness of articular cartilage.7,10,11 MRI also visualize, 
other tissues involved in osteoarthritis, such as subchondral 
bone, meniscus, and soft tissue. It is crucial to understand 
that osteoarthritis is a disease of the whole organ, involving 
multiple joint tissues.5 Computed tomography (CT) imag-
ing also presents a great 3D representation of cortical bone, 
osteophytes, and soft tissue calcification. It has been used to 
study changes in the joint, such as trabecular bone changes, 
subchondral cysts, and bone sclerosis, that can be osteoar-
thritis-related alterations in the joint.12

Severity of osteoarthritis can be estimated by the grading 
of joint space narrowing and damage to cartilage and related 
bone. Different scales exist to evaluate the degree of osteoar-
thritis. Kellgren-Lawrence grading is used for assessment of 
osteoarthritis on planar x-rays, where the presence of an 
osteophyte (Kellgren-Lawrence grade 2) supports a diagno-
sis of osteoarthritis.13 Kellgren-Lawrence relies on joint 
space narrowing and osteophyte presence to propose a global 
grade of osteoarthritis, which inaccurately considers that 
these changes appear continuously.5 Another grading system, 
the Osteoarthritis Research Society International Atlas sys-
tem, differentiates a joint space narrowing grade from the 
presence of osteophytes. Yet, they only assess the tibiofemo-
ral joint, reducing the patellofemoral contribution to the dis-
ease.5 Another widely used scaled is the Ahlbäck14 grading 
which relies on the measurement of joint space narrowing. A 
study reporting the inter- and intra-observer reliability of the 
Ahlbäck scale listed low- to medium-agreement coefficients, 
especially when studying radiographs of earlier stage osteo-
arthritis.15 Observations of knee osteoarthritis scales revealed 
moderate correlation with arthroscopic findings and moder-
ate to high reliability between individual observers.16 In a 
study on severe osteoarthritis, 5 radiological grading systems 
indicated medium correlation with intra-operative findings of 
full-thickness cartilage loss, and moderate inter-observer reli-
ability for all systems.17 In both studies, Kellgren-Lawrence 
and Ahlbäck showed the highest correlation with cartilage 
loss, although still the moderate range. Semi-quantitative 
MRI-based grading systems, Whole Organ Magnetic 
Resonance Imaging Score (WORMS) and Knee Osteoarthritis 
Scoring System (KOSS) for instance, are based on a wide 
range of features of the MR image from the whole knee joint, 
such as cartilage size and depth, bone marrow lesions, and 
subchondral cysts. Some of these scoring systems have indi-
cated “within grade” alterations over time, thus showing a 
higher sensitivity compared to traditional grading systems.5 
Injury to the knee joint is potential risk of development of 
osteoarthritis. X-ray imaging, CT, and MRI have all been 
used in the evaluation of knee trauma consecutive of anin-
jury.18 An MRI-based score integrating traumatic and follow-
ing degenerative changes was presented in 2014 by Roemer 
et al.19 The Anterior Cruciate Ligament OsteoArthritis Score 
(ACLOAS) evaluates joint damage, features of osteoarthritis 
(including cartilage loss) and signs of inflammation in 

traumatic injury to the knee. The ACLOAS aims to be a tool 
for long-term evaluation of injury and subsequent osteoar-
thritis in the knee joint. MR-based morphometry for the 3D 
assessment of cartilage in injury has been performed but 
most of the work published in this area has been on knees 
with established osteoarthritis.

Machine Learning (ML) and Deep Learning (DL) are 
widely used in different bio-medical applications, including 
medical image analysis. In the scientific literature, there are 
several applications of ML and DL for MRI of the knee.20,21 
Liu et al.22 used DL to detect cartilage degeneration and 
acute cartilage injuries within the knee joint while Bien 
et al.23 developed an efficient DL method to detect general 
abnormalities and specific diagnosis on MRI exams. DL 
was also applied for osteoarthritis diagnosis24 and to predict 
patients at high risk of total knee replacement to prevent the 
surgery with an early-stage diagnosis using both MRI and 
non-image features.25 Kwon et al.26 used gait data and 
radiographic images to multi-classify the severity of osteo-
arthritis based on the Kellgren–Lawrence grade system 
using DL. Different ML algorithms using MRI as an input 
are also applied to predict the progression of osteoarthritis 
using a principal component analysis (PCA) approach on 
the extracted features27 or using plain radiographs and clini-
cal data.28 The main scope of ML technologies in this 
research is to study and understand the predictive potential 
of the features elaborated from the image analysis and their 
ability in distinguish degenerative, traumatic, and healthy 
subjects, with a focus on the features that contribute the 
most in the classification process. This study compares dif-
ferent cartilage assessment metrics, developing a novel 
workflow to 3D model bone and cartilage and, moreover, 
analyzing new features for a more sensitive cartilage assess-
ment, currently required as a support element toward more 
patient-specific treatment development.

Material and Methods

Figure 1 shows the work done in this manuscript starting 
from the recruitment to the data acquisition, analysis, and 
computation of the feature importance.

Participants

Participants were recruited as part of the European project 
RESTORE (https://restoreproject.eu/) (EU’s Horizon 2020 
research and innovation program, grant agreement ID: 
814558), whose objective is to develop solutions for per-
sonalized cartilage regeneration. This study has been 
approved by the Icelandic Bioethics Commission (approval 
number: VSN-19-050). The aim of our research group is to 
develop a database of morphometric chondral lesions with 
associated 3D models (clDB). The function of the clDB is 
to provide accurate 3D models of chondral status, bones, 

https://restoreproject.eu/
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and soft tissue to develop, design, test, and validate 3D 
printed microtissues that can fit patient-specific lesions.

Recruitment: After completing a written informed con-
sent, 47 subjects (24 females, 23 males, age = 50 ± 19 
years) underwent CT and MRI scans of a single knee at 
Landspitali University Hospital in Reykjavik, Iceland, using 
standardized acquisition protocols and patient positioning. 
From the total of patients, 23 subjects (12 females, 11 males, 
age = 64 ± 12 years) were suffering from degenerative (D) 
cartilage. They were examined by an orthopedic doctor due 
to pain from osteoarthrosis and were placed on the waiting 
list for treatment with total knee arthroplasty (TKA). Sixteen 
(9 females, 7 males, age = 35 ± 11 years) suffered from a 
knee trauma (T) with possible cartilage injury. The emer-
gency clinic provided an alert when there is a patient with 
suspected ligament injury and patella dislocation. They 
underwent plain x-ray to exclude fracture. Then, they were 
called to exclude any history of knee injuries or problems. 
The alert was received within a week, and the patients under-
went CT and MRI during the second week from the day of 
the trauma. Finally, 8 subjects (3 females, 5 males, age = 34 
± 14 years) were involved in the study as control (C) sub-
jects (no symptoms of history of knee trauma/degeneration). 
For D and T group, in addition to the CT and MRI data that 
were acquired for this study, X-ray data were also available, 
as a part of the routine clinical evaluation detailed above. 
The X-rays were not performed for the C group. Table 1 
sums up the demographics of the patients.

Acquisition protocol: Both protocols were performed with 
the knee in the same fixated position, evaluated by 2 radiologi-
cal technicians, and under the supervision of a radiologist.

The CT scanner was a Toshiba Aquillion One, 320 slice, 
that covered a 16 cm area of interest in a single gantry rota-
tion. Slice thickness was 0.5 mm with an increment of 0.25 
mm. Tube voltage was 120 kV, tube current was 250 mA, 
and effective mAs was 125. The protocol covered about 15 
cm of area (axial plane) centered at the knee joint with small 
variations according to patient size. No intravenous contrast 
was administered. The preliminary CT dose index 
(CTDIvol) was set to 12.1 mGy. The preliminary dose-
length product was (DLP) 193.2 mGy*cm. These values 
were individually recalculated by the CT scanner for each 
patient according to size/thickness of the examined area. 
The MRI was a 3T Siemens Healthcare Prisma scanner. 
Volumetric 3D sequences with isotropic voxels of 0.6 mm 
were acquired in the axial plane with a surface coil without 
the use of intravenous contrast. This allowed for reconstruc-
tions in various planes along regions of interest. A 3D FSE 
(fast spin echo), intermediate weighted and fat suppressed 
sequence which allowed for morphologic evaluation of car-
tilage but also for better assessment of subchondral bone 
marrow was used. The maximum field of view was 16 cm, 
with a minimum matrix size of 256 x 256. The area of inter-
est was the cartilage covered areas around the knee. The 
protocol covered 14 cm centered at the knee joint. The 
radiographers use a splint to potion the knee on the 

Figure 1. graphical abstract.

Table 1. Description of the Patients Demographics (age, gender) by group.

Category Degenerative traumatic Control

# Female 12 9 3
Mean age (Std) 66 (12) 39 (11) 29 (5)
# Male 11 7 5
Mean age (Std) 66 (7) 29 (7) 37 (16)
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scanning tables ensuring that the orientation is identical 
between scans. Scans are taken consecutively.

2D Measurements

An exhaustive radiological examination was performed on 
the bones and articular cartilages of the knee joint to assess 
their condition. These observations were based on 3 types 
of 2D medical imaging: X-ray, CT and MRI. The assess-
ment was done on femur and tibia from both the medial 
(MC) and lateral (LC) compartments as well as on the 
patella and femoral trochlea within the femoropatellar com-
partment (FPC) of the scanned knee.

Bone. Figure 2 sums up examples and brief definitions of 
the pathologies observed on the femur, tibia, and patella. 
The subfigures on the left (A, C, E, G and I) correspond to 
CT scans while the right subfigures (B, D, F, H, and J) cor-
respond to MRI scans. As observed in Figure 2, some 
pathologies could be found in both CT and MRI, while oth-
ers (I, J) had a particular 2D image.

Cartilage and joint space. Figure 3 contains examples and 
brief definitions of the gold standard observations made on 
the cartilage and the joint space. Except for the Ahlbäck 
grading, which was observed on an X-ray, the rest of the 
observations were made on MRI scans.

Articular cartilage thickness. To manually measure the artic-
ular cartilage thickness (ACT) from an MRI scan of the 
knee, a single investigator followed the methods previously 
proposed by Koo et al.29 to segment both femoral condyles 
into 3 regions of interest. These regions, called anterior, 
medial, and posterior were estimated as the main weight 
bearing regions of the articular cartilage in a sagittal view 
plane.

The method to define these regions consisted of locating 
a central axis perpendicular to the sagittal plane by fitting a 
cylinder that best represented the articular cartilage geom-
etries.7 Then, tibiofemoral contact points were identified, 
and lines were drawn from that central axis to these contact 
points to define the 3 regions. In the LC, the 0º is defined as 
the most inferior point of the condyle, while for the MC this 
point occurs about 20º anterior to that of the LC. The ante-
rior region in both compartments extends 30º anterior to the 
0º, the middle region from 0º to 30º posterior to the 0º line 
and the posterior region from 30º to 60º posterior to the 0º 
line. Finally, the points where the measurements were taken 
were located at the center of each of the 3 regions in each 
compartment, as shown below in Figure 4. The values of 
the ACT shown in the Results section are an average of the 
3 contact points (anterior, medial, and posterior) for both 
medial and lateral compartments.

Figure 2. Bone observations. (A, B) Subchondral bone 
cysts are typically spherical or ellipsoidal fluid-filled cavities 
within the subchondral bone region. (C, D) Osteophytes 
are cartilage-capped bony proliferations (spurs) that most 
commonly develop at the margins of a synovial joint as a 
response to articular cartilage damage. (E, F) Bone attrition is 
the result of flattening or depression of the articular surfaces, 
probably because of bone remodeling. (G, H) Osteonecrosis 
is a generic term referring to the ischemic death of the 
constituents of the bone and is observed as if the bone is 
missing a piece. (I) Subchondral bone sclerosis is a thickening 
of the bone seen in joints affected by Oa. it is observed as 
a “whitening” of the bone only in Ct. (J) Subchondral bone 
edema is a build-up of fluid in the bone marrow as a response 
to an injury or Oa condition visible on Mri but not on Ct. 
Mri = magnetic resonance imaging; Oa = osteoarthritis;  
Ct = computed tomography.
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Figure 3. Cartilage and joint space observations. (A, B, C, D) ahlbäck grading is a classification system that focuses on the reduction 
of the joint space as an indirect sign of cartilage loss. (A) grade 0: normal. (B) grade 1: joint space narrowing (less than 3 mm). (C) grade 
2: joint space obliteration (elimination). (D) grade 3: minor bone attrition (0-5 mm). (E, F, G, H, I) iCrS (international Cartilage repair 
Society) grading is the most used score system for quantification of existing cartilage defects at the knee. (E) grade 0: normal cartilage. 
(F) grade 1: nearly normal cartilage. Superficial lesions; soft indentation and/or superficial fissures and cracks. (G) grade 2: abnormal 
cartilage. lesions extending down to <50% of cartilage depth. (H) grade 3: severely abnormal cartilage. Defects extending down to 
>50% of cartilage depth; down to calcified layer but not through the subchondral bone. Blisters. Defects more visible toward the medial 
area of the patella. (I) grade 4: severely abnormal. lesions extending down through the subchondral bone. (J, K, L) Meniscal pathology 
is associated with an elevated prevalence of Mri-detected cartilage damage. there are 3 types of pathology; (J) degeneration: not acute 
as a tear, this injury is a more gradual onset and tends to occur as we get older. (K) rupture: is a tear in the lateral or medial meniscus 
due to rotational forces directed to a flexed knee. (L) protrusion: when the location of the outer edge of a meniscus is beyond the tibial 
articular surface. (M) Synovitis—effusion. While synovitis is the inflammation of the synovium; effusion is when excess synovial fluid 
accumulates in or around the knee joint. it is observed generally in the FPC as a white stain. Mri = magnetic resonance imaging.
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From the same slices used to measure the femoral ACT 
in the medial and lateral compartments, the tibial ACT was 
measured. In both cases and as shown in Figure 5, an 
anteroposterior line representing the length of the tibial car-
tilage was drawn and divided into 3 regions of equal length. 
The center of each region (anterior, middle, and posterior) 
was determined as the point where the cartilage thickness 
was measured. The values for the tibial cartilage thickness 
in each compartment are later displayed as the average of 
these 3 points.

As for the FPC, the measurements were taken from an 
axial plane view, where both articular cartilages from the 
femoral trochlea and the patella were the thickest in the 
same slice. This means that the chosen slice depended on 
both cartilages and was not the same for all patients. On 

the patella, 3 points were used to measure the cartilage 
thickness, the center one as the most inferior point of the 
patella, then a medial point as the center point of the 
medial part of the patella cartilage and a lateral one as the 
center of the lateral part of the cartilage. Lastly, on the 
femoral trochlea, 2 points were used to assess the cartilage 
thickness, 1 at the center of the medial condyle cartilage 
and another at the center of the lateral condyle cartilage 
(Fig. 6).

Cumulative index based on bone conditions. A cumulative index 
(CI) from 0 to 6 was used to quantify the bone anomalies pres-
ent in each bone, that is, subchondral cysts, subchondral scle-
rosis, osteophytes, bone attrition, osteonecrosis, and/or 
subchondral edema, regardless of the compartment for each 

Figure 4. Femoral cartilage thickness measurements, medial and lateral compartments. Fitting cylinder method to obtain 3 regions of 
interest, anterior (-30º-0º), medial (0º-30º) and posterior (30º-60º) in the lateral compartment (A) and the medial compartment (B).

Figure 5. tibial cartilage thickness measurements. anterior, middle and posterior points are measured along the tibial cartilage in 
medial (A) and lateral (B) compartments.
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patient. Hence, for an observed pathology (either in CT or 
MRI) a 1 was assigned and consequently, the index was the 
sum of pathologies present in a certain bone of a certain 
patient. Sometimes, when the CI is compared against observa-
tions made within a compartment such as the Ahlbäck grading 
(AG) or the International Cartilage Repair Society (ICRS) 
score, the index is then considered for the bone in question 
within a compartment.

3D Measurements

The DICOM images were imported into a medical device 
software (MIMICS, Materialize, Belgium). Figure 7 
describes the processing workflow. This workflow was 
repeated and evaluated 3 times by 3 biomedical engineers, 
under the supervision of a project manager, to obtain the 
most accurate segmentation.

Figure 6. Cartilage thickness measurements, femoropatellar compartment. Measurement of the articular cartilage thickness at 3 
points on the patella (A) and articular cartilage thickness of the femoral trochlea on 2 different points (B).

Figure 7. Segmentation workflow.
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The bones (femur, tibia, patella, and fibula) were seg-
mented from the CT scan. From the MRI datasets, the carti-
lage of femur, tibia, and patella were segmented using the 
same pipeline: first, a mask was created by setting a density 
threshold interval, to delimit the part of interest. Then, a man-
ual adjustment was performed to define as precisely as pos-
sible the mask for each entity. A visual inspection was done 
to check that no mask was overlapping with another. Each 
mask was then calculated in 3D and was smoothed and 
wrapped to ensure a better model quality. From the CT scans, 
4 objects were 3D calculated: the femur, the tibia, the patella, 
and the fibula (all bones). From the MRI, 4 objects were also 
3D calculated: the femoral cartilage, the medial tibia carti-
lage, the lateral tibia cartilage, and the patellar cartilage.

The next step was the image registration, done from the 
CT scan. The MRI objects were combined with the CT 
objects. Bone anatomical landmarks were identified from the 
2 scans. The 2 sets can be aligned, by superimposing these 
points into the 2 separate scans (Fig. 8). From the combined 
dataset, 3D models of femoral, tibial, patella, and fibula 
bones and cartilages were created and displayed (Fig. 9). A 
visual inspection was done to check that no parts were over-
lapping, and that the anatomy was respected. If not, manual 
adjustments or a new image registration were performed.

From this final file, the radiodensity of each part (bone 
and cartilage), was extracted in Hounsfield Units (HU). The 
Hounsfield scale is a quantitative scale to define radiodensity. 
Water is arbitrarily assigned as 0 HU, meaning that materials 
denser than water have positive values and materials less 
dense have negative values. The bone mineral density (BMD) 

(in g/cm3) was computed from the radiodensity using a linear 
formula (ρapp = 0.000494 · HU + 1.1 [g/cm3]) that was 
determined empirically based on phantoms.30

To avoid partial volume effect between 2 shades of gray, 
an erosion of 1 pixel was performed for each cartilage seg-
ment. Next, the cartilage mask was filtered between 0 and 
300 HU to eliminate pixels with intensities outside the soft 
tissues range. The cartilage radiodensity was extracted from 
this final mask. The volume (in mm3) and the surface  
(in mm2) were also computed from each 3D object.

Data Analysis

Statistics. A power analysis is performed to determine if the 
number of samples in each group is sufficient to have a test 
with a power of 80% and significance level at 5%. The 
groups are compared in pairs (D vs T, D vs C, T vs C).

To determine whether there were significant differences 
between the 3 groups (D, T, C) an analysis of variance 
(ANOVA) test was performed, and differences were con-
sidered significant at P < 0.05. If differences were encoun-
tered, a post-hoc- test with Bonferroni correction was used 
to determine which group or groups were significantly 
different.

Machine learning. Knime analytics platform (v. 4.3.1)31 was 
adopted to develop the steps of the ML analysis: this soft-
ware was previously employed in multiple biomedical 
studies that confirm its efficiency.32-34 In the present ML 
analysis, 2 tree-based algorithms were applied to the 

Figure 8. Final registration for the 3 groups of patients (A) Degenerative (B) traumatic (C) Control.
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multi-classification of the degenerative, traumatic, and 
healthy (control) patients: random forest (RF) and gradient 
boosting (GB).35,36 Both RF and GB rely on the use of the 
decision tree creating an ensemble of trees which drasti-
cally increases the prediction performance and addresses 
the instability of a single tree.37 The tree-based algorithms 
are demonstrated to be efficient if applied to biomedical 
datasets,38 as also discussed in the Cambridge University 
published book by Malley et al.,39 and, in general, clini-
cians can more easily appreciate them as they give a very 
human representation of the data.40 RF works by combin-
ing randomization and bagging: it builds a set of basic 
decision trees during the training and the predicted class is 
the mode of the classes of the individual tree. GB applies 
boosting and randomization in a similar way to RF, adding 
bagging techniques that assign a higher weight to wrongly 
classified. RF was performed using the same random seed 
for every model and the same hyper-parameters (number of 
trees = 100, split criterion = Information Gain Ratio, max-
imum 3 depth = 10, and minimum node size = 1). The 
same was done with GB (number of trees=100, maximum 
3 depth = 4, and learning rate = 0.1). As reported in 
Kohavi41 and widely used in literature,42,43 the 10-fold 
cross validation was performed for the train and test divi-
sion of the dataset to have a complete and reliable view of 
all the dataset during the ML analysis. Accuracy, precision, 
recall, and F1 have been considered as classification met-
rics.44 Accuracy (equation [1]) is defined as the number of 
correct predictions divided by the total number of predic-
tions. Precision (equation [2]) is the meare of patients that 
we correctly identify as having the disease out of all the 
patients having it, while for all the patients who have the 
disease, recall (equation [3]) tells us how many the algo-
rithm correctly identified as having the disease. F1 (equa-
tion [4]) is defined as the harmonic mean between precision 
and recall. The respective equations with True Positive 
(TP), True Negative (TN), False Positive (FP), and False 
Negative (FN) nomenclature are as follows.

 
Accuracy =

+
+ + +
TP TN

TP TN FP FN  
(1)

 
Precision =

+
TP

TP FP  
(2)

 
Recall =

+
TP

TP FN  (3)

 

F1=
+

+
TP

TP
FP FN

2

.

 

(4)

Recall, precision and F1 are computed for all the 3 classes to 
assess the performance of each classification model. To better 
understand the prediction ability of the different features 
extracted from the medical image analysis, seven subsets are 
chosen as input to the tree-based algorithms: details can be seen 
in Table 2. Based on the ML models with the best results for 
each subset, a feature importance analysis is performed using the 
software tools included in Knime analytics platform (v. 4.3.1).31

Results

As stated in the Methods section, the aim of our research 
group in RESTORE project is to develop a database of mor-
phometric chondral lesions with associated 3D models 
(clDB). The database provides a benchmark for 3D bioprint-
ing design and to advance cartilage assessment. The database 
is open access and available at: https://restore-project.ru.is/

2D Measurements

The results shown in Table 3 display a summary of the 
pathologies observed in bone, the meniscus and the synovi-
tis-effusion as percentages for each group of patients.

Figure 9. 3D model from the registration for the 3 groups of patients (A) Degenerative (B) traumatic (C) Control.

https://restore-project.ru.is/
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Table 2. Feature Selection Sets Used as inputs for the Ml analysis.

Source

tot Feat 96 all the available features from Mri, Ct, and 3D elaboration
2D Feat 78 Features from Mri (52) and Ct (26)
3D Feat 18 Features of cartilage volume and density (and its standard deviation) from 3D elaboration
Ct—Scan Feat 26 Features from Ct—part of the 2D group
Mri Feat 52 Features from Mri—part of the 2D group
Bone Feat 50 Features of Bone from Ct and Mri (subchondral bone cysts, sclerosis and edema, osteophytes, 

osteonecrosis, and bone attrition)
Cartilage Feat 26 Features of Cartilage from Mri (iCrS grades, meniscal pathology, synovitis-effusion, and measurements of 

thickness)

Ml = machine learning; Mri = magnetic resonance imaging; Ct = computed tomography; iCrS = international Cartilage repair Society.

Table 3. 2D Measurements results. Summary of Bone Pathologies, Meniscal Pathology and Synovitis-effusion as Percentages for each 
group of Patients.

Pathology Compartment/Bone Degenerative traumatic Control

Subchondral bone cysts Medial/femur 34.78% 18.75% 0%
Medial/tibia 60.87% 6.25% 0%
lateral/femur 17.39% 6.25% 0%
lateral/tibia 26.09% 12.5% 0%
Femoropatellar/fem. trochlea 26.09% 18.75% 12.5%
Femoropatellar/patella 30.43% 6.25% 12.5%

Osteophytes Medial 91.3% 6.25% 12.5%
lateral 95.65% 0% 0%
Femoropatellar 91.3% 25% 25%

Bone attrition Medial/femur 30.43% 0% 0%
Medial/tibia 26.09% 0% 0%
lateral/femur 0% 0% 0%
lateral/tibia 0% 0% 0%
Femoropatellar/fem. trochlea 0% 0% 0%
Femoropatellar/patella 0% 0% 0%

Osteonecrosis Medial/femur 4.35% 25% 0%
Medial/tibia 17.39% 12.5% 0%
lateral/femur 21.74% 37.5% 12.5%
lateral/tibia 21.74% 25% 12.5%

Subchondral bone sclerosis Medial/femur 86.96% 37.5% 12.5%
Medial/tibia 100% 97.35% 87.5%
lateral/femur 34.78% 31.25% 25%
lateral/tibia 21.74% 12.5% 0%
Femoropatellar/fem. trochlea 13.04% 6.25% 0%
Femoropatellar/patella 69.57% 93.75% 75%

Subchondral bone edema Medial/femur 52.27% 31.25% 25%
Medial/tibia 65.22% 12.5% 0%
lateral/femur 26.09% 68.75% 25%
lateral/tibia 13.04% 6.25% 0%
Femoropatellar/fem. trochlea 17.39% 50% 0%
Femoropatellar/patella 4.35% 50% 0%

Meniscal pathology Medial 100% 18.75% 0%
lateral 26.09% 37.5% 0%

Synovitis—effusion 95.65% 100% 75%
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The results shown in Table 4 display the average and 
standard deviation of the ICRS, cumulative index, and ACT 
for each group of patients.

Bone. Of the 6 pathologies observed in bone, Figure 10 
only shows the percentages of 3 of them that best indicate 
differences between the groups. The results with the other 
pathologies are shown in the appendix.

Cartilage and joint space. Figure 11 shows the percentage of 
patients in each group which presented meniscal pathology 
and synovitis-effusion.

As the ICRS grading is not a binomial result, their aver-
age values and standard deviation (SD) for each group are 
shown instead (Fig. 12). The results indicate that in the MC, 
both femur and tibia had a significant higher grading in the 
D group compared to T and C (P < 0.01). Meanwhile, there 
were no significant differences of the ICRS grading in the 
LC bones between the groups. Finally, in the FPC the femo-
ral trochlea of the D group had a significant higher grading 
(P < 0.05) than the T and C groups while in the patella the 
ICRS values was higher (P < 0.05) in D and T when com-
pared to the C group.

Cumulative index based on bone conditions. For the femur, the 
cumulative index displayed in Figure 13 was higher in the 
degenerative group when compared with the traumatic (P < 
0.05) and control (P < 0.01) groups, while the CI of the trau-
matic group was higher than the CI in the control 1 (P < 
0.05). Then, for the tibia, the degenerative group presented a 
higher index than the traumatic and control groups (P < 0.01).

The cumulative index has then been investigated more 
precisely in the D group, to observe the results in the 
frame of sex and age. Figure 14 below compares the 
cumulative index in the 3 different compartments (MC, 
LC, and FPC), for males and females. No significant dif-
ferences have been observed between the 2 cohorts. The 
results according to age will be detailed in the following 
section.

Comparison of different metrics to assess cartilage degeneration
Ci, Ahlbäck and iCRS grading vs age in the D group.  

Figure 15 shows age dependency in degenerative group 
(D) for the different grading system: AG, ICRS, and CI. 
While the CI and AG were positively correlated in all 
cases, the ICRS grading was positively correlated with 
age for both femur and tibia in the lateral compartment 
and for the patella in the FPC. In the rest of the cases, the 
ICRS was not correlated (a, e) or negatively correlated 
with age (b).

Ci and cartilage thickness vs age. For the next comparison 
(Figure 16), the ACT of femur and tibia was considered 
as the average thickness of the 3 contact points (anterior, 
middle, and posterior) measured in the medial as well as in 
the lateral compartment. Meanwhile, for the femoropatellar 
compartment, the ACT was considered as the average of the 
2 contact points (medial and lateral) in the femoral trochlea 
and of 3 contact points (medial, center, and lateral) in the 
patella. The results show that the cumulative index was pos-
itively correlated with age, while the average thickness of 
the cartilage was negatively correlated with age in all cases.

Table 4. 2D Measurements results. average Values of the iCrS grading, Ci and aCt for each group (and Standard Deviation 
Between Parentheses) and their location (Compartment/Bone).

Pathology Compartment/Bone
Degenerative 
average (SD)

traumatic 
average (SD)

Control average 
(SD)

iCrS Medial/femur 3.26 (0.67) 1 (1.41) 0.63 (0.70)
Medial/tibia 3.17 (1.31) 1.13 (1.05) 0 (0)
lateral/femur 1.96 (1.37) 1.63 (1.11) 1.38 (0.70)
lateral/tibia 2.22 (1.41) 1.75 (1.25) 0.75 (0.83)
Femoropatellar/fem. trochlea 2.36 (1.37) 0.94 (1.09) 0.75 (1.09)
Femoropatellar/patella 3.09 (0.79) 2.69 (0.58) 1.75 (0.66)

Cumulative index Femur 3.83 (1.19) 2.38 (0.96) 1.13 (0.83)
tibia 4.09 (1.24) 1.69 (0.79) 1.25 (0.46)
Patella 2.04 (0.93) 1.75 (0.93) 1.13 (0.83)

articular Cartilage thickness Medial/femur 1.5 (0.71) 2.63 (0.56) 2.64 (0.67)
Medial/tibia 1.63 (0.76) 2.3 (0.45) 2.48 (0.42)
lateral/femur 2.44 (0.63) 2.7 (0.54) 2.9 (0.38)
lateral/tibia 2.4 (0.81) 2.9 (0.73) 3.06 (0.65)
Femoropatellar/fem. trochlea 2.21 (0.77) 1.97 (0.77) 2.31 (0.29)
Femoropatellar/patella 2.29 (0.61) 2.78 (0.7) 2.7 (0.32)

iCrS = international Cartilage repair Society; Ci = cumulative index; aCt = articular cartilage thickness.
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Figure 10. Bone pathologies distribution. Percentages of patient groups (D, t, C) with (A) Subchondral cysts. (B) Subchondral 
edema, and (C) Osteophytes. according to the respective compartment.
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Summary of statistics. Table 5 shows the statistical power 
analysis for the following 2D measurements: CI, ICRS, and 
cartilage thickness.

Figure 11. Cartilage and joint space pathology distribution. Percentage of patient groups (D, t, C) with (A) meniscal pathology (B) 
synovitis-effusion, according to the respective compartment.

Figure 12. Distribution of the iCrS grading according to bones in 
each compartment, (A) medial, (B) lateral and (C) femoropatellar, 
for the 3 groups (degenerative, traumatic and control).

Figure 13. Distribution of cumulative index of pathologies in 
(A) femur, (B) tibia, and (C) patella for the 3 groups.
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Figure 14. Comparison of cumulative index of pathologies between males (blue) and females (orange) in D group, for the 3 compartments.

Figure 15. trendlines and the r2 coefficient of the Ci, ag and iCrS vs age in (A) femur and (B) tibia in the MC; (C) femur and (D) 
tibia in the lC; (E) femoral trochlea and (F) patella in the FPC. Ci = cumulative index; iCrS = international Cartilage repair Society; 
MC = medial compartments; lC = lateral compartments; FPC = femoropatellar compartment.
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For the CI, a high effect size is noted for CI femur and 
tibia, with a sufficient sample size for comparison between 
D and T groups, and D and C groups. CI patella requires a 
higher sample size. For the ICRS, D and T groups, and D 
and C groups can be compared for femoral and tibial MC 
with a relatively high sample size. Finally, cartilage thick-
ness can be compared between D and T groups, for the 
femur, and between D and C groups for the femur and 
tibia.

Table 6 shows a summary of the statistical analysis made 
for the CI, ICRS grading, and the ACT between the groups.

The cumulative index in femur and tibia shows a high 
significance to differentiate D group from the 2 other 
groups. Similarly, the ICRS shows significant differences 
between D and C groups for all the compartments of each 

bone, except for the femoral lateral compartment. Finally, 
the average cartilage thickness in the medial compartment 
for femur and tibia shows significant differences between D 
and the 2 other groups.

3D Measurements

The results shown in Table 7 display the average bone min-
eral density, as well as radiodensity, volume, and surface 
from each cartilage after tissue segmentation. The results 
were calculated for each group (D, T, and C).

T group has the highest density of all the bones. D group 
and C group have similar values for the femur density, while 
D group has higher density in tibia, and lower in patella. D 
group has the lowest density in the femoral cartilage, the 

Figure 16. trendlines and the r2 coefficient of Ci and average cartilage thickness vs age in (A) femur and (B) tibia in the MC; 
(C) femur and (D) tibia in the lC and (E) femoral trochlea and (F) patella in the FPC. Ci = cumulative index; MC = medial 
compartments; lC = lateral compartments; FPC = femoropatellar compartment.
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highest in the patella, and a slightly lower but similar values 
than C group in both lateral and medial tibia cartilage. D 
group has the highest cartilage volume for every part. C 
group has a higher volume than T group for the patella and 
the lateral tibia. D group has the highest cartilage surface 
for every part. T group has a higher surface than the C group 
for the patella and the medial tibia. It can be noted that for 
the patella, D group has the lowest bone density, the lowest 
cartilage density, the highest volume, and the highest sur-
face. In general, Table 6 does not show a significant trend 
among patient groups due to high interpatient variability; 
however, patient-specific 3D measurements are used in the 
machine learning part to enlarge the set of features predict-
ing the patient status.

Summary of statistics. Table 8 shows a summary of the sta-
tistical analysis made for the BMD, cartilage radiodensity, 
and cartilage volume between the groups.

Ci and radiodensity vs age. After comparison with other  
2D metrics, the cumulative index was compared with the 
cartilage radiodensity (Fig. 17A) and the cartilage volume 
(Fig. 17B) and plotted against the age of those patients who 
belonged to the D group.

The results show a higher correlation of the cumulative 
index in very case compared to the cartilage radiodensity 
and the cartilage volume.

Machine learning

Table 9 shows all the results of the ML analysis. The best 
accuracy results are 89.4, which is obtained with RF using 
the whole feature set and the 2D measurements feature set. 
F1 score is high for the degenerative patients (always 
around 90%), while it is slightly lower for the other 2 
groups. These F1 scores are due to the higher number of 
degenerative patients but also demonstrate that with the 
selected features, it is efficient to classify patients with 
degenerative cartilage using RF and GB. The best metrics 
for the classification of control subjects are obtained with 
the 2D feature set, while all 96 features give the best F1 
score for classifying traumatic patients using RF. In terms 
of accuracy, good results are obtained with MRI, bone, and 
cartilage feature selections, especially with the RF algo-
rithm, while 3D selection is the worst, with a maximum of 
76.6 accuracy with GB. With RF, the bone features give bet-
ter results in all 3 classes compared to the cartilage feature 
set. Using GB and cartilage feature set, only control sub-
jects are classified with higher metrics. We can state that RF 
is the most efficient of the 2 tree-based algorithms.

Tables 10 and 11 show the 12 most important features 
and the percentage of importance of all the different feature 
groups for the RF classification ML model using the 96 
total features as input. This model was selected for the fea-
ture importance analysis because it can be considered the 

Table 5. Statistical Power analysis of 2D Measurements. Sample Size required for a Power of 80% and a Significance level at 5%.

Ci_Femur Ci_tibia Ci_Patella  

D vs T effect size = 1.37 effect size = 2.36 effect size = 0.32  
 Sample size= 9 Sample size= 4 Sample size= 150  
D vs C effect size = 2.72 effect size = 3.11 effect size = 1.08  
 Sample size= 3 Sample size= 3 Sample size= 14  
T vs C effect size = 1.46 effect size = 0.70 effect size = 0.74  
 Sample size= 8 Sample size= 33 Sample size= 29  

 iCrS_Femur_MC iCrS_tibia_MC iCrS_Femur_lC iCrS_tibia_lC iCrS_Femur_FP iCrS_Patella_FP

D vs T effect size = 2.04 effect size = 1.72 effect size = 0.26 effect size = 0.35 effect size = 1.15 effect size = 0.58
 sample size = 5 sample size = 6 sample size = 222 sample size = 128 sample size = 13 sample size = 48
D vs C effect size = 3.84 effect size = 3.43 effect size = 0.53 effect size = 1.26 effect size = 1.30 effect size = 1.83
 sample size = 2 sample size = 3 sample size = 55 sample size = 11 sample size = 10 sample size = 6
T vs C effect size = 0.33 effect size = 1.51 effect size = 0.26 effect size = 0.94 effect size = 0.17 effect size = 1.50
 sample size = 139 sample size = 8 sample size = 216 sample size = 19 sample size = 530 sample size = 8

 
Cart thick_avge 

Fem MC
Cart thick_avge 

tibia MC  

D vs T effect size = 1.46 effect size = 0.91  
 sample size = 8 sample size = 20  
D vs C effect size = 1.85 effect size = 1.44  
 sample size = 6 sample size = 8  
T vs C effect size = 0.011 effect size = 0.31  
 sample size = 

113719
sample size = 157  

Ci = cumulative index; iCrS = international Cartilage repair Society; MC = medial compartments; lC = lateral compartments; FP = femoropatellar.
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most significant in terms of accuracy (89.4 is the highest). It 
allows for a complete overview of the full set of features 
and their respective importance in the classification pro-
cess. The highest importance is attributed to 2 features from 

the 3D collection (the volume of the tibialis cartilage latera-
lis and medialis). The 3D features set contribute 33% of 
importance despite being only 18 compared to the 78 2D 
features. The cartilage set of features has higher importance 

Table 6. Summary of 2D Measurements Statistics. Hypothesis, Variable, Statistical test and P-Value are Displayed.

Hypothesis Variable Statistical test P-Value

Difference between D&t groups Ci (Femur) aNOVa-Bonferroni correction 0.002
Ci (tibia) <0.001

Ci (Patella) 0.99
Difference between D&C groups Ci (Femur) aNOVa-Bonferroni correction <0.001

Ci (tibia) <0.001
Ci (Patella) 0.06

Difference between t&C groups Ci (Femur) aNOVa-Bonferroni correction 0.033
Ci (tibia) 0.98

Ci (Patella) 0.36
Difference between D&t groups iCrS MC (Femur) aNOVa-Bonferroni correction 0.001

iCrS MC (tibia) 0.001
iCrS lC (Femur) 1.00
iCrS lC (tibia) 0.85

iCrS FPC (Femur) 0.004
iCrS FPC (Patella) 0.30

Difference between D&C groups iCrS MC (Femur) aNOVa-Bonferroni correction 0.001
iCrS MC (tibia) 0.001
iCrS lC (Femur) 0.77
iCrS lC (tibia) 0.03

iCrS FPC (Femur) 0.001
iCrS FPC (Patella) 0.001

Difference between t&C groups iCrS MC (Femur) aNOVa-Bonferroni correction 1.00
iCrS MC (tibia) 0.08
iCrS lC (Femur) 1.00
iCrS lC (tibia) 0.26

iCrS FPC (Femur) 1.00
iCrS FPC (Patella) 0.014

Difference between D&t groups aCt MC (Femur) aNOVa-Bonferroni correction <0.001
aCt MC (tibia) 0.006
aCt lC (Femur) 0.51
aCt lC (tibia) 0.15

aCt FPC (Femur) 0.049
aCt FPC (Patella) 0.41

Difference between D&C groups aCt MC (Femur) aNOVa-Bonferroni correction <0.001
aCt MC (tibia) 0.005
aCt lC (Femur) 0.16
aCt lC (tibia) 0.12

aCt FPC (Femur) 0.28
aCt FPC (Patella) 1.00

Difference between t&C groups aCt MC (Femur) aNOVa-Bonferroni correction 1.00
aCt MC (tibia) 1.00
aCt lC (Femur) 1.00
aCt lC (tibia) 1.00

aCt FPC (Femur) 1.00
aCt FPC (Patella) 0.68

Ci = cumulative index; iCrS = international Cartilage repair Society; MC = medial compartments; lC = lateral compartments; FPC = 
femoropatellar compartment; aCt = articular cartilage thickness.
P-Values in bold are statistically significant.
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Table 7. 3D Measurements results. the results Show the average Variable for each group (With Standard Deviation Between 
Parentheses).

Degenerative traumatic Control

Bone mineral density (g/cm3)
 Femur bone 1.32 (1.13) 1.33 (1.14) 1.32 (1.12)
 tibia bone 1.32 (1.13) 1.35 (1.15) 1.29 (1.16)
 Patella bone 1.36 (1.12) 1.40 (1.14) 1.41 (1.11)
Radiodensity (HU)
 Femur cartilage 85.19 (57.47) 88.67 (49.90) 93.53 (54.37)
 lateral tibia cartilage 87.84 (51.10) 88.69 (44.97) 91.19 (49.21)
 Medial tibia cartilage 98.49 (55.92) 93.63 (44.14) 103.79 (52.82)
 Patella cartilage 78.36 (50.68) 81.56 (44.97) 99.09 (55.45)
Volume (mm3)
 Femur cartilage 17,303 (5,530) 12,460 (2,710) 11,276 (4,505)
 lateral tibia cartilage 2,851 (2,336) 1,100 (439) 1,501 (1,927)
 Medial tibia cartilage 1,915 (1,638) 907 (566) 552 (362)
 Patella cartilage 2,761 (830) 2,589 (781) 2,703 (705)
Surface (mm2)
 Femur cartilage 14,381 (2,636) 12610 (1,496) 11,809 (2,791)
 lateral tibia cartilage 2,435 (1,503) 1,415 (499) 2,073 (2,530)
 Medial tibia cartilage 2,016 (1,367) 1,301 (550) 967 (407)
 Patella cartilage 2,602 (760) 2,574 (488) 2,495 (390)

HU = hounsfield units.

Table 8. Summary of 3D Measurements Statistics. Hypothesis, Variable, Statistical test and P-Value are Displayed.

Hypothesis Variable Statistical test P-value

Difference between D&t groups BMD (femur) aNOVa-Bonferroni correction 0.014
BMD (tibia) <0.001

BMD (patella) <0.001
Difference between D&C groups BMD (femur) aNOVa-Bonferroni correction 0.82

BMD (tibia) 1.00
BMD (patella) 0.002

Difference between t&C groups BMD (femur) aNOVa-Bonferroni correction 0.72
BMD (tibia) 0.078

BMD (patella) 1.00
Difference between D&t groups CD (femur) aNOVa-Bonferroni correction 1.00

CD (tibia) 1.00
CD (patella) 1.00

Difference between D&C groups CD (femur) aNOVa-Bonferroni correction 0.43
CD (tibia) 1.00

CD (patella) 0.10
Difference between t&C groups CD (femur) aNOVa-Bonferroni correction 0.38

CD (tibia) 1.00
CD (patella) 0.11

Difference between D&t groups CV (femur) aNOVa-Bonferroni correction <0.001
CV (tibia) 0.13

CV (patella) 0.73
Difference between D&C groups CV (femur) aNOVa-Bonferroni correction <0.001

CV (tibia) 0.027
CV (patella) 1.00

Difference between t&C groups CV (femur) aNOVa-Bonferroni correction 1.00
CV (tibia) 0.93

CV (patella) 1.00

BMD = bone mineral density; CD = cartilage density; CV= cartilage volume.
P-Values in bold are statistically significant.
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Figure 17. (A) trendlines and the r2 coefficient of the Ci and the cartilage radiodensity of the (a) femur, (b) tibia, and (c) patella. (B) 
trendlines and the r2 coefficient of the Ci and the cartilage volume of the (a) femur, (b) tibia, and (c) patella. Ci = cumulative index.

Table 9. Classification Metrics (recall [re] Precision (Pr) and F1 [%]) for the 2 Different tree-Based Ml algorithms and the Seven 
Different Features Selections (Degenerative [D]—traumatic [t]—Control [C]).

Features Selection alg. acc. re [D] Pr [D] F1 [D] re [t] Pr [t] F1 [t] re [C] Pr [C] F1 [C]

tot Feat [96] rF 89.4 95.9 92.0 93.9 93.3 82.4 87.5 62.5 100 76.9
 gB 87.2 91.7 95.7 93.6 93.3 73.7 82.4 62.5 100 76.9
2D Feat [78] rF 89.4 91.7 91.7 91.7 86.7 86.7 86.7 87.5 87.5 87.5
 gB 87.2 91.7 91.7 91.7 80.0 80.0 80.0 87.5 87.5 87.5
3D Feat [18] rF 74.5 83.3 83.3 83.3 66.7 66.7 66.7 62.5 62.5 62.5
 gB 76.6 87.5 84.0 85.7 66.7 76.9 58.8 62.5 55.6 58.8
Ct-Scat Feat [26] rF 80.9 91.7 95.7 93.6 66.7 71.4 69.0 75.0 60.0 66.7
 gB 74.5 87.5 84.0 85.7 60.0 75.0 66.7 62.5 50.0 55.6
Mri Feat [52] rF 87.2 95.8 95.8 95.8 87.6 76.5 81.2 62.5 83.3 71.4
 gB 87.2 91.7 88.0 89.8 80.0 85.7 82.8 87.5 87.5 87.5
Bone Feat [50] rF 85.1 91.7 91.7 91.7 86.7 76.5 81.2 62.5 83.3 71.4
 gB 76.6 87.5 95.5 91.3 73.3 64.7 68.8 50.0 50.0 50.0
Cartilage Feat [26] rF 83.0 91.7 88.0 89.8 73.3 73.3 73.3 75.0 85.7 80.0
 gB 83.0 91.7 88.0 89.8 67.7 76.9 71.4 87.5 77.8 82.4

Ml = machine learning; rF = random forest; gB = gradient boosting; Mri = magnetic resonance imaging.
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compared to the bones. In contrast, the CT scan features 
contribute to only 14.39% of the importance having only 2 
of them in the first 12 most important features (lateral and 
medium osteophytes).

Discussion

This work developed a methodology to evaluate cartilage 
degeneration. It uses a multimodal image approach to seg-
ment, and 3D model bones and cartilages from the knee 
area. Indeed, the MRI provides information about patholo-
gies, morphology of the cartilages, and a geometric repre-
sentation of the tissue damage, while CT data present a 
good overview of bone pathologies, especially in boundary 
regions. The combination of both imaging techniques gives 
a 3D representation of the knee, and additional information 
about bone and cartilage. These data overview makes the 
definition of 96 features possible, which demonstrated vari-
ous levels of significance with regard to contribution toward 
the cartilage quality evaluation.

From the 2D measurements, the first parameters shown 
in the results are those which better testify to degeneration 
on the D group such as the presence of cysts, osteophytes, 
and meniscal pathology in the MC when compared to the T 
and C groups. This agrees with other biomechanical evi-
dence45 which suggests that the medial tibiofemoral joint 
reaction forces are greater than the lateral ones during gait 
and therefore the degeneration of the cartilage and the sur-
rounding tissue would be more evidently seen on the medial 
side. Meanwhile, the T group demonstrated greater inci-
dence of subchondral edema within the femoropatellar 
compartment when compared to the other 2 groups, making 
this an interesting and useful indicator, for example, in the 
development of protective elements to avoid injury. The 
cumulative index, which is based on the bone condition, 
indicates statistically that the degenerative patients present 

more pathologies in femur and tibia than the other patients. 
These results were expected, as the degeneration of the 
knee is known to affect the condition of both bones and 
cartilage, as confirmed by the ICRS values, which showed 
a significantly worse cartilage condition for the D group 
within the medial and femoropatellar compartments. 
Consequently, to assess the accuracy/utility of the cumula-
tive index as an indicator of cartilage degeneration, the CI 
was subject to comparison with other 2D metrics only 
within the D group in the frame of age, since males and 
females did not show significant differences in any of the 3 
compartments. Therefore, when compared to the AG and 
the ICRS for the different compartments the CI showed a 
regular trendline suggesting a higher index with aging of 
the degenerative patients. In some cases, the r2 indicated a 
better fit for the CI than the other metrics as in the femur in 
the medial and FPC. Later, when compared with the aver-
age cartilage thickness, the cumulative index presented a 
regular trend as well as the thickness, where the older the 
patient, the thinner the cartilage, and the higher the index. In 
summary, the cumulative index based only on the bone con-
dition shows a way to differentiate the groups, and it is 
strengthened by the statistical power analysis. Then, when 
compared against other metrics, the general low R2 values 
of the index are an indication of the high interpatient vari-
ability, which (despite the small sample size) was expected 
based on our hypothesis of needing higher sensitivity in the 
assessment of cartilage degeneration toward improving 
patient-specific profile and subsequently, treatment.

The fact that degeneration is mainly located in the same 
areas explain why the D group is easier to discriminate. The 
T group shows less homogeneous results, where only sub-
chondral edemas helped to differentiate them. Trauma 
affects a specific region that varies for each patient; there-
fore, it is harder to find any similar trends according to 
which bone or cartilage is studied.

The BMD calculated for the femur, and tibia bones do 
not discriminate the cartilage condition, probably because 
we calculated the overall BMD over the entire scanned 
bone segment without focusing on the boundary Bone/
Cartilage. Moreover, the results on the patella bone show 
higher BMD in healthy and traumatic individuals. The 

Table 10. 12 Most important Features [%] for the rF 
Classification Model With 96 tot Features.

tibCartlatVOl [mm3] 4,804
tibCartMedVOl [mm3] 4,631
Ct lat Osteophytes 4,594
Mri Med Cart thick FeM [mm]—Med 4,262
Mri Med Menisc Pathol 3,909
Mri lat Osteophytes 3,805
FemCartVOl [mm3] 3,644
tibCartlatStD 2,543
Mri lat Cart thick FeM [mm]—ant 2,491
Mri Med Cart thick FeM [mm]—Post 2,402
Mri lat Cart thick tiB [mm]—Med 2,352
Ct Med Osteophytes 2,343

rF = random forest; Ct = computed tomography; Mri = magnetic 
resonance imaging.

Table 11. importance of the groups of Features [%] for the 
rF Classification Model With 96 tot Features.

2D 66.08%
Mri (part of 2D features) 51.69%
Ct (part of 2D features) 14.39%
3D 33.12%
BONe (from Ct and Mri) 28.29%
Cartilage (from Mri) 37.79%

rF = random forest; Mri = magnetic resonance imaging; Ct = 
computed tomography.
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likeliest reason is that in this case, we have a complete and 
small bone volume, and a limited HU variability.46 The den-
sity calculated on the entire cartilage volume is also not a 
significant discriminator between degenerative, traumatic, 
and healthy conditions. However, a trend of decreased den-
sity in degenerative cartilage can be seen after eroding the 
cartilage mask and filtering the HU distribution. After this 
process, the differences between healthy and pathological 
conditions were more evident. This is in line with a known 
behavior regarding tissue density and pathologies. It has 
been shown that people suffering from rheumatoid arthritis 
present lower muscle density associated with joint destruc-
tion.47 Thus, people suffering from degenerative cartilage 
can present similarly a lower cartilage density associated to 
this damaged joint. For these reasons, we wanted to exam-
ine the cartilage density and cartilage volume alongside the 
bone CI, on the D group. The study of CI and cartilage den-
sity regarding age (Fig. 14) reveals that for each cartilage, 
the cartilage density remains similar through age, whereas 
the CI shows an increasing trend. The same behavior is 
observed regarding the volume, which does not change 
much with age compared to CI. The low R2 (R2 < 0.04) in 
both volumes and radiodensity metrics, lead us to believe 
that even though those parameters should be considered for 
group classification, they do not provide sensitive enough 
information to thoroughly assess cartilage degeneration. 
One reason for that is the lack of objective automatic meth-
ods for segmentation,48 leading to a bias or a lack of accu-
racy for 3D segmentation, that influences the data results. 
Future studies with more advanced segmentation tech-
niques should confirm this outcome. For now, the best indi-
cator identified in our study to quantify cartilage 
degeneration is the bone cumulative index.

ML results of Table 4 underline significant recall and 
precision, as well as F1, especially on the classification of 
degenerative patients, reaching a maximum recall value of 
95.9 using the total and MRI feature selections, having 
almost 90% accuracy. The use of all the 96 features gives 
the best classification metrics and allows a complete feature 
importance analysis which gives new significant hints for 
studying the degeneration condition of the knee cartilage.

Noteworthy are the results obtained with the single Bone 
and Cartilage feature selections. While a good accuracy 
value is expected for the latter as we are classifying subjects 
relative to their cartilage status, the classification metrics 
obtained with the bone selection are of high impact. 
Cartilage status is highly dependent on the bone’s condi-
tion, as has been demonstrated by Cai et al.,49 which 
observed changes in the subchondral bone with OA pro-
gression. Moreover, Bonakdari et al.50 recently used bone 
features to predict cartilage volume loss obtaining a correla-
tion coefficient of more than 0.78. Similarly, we demon-
strated that bone has high importance in the classification 
process. Still, if combined with cartilage and 3D features, 

the metrics significantly increase, indicating that with the 
contribution of all these sets of features, a more in-depth 
view of the knee cartilage status can be given. If we con-
sider 3D features or cartilage feature sets alone for the clas-
sification process, the metrics are not significant due also to 
the limited number. But, looking at the results in Tables 5 
and 6, they assume a significant relevance if we consider 
the whole complete set (the 2 most relevant features, vol-
ume of the tibialis cartilage lateralis and medialis, are from 
the novel 3D group). 3D features contribute one-third of the 
importance despite the limited number. At the same time, 
they give the lowest accuracy of 74.5 if considered the only 
input to the tree-based algorithms. The 26 cartilage features 
alone can give a decent 83% accuracy but, if taken together 
with the other 70, contribute to the classification for almost 
40% of total importance. We can conclude that the complete 
set of features gives the best input for future developments 
of this study: all the 96 bone, cartilage, and 3D features 
together could be used to develop new clinical solutions 
like the design of a patient-specific cartilage status profile 
which will help the clinicians and the researchers in an eas-
ier and objective classification of the cartilage status and an 
evaluation of the degeneration level. This novel methodol-
ogy, combining 2D and 3D measurements, is of interest to 
assess cartilage quality. By designing indexes of pathology 
and combining it with other parameters such as radioden-
sity, it is possible to categorize cartilage into a group condi-
tion. This preliminary study should be pursued with a larger 
range of subjects to ensure its efficiency.

limitations

The 2D assessment through CT and MRI is normally per-
formed by 1 person and can be sometimes difficult to assess 
some pathology because of the image quality or the subjec-
tivity of the researcher and this situation might affect the 
evaluation of the bone and cartilage. Likewise, the 3D seg-
mentation process is quite long and mostly manual. Despite 
multiple adjustments and cross-verification, some inaccura-
cies can remain, which can affect the 3D pipeline, therefore 
the density, volume, and surface values. An improvement of 
the segmentation workflow, using a semi-automatic or fully 
automatic method, would help to get more accurate values.

The number of subjects in each group, especially in the 
C group, remains small. Therefore, the statistical results 
must be observed with caution, and the preliminary trend 
observed to differentiate the groups has to be confirmed 
with a larger sample of participants.

The bone 3D measurements suffered from a high vari-
ability because we are studying the whole bone instead of 
regions of interest (boundaries around the cartilage). It has 
been done this way to avoid partial volume effect and image 
artifacts. However, it also results in a less precise way to 
evaluate bones.
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ML analysis also presents some limitations. The number 
of subjects is not particularly high; this could affect the 
classification performances and a partial overfitting may 
occur in some models. Moreover, the multi-class approach 
can significantly decrease the classification metrics: for 
future work, a binary classification option can be performed 
to study the prediction potential of the features to distin-
guish degenerative patients from all the others. A higher 
number of control subjects could also potentially be the 
starting point for a binary classification between degenera-
tive vs healthy or traumatic vs healthy subjects.

Conclusion

We developed a cartilage segmentation and 3D modeling 
procedure that can be used as benchmark for 3D bioprinting 
design and to advance cartilage assessment. Based on a 
cumulative index of bone properties (CI), we demonstrate 
the importance of bone condition and the sensitivity of 
these measurements on medial and femoropatellar compart-
ments. Moreover, we show that a combination of 2D radio-
logical measurements and 3D measurements revealed 
potential biomarkers of cartilage degeneration, especially 
from medial femur.

This work is a first step toward a patient-specific carti-
lage profile based on the combination of CT and MRI datas-
ets. This could be crucial for improving cartilage assessment. 
Indeed, when evaluating patients with knee pain either fol-
lowing trauma or with acute or chronic illness, the patient’s 
symptoms are always the cornerstone in the treatment deci-
sion, whether medical or surgical. Following plain x-ray, a 
CT scan and most often also MR scan are the best tools in 
elucidating the interior of the knee joint. The CT scan is both 
easy to get and fast to execute but uses ionizing radiation. It 
reveals, however, best all the bony structures and injuries. It 
may also give some clues about the bone marrow and sur-
rounding soft tissues. The MR, however, is the best exami-
nation to evaluate the status of both the cartilage and the 
ligaments. The drawback is both the long time until it can be 
executed and long running time which can sometimes be 
impossible in patients with severe pain. When merged, these 
2 examinations give the most superior evaluation ever for 
the knee joint and should always be chosen prior to invasive 
arthroscopy. Our study shows the feasibility of extending the 
cartilage assessment using existing and new parameters 
from both image modalities.
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