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Introduction: Postural control is a sensorimotor mechanism that can reveal

neurophysiological disorder. The present work studies the quantitative

response to a complex postural control task.

Methods: We measure electroencephalography (EEG), electromyography

(EMG), and center of pressure (CoP) signals during a virtual reality (VR)

experience called BioVRSea with the aim of classifying different postural

control responses. The BioVRSea paradigm is based on six different

phases where motion and visual stimulation are modulated throughout

the experiment, inducing subjects to a different adaptive postural control

strategy. The goal of the study is to assess the predictability of those

responses. During the experiment, brain activity was recorded from a 64-

channel EEG, muscle activity was determined with six wireless EMG sensors

placed on lower leg muscles, and individual movement measured by the

CoP. One-hundred and seventy-two healthy individuals underwent the

BioVRSea paradigm and 318 features were extracted from each phase of

the experiment. Machine learning techniques were employed to: (1) classify

the phases of the experiment; (2) assess the most notable features; and (3)

identify a quantitative pattern for healthy responses.

Results: The results show that the EEG features are not sufficient to

predict the distinct phases of the experiment, but they can distinguish

visual and motion onset stimulation. EMG features and CoP features,

when used jointly, can predict five out of six phases with a mean

accuracy of 74.4% (±8%) and an AUC of 0.92. The most important

feature to identify the different adaptive strategies is the Squared

Root Mean Distance of points on Medio-Lateral axis (RDIST_ML).

Abbreviations: A, alpha; AP, antero-posterior; AUC, area under curve; B, beta; CoP, center of

pressure; FNR, false negative rate; LDASDV, logarithmic difference absolute standard deviation value;

LG, low gamma; LTKEO, logarithmic Teager-Kaiser energy operator; ML, medio-lateral; PC, postural

control; RDIST_ML, Squared Root Mean Distance of points on ML axis; TPR, true positive rate.
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Discussion: This work shows the importance and the feasibility of a

quantitative evaluation in a complex postural control task and demonstrates

the potential of EEG, CoP, and EMG for assessing pathological conditions.

These predictive systems pave the way for developing an objective

assessment of pathological behavior PC responses. This will be a first step

in identifying individual disorders and treatment options.

KEYWORDS

postural control, machine learning, virtual reality, EEG, EMG, center of pressure

Introduction

An upright posture is not only important when standing or
walking, it is also crucial for successfully accomplishing everyday
life tasks and therefore has a major impact on the quality of
life. Falls are the worst consequences of postural control (PC)
disorders (Alexander, 1994), and for this reason, fall injuries
are one of the most serious healthcare problems and one of the
biggest threats to the independence of older adults. They are
associated with an increased functional impairment, disability,
and decreased ability to independently manage activities of daily
living (Hageman et al., 1995; Marks et al., 2003; Figueiro et al.,
2008).

PC can be defined as the ability to maintain the body’s center
of gravity within certain limits of stability during quiet stance or
movement. The limits of stability are shaped like a cone and can
be specified as the range in which the body’s center of gravity
can be shifted without requiring a change in the base of support
(Alexander, 1994; Hageman et al., 1995, p. 961; Horak, 2006).
PC involves two general skills of the human body: first, postural
orientation, which describes the ability to maintain the body
position in relation to the environment and ultimately provide an
appropriate response to external perturbations; second, postural
stability, which is the ability to maintain body position in
equilibrium (Hageman et al., 1995, p. 961; Horak, 2006, 2;
Figueiro et al., 2008, p. 111).

PC is a complex and dynamic central sensorimotor system
that integrates information from the vestibular, visual, and
proprioceptive sensory systems. In daily activities, it relies on
a multifaceted interplay of physiological mechanisms (Melzer
et al., 2001, p. 189; Peterka, 2002, p. 1,097; Horak, 2006; Ivanenko
and Gurfinkel, 2018, p. 175).

External perturbations induce and trigger different adaptive
PC strategies in the human body. Previous studies investigated
these strategies, focusing on the task-dependent changes of
strategies throughout the lifespan (Haddad et al., 2013), the
adaptive behavior of PC due to perturbations in the upright
standing (He and Tian, 1997; Fransson et al., 2000), or the
adaptive responses to virtual environments (Reed-Jones et al.,
2008).

A person’s CoP and its movement are indicators of stability
and are considered particularly useful to study postural response.

The CoP can be calculated using a force plate under the feet that
determines the center of the vertical reaction force (Alexander,
1994; Hageman et al., 1995, p. 961). In addition, an increasing
number of studies are using brain electrical signals (EEG) as
a viable measurement setup to investigate cortical activity and
the neurophysiological behavior during PC tasks (Slobounov
et al., 2005, p. 316; Edwards et al., 2018, p. 36). Likewise,
EMG has been used in several studies to investigate balance
control as well as posture correction by lower leg muscles like
tibialis anterior and gastrocnemius (Slobounov et al., 2005,
p. 316).

Due to the rising size and complexity of data sets the use
of predictive analyses using machine learning analysis became
common in biomedical engineering studies (Poldrack et al.,
2020). This results in the advantage of being able to use machine
learning to examine large high-dimensional datasets for patterns
in a brief period and derive quick and relevant conclusions.
Regarding the classification models for machine learning, the
goal is always to get generalizable models that can also predict
other data sets that are not from the same data collection or
environment (Scheinost et al., 2019, p. 37).

The recent measurement setup BioVRSea has been used
for various research purposes, including the prediction of
motion sickness or the evaluation of biomarkers for concussions
(Recenti et al., 2021; Jacob et al., 2022). For this study, BioVRSea
was used to explore brain activity, muscle activity, and center
of mass to investigate changes in PC responses. With these
biosignal recordings, features can be extracted and then used
to classify the several segments of the experiment. In total,
BioVRsea consists of six distinct phases with individual settings
that have a unique influence on the subjects’ responses in terms
of PC. Firstly, from baseline to PRE, we have a visual onset
with the beginning of the sea simulation. From PRE to 25%, we
have a motion onset synchronized with the sea simulation. This
movement progressively increases at 50% and 75%. Finally, the
induced postural control response is measured while abruptly
switching off the movement while the sea simulation remains on.
Therefore, feature extraction and analysis were performed for
each phase with the aim to estimate and quantify these different
physiological conditions and responses. Machine learning is
of great impact as it helps to determine which biosignals
are suitable to predict the different phases of the BioVRSea
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acquisition and which patterns can be found in the large amount
of data collected.

Materials and methods

Experimental protocol

BioVRSea is an innovative measurement setup for studying
the physiology of PC. It mimics the sensation and gives the
impression of being in a small boat on a rough sea. The goal of
the experimental setup is to trigger a PC response and analyze
the various biosignals during the acquisition.

The setup consists of a virtual reality (VR) environment
and a moving platform synchronized with the simulated
environment. Subjects stand on the platform and wear VR
goggles and various measurement devices to record the different
biosignals. The participants were prepared for measurement
with the placement of a wet 64-electrode EEG cap, six wireless
EMG sensors on the tibialis anterior, gastrocnemius lateral,
and soleus muscles of each leg, and the heart sensor strapped
around the chest. The EEG amplifier was connected to the cap
and placed in a backpack with a tablet used for EEG signal
acquisition. The backpack is worn by the participant during the
experiment. Finally, the participant enters the VR environment
by climbing on a platform and donning VR goggles. The
platform is equipped with a force plate to measure the sway
movements of the participants during the experiment. The
schematic experimental setup can be seen in Figure 1.

For the experiment and the following classification, six
phases are considered, as depicted in Figure 2. These segments
will be the different classes to be predicted with the machine
learning process. The first phase is the baseline segment, where
the participant only sees a static mountain panorama through
the VR goggles. During this time, the platform does not move,
and the participant stands with their hands by their side while
viewing the mountain view for a total of 2 min. For the signal
processing part, only the last 60 s were used. After the Baseline
phase, the VR scene changes to the sea environment and the
subject sees him/herself on a small boat at sea. The second phase
lasts 40 s and is called the PRE phase. During this phase, the
platform does not move, and the participant remains still with
their hands by their side. In the third phase, the participant holds
on to the safety bars and the platform moves in a synchronized
manner with the waves seen in the VR scene. During these 40
s, the platform moves at 25% of the maximum amplitude. In
the fourth and fifth phases, the platform increases the intensity
to 50% and 75%, respectively for 40 s each. In the last phase,
the POST phase, the movement of the platform stops while the
VR simulation continues. The participant takes their hands off
the safety bar and stands quietly trying to maintain equilibrium
watching the VR sea scene. After 40 s, this phase is over and so
is the entire acquisition.

The different materials used for the study include the VR
software (Sampling frequency: 90 Hz, Virtualis VR, Clapiers,
France), the moving platform (Virtualis VR, Clapiers, France),
the force platform (Virtualis VR, Clapiers, France), six wireless
EMG sensors, attached to the soleus, tibialis anterioris, and

FIGURE 1

BioVRSea measurement setup.
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FIGURE 2

Different phases of the experiment.

gastrocnemius lateral on both the left and right legs (Sampling
frequency: 1,600 Hz, Kiso ehf, Reykjavik, Iceland), and the
64-channel wet electrode cap (Sampling frequency: 4,096 Hz
ANTNeuro, Hengelo, The Netherlands). The three integrated
biosignals were recorded and synchronized using a software
called MacroRecorder. This software enables to automatize all
the consecutive computer tasks and to launch simultaneously the
recording.

The data processing and analysis procedure are described in
the following sections.

Population

The study is based on 191 subjects (age: 34.1 ± 14.8), 79
male and 112 female subjects (ethics approval by the Icelandic
Bioethics Commission—Number: VSN-20-101—May 2020).

Due to missing or inferior quality recordings, the CoP
analysis was performed on only 172 subjects (age: 33.7 ± 14.7),
64 male and 108 female.

EEG

Brainstorm (Tadel et al., 2011) and MATLAB 2022a
(MATLAB, 2022; MathWorks, Inc., Natick, 158 Massachusetts,

USA) with the Automagic Toolbox developed by Pedroni
et al. (2019) was used for preprocessing and analysis of the
EEG data. To ensure data quality and to avoid artifacts, we
removed the five first and five last seconds for each phase of
the experiment. Afterwards, the data were resampled to 1,024
Hz.

Automagic was used for automatic preprocessing for each
data set, with a manual check at the end. The ICA MARA
algorithm was used with a variance of 20%. A high-pass and low-
pass filter were set to 1 Hz and 45 Hz, respectively. The data
were notch filtered at 50 Hz. Finally, the bad electrodes were
interpolated. According to the five anatomic lobes of the cortex
consisting of frontal, parietal, occipital, and the two temporal
lobes that are widely accepted in the scientific community
(Woolsey et al., 2017; Casillo et al., 2020) we further used
these lobes as regions of interest. The power spectral density
(PSD) was computed for each phase and each electrode using
Welch’s method, with the following frequency bands: delta (1–4
Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz), low
gamma (30–45 Hz). The relative power of each region of the
cerebral cortex was then calculated by taking the mean of the
electrodes located in that region to obtain a total of five EEG-
related features per region and per experimental phase. All this
preprocessing was performed in a manner analogous to the
study of Jacob et al. (2022).
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EMG

For the EMG features, preprocessing and feature extraction
are required which were performed with MATLAB 2022a, using
the built-in Signal Processing Toolbox. The muscle signal was
analyzed for each segment. After the removal of the transition
from one phase to another, each phase segment for 20 s. For
further processing, we use a 4th order Butterworth bandpass, a
cutoff frequency of 15 Hz and 500 Hz, and a sampling frequency
of 1,600 Hz. Time and frequency metrics were extracted from
this final signal. The full table with the used features can be found
in Supplementary Figure S1.

Centre of Pressure (CoP)

To calculate the anterior–posterior (AP) and medio-lateral
(ML) displacement (in centimeters) of the CoP, the following
formula was used:

DisplacementAP = Y× 0.5× StaticVR_AP and

DisplacementML = X× 0.5× StaticVR_ML

The StaticVR_AP (respectively StaticVR_ML) is the
percentage of the vertical size (respectively horizontal size) of
the platform sensors, with a value comprised between−1 and 1.
In addition, X represents the dimension of the force platform in
the ML direction and Y represents the dimension of the force
platform in the AP direction.

The processing of the CoP data was performed using
MATLAB 2022a, and is the same as previously described in
Jacob et al. (2022). During the experiment, the force platform
records the movement of the CoP, a projection of the center of
mass of the subject on the plane of the machine, also called a
stabilogram. To filter the CoP data, we used a Savitsky-Golay
filter with window size 7. Afterwards we used the stabilogram for
feature extraction. The full list of the used features can be found
in Supplementary Figure S1.

Machine learning

For the classification analysis, the interactive Classification
Learner App was used: it is included in the Statistics and
Machine Learning Toolbox (2022) in MATLAB 2022a. The
data can be imported as a spreadsheet, which contains the
different predictor and response variables. We used a training
dataset containing 80% of the data and a test dataset with the
remaining 20%. As is known from machine learning theory and
literature, it is crucial that the model has never seen the test
data set until finally the test accuracy gets computed to avoid
overfitting and biased results (Scheinost et al., 2019, p. 37;
Poldrack et al., 2020).

For validation accuracy, we performed a 10-fold cross-
validation and the validation error gets calculated by averaging
over the 10 folds. Then, the model is trained using the entire
training dataset (70% of the total data). Subsequently, we
used the remaining 30% of the data to obtain test accuracy
without bias.

As predictors, we used the features extracted from the
different bio-signals (Table 1). To obtain information about
which biosignal is more suitable for predicting the phase
of the experiment, we trained and tested prediction models
separately for the EEG, EMG, and CoP data. Finally, we also
trained classification models using both EMG and CoP features
together.

Different configurations have been used for the
classification. The first one was the prediction of the six
different phases. For the CoP data, the recording starts only
after the BL, so the second configuration was the prediction
of five phases (PRE, 25%, 50%, 75%, and POST). A third
consideration was averaging the three movement phases (25%,
50%, 75%) in one unique phase, as the similarity of these
phases made the classification more difficult. This leads to three
(PRE, movement, POST) or four (BL, PRE, movement, POST)
phases to classify. Finally, for the EEG signals, due to the low
accuracy in the previous configurations, a binary classification
was defined, to differentiate BL from the rest. The five phases
that were not BL were averaged together in one single phase.
This approach of merging was only possible because we had the
same amount of data for each phase. This is also necessary for
the classification to correctly assess and interpret the average
overall accuracy (Poldrack et al., 2020).

The details of the classification configuration and results are
listed in Table 2.

For calculating the feature selection, the ANOVA—analysis
of variance—method was used. ANOVA provides the
opportunity to determine the most relevant feature for
classification. As a statistical test, it is suitable to compare the
differences between two or more means of the samples based
on mean and variance. The ones with the lowest values show
that they are independent of the target variable. The ones with
a high value show a high relevance for the classification model.
ANOVA is suitable for non-stationary data such as EEG for
example and is used in various other studies in the field of
biomedical engineering and neuroscience (Chowdhury et al.,
2017, p. 537; Majid Mehmood et al., 2017, p. 674; Harpale and
Bairagi, 2021, p. 14,797).

TABLE 1 Total number of features.

Signal Modalities Features Total

EEG 5 bands× 5 brain regions= 25 modalities 1 25
EMG 3 muscles× 2 sides= 6 modalities 43 258
CoP 1 modality 35 35

EEG, electroencephalography; EMG, electromyography; CoP, center of pressure.
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Afterwards, the effect size has been computed, calculating η2

for a confidence level of 95%.

Results

Table 2 sums up the classification results. The first column
shows the biosignal used for the prediction. The second
column shows the phases considered in the analyses. The “X”
overlapping several cells, as on the first row of EEG, considers the
merged phases. The next two columns represent the validation
and test accuracy, followed by the area under curve (AUC) for
the validation and test. The seventh column shows which model
has been used to obtain those results, and the last three columns
show the top three features for the classification.

Phases classification

The confusion matrices in Figure 3 visualize and summarize
the performances of the models detailed in Table 2, for each
biosignal: EEG, EMG, COP, and EMG+COP. The table layout
shows two dimensions, the true class in each row and the
predicted class in each column, and gives insights into the
occurrence frequency in the corresponding field. Furthermore,
the True Positive Rates (TPR) and the False Negative Rates
(FNR) are shown next to that.

With the EEG features, it is not possible to classify all the
different phases of the experiment. But with a test accuracy of
74.6% it is possible to classify if the data is from Baseline or not.
Regarding the use of EMG features with our test data, we could
predict with an accuracy of 68.4% of the Baseline. As can be seen
in Figure 3B, it is difficult for the models to classify the phases in
between, resulting in high false negative rates for these phases.

Using the CoP features we can classify five phases with a test
accuracy of 71.7%. Striking is the True Positive Rate of 82.4% for
predicting the PRE-Phase and 84.6% for the 25% phase as can be
seen in Figure 3C. Due to the False Negative Rate of 36.5% for
the Post phase, it becomes clear that the model has more issues to
predict the POST phase by only using the CoP data. Most of the
mistakes in predicting the phase result in the fact that in 15.7%
of the cases the predicted class is the PRE phase instead of the
POST phase. Respectively this correlation can also be seen if the
model tries to predict the PRE-Phase.

By using both EMG and CoP features we get the best result
for predicting the five different phases. For the trained model we
achieved a test accuracy of 74.4% and an AUC value of 0.92. The
single True Positive and the respective False Negative Rates can
be seen in Figure 3D.

The use of EEG, EMG, and CoP features jointly did not bring
an increase in the overall accuracy for predicting five phases of
the experiment compared of the use of EMG and CoP features
together.
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FIGURE 3

Confusion matrices. (A) EEG features. (B) EMG features. (C) CoP features. (D) EMG and CoP features. EEG, electroencephalography; EMG,
electromyography; CoP, center of pressure.

Features ranking

The three most relevant EEG features to classify the BL from
the experiment are the power spectral density values for the low-
gamma phase in the occipital region, the alpha phase in the
frontal region, and in the parietal region, represented in Figure 4.

If only the EMG data is used, the most useful feature is
the logarithmic Teager-Kaiser energy operator (LTKEO) of the
Tibialis Anterioris Right, followed by LTKEO of the Tibialis
Anterioris Left and the logarithmic difference absolute standard
deviation value (LDASDV) of the Tibialis Anterioris Right.

The LTKEO feature plotted for the Tibialis Anterior and for
Baseline, PRE and POST can be seen in Figure 5. An increase is
recognizable in the LTKEO feature with the ongoing experiment.
Strikingly is also the concentrated clustering for Baseline and
more widely distributed data dots for the PRE and POST phases.

Regarding CoP, the three most relevant features for the
classification algorithms are the squared root mean distance of

the ML direction (RDIST_ML) as well as the standard deviation
of points on the ML axis (SD ML), and the direction entropy. In
general, it can be noticed that the ML features are more relevant
to predict the phases than the AP features.

The different phases of the experiment can be seen in
Figure 6, plotting the total CoP movement in AP Direction
and ML Direction. The PRE-Phase strikes out with the lowest
values for the total movement regarding both directions.
Furthermore, the data dots for the PRE-Phase are limited and
concentrated in a small area. With the experiment’s further
progress, a stepwise increase is noticeable in the Medio-
Lateral direction and a slight increase in the Anterior-Posterior
direction. The finishing POST-phase characterizes itself with
increased values in the Anterior-Posterior direction and a widely
distributed area.

Table 3 describes the effect size for the top three features of
each biosignal. EEG features have an effect size of around 0.05,
highlighting a medium effect. However, EMG features have an
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FIGURE 4

Top 3 EEG features to classify BL from the experiment.

effect size of 0.4, and COP features have an effect size of 0.5,
showing a high effect associated with those features.

Discussion

Postural control is a sensorimotor mechanism that can
reveal neurophysiological disorder. The main goal of using the
classification is to gain more insight into the dynamic changes in

posture control and the different phases of the experiment. This
is the reason behind the classification of the different phases of
BioVRSea.

EEG features

With the EEG feature solely, we can only classify Baseline
and not Baseline with an accuracy of 74.6%. This shows that
there is a change in brain activity and a difference between those

FIGURE 5

LTKEO feature for tibialis anterioris. LTKEO, Logarithmic Teager-Kaiser energy operator.
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FIGURE 6

Total CoP movement in anterior-posterior and medio-lateral direction.

TABLE 3 Effect size description.

Effect size

EEG LG occipital A parietal A frontal
η2 0.04 0.05 0.07

EMG LTKEO–TA–Right LTKEO–TA–Left LDASDV–TA–Right
η2 0.41 0.39 0.41

COP RDIST–ML SD–ML Direction Entropy
η2 0.53 0.53 0.50

two stages is recognizable for the model. This difference can
be deduced from the changing VR scene that also triggers the
occipital region of the brain. This conclusion may fit together
with the PSD value for the low gamma phase in the occipital
region that is the most important feature for binary classification.

The attempt to classify all six phases was not successful.
Considering the experimental setup this also seems reasonable
as the phases of the moving platform (25%, 50%, and 75%) will
trigger the same regions (such as the frontal and parietal regions)
as they are needed for coordination and motion control (Faw,
2003; Fogassi and Luppino, 2005; Aubonnet et al., 2022). This
makes it challenging for a classification model to predict a class.
Another possible reason is the individual adaptive PC strategy
to the sensory input regarding the neural activity (Ivanenko and
Gurfinkel, 2018).

Other causes for the difficulties in predicting all the phases
could be that in the study we took the average PSD value for the
entire phase. An improvement could be to take epochs, so that
averaging the different spikes on a per-wave basis could give a
more appropriate feature extraction method. Including features
derived from a dynamic analysis (not static as reported here)
may also improve performance.

EMG interpretation

Regarding the EMG features, the high FNR for the phases
25%, 50%, and 75% is expectable as they differ only in their
intensity of the sensory input. As the Baseline is the most
different phase compared to the others (no sea simulation, no
platform movements), it makes sense that it is also for the model
one of the easiest phases to predict.

The logarithmic Teager-Kaiser energy operator (LTKEO)
of the Tibialis Anterioris is the most important feature for
the classification with solely EMG features. It leads to a good
classification result, especially between Baseline and the other
phases. Li et al. (2007) discovered an improved detection of EMG
onset using TKEO, especially at a low signal-to-noise ratio. Other
studies confirmed this, reasoning that the calculated energy is
derived from the instantaneous amplitude and frequency of
the signal (Solnik et al., 2010; Liu et al., 2015). Laksono et al.
(2021) also performed EMG classification using the Matlab
classification learning application and found an important role
of TKEO for EMG classification and high accuracy.

The overlapping clusters for the PRE and the POST phase in
Figure 5 show that the LTKEO values are on average higher in
the POST phase but it also shows that this feature on its own is
not sufficient to distinguish these two Phases without mistakes.
The reason the LTKEO values are so low in the Baseline could be
that it is the easiest phase to maintain PC as the VR environment
with the static mountain view combined with the platform
not moving is not a challenging task for subjects without PC
disorders. In that phase, the muscles are relaxed all the time,
and the subjects rarely contract their muscles to keep balance.
This leads to low instantaneous energy changes and therefore a
low LTKEO value.
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A hypothesis for the widely distributed dots in PRE and
POST visible in Figure 5 is that some of the people are using
more balancing movements in those two segments, compared
to others that just need less muscle activity to maintain PC.
This quantitively underlines the fact that people are using
individual adaptive PC strategies as identified in the literature
(van Emmerik and van Wegen, 2002).

CoP interpretation

A similar interpretation can be reached with the CoP data.
Figure 6 shows how severe and individual the impact is on the
subjects’ PC. The increase in deviation from the neutral position
indicates the substantial influence that the experiment had on
most of the subjects. While observing the scattered plot, the post
phase is more widely distributed, because the severeness of the
impact on the subjects is quite different. This result also must
be seen with the background that anatomical prerequisites also
affect the adaptive strategies and are why some people show a
higher deviation from the neutral position than others (Hunter
and Hoffman, 2001).

The fact that more ML features are relevant for the
classification leads to the conclusion that, for these features, the
experiment results in patterns that differ among each phase, and
help the classification model to predict. A clinical hypothesis for
it could be that sways in the AP direction are more individual
and natural than sways in the ML direction that are triggered by
our acquisition (Hunter and Hoffman, 2001). In addition to that,
the VR environment is mainly an AP visual oscillation that is
active in all the phases besides Baseline. This could make it more
difficult to predict the phase as th differences between the phases
are less significant. This result also matches with other findings
from previous studies (Lott et al., 2003; Donker et al., 2007; Luo
et al., 2018).

EMG and CoP interpretation

By combining EMG and CoP measurements we obtain good
classification results, with 73.3% of accuracy for five phases. The
reason could be that with the EMG data it is difficult for the
model to distinguish the phases of 25%, 50%, and 75%. For these
phases, the model can use the CoP data to classify them. This
leads to high overall accuracy.

Comparing the different biosignal features it becomes clear
that EEG is not able to predict all the phases for the BioVRSea
experiment. With EMG as well, the results are not sufficient.
With CoP superior results can be achieved but really satisfying
results for the classification of the distinct phases can only
be achieved by using EMG and CoP features jointly. This
leads to the result that those biosignals are needed to describe
the dynamic behavior BioVRSea has on the subjects and to
quantitatively assess the adaptive PC strategies.

Limitations

The first limitation to mention could be the amount of
data. This is relatively large for a typical biomedical study with
neurophysiological examinations, but the results, especially the
learned classification models, could be even more reliable if
the amount of data were larger. This is especially critical when
subgroups are studied, as the number of subjects is then greatly
reduced. In addition, the diversity of the subjects investigated
should be increased in further studies. Also, relative to the
average population, more women than men participated in
the study.

Another limitation was the subjects’ behavior during the
experiment. Even though we instructed them to stand still and
look in front of them, some participants performed spontaneous
movements that were not in reaction to the experiment. This
could lead to artifacts or noise in the data collection. Also, it
cannot be fully ensured that subjects remain fully focused on the
experiment and do not pursue other conscious thoughts.

Conclusion

This work aimed to study the neurophysiological dynamics
of PC, and how neurophysiological measures could help to
quantify and predict PC adaptation, from a consequent healthy
cohort. We demonstrated that for our paradigm, EEG could
differentiate baseline from acquisition phases. Moreover, the
combination of EMG and CoP parameters presented satisfactory
results to characterize the five phases of the experiment involving
the sea simulation. From those results, the best features of each
signal were identified to classify the phases: alpha frontal and
parietal PSD, lowgamma occipital PSD for the EEG, LTKEO
for tibialis anterioris for the EMG, and RDIST and SD ML for
the CoP.

This work is a first step towards the definition of a global
healthy pattern, and will lead in the future to the development
of tools to understand and quantify PC-related pathological
conditions.
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